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Abstract

Nurses are scheduled for work according to a prediction for the number of

inpatient patients. The size of the prediction interval plays a key role here.

A model has been created to predict the number of patients that are inpa-

tient due to planned surgeries and to analyze its prediction interval. This

has been done by using two approaches: firstly by applying an M/M/∞
queueing model and secondly by applying an M/G/∞ queueing model. We

have applied the M/G/∞ model to a normal and log-normal service distribu-

tion, where an additional update rule is introduced once a patient undergoes

surgery. The schedule, or blueprint, of these surgeries has been either deter-

ministically made in advance, stochastically made in advance or the sched-

ule can be altered up until the moment of surgery. For both the M/M/∞
model and the M/G/∞ model, we have simulated both the deterministic and

stochastic blueprint for various parameters. Additionally, for the M/G/∞
model, we have used a log-normal service distribution, where we compare the

additional update rule to the case where no additional update rule is used.

We see that the introduction of the additional update rule does not benefit

the quality of the prediction. The size of the prediction interval of the models

does not decrease with absolute certainty, but the simulations show that it

decreases almost always when time progresses.
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1 Introduction

In this Section, we first give a short overview of the situation. Then, we

state the research goal and our approach on the topic. Finally, we present

the structure of the remainder of the report.

1.1 Background

After undergoing surgery, patients arrive in the hospital ward, where they

stay inpatient for a certain amount of time. This amount of time is called the

”Length of Stay” and is unknown before they get discharged from the hospi-

tal. Consider only one hospital department of patients. In this department,

there are already patients who have been there for various times. On each of

these patients, there is certain information available, e.g. how long they have

been inpatient already, what type of surgery they underwent (arm, leg) and

who performed surgery on them. In the future, more patients are scheduled

for surgery. Of these new patients, there is fewer information available, as

you might not yet know their type of surgery or their surgeon.

Based on all the information that is available, a prediction for the number

of inpatient patients somewhere in the future is made. The information that

is used for this prediction not only influences the prediction for the number

of patients, but also influences the corresponding prediction interval. The

number of nurses required for these patients is based on this prediction and

its corresponding prediction interval. The working schedule of these nurses

is created three months prior to date, with the possibility of change until one

month prior. Since hospitals want to ensure that every patient is sufficiently

cared for, the number of nurses that are scheduled for work is on the high-

end of the prediction interval. Usually, this results in a lot of ”wasted” work

hours for nurses.
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This could be improved on by reducing the size of the prediction interval

(while maintaining the same level of significance). Using new information

that is gained over time plays a key role in order to gain more certainty on

this prediction.

1.2 Goals

The goal of this report is to use the new knowledge that becomes appar-

ent over time, to decrease the size of the prediction interval and reduce the

amount of wasted work hours. This report focuses on the knowledge that

is gained due to the number of patients that are currently present in the ward.

We set the following objective:

”We aim to make a model that can be updated to incorporate the new

information that is gained to predict the number of patients being present

in the ward for some fixed point in the future”

With this research objective, we propose the following research questions.:

1. Does the size of the prediction interval decrease with absolute certainty?

2. How significant is the information gain per time epoch when we make

the prediction far into the future compared with making the prediction

near in the future?

3. Is there a significant difference in modelling the schedule in various

ways?

Sections 3 and 4 discuss question 1, while numerical results in Section 5

discuss question 2.
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1.3 Approach

We will only focus on patients that are inpatient due to planned surgeries.

In practice, acute surgeries should be taken into account as well. Since we

will assume that there is an infinite number of beds available, these acute

patients can be implemented into our model without interference with the

planned patients.

The schedule (which we also refer to as blueprint) plays a key role in mod-

elling this situation. In this report, we consider three types of schedules of

the performed surgeries. Each of these three blueprints only determines the

number of patients that undergo surgery in a certain time interval. This

implies that the type of surgery is never known beforehand. Every type of

blueprint is analyzed for both the M/M/∞ model and the M/G/∞ model.

The three types are:

1. a deterministic blueprint: this gives us all the information on the num-

ber of surgeries performed in the future. This number is fixed through-

out time.

2. a stochastic blueprint: this models the situation in which the number

of surgeries performed in the future is a random variable, up until the

day arrives on which the surgeries takes place. In this report, we will

make certain assumptions on the distribution of this type of blueprint.

3. a dynamic blueprint: this starts with an initialization on the number of

surgeries performed in the future, similar to the deterministic blueprint.

However, in this scenario more surgeries can be scheduled throughout

time. Again, we will make certain assumptions on the distribution of

the number of added surgeries

In Sections 3 and 4, we will do a more technical analysis on the effects of

these different blueprints.
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1.4 Structure of the report

In this report, we create a model, based on queueing theory, that gives a

prediction for the number of patients that are inpatient at a certain time.

When this prediction is made at various times, the impact of gaining ad-

ditional information at later times on the prediction and its corresponding

prediction interval will be analyzed. The surgeries patients undergo will all

be planned surgeries, implying that some sort of schedule is made before-

hand. This schedule could be also updated. We look at various options for

how this schedule is determined.

Section 2 discusses the available literature on this research topic. Regarding

the model, Section 3 analyzes the M/M/∞ queue, after which Section 4 an-

alyzes M/G/∞. In the Section on the M/G/∞ queue, we also look at some

specific distributions for the Length of Stay.

Furthermore, we show numerical results of this model, using simulations of

these queues by generating patients with their Length of Stay coming from

various distributions. Section 5 shows how the model is first be applied to

specific cases of the M/M/∞ model, after which we will apply it to sim-

ilar cases on the M/G/∞ model. In Section 6 we summarize and discuss

the results of this report. Finally, recommendations for further research are

given.
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2 Literature review

In this Section, we will look into insights provided by other research. First

of all, the analysis of several queueing systems in hospital has been done

by others. Bekker and Koeleman analyzed the variability of hospital admis-

sions following a G/G/∞ queue [1]. They present an optimization for the

scheduling of arrivals. In [2], a technique for balancing the lost patients and

costs of a patient of an M/PH/c queue is presented. A forecasting model

which uses a Richards’ curve to predict the arrival rate and a Kaplan-Meier

estimation for the Length of Stay is used in [3]. This paper presents a data

driven prediction model, based on a Poisson arrival process, to predict the

bed census in the ward and ICU of a hospital. Other research on predictions

and performance measures of hospitals are [4], [5] and [6].

In [7], an hourly bed census prediction as a function of the Master Surgery

Schedule and arrival patterns of acute patients is presented. Analysis on

the Master Surgery Schedule is done in [8]. We see that the schedules that

other papers use/generate are often more complex than the schedules that

are used in this report. This implies that no work could be found using this

scheduling approach.

The parameters of the queue could also be estimated. In [9], an estima-

tor for the Length of Stay distribution of an M/G/∞ queue is proposed. An

estimation based on the queue length process for the Length of Stay distribu-

tion is given in [10]. A Bayesian Neural Network approach is used in [11], to

determine the posterior distribution of the Length of Stay. Bayesian analysis

on paramaters will not be applied in this report.

A model for the nurse staffing is proposed in [12], based on the hourly bed

census predictions in [7]. More insights on nurse staffing can be found in [6].

Further analysis on this topic will not be done.
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3 The M/M/∞ queue

In this Section, we will make a prediction model for the number of inpatient

patients, assuming a Poisson arrival process, an exponentially distributed

Length of Stay and an infinite amount of beds. We first analyze the char-

acteristics of this M/M/∞ queue. Then, we will use this analysis to create

a model that is able to make the prediction at various times and use the

additional information that is gained at those times, for several scheduling

systems of the hospital. We will show some numerical results of this model

in Section 5.1.

3.1 Analysis on the M/M/∞ queue

Let us consider only one department of patients. At time t = 0, there is a

certain number of patients already being inpatient (this number could be a

random variable). For these current patients, the distribution of the time

until discharge is known (with known rate µ0). New patients will arrive with

rate λ and have a discharge rate µ1 up until a time t = τ1. After τ1, pa-

tients with discharge rate µ2 will arrive with rate λ until time t = τ2 and

so on. Let Xi(t) denote the number of occupied beds by patients with dis-

charge rate µi at time t and let P i
k(t) = P[Xi(t) = k)] the probability that

there are k patients of type i at time t. The assumption is that the Xi(t) are

independent. Let Y (t) denote the total number of patients that are inpatient.

Let us consider 0 ≤ t ≤ τ1 and that there are n0 patients at t = 0. The

total number of patients at time t is then X0(t) + X1(t). X0(t) is a pure-

death process (see Figure 11 in Appendix A), as there are no new patients

coming in and X1(t) is a birth-death process.

To analyze these processes, we will use the Kolmogorov forward equations
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[13]:
d

dt
P i
xy(s; t) =

∑
k

P i
xk(s; t)A

i
ky(t) (1)

where Ai(t) is the transition rate matrix of type i patients. We will only look

at starting at time t = 0 in state n0. The Kolmogorov forward equations for

the pure-death process are:

d

dt
P 0
k (t) = (k + 1)µ0P

0
k+1(t)− kµ0P

0
k (t), k ≤ n0 − 1 (2)

with initial condition P 0
n0

(0) = 1 and

d

dt
P 0
n0

(t) = −n0µ0P
0
n0

(t) (3)

The solution is:

P 0
k (t) =

(
n0

k

)
e−µ0kt(1− e−µ0t)n0−k, k ≥ 0 (4)

which is a binomial distribution with parameters n0 and e−µ0t. The deriva-

tion can be found in Appendix B.

For the birth-death process (see Figure 12 in Appendix A), the Kolmogorov

equations are:
d

dt
P 1
0 (t) = µ1P

1
1 (t)− λP 1

0 (t) (5)

d

dt
P 1
k (t) = λP 1

k−1(t) + (k + 1)µ1P
1
k+1(t)− (λ+ kµ1)P

1
k (t), k > 0 (6)

with initial condition P 1
0 (0) = 1. The solution is [14]:

P 1
k (t) = e−ρ1(t)

ρk1(t)

k!
, k ≥ 0, (7)

where ρ1(t) satisfies

ρ1(τ0) = 0 (8)
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The solution for ρ1(t) is:

ρ1(t) =
λ

µ1

(1− e−µ1t), t ∈ (τ0, τ1] (9)

The derivation can be found in Appendix B. Hence, X1(t) is a Poisson dis-

tributed random variable with mean ρ1(t).

To determine the distribution of Y (t), we will use the probability generating

function (PGF). The probability generating function of a random variable X

is defined as [15]:

G(z) = E[zX ] =
∞∑
x=0

p(x)zx (10)

X0(t) has binomial distribution, so it has the following PGF:

GX0(t) = (e−µ0t(z − 1) + 1)n0 (11)

X1(t) is Poisson distributed, so it has the following PGF:

GX1(t) = e−ρ1(t)(1−z) (12)

Multiplying these two gives the PGF of the total number of patients Y (t),

0 ≤ t ≤ τ1:

GY (t) = GX0(t) ·GX1(t)

= (e−µ0t(z − 1) + 1)n0 · e−ρ1(t)(1−z)
(13)

which is an explicit expression for the PGF of Y (t).

If X0(0) is a Poisson distributed random variable with mean λ0, GX0(t) can

then be determined as follows:

8



E[zX0(t)] =
∞∑
n=0

P (N0 = n) · E[zX0(t))|N0 = n]

=
∞∑
n=0

λn0
n!
e−λ0 · (e−µ0t(z − 1) + 1)n

= e−λ0
∞∑
n=0

(λ0(e
−µ0t(z − 1) + 1))n

n!

= e−λ0 · eλ0(e−µ0t(z−1)+1)

= exp(−λ0(e−µ0t(1− z)))

(14)

which is the PGF of a Poisson distributed random variable. This implies

that

X0(t) ∼ Poisson(λ0e
−µ0t) (15)

The PGF of Y (t) is now the product of the PGF’s of the two Poisson random

variables, which results in the PGF of a Poisson random variable with mean

the sum of the means of X0(t) and X1(t):

GY (t) = exp
[
−(λ0e

−µ0t + ρ1(t))(1− z)
]

(16)

Now, let us consider τ1 ≤ t ≤ τ2. The total number of patients now consists

of three types of patients. The first two types are now both pure-death

processes, as no new patients of those types will arrive. Once again, assume

the initial number of patients at t = 0 to be Poisson distributed, denoted

by N0 and denote the number of patients of type 1 at t = τ1 by N1. Note

that N1 = X1(τ1) and thus N1 is also Poisson distributed. The PGF of each

individual type can now be determined:

GX1(t) = exp(−ρ1(τ1)(e−µ1(t−τ1)(1− z))) (17)

9



GX2(t) = e−ρ2(t−τ1)(1−z) (18)

where the PGF ofX1(t) is shifted in time andN1 is used and the PGF ofX2(t)

is the same as in (12), but also shifted in time (and different service rate).

GX0(t) is the same as in (14). Since these are now all Poisson distributed,

the total amount Y (t) will also be Poisson distributed. The same can now

be applied to all patient types at all times.

3.2 Recursive approach on patients with a prolonged

stay

In the previous Section it was shown that Y (t) will always be Poisson dis-

tributed, under the assumption that N0 is Poisson distributed. After every

time epoch, one additional term is added to the mean of this Poisson distri-

bution. We see that for Y (τ1) we have:

Y (τ1) = X0(τ1) +X1(τ1) (19)

Starting for type 0 patients, the only information needed is the number of

patients inpatient at the previous time epoch. All of these patients have

discharge rate µ0. Now, since both of the types present at τ1 are Poisson

distributed:

Y (τ1) ∼ Poisson(λ1), (20)

where

λ1 = λ0e
−µ0τ1 + ρ1(τ1) (21)

10



Now, after τ1, we see that X1(t) has become a pure-death process as well.

For Y (τ2) we have:

Y (τ2) = X0(τ2) +X1(τ2) +X2(τ2) (22)

Similarly:

Y (τ2) ∼ Poisson(λ2), (23)

where

λ2 = λ0e
−µ0τ2 + ρ1(τ1)e

−µ1(τ2−τ1) + ρ2(τ2) (24)

Hence, we see that

Y (τj) ∼ Poisson(λj), (25)

where

λj = λ0e
−µ0τj +

j∑
i=1

ρi(τ1)e
−µi(τj−τi) (26)

So far, we have not used the additional information gained each time epoch.

However, we now consider patients that stay inpatient longer than a certain

amount of time to have the same discharge rate. Let this time be equal to

k time intervals (which may differ in length). We then have the following

equation for λj:

λj =

λ0e−µ0τj +
∑j

i=1 ρi(τ1)e
−µi(τj−τi) j ≤ k

λ0e
−µkτj +

∑j−k−1
i=1 ρi(τi)e

−µk(τj−τi) +
∑j

i=j−k ρi(τi)e
−µi(τj−τi) j > k

(27)

3.3 Modelling and updating the M/M/∞ queue

Let time be slotted, with prediction epochs τ0, τ1, . . . , τS. Our goal is to

predict, at decision epoch τs, the number of patients present at time τS and

relate these predictions at epochs τs and τs+1, s = 0, . . . , S − 1. We will

refer to patients that undergo surgery and arrive in the ward in (τi−1, τi]

11



as type i patients and patients in the system at time 0 as type 0 patients.

We assume that the distribution of the Length of Stay of type i patients is

exponential(µi).

Figure 1: Overview of the situation at prediction epoch τs

Consider prediction epoch τs (see Figure 1). For each epoch τs, we

will be interested in the predicted number of patients present at epochs

τs, τs+1, . . . , τS. Let N0
0 denote the number of patients in the ward at epoch

τ0. Let N s
i denote the predicted number of type i patients present in the

ward at epoch τi for i = s + 1, . . . , S and nsi be the realization of N s
i for

i = 0, . . . , s − 1. Let N s
s denote all the patients currently in the ward. Let

Xs
i (t) be the (predicted) number of type i patients present at time t, t ≥ τs.

So N s
i = Xs

i (τi), i = s, . . . , S + 1. Let Y s(t) =
∑S

i=sX
s
i (t), t ≥ τs be the

total (predicted) number of patients that are in the system at time t. The

predicted number of patients of type i present in the ward at time τi, i > s,

can be divided in two classes:

– Asi - the number of patients that are scheduled before time τs to undergo

surgery in (τi−1, τi]

– Bs
i - the number of patients that will be scheduled during (τs, τi−1] to

undergo surgery in (τi−1, τi], but are not scheduled yet

12



So

N s
i = Asi +Bs

i , i > s (28)

For i = s, we state that N s
s = Ass, thus Ass also denotes all the patients

currently present in the ward.

Consider prediction epoch τs and time interval (τi−1, τi], i = s + 1, . . . , S.

As time progresses and additional information is obtained about patients for

surgery in (τi−1, τi], A
s
i will increase and Bs

i will decrease. We assume that

the service of a type i patient starts at τi. Let Cs
i denote the number of type

i patients that will be scheduled in (τs−1, τs] for surgery. We assume that Cs
i

is Poisson distributed with mean λsi . We see that

As+1
i = Asi + Cs+1

i (29)

and

Bs
i = Cs+1

i +Bs+1
i (30)

Note that if we use the realization of Asi , A
s+1
i has a shifted Poisson distri-

bution. Bs
i has a Poisson distribution with mean

∑S
j=s+1 λ

j
i , since BS

i = 0.

We denote this mean by γsi .

When the clock has moved one step forward and we make the prediction

one epoch later, some things have changed. First, N s+1
i , s + 1 ≤ i ≤ S has

gained more certainty, due to the extra information given by As+1
i . Secondly,

we know more about the service rate of the patients who underwent surgery

in (τs, τs+1]. We update the service rate every time epoch by decreasing the

index by 1, if possible. This results in:

ρsi (τi) =
λsi
µi−s

(1− e−µi−s(τi−τi−1)) (31)

The service rates could be further updated by applying a Bayesian statistical

13



analysis to use the information gained on these patients. This will not be

done here, but we will keep distinguishing between different service rates to

ensure that applying a statistical analysis is still possible.

Consider making the prediction of the number of patients at different times.

Xs
i (t) has the following distribution (see (4)):

Xs
i (τS) ∼ Bin

(
N s
i , e
−µi−s(τS−τi)

)
, s ≤ i ≤ S (32)

Note that Xs
S(τS) equals N s

S, which is also the case in (32). Assuming all the

service and arrival rates are known, we can determine a prediction interval

for Y s(τS), using its expectation and variance, and compare these:

E[Y s(τS)] =
S∑
i=s

E[Xs
i (τS)] (33)

We assume that all Xs
i (t) are independent, so the following holds:

Var(Y s(τS)) =
S∑
i=s

Var(Xs
i (τS)) (34)

This implies for Y s(t):

E[Y s(τS)|N s
i , i = s . . . S] =

S∑
i=s

[
e−µi−s(τS−τi) ·N s

i

]
(35)

Regarding decision epoch s+ 1:

Xs+1
i (τS) ∼ Bin

(
N s+1
i , e−µi−(s+1)(τS−τi)

)
, s+ 1 ≤ i ≤ S (36)

14



and thus

E[Y s+1(τS)|N s+1
i , i = 0 . . . S] =

S∑
i=s+1

[
e−µi−s+1(τS−τi) ·N s+1

i

]
(37)

From (36), you can already see that the variance of the model is likely to be

lower. Since the variance of a binomial distributed random variable equals

np(1−p), the closer p gets to 1, the closer the variance goes to 0. This is the

case when we update the model. We will now look at the various scheduling

systems for the surgeries.

3.3.1 A deterministic blueprint

We first look at the special case where the entire surgery schedule has already

been determined from the beginning, implying the number of patients who

will undergo surgery is known. We denote the realization of Asi by ai, s+1 <

i ≤ S. Note that Bs
i = 0 and that there is no necessity for a prediction epoch

index for ai, since it is a constant. Let Ass still denote all the patients that

are currently inpatient. Thus we have:

N s
i = ai (38)

We assume now that the length of all time intervals and all service rates are

equal, being T and µ respectively. Applying this to (32), the expectation

and variance of Xs
i (τS), i ≥ s+ 1 become:

E[Xs
i (τS)] = ai · pi (39)

and

Var(Xs
i (τS)) = ai · pi(1− pi) (40)

where

pi = e−µ(S−i)T (41)
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The expectation and variance of Xs
i (τS), i ≤ s become:

E[Xs
i (τS)] = xsi (τs) · ps (42)

and

Var(Xs
i (τS)) = xsi (τs) · ps(1− ps), (43)

where xsi (τs) is the realization of Xs
i (τs). For Y s(τS) we get:

E[Y s(τS)] =
s∑
i=0

[xsi (τs) · ps] +
S∑

i=s+1

[ai · pi] (44)

and

Var(Y s(τS)) =
s∑
i=0

[xsi (τs) · ps(1− ps)] +
S∑

i=s+1

[ai · pi(1− pi)] (45)

Note that
∑s

i=0 x
s
i (τs) = Ass. We now determine Var(Y s+1(τS))−Var(Y s(τS)):

Var(Y s+1(τS))− Var(Y s(τS))

=
s+1∑
i=0

[xs+1
i (τs+1) · ps+1(1− ps+1)] +

S∑
i=s+2

[ai · pi(1− pi)]

−
s∑
i=0

[xsi (τs) · ps(1− ps)]−
S∑

i=s+1

[ai · pi(1− pi)]

= (ps+1(1− ps+1)− ps(1− ps))
s∑
i=0

[
(xs+1

i (τs+1)− xsi (τs))
]

+(xs+1
s+1(τs+1)− as+1)ps+1(1− ps+1)

(46)

Since no new patients will arrive and there are per type i at most ai patients,

xs+1
i (τs+1) is smaller or equal to both xsi (τs) and ai. However, since ps+1 > ps,

we do not know whether ps+1(1− ps+1)− ps(1− ps) is larger or smaller than

0. Therefore, we cannot conclude that the difference in variance is smaller

or equal to zero with absolute certainty.
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3.3.2 A stochastic blueprint

Let us now consider the case where the number of surgeries is determined

beforehand, but this number is a random variable. Note that once again

Bs
i = 0. We now have:

N s
i = Ai (47)

Since this planning remains the same throughout time, there is no need for

a prediction epoch index for Ai. We can now use (44) and (45) to determine

the expectation and variance of Y s(τS):

E[Y s(τS)] = E

[
s∑
i=0

[xsi (τs) · ps] +
S∑

i=s+1

[Ai · pi]

]
(48)

Var(Y s(τS)) =E

[
s∑
i=0

[xsi (τs) · ps(1− ps)] +
S∑

i=s+1

[Ai · pi(1− pi)]

]

+Var

(
s∑
i=0

[xsi (τs) · ps] +
S∑

i=s+1

[Ai · pi]

) (49)

Since the planning of type i surgeries are likely to be independent, we now

assume that Ai is Poisson distributed with mean δi. We also assume that

the planning of type i surgeries are independent of the planning of surgeries

of other types. This results in:

E[Y s(τS)] =
s∑
i=0

[xsi (τs) · ps] +
S∑

i=s+1

[δi · pi] (50)
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Var(Y s(τS)) =
s∑
i=0

[xsi (τs) · ps(1− ps)] +
S∑

i=s+1

[δi · pi(1− pi)]

+
S∑

i=s+1

[
p2i · δi

]
=

s∑
i=0

[xsi (τs) · ps(1− ps)] +
S∑

i=s+1

[δi · pi]

(51)

where (51) also follows from the fact that Y s(τS) now is a sum of a number of

binomially distributed random variables and a number of Poisson distributed

random variables.

We now determine the difference in variance:

Var(Y s+1(τS))− Var(Y s(τS))

=
s+1∑
i=0

[xs+1
i (τs+1) · ps+1(1− ps+1)] +

S∑
i=s+2

[δi · pi]

−
s∑
i=0

[xsi (τs) · ps(1− ps)]−
S∑

i=s+1

[δi · pi]

=
s∑
i=0

[
xs+1
i (τs+1) · ps+1(1− ps+1)− xsi (τs) · ps(1− ps)

]
+
(
xs+1
s+1(τs+1)− δs+1

)
ps+1

(52)

From here, we cannot conclude that the variance will decrease as time pro-

gresses.
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3.3.3 A dynamic blueprint

Let us now consider the case that new surgeries can be scheduled into the

future. Following (29) and (30), this implies that:

E[N s
i ] = E[Asi ] + E[Bs

i ]

= Asi +
S∑

j=s+1

λji
(53)

and
E[N s+1

i ] = E[As+1
i ] + E[Bs+1

i ]

= E[Asi + Cs+1
i ] +

S∑
j=s+2

λji

= Asi + λs+1
i +

S∑
j=s+2

λji

= Asi +
S∑

j=s+1

λji

(54)

and thus the following holds:

E[N s
i ] = E[N s+1

i ] (55)

Since the N s
i consist of two parts, one of which is a given and the other a

Poisson distributed random variable, each Xs
i (τS) (except for i = 0), is split

up into a binomial distribution and a Poisson distribution (see (4) and (7)).

These distributions have a standard, known expectation and variance and

thus, the expectation and variance of Y s(τS) can be determined.

Let us first lose the assumption that all types have equal service rates and
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all time intervals have equal length for more generality. We then have:

E[Xs
i (τS)|Asi ] = EBsi [E[Xs

i (τS|Asi , Bs
i ]]

= EBsi [(A
s
i +Bs

i )e
−µi−s(τS−τi)]

= (Asi + γs)e−µi−s(τS−τi)

(56)

and hence

E[Y s(τS)|Asi , i = s . . . S] =
S∑
i=s

Asi · e−µi−s(τS−τi) +
S∑

i=s+1

γsi · e−µi−s(τS−τi)

(57)

For the variance we have:

Var(Xs
i |Asi , i = s . . . S) = EBsi [Var(Xs

i |Asi , Bs
i , i = s . . . S)]

+ VarBsi (E[Xs
i |Asi , Bs

i , i = s . . . S])

= EBsi [(A
s
i +Bs

i )e
−µi−s(τS−τi)(1− e−µi−s(τS−τi))]

+ VarBsi
(
(Asi +Bs

i )e
−µi−s(τS−τi)

)
= (Asi + γsi )e

−µi−s(τS−τi)(1− e−µi−s(τS−τi))

+ γsi · e−2µi−s(τS−τi)

= Asi · e−µi−s(τS−τi)(1− e−µi−s(τS−τi))

+ γsi · e−µi−s(τS−τi)

(58)

and hence

Var(Y s(τS)|Asi , i = s . . . S) =
S∑
i=s

Asi · e−µi−s(τS−τi)(1− e−µi−s(τS−τi))

+
S∑

i=s+1

γsi · e−µi−s(τS−τi)
(59)

We again now assume that the length of all time intervals and all service rates

are equal, being T and µ respectively. This gives the following, simplified
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expressions for the expectation and variance of Y s(τS).

E[Y s(τS)|Asi , i = s . . . S] =
S∑
i=s

Asi · e−µ(S−i)T +
S∑

i=s+1

γsi · e−µ(S−i)T (60)

Var(Y s(τS)|Asi , i = s . . . S) =
S∑
i=s

Asi · e−µ(S−i)T (1− e−µ(S−i)T )

+
S∑

i=s+1

γsi · e−µ(S−i)T
(61)

We can analyze the difference of the variances by updating the model by

analyzing 61. For simplicity, we again denote :

pi = e−µ(S−i)T (62)
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Var(Y s(τS)|Asi , i = s . . . S)

−Var(Y s+1(τS)|As+1
i , i = s+ 1, . . . , S, Cs+1

i = cs+1
i )

=
S∑
i=s

Asi · pi(1− pi) +
S∑

i=s+1

γsi · pi

−
S∑

i=s+1

As+1
i · pi(1− pi)−

S∑
i=s+2

γs+1
i · pi

=Ass · pi(1− pi) +
S∑

i=s+1

Asi · pi(1− pi) + γss+1 · ps+1

+
S∑

i=s+2

γsi · pi −
S∑

i=s+1

Asi · pi(1− pi)

−
S∑

i=s+1

cs+1
i · pi(1− pi)−

S∑
i=s+2

γs+1
i pi

=Ass · ps(1− ps) +
S∑

i=s+2

S∑
j=s+1

λji

+γss+1ps+1 −
S∑

i=s+1

cs+1
i · pi(1− pi)−

S∑
i=s+2

S∑
j=s+2

λji

=Ass · ps(1− ps) + γss+1ps + λs+1
s+2 −

S∑
i=s+1

cs+1
i · pi(1− pi)

(63)

It is clear from (63) that there is no guarantee there will be a decrease in

variance going from epoch τs to epoch τs+1, as it depends on the realization

cs+1
i .

3.4 Conclusion

We have come up with a model that can determine the expectation and vari-

ance of the number of inpatient patients for each of the various scheduling

possibilities of the M/M/∞ queue. This model distinguishes between pa-

tients that arrive in different time intervals. This ensures that we could use
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the information gain on these patients.

We see that for the none of the blueprints, there is a guaranteed drop in

variance as the prediction epoch progresses.
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4 The M/G/∞ queue

In this Section, we will discuss the M/G/∞ model. First, we give some

background information on the characteristics of this queue. Then, we do

some analysis on a recursive approach of this queue, after which we will use

both the background information and analysis to come up with the model.

We will also look at some specific service distributions for this model: the

normal distribution and the log-normal distribution. The normal distribu-

tion is one step easier to analyze than the log-normal distribution, with the

latter being common in healthcare discharge processes [16].

Section 6 analyzes the stochastic blueprint model, where the Length of Stay

distribution is log-normal. Here, we compare a special update rule to the

regular case.

4.1 Analysis on the M/G/∞ queue

Here, the discharge process has a general distribution. Denote by Q(t) the

number of patients inpatient at time t in a regular M/G/∞ birth-death pro-

cess and W the generic service-time random variable. Then, Q(t) is Poisson

distributed with mean [17] [18]:

E[number of patients at time t] =

∫ ∞
0

[1−H(x)] (λ(t− x)dx (64)

where

H(x) = P (W ≤ x) (65)

We consider a homogeneous arrival rate. We can set up the Kolmogorov

equations for this model as follows [19]:
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d

dt
P0(t) = −λ(1−H(T − t))P0(t)

d

dt
Pn(t) = λ(1−H(T − t))Pn(t) + λ(1−H(t))Pn−1(t), n ≥ 1,

(66)

where H(T − t) denotes the probability that a patient arriving at time t has

completed its service by time T . This horizon T can later be replaced by

our horizon τS. The initial conditions state that P0(0) = 1 and Pn(0) = 0,

n ≥ 1. The initial condition that P0(0) = 1 is not necessarily true, but we

can model the patients that are already present at the ward separately, since

we assume that there are infinite beds. This way it is also easier to take their

residual Length of Stay into account. Additionally, the following also holds:

∞∑
n=0

Pn(t) = 1 (67)

Combining (66) and (67) gives

d

dt
P0(t) = λ(1−H(T − t))P0(t)

d

dt
Pn(t) = λ(1−H(T − t))Pn(t) + λ(1−H(t))Pn−1(t), n ≥ 1,

(68)

We solve these differential equations by setting up another differential equa-

tion using the probability generating function of Q(t), denoted by P (z, t).

d

dt
P (z, t) = −λ(1−H(T − t))(1− z)P (z, t) (69)

which has solution [19]

P (z, t) = exp

(
−
∫ t

0

λ(1−H(x))(1− z)dx

)
(70)

From this, we can determine the first two moments of the number of patients.
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These moments directly relate to the expectation and variance.

4.2 Recursive approach

First, we approach the hospital without distinguishing between types of pa-

tients. Let N s denote the total number of patients present at τs. We set up

the following recursion:

N s+1 = N s + Es+1 −Ds+1, 0 ≤ s ≤ S − 1 (71)

where Es+1 denotes the patients arriving between time epoch τs and τs+1 and

Ds+1 denotes the patients leaving between τs and τs+1.

For each patient j, we will determine the probability of them being still

present at time t, if they are present at time x. We denote this probability

by pj(x, t). For now, we assume that they start being inpatient at time 0.

We see that:

pj(x, t) = P(Wj ≥ t|Wj ≥ x) (72)

Here, Wj denotes the random variable that is the service time of patient j.

We denote the probability density function of the Length of Stay distribution

of patient j by fj(t). Now:

pj(x, t) =
P(W ≥ t)

P(W ≥ x)
=

1−
∫ t
0
fj(y)dy

1−
∫ x
0
fj(y)dy

(73)

However, for i > 0, type i patients arrive in the hospital after time 0. There-

fore, we have to shift the times. Let pij(x, t) denote the probability that a

type i patient that is present at time x, x ≥ i, is still present at time t. We

see that:

pij(x, t) =
1−

∫ t−τi
0

fj(y)dy

1−
∫ x−τi
0

fj(y)dy
(74)
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Let all the knowledge that is available at the time of making the prediction

be denoted by F (F is a filtration [20]). Every time epoch, F is updated to

contain all new information gained. So at time τs, we know the realization of

N s, which we denote by ns. Additionally, we see that Ds+1 is the sum of N s

independent Bernoulli trials, each with their own probability ps+1
j (τs, τs+1).

This implies that N s −Ds+1 is the sum of N s independent Bernoulli trials,

each with their own probability 1 − pj(τs, τs+1). We denote these leftover

patients by Ls+1 = N s −Ds+1. So we get:

N s+1 = Ls+1 + Es+1 (75)

We assume that the arrival process of patients in [τs+1, τs), s ≤ S, is Poisson

distributed with mean λs. Given from (64), we then know that Es+1 is also

Poisson distributed with mean λs+1 · E[W ], which we denote by ρs+1.

We now apply the probability generating function to determine the distribu-

tion of N s+1. For Ls+1, it holds that its generating function is the product of

each individual Bernoulli trial. We define the probability generating function

of Ls+1, given N s = ns as follows:

GLs+1(ns, z) = E[zL
s+1|N s = ns] (76)

and thus

GLs+1(ns, z) =
ns∏
j=1

[qs+1
j (τs, τs+1) + ps+1

j (τs, τs+1)z], (77)

where [qs+1
j (τs, τs+1) = 1− ps+1

j (τs, τs+1). For N s+1 it then holds that:

GNs+1(ns, z) = GLs+1(ns, z) ·GEs+1(z)

= e−λ
s(1−z) ·

ns∏
j=1

[qj(τs) + pj(τs)z]
(78)
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We can get the expectation and variance for N s+1 directly from (71), since

Es+1 and Ls+1 are independent random variables. We know that Es+1 is

Poisson distributed with mean ρs+1, implying its mean and variance are also

ρs+1. The expectation and variance from Ls+1 is simply the sum of the

expectations and variances of each independent Bernoulli trial. We get:

E[Ls+1] =
Ns∑
j=1

[ps+1
j (τs, τs+1)] (79)

and

Var(Ls+1) =
Ns∑
j=1

[ps+1
j (τs, τs+1) · qs+1

j (τs, τs+1)] (80)

This implies:

E[N s+1|N s = N s] =
Ns∑
j=1

[ps+1
j (τs, τs+1)] + ρs+1 (81)

and

Var(N s+1|N s = N s) =
Ns∑
j=1

[ps+1
j (τs, τs+1) · qs+1

j (τs, τs+1)] + ρs+1 (82)

4.3 Modelling and updating the M/G/∞ queue

Again, let time be slotted, with prediction epochs τ0, τ1, . . . , τS. Our goal is

to predict, at decision epoch τs, the number of patients present at time τS

and relate these predictions at epochs τs and τs+1, s = 0, . . . , S − 1. We will

refer to patients that undergo surgery and arrive in the ward in (τi−1, τi] as

type i patients and patients in the system at time 0 as type 0 patients. We

assume that the arrival process of type i patients between decision epoch τs

and τi−1 is a Poisson process with mean λsi (see Figures 1 and 2).
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Figure 2: Overview of the arrival process at prediction epoch τs

Consider prediction epoch τs (see Figure 1). For each decision epoch τs,

we will be again interested in the predicted number of patients present at

epochs τs, τs+1, . . . , τS. Let N0
0 denote the number of patients in the ward

at epoch τ0. Let N s
i denote the predicted number of type i patients present

in the ward at epoch τi for i = s + 1, . . . , S and N s
i for i = 0, . . . , s − 1

be the realization of the number of type i patients. Let N s
s be the patients

currently present in the ward. Let Xs
i (t) be the (predicted) number of type

i patients present at time t, t ≥ τs. So N s
i = Xs

i (τi), i = s, . . . , S + 1. Let

Y s(t) =
∑S

i=sX
s
i (t), t ≥ τs be the total (predicted) number of patients that

are in the system at time t. The predicted number of patients of type i

present in the ward at time τi, i > s, can be divided in two classes:

– Asi - the number of patients that are scheduled before time τs to undergo

surgery in (τi−1, τi].

– Bs
i - the number of patients that will be scheduled during (τs, τi−1] to

undergo surgery in (τi−1, τi], but are not scheduled yet.

So

N s
i = Asi +Bs

i (83)

When time progresses and additional information is obtained about patients

for surgery in (τi−1, τi], A
s
i will increase and Bs

i will decrease. We assume
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that the service of a type i patient starts at τi. Let Cs
i denote the number

of type i patients that will be scheduled in (τs−1, τs] for surgery. We assume

that Cs
i is Poisson distributed with mean λsi . We see again that

As+1
i = Asi + Cs+1

i (84)

and

Bs
i = Cs+1

i +Bs+1
i (85)

Note that Asi , i = s+ 1, . . . , S will become a realization, since this value will

be known once making the prediction. We see that Bs
i has a Poisson distri-

bution with mean γsi =
∑S

j=s+1 λ
s
j . Additionally, note that Bi

i = 0, since no

more unknown patients will be scheduled. Combining these two implies that

N s
i will have a shifted Poisson distributed random variable, where the shift

relies on the realization of Asi and the parameter (variance) is γsi .

We are interested in Y s(τS) and for that we need Xs
i (τS). For each of the N s

i

patients, we can use (74) in order to determine the probability that they are

still there at τS. Hence, Xs
i (τS) is a sum of N s

i independent Bernoulli trials,

each with their own probability pij(τi, τS). This is called a Poisson binomial

distribution [21]. We will now determine the expectation and variance of

Y s(τS) using various approaches for the surgery schedule. Since all Xs
i (τS),

i = 0 . . . S are independent, we have the following:

E[Y s(τS)] =
S∑
i=0

E[Xs
i (τS)] (86)

and

Var(Y s(τS)) =
S∑
i=0

Var(Xs
i (τS)) (87)
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4.3.1 A deterministic blueprint

We first assume that the entire surgery schedule has already been created.

This implies that the only unknown is which patients will be undergoing

surgery, but the number of patients who will be undergoing surgery is already

known. Asi is now known and we denote the realization of Asi by ai. Note

that there is no necessity to include the epoch at which they are scheduled,

since it will be constant. Also note that Bs
i = 0 for all 0 ≤ i, s ≤ S. Now,

Xs
i (τS) still has a Poisson binomial distribution, this time with parameters

ai and pij(τi, τS). We determine the expectation and variance of each Xs
i (τS).

We see that:

E[Xs
i (τS)] =

{∑xsi (τs)
j=1

[
pij(τs, τS)

]
, 0 ≤ i ≤ s∑ai

j=1

[
pij(τi, τS)

]
, s < i < S

(88)

and

Var (Xs
i (τS)) =

{∑xsi (τs)
j=1

[
pij(τs, τS)(1− pij(τs, τS))

]
, 0 ≤ i ≤ s∑ai

j=1

[
pij(τi, τS)(1− pij(τs, τS))

]
, s < i < S

(89)

This implies:

E[Y s(τS)] =
s∑
i=0

xsi (τs)∑
j=1

[
pij(τs, τS)

]+
S∑

i=s+1

[
ai∑
j=1

[pij(τi, τS)]

]
(90)

and

Var(Y s(τS)) =
s∑
i=0

xsi (τs)∑
j=1

[
pij(τs, τS)(1− pij(τs, τS))

]
+

S∑
i=s+1

[
ai∑
j=1

[pij(τi, τS)(1− pij(τi, τS))]

] (91)
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We now look at the difference in variance of Y s(τS) and Y s+1(τS):

Var(Y s+1(τS))− Var (Y s(τS))

=
s+1∑
i=0

xs+1
i (τs+1)∑
j=1

[
pij(τs+1, τS)(1− pij(τs+1, τS))

]
+

S∑
i=s+2

[
ai∑
j=1

[pij(τi, τS)(1− pij(τi, τS))]

]

−
s∑
i=0

xsi (τs)∑
j=1

[
pij(τs, τS)(1− pij(τs, τS))

]
−

S∑
i=s+1

[
ai∑
j=1

[pij(τi, τS)(1− pij(τi, τS))]

]

=
s∑
i=0

[ xs+1
i (τs+1)∑
j=1

[pij(τs+1, τS)(1− pij(τs+1, τS))]

−
xsi (τs)∑
j=1

[pij(τs, τS)(1− pij(τs, τS))]

]

+

xs+1
s+1(τs+1)∑
j=1

[pij(τs+1, τS)(1− pij(τs+1, τS))]

−
as+1∑
j=1

[pij(τs+1, τS)(1− pij(τs+1, τS))]

(92)

Since as+1 ≥ xs+1
s+1(τs+1), it is clear that

xs+1
s+1(τs+1)∑
j=1

[pij(τs+1, τS)(1−pij(τs+1, τS))]−
as+1∑
j=1

[pij(τs+1, τS)(1−pij(τs+1, τS))] ≤ 0

(93)
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However, it is difficult to determine what happens to the first two terms.

Using (74), it is clear that

pij(τs+1) ≥ pij(τs) (94)

We know that xsi (τs) ≥ xis+ 1(τs+1), i = 0, . . . s, but we can not say any-

thing about pij(τs+1)(1− pij(τs+1)) compared with the previous time epoch.

We can now relate (90) and (91) to the results of the M/M/∞ queue in

(44) and (45) respectively. For an exponentially distributed Length of Stay

with parameter µj, the memorylessness property results in:

pij(x, t) =
1−

∫ t
0
µje
−µjydy

1−
∫ x
0
µje−µjydy

= e−µj(t−x) (95)

We then see that the probability of a type i patient staying in the hospital

until τS becomes e−µ(τS−τi). We now assume, similar to the M/M/∞ queue,

that all patients are independent, identically distributed with rate µ and all

time epochs have equal length T . We apply this to (90) and (91):

E[Y s(τS)] =
s∑
i=0

xsi (τs)∑
j=1

[
e−µ(S−i)T

]+
S∑

i=s+1

[
ai∑
j=1

[e−µ(S−i)T ]

]

=
s∑
i=0

[
xsi (τs) · e−µ(S−i)T

]
+

S∑
i=s+1

[
ai · e−µ(S−i)T

]
= Ass · e−µ(S−s)T +

S∑
i=s+1

[
ai · e−µ(S−i)T

]
(96)
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Var[Y s(τS)] =
s∑
i=0

xsi (τs)∑
j=1

[
e−µ(S−i)T (1− e−µ(S−i)T )

]
+

S∑
i=s+1

[
ai∑
j=1

[e−µ(S−i)T (1− e−µ(S−i)T )]

]

=
s∑
i=0

[
xsi (τs) · e−µ(S−i)T (1− e−µ(S−i)T )

]
+

S∑
i=s+1

[
ai · e−µ(S−i)T (1− e−µ(S−i)T )

]
= Ass · e−µ(S−s)T (1− e−µ(S−i)T )

+
S∑

i=s+1

[
ai · e−µ(S−i)T (1− e−µ(S−i)T )

]

(97)

where Ass again denotes all the patients present at τs. We see that these

expressions are equal to (44) and (45) respectively.

4.3.2 A stochastic blueprint

Now consider that again there is a fixed blueprint for the hospital, but the

blueprint itself is unknown. In other words, we no longer use the realization

of Ai. We have

N s
i = Ai (98)

Again, there is no need for a prediction epoch index. We now have the

following for the expectation and variance:

E[Xs
i (τS)] =

{ ∑xsi (τs)
j=1 pij(τs, τS), i ≤ s

E
[∑Ai

j=1 p
i
j(τi, τS)

]
, i > s

(99)
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and

Var(Xs
i (τS)) =

{ ∑xsi (τs)
j=1 pij(τs, τS)(1− pij(τs, τS)), i ≤ s

Var
(∑Ai

j=1 p
i
j(τi, τS)(1− pij(τi, τS))

)
, i > s

(100)

We now assume that Ai is Poisson distributed with mean δi. The expectation

of Xs
i (τS) is:

E[Xs
i (τS)] =

{ ∑xsi (τs)
j=1 pij(τs, τS), i ≤ s∑∞

ai=1

[
δ
ai
i e

δi

ai!

∑ai
j=1 p

i
j(τi, τS)

]
, i > s

(101)

The variance of Xs
i (τS) for i ≤ s is identical to (89):

Var(Xs
i (τS)) =

xsi (τs)∑
j=1

[]pij(τs, τS)(1− pij(τs, τS))], i ≤ s (102)

The variance for i > s is more complicated. We see that:

Var(Xs
i (τS)) =E

[
Ai∑
j=1

[pij(τi, τS)(1− pij(τi, τS))]

]

+Var

(
Ai∑
j=1

[pij(τi, τS)]

)

=
∞∑
ai=1

[
δaii · e−δi
ai!

·
ai∑
j=1

pij(τi, τS)(1− pij(τi, τS))

]

+
∞∑
ai=1

δaii · e−δi
ai!

·

[
ai∑
j=1

pij(τi, τS)

]2
−

(
∞∑
ai=1

[
δaii e

δi

ai!

ai∑
j=1

pij(τi, τS)

])2

, i > s

(103)
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Looking at (103), the variance for Y s(τS) becomes an even longer summation.

Therefore, we now consider the case where we assume that type i patients

have identical Length of Stay distributions. This implies that all pij(τi, τS)

are equal, i.e. each patient of the same type has the same distribution with

probability density function fi(t). We now denote pij(τi, τS) by pi(τi, τS).

Using the analysis of a binomially distributed random variable with an initial

Poisson distributed parameter (see Section 3.1), we then have:

E[Xs
i (τS)] =

{
xsi (τs) · pi(τs, τS), 0 ≤ i ≤ s

δi · pi(τi, τS), s < i ≤ S
(104)

and

Var(Xs
i (τS)) =

{
xsi (τs) · pi(τs, τS)(1− pi(τs, τS)), 0 ≤ i ≤ s

δi · pi(τi, τS), s < i ≤ S
(105)

We thus get for Y s(τS):

E[Y s(τS)] =
s∑
i=0

[xsi (τs) · pi(τs, τS)] +
S∑

i=s+1

[δi · pi(τi, τS)] (106)

and

Var (Y s(τS)) =
s∑
i=0

[xsi (τs) · pi(τs, τS)(1− pi(τs, τS))]

+
S∑

i=s+1

[δi · pi(τi, τS)]

(107)
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We determine the difference in expectation:

E[Y s(τS)]− E[Y s+1(τS)] =
s∑
i=0

[
xsi (τs) · pi(τs, τS)− xs+1

i (τs+1) · pi(τs+1, τS)
]

+
S∑

i=s+1

[(δi − δi)pi(τi, τS)]

+δs+1 · ps+1(τs+1, τS)− xs+1
s+1(τs+1) · ps+1(τs+1, τS)

(108)

and the difference in variance:

Var(Y s+1(τS))− Var(Y s(τS)) =

s∑
i=0

[
xs+1
i (τs+1) · pi(τs+1, τS)(1− pi(τs+1, τS))

−xsi (τs) · pi(τs, τS)(1− pi(τs, τS))

]
+

S∑
i=s+2

[(δi − δi)pi(τi, τS)]

+xs+1
s+1(τs+1) · ps+1(τs+1, τS)(1− ps+1(τs+1, τS))− δs+1 · ps+1(τs+1, τS)

(109)

We cannot conclude that the variance will decrease. This is to be expected,

as it also was not the case for the M/M/∞ queue.

4.3.3 A dynamic blueprint

Now we assume that scheduling patients spontaneously is also possible. This

applies that Bs
i = 0 no longer necessarily holds.

We determine the expectation and variance of Xs
i (τS), i ≥ s + 1, where

we use the realization of Asi , which is denoted by asi :

E[Xs
i (τS)] = E [E [Xs

i (τS)|N s
i ]] = E

 Ns
i∑

j=1

pij(τi, τS)

 (110)
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Since N s
i has a shifted Poisson distribution with parameters Asi and γsi , its

probability density function is as follows:

P(N s
i = n) =

e−γ
s
i γsi

(n−Asi )

(n− Asi )!
(111)

Hence, we get:

E[Xs
i (τS)] =

∞∑
n=asi

[
e−γ

s
i γsi

(n−asi )

(n− asi )!

n∑
j=1

[
pij(τi, τS)

]]
(112)

Regarding the variance of Xs
i (τS), we use the law of total variance. We have

for i > s:

Var(Xs
i (τS))

=E [Var(Xs
i |N s

i )] + Var(E[Xs
i |N s

i ])

=E

 Ns
i∑

j=1

pij(τi, τS)(1− pij(τi, τS))|Asi = asi

+ Var

 Ns
i∑

j=1

pij(τi, τS)|Asi = asi


=

∞∑
n=asi

[
e−γ

s
i γsi

(n−asi )

(n− asi )!

n∑
j=1

[
pij(τi, τS)(1− pij(τi, τS))

]]

+
∞∑

n=asi

e−γsi γsi (n−asi )
(n− asi )!

(
n∑
j=1

pij(τi, τS)

)2
−

 ∞∑
n=asi

[
e−γ

s
i γsi

(n−asi )

(n− asi )!

n∑
j=1

pij(τi, τS)

]2

(113)

For type i patients, i ≤ s, who were already in the hospital at the time

of making the prediction, it is slightly different. Since no new patients will

arrive, we use the realization of Xs
i (τs), denoted by xsi (τs), and apply the

residual Length of Stay for each of these patients as well. Note that this is

different from the M/M/∞ queue. So, for i ≤ s, we get a Poisson binomial
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distribution with parameters xsi (τs) and pij(τi, τS), j = 1 . . . xsi (τs).

E[Xs
i (τS)] =

xsi (τs)∑
j=1

pij(τs, τS) (114)

Var(Xs
i (τS)) = xsi (τs)) =

xsi (τs)∑
j=1

[
pij(τs, τS)(1− pij(τs, τS))

]
(115)

We use these expressions to determine the total expectation and variance.

We are especially interested in the width of the confidence interval, which is

determined by the variance. The expectation is given by:

E [Y s(τS)|Xs
i (τs) = xsi (τs), i = 0 . . . s and Asi = asi , i = s+ 1 . . . S]

=
s∑
i=0

xsi (τs)∑
j=1

pij(τs, τS)

+
S∑

i=s+1

 ∞∑
n=asi

[
e−γ

s
i γsi

(n−asi )

(n− asi )!

n∑
j=1

[
pij(τi, τS)

]] (116)

The variance is given by:

Var(Y s(τS)|Xs
i (τs) = xsi (τs), i = 0 . . . s and Asi = asi , i = s+ 1 . . . S)

=
s∑
i=0

xsi (τs)∑
j=1

[
pij(τs, τS)(1− pij(τs, τS))

]
+

S∑
i=s+1

[
∞∑

n=asi

[
e−γ

s
i γsi

(n−asi )

(n− asi )!

n∑
j=1

[
pij(τi, τS)(1− pij(τi, τS))

]]

+
∞∑

n=asi

e−γsi γsi (n−asi )
(n− asi )!

(
n∑
j=1

pij(τi, τS)

)2


−

 ∞∑
n=asi

[
e−γ

s
i γsi

(n−asi )

(n− asi )!

n∑
j=1

pij(τi, τS)

]2 ]

(117)
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If we would compare the difference in variance of Y s+1(τS) and Y s(τS), we

would likely not be able to say with absolute certainty that it decreases.

Since 117 is already a difficult expression, this will not be explicitly done.

We will now analyze what happens when γsi = 0 for all i, s. The physi-

cal meaning behind this is equal to the deterministic blueprint. We then see

that
e−γ

s
i γsi

(n−asi )

(n− asi )!
=

{
1 n = asi

0 elsewhere
(118)

and thus

E[Y s(τS)] =
s∑
i=0

xsi (τs)∑
j=1

pij(τs, τS)

+
S∑

i=s+1

 asi∑
j=1

pij(τi, τS)

 (119)

and

Var(Y s(τS)) =
s∑
i=0

xsi (τs)∑
j=1

[
pij(τs, τS)(1− pij(τs, τS))

]
+

S∑
i=s+1

[
ai∑
j=1

[pij(τi, τS)(1− pij(τi, τS))]

] (120)

which are the same expressions as in 90 and 91, as is expected. Thus, setting

up γsi = 0 for all i, s and making Asi a random variable would yield the same

result as for the stochastic blueprint.

4.4 Various service distributions

Research suggests that a log-normal service distribution is realistic in hos-

pitals [16]. Since the normal distribution is very similar, we analyze that

first.
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4.4.1 Normal service distribution

We start by analysing patient j, who has not undergone surgery yet and has

a Length of Stay, which has a normal distribution with mean µj and variance

2σ2
j . We see that [22]:

pij(τi, τS) = 1− 1

2

[
1 + erf

(
(τS − τi)− µj

2σj

)]
(121)

After surgery happening at time τs, more is known about this type i patient

and their variance decreases to σ2
j . This leads to

pij(τs, τS) =
1− 1

2

[
1 + erf

(
(τS−τi)−µj√

2σj

)]
1− 1

2

[
1 + erf

(
(τs−τi)−µj√

2σj

)] (122)

4.4.2 Log-normal service distribution

We analyze the log-normal service distribution in a similar way to Section

4.4.1, where we decrease the variance of patient j as soon as they have un-

dergone their surgery. We again assume that the Length of Stay of patient j

is distributed with parameters µj and 2σ2
j before surgery. We then have [23]:

pij(τi, τS) = 1− 1

2

[
1 + erf

(
ln (τS − τi)− µj

2σj

)]
(123)

After patient j has undergone surgery at time τs and their Length of Stay

distribution now has variance σ2
j , their new probability of still being inpatient

at time τS is:

pij(τs, τS) =
1− 1

2

[
1 + erf

(
ln (τS−τi)−µj√

2σj

)]
1− 1

2

[
1 + erf

(
ln (τs−τi)−µj√

2σj

)] (124)
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We see that these probabilities are very similar to (121) and (122). The

choice to go from an initial variance of 2σ2 to σ2 is also not arbitrary, but

allows for an easier mathematical expression. In practicality, this can be

determined from data. Due to the error function in (123) and (124), we will

show numerical results of applying this model on the stochastic blueprint.

4.5 Conclusion

We see that for all blueprint models, we can not conclude with certainty

that the variance decreases as the prediction epoch moves forward. For the

stochastic and dynamic blueprint, we looked at the case where all patients of

type i have identical Length of Stay distributions. We see that applying the

M/G/∞ model for an exponential Length of Stay distribution yields identi-

cal results to Section 3, which should be the case.

Furthermore, we looked at the Length of Stay distribution being normal

and being log-normal. We introduced a special update rule, which Section 5

analyzes.
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5 Numerical results

This Section shows the numerical results of our M/M/∞ model and our

M/G/∞ model, where a log-normal service distribution is applied. Patients

are generated, where the Length of Stay of each patient is drawn from the

corresponding distribution. The simulation runs for a certain amount of time

epochs. The expected value (prediction) of the number of inpatient patients

in the ward and its variance (used for the prediction interval) are determined

every time epoch, based on the information that is currently available. The

prediction and prediction interval are plotted over time.

For both models, we first analyze the deterministic blueprint case. To create

this blueprint, we generate random values for ai, where the realization of

these values are known during the entire simulation. After that, we analyze

the stochastic blueprint case for both models. Here, the blueprint is deter-

mined using a Poisson distribution with mean δi, as is done in Sections 3 and

4.

For the log-normal service distribution simulation, we analyze the impact

of having an update rule (see Section 4.4.2), by comparing it to making the

prediction without update rule.

As for the prediction interval of significance level α, we use the following

relation:

P (Y s(τS) > Y su(τS)) = P (Y s(τS) < Y sl(τS)) =
α

2
(125)

where Y su(τS) and Y sl(τS) are the upper and lower bound of the prediction

interval respectively. We approximate this using the expectation and variance

of Y s(τS), by using:

Y su(τS) = E[Y s(τS)] + z ·
√

Var(Y s(τS)) (126)
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and

Y sl(τS) = E[Y s(τS)]− z ·
√

Var(Y s(τS)) (127)

where z is the z-value corresponding with the prediction interval with signif-

icance level α.

5.1 M/M/∞ model simulation blueprint

5.1.1 A deterministic blueprint

We start with simulating the M/M/∞ queue with a deterministic blueprint.

The blueprint itself is randomly created, where ai follows a Poisson distribu-

tion with mean αi. The realization of this blueprint is entirely known for the

complete duration of the simulation. All time epochs have equal length of 1

time unit.

Table 1: Simulation of the M/M/∞ model with µi = µ = 0.05, a determin-
istic blueprint with αi = α = 5 and horizon S = 10.

0 1 2 3 4 5 6 7 8 9 N s
s

E[Y ] 51.99 52.24 52.76 52.98 53.19 54.36 52.53 51.54 50.81 48.51 48

Var(Y ) 11.38 11.32 11.16 10.62 9.99 9.38 7.92 6.48 4.70 2.37

We can see in Table 1 that the decrease in variance is most significant in

the later part of the prediction. The running time for this small instance

is almost instantaneous (0.0 seconds). For very large instances (S = 1000),

where αi = α = 30, it results in a running time of 33.93 seconds. As such,

the running time is not a limiting factor. For this large instance, the same

principle applies that the variance decreases the most when the prediction is

made relatively late.

We will now look at more realistic scenarios. We increase the horizon (S)

and we increase the average number of customers that arrive in each time
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interval.

Figure 3: Prediction of the number of patients with a 95% prediction interval,
using the M/M/∞ model with µi = µ = 0.1, a deterministic blueprint with
αi = α = 30 and horizon S = 90. The realisation of Y S(τS) equals 274.

The running time of the simulation in Figure 3 was 0.83 seconds. We chose for

a horizon of S = 90, to simulate each time epoch being a day and predicting

3 months in advance. We again see that the variance (and thus the width

of the prediction interval), as well as the predicted value stay roughly the

same for the majority of the simulation. This is due to the fact that patients

who were inpatient early are very likely to have already been discharged by

time τS. To improve the insight gained by these simulations, we run another

simulation with a smaller horizon S and higher relative service times (in

comparison with the horizon).
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Figure 4: Prediction of the number of patients with a 95% prediction interval,
using the M/M/∞ model with µi = µ = 0.05, a deterministic blueprint with
αi = α = 30 and horizon S = 20. The realisation of Y S(τS) equals 391. Titel
aanpassen

In Figure 4, we see that the early behaviour of the prediction is still very

stable. Especially the size of the prediction interval implies that there is

little useful information gain. We can also see from the simulations that

the variance does not necessarily has to decrease as the prediction epoch

progresses. Furthermore, the prediction intervals of the early predictions are

large compared with the prediction. In practice, this would imply that there

will likely be too many nurses scheduled for work.

5.1.2 A stochastic blueprint

We will run simulations similar to the ones for the deterministic blueprint.
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Figure 5: Prediction of the number of patients with a 95% prediction interval,
using the M/M/∞ model with µi = µ = 0.1, a Poisson distributed blueprint
with δi = δ = 30 and horizon S = 90. The realisation of Y S(τS) equals 281.

In Figure 5, we see similar behaviour comparing with the deterministic

blueprint. The early predictions have little variation between them, both

in the expected value and the variance of the prediction. Again, to gain

better insights and to compare with the deterministic blueprint, we run the

simulation with different parameters.
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Figure 6: Prediction of the number of patients with a 95% prediction interval,
using the M/M/∞model with µi = µ = 0.05, a Poisson distributed blueprint
with δi = δ = 30 and horizon S = 20. The realisation of Y S(τS) equals 333.

In Figure 6, we see that the prediction model behaves similarly to the de-

terministic blueprint. A noticeable difference is the difference in realizations

of Y S(τS). However, this is not impacted by the model, as the Length of

Stay distribution of the patients remains the same. Therefore, we conclude

that there is little difference in terms of using the deterministic or stochastic

blueprint for the M/M/∞ model.

5.2 M/G/∞ model simulation with log-normal service

distribution

To compare with the M/M/∞ model, we will do simulations with the same

parameters as input, except that the variance of the service distribution is

based upon real findings [16]. Here, the variance is roughly twice as large as

the mean.
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5.2.1 A deterministic blueprint

Similarly to the numerical approach of the M/M/∞ model, we will first show

the results of a large instance simulation of the M/G/∞ model, using a log-

normal distribution. We will show comparison between using the arbitrary

update rule after patients underwent surgery and not using this update rule.

Figure 7: Prediction of the number of patients with a 95% prediction interval,
using the M/G/∞ model with µj = µ = 10, σ2

j = σ2 = 20, a Poisson
distributed blueprint with αi = α = 30 and horizon S = 90. The realisation
of Y S(τS) equals 2472.

We can see that in Figure 7, there is a significant increase over time of the

predicted value of the prediction made with the update rule. This implies

that assuming a higher variance leads to a lower predicted value. Another

point of interest is that the prediction interval of the prediction made with

the update rule is larger compared with the prediction made without the

update rule. This is to be expected, as a higher variance of the service dis-

tribution leads to more uncertainty about each patient.
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Furthermore, there is a clear difference between the M/M/∞ model simula-

tion, as the prediction interval is relatively smaller for the M/G/∞ model.

However, increasing the variance to 1
µ2

= 100 leads to similar results (see

Appendix C).

Figure 8: Prediction of the number of patients with a 95% prediction interval,
using the M/G/∞ model with µi = µ = 20, σ2

j = σ2 = 40, a Poisson
distributed blueprint with αi = α = 30 and horizon S = 20. The realisation
of Y S(τS) equals 615.

In Figure 8, we can see that there is very little deviation throughout the pre-

diction made without arbitrary update, which is dissimilar to the M/M/∞
model. However, this might also be due to the prediction made at τ0 being

very close to the realization of Y S(τS). Another simulation can be seen in

Appendix C.

Similar to the large instance above, the prediction made with the update

rule steadily increases as the prediction epoch progresses and has a bigger

prediction interval everywhere compared with the prediction made without
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the update rule. Furthermore, we again see that the prediction interval of

the M/G/∞ model significantly smaller compared with the M/M/∞ model.

We did another simulation with σ2
j = σ2 = 400 to more accurately compare

with the M/M/∞ queue. but similar results are found (see Appendix C).

5.2.2 A stochastic blueprint

Figure 9: Prediction of the number of patients with a 95% prediction interval,
using the M/G/∞ model with µi = µ = 10, σ2

j = σ2 = 20, a Poisson
distributed blueprint with δi = δ = 30 and horizon S = 90. The realisation
of Y S(τS) equals 2455.
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Figure 10: Prediction of the number of patients with a 95% prediction inter-
val, using the M/G/∞ model with µi = µ = 20, σ2

j = σ2 = 40, a Poisson
distributed blueprint with δi = δ = 30 and horizon S = 20. The realisation
of Y S(τS) equals 586.

Figures 9 and 10 bears a great resemblance to their deterministic counter-

parts (Figures 7 and 8). We see little difference in the size of the prediction

intervals.

5.3 Conclusion

We have seen that the M/M/∞ model results in a relatively large prediction

interval for both the deterministic as the stochastic blueprint. The variance

of the Length of Stay of each patient is also quite large due to the character-

istics of the exponential distribution. However, we see that inputting similar

values for the variance of the M/G/∞ model with a log-normal distribution

results in a relatively smaller prediction interval. In the M/G/∞ case how-

ever, there is a significant increase in the bed census itself, especially for the

large instance scenario.
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For the M/M/∞ model, there is a small difference in the size of the predic-

tion interval between the deterministic and the stochastic blueprint. For the

large instance, the stochastic model yields a larger prediction interval. This

is expected, as there is more uncertainty regarding the number of patients

that will undergo surgery. For the smaller instance, there is no significant

difference.

We see that for the M/G/∞ model that there is little difference in the deter-

ministic and stochastic models. This is interesting, as the extra uncertainty

that is provided by not knowing the number of patients that will undergo

surgery does not have a significant impact.

Furthermore, we see that the using the arbitrary update rule for the log-

normal distribution results in the prediction being too low. This can be ex-

plained by the fact that we did not update the expectation of these patients

accordingly as well, by distinguishing between different types of surgeries.
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6 Conclusion

6.1 Summary of results

The aim of this research was to create a model that is able to be updated

to incorporate the new information gained to predict the number of patients

being present in the ward in the future. We came up with two models, one

for the M/M/∞ queue and one for the M/G/∞ queue. For each of these

models, we successfully analyzed the impact of the additional information

that is gained due to knowing the number of patients that are in the ward

currently or are schedule for surgery. We further analyzed applying the nor-

mal distribution and the log-normal distribution for the Length of Stay on

the M/G/∞ model. We see that in no case of these models, a certain de-

crease in variance is obtained.

The usage of various ways of modelling the surgery schedule provided in-

sights into the difference in the size of the prediction intervals. Distinguish-

ing between patients that arrive in different time intervals helped gain those

insights.

We have shown numerical results of our models. Here, we see that the vari-

ance is likely to decrease as the prediction epoch progresses. The results show

that the information gain per time epoch depends on the parameters used

for the simulation. Early on in the predictions, there is often little difference

in the size of the prediction interval.

For the M/M/∞ model, we see that using a deterministic blueprint yields

a prediction where the size of the prediction interval is smaller. We cannot

conclude that this is also the case for the M/G/∞ model, where a log-normal

distribution is applied.
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6.2 Discussion

In this report we have done a theoretical analysis of the M/M/∞ and the

M/G/∞ queues. The limitations of using these models in real life depend on

the assumptions that are made in order to apply these models, e.g. assuming

a Poisson arrival process or assuming that there are infinite beds. In order to

make these models more applicable, we should analyze what happens when

we lose these assumptions.

Furthermore, in the models we started the Length of Stay of a type i patient

at time τi. This is not necessarily the case. This problem could be overcome

by introducing a random variable that is uniformly distributed over their

time interval. We expect that this solution has a relative small impact on

the results of the model.

For the log-normal distribution, we introduced an update rule. However,

this update rule is especially useful when looking at specific properties of

a patient, e.g. type of surgery (arm, leg). Then, the uncertainty of every

patient is bigger before surgery, as you do not know its type of surgery yet.

This would imply that the probability density function of a patient has a

certain probability to be equal to one distribution and a certain probability

to be equal to another distribution.

6.3 Future research recommendations

As stated above, doing further analysis on more queues can provide more

insights and general solutions, which can be used for real life models. The

queues we recommend are G/M/∞ and G/G/∞. The analysis that is done

in this report can be the foundation of analyzing those queues. Another

recommendation is to look into the impact of having limiting beds (servers)

available. The insights provided in this report are then limited.
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Furthermore, one could research updating the parameters of the queues, by

using Bayesian statistical models. This could provide more insight into the

impact of the information gain by the type of surgery or the surgeon. Fol-

lowing up on that, we especially recommend researching the update rule,

used in the log-normal Length of Stay distribution. The case where a patient

has n possible log-normal distributions, each with probability pn, where the

distribution is known once a patient undergoes surgery could provide very

useful in real life.

Lastly, we recommend showing numerical results of the dynamic blueprint,

as the theoretical analysis has already been done for this. It might provide

further insights for more acute surgeries.
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A State diagrams

1 n0 − 1 n0n0 − 2....0
(n0 − 1)µ0 n0µ0µ0

Figure 11: Pure-death process for the n0 patients present at τ0
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Figure 12: Birth-death process for type i patients in interval [τi−1, τi)
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B Solutions of differential equations

Here, we show the derivations of several differential equations.

B.1 Solution for the pure-death process

(3) has an easy solution: P 0
n0

= e−n0µ0t. Plugging this into (2) for k = n0− 1

gives:
d

dt
P 0
n0−1 = n0µ0e

−n0µ0t − (n0 − 1)µ0P
0
n0−1

which has solution P 0
n0−1 = n0(e

−µ0t)n0−1(1 − e−µ0t). Recursively, this gives

the following potential solution:

P 0
k (t) =

(
n0

k

)
e−µ0kt(1− e−µ0t)n0−k, k ≥ 0 (128)

which, if plugged into (2) and (3) solves the equation (note that P 0
k (t) will

be 0 for k > n0).

B.2 Solution for the birth-death process

From (5) we get the following equation to solve for ρ1(t):

− ρ1(t)′e−ρ1(t) = µ1ρ1(t)e
−ρ1(t) − λe−ρ1(t) (129)

−ρ1(t)′ = µ1ρ1(t)− λ

This is split up into its homogeneous solution and its particular solution.

The homogeneous solution is found as follows:

ρ1h(t)
′ + µ1ρ1h(t) = 0 (130)

ρ1h(t) = Ce−µ1t
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The particular solution is very easily found by:

ρ1p(t) =
λ

µ1

(131)

which gives the solution for ρ1(t):

ρ1(t) =
λ

µ1

+ Ce−µ1t (132)

Now we plug this ρ1(t) into (6) and solve for C.

−ρ′1(t)e−ρ1(t)
ρk1(t)

k!
+ e−ρ1(t)

kρk−11 (t)ρ′1(t)

k!
=

λe−ρ1(t)
ρk−11 (t)

(k − 1)!
+ (k + 1)µ1e

−ρ1(t) ρ
k+1
1 (t)

(k + 1)!
− (λ+ kµ1)e

−ρ1(t)ρ
k
1(t)

k!
(133)

This gives as result C = λ
µ1

and thus ρ1(t) equals (9).
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C Simulation results

Figure 13: Prediction of the number of patients with a 95% prediction inter-
val, using the M/G/∞ model with µj = µ = 10, σ2

j = σ2 = 100, a Poisson
distributed blueprint with αi = α = 30 and horizon S = 90. The realisation
of Y S(τS) equals 2011.
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Figure 14: Prediction of the number of patients with a 95% prediction inter-
val, using the M/G/∞ model with µj = µ = 20, σ2

j = σ2 = 400, a Poisson
distributed blueprint with αi = α = 30 and horizon S = 90. The realisation
of Y S(τS) equals 494.

Figure 15: Prediction of the number of patients with a 95% prediction inter-
val, using the M/G/∞ model with µj = µ = 10, σ2

j = σ2 = 100, a Poisson
distributed blueprint with δ = δ = 30 and horizon S = 90. The realisation
of Y S(τS) equals 2014.
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Figure 16: Prediction of the number of patients with a 95% prediction inter-
val, using the M/G/∞ model with µj = µ = 20, σ2

j = σ2 = 400, a Poisson
distributed blueprint with δ = δ = 30 and horizon S = 90. The realisation
of Y S(τS) equals 483.
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