

8th of July, 2022

Presented for the degree of MSc Civil Engineering & Management

Supervised by dr.ir. A. Bomers and prof.dr. S.J.M.H. Hulscher

Dike breach flood prediction of an LSTM

compared to the HAND.FLOW model

for real-time flood forecasting

Leon Besseling

1

PREFACE
In the final year of my high school, a group of friends taught a computer to play Super Mario Bros for their

school research project. Up until this master thesis, however, I had never worked with machine learning

myself. So when the opportunity came by to combine machine learning with my interest in flood

modelling, I knew that this would be a topic I would want to dive into. Together with my supervisor, we

quickly realized that machine learning for speeding up flood modelling is exciting, but it might not be the

only or even the best way. That is how this research also lead to the creation of a conceptual model that

does not require an awful lot of data and gives a reasonable first insight in how the flood develops, by

utilizing the height map of the study area. I am proud to have created a first version of this model, and

have learned a lot regarding machine learning and model development.

I would like to thank my supervisors Anouk Bomers and Suzanne Hulscher for their valuable feedback,

guidance and flexibility, without which the end result of this project would have been much different.

Finally, I would like to thank friends and family who listened to me when I was excited and supported me

when I was in need.

I hope you have an interesting read,

Leon Besseling

Enschede, 8th of July 2022

2

ABSTRACT
The most common method to model flood dynamics is using two-dimensional depth-averaged (2DH)

hydrodynamic models (Chu et al., 2020). However, these models generally have long computation times

of many hours or even days. As a result, they cannot be used for scenario analysis in a real-time flood

forecasting system after a warning for an incoming discharge is issued (Teng et al., 2017). The aim of this

study is to identify which surrogate model is the most promising model for real-time flood forecasting in

case of a dike breach: a new conceptual HAND.FLOW model or a data-driven neural network.

The neural network that was developed in this study is a Long Short Term Memory (LSTM) neural network,

since it has been found suitable for predicting time series due to its ability to store information and to

learn long-term dependencies in data (Le et al., 2019). In this study, data from 73 flood events modelled

in a 1D2D-hydrodynamic model developed by Bomers (2021) was used to train and assess the LSTM. The

outflow hydrograph of the dike breach functioned as the input, and the water depth in the hinterland was

predicted per time step on every grid cell of the study area. The model architecture and hyperparameters

such as dropout, number of neurons, activation function and learning rate were optimized using Bayesian

optimization for the lowest value of the error function on water depth (Mean Absolute Error, MAE).

The original HAND model is a conceptual model that only requires the Digital Elevation Model (DEM) of

the study area to be set up. It takes the river water level as its input and floods all cells along the river with

a Height Above Nearest Drainage (HAND) value lower than this water level. A dike breach, on the other

hand, is a point source of a flood. To model the flood propagation from the breach into the hinterland, the

new HAND.FLOW model was created with a number of adaptations: a pathfinding algorithm for finding

the steepest downstream path from the dike breach into the hinterland, a distance limit relationship

limiting the pathfinding algorithm per time step to simulate flood propagation behaviour, and a volume

component allowing the model to take the outflow hydrograph as input instead of the river water level.

Both models were tested on 15 flood events that were excluded from the LSTM training procedures. The

LSTM performance was very accurate with a MAE of just 0.045 meters on an average water depth of 1.49

meters: an error of just 3% compared to HEC-RAS. The NSE values were close to 0.99 on nearly all grid cells

in the study area, and the CSI metric for comparing the inundation areas was on average 0.94. The

HAND.FLOW model was less similar to the water depths of HEC-RAS, due to a terrain feature not modelled

in HEC-RAS. In a single corrected simulation, the MAE was 0.21 meters (error of 15%), the NSE was around

0.8 for large parts of the study area and the CSI averaged around 0.7. After a change in the hinterland, the

HAND.FLOW model also correctly predicted the new flood pattern.

All in all, the data gathering for the LSTM requires a lot time (800 hours for Bomers (2021)). It has to be re-

trained for a change in the hinterland or for another breach location, so it is not flexible. After the training

procedure, however, it can predict the flood event near instantly and very accurately. The HAND.FLOW

model requires a much shorter set-up time of around 30 minutes, so it is very flexible for changes in the

hinterland, simulating other breach locations, or adapting spatial/temporal resolutions. The simulation

time was 30 minutes on a detailed resolution of 10x10 meters, and only 1.5 minutes on the 150x150 meter

resolution used by HEC-RAS and the LSTM. Therefore, the HAND.FLOW model offers in a relatively short

simulation time a reasonable insight in how a dike breach flood will propagate in the hinterland, and could

be the suitable and flexible model needed for a real-time flood forecasting system if it is further developed.

3

TABLE OF CONTENTS
PREFACE ... 1

ABSTRACT .. 2

1 INTRODUCTION.. 6

1.1 PROBLEM DEFINITION ... 7
1.2 OBJECTIVE .. 8
1.3 RESEARCH QUESTIONS .. 8
1.4 READING GUIDE... 9

2 THEORETICAL FRAMEWORK ... 10

2.1 ARTIFICIAL NEURAL NETWORKS (ANN) ... 10
2.2 RECURRENT NEURAL NETWORKS (RNN) .. 11
2.3 HEIGHT ABOVE NEAREST DRAINAGE (HAND) MODEL .. 14

3 METHODOLOGY ... 16

3.1 DATA .. 16
3.2 LSTM TRAINING .. 17

3.2.1 Data pre-processing ... 17
3.2.2 Programming neural network .. 18
3.2.3 Hyperparameter optimization .. 19

3.3 HAND.FLOW MODEL ... 19
3.3.1 Data pre-processing ... 20
3.3.2 HAND model extension ... 20

3.4 UPDATING DEM ... 25
3.5 EVALUATING PERFORMANCE .. 25

4 RESULTS ... 27

4.1 NEURAL NETWORK TRAINING ... 27
4.1.1 Determining LSTM architecture.. 27
4.1.2 Hyperparameter optimization .. 27
4.1.3 Performance on test data ... 29

4.2 HAND.FLOW MODEL ... 32
4.2.1 Performance on test data ... 32

4.3 HAND.FLOW AFTER DEM CHANGE .. 37

5 DISCUSSION ... 40

5.1 GENERAL REMARKS .. 40
5.2 LSTM NEURAL NETWORK .. 40
5.3 HAND.FLOW MODEL ... 42

5.3.1 HAND.FLOW resolution changes .. 44

6 CONCLUSION ... 47

7 RECOMMENDATIONS .. 49

REFERENCES ... 51

4

TABLE OF FIGURES
FIGURE 1 – FLOW DIAGRAM OF STEPS IN THIS RESEARCH AND THE RESEARCH QUESTIONS THEY HELP ANSWER .. 9
FIGURE 2 – STRUCTURE OF THREE-LAYERED FEED-FORWARD NEURAL NETWORK WITH SEVERAL NEURONS IN EACH LAYER....................... 10
FIGURE 3 – STRUCTURE AND WORKINGS OF ONE NEURON (STAUDEMEYER & MORRIS, 2019) ... 10
FIGURE 4 – SIMPLE VERSION OF AN RNN (ELMAN NETWORK, AFTER STAUDEMEYER & MORRIS (2019)) .. 12
FIGURE 5 – STRUCTURE OF AN LSTM NEURAL NETWORK (REPRODUCED FROM LE ET AL. (2019)) .. 13
FIGURE 6 – STRUCTURE OF AN LSTN NEURAL NETWORK WITH FLOW OF DIMENSIONALITIES (REPRODUCED FROM KARIM (2020)) 13
FIGURE 7 – PROCEDURE TO GENERATE THE HAND MODEL (FIGURE ADAPTED FROM NOBRE ET AL. (2011)) 14
FIGURE 8 – HAND VALUE ON HILLSIDE (LEFT) AND CORRESPONDING FLOOD LEVEL (RIGHT) (FIGURE ADAPTED FROM SCRIVEN ET AL.

(2021)) ... 15
FIGURE 9 – STUDY AREA OF HYDRODYNAMIC HEC-RAS MODEL CONSTRUCTED BY BOMERS ET AL. (2021) .. 16
FIGURE 10 – RELATIONSHIP BETWEEN ARRIVAL TIME AND DISTANCE FROM DIKE BREACH IN 15 HEC-RAS TEST EVENTS 21
FIGURE 11 – STUDY AREA WITH PATH FOUND BY ALGORITHM AND DISTANCE LIMIT INDICATED PER TIME STEP 22
FIGURE 12 – SUB-CATCHMENTS OF FLOW PATH INDICATED BY VARIOUS COLOURS. BLUE ARROWS INDICATE THAT WATER FLOWS FROM THE

SUB-CATCHMENT INTO THE FLOW PATH, DUE TO THE TERRAIN HEIGHT. .. 23
FIGURE 13 – EXAMPLE OF A PIT AND THE FLOW PATH CONTINUING DOWNSTREAM BEYOND THE OBSTACLE ... 24
FIGURE 14 – ORIGINAL DEM OF SECTION BETWEEN A12 HIGHWAY SERVICE INTERCHANGES AT GROUND ELEVATION 25
FIGURE 15 – UPDATED DEM WITH RAISED SECTION OF A12 HIGHWAY BETWEEN SERVICE INTERCHANGES... 25
FIGURE 16 – NORMALIZED LOSS ON VALIDATION DATA FOR FOUR MODELS WITH 16 UNITS AND EITHER 1, 2, 3 OR 4 LSTM LAYERS 27
FIGURE 17 – NORMALIZED LOSS ON VALIDATION DATA FOR FOUR MODELS WITH 256 UNITS AND EITHER 1, 2, 3 OR 4 LSTM LAYERS 27
FIGURE 18 – WATER DEPTH PREDICTIONS OF MODEL WITH BEST MAE AND MODEL WITH SLIGHTLY LOWER MAE, FOR FIRST TIME STEP

AFTER DIKE BREACH IN TEST DATA SET ... 28
FIGURE 19 – MEAN NSE FOR GRID CELLS ACROSS ALL TEST DATA FLOOD EVENTS (LETTERS INDICATE LOCATIONS OF FIGURE 22A, B AND C)

 ... 29
FIGURE 20 – SCATTER PLOT OF LSTM AND HEC-RAS WATER DEPTHS FOR ALL GRID CELLS AND TIME STEPS IN TEST FLOOD EVENT 3 30
FIGURE 21 – SCATTER PLOT OF LSTM AND HEC-RAS MAXIMUM WATER DEPTHS FOR ALL GRID CELLS IN TEST FLOOD EVENT 3 30
FIGURE 22 – LSTM AND HEC-RAS WATER DEPTHS PLOTTED FOR THREE GRID CELLS IN THE STUDY AREA FOR TEST FLOOD EVENT 3 30
FIGURE 23 – SCATTER PLOT OF ARRIVAL TIMES OF LSTM COMPARED TO HEC-RAS FOR FLOOD TEST EVENT 3 31
FIGURE 24 - CSI PER TIME STEP FOR TEST FLOOD EVENT 3 COMPARING LSTM TO HEC-RAS ... 31
FIGURE 25 – MEAN NSE FOR GRID CELLS ACROSS ALL TEST DATA FLOOD EVENTS (COMPLETE SIMULATION PERIOD) 32
FIGURE 26 – MEAN NSE FOR GRID CELLS ACROSS ALL TEST DATA FLOOD EVENTS (FIRST HALF OF SIMULATION PERIOD) 32
FIGURE 27 – OUTFLOW HYDROGRAPH OF TEST FLOOD EVENT 2 ... 33
FIGURE 28 – NSE FOR GRID CELLS IN ADAPTED TEST FLOOD EVENT 2 (FIRST HALF OF SIMULATION PERIOD) ... 34
FIGURE 29 – CSI PER TIME STEP FOR ADAPTED TEST FLOOD EVENT 2 COMPARING HAND.FLOW TO HEC-RAS.................................. 34
FIGURE 30 – SCATTER PLOT OF HAND.FLOW AND HEC-RAS WATER DEPTHS FOR ALL GRID CELLS AND TIME STEPS IN ADAPTED TEST

FLOOD EVENT 2 .. 35
FIGURE 31 – SCATTER PLOT OF ARRIVAL TIMES OF HAND.FLOW COMPARED TO HEC-RAS FOR ADAPTED FLOOD TEST EVENT 2............ 35
FIGURE 32 – HAND.FLOW AND HEC-RAS WATER DEPTHS PLOTTED FOR SAME THREE GRID CELLS AS LSTM FOR TEST FLOOD EVENT 2 .. 36
FIGURE 33 – LEFT: HEC-RAS BEFORE DEM CHANGE (FIRST TIME STEP). RIGHT: HEC-RAS AFTER DEM CHANGE (FIRST TIME STEP) 37
FIGURE 34 – LEFT: HAND.FLOW BEFORE DEM CHANGE (FIRST TIME STEP). RIGHT: HAND.FLOW AFTER DEM CHANGE (FIRST TIME

STEP) ... 37
FIGURE 35 – NSE FOR GRID CELLS IN TEST FLOOD EVENT 2 WITH CHANGE IN DEM (FIRST HALF OF SIMULATION PERIOD) 38
FIGURE 36 – SCATTER PLOT OF ARRIVAL TIMES OF HAND.FLOW COMPARED TO HEC-RAS FOR TEST FLOOD EVENT 2 WITH DEM CHANGE

 ... 39
FIGURE 37 – CSI PER TIME STEP FOR TEST FLOOD EVENT 2 WITH DEM CHANGE COMPARING HAND.FLOW TO HEC-RAS 39
FIGURE 38 – HAND.FLOW AND HEC-RAS WATER DEPTHS PLOTTED FOR TEST FLOOD EVENT 2 WITH DEM CHANGE 39
FIGURE 39 – FLOW PATHS ON 10X10M RESOLUTION (LIGHT BLUE) AND 150X150M RESOLUTION (DARK BLUE) IN FIRST TIME STEP 44

5

FIGURE 40 – LEFT: HAND.FLOW MODEL ON 150X150 METER RESOLUTION (FIRST TIME STEP). RIGHT: HEC-RAS MODEL (FIRST TIME

STEP) ... 45
FIGURE 41 – LEFT: HAND.FLOW MODEL ON 15 MINUTE RESOLUTION (FIRST TIME STEP). RIGHT: HEC-RAS MODEL (FIRST TIME STEP) . 46

TABLE OF TABLES
TABLE 1 – HYPERPARAMETERS AFTER OPTIMIZATION ... 27

6

1 INTRODUCTION
Floods are terrible disasters with large consequences that affect more people than any other weather-

related disaster (Verwey et al., 2017). For river flooding specifically, in 2030 the number of affected people

is predicted to double compared to 2015 due to ongoing urbanization, population growth, inadequate

maintenance of flood management infrastructure and climate change (Verwey et al., 2017). As such, there

has always been and will always be a desire to assess flood risk and predict flood events (Teng et al., 2017).

Useful quantities associated with flood forecasting are flood extent, flood depth, flood arrival time and

flood flow velocities, as these enable decision makers to make optimal decisions on measures such as

evacuation (Verwey et al., 2017). If an incoming upstream discharge wave is noticed, these decisions have

to be made in time and with sufficient certainty about the risks. To aid in this, a real-time flood forecasting

system is desired, in which ensemble model predictions and uncertainty analysis of hundreds or even

thousands of model runs allow for reviewing multiple scenarios and making these optimal decisions (Chu

et al., 2020).

For the modelling of flood dynamics, and obtaining the quantities mentioned above, numerical simulation

tools like hydrodynamic models are the most common method (Chu et al., 2020; Teng et al., 2017). These

often have a one-dimensional (1D) part for describing the characteristics of the river and a two-

dimensional horizontal (2DH) part for the hinterland. They are accurate, but require long computation

times of many hours or even days, as a result of their complex descriptions of the physical system (e.g. in

Bhola et al. (2018) and Bomers (2021) for flood modelling in the Rhine). Due to these long computation

times, the discharge wave will have travelled further downstream once the model result is finally obtained,

leaving little time for decision making. Depending on the characteristics of the river system and the

modelling time, it could even happen that the model is still simulating while the actual flood is happening.

This makes the use of hydrodynamic models in a real-time flood forecasting system unrealistic, despite

increases in computation power (Bhola et al., 2018; Teng et al., 2017).

Surrogate models are specifically developed to be quicker to run, and come in two broad families: lower-

fidelity and response surface surrogates (Razavi et al., 2012). In the lower-fidelity model family, conceptual

models are a type of model that are still physically based, but that use a very much simplified description

of the system (Teng et al., 2017). One of such models is the Height Above Nearest Drainage (HAND) model,

which only requires the DEM of the area to calculate inundation extent and maximum water depths. Other

types of conceptual models also use only DEM data, such as the Rapid Flood Spreading Model and the

Planar or Bathtub method, but only the HAND model uses properties derived from the DEM such as slope

and flow direction (McGrath et al., 2018). Perhaps this is why the HAND model is still relevant in literature,

having been applied in various research fields: from modelling soil water conditions to landscape

classification for distinguishing runoff characteristics in hydrological modelling (Speckhann et al., 2018).

Similar to the purposes of this study, the original HAND model is also applied in multiple studies for the

fast calculation of flood inundation extents and water depths. Web-based tools have been created that

allow users to set the return period of a flood and see the expected flood inundation patterns, or even

change the topography of the hinterland to immediately see the effects of their actions on potential floods

(for example Chaudhuri et al. (2021) and Hu & Demir (2021)).

7

In the response surface surrogates family, the models are data driven and do not contain any physical

descriptions of the system. Artificial neural networks (ANN) are the type of response surface surrogate

most commonly used, and they are trained to find relations between the input and output of another

model or field data (Mosavi et al., 2018). As such, they are black box models of which the internal relations

remain largely unknown to the modeller. In the past years, ANN have become increasingly popular in the

literature, gradually being applied to new problem sets (Chu et al., 2020). For flood modelling, they have

mostly been used to model water levels for flow conditions in the river channel (such as Bomers, Meulen

et al. (2019) who reconstructed the maximum discharge of the 1809 Rhine flood using ANN). That has

quickly changed over the past years, with neural networks now being used for quickly modelling flood

water depths (Xie et al., 2021). A popular neural network for these purposes is the Long Short-Term

Memory (LSTM) neural network, since it is suitable for predicting time series due to its ability to store

information and learn long-term dependencies in data (Le et al., 2019). However, the cases for which

neural networks are mostly used consider relatively simple flooding events of rivers spilling into

floodplains, while inundation due to dike breaches remains an unexplored field of study (Bentivoglio et al.,

2021). Additionally, the number of events used to train the neural networks in the literature is fairly low,

at 10 events in Chu et al. (2020) and 24 events in Kabir et al. (2020), for example. This raises the question

if the LSTM neural network can be applied to a dike breach flood event, and if it is able to generalize and

produce flood inundation results for any discharge wave input that is not similar to the few training events.

If this is not the case, then their usefulness in a real-time flood forecasting system is questionable.

1.1 PROBLEM DEFINITION
The enthusiasm about neural networks as a tool for real-time flood forecasting in the research community

is increasing. However, as was described in the introduction, neural networks find relations between the

input and output data of training cases from hydrodynamic models. This means that they are only ever

valid for the data and scenarios for which they were trained. Additionally, gathering the training data takes

much time due to the many uncertainties that must be captured by the hydrodynamic models, such as the

roughness of the main channel and floodplains, as well as determining when a dike section will fail.

If the river characteristics or hinterland properties like topography change, the neural network will most

likely lose its validity. It will have to be retrained, which requires the large time investments for the training

data to be made again for the new situation. This is not desirable for a real-time flood forecasting system,

which requires to be fully operational at all times and not be subject to extensive periods of retraining.

The updating of neural networks is in sharp contrast to that of conceptual models, which only rely on the

Digital Elevation Model (DEM) and can be updated in a short while. However, the original HAND model

predicts flood inundation extent and maximum water depth based on the water level in the river. It is not

suitable for modelling flood propagation for a point source flood such as a dike breach, and especially not

in flat delta regions such as the Netherlands. This is because of the way the HAND model inundates areas

and that it has no time component for simulating flood propagation behaviour. In case of flood forecasting,

it is important to obtain information on where the water flows first, since this knowledge allows decision

makers to take appropriate measures such as evacuation for those areas that are at risk first.

As such, there is a need to know which surrogate model type is the most promising for a real-time flood

forecasting system that is being used for a longer period of time, during which the hinterland can change.

8

1.2 OBJECTIVE
The objective of this study is to identify if an LSTM or the HAND model is most promising model for real-

time flood forecasting after a dike breach, and investigate its capabilities for long-term use in case of

changes in the hinterland. To achieve this, the original HAND model will be expanded with a module that

enables the modelling of water depth time series in the hinterland after a dike breach, and its performance

in reproducing water depths of a hydrodynamic model will be compared to an LSTM neural network.

The scope of the research is limited to only a part of a real-time flood forecasting system. Such a system

consists of multiple models, namely a 1D model for the river discharge and the water level, a model for

calculating the moment of dike failure, and finally a model for calculating the flood inundation in the

hinterland. In this study, the water level in the river and the moment of dike failure are not considered. So

only the flood propagation through the hinterland will be modelled with the dike breach outflow

hydrograph as boundary condition. That means that this study does not aim to create a fully functioning

real-time flood forecasting system, but rather contribute to knowledge about the best model type for the

flood inundation part of such a system.

1.3 RESEARCH QUESTIONS
The main research question of this study is as follows:

What are the drawbacks and benefits of neural networks and conceptual models in the context of real-time

flood inundation forecasting after a dike breach for current and future conditions of the hinterland?

In order to answer the main research question and structure the research, several sub-questions are set

up. The first sub-question deals with the training performance of the LSTM neural network. The neural

network is trained to find relations between the input and output of a known dataset of 1D2D-

hydrodynamic simulations. The LSTM is known to be suitable for predicting time series, so if it is trained

well it should perform accurately on this data set. However, in reality an unknown flood event can occur

that was not specifically trained for. The first question therefore is:

1. What is the performance of an LSTM network for an unknown set of dike breach flood events?

The setup of the original HAND model is a well-documented procedure, and its outputs are flood

inundation extent and maximum water depths along the riverine area. However, this study is aimed at

modelling flooding after dike breaches, so the model will have to be adapted to model flood propagation

from a single point source. The second research question is aimed at creating the new model:

2. How can the original HAND model be modified to model a dike breach flood?

After the creation of the new model, called HAND.FLOW, the performance will be evaluated and compared

to the output of the same 1D2D-hydrodynamic model using the same set of flood events as for the LSTM

neural network. The third research question thus concerns the performance of the new model:

3. What is the performance of the HAND.FLOW model for a set of dike breach flood events?

9

The fourth research question deals with the long-term applicability in case of changes in the study area.

The Digital Elevation Model (DEM) of the hydrodynamic model will be altered to reflect a topographical

change in the hinterland, and the extended HAND model will be updated to reflect this change. As was

described in the introduction, neural networks are a black box model for which the internal workings after

the training are unknown. This makes them only valid for the conditions they were tested, so even if the

neural network performs well after the topographical change it is highly questionable if it is for the correct

reasons. It cannot be known if this was a coincidental correct prediction, or if it will perform well for any

change in the topography. Furthermore, gathering new training data for the changed situation would

require all the hydrodynamic simulations to be conducted again, which would take too much time for this

research. Therefore, the fourth question only assesses the performance of the adapted HAND model:

4. What is the performance of the HAND.FLOW model after a change in the hinterland topography?

1.4 READING GUIDE
The outline of this thesis is as follows. First, the workings of neural networks and the original HAND model

will be described in the theoretical framework (chapter 2). This includes the development from basic

neural networks up until the LSTM network, to build an understanding of how the network functions.

Second, the methodology is presented (chapter 3), in which the methods for answering the four research

question are outlined. The most important steps are the training of the LSTM from the hydrodynamic

model (HEC-RAS) data, the development of the HAND.FLOW model, and the assessing of the performance

before and after a change in the hinterland topography. A flow chart of the main research activities is

shown in Figure 1. After the methodology, the results of the comparison between the hydrodynamic model

(HEC-RAS) and the HAND.FLOW and LSTM models are presented in detail in chapter 4. Finally, the research

and its implications are discussed, conclusions to the research questions are drawn, and several

recommendations to researchers and policy makers are made in chapters 5, 6, and 7 respectively.

Figure 1 – Flow diagram of steps in this research and the research questions they help answer

10

2 THEORETICAL FRAMEWORK

2.1 ARTIFICIAL NEURAL NETWORKS (ANN)
Neural networks are data-driven models that generate an output from one or more input parameters. The

most common form of neural networks has traditionally been the multi-layer perceptron (Razavi et al.,

2012). In its most basic form, it consists of three layers that communicate values from the input to the

output via one or more hidden layers (Figure 2). Hence, these networks are also called feed-forward neural

networks. The input layer receives the input data for which a prediction is desired at several nodes in the

network called neurons. These generate an output and pass it to the subsequent layers, which each consist

of neurons as well. Each neuron in a layer is connected to all neurons in the preceding layer, in a so-called

densely connected network. Finally, the output layer produces the desired output.

Figure 2 – Structure of three-layered feed-forward neural network with several neurons in each layer

Zooming in on a neuron of Figure 2, it can be seen that neurons output a value based on all the received

input values (Figure 3). Each neuron receives inputs from previous neurons, assigns them an individual

weight factor and sums the weighted values (Staudemeyer & Morris, 2019). Additionally, neurons have an

internal input called a bias. The bias and the weighted sum are fed to the threshold or activation function,

which determines the output value of the neuron.

Figure 3 – Structure and workings of one neuron (Staudemeyer & Morris, 2019)

11

Training of neural networks is done by repeatedly presenting it with a set of inputs and corresponding

desired outputs. The neural network initializes with randomized weight factors between all neurons, and

computes its own output from the given input (Staudemeyer & Morris, 2019). Through comparison of the

true output and its predicted output, the network calculates the error of the network using a loss function.

Several loss functions exist for evaluating the performance of a neural network compared to the true

outputs. For different problems, such as classification or regression, different loss functions might be more

applicable (Le et al., 2019).

After the error of the network is calculated, the relative contribution of each neuron to this error is derived

in a process called backpropagation, which allows for a small adjustment of the weights of the neuron (Le

et al., 2019). The algorithm responsible for monitoring the change in the loss function due to weight

adjustments is usually a stochastic gradient descent optimizer. Backpropagation starts from the output

layer and proceeds towards the input layer, chasing the most optimal gradient of the loss function in every

step (Staudemeyer & Morris, 2019). Eventually, all updates to the weight factors are made and the cycle

is repeated. The network is again presented with the inputs and outputs and the weights are updated

through backpropagation of the error. Each of these cycles during training is called an epoch, and every

epoch results in a neural network that is slightly more accurate in reproducing the desired output from

the given input.

A disadvantage of backpropagating the errors from the output layer towards the first layers is that neurons

in these first hidden layers are left with only very small gradients for optimization, resulting in their weights

being adapted very slowly. This problem is called the vanishing gradients problem, and it leads to very long

training times (Le et al., 2019). Another problem associated with traditional neural networks is that they

are not particularly well-suited to sequential data problems, such as sentence completion or time series

problems. This is because the inputs and outputs are independent from each other, so the network has no

information about its state in a previous computation step (Zhang et al., 2018).

2.2 RECURRENT NEURAL NETWORKS (RNN)
Recurrent neural networks (RNNs) were developed in the 1980s to have a chain-like structure that allows

them to store information about previous computation steps (Le et al., 2019). This stored information is

used again for the next time step. Due to such circular and self-feedback connections between neurons,

RNNs are more dynamic and more effective in time series problems (Staudemeyer & Morris, 2019). The

neurons can be connected in various ways to create an RNN, but the degree of connectivity varies. For

purposes of understanding the general working, the Simple Recurrent Network developed by Elman in

1990 is explained.

This RNN is very similar to the standard three-layered ANN displayed in Figure 2, but there are additional

neurons in a so-called context layer (Figure 4). Every neuron in the hidden layer is connected to a neuron

in the context layer, and after a pass through the feed-forward network information is stored in the

neurons of the context state (Staudemeyer & Morris, 2019). In the next pass through the network, the

neurons in the hidden layer receive information not only from the input layer, but from the context layer

as well. This structure allows the network to store information for use in a later phase, essentially giving it

a kind of memory.

12

Figure 4 – Simple version of an RNN (Elman network, after Staudemeyer & Morris (2019))

During training, RNN utilize an error backpropagation algorithm similar to the one described for ANN.

However, an important difference is that this algorithm works the error through the time steps, leading to

its name of backpropagation through time (Staudemeyer & Morris, 2019). It works by considering that for

a given a finite period of training time, an RNN can be considered as a traditional feed-forward neural

network (Staudemeyer & Morris, 2019). The RNN is unfolded in time, and the errors are backpropagated

for each time step independently. To update the weights in the original RNN, the difference in weights is

summed over all individual time steps. Although it is a complicated procedure, recurrent neural networks

are able to learn short-term dependencies in the data of the problems they are intended to solve.

However, backpropagation through time does not eliminate the vanishing gradient problem, and training

is not sufficiently efficient to learn long-term dependencies (Le et al., 2019).

Long Short-Term Memory (LSTM)

The Long Short Term Memory (LSTM) model was introduced in 1997 and addresses the vanishing gradient

problem. It is a special type of RNN, which is able to store information for longer periods of time and to

learn long-term dependencies (Le et al., 2019). The explanation of Le et al. (2019) will be summarized here.

LSTM networks operate using memory blocks called cells (Figure 5). The main data flow happens through

the cell state 𝐶𝑡, which is used to store information and pass it on to the next step. Data can be added to

the cell state via a number of transformation functions that operate as gates in the network. Three gates

are used in the LSTM network: the forget gate, the input gate and the output gate (Figure 5).

First, information is identified that should be used to update the cell state 𝐶𝑡. The available information is

the new input 𝑥𝑡 and the hidden state or output of the previous step ℎ𝑡−1. A sigmoid transfer function

identifies and excludes irrelevant data by creating a forget vector with values ranging from 0 to 1. Closer

to 0 means to forget and closer to 1 means to keep. The forget vector is multiplied with the cell state of

the previous step 𝐶𝑡−1, to either forget or to keep the information of the previous cell state. An example

of how this gate operates is in the field of language modelling: suppose the neural network is tasked with

predicting the next word in a sentence, based on the previous words. The hidden state ℎ𝑡−1 might have

stored, among other things, the gender of the current subject of the sentence. For example, the sentence

might be “John is hungry”. The next word could be a personal pronoun, which the neural network can then

obtain from the hidden state ℎ𝑡−1 as “he”, to continue the sentence with “He goes to the supermarket”.

13

If the new input, however, is another subject called “Emma”, the forget gate comes into action to forget

the gender of the previous subject John, since the sentence is no longer about him. Determining which

data is important to keep or which data can be forgotten is part of the training process.

Next, the input gate is used to decide which information should be added to and stored in the cell state.

The sigmoid function determines if the new information is relevant or not, and the hyperbolic tangent

function decides the importance of each value. The results are multiplied, and added to the old cell state

𝐶𝑡−1 to form 𝐶𝑡. This would result in the gender of Emma to be stored in the cell state. The final gate

determines the output ℎ𝑡 of the LSTM. The output gate first filters the input via a sigmoid transfer function,

and then multiplies it with the new cell state 𝐶𝑡 processed by a hyperbolic tangent function.

Figure 5 – Structure of an LSTM neural network (reproduced from Le et al. (2019))

In previous sections on ANN and RNN, it was described that the networks consist of interconnected

neurons. Figure 5 displays an LSTM cell, but it is incorrect to think of this structure as the LSTM equivalent

of a neuron (Karim, 2020). The neurons are actually inside the structure of the LSTM, in each of the gates.

It is important to note that LSTM works with vectorized information internally, and that the dimensions of

the input 𝑥𝑡 can differ from the dimensions of the cell state 𝐶𝑡 and hidden state ℎ𝑡. The dimension of these

latter two is actually a modelling choice that should be made, called the number of units. Figure 6 thus

shows an LSTM with three input values at each time step 𝑥𝑡, and the number of units set to two (visible as

𝐶𝑡 and ℎ𝑡). The gates are shown as they operate internally, as a small and dense neural network that

processes the concatenated input and hidden state to the cell state, using either the previously described

sigmoid or hyperbolic tangent activation functions.

Figure 6 – Structure of an LSTN neural network with flow of dimensionalities (reproduced from Karim (2020))

14

2.3 HEIGHT ABOVE NEAREST DRAINAGE (HAND) MODEL
The original HAND model is a conceptual model that does not utilize physical descriptions of water flow,

such as the shallow water equations. Instead, it uses characteristics of the Digital Elevation Model (DEM)

of an area to derive the flooded area using the water level in the river (McGrath et al., 2018). The model

was contrived by Nobre et al. (2011) and is constructed in a number of steps (Figure 7). First, from the

DEM the Local Drainage Direction (LDD) is derived, which is made up of the downward paths that water

flows into as it makes its way downstream (Nobre et al., 2011). This is done using the eight-direction pour

point model, or D8 algorithm. For each grid cell, the local drainage direction is determined in a 3x3 cell

window with the considered cell in the centre (dotted red square in Figure 7.1). One of the eight

neighbouring grid cells has the steepest elevation gradient with respect to the centre cell in the DEM, so

that neighbour will be the next in the local drainage direction path (cell towards which red arrow points in

Figure 7.1).

Also visible in Figure 7.1 are five blue grid cells. These cells are what the model will consider the drainage

cells of this small DEM. The most upstream cell of these drainage cells is determined using a threshold that

has to be set manually. This threshold is the number of cells that drain into the most upstream drainage

cell, and is equal to 9 in the figure. In an actual study area, it can be calibrated such that the identified

drainage cells correspond well with the actual river in the area.

Then, every grid cell in the DEM is associated with the drainage cell that its water eventually drains into,

which could be interpreted as the sub-catchment of each cell on the drainage path (Figure 7.2). Next,

within each sub-catchment the topographic height of the drainage cell is subtracted from the height of its

associated cells, which results in the Height Above Nearest Drainage (HAND) value for each cell (Figure

7.4).

Deriving LDD from DEM

Define catchments per drainage cell

Original DEM

HAND values around the drainage cells

Figure 7 – Procedure to generate the HAND model (figure adapted from Nobre et al. (2011))

1 2

3 4

15

Nobre et al. (2011) initially developed the model for use in classifying soil environments for soil water, but

the model was quickly applied in flood inundation modelling too. The inundation extent is determined by

selecting the cells with HAND values less than the water level in the river channel (McGrath et al., 2018).

In Figure 7.4 the river channel is represented by the blue drainage cells with a HAND value of 0. For a water

level of 5 meters in the river, all surrounding grid cells with a HAND value below 5 will be flooded. The

water depth is calculated by subtracting the HAND value from the water level: for a cell with HAND value

2, the water depth will be 3 meters.

The water level for the upcoming flood has to be determined using another modelling technique, such as

a Q-H relationship or 1D model for the river in question. In any case, the HAND model does not spread the

water according to total flood volume, and does not start its filling process at one specific location, but

along the complete river as a whole. This is under the assumption that the water level in the river is

constant as it flows downstream (Nobre et al., 2016). Usually, the HAND model is applied in riverine areas

that are valley-like, such as Hu & Demir (2021) in the river valley of Cedar Rapids. These areas have

somewhat clear topographical boundaries on both sides of the river (Figure 8). However, in the study area

in the Netherlands and in delta regions in general, there is no hillside marking a clear boundary for the

flood, as the hinterland is mostly very flat or even lower than the river. Thus, the method of considering

cells to be flooded if their HAND value is lower than the water level in the river will result in an

unrealistically large flood in such areas. Therefore, this research will adapt the model to work with volume

and time, resulting in applicability in the Netherlands.

Figure 8 – HAND value on hillside (left) and corresponding flood level (right) (figure adapted from Scriven et al. (2021))

16

3 METHODOLOGY

3.1 DATA
The output data of the 1D2D hydrodynamic model constructed by Bomers et al. (2021) in HEC-RAS will be

utilized. The model consists of the Dutch part of the Rhine River as it enters the Netherlands (Figure 9).

The upstream boundary is located at Emmerich in Germany, and uses a discharge wave as a boundary

condition. Normal water depths in the river function as downstream boundary conditions. The breach

growth is modelled as immediate: as soon as the water in the river overtops the dike, the dike is reduced

to the natural terrain level and a constant breach width of 150 meters occurs. Although several more

complicated and growing breach models exist, Bomers et al. (2021) mention that the overland flows and

inundation extents are not that sensitive to the breach model. Additionally, the objective of this current

research is to create a model that takes the outflow hydrograph as input, so the accuracy of the HEC-RAS

outflow hydrographs compared to reality is less relevant. Therefore it is assumed that the data from

Bomers (2021) are applicable to this research. For the calculation of the inundation extent, the hinterland

is implemented on a 150x150 meter grid, with realistic roughness values for the land use in the area.

The model results of 73 discharge waves and corresponding flood inundation patterns for two breach

locations of the Rhine river in the Netherlands are available and suitable for this project (Figure 9). Note

that Bomers (2021) were only interested in the outflow hydrographs of the dike breach, not in the flood

inundation. Therefore, the water depth data and results have not been published, but were made available

for this research through personal communication. Only the dike breach location in the IJssel river

breached during all 73 simulations, which is why only this breach location will be considered in this study.

The affected part of the hinterland is coloured darker green in Figure 9, which will be the only area

modelled with the surrogate models. However, in some simulations both locations experienced a dike

breach, which results in a lower outflow hydrograph peak at the IJssel river breach. Since the surrogate

models are based on the outflow hydrograph only, it is expected that this will not greatly influence their

performance accuracy. Output data of the HEC-RAS model that will be used are outflow hydrographs of

the dike breach and the flood water depths in the hinterland throughout the flooding event.

Figure 9 – Study area of hydrodynamic HEC-RAS model constructed by Bomers et al. (2021)

Breach IJssel

Breach Rhine

17

3.2 LSTM TRAINING
The training procedure of the LSTM neural network covered in this section is split into three steps. First,

the pre-processing of data is important for the functioning of a neural network. Afterwards, the LSTM is

programmed and its parameters then have to be optimized.

3.2.1 Data pre-processing

The input data to any LSTM layer must be three-dimensional, consisting of samples, time steps and

features (Le et al., 2019). A sample is an instance of an input sequence, so the number of samples in this

study is the number of available HEC-RAS simulations. The amount of time steps equals the number of

moments of observation within each sample. For the neural network to function, the amount of time steps

should be the same in each sample. Lastly, features are the values of the observations that are made at

every time step. In this study, the number of features equals the number of grid cells in the hinterland

(49,733 grid cells in the dark green area of Figure 9). Both the input variable of outflow hydrograph data

and the target variable of flood water depth over time should conform to this three-dimensional format.

The data from the HEC-RAS simulations required processing to fit in this three-dimensional format. First,

due to the way the study by Bomers (2021) was carried out, not all simulation samples are of the same

length. While the interval for writing outputs is constant at three hours, some simulations have more time

steps due to a longer simulation period. To fulfil the requirement that all samples have the same amount

of time steps, the shorter samples were zero-padded to the length of the longest by adding zeroes in front.

The 73 samples were split to create separate datasets for training, validation and testing of the neural

network. Training data is used to update the weights of relationships between nodes of the neural network

during the training. Validation data is not used for weight updates, but only monitored to see if the neural

network is overfitting and to terminate the training process if overfitting is happening (see for example

the description of early stopping in the next section). Testing data is not seen or evaluated by the network

during the training, but is used after completion of the training to review the neural network’s

performance in unseen scenarios. Conform the literature, a non-overlapping 60% – 20% – 20% split is used

for these purposes respectively (Chu et al., 2020; Rajaee et al., 2019). This means that 43 simulations were

used for training, 15 for validation and 15 for testing the model.

A last step was to normalize the data. Neural networks have been found to be sensitive to the size of input

values, with large input values being able to result in instabilities during the network’s convergence (Shao

et al., 2020). Therefore, both the outflow hydrograph and the flood water depth data were normalized to

an interval of 0 to 1 via Equation 1. The water depth data was normalized per feature, so per grid cell.

 𝑥𝑖
′ =

𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (1)

Where:

- 𝑥𝑖 is the feature at time step 𝑖, with 𝑥𝑖
′ its normalized counterpart

- 𝑥𝑚𝑖𝑛 is the minimum value of the feature in the dataset

- 𝑥𝑚𝑎𝑥 is the maximum value of the feature in the dataset

Importantly, the scope of determining 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 was limited to the training and validation data sets

only. If the testing data set was also included, then its information could leak to the normalized training

data. Since it is the purpose of the testing data set to be completely unknown to the neural network, it

was excluded from the determining of 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥.

18

3.2.2 Programming neural network

The neural network was programmed in Python using the Keras library, which acts as an interface for the

TensorFlow machine learning and AI library developed by Google. In Keras, a neural network is constructed

by first defining the layers of the model, then compiling the model, and then fitting the model to the data.

In the first step, the architecture of the neural network is decided. The most simple form is the vanilla

LSTM model, which consists of only a single layer. Stacked LSTMs contain two or more layers, and there

are even studies combining LSTM layers with other types of algorithms (such as Liu et al. (2020), who

combine LSTM with the K-nearest neighbour algorithm for flood forecasting). Through initial testing, an

appropriate architecture was determined (see section 4.1.1). Following the LSTM, a standard dense layer

was added, which connects each neuron to each cell in the previous layer. This layer contains one neuron

for each grid cell, enabling the model to make predictions for the complete study area per time step.

Within the LSTM and dense layer, three modelling choices had to be made. First, the number of units in

the LSTM layer is explained as the number of neurons that make up the hidden state of the network,

resulting in more units requiring more processing power. Second, the degree of dropout is a method for

regularization of the network, by randomly excluding a fraction of the input during training. Its intended

effect is to improve model performance and reduce overfitting (Le et al., 2019). The third choice consists

of the activation functions, which define the output of a neuron based on its inputs. Both the LSTM and

dense layers support various types of activation functions. However, it was chosen to make use of graphics

card (GPU) computing capabilities of Keras, since training using the processor (CPU) could take upwards

of an hour per network. Since the network needs to be trained many times to find the best set of

parameters, computation times need to be sufficiently low. GPU computing was about 12 times faster, but

to enable it in Keras the LSTM layer can only use the hyperbolic tangent and the sigmoid functions. These

were thus kept at their default setting. For the dense layer, more options were available. The choices for

the parameters described were made using an optimization process described in the next section (3.2.3).

The second step of the network construction is the compiling of the model. Here, the loss function is

defined, which will be optimized by the optimization algorithm. In this study, loss functions for regression

problems are relevant, including the Mean Square Error (MSE), its root (RMSE) and the Mean Absolute

Error (MAE). Initial testing revealed that the MAE (Equation 2) resulted in more accurate predictions, which

is why it will be used as the loss function. It is only calculated if a grid cell is flooded for at least one time

step. Otherwise, lots of dry cells artificially decrease the MAE.

MAE =

1

n
∑ | 𝑦𝑖, 𝑡𝑟𝑢𝑒 − 𝑦𝑖, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 |

𝑛

𝑖=1

(2)

Where:

- 𝑦𝑖 is the feature at time step 𝑖

- 𝑛 is the number of predictions

For the optimization algorithm, a stochastic gradient descent method called Adam is often used in

literature (e.g. Le et al. (2019) and Liu et al. (2020)). It has been found to be well-suited for problems that

have large data sets and require many parameters (Kingma & Ba, 2017). Keras allows an important

parameter of Adam to be changed: the learning rate. This rate defines the magnitude of the weight

updates within each epoch of training, and thus determines the speed at which the network converges.

19

The third step is to fit the model to the data. The training and validation dataset are given as inputs to the

model. To divide this into the 60% – 20% split that was mentioned earlier, a parameter called the validation

split is set to 0.25. The remaining 20% of data is saved to test the model after training. The number of

epochs is defined as 1000, and to prevent overfitting early stopping is used. This checks if the loss function

on the validation dataset has not improved over a set number of epochs, which would indicate overfitting

on the training dataset. It was chosen to stop the training after 100 epochs of no improvement.

3.2.3 Hyperparameter optimization

Four hyperparameters that were discussed in the previous section are optimized using KerasTuner: the

number of units, the degree of dropout, the activation function of the dense layer and the learning rate of

Adam. KerasTuner provides three types of search algorithms: random search, hyperband and Bayesian

optimisation (Kumar, 2021). Random search is the most basic of the three, randomly sampling parameters

from the complete hyperparameter space. This means that it can find a combination of hyperparameters

that performs poorly, but continue sampling similar combinations from that region of the hyperparameter

space. Hyperband search tries to overcome this problem, by only training the randomly sampled models

for a few epochs. It keeps track of the most promising sets of parameters, and eventually only runs full

training on the final candidates. However, even in hyperband search, the parameters are sampled

randomly. Bayesian optimization instead samples only the first few sets at random. Based on their

performance, it assesses the probability that another set of parameters achieves a better score. That way,

it takes into account the past sets of hyperparameters that were tried to find even better sets. This is why

Bayesian Optimization is chosen in this study.

The Bayesian optimization algorithm optimizes the loss function of the model, which in this study is the

mean absolute error (MAE). It requires a range or set of options to choose from for optimizing the given

hyperparameters. The number of units of the LSTM layer was set to a range between 16 and 1024, with

steps of 16. The dropout of the LSTM layer was allowed to vary between 0 and 0.25, with steps of 0.05.

For the learning rate of the Adam optimizer algorithm, three options were given: 0.01, 0.001 (default) or

0.0001. Finally, for the dense layer’s activation function, the algorithm could choose from linear, rectifier

or sigmoid functions. The rectifier function uses only the positive part of a linear function, so negative

values are truncated to 0. The results of the hyperparameter optimization are found in Table 1 in section

4.1.2.

3.3 HAND.FLOW MODEL
The set-up of the new Height Above Nearest Drainage (HAND) model is described in this section. As was

described in section 2.3, the original HAND model works with the Digital Elevation Model (DEM) of the

study area as input. The resolution of the DEM used is 10x10 meters, which is much higher than the

150x150 meter resolution used by HEC-RAS and the neural network. This was chosen since HEC-RAS uses

this same 10x10 meter resolution DEM as its base input, and utilizes it to calculate the 150x150 meter

resolution map. In initial tests with the new HAND.FLOW model, the 10x10 meter resolution was

sufficiently fast in terms of computation time that it was decided to continue the research with this high

resolution. The effect of using the HAND.FLOW model on lower resolutions such as 150x150 meter is

covered in section 5.3.1 of the discussion.

20

3.3.1 Data pre-processing

Normally, the DEM of the entire riverine area is used in a HAND model, including the river channel.

However, in this study only the hinterland is of interest, since this is where the flood inundation will take

place. Therefore, just as for the LSTM, the DEM used has the river dikes as its boundary.

To derive the Local Drainage Directions (LDD) from the DEM, a plugin called PCRasterTools is used in the

open-source geographic information system QGIS. This plugin allows for mapping operations and

calculations useful in environmental modelling disciplines such as geography, ecology and hydrology. The

plugin is also available as a Python package. However, the function for the creation of the LDD could not

be successfully run in Python, so QGIS is used for it. After the DEM is converted to the PCRaster .map

format, the function lddcreate is used to carry out the D8 algorithm. As mentioned in section 2.3, this

algorithm determines the steepest downslope neighbour of each grid cell, resulting in the LDD.

In the original HAND model procedure, the next step is to determine the drainage cells of the study area.

Normally this is done by setting a threshold for the amount of cells that should drain in the most upstream

drainage cell. The threshold can be calibrated such that the identified drainage cells correspond well with

the actual rivers in the study area. Such an approach is valid for riverine floods in which the source of the

flood are the drainage cells themselves, since a river water level is set on these cells and extrapolated

towards the neighbouring cells. However, in this study, the source of the flood is a dike breach, which the

original HAND model cannot model as it is a single point source of water. The next section discusses

adaptations to the model that make it possible to model such an event.

3.3.2 HAND model extension

In order to make the new HAND model able to deal with a point source such as a dike breach in a flat and

low-lying delta such as the Netherlands, an extended version of the HAND model is presented called the

HAND point flow model (HAND.FLOW) model. It models not just the final inundation extent, but also the

propagation of the flood through the hinterland starting at the dike breach. In order to accomplish this,

two mechanisms are introduced. First, the flood water is allowed to travel only a certain distance from the

dike breach per time step along a flow path. By setting such an increasing limit to the distance travelled,

an increasingly large area is considered floodable every time step. This enables the HAND.FLOW model to

take flood volume per time step as its input instead of a river water level like the original HAND model,

which will be the second mechanism described in the coming sections. The basic step by step procedure

of the model is as follows:

 Define the dike breach location

 Follow the flow of water downstream from the breach (via the LDD)

 Limit the distance travelled along the path per time step, as water can only travel so far

in a time step

 Define the grid cells of the flow path in a time step as the “drainage cells”

 Derive from the LDD the sub-catchments of the drainage cells (like in Figure 7.2)

 Calculate the Height Above Nearest Drainage (HAND) values of all cells in the hinterland

 Raise the water level on the drainage cells, and extrapolate to cells with lower HAND

values

 Calculate the volume of flood water in the hinterland for this water level

 Find the water level for which the volume in the hinterland matches the volume that

has entered through the breach

P
A

TH
FI

N
D

IN
G

V

O
LU

M
E

&

W
A

TE
R

 L
EV

EL

21

Pathfinding from breach

In order to let the water flow along a path from the dike breach, the first step is to define the row and

column coordinates of the dike breach in the Digital Elevation Model (DEM). From this grid cell, the flow

path along the Local Drainage Direction (LDD) is followed. As was explained in section 2.3, the LDD

describes to which of the eight neighbouring cell water will flow downstream. Every cell travelled along

the LDD adds to the total distance travelled depending on the resolution of the map, which in this study is

10x10 meters: adjacent neighbours add 10 meters to the distance travelled, diagonal neighbours add √2 ∙

10 meters.

In this study, the distance limit is imposed using data from the available HEC-RAS simulations. The arrival

time of flood water on the cells of the flow path from the dike breach was analysed to determine the

relationship between arrival time and distance to the dike breach. Figure 10 shows for 15 test flood events

the arrival time of the flood water on the cells of the LDD flow path from the dike breach. Note that the

figure shows the time step since the dike breach instead of the actual arrival time, to better explain the

equation that will be derived for the distance limit. Every time step is 3 hours in real time. The individual

data points are given a high transparency, so that a high concentration of data points reflects the general

trend and a low concentration reveals outliers in the arrival times.

It can be seen that for flow path cells at a distance up to 20,000 meters from the breach, there are a lot of

instances of the flood arriving immediately (0 time steps after the breach). Sometimes the flood also

arrives at time step 1, but through the lower concentration of points it can be concluded that this happens

less often. After 20,000 meters from the breach, the figure has a clear upward trend: for roughly every

additional 5,500 meters distance, the flood arrives one time step later. This corresponds with the red trend

line through the areas of highest concentration of data points in Figure 10. The distance limit for the

HAND.FLOW model is therefore programmed as a simple equation depending on the time step 𝑡 since the

dike breach: 𝑙𝑖𝑚𝑖𝑡 = 20000 + 5500𝑡.

Figure 10 – Relationship between arrival time and distance from dike breach in 15 HEC-RAS test events

Distance limit = 20,000 + 5,500 t

0

1

2

3

4

5

6

7

8

9

10

0 10000 20000 30000 40000 50000 60000 70000

A
rr

iv
al

 t
im

e
[t

im
e

st
ep

s
si

n
ce

 b
re

ac
h

]

Distance from dike breach along flow path [m]

22

With the pathfinding algorithm and the distance limit relationship, a rough outline of where the flood can

flow every time step can be plotted (Figure 11). Starting from the breach, the light blue flow path moves

downstream through the hinterland, with the perpendicular darker lines indicating where the path is

limited by the distance limit relationship throughout the flood duration. Note that these perpendicular

lines strongly correlate with the flood extent per time step, but that other factors are also important. This

has to do with the next step in the procedure: finding the sub-catchments for each grid cell of the flow

path, and finding the water level in the area.

Figure 11 – Study area with path found by algorithm and distance limit indicated per time step

Flood volume and water level

As was described in the previous paragraph, the flow path from the dike breach downstream into the

hinterland is found using the Local Drainage Direction (LDD) and limited every time step by the distance

limit. The grid cells that make up the flow path are considered the drainage cells that were described in

section 2.3. Next, the original HAND model procedure is followed: the sub-catchments of the drainage

cells are derived from the LDD. In Figure 12, the section of the flow path from Figure 11 corresponding to

the simulation up to the second time step is shown along with the sub-catchments. It shows the same

principle as Figure 7.2 in section 2.3 on the theory behind the original HAND model. Each drainage cell

making up the flow path has been assigned a random colour, and all the cells in the LDD that drain into

that cell are coloured accordingly. To understand the draining patterns, a few arrows show how the water

flows downstream from a sub-catchment into the flow-path.

As Figure 12 indicates, cells beyond the dotted lines do not drain into one of the flow path cells. These

dotted lines are where a road and railroad lie approximately one meter above ground level. Grid cells on

one side of this topographical obstacle can drain into the flow path cells, while grid cells on the other side

of this cannot. This becomes important in the next section, on how the HAND.FLOW model is programmed

to also flood the area beyond these topographical obstacles.

Breach

23

Figure 12 – Sub-catchments of flow path indicated by various colours. Blue arrows indicate that water flows from the sub-
catchment into the flow path, due to the terrain height.

Within each sub-catchment, the topographic height of the drainage cells making up the flow path is

subtracted from the height of the other cells, which results in the Height Above Nearest Drainage (HAND)

value for each cell. To calculate the flood water depths in the hinterland, the volume that has entered the

hinterland through the dike breach needs to be computed. Similar to the neural network constructed in

section 3.2, the input of the HAND.FLOW model is the outflow hydrograph through the breach in m3/s.

The flood volume is calculated by multiplying this discharge with the duration of a time step (3 hours).

With the total flood volume known for each time step in the simulation, a water level can be found that

matches this volume. To start the search procedure for this, a low water level is placed on the drainage

cells making up the flow path. All surrounding cells with HAND values lower than the water level are

flooded too, with the water depth of a cell being equal to the water level minus the HAND value of that

cell. Using the water depth on all grid cells and the resolution of the DEM, the volume of water in the area

is calculated. The water level is increased with small steps of 0.1 meters until the volume is approximately

equal to the total flood volume at that time step.

Pathfinding out of pit

A complicating factor of letting the flood flow from the dike breach into the hinterland is that the water

can end up in a so-called pit. This is a grid cell which has no downstream neighbours; it is the lowest point

in an area enclosed by higher terrain features, such as a meadow surrounded by roads with a higher

elevation. The location shown in Figure 12 contains such a pit in the top-right corner: the flow path ends

here in this time step because it is at the lowest point in the area enclosed by the dotted lines (a road and

a railroad). This situation (shown enlarged in Figure 13) is used to explain how the HAND.FLOW model

deals with this situation for the next time step below.

Breach

Road

24

In a grid cell that is a pit, the Local Drainage Direction (LDD) does not point to one of the eight neighbouring

cells, but to the cell itself. Therefore, the pathfinding algorithm described above would get stuck, while in

reality the flood can continue flowing if the water level in the area rises above the surrounding terrain

feature. To programme this behaviour in the HAND.FLOW model, a dedicated function is developed that

activates when the flood is stuck in the pit. Its goal is to find the moment when and the location where the

water depth is high enough to flow over the enclosing terrain features. The algorithm makes three checks

for all the grid cells that are flooded:

• Is there a neighbouring cell that is not flooded?

• Is this neighbour outside of the known HAND sub-catchments? It has to be outside of the known

sub-catchments, so that the flow path from this neighbour does not lead back to the same pit.

• Is the water level of the grid cell higher than the elevation of this neighbour?

In case that the three checks are passed, the neighbouring grid cell lies outside of the enclosed area and

following the LDD from it will not lead back to the pit (Figure 13). Therefore, this cell is added to the path

and the flood continues downstream from there. However, it could be the case that multiple grid cells

meet the requirements for continuing the path away from the pit. In this case, it is assumed that the grid

cell closest to the pit will be most accurate compared to the location where the flood will flow over the

enclosing high terrain feature in reality. This is assumed due to that in reality, water levels are highest close

to the pit, as a result of water flowing towards and accumulating in this lowest point of the area.

Figure 13 – Example of a pit and the flow path continuing downstream beyond the obstacle

Road

Pit

Continuing path

25

3.4 UPDATING DEM
To research if the HAND.FLOW model is able to function in a real-time flood forecasting system for a longer

period of time in a changing riverine area, a change in the hinterland topography is made. The location

chosen for this experiment is between the service interchanges at Duiven and Westervoort of the A12

highway. The highway is raised some 2 meters above the surrounding area on both ends of these service

interchanges, but lies at ground elevation in the section between them (Figure 14). Therefore, this middle

section is changed in the DEM to be 2 meters above ground elevation as well, in order to compartmentalize

the study area close to the dike breach (highway section in red circle in Figure 15).

Figure 14 – Original DEM of section between A12 highway

service interchanges at ground elevation

Figure 15 – Updated DEM with raised section of A12 highway

between service interchanges

To utilize the updated DEM in the HAND.FLOW and HEC-RAS models, a few more steps need to be taken.

For the HAND.FLOW model, the new DEM is used to create a new Local Drainage Direction (LDD) map.

Due to the new section of raised highway, an additional compartment is created in the LDD map, which

should change the route of the pathfinding algorithm. For HEC-RAS, the updated DEM is loaded into the

mapping software and included in the geometry data. Then, a new simulation can be conducted using the

updated DEM.

3.5 EVALUATING PERFORMANCE
As was mentioned in section 3.2.2, the Mean Absolute Error (MAE) is used as a loss function to train the

neural network. Therefore, it is also used to evaluate the performance of the HAND.FLOW model. Note

that the MAE will only be calculated for cells that are flooded for at least one time step in the simulation

of either the LSTM/HAND.FLOW or HEC-RAS models. Otherwise, cells that remain dry the complete

simulation period will have a perfect MAE of 0, and the average MAE will then be artificially lowered.

To determine which cells are flooded, a wet-dry threshold value is implemented. In the literature, quite a

wide range of threshold values is used: from 0.01 meters by Chu et al. (2020) and 0.1 meters by Bermúdez

et al. (2019), up to 0.3 meters used by Kabir et al. (2020). For this study, a threshold value of 0.1 meters

was chosen, as in some initial testing cases the neural network generated water depths of up to 0.05 m

while the flood had not yet started. Therefore, the threshold value was chosen above this value, at 0.1

meters.

Duiven

Dike breach

Westervoort

26

An interesting performance indicator using this threshold is the Critical Succes Index (CSI), which concerns

the accuracy of the prediction of inundation extent. It measures the agreement between two flood

inundation maps considering the amount of cells that are wet and dry in each map. The CSI (sometimes

called F1) is computed via Equation 3 (Lim & Brandt, 2019). It is defined as the area of true positives (hits)

divided by the sum of the areas of hits, false positives (false alarms) and false negatives (misses). If the

LSTM or HAND.FLOW model is 100% accurate with respect to HEC-RAS, the area of false alarms and misses

is zero, so the CSI becomes 1. If the LSTM or HAND.FLOW model fail to predict a single flooded cell of HEC-

RAS, then there are no hits at all and the CSI becomes 0. Any result in between, for example 0.7, can be

interpreted as that 70% of all predictions are correct.

𝐶𝑆𝐼 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (3)

Where:

- TP is the amount of true positives (hits): cells flooded in both models

- FP is the amount of false positives (false alarms): cells flooded in LSTM/HAND.FLOW but not in HEC-RAS

- FN is the amount of false negatives (misses): cells that are dry in LSTM/HAND.FLOW but flooded in HEC-RAS

To compare how well the predicted water depth ℎ𝑚 perform against observed water depths ℎ𝑜 in HEC-

RAS, the Nash-Sutcliffe Efficiency (NSE) is used (Equation 4). A perfect model achieves a score of 1. A bad

model can reach values down to -∞. An NSE coefficient of 0, however, already indicates that the average

observed water depth ℎ𝑜
̅̅ ̅ is just as good of a predictor for the actual depths as the modelled values were

(Y. B. Liu & Smedt, 2004).

𝑁𝑆𝐸 = 1 −
∑ (ℎ𝑚

𝑡 − ℎ𝑜
𝑡)2𝑇

𝑡=1

∑ (ℎ𝑜
𝑡 − ℎ𝑜

̅̅ ̅)2𝑇
𝑡=1

 (4)

Where:

- ℎ𝑚 is the predicted depth at time 𝑡

- ℎ𝑜 is the observed depth at time 𝑡

- 𝑇 is the total number of time steps

27

4 RESULTS

4.1 NEURAL NETWORK TRAINING
The LSTM training process started with the selection of the most appropriate model architecture and best

hyperparameter combination. The following two sections will discuss the findings of these steps.

Afterwards, the performance of the best neural network on the testing data is assessed in more detail.

4.1.1 Determining LSTM architecture

Based on initial testing with the number of LSTM layers in the model architecture, it seemed that the

amount of layers does not severely affect the overall performance of the model. Figure 16 and Figure 17

show the performance of networks with varying amounts of LSTM layers on the validation data set during

the training. The performance does not seem to change significantly based on the number of layers, both

for the small (Figure 16) and larger amounts (Figure 17) of units displayed. The water depth maps of the

flooding event also showed no improvements to accuracy with more LSTM layers in the network. As adding

more LSTM layers makes the training process more complicated and thus more computationally

expensive, it was chosen to further develop the more simple architecture of a single-layered LSTM.

Figure 16 – Normalized loss on validation data for four
models with 16 units and either 1, 2, 3 or 4 LSTM layers

Figure 17 – Normalized loss on validation data for four
models with 256 units and either 1, 2, 3 or 4 LSTM layers

4.1.2 Hyperparameter optimization

The Bayesian optimization algorithm described in section 3.2.3 was used to evaluate combinations of four

hyperparameters and find the most accurate. In total, 150 hyperparameter combinations were tested, and

the best combination is shown in Table 1. The time needed for training depended mainly on the number

of units: 25 minutes for 800 units or more, or only 5 minutes for 100 units, for example. The total time

spent training the 150 hyperparameter combinations time was in the order of 24 hours.

Table 1 – Hyperparameters after optimization

Hyperparameter Value

LSTM units 912

LSTM dropout 0.25

Adam learning rate 0.0001

Dense layer activation function rectifier

28

The mean absolute error (MAE) of the water depth predictions for all time steps of flooded cells on the

unknown test data set was 0.045 meters, while the average water depth over all time steps of flooded

cells is 1.49 meters in HEC-RAS. This is an average error of 3%. It should be mentioned that combinations

of hyperparameters were found that resulted in lower mean absolute errors. The lowest MAE found for

the test data set was 0.038 meters. However, the neural network that produced this value had a low

predictive accuracy (Figure 18a). The figure shows that model A severely overpredicts the flooding in the

first time step, although the water depths are small. Throughout most of the flooding event, this model

floods an area just a few time steps earlier compared to the HEC-RAS simulation. The model from Table 1,

on the other hand, predicts the flood event much more accurately throughout the event (Figure 18b). That

is why it was decided to consider model B as the best model found by the hyperparameter optimization.

A possible reason that model A had a better MAE lies in the edges of the flooded area furthest away from

the dike breach. In section 4.1.3, the performance of model B in these edge regions is shown to be quite

poor. Model A performs better in this region, and has a slightly better MAE. Apparently, the bad predictive

accuracy in the early time steps of model A is compensated by its better performance in the outer cells. A

reason for this is that the large overpredicted area shown in Figure 18a consists of small water depth errors

of 10-20 cm, and the prediction improves over the course of the flood. The errors made by model B in the

edge region, however, are sometimes about a meter even at the end of the flood, which is also discussed

in section 4.1.3. This is likely why model A has a better MAE overall, though its predictive accuracy in the

beginning of the flood is worse.

(a) Model A with low predictive accuracy, but

with best MAE of 0.038 m
(b) Model B with highest accuracy, but with

slightly worse MAE of 0.045 m
(c) HEC-RAS simulation

Figure 18 – Water depth predictions of model with best MAE and model with slightly lower MAE, for first time step after dike
breach in test data set

Lastly, the training of a neural network is a stochastic process, meaning that two training procedures with

the same hyperparameter configuration lead to slightly different models and different model

performance. Two causes of variation are the initialization of the network with random weights, which

was described in section 2.1, and the fact that the network shuffles the training samples each epoch

(Brownlee, 2020). These features ensure that the model can start each training cycle from a different point

in the search space, and that the weight updates are not the same each time. However, this process also

is likely to contribute to the relatively large differences between the models from Figure 18, though they

had quite similar hyperparameter configurations.

29

4.1.3 Performance on test data

As was described earlier, 20% of the available data is used for testing the LSTM after it has been trained

and optimized, which equals 15 simulations. Averaging these events, the most accurate LSTM model

obtained through the hyperparameter optimization achieves high NSE-values near to 1 throughout most

of the study area (Figure 19). Close to the dike breach, the prediction is slightly less accurate with NSE

values around 0.95. The reason for this is an apparent delay of one time step by the LSTM flood prediction,

compared to the flood of the HEC-RAS model; during the first time step the water depths are much smaller

than they should be (see also Figure 18b compared to Figure 18c). The exact cause of this delay is unknown,

though one time step delay in the prediction of sudden variable increases is also experienced by Kilsdonk

et al. (2022) in their use of LSTM as well as by Bomers (2021) in the use of NARX neural networks. Perhaps,

at the first time step of the breach, the hidden state neurons of the LSTM network still contain values

associated with the near-zero water depths from before the breach. The hidden state neurons are updated

when the flood starts, after which higher and more accurate water depths can be predicted starting from

the second time step. Thus, if a more accurate prediction of the start of the flood is desired, a smaller time

step than three hours could be used. This would result in the effect of the delay being smaller.

Figure 19 also shows that the edge of the area at risk of flooding is poorly predicted with NSE values of 0

and below. This is explained below at the discussion of the water depths for separate grid cells (Figure 22).

Figure 19 – Mean NSE for grid cells across all test data flood events (letters indicate locations of Figure 22a, b and c)

Visualizing the water depth accuracy for the complete study area, the water depths for all grid cells and all

time steps predicted by the LSTM are plotted against the true values of the HEC-RAS simulation in Figure

20. The flood event chosen for this visualization is flood event 3, as it is representative of the average

performance of the LSTM. The maximum water depths during this flood for all grid cells are also shown in

Figure 21. The closer the predictions are to the red line of 𝑦 = 𝑥, the better the overall performance of

the network. As can be seen in Figure 20, the majority of points are located along this line, indicating

relatively accurate predictions throughout the complete duration of the flood. There is an interesting trail

of points in a less steep slope than the rest. These points are when the HEC-RAS water depths are high,

but the LSTM predictor is lagging behind, which matches the behaviour for the first time step described

above. Regarding the maximum water depths, Figure 21 shows that the prediction is highly accurate.

A

B
C

30

Figure 20 – Scatter plot of LSTM and HEC-RAS water depths

for all grid cells and time steps in test flood event 3

Figure 21 – Scatter plot of LSTM and HEC-RAS maximum

water depths for all grid cells in test flood event 3

Looking at separate grid cells, Figure 22 displays the water depths for one of the test flood events for three

locations in the study area. Both Figure 22a and Figure 22b show that the prediction is accurate with

respect to the HEC-RAS simulation. For Figure 22a, located close to the dike breach, it can be seen that the

LSTM lags slightly behind in predicting the rapidly increasing water depth. This behaviour was also visible

in Figure 18b and c on page 28 in which the LSTM prediction and actual HEC-RAS flooding extents match

quite closely, but the predicted water depths are lower than the actual water depths. In surrounding cells,

this behaviour is also found, and it is the reason for the slightly lower NSE in this area close to the breach.

On the previous page, Figure 19 showed poor NSE values for cells in the edge region of the flood. In this

area it often happens that either the LSTM predicts no flooding while there is a flood, or that the LSTM

predicts a flood while there is no flood (Figure 22c). Since flood depths in these edge cells are generally

smaller than in the rest of the study area, it seems that the LSTM has trouble determining the relationship

between the outflow hydrograph discharge and the water depth for these cells. It was found that in some

test flood events, the prediction in these areas can also be relatively accurate. However, the average NSE

is calculated with the inclusion of near negative infinity NSE values of edge cells such as in Figure 22c,

leading to the poor NSE values shown in Figure 19.

(a) Cell A near dike breach (b) Cell B in centre of area (c) Cell C in edge region

Figure 22 – LSTM and HEC-RAS water depths plotted for three grid cells in the study area for test flood event 3

31

For evacuation purposes, the arrival time of the flood is relevant as well. An optimal prediction is shown

by the red line of 𝑦 = 𝑥 (Figure 23), and it can be seen that the flood prediction of the LSTM is slightly

earlier than that of HEC-RAS. This is interesting, as it was previously described that the LSTM is often one

time step delayed. The reason for the behaviour shown in Figure 23 is that the LSTM is one time step

delayed in the area close to the dike breach, which was explained to be likely caused by the updating of

the hidden state neurons only after the first time step. For the remaining duration of the flood, the LSTM

is seen to flood the hinterland slightly quicker than HEC-RAS, resulting in the arrival times being one or

two time steps (3 or 6 hours) off in Figure 23.

Figure 23 – Scatter plot of arrival times of LSTM compared to HEC-RAS for flood test event 3

Related to the accuracy of the arrival time is the Critical Success Index (CSI), which was described in section

3.5 and measures the degree of similarity in the area of the floods of the LSTM model compared to HEC-

RAS, per simulation time step. Note that the accuracy of the water depth prediction is thus not relevant

here. For test flood event 3, the CSI is very high throughout the simulation. Starting near 0.9 and

maintaining close to 0.98 during the complete simulation means that the inundation extent is very well

predicted by the LSTM (Figure 24). The average CSI of this simulation is 0.97, indicating great performance.

Across all 15 test flood events, the average CSI of the simulations is 0.94, with only two test events having

a score below 0.90: one of 0.83 and one of 0.88. Therefore, the LSTM model consistently predicts the area

of the flood in HEC-RAS throughout the simulations with a high accuracy.

Figure 24 - CSI per time step for test flood event 3 comparing LSTM to HEC-RAS

32

4.2 HAND.FLOW MODEL
The following section discusses the performance of the HAND.FLOW model. The same 15 test flood events

used for testing the LSTM neural network are used, to make a fair comparison.

4.2.1 Performance on test data

Unlike the LSTM neural network, the HAND.FLOW model does not match closely with HEC-RAS. It achieved

a mean absolute error (MAE) of the water depth predictions for all time steps on flooded cells of 0.84

meters compared to HEC-RAS, while the average water depth over all time steps of flooded cells is 1.49

meters in HEC-RAS. The average error is thus 56%. For comparison, the LSTM model had a MAE of only

0.045 meters compared to HEC-RAS, which is an average error of only 3%. This section explains the results.

Evaluating the water depth predictions using the NSE value, it can be seen that the NSE is 0 or lower in

most of the study area (Figure 25). The reason for this is that the HAND.FLOW model is not equipped with

an emptying method, while HEC-RAS has a downstream boundary in the most northern part of the study

area. As a result, HEC-RAS water depths start to decrease half-way through the simulation, even though

water is still coming through the dike breach at a few hundred m3/s. This is the main reason for the low

NSE values in the complete study area, and also explains the large average error of 56% in the MAE. It also

explains why there is a large flood around the hilly area of Montferland in Figure 25; the water levels in

HAND.FLOW are much higher, leading to a much larger inundated area in some of the 15 simulations.

Regarding the area of the flood and flood propagation accuracy measured with the Critical Success Index

(CSI), which does not take into account water depth beyond the threshold of 0.1 meters, the HAND.FLOW

model scores reasonably at an average of 0.70 for all 15 simulations. This indicates that while the water

depth prediction is not accurate compared to HEC-RAS, the flood propagation patterns are.

As HEC-RAS reaches its maximum water levels half-way the simulation, evaluating the NSE at this time step

renders better results (Figure 26). For example, the area around Montferland is not yet flooded half-way

through any of the testing events, as the water levels are still relatively low then. The average MAE of this

first half is also better: an error of 0.37 meters on the average water depth of 1.49 meters (25% error).

Figure 25 – Mean NSE for grid cells across all test data flood

events (complete simulation period)

Figure 26 – Mean NSE for grid cells across all test data flood

events (first half of simulation period)

North ↑

South ↓

Top ↑

33

For the evaluation of the first half of the simulation period, the best predictions with an NSE of about 0.8

to 0.9 are made in the south part of the flooded area closer to the dike breach, though it can be seen that

this area is spotted with worse NSE values too (Figure 26). In the north the NSE values are lower, with the

region closer to the middle line having NSE values of about 0.5, and the top region values of about 0.2.

Additionally, there are still large areas with an NSE of 0 around the edges of the flood, where either

HAND.FLOW or HEC-RAS is the only model predicting a flood.

From Figure 26 it seems that the HAND.FLOW model is losing accuracy in steps between the south and the

north of the study area, and again in the most top region. However, it could actually be the HEC-RAS model

that is inaccurate here. In the middle of the study area lies the Oude IJssel tributary of the main IJssel river

(lower dotted line in Figure 26). In the northern half of the study area lies a drainage channel called

Stroomkanaal van Hackfort, that also drains into the IJssel river (upper dotted line Figure 26). Both are

flanked by dikes that are about 3 meters high. However, the width of these flow channels and their dikes

are about the same as one grid cell in HEC-RAS, and the grid has not been adapted to take these dikes into

account. As a result, the narrow dikes are lost in the height averaging performed by HEC-RAS and the water

is free to flow across the dikes unhindered. The HAND.FLOW model, on the other hand, is able to see these

dikes due to its resolution of 10x10 meters. It indeed stops flowing until it reaches 3 meters water depth,

only then proceeding to flow across the dikes to the other side. To verify that this behaviour is accurate, a

single HEC-RAS simulation is conducted with a grid adapted for the dikes. The simulation chosen is test

flood event 2 (Figure 27), which is representative of the average performance of the HAND.FLOW model.

Figure 27 – Outflow hydrograph of test flood event 2

In test flood event 2 with the adapted HEC-RAS grid, the Oude IJssel dike halts the flood for two extra time

steps (6 hours), and the Stroomkanaal van Hackfort halts it for one extra time step (3 hours). The adapted

HEC-RAS flood thus arrives about 9 hours later in the northern parts of the hinterland compared to the

initial simulation, which is more in line with the HAND.FLOW prediction. Visualizing the NSE values for the

HAND.FLOW model for this specific flood event reveals a large increase in the NSE values in the northern

part of the flood to NSE values of around 0.8 and 0.9, similar to the southern part of the flood (Figure 28).

Still, there are large areas around the edge where only one of the models makes a prediction, leading to

an NSE of 0 there. The MAE of this flood event is 0.21 cm (error of 14%). Interestingly, while in the original

15 flood events HEC-RAS never flooded near Montferland, it does happen in the simulation with the

updated grid (Figure 28). Apparently, the blocking of the flood at the Oude IJssel results in higher water

levels in the southern part of the flood, enabling water to flow in the direction of Montferland. All in all,

the HAND.FLOW model is reasonable in predicting flood propagation patterns in this flood event.

34

Figure 28 – NSE for grid cells in adapted test flood event 2 (first half of simulation period)

Similar to the NSE values, the Critical Success Index (CSI) shows that the prediction is reasonably accurate.

For test flood event 2 with the adapted HEC-RAS grid, the average throughout the simulation is 0.72 (Figure

29). This indicates that the inundation extent is reasonably well predicted by the HAND.FLOW model. The

drop in CSI visible at around 𝑡 = 90 hours is caused by the slight difference in the moment of crossing the

Oude IJssel dike: as still HEC-RAS floods across the dike before HAND.FLOW does, there is a larger

mismatch between the areas of inundation of the models. The CSI then recovers as the HAND.FLOW model

also crosses the Oude IJssel and starts flooding the area north of the dike. At around 𝑡 = 160 hours, the

HEC-RAS model experiences water volume losses through the downstream boundary that are greater than

the volume of additional water coming through the dike breach. As explained before, the HAND.FLOW

model does not have such an emptying mechanism, resulting in increasing inundated areas instead of

decreasing. Therefore the CSI gradually drops after this point.

Figure 29 – CSI per time step for adapted test flood event 2 comparing HAND.FLOW to HEC-RAS

North ↑

South ↓

Top ↑

A
B

C

35

An important factor impacting the drop of the CSI at 𝑡 = 90 is the distance limit that was developed for

the HAND.FLOW model. It could be made more specific instead of the simple line that was used (𝑙𝑖𝑚𝑖𝑡 =

20000 + 5500𝑡), as will be described in chapter 7 on recommendations. However, since the HEC-RAS

simulation used is not able to take into account small terrain features unless they are explicitly modelled,

it remains the question which of the models is most accurate to reality. Perhaps there are more terrain

features than the Oude IJssel and Stroomkanaal van Hackfort dikes that significantly influence the flow

patterns. In any case, the NSE and CSI indicators show that the HAND.FLOW model is reasonable at

recreating the HEC-RAS flood propagation patterns in this single corrected simulation.

However, even for this adapted simulation it is clear that the HAND.FLOW water depth predictions in a

scatter plot are not matching with HEC-RAS (Figure 30). Two main reasons are responsible for this. First, it

was described previously that the HAND.FLOW model does not have a downstream boundary to empty

the study area, leading to ever-increasing water depths. This is visible in Figure 30 in the arches of points

that curve towards the top left: these reflect grid cells where the HEC-RAS water depth decreases, but

where the HAND.FLOW water depth is still increasing (see also Figure 32). The second reason is that the

inundation extent of the HAND.FLOW flood along the edges of the flooded area is not very accurate. An

example of this is the area of Montferland discussed on the previous page, as well as the edge regions of

low NSE values. There, the HAND.FLOW model is often too late with predicting the arrival of the flood,

which can be seen in Figure 31 as the large concentration of points above the red 𝑦 = 𝑥 line.

The grid cells that exhibit this behaviour are largely in the edge region of the northern part of the flood.

The reason for the late arrival times in this edge region is not directly linked to the distance limit

relationship developed in section 3.3.2. Rather, it is caused by HAND.FLOW water levels rising slowly in

the edge regions far away from the dike breach (see Figure 32 on the next page). Though in that example

the HAND.FLOW flood arrives earlier than HEC-RAS, this is not the case in most of the cells. Mostly, the

water levels rise quite slowly because of the assumption in the model that the water level is raised evenly

across the study area. As a result, it takes a while before new cells are flooded in the edge regions far away

from the breach. HEC-RAS, on the other hand, models water flow entering these areas quite rapidly, as

seen in Figure 32 on the next page as well. This explains the large collections of late HAND.FLOW

predictions above the red 𝑦 = 𝑥 line in Figure 31.

Figure 30 – Scatter plot of HAND.FLOW and HEC-RAS water
depths for all grid cells and time steps in adapted test flood

event 2

Figure 31 – Scatter plot of arrival times of HAND.FLOW
compared to HEC-RAS for adapted flood test event 2

36

Zooming in from the scatter plots of all the grid cells to the same separate grid cells as for the LSTM (see

Figure 28 for location), it can be seen that the water depths in the HAND.FLOW model do not match with

the HEC-RAS model results, as expected (Figure 32). For the grid cell near the dike breach (Figure 32a), a

limitation of the HAND.FLOW model is seen: it fills the entire accessible path of the flood limit with a single

water level, based on the assumption of the original HAND model that water levels in rivers are more or

less constant as they flow downstream. However, in a dike breach there is a strong gradient in the water

depths; the closer to the breach, the more sudden and deep the water level increases. This steep increase

is not accurately modelled in the HAND.FLOW prediction, which is why the prediction is only about 2

meters of water depth. For a grid cell in the centre of the study area (Figure 32b), it can clearly be seen

that the water levels diverge as the HAND.FLOW model keeps filling up while HEC-RAS empties. Lastly, the

HAND.FLOW model shows mediocre performance in the edge cell of Figure 32c, predicting that the water

arrives about 20 hours earlier than in HEC-RAS. The difference in the steepness of the increase in water

levels was explained on the previous page.

(a) Cell A near dike breach (b) Cell B in centre of area (c) Cell C in edge region

Figure 32 – HAND.FLOW and HEC-RAS water depths plotted for same three grid cells as LSTM for test flood event 2

37

4.3 HAND.FLOW AFTER DEM CHANGE
After changing the height of the A12 highway between the two service interchanges at Duiven and

Westervoort in the Digital Elevation Model (DEM), the HAND.FLOW model and HEC-RAS model were both

updated and used for a single simulation of flood test event 2. Unlike the retraining of an LSTM neural

network, which would require all new training simulations, the HAND.FLOW model only requires a new

DEM and Local Drainage Direction (LDD) map to be prepared. Updating these two maps took around 30

minutes. For comparison, preparing the training simulations that were used for the LSTM took around 800

hours in the study by Bomers (2021).

After the DEM had been changed, the flood propagation in the HEC-RAS simulation clearly changed, with

water flowing further south-east until the water depth is great enough to flow over the A12 highway

(dotted line in Figure 33). It can also be seen that the water depths have increased slightly in this area, as

there is less space for the same volume of water. The HAND.FLOW model has also changed its behaviour

with the new DEM (Figure 34), and comparing it to Figure 33 shows that it is quite accurate.

Figure 33 – Left: HEC-RAS before DEM change (first time step). Right: HEC-RAS after DEM change (first time step)

Figure 34 – Left: HAND.FLOW before DEM change (first time step). Right: HAND.FLOW after DEM change (first time step)

A12

A12

Westervoort

Duiven

38

After the change in the DEM, both the HAND.FLOW and HEC-RAS models flow along the A12 highway

instead of passing through the area between the two service interchanges. Additionally, the water depths

of the HAND.FLOW model are also slightly higher in the situation after the DEM change, similar to HEC-

RAS. However, in the second time step of the simulation, the HEC-RAS model has water depths large

enough to flow over the highway, while the HAND.FLOW model flows further south for one more time

step. It is thus one time step too late with flowing over the A12 highway compared to HEC-RAS. Due to the

way the model is programmed, this extra time step delay in the beginning of the flood has consequences

for the further flood propagation and the accuracy of the prediction of arrival times.

It takes the HAND.FLOW model one time step (3 hours) to find its way out of a pit, while HEC-RAS computes

on a temporal resolution of 30 seconds. The effect of changing the temporal resolution of the HAND.FLOW

model is covered in section 5.3.1 of the discussion. In this simulation, however, the effect of having an

extra pit in the flow path close to the A12 slows down the flood propagation considerably compared to

HEC-RAS. The reason is that the flow path no longer crosses between the two service interchanges at

Duiven and Westervoort, but it flows over the highway at another point along the A12 further south-east.

As a result, the flow path is longer than in the original simulation. Note that the distance limit function

(𝑙𝑖𝑚𝑖𝑡 = 20000 + 5500𝑡) was not changed for the simulation with the new DEM, so the HAND.FLOW

model needs more time to travel along the longer flow path. An example of the result of this is that model

crosses the Oude IJssel river dike 5 time steps (15 hours) later than HEC-RAS. Therefore, the NSE values of

the flood are slightly lower than before the DEM change (Figure 35 compared to Figure 28). Especially in

the northern part of the flood, the NSE dropped from 0.8 – 0.9 before the DEM change to about 0.6 after.

Figure 35 – NSE for grid cells in test flood event 2 with change in DEM (first half of simulation period)

Evaluating the scatter plot of arrival times in HAND.FLOW and HEC-RAS (Figure 36), it can be seen that the

HAND.FLOW model predicts the arrival times often above the red 𝑦 = 𝑥 line, indicating a delayed

prediction compared to HEC-RAS. This was discussed above to be caused by the longer flow path, leading

to a 5 time step delay for crossing the Oude IJssel river. A larger region of data points with even slower

HAND.FLOW predictions is also seen. These points are mainly located in the edge regions, where

HAND.FLOW is very late with predicting a flood compared to HEC-RAS. Evaluating the Critical Success Index

North ↑

South ↓

A
B

C

39

(CSI) of this event, two interesting drops can be seen. The CSI starts out at around 0.8 for the first time

step, indicating large similarity between the flooded area of HAND.FLOW and HEC-RAS (mentioned also

for Figure 33 and Figure 34). Then, the HAND.FLOW model crosses the A12 highway one time step later

than HEC-RAS, leading to a mismatch in the inundated area and a lower CSI score (around 𝑡 = 90). As

HAND.FLOW crosses the A12, the inundated areas become more similar again and the CSI increases,

before dropping around 𝑡 = 100 due to the 5 time step delay in crossing the Oude IJssel dike. After this

crossing, the score increases again as the HAND.FLOW model catches up. The average CSI of the complete

simulation period is still 0.70, which is a reasonable score.

Figure 36 – Scatter plot of arrival times of HAND.FLOW

compared to HEC-RAS for test flood event 2 with DEM change
Figure 37 – CSI per time step for test flood event 2 with DEM

change comparing HAND.FLOW to HEC-RAS

Looking at the water depths of separate grid cells in this event (see Figure 35 for locations), it is interesting

to see that the performance in NSE is actually slightly better compared to the situation before the DEM

change (Figure 38). However, as was mentioned before, the general performance throughout the study

area is slightly worse. For two of the grid cells, it can be seen that the HAND.FLOW model does not predict

the arrival time well compared to HEC-RAS. In the cell in the centre of the study area (Figure 38a), the

HAND.FLOW model is too late with the prediction, which was explained to be the result of the longer flow

path in the previous paragraph. In the cell in the edge region, the HEC-RAS model actually no longer

predicts a flood, possibly due to additional water being held behind the raised A12 highway.

(a) Cell A near dike breach (b) Cell B in centre of area (c) Cell C in edge region

Figure 38 – HAND.FLOW and HEC-RAS water depths plotted for test flood event 2 with DEM change

40

5 DISCUSSION
This chapter first discusses several points that are valid for the two surrogate models in general, and

afterwards the results and limitations of the LSTM and HAND.FLOW models are discussed separately.

5.1 GENERAL REMARKS
In this research, two surrogate models were developed for recreating the results of the 1D2D-

hydrodynamic model HEC-RAS developed by Bomers (2021). This model was originally calibrated by

Bomers, Schielen & Hulscher (2019) with the river water level data of the 1995 Rhine near-flood, and

validated with the 1993 Rhine near-flood. These events did not lead to dike breaches, but it is assumed

that the model is capable of simulating large overland flow. This is based on literature such as Moya

Quirogaa et al. (2016), who used HEC-RAS to accurately reproduce the February 2014 Bolivian Amazonia

flood. As such, it was assumed that the HEC-RAS model is representative of reality and suitable to be used

as a base for the development of the LSTM and HAND.FLOW models. It does, however, mean that any

errors present in the HEC-RAS model will be present in the LSTM and HAND.FLOW models too.

The most notable consequence of this was that the HAND.FLOW model noticed terrain features that were

not taken into account in the HEC-RAS model. The 3-meter high dikes along the Oude IJssel and

Stroomkanaal van Hackfort discussed in section 4.2.1 were invisible due to the relatively large HEC-RAS

grid cell size of 150x150 meters. This grid cell size was required in the study by Bomers (2021) to make the

computation times acceptable, as the study area was quite large. In this research, a single new simulation

was conducted with a HEC-RAS model that did take these dikes into account, but it would have been more

insightful if a larger set of scenarios could have been evaluated with this updated HEC-RAS model.

A second point is that the HEC-RAS output data available was generated once every 3 hours of the

simulation. For the purposes of Bomers (2021), this output time interval was detailed enough. Generating

the output every 3 hours of the simulation still resulted in a large amount of data, so to manage and store

data from simulations with a shorter time interval, a flood event with less complexities could be considered

for future research. This would especially be relevant for the area close to the dike breach. There, the

velocities are high and the water depths rise fast, which now all happens in only one time step.

5.2 LSTM NEURAL NETWORK
The LSTM model accurately reproduced the results of the HEC-RAS simulations, as it is data-driven and can

learn the patterns and dependencies present in the data. In the literature, this has been proven many

times for time series prediction (such as Le et al. (2019), who demonstrated reliable flood discharge

forecasting capabilities of an LSTM). Solvik et al. (2021) use an LSTM to calculate the probability of flooding

for nearly 72,000 small lakes in the Great Plains of the US based on climate data and area-specific

characteristics. Kilsdonk et al. (2022) successfully developed an LSTM to predict flood volume during a

precipitation event for 230 manholes of a sewer system. As Bentivoglio et al. (2021) mention, deep

learning had not yet been applied to dam and dike breach flood events, so this present study has proven

that LSTM are accurate in reproducing water depths on grid cells in the hinterland after a dike breach as

well. A number of interesting observations were made in this research that are worthy of discussion.

41

First, the LSTM network underpredicts the sharp increase in water depths in the first time step of the

simulation. Such behaviour was also found by Bomers (2021) and Kilsdonk et al. (2022), and was

hypothesized in section 4.1.3 to originate from the hidden state cells of the neural network, which are

updated to reflect the flood’s beginning during the first time step. The effect of their change is thus only

visible starting from the second time step. Although this might not matter for the overall picture of the

flood prediction, the impact can be decreased by modelling with a smaller time step than the 3 hours used

in this research. Then, the neural network would adapt its hidden state cells while a smaller portion of the

hinterland is flooded, leading to fewer cells with an incorrect prediction in the first time step. An additional

insight gained by this would be to see how the LSTM behaves with the very high outflow hydrograph

discharge inputs that correspond with this very first moment after the dike breach. With such a shorter

time step, these will be more extreme than the average discharge of the first 3 hours used by this research.

Second, the best LSTM from the hyperparameter optimization was not the best in accurately predicting

inundation extent. As discussed in section 4.1.2, the best model (model A) had a Mean Absolute Error

(MAE) of 0.038 meters among all flooded cells and all time steps, but a poor predictive accuracy regarding

the size of the flood. Model B had a slightly worse MAE of 0.045 meters, but predicted the size of the flood

more accurately. The difference was attributed to the fact that model A did predict worse in the first time

step, but better around the edges of the flood where grid cells flood in only some scenarios. Model B

predicts better in the beginning, but worse in these edges. Apparently this difference leads to a slightly

better MAE for model A, even though model B was considered more accurate and relevant for the flood

propagation prediction. This is why model B was considered the best LSTM.

Other loss functions such as Mean Square Error and Root Mean Square Error were also tested, but did not

seem to lead to better models, and often resulted in even worse models. While training of neural networks

is a stochastic process, the loss function does affect the severity of changes to the weights that are

propagated through the network, so a different loss function leads to different inner relations between

neurons in the network. Perhaps another loss function is more appropriate than the MAE, such as a custom

loss function that takes into account the distance of the grid cell to the dike breach, to be able to force the

network to find a better balance between far away cells and cells close to the dike breach.

All in all, LSTM are great at learning patterns in data and forecasting after the training procedure. However,

a lot of data is required for them to be trained to sufficient accuracy. Lu et al. (2021) refer to LSTM as

having a “data-hungry nature”, and use it to predict discharge in a data-scarce basin. They find reasonable

prediction accuracy if the evaluated period is similar to the periods present in the training data, but poor

performance if this is not the case. This shows that the LSTM requires a representative range of events in

the training data, in order to not suffer from overfitting and out-of-distribution (dramatically different)

predictions (Lu et al., 2021). Also in this research on dike breach inundation, a lot of training data and

training time was needed to come to the accurate LSTM. Additionally, as mentioned in section 4.1.2, the

training of a neural network is a stochastic process, which means that the performance can be different

for a similar set of hyperparameters. Therefore, it can take quite some training iterations to find an

accurate neural network, even in data-rich areas.

The implications of this for the use of an LSTM in a real-time flood forecasting system are significant. First,

the LSTM that was trained in this research is only valid for this dike breach location. It cannot be applied

for a dike breach that is a kilometre downstream, for example. As such, this LSTM set-up requires a lot of

1D-2D hydrodynamic simulations to be conducted for every potential breach location in a real-time flood

42

forecasting system, (800 hours for Bomers (2021) for one breach location).. It should then be trained for

every potential breach location, which requires a lot of iterations and critical reflection of the modeller

(see for example Figure 15 in section 4.1.2, in which the LSTM with the best MAE value was not the most

accurate at flood inundation extent prediction). The training time for this study was also in the order of 24

hours (average 10-15 minutes per hyperparameter combination), making the total time investment

required for an operational system using LSTM this way immense.

Although this version of the LSTM is impractical for use in a real-time flood forecasting system, the field of

neural networks has been rapidly developing in recent years. With the interest for machine learning,

artificial intelligence and algorithms in the tech sector, new neural networks are being developed and

applied in more and more research fields (Chu et al., 2020). This study is the first to demonstrate that the

often-used LSTM neural network is capable of learning the spatial and temporal characteristics of flooding

due to a dike breach. In recent years, however, an entirely new type of neural network has been gaining

momentum for time-series prediction, called the Convolutional Neural Network (CNN) (Bentivoglio et al.,

2021). These are suitable for spatial analysis due to their ability to easily process raster files and images, a

quality which the LSTM does not have of its own. Perhaps a better LSTM, another neural network such as

CNN, or a combination of LSTM and another algorithm can be developed that is generalized for more dike

breach locations in a study area, which is discussed in the recommendations in chapter 7.

5.3 HAND.FLOW MODEL
The HAND.FLOW model was less accurate in reproducing the HEC-RAS water depths than the LSTM. In

section 4.2.1 on the results, a number of reasons were discussed. For example, unlike HEC-RAS, the

HAND.FLOW model was not equipped with a downstream boundary, which resulted in water levels that

kept increasing indefinitely. The HAND.FLOW model was still able to reasonably predict inundation extent

throughout the flood, with CSI values of around 0.70. This is at the lower end of CSI values found by studies

using the original HAND model, such as Chaudhuri et al. (2021), Li et al. (2022) and McGrath et al. (2018),

who find CSI values ranging from 0.7 up to 0.9 depending on the case study.

The original HAND model works with setting a river water level on the grid cells that it determines to be

the drainage cells of the area, as was described in section 2.3 and 3.3.2. This water level is then

extrapolated to surrounding terrain, where all cells with a Height Above Nearest Drainage (HAND) value

less than the water level are flooded. The model thus works on the assumption that the water level in a

river is constant along the river reach. This is valid for the riverine floods spilling into floodplains usually

modelled with the original HAND model. The HAND.FLOW model also uses this assumption when it floods

the study area along the flow path. However, in dike breaches there is a relatively steep gradient in water

depths: close to the breach the water depths are very high and increase very fast, while further away they

increase slower and to a smaller depth. The importance of this effect not being included in the model

would have to be investigated, since the area affected might be relatively small. If it is significant though,

a future version of the model could apply a weight factor on grid cells based on their distance to the breach,

to reflect this gradient. It would have to be seen if this weight factor can be generalized for dike breach

events in other case studies too, or if it depends too strongly on location, discharge shape and duration.

A second major assumption made in the development of the HAND.FLOW model is the distance limit that

is imposed on the pathfinding algorithm each time step (𝑙𝑖𝑚𝑖𝑡 = 20000 + 5500𝑡). The relationship was

derived in section 3.3.2 using data from the 15 HEC-RAS test flood events (Figure 10). As a result, the

43

relationship is only valid for this study area. A new relationship has to be derived for a different dike breach

location, which requires at least one HEC-RAS simulation to be conducted. The effect of the distance limit

is also significant due to the way the model was programmed. For example, after the Digital Elevation

Model (DEM) change at the A12 motorway (section 4.3), the flow path became significantly longer. The

distance limit function was not altered for this situation, so the model took a longer time flowing over the

path, leading to a 5 time step delay (15 hours) between HEC-RAS and HAND.FLOW crossing the Oude IJssel

dike. Thus, the distance limit affects the propagation of the flood in the HAND.FLOW model, and it should

be developed and used with care. Additionally, it means that the HAND.FLOW model in its current state is

not independent; it needs input from another source to derive the distance limit relationship. For ways to

solve this dependency, see chapter 7 on recommendations.

Third, the HAND.FLOW model has no notion of flow velocity of the water. During a dike breach however,

and especially close to the breach, flow velocities are high and allow water to force its way across a higher

terrain feature, such as a slightly elevated road. As the HAND.FLOW model cannot model this, situations

can occur in which a sizeable volume of water will flow across a barrier in reality, but this area will not

flood in the model. In the case study considered in this research, this situation does not occur. To solve it

when it does occur, the introduction of a velocity component might be a solution. However, this could also

further complicate the HAND.FLOW model beyond its intended goal as a fast surrogate model. As such,

the applicability of the HAND.FLOW model in any location is not guaranteed, as some obstacles nearby the

dike breach may divert the water in the HAND.FLOW model in an unrealistic manner.

Perhaps the solution to this problem is offered by another field of fast modelling of flood inundation:

cellular automata (CA) models. These models consist of grid cells that have a set of transition rules

determining the evolution of each cell, taking into account its neighbours (Teng et al., 2017). Guidolin et

al (2016) developed a CA that was up to 8 times faster than the benchmark hydrodynamic Infoworks ICM

model, and to reasonably good agreement. The model predicted water depth and used both rainfall and

a point source of a sewer overflow as forcing. Jamali et al. (2019) compared a similar CA model to HEC-

RAS, and it performed very well in areas with low-lying depressions filling up, but somewhat less in areas

where floodwaters had higher velocities. Possibly, combining the velocity components of a cellular

automata model with the principles of the HAND.FLOW model can help overcome the HAND.FLOW models

aforementioned inability to flood across an obstacle with high velocity.

All in all, the HAND.FLOW model performed reasonably well in predicting the inundation extent, even

though the water depth prediction was not equal to that of HEC-RAS. A number of use cases for the

HAND.FLOW model are imaginable. First, the HAND.FLOW model can be used to quickly explore the

severity of a flood after a dike breach in a particular location. Additionally, the model is relatively flexible

in being used for a breach location that is, for example, a kilometre downstream. Second, the model

showed a good understanding of changing flow patterns after a change in the Digital Elevation Model

(DEM), meaning that it can be used for a rough estimate of changing flood inundation patterns after

interventions such as compartmentalization in the hinterland. This cannot be said of the LSTM, which was

mentioned to be inflexible in case of any such changes. Third, the HAND.FLOW model should be relatively

quickly usable in other riverine areas, since the basic principles apply everywhere. Only the distance limit

relationship requires an update to see how the flood propagates through time. Furthermore, since the

model only requires the DEM as input, it should be applicable in data-scarce areas. The next section will

discuss the performance in a data-scarce region with a coarser DEM. Considering all these use cases, there

is certainly potential in using a the HAND.FLOW model in a real-time flood forecasting system.

44

Another important aspect of a model for a real-time flood forecasting system is that the set-up time and

simulation time should be sufficiently short that multiple scenarios can be evaluated (Teng et al., 2017).

As was discussed before, the LSTM neural network has a long preparation time for gathering all the training

data, which has to be modelled for each situation and took 800 hours for Bomers (2021). The HAND.FLOW

model, on the contrary, requires a much shorter preparation procedure for converting the Digital Elevation

Model (DEM) into the Local Drainage Direction (LDD) of about 30 minutes. Regarding simulation time, the

LSTM was near instant in predicting a flood event, while the HAND.FLOW model required about 30 minutes

on a 10x10 meter resolution for a simulation period of 12 days with 3-hour time step. This is still quite long

for the purposes of multiple scenario analysis. It is much faster than the HEC-RAS model, which takes about

6 to 10 hours for a simulation with a time step of 30 seconds on a 150x150 meter resolution. It should be

noted that most of the flood propagation for this large flood event happened during the first 4 days of the

flood, which the HAND.FLOW model simulated in 10 minutes. The effect of changing the resolution of the

HAND.FLOW model on the simulation time and results is discussed in the next section.

5.3.1 HAND.FLOW resolution changes

The HAND.FLOW model that was used in this research utilized a spatial resolution of 10x10 meters and a

temporal resolution of 3-hour time steps. This section discusses the changes that arise in the HAND.FLOW

model and its results when the model is updated to work with other resolutions.

Spatial resolution

To investigate performance in a “data-scarce” region, the resolution is changed from 10x10 meters to the

150x150 meter resolution of the HEC-RAS model. The first step is to create the Digital Elevation Model

(DEM) and Local Drainage Direction (LDD) maps. From the 10x10 meter DEM that is used as the base data

set, a resampling algorithm is used in QGIS to calculate the average values of all the 10x10 meter data

points in each 150x150 meter grid cell. With this new 150x150 meter DEM, the LDD can be derived in QGIS

as well. The second step is to set the row and column coordinates of the dike breach. Third, the distance

limit relationship requires an update, since in the updated DEM some of the terrain features are averaged

away. The flow path from the dike breach downstream might thus take a slightly different route, leading

to a longer distance covered especially in the first time step (Figure 39). In the figure, the raised railroad

ascends towards the Westervoort bridge crossing the IJssel river, and descends into the hinterland. On the

150x150 meter resolution, the railroad is averaged away into the surrounding elevation sooner than on

the 10x10 meter resolution, so the flow path crosses it earlier.

Figure 39 – Flow paths on 10x10m resolution (light blue) and 150x150m resolution (dark blue) in first time step

Breach

Railroad

45

A benefit of a more coarse spatial resolution is that it leads to a much faster simulation time. The

simulation of 12 days (93 time steps) on 10x10 meter resolution took 30 minutes, which is decreased to

only 1.5 minutes on the 150x150 meter resolution. And as mentioned before, the flood propagation

reaches its largest extent around the 4th day, which used to take 10 minutes on the 10x10 meter resolution,

but takes only 3 seconds on the larger resolution. With such a short simulation time, scenario analysis for

the purposes of real-time flood forecasting is more attainable.

However, the flood maps of the 150x150 meter flood show more of a fragmented inundation extent than

what is expected (Figure 40), making the prediction less accurate. It is not entirely known why the flood in

this first time step is disconnected in the HAND.FLOW model. The dry area between the two parts fills up

in a later time step, but the remaining flood propagation in later time steps is also less accurate and more

fragmented than on the more detailed spatial resolution. The problem of this fragmentation of the flood

disappears at 75x75 meters resolution. In their research, Li et al. (2022) conclude that the DEM resolution

is a substantial source of uncertainty in the original HAND model due to the resampling of features in a

coarser DEM, possibly leading to overgeneralization. It thus seems like the HAND.FLOW model requires a

more a detailed spatial resolution to predict flood propagation than HEC-RAS, and that the original HAND

model also suffers from problems related to coarse resolutions.

Figure 40 – Left: HAND.FLOW model on 150x150 meter resolution (first time step). Right: HEC-RAS model (first time step)

Temporal resolution

The temporal resolution of the HAND.FLOW model in this research was 3 hours per time step. For mapping

purposes of flood propagation, this resolution was sufficient to show the flood gradually spilling into the

hinterland. However, if more detail is desired, the temporal resolution can be made more detailed. In this

example, a time step of 15 minutes will be used. Two steps are needed to change the temporal resolution

of the HAND.FLOW model. The first step is to make sure that the input data of the outflow hydrograph is

also in a 15 minute time step. The second step is to change the distance limit relationship; since in a 15

minute time step the distance travelled by the water is much less than in a 3 hour time step.

46

The first three days of one flood event were simulated using this higher temporal resolution in both the

HAND.FLOW and HEC-RAS models. Figure 41 shows the flood results of the first time step of the simulation,

and it can be seen that both the HEC-RAS and the HAND.FLOW model remain close to the dike breach.

HEC-RAS can be seen to have slightly higher water depths, while the HAND.FLOW water depths are slightly

more evenly spread. This has been explained before as the result of the assumption that the water level is

constant along the drainage cells of the flow path.

Figure 41 – Left: HAND.FLOW model on 15 minute resolution (first time step). Right: HEC-RAS model (first time step)

For the remaining part of the simulation, the HAND.FLOW model follows the same flow path as it did in

the previous analysis of this study. This is because the DEM and LDD have not been changed, so the only

difference is the allowed distance travelled per time step. As a result, the flood propagation patterns

remain similar to HEC-RAS. One major drawback of increasing the temporal resolution is that the

simulation takes more time. The complete simulation period of 12 days was not run using the 15-minute

time step, but the first 4 days took the HAND.FLOW model 25 minutes on this temporal resolution. If the

model will be used in another case study in later research, first a decision should be made on what part of

the flood the focus will be; for a detailed look into the start of the flood a high temporal resolution is

feasible, while for mapping the complete flood event a more coarse temporal resolution is needed if short

simulation times are a requirement.

47

6 CONCLUSION
The aim of this study was to identify the most promising model for real-time flood forecasting after a dike

breach, and investigate its capabilities for long-term use in case of changes in the hinterland. Three sub-

questions were set up to guide the research and answer the main research questions. Each will be

discussed below, and afterwards the main research question is answered.

1. What is the performance of an LSTM network for an unknown set of dike breach flood events?

The neural network that was developed in this study was a Long Short Term Memory (LSTM) neural

network. Outflow hydrograph discharge data functioned as the input for the network per time step, and

the water depth was predicted on every grid cell of the study area per time step. The LSTM architecture

and hyperparameters were optimized for the lowest value of the error function on water depth (Mean

Absolute Error (MAE), and it was checked if they predict the flood inundation extent accurately.

The performance of the LSTM on the 15 flood events used for testing was very accurate. The MAE of the

network was 0.045 meters on an average water depth of 1.49 meters: an error of just 3%. Also, the NSE of

the network was close to 0.99 for almost every grid cell in the study area. Close to the dike breach the NSE

was slightly lower (0.95) and in the edge regions of the flooded area the NSE was worse. There, the LSTM

had trouble with cells that flood in some scenarios and do not flood in others.

2. How can the original HAND model be modified to model a dike breach flood?

The HAND.FLOW model was created to be able to find the downstream path from the dike breach and

travel a fixed distance along this path every time step. Using the Local Drainage Direction (LDD) map of the

area, a pathfinding algorithm determines the steepest downstream path from the dike breach into the

hinterland. To create a time component of simulation, a distance limit relationship was created using data

from HEC-RAS simulations that limits the downstream distance covered by the pathfinding algorithm each

time step to simulate flood propagation behaviour. Lastly, the volume of water flowing through the dike

breach is divided over the hinterland that is accessible by this path at that time step, making use of the

sub-catchment principle of the original HAND model. This results in the water depths per time step.

3. What is the performance of the HAND.FLOW model for a set of dike breach flood events?

The HAND.FLOW model was less accurate in predicting the water depths from HEC-RAS than the LSTM.

The main reason for this is that the HAND.FLOW model was not equipped with a downstream boundary

like HEC-RAS, so the HAND.FLOW model predicts water depths increasing indefinitely. Since HEC-RAS

reaches its peak water levels about halfway during the simulation, the performance indicators were

evaluated for this first half. The MAE was 0.37 m (error of 25%) and the majority of the grid cells in the

area have reasonable NSE values of 0.7 to 0.8. Along the edges, the prediction is less accurate. However,

it was found that the HEC-RAS model did not take into account two 3-meter high dikes compartmentalizing

the study area, which the HAND model could detect due to its higher resolution. In a single corrected HEC-

RAS simulation, the MAE became 0.21 meters (error of 15%) and the NSE was around 0.8 for large parts

of the study area. Looking at the areas of the flood for each time step demonstrates that the HAND.FLOW

model is a reasonable predictor of the flood propagation, with average CSI values of 0.72. This is important,

as a good prediction of arrival time and flood propagation is arguably more important for policy makers

than the precise water depth, as it determines when evacuation should be complete in a particular area.

48

4. What is the performance of the HAND.FLOW model after a change in the hinterland topography?

In this study, a section of the A12 highway between the service interchanges of Duiven and Westervoort

was raised by 2 meters above ground level in the DEM, and the effect on the flood propagation was

evaluated using both the HAND.FLOW and HEC-RAS models. Changing the DEM and re-calculating the LDD

took around 30 minutes. This short time is advantageous for a flood forecasting system that will be used

for longer periods of time, since the system will not be out of operation for a long time while it is updated.

The results show that both models flow along the highway instead of directly crossing it, only doing so only

when the water depths are high enough to overcome the elevation difference. However, due to the way

the HAND.FLOW model was programmed, the moment of flowing over the A12 and the subsequent

pathfinding are slower than HEC-RAS, leading to a delayed prediction further downstream in the

hinterland. Therefore, the NSE decreases downstream: close to the dike breach the NSE remains around

0.8, while further downstream the delay becomes larger and the NSE drops to around 0.6. All in all, the

HAND.FLOW model is easily adapted to reflect a change in the hinterland and correctly predicts the new

flood patterns. However, the accuracy of the flood arrival time for later time steps is subject to change.

For the answering of the main research question:

What are the drawbacks and benefits of neural networks and conceptual models in the context of real-time

flood inundation forecasting after a dike breach, for current and future conditions of the hinterland?

The advantages of an LSTM network in a real-time flood forecasting system are that it is very fast and

accurate after it has been trained, since “simulating” a flood event is near instant. The model is also easy

to use, since it has no more settings to alter after training. The only input for operating the model is an

outflow hydrograph. However, the main drawback of neural networks in a real-time flood forecasting

system is that they require a lot of training data, and gathering this takes a lot of time (800 hours in the

study by Bomers (2021)). Additionally, data gathering needs to be performed again after a change in the

hinterland, or for a breach a kilometre downstream, since it may change the flood propagation patterns.

All in all, a neural network can be trained to model any situation and a variety of output parameters (water

depths, but also flow velocities), as long as enough relevant training data and time is available.

The benefits of using the HAND.FLOW model in a real-time flood forecasting are that it can be altered to

reflect a change in the hinterland in just 30 minutes. Additionally, the model can be used for another dike

breach location with relative ease. In its current state, the model is less accurate in reproducing the water

depths from HEC-RAS than the LSTM counterpart. Still, it results in a reasonable representation of the

propagation of the flood throughout the hinterland, which is arguably the most important metric for policy

makers to plan an evacuation strategy. The simulation time is also important for real-time flood

forecasting, and for the HAND.FLOW model the applicability will depend on the temporal and spatial

resolution chosen. In this study, a large flood event was modelled on a resolution of 10x10 meters, which

took the HAND.FLOW model 30 minutes. This is not very suitable for the large scale scenario analysis

desired in real-time flood forecasting. On a more coarse spatial resolution of 150x150 meters used by HEC-

RAS and the LSTM, the simulation took the HAND.FLOW model 1.5 minutes. This is much better, but the

predictive accuracy decreased. Thus, the HAND.FLOW model in its current form should be used with care

and with patience. In conclusion, this HAND.FLOW model offers in a relatively short time a reasonable first

insight in how a flood will propagate into the hinterland, but it is insufficiently capable to be used for

accurately predicting water depths. With further development, the model has the potential to be suitable

and flexible enough to be successfully applied in a real-time flood forecasting system.

49

7 RECOMMENDATIONS
In this study, the LSTM neural network proved to be able to model dike breach flood events very

accurately. Meanwhile, the developed HAND.FLOW model performs reasonably on predicting inundation

extent, but lacks accuracy for water depth predictions. For practical use and further research, several

recommendations are made:

• Real-time flood forecasting system. As was mentioned in the scope of this research in section 1.2,

a real-time flood forecasting system consists of more components than a flood inundation model

like the HAND.FLOW or LSTM. There should be a forecasting model for discharge in the river, and

a 1D model of that river should determine water levels in order to determine when dike failure

happens and what the outflow hydrograph of the breach will be. Many uncertainties are related

to all these aspects, and research into the stacking of uncertainties when coupling these models

is recommended. Still, a chain of these models is a goal to strive for, to enable policy makers to

input an incoming upstream discharge wave and see the expected effects downstream.

• Smaller flood. The flood events used in this research consisted of events on a relatively large

spatial and temporal scale. As such, the HEC-RAS simulations that were used to verify the LSTM

and HAND.FLOW model were on a relatively coarse resolution. In future research, it is

recommended to consider a smaller dike breach flood event to evaluate the LSTM and

HAND.FLOW models on higher spatial and temporal resolutions.

• LSTM in flood forecasting. The LSTM constructed in this research showed that neural networks

and deep learning are capable of simulating dike breach flood events accurately and fast.

Realistically, however, their use in a flood forecasting system is limited due to the immense

amount of time required for the training data of every potential dike breach location along a river

system. Future research can focus on changing the setup of the neural network, to take into

account characteristics of the area per grid cell. Possibly, the network can be taught the effect of

the relative positions of each grid cell; such as that low lying cells experience higher water depths,

and that cells behind a wall of higher elevations often flood later. This way, the LSTM would work

for many different dike breach locations and hinterlands.

• Amount of training data. Since the data gathering for the neural network takes a long time for a

flood of this size, it is recommended to research to what extent the LSTM neural network is “data-

hungry”. In this research, data from 58 dike breach events were used for the training procedure,

while it could be that a well-selected group of 20 events also leads to a good neural network.

Therefore, it is recommended to research the amount of training events required for a good LSTM.

• Other neural networks. Since the field of neural networks is developing so rapidly, other

promising types of neural networks might be more suited to map flood extent spatially. As

mentioned in the discussion, Convolutional Neural Networks (CNN) lend themselves well to the

interpretation of raster files and images (Bentivoglio et al., 2021). This should make them

applicable to flood inundation modelling. Perhaps a combination of LSTM and CNN architectures

can even result in good predictions, as the LSTM has been proven in time-series prediction and

the CNN is suitable for spatial analysis. Additionally, instead of a network predicting every cell,

other approaches could be explored in which a network is made for only a selection of grid cells

and then interpolated over the other cells (like in Kabir et al. (2020)). Future research is

recommended to apply CNN networks to dike breach flood events.

50

• HAND.FLOW in flood forecasting. For policy makers, the current HAND.FLOW model is

recommended to be used only as a first insight on where the flood waters will propagate. An

advantage is that it can be quickly applied to another case study, requiring only a Digital Elevation

Model (DEM) of the hinterland to be converted into a Local Drainage Direction (LDD) map, defining

the location of the dike breach, and testing if the distance limit relationship is valid. For future

research, it is recommended to apply the model to a case study in another area, to verify if the

general approach behind the model is applicable there too.

• Distance limit relationship. In this research, the distance limit relationship for the HAND.FLOW

model was dependent on simulation data from HEC-RAS. This makes its direct applicability to

another case study questionable, without first simulating at least one dike breach there for

reference. To solve this, it is strongly recommended to research if a more general relationship can

be found based on characteristics of the study area. For example, the average slope and roughness

along the flow path likely correlate with the distance water travels in a given time. Additionally,

there is likely a relationship between the discharge through the breach and the distance travelled

in the first time step, since larger discharges flow through the breach at high velocities and travel

further. If such general relationships can be found between a number of dike breach case studies,

the HAND.FLOW model could be made independent from HEC-RAS.

• HAND.FLOW validation. This research has evaluated the HAND.FLOW model for only a single dike

breach location in a single hinterland. It is strongly recommended to research the performance of

the model in other areas and breach locations too. Additionally, the flood events used for the

creation of this model were simulated in HEC-RAS and did not happen in reality. Therefore, it is

also recommended to apply the model to a historic flood event with real data. These steps would

bring insight into the validity of the HAND.FLOW model beyond the IJssel river.

51

REFERENCES
Bentivoglio, R., Isufi, E., Jonkman, S. N., & Taormina, R. (2021). Deep Learning Methods for Flood

Mapping: A Review of Existing Applications and Future Research Directions. Hydrology and Earth
System Sciences Discussions, 1–43. https://doi.org/10.5194/hess-2021-614

Bermúdez, M., Cea, L., & Puertas, J. (2019). A rapid flood inundation model for hazard mapping based on
least squares support vector machine regression. Journal of Flood Risk Management, 12(S1), e12522.
https://doi.org/10.1111/jfr3.12522

Bhola, P. K., Leandro, J., & Disse, M. (2018). Framework for Offline Flood Inundation Forecasts for Two-
Dimensional Hydrodynamic Models. Geosciences, 8(9), 346.
https://doi.org/10.3390/geosciences8090346

Bomers, A. (2021). Predicting Outflow Hydrographs of Potential Dike Breaches in a Bifurcating River
System Using NARX Neural Networks. Hydrology, 8(2), 87. https://doi.org/10.3390/hydrology8020087

Bomers, A., Meulen, B., Schielen, R. M. J., & Hulscher, S. J. M. H. (2019). Historic Flood Reconstruction
With the Use of an Artificial Neural Network. Water Resources Research, 55(11), 9673–9688.
https://doi.org/10.1029/2019WR025656

Bomers, A., Schielen, R. M. J., & Hulscher, S. J. M. H. (2019). Consequences of dike breaches and dike
overflow in a bifurcating river system. Natural Hazards, 97(1), 309–334.
https://doi.org/10.1007/s11069-019-03643-y

Brownlee, J. (2020, August 16). Why Do I Get Different Results Each Time in Machine Learning? Machine
Learning Mastery. https://machinelearningmastery.com/different-results-each-time-in-machine-
learning/

Chaudhuri, C., Gray, A., & Robertson, C. (2021). InundatEd-v1.0: A height above nearest drainage
(HAND)-based flood risk modeling system using a discrete global grid system. Geoscientific Model
Development, 14(6), 3295–3315. Scopus. https://doi.org/10.5194/gmd-14-3295-2021

Chu, H., Wu, W., Wang, Q. J., Nathan, R., & Wei, J. (2020). An ANN-based emulation modelling
framework for flood inundation modelling: Application, challenges and future directions.
Environmental Modelling & Software, 124, 104587. https://doi.org/10.1016/j.envsoft.2019.104587

Guidolin, M., Chen, A. S., Ghimire, B., Keedwell, E. C., Djordjević, S., & Savić, D. A. (2016). A weighted
cellular automata 2D inundation model for rapid flood analysis. Environmental Modelling & Software,
84, 378–394. https://doi.org/10.1016/j.envsoft.2016.07.008

Hu, A., & Demir, I. (2021). Real-time flood mapping on client-side web systems using hand model.
Hydrology, 8(2). Scopus. https://doi.org/10.3390/hydrology8020065

Jamali, B., Bach, P. M., Cunningham, L., & Deletic, A. (2019). A Cellular Automata Fast Flood Evaluation
(CA-ffé) Model. Water Resources Research, 55(6), 4936–4953.
https://doi.org/10.1029/2018WR023679

52

Kabir, S., Patidar, S., Xia, X., Liang, Q., Neal, J., & Pender, G. (2020). A deep convolutional neural network
model for rapid prediction of fluvial flood inundation. Journal of Hydrology, 590, 125481.
https://doi.org/10.1016/j.jhydrol.2020.125481

Karim, R. (2020, July 4). Animated RNN, LSTM and GRU. Medium.
https://towardsdatascience.com/animated-rnn-lstm-and-gru-ef124d06cf45

Kilsdonk, R. A. H., Bomers, A., & Wijnberg, K. M. (2022). Predicting Urban Flooding Due to Extreme
Precipitation Using a Long Short-Term Memory Neural Network. Hydrology, 9(6), 105.
https://doi.org/10.3390/hydrology9060105

Kingma, D. P., & Ba, J. (2017). Adam: A Method for Stochastic Optimization. ArXiv:1412.6980 [Cs].
http://arxiv.org/abs/1412.6980

Kumar, N. (2021, March 20). Optimizing Hyperparameters Using The Keras Tuner Framework.
MarkTechPost. https://www.marktechpost.com/2021/03/20/optimizing-hyperparameters-using-the-
keras-tuner-framework/

Le, X.-H., Ho, H. V., Lee, G., & Jung, S. (2019). Application of Long Short-Term Memory (LSTM) Neural
Network for Flood Forecasting. Water, 11(7), 1387. https://doi.org/10.3390/w11071387

Li, Z., Mount, J., & Demir, I. (2022). Accounting for uncertainty in real-time flood inundation mapping
using HAND model: Iowa case study. Natural Hazards, 112(1), 977–1004.
https://doi.org/10.1007/s11069-022-05215-z

Lim, N. J., & Brandt, S. A. (2019). Are Feature Agreement Statistics Alone Sufficient to Validate Modelled
Flood Extent Quality? A Study on Three Swedish Rivers Using Different Digital Elevation Model
Resolutions. Mathematical Problems in Engineering, 2019, e9816098.
https://doi.org/10.1155/2019/9816098

Liu, M., Huang, Y., Li, Z., Tong, B., Liu, Z., Sun, M., Jiang, F., & Zhang, H. (2020). The Applicability of LSTM-
KNN Model for Real-Time Flood Forecasting in Different Climate Zones in China. Water, 12(2), 440.
https://doi.org/10.3390/w12020440

Liu, Y. B., & Smedt, F. D. (2004). WetSpa Extension, A GIS-based Hydrologic Model for Flood Prediction
and Watershed Management. 126.

Lu, D., Konapala, G., Painter, S. L., Kao, S.-C., & Gangrade, S. (2021). Streamflow Simulation in Data-
Scarce Basins Using Bayesian and Physics-Informed Machine Learning Models. Journal of
Hydrometeorology, 22(6), 1421–1438. https://doi.org/10.1175/JHM-D-20-0082.1

McGrath, H., Bourgon, J.-F., Proulx-Bourque, J.-S., Nastev, M., & Abo El Ezz, A. (2018). A comparison of
simplified conceptual models for rapid web-based flood inundation mapping. Natural Hazards, 93(2),
905–920. https://doi.org/10.1007/s11069-018-3331-y

Mosavi, A., Ozturk, P., & Chau, K.-W. (2018). Flood prediction using machine learning models: Literature
review. Water (Switzerland), 10(11). Scopus. https://doi.org/10.3390/w10111536

53

Nobre, A. D., Cuartas, L. A., Hodnett, M., Rennó, C. D., Rodrigues, G., Silveira, A., Waterloo, M., & Saleska,
S. (2011). Height Above the Nearest Drainage – a hydrologically relevant new terrain model. Journal
of Hydrology, 404(1), 13–29. https://doi.org/10.1016/j.jhydrol.2011.03.051

Nobre, A. D., Cuartas, L. A., Momo, M. R., Severo, D. L., Pinheiro, A., & Nobre, C. A. (2016). HAND
contour: A new proxy predictor of inundation extent. Hydrological Processes, 30(2), 320–333.
https://doi.org/10.1002/hyp.10581

Quirogaa, V. M., Kurea, S., Udoa, K., & Manoa, A. (2016). Application of 2D numerical simulation for the
analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5.
Ribagua, 3(1), 25–33. https://doi.org/10.1016/j.riba.2015.12.001

Rajaee, T., Ebrahimi, H., & Nourani, V. (2019). A review of the artificial intelligence methods in
groundwater level modeling. Journal of Hydrology, 572, 336–351.
https://doi.org/10.1016/j.jhydrol.2018.12.037

Razavi, S., Tolson, B. A., & Burn, D. H. (2012). Review of surrogate modeling in water resources. Water
Resources Research, 48(7). https://doi.org/10.1029/2011WR011527

Scriven, B. W. G., McGrath, H., & Stefanakis, E. (2021). GIS derived synthetic rating curves and HAND
model to support on-the-fly flood mapping. Natural Hazards, 109(2), 1629–1653. Scopus.
https://doi.org/10.1007/s11069-021-04892-6

Shao, J., Hu, K., Wang, C., Xue, X., & Raj, B. (2020). Is normalization indispensable for training deep neural
network? Advances in Neural Information Processing Systems, 33, 13434–13444.
https://proceedings.neurips.cc/paper/2020/hash/9b8619251a19057cff70779273e95aa6-
Abstract.html

Solvik, K., Bartuszevige, A. M., Bogaerts, M., & Joseph, M. B. (2021). Predicting Playa Inundation Using a
Long Short-Term Memory Neural Network. Water Resources Research, 57(12), e2020WR029009.
https://doi.org/10.1029/2020WR029009

Speckhann, G. A., Borges Chaffe, P. L., Fabris Goerl, R., Abreu, J. J. D., & Altamirano Flores, J. A. (2018).
Flood hazard mapping in Southern Brazil: A combination of flow frequency analysis and the HAND
model. Hydrological Sciences Journal, 63(1), 87–100. Scopus.
https://doi.org/10.1080/02626667.2017.1409896

Staudemeyer, R. C., & Morris, E. R. (2019). Understanding LSTM -- a tutorial into Long Short-Term
Memory Recurrent Neural Networks. ArXiv:1909.09586 [Cs]. http://arxiv.org/abs/1909.09586

Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., & Kim, S. (2017). Flood inundation modelling:
A review of methods, recent advances and uncertainty analysis. Environmental Modelling & Software,
90, 201–216. https://doi.org/10.1016/j.envsoft.2017.01.006

Verwey, A., Kerblat, Y., & Chia, B. (2017). Flood Risk Management at River Basin Scale: The Need to Adopt
a Proactive Approach [Working Paper]. World Bank. https://doi.org/10.1596/27472

54

Xie, S., Wu, W., Mooser, S., Wang, Q. J., Nathan, R., & Huang, Y. (2021). Artificial neural network based
hybrid modeling approach for flood inundation modeling. Journal of Hydrology, 592, 125605.
https://doi.org/10.1016/j.jhydrol.2020.125605

Zhang, D., Lindholm, G., & Ratnaweera, H. (2018). Use long short-term memory to enhance Internet of
Things for combined sewer overflow monitoring. Journal of Hydrology, 556, 409–418.
https://doi.org/10.1016/j.jhydrol.2017.11.018

