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ABSTRACT 

The United Nations sustainable development goal (SDG), particularly indicator 1.4.2, promotes tenure 

security for all, special attention given to the poor and vulnerable groups. Despite this, majority of the 

global population lacks access to formal land registration systems. It is exacerbated by the expensive and 

time consuming nature of conventional systems of land registration such use of high precision ground 

survey methods. Due to its flexibility and affordability, several countries have recently adopted fit-for-

purpose land administration (FFP-LA) approach. FFP-LA promotes use of country wide aerial 

orthophoto, incremental improvement of measurement accuracy and using general boundary principle to 

speed up the process of land rights mapping. In recent years, the feasibility of using image-based mapping 

and automatic feature extraction techniques for (semi) automated cadastral boundary extraction has been 

actively investigated as an alternative to the traditional mapping methods. 

 

Many GIS applications, including cadastral mapping, require vector representation of spatial objects. 

Although deep learning networks such as FCN have achieved remarkable result in segmenting remote 

sensing images, the final map of the segmentation output is in raster format. Inspired by FFP-LA, this 

research has investigated the usability of deep learning methods to extract cadastral boundaries from very 

high resolution (VHR) remote sensing images directly in a vector polygon format. The proposed method 

utilizes FCN based network specifically UNET as a backbone to perform the segmentation task on the 

input image followed by the frame field method which simultaneously learns directional information of 

each pixel on the image. Through multi-task learning, frame field output improves the quality of deep 

segmentation model while providing structural information to facilitate the polygonization process. The 

polygonization method inspired by active contour model (ACM) takes the segmentation mask and frame 

field information as input and iteratively optimizes edges and corners to align seamlessly with the 

reference data. 

 

The experiments were conducted in the rural part of Ethiopia where agriculture is the predominant land 

use. The proposed method was evaluated on two different orthophotos based on images taken from UAV 

and aircraft platforms with 0.11 and 0.29 cm. resolution, respectively. The results are evaluated and 

reported using PoLiS and IoU metric. Polygons predicted on UAV orthophotos have higher similarity 

with the reference polygon than polygons predicted on aerial orthophotos with PoLiS distance of 2.81 and 

8.64, respectively. Furthermore, a higher mean IoU of 0.84 was achieved on polygons predicted using 

UAV orthophotos compared to predictions on aerial orthophotos which is 0.79. Frame field based model 

predictions delivered simplified polygons with regular edge and corner compared to standard 

segmentation model. In addition, the model is tested in a different geographical area using aerial 

orthophoto to test its transferability. mIoU of 0.67 and PoLiS distance of 7.11 is achieved which is slightly 

lower than the quality of polygons predicted using UAV orthophoto. The accuracy of the model was 

influenced by many factors such as high crop variability inside one field, existence of invisible boundaries, 

confusing features such as water ways and terraces that crosses the parcel, date of image acquisition and 

the quality of reference cadastral data. 

 

In conclusion, the proposed method shows the possibility of utilizing deep learning methods for 

extracting cadastral boundaries from VHR remote sensing images in a vector polygon format that can be 

directly used in mapping applications with little post-processing. 

 

 

Keywords: frame field learning, deep learning, FCN, UNET, cadastral mapping, UAV, orthophoto,    

FFP-LA 
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1. INTRODUCTION 

1.1. Background 

Land is the ultimate resource in which life cannot be supported without it. Thus, effective land 

administration is indispensable to ensure protection and proper use (Hull et al., 2020). According to 

UNECE (1996), land administration is defined as "the process of determining, recording and 

disseminating information about ownership, value, and use of land and its associated resources." It is 

imperative that land administration, as a system, meets the need of people-to-land relationships, provides 

tenure security for all, and sustainably manages natural resources (Enemark et al., 2014). Tenure security is 

an essential part of land administration function to reduce poverty and ensure food security by promoting 

investments on land (FAO, 2002). De Soto (2000) has re-emphasized the critical role secured property 

rights play in economic development. The United Nations Sustainable Development Goal, particularly 

indicator 1.4.2, promotes tenure security for all, special attention given to the poor and vulnerable groups 

(UN-HABITAT, 2018). But the reality on the ground tells a different story. It is roughly estimated that 

around 70% of the population in developing countries do not have access to a formal registration system 

to secure their land right (GLTN, 2012). In Sub-Saharan Africa, only 10 % of rural areas are legally 

registered; most of the others are undocumented or informally administered and thus prone to land 

grabbing (Byamugisha, 2013). 

 

Ethiopia, a country located in Sub-Saharan Africa, is undertaking a massive land registration program to 

improve tenure security of smallholder farmers. The country has more than 50 million parcels of rural 

landholdings that need to be registered (Shibeshi Gebeyehu, 2011). In the late '90s, the government of 

Ethiopia has launched a large-scale land registration program called first-level land certification (FLLC). 

Individual plots are measured by using traditional tools such as rope. Although FLLC has achieved success 

in scale and outreach, the process only captured textual information of the parcel and tenure details. The 

limitation of FLLC is that it does not provide a cadastral map or sketch of the land (Ayano, 2018). Later in 

2013, a new initiative known as second-level land certification (SLLC) was launched to register rural lands 

in areas where FLLC has been completed. SLLC is integrated with geoinformation technology to improve 

the land registration system (Cochrane and Hadis, 2019). Aerial photographs, satellite imagery, and GPS 

instruments are used for accurately measuring the location & size of plots on the field (Bezu and Holden, 

2014). The benefits of SLLC are twofold. First, it ensures the detail of the landholders (textual 

information) and the boundary of parcels (spatial data) are verified and documented. Second, when 

subsequent transactions are recorded, landholders are provided with updated land certificates, ensuring 

that the register of interests in land is accurate and up to date (DAI, 2020).  So far, the government has 

managed to cover one-third of the total parcels that have to be registered (Zain, 2021). 

 

The fact that conventional land administration system has often been expensive and does not consider 

local conditions, its implementation, especially in developing countries, has shown little success (Van 

Asperen, 2014). With the current rate of land tenure recording, it would likely take centuries to achieve 

sadequate land registration coverage (Zevenbergen et al., 2013). Notable organizations such as the 

International Federation of Surveyors (FIG) and Global Land Tool Network (GLTN) continuously 

advocated for the recognition of the continuum of rights and use of pro-poor recordation tools to 
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expedite land rights mapping (Hendriks et al., 2019). To that effect, Enemark et al. (2014) have introduced 

Fit-for-Purpose Land Administration (FFP-LA), an affordable, flexible & inclusive approach that mainly 

focuses on the purpose of the system. The most crucial concept in FFP-LA is the flexibility of the spatial 

framework (Figure 1), which includes (1) evolving through alternative data acquisition techniques such as 

satellite, aerial, or UAV images rather than deploying the traditional higher accuracy ground survey 

methods (2) use of general boundaries instead of placing expensive monuments to fix the extent of 

cadastral objects and (3) depending on the area, FFF-LA allows adoption of automatic feature extraction 

techniques for cadastral boundary extraction (Enemark and Mclaren, 2018).  

 

 

Figure 1: The concept of Fit‐For‐Purpose Land Administration and associated frameworks (Enemark et 

al., 2016) 

 

The broader adoption of FFP-LA methodology has opened a new horizon for cutting-edge innovative 

technology, such as the use of unmanned aerial vehicle (UAV) and machine learning techniques to 

accelerate the cadastral mapping process (Kelm et al., 2021). UAVs are becoming increasingly affordable, 

reliable, easy to use and emerging as a data collection option for mapping applications (Colomina and 

Molina, 2014). It has been studied in depth by Stöcker et al. (2018) whether the use of UAVs in land 

administration can help meet the needs of developing countries. A thorough need assessment was carried 

out coupled with different UAV flight configurations in Rwanda to understand the usability. The authors 

concluded that UAV-based data collection sufficiently met the needs assessed beforehand. Horizon 2020, 

a European Union program, inspired by FFP principle have launched “its4land” project to deliver a suit of 

innovative solutions for mapping land rights mainly in sub-Saharan countries. The main deliverables of the 

project are (1) SmartSkeMa: a sketch based participatory mapping tool, that relies on indigenous 

knowledge of local communities to verify their own land rights (2) a UAV solution: which has introduced 

a complete UAV workflow starting from choosing the right type of UAV vehicle for the purpose of 

cadastral mapping to data collection and quality control steps (3) machine learning driven automatic 

cadastral boundary extraction. It consists of image pre-processing, segmentation, line extraction, contour 
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generation, and interactive post-processing steps. The workflow has been tested and proved to be valid on 

UAV, aircraft, and satellite RGB images. (4) A geo cloud service is now available through the Publish and 

Share (PaS) platform. The primary aim of PaS is to provide adaptable spatial reference system for land 

administration projects (Koeva et al., 2021). 

 

Remote sensing is the science of  acquiring information about an object without having to physically 

interact with it (V.A. Tolpekin and A. Stein, 2013). Trials have been done in the past to explore the 

feasibility of using high-resolution remote sensing images and feature extraction algorithms for cadastral 

boundary extraction (Bennett et al., 2020). Through (semi) automated boundary delineation, parcel-level 

information can be collected automatically in a scalable manner, thereby cutting down on costs and time 

(Aung et al., 2020). Kohli et al. (2017) carried out a visual comparison of cadastral boundaries in seven 

case study countries to investigate whether the boundaries are visible on corresponding high-resolution 

satellite images as a requirement for subsequent feature extraction tasks. The quantitative analysis revealed 

that the results range from 0%, where the topography is rugged and densely forested, to 71% in 

smallholder farms and planned urban settlements. This study revealed the potential of remote sensing-

based methods for cost-effective and rapid cadastral mapping solutions. The study conducted by (Wassie 

et al., 2018) applied a semi-automatic feature extraction method to detect cadastral boundaries in a rural 

part of Ethiopia using the Mean Shift Segmentation algorithm on top of the WorldView-2 satellite 

imagery. The study used the buffer overlay method to evaluate the extracted results. They achieved 82.8%, 

34.3% & 32.9% in terms of completeness, correctness, and quality, respectively. The algorithm gained 

good performance on flat landscapes and barely vegetated areas. 

 

The early days of field boundary detection techniques typically rely on edge detection algorithms (Meyer et 

al., 2020); a primary hypothesis is that transition between fields exhibit an abrupt change of pixel values 

(Rydberg and Borgefors, 2001). There are many types of edge detection algorithm used in image analysis. 

Robert, Sobel, Prewitt, Laplacian of Gaussian (LoG) and Canny Edge Detection algorithms are well 

known for boundary extraction tasks (Muthukrishnan and Radha, 2011). The study by (Singh et al., 2015) 

showed how a modified version of Sobel Operator could extract parcel boundaries using 5 m. resolution 

Rapid Eye imagery. The traditional edge detection algorithms are unfavorable for satellite images because 

not all objects have sharp edges. They modified the existing operator to tackle this problem, by 

introducing a 5x5 mask to detect gradients in all directions, thus enhancing the detection result. Even 

though such techniques considerably reduce the manual digitization works, the detected edges are not 

regularized even some boundaries are left undetected, reducing the quality of extracted boundaries. 

 

Improvements in spatial resolution of satellite and aerial imagery and ongoing developments in computer 

vision made it possible to detect objects with increasing accuracy and (semi) automatic procedure (Avbelj 

et al., 2015). Recent advances in deep learning (DL) methods that systematically learn multi-level features 

have given geospatial application domains a new outlook for extracting information from very high 

resolution (VHR) remote sensing images (Sirko et al., 2021). Neuronal networks are capable of learning 

any function, even high dimensional and nonconvex problems. By semantically segmenting pixels based 

on whether they belong to a class of interest or not, this method offers better granularity and could be 

used directly without edge detection stage (Masoud et al., 2019). With Convolutional Neural Networks 

(CNN), (Crommelinck et al., 2019) demonstrated how boundary line classification can be conducted 

without needing hand crafted features, achieving 71% accuracy. In addition, Xia et al. (2019) used Fully 

Convolutional Networks (FCN) to detect cadastral boundaries in urban and peri-urban environments in 

Rwanda using UAV orthophoto. Overall, FCN achieved significant performance compared to other state-
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of-art methods such as Multi Resolution Segmentation (MRS) and gPb-based contour detection methods. 

Reported result in precision, recall, and F-score, are 0.79, 0.37, and 0.50, respectively. A recent study by 

Fetai et al. (2021) investigated detection of visible boundaries from UAV image in rural Slovenia using U-

Net architecture and compared the results with ENVI DL, a commercial software module. The authors 

achieved a balanced result from U-Net model with recall and precision of 0.65 and 0.41 respectively 

compared to the commercial software-based ENVI DL module which achieved 0.84 and 0.35 recall and 

precision. Garcia-Pedrero et al. (2019) trained UNET model to automatically delineate boundaries of 

agricultural fields using aerial orthophoto & publicly available Land Parcel Identification System (LPIS) 

dataset. The result obtained from UNET has outperformed gPb-UCM method with 89% overall accuracy. 

The quality of predicted boundaries are evaluated using boundary displacement index (BDE) by measuring 

distance between boundary pixels in the segmented image compared with reference data boundary pixels. 

They achieved BDE index of 14.64 for gPb-UCM and 5.53 for UNET. One of the major issues 

encountered in their study was that what is seen in the image is different from what is perceived as a 

parcel boundary. This issue stands in the way of the automatic extraction process. 

1.2. Research problem 

Many geographical information system applications, including cadastral mapping, require vector 

representation of spatial objects. Although DL networks such as CNN and FCN have achieved 

remarkable result in segmenting remote sensing images, the final map of the segmentation output is 

usually in a raster format (Zorzi et al., 2021). As a result, the segmentation output cannot be directly 

consumed for mapping applications. Generally, previous works on boundary extraction use two different 

approaches to extract vector polygons from the segmented image (Girard et al., 2020a). The first method 

is to convert the probability map produced by the neural network into a vector map followed by 

simplification algorithms, such as Ramer-Douglas-Peucker, to eliminate unnecessary vertices. Such 

techniques suffer from overly smoothed and irregular outlines. As a result, it imposes enormous post-

processing task. The second method directly predicts object outlines from the input image in an end-to-

end fashion. Zhao et al. (2021) introduced an improved method that can directly predict the outline of 

buildings in vector format by integrating CNN and Recurrent Neural Network (RNN) architectures. The 

CNN learns to find the location of vertices of the target object and RNN connects them together to 

create the outline. To accommodate the need for refined and regularized building outlines, modifications 

have been made to various network modules. The method was tested on high-resolution images. The 

evaluation result shows better COCO & PoLiS metric performance than state-of-art Mask-RCNN and 

PolyMapper. Persello et al. (2019) develop a strategy to delineate agricultural field boundaries using FCN 

in two different study areas. The initial image segmentation task was done using SegNet network. After 

segmentation, oriented watershed transform (OWT) is introduced to generate closed contours from the 

fragmented raster output. The final accurate field boundary is acquired after applying a grouping 

algorithm. The results are reported using precision-recall metric and they obtained F-score of 0.7 and 0.6 

for two study areas.  

 

There are limitations to the studies mentioned above, such as the fact that RNNs are computationally 

intensive to train, and these kinds of methods do not reuse the same boundary across adjacent parcels. 

Girard et al. (2020) proposed a novel building outline detection algorithm based on frame field learning 

that can directly output vector polygons to solve the above mentioned issues. Initially, UNET-16 and 

DeepLabV3, an encoder-decoder architecture, were used as a backbone to perform the segmentation task. 

A frame field is simultaneously learned to improve the segmentation quality and guide the subsequent 

polygonization process.  



VISIBLE CADASTRAL BOUNDARY EXTRACTION USING VHR REMOTE SENSING IMAGES: A DEEP LEARNING APPROACH 
 

11 

Many studies used state-of-art DL methods for cadastral boundary extraction focused for the most part 

on building outline extraction. But only a few studies have used neural networks, specifically FCNs, for 

agricultural field boundary delineation. It has not yet been reported in any previous studies that DL 

methods have been used to extract agricultural field boundaries in a vector polygon format. By taking 

advantage of new DL networks and high-resolution remote sensing images, this study proposed a method 

for extracting cadastral boundaries of agricultural fields in a vector format. Vector data are essential for 

mapping applications since they are the basis for land information systems. 

 

1.3. Research objective and questions 

1.3.1. General objective  

 

The main objective of this study is to design a method that can extract cadastral boundaries from very 

high-resolution remote sensing images in a vector polygon format. 

1.3.2. Sub-objective and questions 

 

1. To investigate deep learning methods used for cadastral boundary extraction 

1.1. What methods exist for cadastral boundary extraction? 

 

2. To prepare data for cadastral boundary extraction 

2.1. What are the steps needed to post-process UAV images? 

2.2. How to design & prepare input dataset for the model? 

 

3. To design a deep learning method used for boundary extraction 

3.1. Which FCN based network architecture is suitable to use as backbone? 

3.2. How to get optimum hyperparameters of the model? 

3.3. What methods are used to extract regularized vector polygons? 

 

4. To evaluate the performance of the method 

4.1. What are the standard metrics used for evaluating predicted polygons? 

4.2. What is the performance of the model on UAV and aerial orthophoto? 
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1.4. Conceptual framework 

The main concepts explored in this thesis are shown in Figure 2. As previously mentioned, there have 

been limited attempts to employ automatic feature extraction especially deep learning methods in 

combination with VHR remote sensing images for the purpose of cadastral mapping. In this research, 

inspired by FFP spatial framework principle, the potential of feature extraction algorithm is explored and 

applied on remote sensing images to test their usability for cadastral mapping.  The spatial framework of 

the FFP-LA promotes remotely sensed images as an alternative method to high precision ground surveys. 

In addition, general boundary principle is used to delineate boundary of parcels. Feature extraction 

methods such as DL methods can be applied to the components of the spatial framework to facilitate the 

cadastral mapping process. The goal of this innovative method is to support tenure security. 

 

 

 
 

 

Figure 2: Conceptual framework of the research 

 

 

1.5. Ethical considerations 

The datasets collected for the purpose of this thesis has been used incompliance with 

the EU General Data Protection Regulation (GDPR). Personal information of the land holder is removed 

from the reference cadastral boundaries before doing further processing on the data. 
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1.6. Structure of the thesis 

This thesis shows the usability of deep learning models to extract cadastral boundary extraction from 

VHR remote sensing images in a vector polygon format.  It is organized in six chapters. 

Chapter one: Introduction 

In this chapter, background and justification of the research problem is discussed in detail. Research 

objective and questions are formulated to address the research problem. Furthermore, the conceptual 

framework provides summary of the main concepts that will be discovered in this thesis.  

Chapter two: Literature Review 

An extensive literature review of different journal articles, books, and academic outputs about automatic 

cadastral boundary extraction using FCN based deep learning networks are presented in this chapter. 

Chapter three: Research Methodology 

In this chapter the proposed frame field learning method is discuss in detail. A description of the datasets 

used in this study and how they were prepared is also provided. Furthermore, the proposed pixel and 

polygon level metrics to evaluate model results are introduced 

Chapter four: Results and Discussion 

The results of model experiments are presented in this chapter along with discussion of results. This is the 

order in which the results are presented. Comparison of polygon predictions based on UAV and aerial 

orthophoto, comparison of frame field learning with standard segmentation model and finally testing 

transferability of the model. 

Chapter five: Recommendations 

Based on the work of this research, recommendations are provided for future works aimed at cadastral 

boundary extraction in vector polygon format.   

 

1.7. Summary 

In this chapter, the societal problem related to tenure security is briefly discussed that leads to the research 

problem which is cadastral boundary extraction in vector polygon format. Research gaps are outlined in 

this section. The research objectives and questions are formulated in context with the background of the 

core aspects of the research which helps to identify appropriate research methodology that can solve the 

research problem. In summary, this research aims to take advantage of new deep learning networks to 

extract cadastral boundaries from VHR remote sensing images in a vector polygon format. 
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2. LITERATURE REVIEW 

2.1. Cadastral boundaries & mapping methods 

FIG in its statement described the cadastre as "a parcel-based and up-to-date land information system 

containing a record of interests in land (e.g., rights, restrictions and responsibilities). It usually includes a 

geometric description of land parcels linked to other records describing the nature of the interests, and 

ownership or control of those interests, and often the value of the parcel and its improvements." (FIG, 

1995). Parcel objects are the heart of a cadastral system. In real life, a parcel of land is contiguous piece of 

land that encompass unique and homogeneous legal and use interests (Henssen J.L.G, 1995). 

 

Cadastral maps serve as a reference document that describes geographical location and extent of a 

property (Dale, 1977). Depending on how data is collected, cadastral maps can be created in either direct 

or indirect ways. In a direct surveying, an instrument such as GNSS, Electronic Distance Meters (EDM), 

theodolite or measuring tape is applied directly to the unknown quantity, and the value of the quantity is 

observed. Surveyors have long used this technique to determine the boundary of a property with high 

precision. The second method, Indirect surveying, is carried out using data gathered from remote sources, 

such as satellites, aircraft, or UAVs. The boundaries are then extracted by digitizing manually on the image 

(Corlazzoli and Fernandez, 2004). 

 

A cadastral boundary is classified as fixed or general based on how it is defined. Fixed boundaries are 

delineated more precisely and are often demarcated with permanent constructions or monuments on 

the ground. On the other hand, general boundary is one in which the precise location is left undescribed, 

but the boundary is usually, but not always, indicated by a physical feature. (Nichols, 1993). Some 

examples of physical features include fence, hedge, waterway, and tracks (Luo et al., 2017). 

 

Depending on the boundary concept one chooses different techniques available to acquire cadastral data. 

Aerial photography would be most economically viable if a large area is being considered for systematic 

adjudication (Tuladhar, 1996). For a long time, orthorectified aerial photographs has been essential for the 

creation of cadastral maps. Aerial photographs meet tolerable measurement requirements to produce 

Figure 3: Concept of the cadaster (FIG, 1995)  
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cadastral maps at rural and urban scale (IAAO, 2004). Even more, the accuracy of UAV-based mapping 

can be measured down to centimetres, which helps identify smaller objects (Eisenbeiss, 2011). This study 

relies on general boundary principle to extract cadastral boundaries of agricultural fields from VHR aerial 

images using fully convolutional networks and frame field learning. 

2.2. Image-based automatic boundary extraction 

Establishing cadastral maps based on traditional ground surveying (direct methods) could be a lengthy 

process, expensive, and require a lot of manual work (Enemark et al., 2016). Due to their convenience and 

efficiency, photogrammetric techniques offer a simple and comprehensive solutions to various mapping 

problems mentioned earlier (Blachut, 1976). Through these techniques, one can extract boundary of a 

property, with a certain tolerance level that would be obtained using a conventional survey instrument 

without engaging laborious effort on the field. As remote sensing technology has become ubiquitous, it is 

easier and more affordable to obtain remote sensing images for the purpose of indirect surveying. 

 

It is often the case that orthorectified aerial images were digitized manually by human operators to extract 

visible features. However, recent developments in computer vision and digital image processing have 

made it possible for these extraction processes to be delivered in automatic or semi-automatic way (Eker 

and Seker, 2008). Extracting cadastral boundary from remotely sensed image is treated as segmentation 

problem which is a recurring issue in remote sensing image classification (Oliveira et al., 2017). 

Convolutional neural networks (CNN) have gained considerable success due to their capability to extract 

high-level features without requiring human expertise in feature engineering. An in-depth technical 

explanation of deep learning methods for remote sensing data is given by Zhang et al. (2016). CNN is a 

neural network architecture that incorporates several feature extraction levels. At each level, convolution, 

non-linearity activation and pooling layers are executed. The feature extraction level is followed by one or 

more dense layer and final classification layer. CNNs are characterized by their deep structure which 

provides the model with the capability of learning salient features and map these features into 

representations that may aid in improving the performance of successive classifiers. 

 

Due to the limitation that CNNs can only provide patch-based predictions, meaning that the prediction 

would only contain one class per patch, there was a need for semantic segmentation, in which every pixel 

is assigned to a class. Fully convolutional network (Shelhamer et al., 2017) was introduced as a 

modification to the standard CNN architecture to resolve this issue. There are many varieties of FCN 

based neural network architectures. However, the components of these networks are mostly similar. 

2.3. Fully Convolutional Neural Networks 

A fundamental concept in remote sensing is pixel-based classification which involves assigning a semantic 

class to every pixel of the input image. Fully Convolutional Networks are primarily used for per pixel 

classification (He et al., 2019). FCNs use only convolution, pooling, and up-sampling as locally linked 

layer. The network can be trained faster by using fewer parameters since fully connected nodes are 

replaced by up sampling (deconvolution) layer. Deconvolution sometimes known as transposed 

convolution is a reverse operation of the traditional convolution to recover downsampled feature maps 

back to the original resolution to enable pixel-based classification. Deconvolution first upsamples the 

feature map by a factor of the stride and padding value, followed by a convolution operation on the 

upsampled feature map by memorizing the pooling indices used to downsample the input map. 
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Furthermore, since all connections are local, FCNs can handle a wide range of image sizes (Shelhamer et 

al., 2017).  

 

FCN with dilated kernels (FCNDK) has been found useful for tasks that needs larger spatial context. By 

using dilated convolution, features can be captured with a larger receptive field without being 

downsampled (Persello and Stein, 2017). Previous works by Musyoka (2018)(Aung et al., 2020), Masoud et 

al. (2019), Crommelinck et al. (2019) and Xia et al. (2019) has proven FCN based networks to be effective 

in extracting cadastral boundaries from remotely sensed images. Detailed cases and results achieved by 

FCN based networks can be found in chapter 1. 

 

2.4. UNET 

U-Net is an encoder-decoder architecture developed by Ronneberger et al. (2015) originally for biomedical 

image segmentation. It was brought by modifying and extending the existing FCN architecture in such a 

way that it works with very few training images and delivers more accurate segmentation output. The 

encoder path performs two 3x3 convolution, ReLU activation, and a 2x2 max pooling to learns high-level 

features from the input image. The decoder path preforms a 3x3 convolution over the concatenated image 

and feature map from the encoder path to recovers spatial information lost during down-sampling 

process. Skip connections solve the degradation problem and provide localized information by cropping 

the full size image from encoder path and concatenating them directly to the decoder path (Drozdzal et 

al., 2016).  The final layer holds a classification map with the desired number of classes. 

 

Besides its original application for biomedical images, UNET has been widely used by several studies in 

the geospatial domain to extract information from remote sensing data. A study by Wierzbicki et al. (2021) 

has implemented UNET to delineate building outlines by fusing VHR aerial orthoimages and  LiDAR 

data for the purpose of cadastre modernization in Poland. The result is reported based on precision-recall 

framework. They achieved overall accuracy of 89.5% which indicates the model is well suited for use in 

building extraction.  Precision of 78.5% and 80.7% recall. According to the study, deep learning methods 

hold promise for updating cadastres in the future. (Wang et al., 2022) has experimented FracTAL-

ResUNET, an attention-based UNET, to delineate field boundaries in France and India using two 

different imageries from SPOT and PlanetScope. They achieved mean IoU of 0.86 and 0.72 respectively 

on both images. The results suggest that the method provides a scalable approach to identifying field 

boundaries in regions where there are no cadastral datasets are available. Aung et al. (2020) experimented 

UNET to extract agricultural fields in France by taking temporal information into consideration. This 

approach allows them to achieve 83% accuracy compared to other configurations of UNET. In addition,  

Fetai et al. (2021) and Garcia-Pedrero et al. (2019) experimented using UNET and concluded that they 

could accurately extract cadastral boundaries from high-resolution aerial images with little post-processing 

required. Both studies achieved overall accuracy of above 89%. 
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Figure 4: Basic architecture of U-Net [adapted from Ronneberger et al., (2015)] 

2.5. SegNet 

SegNet is another auto-encoder-inspired network which consists of an encoder-decoder like architecture 

followed by soft-max classification layer. Despite a few notable differences, the architecture is similar in 

many ways with U-Net. The decoder part of SegNet memorizes pooling indices to upsamples the lower 

resolution feature maps created during pooling operation on the corresponding encoder path. 

Additionally, the convolution layers in the decoder network are identical to those in the VGG-16 network. 

With SegNet, a larger context is considered with increasing depth, improving pixel labelling  accuracy 

(Badrinarayanan et al., 2015). 

 

Persello et al. (2019) used SegNet to delineate boundary of agricultural parcels by utilizing Worldview 

satellite imagery. The experimental study was carried out in Nigeria and Mali where small holder 

agriculture is the norm. The results from SegNet have outperformed alternative methods by achieving F1 

score of 0.7 and 0.6 for both case studies, respectively. The agricultural fields were smaller in size, crops 

are variable within one field and spectral characteristics is very dynamic in space and time. Such cases 

become a major obstacle and compromise the quality of boundary detection in small holder agriculture 

environment. 

2.6. Summary 

In this chapter, core concepts related to the spatial framework of FFP-LA, more specifically, cadastral 

boundary types and image-based mapping methods, are explained in detail. Furthermore, previous works 

on cadastral boundary extraction using deep learning techniques were thoroughly reviewed. Several studies 

have shown that FCN-based deep learning networks are more effective for detecting cadastral boundaries. 

FCNDKs, SegNet and UNET were the focus of the review. In the experimental setup phase, all these 

FCN based network architectures will be tested and the best performing architecture will be used as a 

backbone for the main vector polygon boundary extraction model. 
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3. RESEARCH METHODOLOGY 

3.1. General workflow 

The research methodology of this study is comprised of four main parts. First, a systematic literature 

review is conducted to identify the most relevant neural network architecture for the task of cadastral 

boundary extraction. Additionally, the comparison metrics at both the pixel and polygon level are 

examined for use in model evaluation. The second step is data preparation. The UAV image is 

orthorectified using GCPs to generate true orthophoto. To train the DL model, 1024x1024 patches are 

prepared from both UAV and aircraft orthophoto and the cadastral boundaries using image tiling 

technique. On the third step, several experiments were conducted to find optimum hyperparameters of 

the model. With these parameters the frame field model is trained and the subsequent polygonization 

method follows to extract polygons in a vector format. Finally, the model results are evaluated using the 

metrics mentioned earlier. Polygons predicted using UAV and aerial orthophoto are compared against 

each other. 

 

 

 

 

 

Figure 5: General workflow of the study 



VISIBLE CADASTRAL BOUNDARY EXTRACTION USING VHR REMOTE SENSING IMAGES: A DEEP LEARNING APPROACH 
 

19 

3.2. Study area & datasets 

3.2.1. Location 

The study area is located in North Shoa Zone, central part of Ethiopia. The selection is based on the 
availability of high-resolution images, full cadastral coverage, and suitability of the topography for 
automatic feature extraction. The study area covers one kebele which is the smallest administrative unit or 
ward in Ethiopia. Small holder farming is the most dominant activity in the area. 

 

Figure 6: Geographical location of the study area 

In 2013 Ethiopia has launched second level land registration in rural part of the country. The 

implementation of SLLC is based on the principles of FFP-LA. Country wide aerial orthophoto have been 

used to demarcate the boundaries of agricultural parcels in a participatory mapping approach (Milindi 

Rugema et al., 2020) 
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In rural parts of Ethiopia, it is common to observe hedges marking the border between two agricultural 
fields. The country follows general boundary principle and use of large scale orthophoto to delineate 
agricultural parcels in rural areas (Ministry of Agriculture, 2016). As shown in figure 7 below, hedges 
indicated by white arrow are remained untouched for boundary reference despite the crop was fully 
harvested. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 7: A closer look at the agricultural fields in the study area 

 

3.3. Data Preparation 

As this study follows the principles of fit-for-purpose land administration, the data preparation pipeline 

was fully implemented using free and open-source software (FOSS) platforms aiming to provide low-cost 

and scalable alternatives. Imagery and reference cadastral boundary data is provided by Ministry of 

Agriculture. 

 

3.3.1. Imagery 

For this study, orthophotos based on images captured from two different aerial platforms are used to train 

the deep learning model. The UAV images were acquired in 2019 with 0.11 m spatial resolution and 

covers 9 sq. km. The orthophoto based on the UAV imagery was created within the work of this research. 

The digital aircraft images were taken in 2017 and the already produced orthophoto with a spatial 

resolution of 0.29 m. It covers an area of 50 sq. km. Both UAV and digital aircraft data acquisitions were 

taken in the visible spectrum range (RGB channels). Throughout this study the aircraft orthophoto is 

referred as aerial orthophoto. 

3.3.2. Reference Data 

Deep learning models require the use of large-scale labelled data sets (Zhang et al., 2016). Thus, the 

already demarcated agricultural parcel boundaries are used as a reference data. The cadastral boundaries 

are delineated from 0.29 m resolution orthophoto. in Ethiopia, dense agricultural areas are demarcated 

with 0.5 to 1m allowable error (Ministry of Agriculture, 2016). Therefore, a 0.5 m buffer around the 

boundary is added to allow certain tolerance when predicting the boundaries. 
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Figure 8: Snapshot of aerial (a) and UAV orthophoto (b) with corresponding cadastral boundaries (c) 

3.3.3. Orthophoto generation 

Orthophoto mosaic is created from the UAV’s raw images with the help of open drone map (WebODM), 

an open-source command line utility for processing aerial imagery. WebODM has been found robust and 

relatively automated compared to other open-source counterparts (Vacca, 2019). Using the GCPs and 

intrinsic and extrinsic parameters of the camera, ODM automatically creates the UAV orthophoto. 

3.3.4. Tile preparation 

Using custom image size to train a deep learning model would typically cause memory bottleneck 

problem. This issue can be solved by using a technique called "tiling". The procedure involves cutting up 

the orthophoto and corresponding cadastral boundaries into smaller square patches. Afterward, depending 

on the batch size, each of these patches are analyzed individually to save time and computing resources. 

Solaris, an open-source python library, is used to perform the tiling operation. To reduce computational 

load on the server, the size of training and validation patch is set to 512*512 pixels. In terms of area, each 

patch measures 1 hectare, which provides a good context for agricultural field. For a larger area prediction, 

the size of test patches was set to 1024x1024 pixels (Figure 9c) 

3.3.5. Dataset split 

In supervised learning, the goal is to build a model that performs well on previously unseen dataset. 

Guided by this principle, the whole dataset is systematically divided into training, validation, and test sets 

on areas where the UAV and aerial orthophotos are overlapped (Figure 9a). Patches that contain less than 

20% reference data are removed. To choose optimal hyper parameters of the model, a validation set is 

randomly generated from the training dataset. To prevent bias in the accuracy assessment due to spatial 

autocorrelation, the test tiles are spatially disjointed from the training tiles (Figure 9b). 
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Dataset Number of patches Patch size Proportion 

Training 474 512 0.66 

Validation 120 512 0.17 

Test 61 1024 0.17 

 

Table 1: Summary of the final dataset used for model training and evaluation 

 

to avoid shortage of training data and model over-fitting, data augmentation technique is applied on the 

training dataset. The goal is to significantly increase the size of data available for training models by 

creating artificial dataset with custom transformations. Position and colour augmentation such as scaling, 

rotation, and colour jitter transformations are applied before feeding it to the network. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
 
 

 

Figure 9: Dataset for the model is prepared in areas where UAV and aerial images overlapped (a), 

separate tiles for training, validation, and test sets (b) and dimension of a sample patch (c) 

(a) 

(b) 

(c) 
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3.4. Frame Field Learning 

Classification maps produced by a standard segmentation model such as UNET may have many 

ambiguous cases due pixels discontinuity (noise). This results in irregular edges and rounded corners. 

Consequently, the output cannot be used directly for mapping applications, therefore extensive post-

processing is required. To overcome the above problem, Girard et al. (2020) proposed a novel building 

outline detection algorithm based on frame field learning that can directly output regularized vector 

polygons. FCN is used as a backbone for pixel-based image segmentation and frame fields are added to 

obtain regularized building polygons. Like many building structures, agricultural land parcels have 

reasonably regular (near straight) edges and corners. In this study, the frame field learning algorithm is, 

therefore, adapted for extraction of agricultural parcel boundaries in vector polygon format. 

3.4.1. Frame Field 

As presented in the work of Diamanti et al. (2014), Frame Field is a 4-poly vector field that assigns two 

pairs of directional vectors for every point on a plane. The first two vectors are placed symmetrical of the 

other two. In other words, every point on image plane is linked to a set of vectors {𝒖,−𝒖, 𝒗,−𝒗} which 

defines the frame field by two complex numbers 𝒖, 𝒗 ∈ 𝑪. Their polynomial representation is given in the 

following formula. 

 

 𝑓(𝑧) = (𝑧2 − 𝑢2)(𝑧2 − 𝑣2) = 𝑧4 + 𝑐2𝑧
2 + 𝑐0 (1) 

 

The constants 𝑐2  and 𝑐0  in (2) uniquely identifies a frame {𝒖, 𝒗} at every pixel position in the image 

(Bessmeltsev and Solomon, 2018). Recovering frame direction from the constants can be easily done as 

follows: 

 

{
 
 

 
 
𝑐0 = 𝑢

2𝑣2

𝑐2 = −(𝑢
2 + 𝑣2)

⟺

{
 
 

 
 𝑢2 = −

1

2
(𝑐2 +√𝑐2

2 − 4𝑐0)

𝑣2 = −
1

2
(𝑐2 −√𝑐2

2 − 4𝑐0)

 (2) 

 

The frame field learning training procedure is depicted in Figure 10 below. Given a 3-channel image as 

input, the model outputs a segmentation map and frame field. The segmentation map produces edge mask 

which corresponds to parcel boundaries (ŷ𝑒𝑑𝑔𝑒) and an interior mask corresponds to extent of the land 

parcel (ŷ𝑖𝑛𝑡). The frame field produces two pairs of directional fields which corresponds to the two 

complex coefficients  𝑐2, 𝑐0 ∈ ∁. 
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Along the edges of a parcel, at least one vector field is aligned with the polygon tangent direction. On the 

other hand, Poly-Vector fields are aligned to both tangent directions at polygon corners to capture bi-

directionality (Girard et al., 2020b). 

 

Figure 10: Extended architecture of investigated frame field learning model [adapted from Girard et al. 

(2020b)] 

Figure 11: Detailed learning process of the frame field learning model 
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As shown in Figure 11, the proposed model generates three different outputs simultaneously. The first 

head of the network takes feature maps generated by the backbone as input and delivers edge and interior 

masks. The second network head outputs direction information in the form of a frame field by 

concatenating feature maps generated by the backbone plus segmentation maps created by the first 

network head.  

 

3.4.2. Backbone 

U-Net is chosen as a backbone to perform the segmentation task. The encoder part of the network is 

replaced by a pretrained ResNet101 encoder. This has two benefits. First, it speeds up training time. 

Second, the model will have a starting knowledge of the kind of features that need to be detected. 

3.4.3. Losses 

By aligning masks and the frame field to the reference data, the loss ensures that the outputs are smooth 

and consistent. During model training phase, various loss functions for different learning tasks has been 

implemented. 

 

3.4.4. Segmentation Loss 

Inherently the segmentation task is performed by a neural network specified in the backbone. A pretrained 

U-Net with ResNet101 encoder, is the preferred backbone to output the segmentation masks. A 

combination of Cross Entropy and Dice Loss, a typical solution to handle the issue of class imbalance 

(Sudre et al., 2017), has been used as a loss function. The combined loss is computed using the equation 

given below:  

 

 
𝐿𝑖𝑛𝑡 = 𝑎 ⋅ 𝐿𝐵𝐶𝐸(�̂�𝑖𝑛𝑡, 𝑦𝑖𝑛𝑡) + (1 − 𝑎) ⋅ 𝐿Dice (�̂�𝑖𝑛𝑡, 𝑦𝑖𝑛𝑡) 

 
(3) 

 𝐿edge = 𝑎 ⋅ 𝐿𝐵𝐶𝐸(�̂�edgee , 𝑦edge ) + (1 − 𝑎) ⋅ 𝐿Dice (�̂�edge , 𝑦edge ) (4) 

 

Where 𝐿𝐵𝐶𝐸 is the standard Cross Entropy loss and 𝐿Dice is Dice loss. The hyperparameter is denoted by 

Alpha (𝑎). Both losses are applied simultaneously on edge (𝐿edge ) and interior (𝐿𝑖𝑛𝑡) masks generated by 

the backbone.  

 

3.4.5. Frame Field Loss 

Besides the segmentation masks generated at the previous step, the model laterally outputs directional 

information of each pixel in the form of frame field. The three losses 𝐿align , 𝐿align 90 , and 𝐿smooth  are 

simultaneously learned when training the frame field. 𝐿align ensures alignment between the frame and the 

tangent vector direction. 𝐿align90 constraints the frame field not to collapse into a line. Finally, 𝐿smooth 

enables the network to produce a seamless frame field. The frame field loss is denoted by the following 

equation 
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 𝐿align =
1

𝐻𝑊
∑ 

𝑥∈𝐼

�̂�edge (𝑥)𝑓(e
i𝜃𝜏;𝐶0(𝑥),𝐶2(𝑥))

2
 (5) 

 

 𝐿align 90 =
1

𝐻𝑊
∑ 

𝑥∈𝐼

�̂�edge (𝑥)𝑓(e
i𝜃𝜏⊥; 𝐶0(𝑥), 𝐶2(𝑥))

2
 (6) 

 

 𝐿smooth =
1

𝐻𝑊
∑ 

𝑥∈𝐼

(∥∥∇𝐶0(𝑥)∥∥
2 + ∥∥∇𝐶2(𝑥)∥∥

2) (7) 

 

3.4.6. Coupling Loss 

As explained on the prior steps, throughout the frame field learning procedure, the model produces 

various outputs simultaneously. The purpose of coupling loss is to maintain consistency between these 

outputs to create strong correlation amongst each other. 

 𝐿int align =
1

𝐻𝑊
∑ 

𝑥∈𝐼

𝑓(𝛻𝑦int (𝑥); 𝐶0(𝑥), 𝐶2(𝑥))
2
 (8) 

 

 𝐿edge align =
1

𝐻𝑊
∑ 

𝑥∈𝐼

𝑓(𝛻𝑦edge (𝑥); 𝐶0(𝑥), 𝐶2(𝑥))
2
 (9) 

 

 𝐿int edge =
1

𝐻𝑊
∑ 

𝑥∈𝐼

𝑚𝑎𝑥(1 − 𝑦int (𝑥), ∥∥𝛻𝑦int (𝑥)∥∥2) ⋅ |∥∥𝛻𝑦int (𝑥)∥∥2 − 𝑦edge (𝑥)| (10) 

 

𝐿int align  and 𝐿edge align ensures that the spatial gradient of edge and interior masks are aligned correctly with 

the frame field (equivalent to (5) & (6)). Where as 𝐿int edge  ensures compatibility of the spatial gradient 

norm between edge and interior masks themselves. 

 

3.4.7. Total Loss 

To keep integrity of eight losses used in this model, the total loss estimates normalization coefficient 

𝑁loss name  by averaging the values of segmentation, frame field and coupling losses on some part of 

training dataset. The normalization coefficient helps to rescale the losses and enables them equally 

contribute to the general loss. 

 

𝜆 (
𝐿int 

𝑁int 

+
𝐿edge 

𝑁edge 

+
𝐿align 

𝑁align 

)

+(1 − 𝜆) (
𝐿aligngo 

𝑁aligngo 

+
𝐿smooth 

𝑁smooth 

+
𝐿int align 

𝑁int align 

+
𝐿edge align 

𝑁edge align 

+
𝐿int edge 

𝑁int edge 

)

 

 

(11) 

𝜆 ∈ [0,1] is the only parameter needed to combine the total loss. The value of 𝜆 is set to be 0.75 in order 

to increase the weight of main loss instead of regularizers. 
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3.5. Polygonization Method 

Providing vector-based data representations is a challenging task but very critical requirement for multiple 

geospatial applications (Zorzi et al., 2021). The stand-alone deep learning model by itself does not deliver 

the segmentation result in a vector format. Thus, additional algorithms are needed to extract object 

contour from the segmentation map and at a later stage to create regularized outlines. 

3.5.1. Active Contour Model (ACM) 

The polygonization method is based on the concept of active contour model (ACM) also known as 

snakes. A snake is a computer-generated curve that recursively moves within the image searching for 

object boundaries (Kass et al., 1988). Given an initial contour, ACM is an energy-minimizing spline that is 

guided by external constraints and pushed towards nearby edges and lines. Image data such as gradient 

magnitude defines an external force that enables initial curve to easily adjust itself to the local minima, 

while fitted curves define an internal force that determines the elasticity and smoothness of the contour 

(Bong et al., 2016). In our case, snakes iteratively deform their shape to align to a feature. These features 

are general boundaries that enclose a parcel of land. 

3.5.2. Polygon simplification 

The post-processing step, called polygon simplification, reduces the number of vertices in the predicted 

polygon. It returns a simplified version of the predicted geometry based on the specified tolerance. The 

tolerance value is a distance. Roughly, any squiggle in a curve that differs from a straight line by less than 

the tolerance value will be straightened out. The algorithm finds the most extreme deviations that are 

beyond the tolerance value, pin down those vertices where they deviate, and then recursively rebuild the 

optimal (straight) line between the pinned-down vertices. The ACM takes the interior classification map 

generated from the first network head as input and iteratively optimizes a contour to align perfectly on the 

frame field.  This alignment is followed by finding corners and removing vertices that deviate from two 

ends of corners. 

 

Figure 12: Post-processing and polygonization workflow [adapted from Girard et al. (2020)] 
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3.6. Model Evaluation 

The choice of suitable accuracy metrics is crucial when evaluating the model’s performance. In this 

research, pixel and polygon level evaluation metrics are used to evaluate performance of the proposed 

model results. 

3.6.1. Intersection over Union (IoU) 

IoU is the preferred evaluation metric for models trained with strong pixel-level semantic segmentation. 

IoU quantifies the percentage of overlap between the target mask and the predicted polygon (Zhang et al., 

2021). This metric is closely related to the Dice coefficient which is often used as a loss function  during 

training. Given a prediction mask A and the reference data mask B, the IoU is simply calculated as: 

 

 𝐼𝑜𝑈(𝐴, 𝐵) =  
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
 (12) 

 

 

        

 

 

 

 

 

 

 

3.6.2. Polygons and Line Segments (PoLiS) 

Most quantitative evaluation metrics such as the IoU are based upon pixel-by-pixel similarity measures. As 

a result, these algorithms cannot evaluating the geometric properties of a vector object. Polygons and line 

segments similarity metric (PoLiS) originally introduced by Avbelj et al.(2015) overcome this limitation by 

accounting changes in rotation, translation, and scale of the predicted vector object with respect to the 

reference polygon. Polygons are considered as a sequence of connected vertices instead of standalone 

points. Given a predicted polygon A and the reference polygon B, the PoLiS distance is calculated: 

 

𝑝(𝐴, 𝐵) =
1

2𝑞
∑ ‖𝑎𝑗 − 𝑏‖ + 𝑏∈𝜕𝐵

𝑚𝑖𝑛 1

2𝑟

.

𝑎𝑗∈𝐴

 ∑  ‖𝑏𝑘 − 𝑎‖𝑎∈𝜕𝐴
𝑚𝑖𝑛

.

𝑏𝑘∈𝐵

 

 

(13) 

Where, p⃗⃗(𝐴, 𝐵) is the mean distance between all vertices of the predicted polygon and its nearest point 

(vertex) on the reference polygon. The smaller the PoLiS distance indicates better similarity between 

predicted and reference polygon. 

 
 
 

Figure 13: Pixel-wise evaluation using intersection over union metric 

https://www.jeremyjordan.me/semantic-segmentation/#loss
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Figure 14: PoLiS distance indicated in black line between extracted(orange) and reference polygon vertices 
(blue). (Avbelj et al., 2015). 

 

 

3.7. Experimental Setup 

The deep learning model is implemented in PyTorch framework using python programming language. 

The model is trained with Adam optimizer and a batch size of 4, gamma  value of 0.95, and learning rate 

of 1e-5. Moreover, additional experiments is conducted to test transferability of the model for 200 epochs 

with all setting unchanged except we removed the frame field. It takes 5 minutes per epoch to perform 

one complete pass. All experiments were conducted on NVIDIA TITAN X (Pascal) 12 GB CUDA GPU 

remote Linux computer. 

3.8. Summary 

 

An explanation of the methods to achieve the research objectives is provided in this chapter. A study area 

is selected in rural part of Ethiopia based on the availability of VHR remote sensing images and cadastral 

data. The UAV images are processed using WebODM command line utility to create an orthophoto 

mosaic. The orthophoto is further divided into smaller patches to provide appropriate size into the 

computer’s memory. UNET-ResNet101 network architecture is used as a backbone to perform the 

segmentation task. Simultaneously the frame filed learning method improves cadastral boundary extraction 

by adding structural information to a standard segmentation model. Guided by this information, The 

ACM method iteratively optimizes a contour on predicted segmentation mask with simplification 

tolerances to deliver vector polygons with regular edges and sharp corners. Finally, two evaluation metrics 

are introduced to evaluate the model result. 
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4. RESULTS AND DISCUSSION 

In this chapter, the cadastral boundaries obtained using the frame field model using the two types of 

image sources UAV and aerial orthophotos are compared. The model is trained for 200 epochs on both 

UAV and aerial orthophotos. To make comparisons easier, both scenarios use the same model 

parameters. To determine the optimum settings for the model, repeated experiments has been conducted. 

The hyperparameter selection was determined based on lowest validation loss obtained during multiple 

trilals.The final implementation of training hyper-parameters are listed below in Table 2: 

 

Table 2: Training parameters of frame field learning model 

 

4.1. Quantitative analysis 

All experimental results are presented in the following section. The prediction results are evaluated in pixel 

wise metric reported in Mean IoU (mIoU) and polygon level metric reported in PoLiS distance value. The 

first experminent was conducted on 61 test tiles. The values obtained on each tile is averaged and 

presented in Table 3. 

 

Orthophoto type Average PoLiS distance mIoU 

UAV 2.81 0.84 

Aerial 8.64 0.79 

Table 3: Summary of frame field learning model prediction results 

 

Due to the higher spatial resolution, a higher Mean IoU of 0.84 was achieved on UAV orthophoto 

compared to aerial orthophoto (0.79). Even though the model benefits from high resolution UAV 

orthophoto, it was also susceptible to oversegmentation. Tile numbers 4 and 5 in Table 4 indicate that the 

total number of matches (predicted polygons) exceeds the total number of polygons in the reference data.  

 

It's also important to examine the similarity between the predicted and reference polygons since this 

indicates the quality of model results. Polygons predicted using the UAV orthophoto dataset have an 

average PoLiS distance of 2.81, four times lower than those predicted using the aerial orthophoto dataset, 

where the average PoLiS distance is 8.64. The lower the PoLiS distance is the better. This result indicates 

UAV-based polygon predictions are more similar with the reference data than aerial-based polygon 

predictions. 

 

Optimizer BCE 

coefficient 

Dice 

coefficient 

Learning 

rate 

Data 

augmentation 

Batch 

size 

Tolerance Max 

epochs 

Adam 0.75 0.25 1e-5 Used during 

training 

4 4 pixels 200 
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For simplicity and visualization, we picked out seven tiles from both UAV and aerial test datasets to show detailed 
cases on each tile. 

Tile No. Orthophoto 

type 

Total no. of 

parcels in 

reference 

data 

Number of 

matches 

Number of 

misses 

Duplicate 

matches 

PoLiS 

Distance 

1 UAV 14 14 0 2 1.14 

Aerial 11 3 1 4.19 

2 UAV 16 16 0 1 2.10 

Aerial 16 0 1 3.96 

3 UAV 16 19 -3 4 2.49 

Aerial  1 15 0 29.21 

4 UAV 15 18 -3 4 5.46 

Aerial  13 2 2 7.32 

5 UAV 10 10 0 0 2.43 

Aerial 10 0 1 4.50 

6 UAV 14 13 1 1 3.42 

Aerial 5 9 0 5.90 

7 UAV 8 9 -1 2 2.95 

Aerial 8 0 2 5.43 

Table 4: Quantitative results obtained on UAV and aerial test datasets 

    

In the above table, the number of matches correspond to all candidate polygons predicted by the model 

whereas the number of misses correspond to not predicted polygons and false positive results. Duplicate 

matches indicate the number of times a single polygon was predicted more than once.  

 

There are more matches in the UAV-based predictions than in the aerial orthophoto dataset, on the 

contrary predictions made on aerial orthophoto dataset have the largest number of missed polygons. More 

duplicated polygons are found in the predictions of the UAV orthophoto dataset than in those of the 

aerial dataset. This is related to the over segmentation problem that occurred due to the high-resolution 

nature of UAV orthophoto. Negative numbers on the the above table represent extra polygons predicted 

on UAV dataset. 

4.2. Qualitative analysis 

In Figure 15, the predicted polygons are visualized with a graduated color scale based on to their PoLiS 

distance (similarity) value. The dark green polygons represent the best polygon prediction examples 

whereas the red end indicates the worst prediction results. The PoLis distance value reveals the correlation 

between the reference and predicted polygons. In other words, the smaller PoLiS distance value, the 

higher the similarity between the reference and predicted polygons and vise versa. Polygons predicted on 

UAV orthophoto are more aligned with the reference data than polygons predicted on aerial orthophoto. 

qualitative results of selected tiles are shown below in  

 

Figure 15. 
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Tile 4 

Tile 3 

Tile 2 

Tile 1 
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Figure 15: reference data overlaid on the UAV orthophoto (a) predicted polygons on the UAV 

orthophoto (b) predicted polygons on aerial orthophoto (c)  

 

Generally, polygons predicted with UAV orthophoto have shown higher similarity with the reference data 

than those predicted with the aerial orthophoto. Polygon predictions based on aerial orthophoto have 

shown a major drawback of under segmentation. Many of the predicted polygons are merged together due 

to similar spectral information. Another aspect that generally contributed to higher PoLiS distance value is 

quality of the reference data. In some tiles, the reference polygon size gets bigger or smaller than the actual 

parcel size due to errors committed when digitizing the boundaries by human operators. 

 

 

Tile 7 

Tile 6 

Tile 5 

(a) (b) (c) 
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4.3. Over and Under-Segmentation 

One of the most common problems in segmentation is that there are too few (under segmented) or too 

many (over segmented) regions. In our experiment, we found a few cases where the resolution of images 

played a role in over and under segmentation. As the UAV orthophoto have higher spatial resolution, it 

contains a range of textures, leading to over segmentation. Whereas under segmentation was observed on 

polygons predicted from the aerial orthophoto.  Besides the resolution difference, the aerial orthophoto 

was acquired in a season when most of the vegetation was dry, and no agricultural activity took place. 

Such condition creates fuzzy spectral characteristics between fields making detection of boundary difficult.  

 

Cases of over and under segmentation are shown in Figure 16. The original reference data in (a) contains a 

total of 11 reference polygons. The model prediction on UAV orthophoto (c) returned twice the original 

number of polygons in the reference data. This is due to the fact that crops can vary within one plot of 

land which causes the model to generate false positive results. Small waterways that run through 

agricultural fields also cause confusion to the model. On the other hand, The original reference data in (b) 

contains a total of 7 reference polygons and the model prediction on aerial orthophoto (f) returned 4 

polygons that clearly indicates undersgementation. 

 

For manual post-processing, it is easier to join small segments to form a larger polygon rather than 

splitting a large segment into smaller polygons. 

 

 

 

Figure 16: Over and under-segmentation cases: reference data overlayed on UAV orthophoto (black) 
prediction on UAV orthophoto (blue)  prediction on aerial orthophoto (green) 

(a) 

(b) 

(c) (e) 

(d) (f) 
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Some instances of under segmentation are related to the existence of invisible cadastral boundaries. As 

shown in Figure 17, the reference data (b) contains two separate holding rights (indicated by white 

arrows).  Because the boundary that separates these two holding rights is invisible (perceived), the model 

returned a merged polygon (c) treated as one holding right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Considering that the reference cadastral boundaries were digitized on top of the aerial images that was 

acquired in 2017, there are two years of difference between the aerial and UAV orthopohotos. It is clearly 

visible in the UAV orthopohoto (Figure 18c) that there have been recent updates on the ground.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 18, the triangle-shaped parcel indicated by blue arrow (b) is the original reference data overlaid 

on top of the aerial image. A footpath borders the right side of the property indicated by red arrow (a). 

Over time, however, the morphology (land use) has changed, including the footpath indicated by the 

white arrow and boundary of the parcel indicated by the yellow arrow (c). Detecting updated boundaries 

was made possible by the model after being able to observe these changes clearly in the UAV image. 

Figure 17: Prediction on invisible boundaries: raw image (a) perceived holding rights indicated by the 
white arrows (b) predicted boundary (c) 

(a) (b) (c) 

Figure 18: Detected boundary changes on the UAV orthophoto 

(b) (a) (c) 
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4.4. Comparison of frame field results with standard segmentation model 

Using the UAV orthophoto, additional model training was performed by removing the frame field and 

only using the segmentation masks to explore the effect of absence of frame field losses and regularizers 

on polygon edge and corners. Four tiles were prepared to demonstrate the difference. The IoU and PoLiS 

distance values are calculated by taking the average.  

 

Backbone Network Polygonization 

Method 

Tolerance mIoU Average PoLiS 

Distance 

UNET-ResNet101 (no 

field) 

Simple 4 pixel 0.81 4.75 

UNET-ResNet101 

(with frame field) 

ACM 4 pixel 0.83 4.54 

  Table 5: Comparative test result of frame field and standard segmentation model 

 

As presented in Table 5, there is a slight difference in IoU and PoLiS distance values of the two models. 

But qualitatively it is clearly visible that the model trained with frame field have benefited from regular 

regular edges and corners. 
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In Figure 19, prediction results based on U-NetResNet101 trained without frame fields using simple 

polygonization method are characterized by irregular shaped edges. The absence of frame field losses and 

regularizers has a clear impact on the polygonization stage. The 8 losses in the frame field learning model, 

of which one of them serve as regularizer, plays a significant role by delivering simplified and clean 

polygons.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Comparative results: Raw image (a), U-NetResNet101: trained with frame field (b) U-
NetResNet101: trained without frame field (c) 

(a) (b) (c) 



VISIBLE CADASTRAL BOUNDARY EXTRACTION USING VHR REMOTE SENSING IMAGES: A DEEP LEARNING APPROACH 
 

38 

4.5. Testing transferability of the model 

To determine if the model can reproduce the same result in a diffrent geographical area, we evaluated the 

model by preparing additional test dataset using the aerial orthophoto, which is separate from the previous 

dataset that were used for comparing with UAV results. The experiment was conducted on three tiles and 

the mIoU achieved is 0.67 which is lower than the previous experimental result achieved on aerial 

orthophoto (0.79). on the other hand, the average PoLiS distance of 7.11 is obtained which is better than 

the previous result (8.64) achieved on the aerial orthophoto. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tile 1 

Tile 2 
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A general observation was that the time of image acquisition plays an important role when planning to use 

machine learning algorithms for automatic boundary extraction. Due to the fact that the aerial image was 

taken during the dry season, many agricultural fields have similar and fuzzy spectral characteristics which 

causes under segmentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Results obtained using aerial image dataset on different geographical area. Reference data overlaid on 
aerial orthophoto (green) and model predictions on aerial orthophoto (yellow) 

Tile 1 
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5. CONCLUSION 

In this study, a deep learning model combined with frame field learning has been explored and evaluated 

to extract cadastral boundaries of agricultural fields in rural part of Ethiopia using very high-resolution 

remote sensing images in vector polygon format. The proposed method utilizes FCN based network 

specifically UNET as a backbone to perform the segmentation task on the input image followed by the 

frame field method which simultaneously learns directional information of each pixel on the image. 

Through multi-task learning, frame field output improves the quality of deep segmentation model while 

providing structural information to facilitate the polygonization process. The ACM polygonization 

method takes the segmentation mask and frame field as input and iteratively optimizes edges and corners 

to align seamlessly with the reference data. 

 

The proposed method was evaluated on two different orthophotos based on images taken from UAV and 

aircraft platforms with 0.11 and 0.29 cm. resolution, respectively. In addition to the standard semantic 

segmentation metric (IoU), PoLiS metric was introduced which allows us to quantify changes in rotation, 

translation, and scale of predicted polygon with respect to the reference data. The smaller PoLiS distance 

value indicates better similarity of predicted polygon with its corresponding reference polygon. According 

to the quantitative results, polygons predicted on UAV orthophotos have higher similarity with the 

reference polygon than polygons predicted on aerial orthophotos with PoLiS distance of 2.81 and 8.64, 

respectively. Furthermore, a higher mean IoU of 0.84 was achieved on polygons predicted using UAV 

orthophotos compared to predictions on aerial orthophotos which is 0.79. 

 

A standard segmentation model was compared with our frame-field based model to assess the effects of 

regularization losses on predicted polygons. The results revealed that frame field based model predictions 

delivered simplified polygons with regular edge and corner. Additional test was done in another 

geographical area using aerial orthophoto to check transferability of our model. The model achieved 

mIoU of 0.67 and PoLiS distance of 7.11 which is slightly lower than the quality of polygons predicted 

using UAV orthophoto. 

 

The quality of the predicted boundaries has been compromised by a number of factors including high 

crop variability inside one field, existence of invisible boundaries, confusing features such as water ways 

and terraces that crosses the parcel, date of image acquisition and the quality of reference cadastral data. 

 

In conclusion, the proposed method shows the possibility of utilizing deep learning methods for 

extracting cadastral boundaries in a vector polygon format that can be directly used in mapping 

applications with little post-processing. 

 

 

 

 

 

 

 

 

 

 



VISIBLE CADASTRAL BOUNDARY EXTRACTION USING VHR REMOTE SENSING IMAGES: A DEEP LEARNING APPROACH 
 

41 

5.1. Reflection to research objectives and questions 

 

The main purpose of this this thesis is to design a deep learning method that can extract cadastral 

boundaries in a vector polygon format using VHR remote sensing images which aims to reduce the time 

and cost of data collection on the ground. In the following section we provide summarized answer to the 

sub objectives and questions that we have asked in chapter one. 

 

5.1.1. Objective 1: To investigate deep learning methods used for cadastral boundary extraction 

 

 

i. What methods exist for cadastral boundary extraction 

A systematic literature review has been conducted on previous studies that has implemented deep learning 

algorithms to extract cadastral boundaries using VHR remote sensing images. Fully convolutional 

networks (FCN) have found to be highly effective for semantic segmentation. This method outperforms 

other state of art methods such as global probability of boundary (gPb), ultrametric contour map (UCM), 

and oriented watershed transform (OWT). In total, three variants of FCN has been reviewed and tested, 

including FCNDK, UNET, and SegNet. 

 

5.1.2. Objective 2: To prepare data for cadastral boundary extraction 

 

 

i. What are the steps needed to post-process UAV images? 

Raw images captured by the UAV vehicle were orthorectified to produce geometrically corrected 

orthophoto. This was achieved by using open drone map (ODM) software, an open source command line 

utility designed to process photogrammetric products free of cost. Using the GCPs and intrinsic and 

extrinsic parameters of the camera, ODM automatically creates the orthophoto. 

 

ii. How to design & prepare input dataset for the model? 

Training, validation, and test datasets are prepared in the area where UAV and aerial orthophotos 

overlapped. The reason for choosing overlapped area is to ensure fair comparison of results from two 

different orthophotos acquired at the same location. To overcome computing resource issues, training and 

validation datasets are further sub divided into 512x512 pixels using image tiling technique. To evaluate 

the model on larger area, the test dataset patch size is set to 1024x1024 pixels. For each image tile, the 

corresponding reference data is prepared from the official cadastral boundaries of the study area. This task 

was completed using Solaris, an open source python library used for geospatial machine learning projects.  

 

5.1.3. Objective 3: To design a deep learning method used for boundary extraction 

 

i. Which FCN based network architecture is suitable to use as backbone? 

FCNDK, deeplapv3 SegNet, and UNET were compared to determine which FCN-based network would 

be the backbone of our method, and UNET delivered the best segmentation results. Additionally, the 

segmentation results have greatly improved when the encoder path of UNET is replaced with a pretrained 

ResNet101 encoder. 
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ii. How to get optimum hyperparameters of the model? 

Several hyperparameters such as the optimizer, learning rate, batch size, loss function, and polygon 

simplification tolerances are compared by performing experimental runs. The optimal model hyper 

parameters are then selected based on the epoch with the lowest validation loss. 

 

iii. What methods are used to extract regularized vector polygons? 

The frame filed learning method improves cadastral boundary extraction by adding structural information 

to a standard segmentation model. Guided by this information, The ACM method iteratively optimizes a 

contour on predicted segmentation mask with simplification tolerances to deliver vector polygons with 

regular edges and sharp corners. 

5.1.4. Objective 4: To evaluate the performance of the method 

 

i. What are the standard metrics used for evaluating predicted polygons? 

The standard metric used for evaluating semantic segmentation is Intersection over Union (IoU). But IoU 

does not consider the geometric properties of predicted polygons. Therefore, we have introduced PoLiS 

metric which allows us to quantify changes in rotation, translation, and scale of predicted polygon with 

respect to the reference data. Smaller PoLiS distance gives indication of optimal prediction result. 

 

ii. What is the performance of the model on UAV and aerial orthophoto? 

The prediction results are compared on UAV and aerial orthophoto. Polygons predicted on UAV 

orthophoto have higher similarity with their corresponding reference polygon when compared to 

polygons predicted on aerial orthophoto. Based on to the quantitative results, polygons predicted on UAV 

orthophotos have higher similarity with the reference polygon than polygons predicted on aerial 

orthophotos with PoLiS distance of 2.81 and 8.64, respectively. Furthermore, a higher mean IoU of 0.84 

was achieved on polygons predicted using UAV orthophotos compared to predictions on aerial 

orthophotos which is 0.79. In addition, the model is tested in another geographical area using aerial 

orthophoto to test its transferability and mIoU of 0.67 and PoLiS distance of 7.11 is achieved which is 

slightly lower than the quality of polygons predicted using UAV orthophoto. 
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6. RECOMMENDATION 

Based on current research, recommendations for future works are listed as follows: 

 

1. Future works should investigate the use of Active skeleton Model (ASM) to obtain polygons that 

share the same boundary. This polygonization method is introduced by Girard et al. (2020) and 

tested on buildings with shared walls in urban areas. The transferability of this polygonization 

method could be tested in rural areas (agricultural fields). 

2. The use of multispectral data can increase the quality of image segmentation. Future research 

should consider fusing additional bands with RGB orthophoto.  

3. A planned image acquisition should consider the optimal time of the year for capturing rich 

spectral information. 
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APPENDIX 1: LEARNING CURVES OF THE FRAME FIELD MODEL 
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