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Abstract

With a proper poker strategy you could potentially win a lot of money, but poker
is too large to solve analytically. That is where simplified games come into play.
One of the most researched simplified poker games is Kuhn poker, a two-player game
that has been solved analytically. This paper looks at an adjusted best response
algorithm to find Nash equilibria of Kuhn poker. Multiple extensions have been made
to Kuhn poker, such as adding a third player. This paper describes how three-player
Kuhn poker could be extended to a repeated game, and shows that playing a Nash
equilibrium in a single stage game can result in a negative expected value in the
repeated version. Lastly, this paper shows how blinds could be added to two-player
Kuhn poker, and how this influences the equilibria.
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1 Introduction

Poker is a very popular family of card games, with an estimated number of over 100 million
players worldwide [7, 16]. Since poker games are gambling games, a proper strategy could
earn you a lot of money, so poker has been studied a lot. With the term poker we from
now on refer to No-limit Texas Hold ‘em, since this is the most popular variant of poker
[21]. This variant is also played at the World Series Of Poker [8], a large poker tournament.
Every player gets two cards at the start of a game of poker. These two cards are only to be
seen by this player. There are five cards that can be seen by every player, the community
cards, and they are revealed at specific moments in the game. Every player has to make
the best hand ; a five-card combination out of the two private cards and the five community
cards. There is a specific order of the quality of hands [18]. Before and after a reveal of
cards players can bet a certain amount of chips, disks that represent value such as money.
The possible sizes of the bet depend on the rules used. Other players have to decide if they
will go along with this bet, known as calling, or to opt out, known as folding. The round
ends if one player remains, or if all community cards are revealed. If one player remains, he
will end up with the pot, the total amount of chips bet during the round. If all community
cards are revealed there will be one last betting round, after which every player still in the
game reveals their private cards, and the player with the best hand wins the pot.

Since poker is played with 52 cards, multiple bet sizes, and up to eleven players, solving
the game analytically is not feasible [20]. That is why simplified games have been intro-
duced which can be solved analytically. The results of analysing these simplified games
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can then be extrapolated to real poker. A widely studied simplified poker game is Kuhn
poker [2, 6, 14, 20].

Kuhn poker is a very simplified version of poker, introduced by Kuhn in 1950 [10]. The
game is played with two players and a deck of three cards. Each player has to put one chip
in the pot before the round starts, which we refer to as ante one chip. The three cards have
values 1, 2 and 3, which we refer to as the 1, the 2 and the 3, respectively. Each player
gets dealt one of the three cards. The value of the remaining card will stay unknown to the
players. For clarity we call the two players Alice and Bob. The player with the card with
the highest value wins, but just like in real poker, the players are allowed to bet. Alice has
the first choice to bet one chip, or to check, which means passing on the turn to the next
player. If she checks, Bob can choose whether he wants to bet or check. Only one player
can bet in Kuhn poker, so this means you cannot raise, so betting after another player bet
is not allowed. In Chapter 2 we show how this game can be solved analytically, such that
we find the Nash equilibria of the game.

Definition 1.1 (Best response). A strategy p of Alice is a best response to a strategy q of
Bob if UA(p,q) ≥ UA(p’,q) for all possible strategies p’ of Alice, where UA(p,q) denotes
the utility of Alice when playing strategy p versus strategy q of Bob.

Definition 1.2 (Nash equilibrium). A pair of strategies (p,q) is a Nash equilibrium if p
is a best response to q, and q is a best response to p [15, 17].

In general finding Nash equilibria is not something that is trivial to do. It cannot just
be placed in complexity class P or NP. P is the class of decision problems that can be
solved in polynomial time, and NP is the class of decision problems of which answers can
be verified in polynomial time [5]. Since Nash proved the existence of a Nash equilibrium
in every finite game [15], there is always the answer ‘yes’ to the question ‘Does my (finite)
game have a Nash equilibrium?’. That is why it is very unlikely that NP-completeness can
characterize the complexity of Nash [3]. A complexity class in which the problem of finding
Nash equilibria does fit is called PPAD, which is a special subclass of NP. Since finding
Nash equilibria is a problem with such a special complexity, a lot of complex algorithms
have been introduced to find Nash equilibria in specific cases. Fore example [13] for large
games, and [22] for team Markov games. An intuitive algorithm for finding Nash equilibria
was introduced by Li and Başar in 1987 [11]. This algorithm looks for the best response
to the strategy of the other player, alternating between the players of the game. In their
paper, they prove that this algorithm finds a Nash equilibrium if the game meets certain
conditions. The conditions are that the utility functions need to be strongly convex and
second order continuously Fréchet differentiable. In Chapter 3 we show that the utility
functions of Kuhn poker do not meet one of the conditions. As a result, the algorithm
does not find a Nash equilibrium for this game. To be able to find a Nash equilibrium of
Kuhn poker, we slightly adjust the algorithm by Li and Başar. This leads us to our first
research question: ‘Can we adjust the best response algorithm by Li and Başar such that
it finds a Nash equilibrium of Kuhn poker?’. We discuss this question in Chapter 3.

Since poker is a very popular game, a lot of people claim to have found optimal strate-
gies. A popular term for such strategies is Game Theory Optimal or GTO. The claim is
that you cannot lose money, or that you are ‘unexploitable’ while playing such a GTO
strategy [9]. For a very large game as poker, such claims are hard to verify, but we can ver-
ify these claims for simplified games. This leads us to our second research question: ‘Can
GTO strategies in poker have a negative expected outcome against multiple players?’. This
question is discussed in Chapter 4.
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Kuhn poker is in a lot of ways very different from poker. One of the aspect of real
poker that Kuhn poker omits is having so-called blinds. Blinds are bets that players in a
certain position at the poker table are forced to make, much like antes. The difference is
that every player has to put in the same ante, while blinds differ per position. Usually the
game is played with two blinds, the big blind and the small blind. Generally the big blind
is equal to the smallest bet size, and the small blind being half the big blind. In Kuhn
poker the two players have no choice of opting out on playing, even when they have a bad
hand. With the addition of blinds we can add the element of opting out to the game. This
leads us to our third research question: ‘How can blinds be added to Kuhn poker, and how
does it change the Nash equilibria?’. This question is discussed in Chapter 5.

2 Solving Kuhn poker

Figure 1: Partial game tree for A1B2 with the utility of Alice.

In this section we show a way to find the Nash equilibria of Kuhn poker introduced
by Swanson in 2005 [19]. This proof is intuitive and illustrative, and results in the same
equilibria as in the original paper by Kuhn [10]. To find the Nash equilibria of Kuhn poker,
we need to know what decisions the players have to make. The partial game tree in Figure
1 depicts the decisions Alice and Bob can make in state A1B2, and what the outcomes
of those decisions are for Alice. A1B2 denotes Alice having the 1, and Bob having the 2.
For every different card, a player has to decide in which fraction of games they will bet,
and in which fraction they will call. For every decision we have a parameter, which we
call the strategy parameters. The value of every strategy parameter will be between 0 and
1, since they are probabilities. Alice has to decide in what fraction of games she will bet
with every different card. If she does not bet, she will check, so she will do that with a
probability of one minus the probability she will bet. She can have three different cards,
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which gives a total of three strategy parameters for the decision of betting or checking. If
Alice checked, Bob will have the option to bet. If he does, Alice has to make a decision
if she will call or fold. Since Alice can have three different cards this again gives three
strategy parameters, which makes the total number of parameters for Alice six. Similarly,
Bob also has six strategy parameters. If Alice checks he has to choose how much percent
of the time he will bet. If Alice bets he has to choose how much percent of the time he will
call. Again with the three different cards this gives us six strategy parameters. Luckily, a
lot of these strategy parameters are strictly dominated by a single value.

Definition 2.1 (Strictly dominated). In a game with n players, a strategy si is said to be
strictly dominated by strategy s∗i if s∗i always gives a strictly higher utility than si, indepen-
dent of the strategies of the other players. So, if Ui(s1, ..., si∗, ..., sn) > Ui(s1, ..., si, ..., sn)
for any strategy si ̸= si∗ and any combination of strategies of the opponents
(s1, ..., si−1, si+1, ..., sn), we call si∗ the strictly dominant strategy and si the inferior strat-
egy.

Since every inferior strategy is strictly dominated, a rational player will always play
the dominant strategy. The first two strategy parameters that have a strictly dominant
strategy are the parameters for calling with the 1, both for Alice and Bob. When a player
has the 1, the opponent will always have a higher valued card, and thus calling a bet always
gives you a negative payoff. This means the dominant strategy is setting these parameters
to 0.

Proof. Let us assume a player decides to call with the 1 with probability p ∈ (0, 1]. We know
that every time a player calls with the 1 he loses an extra chip, so U(p) = −1·p = −p, which
is independent of the strategy of the opponent. Now for p∗ = 0, U(p∗) = U(0) = −1 ·0 = 0,
and thus U(p∗) > U(p), so p∗ = 0 strictly dominates p > 0.

Two other parameters that have a strictly dominant strategy are the parameters for
folding with the 3, again both for Alice and Bob. When a player has this card, he knows he
will always have the highest card, so he will never fold a bet. Also, Alice and Bob will both
never bet with the 2. This might be less obvious to see, but think from the perspective of
the opponent. When Alice has the 2, Bob has either the 1 or the 3. Bob will always fold
with the 1 and will always call with the 3, so Alice will never win anything when she bets
with the 2. The last parameter that has a strictly dominant value is only for Bob. Bob will
always bet with the 3 when gets the opportunity, this is when Alice does not bet. Bob can
only improve his payoff with this, so he will always do it. On the contrary, Alice will not
always bet with the 3. If she does not bet with the 3, Bob might bet with a lower valued
card and Alice could have a higher payoff in this way. This leaves us with five parameters
to consider. We call the parameters as described in Table 1.

p1 Alice bets with the 1
p2 Alice calls with the 2
p3 Alice bets with the 3
q1 Bob bets with the 1
q2 Bob calls with the 2

Table 1: Names of the strategy parameters.

Since the game is played with three cards and two players, the cards can be distributed
in 3! = 6 ways to consider. Let us consider the distribution A1B2. Alice loses a chip with
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probability p1 · q2, which means she bets with the 1 and Bob calls her bet. She wins two
chips with probability p1 · (1−q2), which means she bets and Bob does not call her bet and
thus folds. If we do this for all the six hands we get the total probability of Alice winning
or losing chips, depending on the five strategy parameters. The total utility for Alice is

UA(p,q) =
1

6
[p1(1− 3q2) + p2(3q1 − 1) + p3(q2 − q1)− q1] . (1)

From Equation 1 we see that if 1− 3q2 = 0, 3q1 − 1 = 0 and q2 − q1 = 0, the strategy
p = (p1, p2, p3) does not influence Alice’s utility. This is the case for q1 = q2 = 1

3 [19],
which is the Nash equilibrium strategy for Bob. Alice’s utility can be rewritten as

UA(p,q) =
1

6
[q1(3p2 − p3 − 1) + q2(p3 − 3p1) + (p1 − p2)] . (2)

From Equation 2 we see that if 3p2−p3−1 = 0 and p3−3p1 = 0, the strategy q = (q1, q2)
does not influence the utility of Bob. This is the case for the family of solutions p1 = p3

3 ,
p2 = p3

3 + 1
3 and 0 ≤ p3 ≤ 1, which is the family of Nash equilibrium solutions for Alice.

This is the same as in the original article by Kuhn [10].

3 Adjusting the iterative best response algorithm

In [11] Li and Başar present an iterative best response algorithm to find Nash equilibria.
They formulate the algorithm as

uk+1 = argminu∈UJ
1(u, vk) ,

vk+1 = argminv∈V J
2(uk+1, v) .

Here J1 and J2 are the cost functions of player 1 and player 2, and U and V are the
strategy spaces of player 1 and player 2, respectively. Cost functions can be seen as an
equivalent of utility functions, only the cost function is minus the utility function. So in
general, players want to minimize their cost, and thus maximise their utility.

For the sequence {uk, vk} to converge to a Nash equilibrium, the cost functions have
to be strongly convex and need to be second order continuously Fréchet differentiable. If
we look at Kuhn poker, we see that the utility functions are linear functions, so this means
that they are convex, as well as concave [1]. Since they are convex as well as concave, they
are by definition not strictly convex, while a strongly convex function needs to be strictly
convex. This means the utility functions of Kuhn poker are not strongly convex. So, the
convergence condition does not hold. This means that the iterative best response algorithm
might not converge to a Nash equilibrium. We now show how to apply the algorithm of Li
and Başar on Kuhn poker, and that in practice it does indeed not converge.

If we fill in our utility functions (1) and (2) from Chapter 2 in the iterative best re-
sponse algorithm we can interpret this as the following linear programmes (LPs).

The LP for Alice is

Maximize 1
6 [p1(1− 3q2) + p2(3q1 − 1) + p3(q2 − q1)− q1]

subject to 0 ≤ pi ≤ 1 for i ∈ {1, 2, 3} ,

where q = (q1, q2) is Bob’s strategy.
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The LP for Bob is

Minimize 1
6 [p1(1− 3q2) + p2(3q1 − 1) + p3(q2 − q1)− q1]

subject to 0 ≤ pi ≤ 1 for i ∈ {1, 2, 3} ,

where p = (p1, p2, p3) is Alice’s strategy.

For the above to be proper LPs, the strategies of the opponents need to be fixed. We
start with fixing initial values for Bob’s strategy. Using an LP solver we can calculate
the best response for Alice versus the initial value. This response of Alice gives us an LP
for Bob’s strategy. Solving this LP gives us again a strategy of Bob. We can repeat this
process until we are satisfied with the outcomes. A stopping criterion for finding a Nash
equilibrium could be

STOP if |NEp − p| < ϵ and |NEq − q| < ϵ for ϵ > 0 ,

where NEp and NEq denote Nash equilibrium solutions for Alice and Bob, respectively.
The choice of ϵ determines how accurate the outcome will be.

A problem that arises is that it immediately starts looping between strategies that
only consist of zeroes and ones, while the Nash equilibria we seek to find consist of mixed
strategies. For example, if we start with initial values q1 = q2 = 0 we get the LP

Maximize 1
6(p1 − p2)

subject to 0 ≤ pi ≤ 1 for i ∈ {1, 2, 3} .

The optimal solution for this LP is p1 = 1, p2 = 0 while the value of p3 does not change
the value of the objective function. The LP solver assigns the value 0 to a parameter that
does not influence the objective function, and that is not in a constraint together with
another variable. This is the case for p3, so it will be 0. This means that even filling in
the Nash equilibrium for Bob as initial value will not keep the system in equilibrium. This
can be explained by the fact that if you fill in the Nash equilibrium for Bob, q1 = q2 =

1
3 ,

the objective function will just be − 1
18 , which is clearly not dependent on pi. Also, the

parameters are not together in a constraint. This means the solver will just set p1 = p2 =
p3 = 0. When Bob responds to this, he will deviate from his Nash equilibrium strategy
since he can exploit the strategy of Alice.

To overcome the looping behaviour described in the previous paragraph, we slightly
modify the algorithm of Li and Başar. We include a part of the last played strategy by a
player as a part of their new strategy. This means only a fraction of the best response will
be part of the actual response. We denote this fraction by α. The algorithm then changes to

uk+1 = α·argminu∈UJ
1(u, vk) + (1− α) · uk ,

vk+1 = α·argminv∈V J
2(uk+1, v) + (1− α) · vk .
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The looping behaviour of the original algorithm changes in the adjusted algorithm if
we set the ratio α > 0.1, for example α = 0.5, but is not fixed yet. With initial values
q1 = q2 = 0 we see a looping behaviour between four strategies pairs, with their rounded
values in Table 2, starting at iteration k = 55.

p1 p2 p3 q1 q2

4
15

1
3

11
15

2
3

4
5

2
15

2
3

13
15

1
3

2
5

1
15

1
3

14
15

2
3

1
5

8
15

2
3

7
15

1
3

3
5

Table 2: The four looping strategy pairs.

Lowering the ratio α makes the looping behaviour a lot less clear, and the values get
closer to a known Nash equilibrium. For example, if we set α = 0.01 and start with initial
value q1 = q2 = 0, we see that after 1000 iterations we get the strategy pair

p = (0.2148, 0.5588, 0.6822) versus q = (0.3438, 0.3393) .

This is quite close to a Nash equilibrium. If we take p3 = 0.6822, then |p1 − p3
3 | =

|0.2148 − 0.6822
3 | = 0.0126 and |p2 − (p33 + 1

3)| = |0.5588 − (0.68223 + 1
3)| = 0.0019. Also

|q − (13 ,
1
3)| = |(0.3438, 0.3393) − (13 ,

1
3)| = (0.0105, 0.0060). As we see, the differences

between the found values and an actual Nash equilibrium are of order 10−2.

4 Extending three-person Kuhn to a repeated game

Multiple extensions to Kuhn poker have been made, such as a variant with cheating [14],
adding more cards [2], or removing the limits on the bet sizes [6]. One of the largest and
most interesting extensions has been made by adding one extra player and thus also one
extra card [20]. This gives us four cards, with values 1, 2, 3 and 4. Most rules of two-player
Kuhn poker still apply in the same sense. Only one player can bet, and if it comes down
to a showdown, the player with the card with the highest value wins.

Since we now have four cards, this give us 4! = 24 distributions to consider. This
means that if you would extend the game to n players and n+ 1 cards, you have (n+ 1)!
distributions to consider, which gets unreasonably big very fast. The claim is that three-
player Kuhn poker is the largest game with more than two players to be solved analytically
[20]. Next to (n+ 1)! distributions, the number of strategy parameters also increases if n
increases. The number of strategy parameters can be calculated by multiplying the number
of players with the number of cards and the number of decisions every player has per card.
For two players and three cards, every player has two decisions per card. For three players
and four cards this amount is doubled to four decisions per card. This pattern continues, so
the number of strategy parameters S(n) can be calculated by S(n) = n ·(n+1) ·2n−1 where
n is again the number of players. This number does not nearly grow as fast as the number of
card distributions. Actually, if n gets large, the number of parameters grows with a factor
close to 2. This is since S(n)/S(n+ 1) = n(n+1)·2n−1

(n+1)(n+2)·2n = n
2(n+2) , and limn→∞

n
2(n+2) =

1
2 .

To find the utilities for the players we need to combine the different card distributions
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with the parameters. This then explains why three-player Kuhn poker is claimed to be the
largest game with more than two players that has been solved analytically [20].

For this game again a lot of parameters do not need to be considered, since they are
strictly dominated. This leaves us with 21 of the 48 parameters to consider. A family of
Nash equilibria for these 21 parameters has been found by [20].

One of the most interesting results of the extension of Kuhn poker to three players
is that one player can transfer utility from one opponent to the other without departing
from equilibrium. In fact, the utilities for Alice, Bob, and third player Carol for the family
of equilibria are U1 = − 1

24(
1
2 + β), U2 = − 1

48 and U3 = 1
24(1 + β), respectively. Here

β = max{b11, b22}, where b11 and b22 are two parameters that can be chosen by Bob only.
The value of β can be between 0 and 1

4 in the family of equilibria. In Figure 2 we see how
β influences U1 and U3.

5 · 10−2 0.1 0.15 0.2 0.25

−2

2

4

·10−2

β

Utilities U1(β)

U3(β)

Figure 2: The utilities of players in position 1 and 3, as a function of β.

The fact that Bob can transfer utility from Alice to Carol means that he could favour
one opponent above the other. If we regard the game as a single stage game, so only one
round of the game, rational players want to maximize their utility of that single stage. We
know that in the found equilibrium family the utility for Bob is U2 = − 1

48 , so independent
of his choice of β. This means he can choose β without changing his own utility, so no
logical choice for the value of β exists. This fact changes if we extend this single stage
game to a repeated game. To extend this single stage game to a repeated game we need
to make some assumptions:

Assumption 1: All the three players play a strategy according to the found equilibrium
family of the single stage game. This means the only choice that influences this repeated
game is the choice of β for the player in position 2.

Assumption 2: After each round the player in position 2 will reveal his choice of β,
since this value might not be clear from the actions played in the past round.

Assumption 3: If a player in position 1 or 3 is disfavoured by the player in position 2,
he will try to disfavour this player as well.

Definition 4.1 (Disfavour). The player in position 2 is said to disfavour the player in
position 1 if 1

8 < β ≤ 1
4 , while he disfavours the player in position 3 if 0 ≤ β < 1

8 . If β = 1
8

neither of the players is said to be disfavoured.

Assumption 4: The repeated game will have an infinite number of rounds.
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Assumption 5: The players will base their choice of β on the previous two rounds.

Since this is now a repeated game, Alice, Bob and Carol will change from position after
every round. The first round of every game will start with Alice in position 1, Bob in
position 2 and Carol in position 3. We denote this as A1B2C3. The round after this we
will get the position C1A2B3, and the round after that B1C2A3.

Example 1: At position A1B2C3, the choice of β is left to Bob. Let us say he chooses
β = 1

4 . This is the value of β that is the most disadvantageous for the player in position
1, Alice. The next round is C1A2B3, so Alice will choose the value of β. Since she was
disfavoured by Bob, she will now disfavour Bob, so she will play β = 0. Next round is
B1C2A3. Carol was favoured by both players, which gives him a positive utility for the
repeated game. This makes that the only logical choice for Carol is to play β = 1

8 , which
does not favour any of the two opponents. The pattern of Alice and Bob ‘punishing’ each
other continues to all the rounds after, since they constantly reply to each other. This gives
the following utilities per three rounds for the repeated game for Alice, Bob and Carol,
respectively:

UA = U1(
1
4) + U2 + U3(

1
8) = − 1

32 − 1
48 + 3

64 = − 1
192 ,

UB = U1(
1
8) + U2 + U3(0) = − 5

192 − 1
48 + 1

24 = − 1
192 , and

UC = U1(0) + U2 + U3(
1
4) = − 1

48 − 1
48 + 5

96 = 1
96 ,

where U1, U2, U3 denote the utilities of players in position 1, 2 and 3, respectively. Since
Carol is the only player that does not get disfavoured by any opponent, he is the one with
a positive utility. Alice and Bob end up with a negative utility, and since every round is a
zero-sum game UA + UB + UC = 0 =⇒ UC = −UA − UB.

From this example we see that playing anything different than β = 1
8 as Bob in the

first round will lead to a negative utility for the repeated game. The same goes for the
other players in any other round when they have to choose β. So while per single round
the value of β does not matter for the player in position 2, on the long run only β = 1

8
does not lead to a negative utility.

The underlying assumption of Example 1 is that all the players act individually and
do not cooperate. Let us now assume that players can cooperate.

Example 2: Again, the first round is A1B2C3. Bob plays β = 1
8 , since he does not want

to disfavour any of his opponents. Now, instead of playing individually, Alice and Bob
cooperate. When in position 2, they will both favour each other at the expense of Bob.
So at C1A2B3 Alice plays β = 0, and at B1C2A3 Carol plays β = 1

4 . Then we get back
at A1B2C3. Bob has been disfavoured by Alice, but also by Carol. The best he can do to
‘punish’ them back is playing β = 1

8 . Any other value of β would favour an opponent that
disfavoured Bob. This gives us the utilities per three rounds UA = U1(

1
8)+U2+U3(

1
4) =

1
192 ,

UB = U1(
1
4) + U2 + U3(0) = − 2

192 , UC = U1(0) + U2 + U3(
1
8) = 1

192 . In this way by
cooperating, Alice and Carol both get a positive utility, while Bob cannot do anything to
stop them from exploiting him. You might think that Bob could try playing β = 0 or
β = 1

4 to change the strategy of either Alice or Carol, but in both cases the utility of either
Alice or Carol goes to 0, which is not worse than when every player plays β = 1

8 , so neither
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Alice nor Carol has a reason to deviate from their cooperating strategy.
A Nash equilibrium strategy is something that would be considered a Game Theory

Optimal strategy. In Example 2 we showed that playing a Nash equilibrium strategy of
the single stage game can lead to a negative utility in multiple rounds, which goes against
the claims of a lot of poker ‘experts’ who claim that GTO strategies are never unprofitable
[9].

5 Adding blinds to Kuhn poker

In this section we show how blinds could be added to Kuhn poker. Let us call the size of
the small blind X, and the size of the big blind Y , with X < Y . The bet size for the rest
of the game will be Y as well. The new game will go as follows. Bob will have to put in
a blind of X, and Alice will have to put in a blind of Y. Then we add an extra decision
to the game. Bob has to decide if he wants to put in the same amount as Alice, so Y in
total. If he does so, the game continues the same as before, only with Y as bet size. If
Bob decides to fold, the game stops, and Bob loses his blind X to Alice. This gives us two
new extra strategy parameters to consider, called q3 and q4. q3 is the probability that Bob
calls Y while having the card with value 1, and q4 is the probability that Bob calls Y while
having the card with value 2. If Bob has the card with value 3 he will always call, so we do
not have to consider this. For every different hand we now have to add the probabilities
of Bob calling or folding the hand in first place. This gives us the utility for Alice

UA(p,q) =
1

6
Y [p1(−3q2q4 + 2q4 − 1) + p2(3q1q3 − 1)

+ p3(−q1q3 + q2q4) + 2(q3 − 1) + q1q3] +
1

6
X[3− 2q4 − q3] . (3)

To verify if this corresponds with Equation 1, we fill in q3 = q4 = 1. This means that
Bob will always call big blind Y , so this leaves us with the original game, only with bet
size Y . Filling in q3 = q4 = 1 leaves us with

UA(p, (q1, q2, 1, 1) ) =
1

6
Y [p1(1− 3q2) + p2(3q1 − 1) + p3(q2 − q1)− q1] . (4)

As expected X is gone from the equation, since always calling big blind Y never gives
us X as outcome anymore. Equation 4 is exactly the same as Equation 1, only multiplied
by Y , as expected. If we set q3 = q4 = 0 we get some other interesting behaviour. Equation
3 becomes

UA(p, (q1, q2, 0, 0) ) =
1

6
Y [−(p1 + p2)− 2] +

1

2
X . (5)

Equation 5 is only dependent on strategy parameters of Alice. Since Alice wants to
maximize her utility, she will then play p1 = p2 = 0 and we are left with UA = −1

3Y + 1
2X.

If Y > 3
2X this strategy gives Alice a negative and thus Bob a positive utility, and Alice

cannot do anything against it.
By playing q = (13 ,

1
3 , 1, 1) Bob can guarantee himself a utility of 1

18Y , but as we have
seen, by playing q = (q1, q2, 0, 0) Bob can guarantee himself a utility of 1

3Y − 1
2X, where

the choice of q1 and q2 does not matter. If we set these utilities equal to each other, we get
1
18Y = 1

3Y − 1
2X. This equality holds if X = 5

9Y , so for this ratio the utilities of the two
strategies are the same. If X ≤ 5

9Y then 1
3Y − 1

2X ≥ 1
18Y , so Bob would prefer playing

q3 = q4 = 0 over q3 = q4 = 1. On the contrary, Bob would prefer playing q3 = q4 = 1 over
q3 = q4 = 0 if X ≥ 5

9Y .
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With the strategy q = (q1, q2, 0, 0) Bob can guarantee himself a utility of 1
3Y − 1

2X,
which is positive if 2

3Y > X. Even though with this strategy Bob can guarantee himself a
positive utility, it is not a Nash equilibrium.

Proof. From Equation 5 we saw that the best response for Alice to q = (q1, q2, 0, 0) is
p = (0, 0, p3) for any p3 ∈ [0, 1]. If we fill in this best response in Equation 3 we get

UA( (0, 0, p3),q) =
1

6
Y [p3(−q1q3 + q2q4) + 2(q3 − 1) + q1q3] +

1

6
X[3− 2q4 − q3] . (6)

Since p3 does not influence the value of Equation 5, we can w.l.o.g. set p3 = 0, as well
as choosing X ≤ 5

9Y , for example X = 4
9Y . Equation 6 then becomes

UA( (0, 0, 0),q) =
1

6
Y [2(q3 − 1) + q1q3] +

1

24
Y [3− 2q4 − q3] . (7)

Since Bob wants to minimize Equation 7, his best response is q* = (1, 0, 0, 1). With
this strategy UA( (0, 0, 0), (1, 0, 0, 1) ) = − 7

24 , while UA( (0, 0, 0), (q1, q2, 0, 0) ) = − 5
24 .

Since − 7
24 < − 5

24 Bob deviates from the strategy q = (q1, q2, 0, 0) to q* = (1, 0, 0, 1), so q
is not a Nash equilibrium.

6 Discussion

In the previous chapters we looked at properties of simplified poker games, but the question
is what this actually tells us about real poker. A popular research topic on simplified
games is finding Nash equilibria; to test algorithms [4], as well as to use the results to say
something about real poker [2]. Since real poker is such an extensive game, we are not
close to finding a Nash equilibrium for this game [12]. Even if we are able to find a Nash
equilibrium, it is not easily used outside mathematics. Real poker would have at least
thousands of strategy parameters. If a player would try to play a Nash equilibrium, he
would need to remember all the values of the parameters, and also randomise his action
according to the parameters to actually play the Nash equilibrium.

In Chapter 3 we discussed the question ‘Can we adjust the best response algorithm by
Li and Başar such that it finds a Nash equilibrium of Kuhn poker?’. The short answer
to this question is ‘yes’. We showed how to modify the best response algorithm by Li
and Başar, such that it approximates a Nash equilibrium for Kuhn poker. The modified
algorithm has not yet been tested on other games, nor have we proved or disproved that this
method can always find a Nash equilibrium in certain games. We showed that the strong
convexity condition does not hold, but it might also be the case that the differentiability
condition does not hold, due to the utility functions being constrained. This was also
brought up in the discussion of the paper of Li and Başar, and they see an extension
possible to ‘Constrained Nash games’. It has been shown that the original algorithm does
not work on Kuhn poker when used in practice. Testing the modified algorithm on more
games and proving it can or cannot find Nash equilibria in general would be an interesting
topic for future research.

In Chapter 4, we discussed the question ‘Can GTO strategies in poker have a negative
expected outcome against multiple players?’. To be able to answer this question, we ex-
tended three-player Kuhn poker to a repeated game. To say something about the strategies
of the players for this repeated game, we assumed that the players can only play strategies
in the family of Nash equilibria that were found for the single stage game. This led to
interesting results, but the assumption might have some implications. If a player has a
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negative utility for the repeated game it might be better to deviate from the equilibrium
strategy for the single stage game. Future research could show if this is actually the case.
To come back to the research question, it can be argued that the answer to this question is
‘yes’. We now know that for three-player Kuhn poker there exist strategies that fall under
the denominator GTO, while having a negative expected value in the long run. Since real
poker is way more extensive, we can argue that the probability is high that there exist
strategies that could be called GTO, while having a negative expected value in the long
run.

In Chapter 5 we discussed the question ‘How can blinds be added to Kuhn poker, and
how does it change the Nash equilibria?’. We showed that adding a small blind and a big
blind can give us situations where there exists a strategy with a higher utility than the
Nash equilibria of Kuhn poker without blinds. We did prove that this strategy is actually
not a Nash equilibrium. Future research could be aimed at finding a Nash equilibrium of
this game. Another topic for future research could be to look at more elements that could
be added to Kuhn poker, to make it resemble real poker better. For example, the blinds
could be added to three-player Kuhn poker.

7 Conclusion

In this paper we showed that a very simple game as Kuhn poker can lead to a lot of
interesting results. In Chapter 3 we showed how to modify a best response algorithm such
that it finds Nash equilibria for Kuhn poker. In Chapter 4 we showed that if we extend
three-player Kuhn poker to a repeated game, there exist equilibrium strategies that lead
to a negative expected value. It might very well be the case that this is also true for real
poker, and that GTO strategies do not need to be profitable. In Chapter 5 we showed a
way to add blinds to Kuhn poker. We showed that for certain ratios between the small
and big blind, new strategies arise with a higher utility than the former Nash equilibria.
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