

MASTER THESIS

DESIGN OF A MOMENTUM-

BASED OPTIMAL

CONTROLLER FOR A

LOWER LIMB HUMANOID

Joep T.J. van de Rijt
s1703528

FACULTY OF ENGINEERING TECHNOLOGY
DEPARTMENT OF BIOMECHANICAL ENGINEERING

EXAMINATION COMMITTEE

dr. Edwin H.F. van Asseldonk
dr.ir. Arvid Q.L. Keemink
dr.ir. Wouter B.J. Hakvoort
Ander Vallinas Prieto MSc

DOCUMENT NUMBER

 BE - 851

MAART 2022

Abstract

Between 250.000 and 500.000 suffer a spinal cord injury (SCI) per year worldwide. Demographics
show that young people are among the groups most at risk. Trials suggest that early treatment
may improve neurological recovery, however, full recovery is often not possible. In the majority of
cases, the resulting immobility will lead to a significant reduction in quality of life. Exoskeletons
could be used to combat immobility and improve quality of life. The Biomechanical Engineering
group at the University of Twente has been developing a lower limp exoskeleton designed to
enable individuals with incomplete or complete SCI. While the exoskeleton is mechanically
functioning and a trajectory generator is being developed, a controller that adequately executes
the trajectory, while maintaining balance is still absent. This thesis explores the option of using
a Momentum Based Controller.

The problem is approached by a two-dimensional lower limb humanoid model with point
feet. For this model, a simple trajectory generator is created that translates a CoM trajectory
into momentum rate and feet acceleration trajectories. A quadratic program is used to reconcile
the trajectory goals with the dynamics and find the optimal joint torque while minimizing
the energy expenditure. Using this system, the control parameters are analyzed during two
situations: walking at a constant velocity and recovering for a push. The results show that all
tracking goals can be used as decision variables and none have to be fully constrained. For the
cost, a high priority should be given to feet and chest angle tracking. If these are adequate, the
momentum tracking can be done with a lower cost and balanced with operational costs.

While the model used is relatively simple compared to the exoskeleton, the recommendations
made can still be applied to more complex situations and give useful insight into the control
priorities of human-like walking.

Contents

1 Introduction 1
1.1 Problem statement . 1
1.2 Goals . 1
1.3 Problem approach . 2
1.4 Outline of this thesis . 2

2 Background 3
2.1 Floating Base Model . 3
2.2 Momentum Based Control . 3
2.3 Symbitron Exoskeleton . 5
2.4 General control schemes . 6
2.5 High Level Control . 6

2.5.1 Linear Inverted Pendulum . 7
2.5.2 Balance strategies . 7
2.5.3 Walking motion . 9

2.6 Mid-level controller . 9
2.6.1 Quadratic program controllers . 9
2.6.2 Force limitations . 10

2.7 Low Level Control . 10
2.7.1 Joint controllers . 10
2.7.2 Joint position limitations . 11

2.8 Related momentum-based controllers . 11

3 Model and Dynamics 13
3.1 Model overview . 13
3.2 Dynamic Model . 13
3.3 Contact Model . 15

4 Controller design 16
4.1 Design Goals . 16
4.2 Controller Overview . 16
4.3 High-level control . 16

4.3.1 Reference Generator . 17
4.3.2 Motion Reference Planner . 19

4.4 Quadratic program . 19
4.4.1 Constraints . 20
4.4.2 Decision variables and cost functions . 22
4.4.3 QP formulation . 23
4.4.4 Bounds . 24

5 Analysis method 25
5.1 Approach . 25
5.2 Control parameters selection . 26
5.3 Analysis variables . 26

6 Analysis results and discussion 28
6.1 Torque limit analysis . 28
6.2 Baseline performance . 29
6.3 Parameter Analysis . 29

6.3.1 Ground reaction force limit . 30
6.3.2 Ground reaction force weight . 30
6.3.3 Joint Acceleration Weight . 30
6.3.4 Momentum rate error weight . 30
6.3.5 Feet acceleration error weight . 31
6.3.6 Chest angular acceleration error weight 31
6.3.7 Momentum rate PD values . 31
6.3.8 Feet acceleration PD values . 31

6.4 Final Design performance . 31

7 Discussion 34
7.1 Performance Final Design . 34

7.1.1 High-level controller . 34
7.1.2 Quadratic program performance . 34
7.1.3 Walking performance . 34
7.1.4 Push recovery . 35
7.1.5 Improvements on Baseline . 35

7.2 Design Limitations . 35
7.2.1 Movement pattern . 35
7.2.2 Point feet . 36

7.3 Analysis limitations . 36
7.4 Quadratic Program . 37
7.5 Applicability to Exoskeletons . 37
7.6 Contribution to the field . 38

8 Recommendations 39
8.1 Recommended controller settings . 39

8.1.1 Overall quadratic program design . 39
8.1.2 Cost function . 39

8.2 Future Work . 40

A Contact model 44

B Final quadratic program in standard form 46

C Joint limits 48

D Base line values 49

E Torque limit analysis data 50

2

F Parameter analysis data 52
F.1 Ground reaction forces limits . 52
F.2 Ground reaction force weight . 54
F.3 Joint Acceleration Weight . 56
F.4 Momentum Rate Deviation Weight . 58
F.5 Feet Acceleration Deviation Weight . 60
F.6 Chest Angular Acceleration Deviation Weight . 62
F.7 Momentum Rate PD Values . 64
F.8 Feet Acceleration PD Values . 66

G Final design parameter values 68

H Final design torque over time 69

List of acronyms

Abbreviation Name Description

BoS Base of Support The convex hull around all contact point on
the supporting surface.

CMM Centroidal momen-
tum matrix

the matrix that describes the linear relation-
ship between joint. velocities and momen-
tum.

CoM Center of Mass The location of the system’s effective total
mass determined by the average position of
all parts of the system.

CoP Center of Pressure The net reaction force of surfaces on an ob-
ject.

CWC Contact wrench cone The cone of all possible wrenches that could
be applied to a surface without slipping.

EoM Equation of motion The equation that captures the full dynamics
of a system based on the configuration and
the forces applied to the system.

FWP Feasible wrench
polytope

A convex shape that include all possible
wrenches that can be executed by a system.

ICP Instantaneous cap-
ture point

Point on the ground that enables the system
to come to a stop when the CoP is placed
there instantly.

LIP Linear Inverterted
Pendulum

Model that consists of a point mass at set
height and a massless rod in contact with the
ground.

MBC Momentum-based
control

A control method that focuses on controller
the momentum of the system.

MRP Motion reference
planner

A subsystem of the high-level controller that
translates the reference into tracking goals

RG Reference Generator A subsystem of the high-level controller that
generates reference trajectories.

SCI Spinal cord injury damage to any part of the spinal cord or
nerves at the end of the spinal canal.

XcoM Extrapolated center
of mass

Projection of the CoM on the supporting sur-
face that includes a velocity factor. A CoP
generated at the XcoM will cause a LIP to
come to a standstill above the XcoM.

ZMP Zero moment Point Ghe point where the effects of all forces act-
ing on the device can be replaced by a single
point

Table 1: Caption

5

Chapter 1

Introduction

1.1 Problem statement

According to the World Health Organization, worldwide between 250.000 and 500.000 people
suffer from a spinal cord injury (SCI) each year. The demographics show that young male
adults (ages 20-29) are most at risk of suffering an SCI, followed by older males (age 70+)
and young females (ages 15-19) [1]. Although preclinical studies and small trials suggest that
early treatment may improve neurological recovery of sci patients, full recovery is often not
possible [2]. This results in the majority of patients dealing with devastating long-term effects,
such as loss of sensory and motor function and an increased likelihood of premature death [1].In
the majority of cases, the resulting immobility will lead to a significant reduction in quality of
life [3].

Exoskeletons could be used to combat immobility and help improve quality of life [4]. Ex-
oskeletons have been in development since the 1960s when the US military started working on
exoskeletons to enhance the performance of soldiers [5]. While early development was slow, a lot
of progress has been made in the last decades. This has led to a great number of new exoskele-
tons [6]. These exoskeletons can be divided into three categories: human power augmentation,
haptic interactions, and rehabilitation [5, 7].

For an overview of the state of the art of exoskeletons, Aliman et al. [8] gives a broad overview
of the current exoskeletons on the market and in development. Anam et al. [5] and Young et
al. [7] give overviews on the most used control systems for exoskeletons. Jatsun et al. [9] gives
an overview of the current industrial exoskeletons.

The biomechanical engineering group of the University of Twente is developing an 18 degrees
of freedom lower limb exoskeleton called the Symbitron Exoskeleton [6]. The exoskeleton has 8
actuated degrees of freedom, creating an under-actuated system. A trajectory generator is in
development that will be capable of providing a motion trajectory that can be executed without
the need for crutches. Multiple self-balancing controller are being considered.

In this thesis, the possibility of using a Momentum Based Controller (MBC) is explored.
Furthermore, the control parameters are analyzed to give more insight into the influence of
individual parameters on the performance.

1.2 Goals

This thesis has the following goals:

• Design a simplified model of the exoskeleton problem

• Design a quadratic program controller capable of walking and rejecting disturbance

• Analyse the influence and importance of parameters

1

• Give a recommendation on parameter prioritization

1.3 Problem approach

The exoskeleton is approached by a 2D lower limb humanoid. For this model, an MBC has been
developed that is capable of following a given center of mass (CoM) trajectory and rejecting
disturbances up to its total weight. The controller is built up of a high-level and mid-level
controller. The high-level controller translates the CoM trajectory into momentum rate goals
and generates the feet trajectories required to maintain balanced. The mid-level consists of a
quadratic program that finds the optimal joint torques that execute the generated trajectories
while minimizing the energy expenditure.

Using this model, the control parameters are experimentally analyzed. From the results of
the parameter analysis, a final controller is designed. This controller is then used to discuss the
feasibility of using an MBC as a controller for an exoskeleton and the recommended parameter
prioritization.

1.4 Outline of this thesis

Chapter 2 will cover the background information. This includes background information on
momentum-based control, the Symbitron exoskeleton for which the controller will be explored,
a brief description of the most used high-level controllers, and a detailed description of the state
of the art of optimal mid-level controllers. Chapter 3 covers the dynamic model used to explore
the controller, including the contact model. Chapter 4 will go into the design of the controller.
In chapter 5 the analysis method is explained and the results are shown and briefly discussed in
chapter 6. In chapter 7 the final results of the analysis are discussed as well as the limitations
of the design and analysis and applicability to the exoskeleton. Finally, chapter 8 will cover the
recommendations for the control parameters as well as recommendations for the focus of further
research.

2

Chapter 2

Background

This chapter will cover the background knowledge of controllers for humanoid walking systems.
While exoskeletons and (lower limb) humanoids are different systems, in this chapter they are
assumed to be similar when it comes to gait control. Both fields are developing rapidly and the
strategies employed are often the same. For this reason, knowledge from both fields is integrated
into this chapter.

Section 2.1 explains how free moving bodies are modelled. Section 2.2 covers the funda-
mentals of Momentum Based Control. Section 2.3 explains the exoskeleton developed by the
Biomechanical Engineering department. Section 2.4 covers an overview of various control ap-
proaches. Sections 2.5, 2.6 and 2.7 cover the controllers used as high-level, mid-level and low-level
controllers.

2.1 Floating Base Model

Considering both humans and walking robots can move freely in space, the motions of the system
cannot be described by only joint positions, unlike a system that is fixed to the world. As such,
a method is needed to model the position of the object in space.

The position of a body in space can be modeled by creating virtual joints between the world
and the body, illustrated in figure 2.1. These joints represent the degrees of freedom of the
body with respect to the world. For a 2D model, there are three virtual joints, two translations
in the x and y direction, and one rotational around the z-axis. For a three 3D model, there
are six virtual joints, three translation joints, and three rotation joints around the translation
axis [10, 11].

Because these are virtual joints, they cannot be directly controlled, i.e. no force can be
applied on these joints directly. The motion of these joints is determined by the motion of the
joints of the body and external forces applied to the body.

2.2 Momentum Based Control

The control of free moving robotic systems is generally realized by controlling the position of the
center of mass (CoM) relative to the world. The CoM is the location of the system’s effective
total mass determined by the average position of all parts of the system, weighted by their
masses [12]. Momentum-based control (MBC) aims to control the CoM by manipulating its
momentum.

Full dynamic models of a multi-body system are often complex. MBC simplifies the dynamics
by looking only at the dynamics projected at the CoM, instead of the whole system. These
dynamics are called the centroidal dynamics [12, 13].

Each free-moving system has the same dynamical behavior as a certain solid shape, depending
on the configuration. Figures 2.2a and 2.2b illustrate this shape for a humanoid. This means that

3

Figure 2.1: The 2D floating base model. Virtual joints are created between the world coordinates,
W, and the object,b. The blocks represent linear joints and the cylinder a rotational joint.

(a) Humanoid model.
The model is subjected
to both joint torques
and external forces in
the form of gravity, GRF
and interaction forces.

(b) Model overlapped
by the centroidal shape.
Only subjected to
external forces.

(c) Only the centroidal
form, subjected to exter-
nal forces.

(d) Centroid form with
resultant momentum
from external forces.

Figure 2.2: Visual breakdown of centroidal dynamics made by Orin et al.[12].

the system, irrespective of complexity, will have an equal reaction to external force as this solid
shape, centered around the CoM [12, 14]. This property can be used to calculate what forces
need to be applied to a system to create the desired linear and rotational accelerations [12, 13].

The momentum equation for a multi body system is given by

h = Aq̇. (2.1)

The momentum is equal to the centroidal momentum matrix (CMM), A, multiplied by the joint
velocities q̇. The CMM thus gives the linear relationship between the momentum and the joint
velocities [14].

Change in momentum can be calculated by taking the time derivative of equation 2.1, re-
sulting in:

ḣ = Ȧq̇ +Aq̈. (2.2)

Since, by Newton’s law of motion, a change in momentum is equal to the forces applied
to the system, the same equation can be used to determine what forces should be applied to

4

generate the desired momentum change. This gives the full equation

ḣ = Ȧq̇ +Aq̈ =
∑

W, (2.3)

where W are the wrenches, the effects of forces on a certain point, applied to the CoM.
MBC uses the relation between momentum rate, force and CoM acceleration to generate the

desired movement [14]. The main benefit of this approach is that the reduction of the dynamical
behavior of a complex system to the centroidal dynamics gives a direct relationship between the
movement of the system and the forces applied anywhere on the system, as illustrated by figures
2.2c and 2.2d. Furthermore, it reduces the number of equations to be solved from all the degrees
of freedom of the system to just the degrees of freedom of the floating body. Thus creating a
relatively simple problem to solve.

2.3 Symbitron Exoskeleton

The exoskeleton for which the controller will be explored is the Symbitron Exoskeleton, designed
by the biomechanical engineering department at the University of Twente [15]. The lower limb
exoskeleton is designed to enable individuals with incomplete or complete spinal cord injury to
walk again. The exoskeleton uses a modular design with four configurations for each leg. These
configurations make it possible to only actuate certain joints, making it adaptable to the needs
of a specific individual.

Using the full exoskeleton will result in 18 degrees of freedom, of which 8 are actuated. An
overview of the exoskeleton and the actuators is shown in figure 2.3. The exoskeleton has a
backpack, which contains the batteries and the computers responsible for calculations. Each leg
has two passive joints: the hip inversion and eversion joint(HIE) and the ankle inversion and
eversion joint(AIE). The other four joints, hip abduction and adduction(HAA), hip flexion and
extension(HFE), knee flexion and extension(KFE), and ankle dorsi- and plantarflexion(ADP),
are actuated.

Figure 2.3: The Symbritron Exoskeleton designed by the biomechanical engineering deparment
of the University of Twente [15].

5

2.4 General control schemes

When it comes to the control of exoskeletons and humanoid robots there are two main methods:
online and offline control [5]. With offline control, the motion trajectory is calculated beforehand
and then executed by the device. This allows for complex calculations because computation time
is not an issue [16]. The trajectory can be planned using a detailed dynamic model of the device,
resulting in an accurate and precise trajectory. The downsides of this method however are quite
apparent. Because the calculations are done beforehand, the models used for the computation
need to be very accurate because the system is not able to adjust to any deviations or unexpected
disturbances.

With online control, the reference trajectories are calculated in real-time. The trajectories
are usually determined for the next couple of steps. This trajectory is adjusted and updated
regularly, allowing it to adapt to deviations and disturbances. The main limitation of this
method is the limited computation time allowed. While using a detailed model of the system
would result in an accurate trajectory, the computation times are often too long for online use.

One method of realizing online control is using multi-layered control. 1 This control method
cuts down the computation time by splitting the control task into different layers. Each layer
uses a different model that can be simplified according to the requirements of the layer-specific
tasks. Most multi-layered controllers in exoskeletons are split up into three layers: high-level,
mid-level, and low-level control [8].

Multi-layered control systems rely on different layers of control, using different models. The
function of each layer depends on the goal of the controller. The high-level controller is responsi-
ble for intention detection. It determines what task needs to be executed by the device, because
of this it is sometimes called the task-level controller. For augmenting exoskeletons this usually
involves measurements on the wearer’s legs to determine walking intention [8]. For autonomous
walking exoskeletons and humanoid robots this controller uses a simplified model of the system,
often a linear inverted pendulum (LIP), to calculate a motion trajectory. This trajectory usually
includes at least a CoM trajectory and footholds. Due to the simplicity of the model used in
this layer, the computation time is low [18, 19, 20].

The mid-level controller is used to transform the task given by the high-level controller into
joint trajectories. Its output can either be desired joint forces or joint positions. In some cases,
the mid-level controller’s output is only a desired configuration. In that case, the low-level
controller is responsible for translating this configuration to joint trajectories and controller
joints.

The low-level controller is usually responsible for executing the joint trajectories. It will
receive the desired configuration for each joint.

2.5 High Level Control

The high-level controller is responsible for the trajectory and motion planning [20]. The high-
controller often uses a simplified model for gait planning [17, 21, 22]. These models capture the
overall dynamics of the system, without having the complexity of modeling each separate joint
or movement.

This section first covers the model used to approximate bipedal motion. Then it goes into
various balance strategies used for exoskeletons and humanoid robots. Lastly it covers the
preferred walking motion.

1This type of control system is sometimes also called hierarchical control, for example in [5]. However, this
term is also used for systems that stack quadratic programs, for example in [17]. The term multi-layered is used
in this report to prevent confusion.

6

(a) The 2D linear inverted pendulum.
(b) The 2D linear inverted pendulum overlapping
with a humanoid model.

Figure 2.4: Linear inverted pendulum model. The motion is determined by the horizontal
position of the CoP relative to the CoM.

2.5.1 Linear Inverted Pendulum

The most widely used model to approximate the motion of bipedal robots is the 2D or 3D linear
inverted pendulum model [21]. This model is comprised of a floating mass, kept at constant
height, and a massless leg link of variable length, which allows for force to be applied to the
floating mass, illustrated in figure 2.4. There are multiple variations of this model. The most
simple is the so called point-foot, whereby the link ends in a point on the floor. The center
of pressure is thus always at this specific point of contact. Some models do include an ankle
toque at the point foot to add more stabilizing mechanisms. This model can be expanded by
replacing the point foot with a finite sized foot. This, combined with an ankle torque, does
allow for the center of pressure to vary within a the limited area of the foot [23]. This model has
shown to be sufficient for creating motion trajectories for humanoid robots [21, 24]. The model,
however, could be expanded by adding another torque between the link and the floating body.
This addition allows for a bit more momentum control. However, this extra momentum seems
only to be applicable to a single step [23].

2.5.2 Balance strategies

The main focus of almost all gait generators is stability. Humans and humanoids are highly
unstable when it comes to balance [21]. This can easily be seen when looking at the LIP
approximation of human dynamics. If the stick or foot is not precisely underneath the CoM it
supports, the system will topple.

While stationary, balance can be achieved by having the center of mass be above the base
of support (BoS), which is the convex hull around the contact points with the ground. This
criterion for stationary stability is based on the principle that for each CoM position above the
BoS a CoP can be generated to keep the position of the CoM constant. This stabilizing CoP lies
directly underneath the CoM. During movement, however, this is not deemed sufficient since

7

this criterion does not take the momentum of the center of mass into account. Another criterion
thus has to be defined to take this movement into account [23, 25].

To combat the stability problem, various stability criteria are used. Three prevalent used
criteria will be covered.

Extrapolated Center of Mass

To deal with the stability problem, Hof et al. introduced the extrapolated center of mass(XcoM)
in 2005 [25]. The XcoM is a projection of the CoM on the supporting surface with an added
factor of the velocity of the center of mass. A CoP generated at the XcoM is able to let the
CoM come to a standstill above the XcoM. So to always be able to come to a standstill, the
XcoM should lie within the base of support [25, 26].

The concept is created from the linear inverted pendulum model. When the CoP is not
directly underneath the CoM, the pendulum falls over. This acceleration is based on the hori-
zontal distance between the CoP and the projection of the CoM on the supporting surface and
the length of the pendulum. Thus the position XcoM is based on the current position of the
CoM plus its velocity multiplied a factor of

√
l/g, with g being the acceleration of gravity and

l the leg length. The full formula is shown is given by

ξ = xC +
1

ω0
ẋC , (2.4)

where ω0 is the eigenfrequency of the LIP defined as
√
g/l [25, 27].

The stability theory of the XcoM is based on the instantaneous placement of the CoP on
the XcoM. However, these criteria cannot be met in practical settings, especially during walking
where a step has to be taken to keep the XcoM within the base of support. Thus it is important
to look at the development of the XcoM over time.

Looking at the LIP model, the acceleration of the CoM depends on the distance between
the CoP and the projection of the CoM. So when the CoP does not move, the position of the
XcoM moves away from the CoP exponentially. Given this, an equation for the position of the
XcoM at a certain point is given by

ξ(t) = (ξn − xP,n)eω0t + xP,n, (2.5)

where the subscript n indicates the position of the current time-step [27].

ZMP

Another stability criterion is to keep the Zero Moment Point (ZMP) within the BoS. This crite-
rion has been extensively explored and applied by, among others, L.Lanari and S.Hutchinson [16,
21, 24]. The ZMP is defined as the point where the effects of all forces acting on the device can
be replaced by a single force [26]. It is important to note that this point can only be within the
BoS. Translating this to the LIP model means that if the end of the stick is placed in the ZMP
and the right force is applied, the CoM will come to a standstill exactly above this point. This
point must lie within reach of the stick. If the ZMP would be outside the BoS, it is labeled as
the fictitious ZMP. This means that the device cannot come to a standstill with the current foot
placement and thus another step would be needed to bring the ZMP within the BoS. Generating
a trajectory where the ZMP always exists results in the system being able to come to a standstill
on every point along the trajectory, thus ensuring a measure of stability.

N-step capturability

The ZMP based stability margin is based on being able to come to a standstill without the need
to take extra steps. While this method has been applied successfully to multiple mechanisms,

8

there are some limitations. These limitations arise due to circumstances that cause the ZMP to
leave the BoS, thus becoming a fictitious ZMP. This can for example happen due to disturbance
or moving at higher velocity [23, 26]. The N-step capturability, proposed by Koolen et al. [23],
is defined by a system being able to come to a stop in N steps or less. This stability analysis
is thus not limited by its current BoS. The method is based on the instantaneous capture point
(ICP). This point is defined as the point on the ground that enables the system to come to a
stop if it were to instantaneously place and maintain its CoP pressure there. This point is not
fixed and moves over time. The ICP moves on the line from the foot through the ICP, away
from the foot. The velocity is proportional to the distance to the foot. It is important to notice
that this causes the velocity to increase exponentially when the foot remains stationary. Taking
into account the step size and step time, N-step regions can be determined. The size of the
regions is dependent on the number of balance strategies involved and the current velocity and
acceleration of the center of mass. When designing a trajectory that is N capturable, the system
must always stay within the N or lower capture region around the ICP. Due to the exponential
velocity of the ICP, the∞ and 4-step capture regions are almost the same size. As such, capture
regions of higher N than four are not relevant.

2.5.3 Walking motion

While the high-level controller provides preferred footholds, the simplified model used for this
is not capable of modeling leg swing. The leg swing is determined by the position of the chest
and a foot trajectory.

Humanoid robot designs have shown that a simple polynomial-shaped foot trajectory is suf-
ficient to achieve decent walking motion [19, 28]. Assuming the normal human gait is optimized
when it comes to energy consumption, a similar movement would likely make be optimal for
exoskeleton gait as well. Research performed by Wu et al. [29] looked at the energy consump-
tion of the human gait for different levels of ground clearance and scuffing. The measurements
showed that both larger ground clearance and scuffing significantly increase energy consump-
tion. It concluded that the likely minimized cost is achieved when ground clearance is kept at
a minimum, without actually touching the ground to prevent scuffing or even stumbling.

2.6 Mid-level controller

There are many ways to design a mid level controller. The simplest method is to use pre-
programmed motions. With this method the joint trajectories for certain tasks are determined
beforehand. While fixed trajectories allow for precise and smooth joint trajectories, it is not
very robust to disturbances and is limited to only the pre-programmed motion. Therefore the
amount of different tasks the exoskeleton can be used for are limited.

While developments in battery technology have significantly increased the energy density of
batteries, the amount of energy that can be carried is still a major limitation of exoskeletons [4].
To limit the energy consumption it is preferred to generate the most energy efficient gait. The
method that lends itself the best for this is the quadratic program controller.

2.6.1 Quadratic program controllers

Quadratic program (QP) controllers consist of two parts: a cost function it has to minimize and
one or multiple constraints [30]. The cost function is a summation of multiple factors and their
cost scaling. Most optimal controllers minimize a certain balance of accuracy and energy input.
These controller have thus at least the error variable and input in their cost. The input/energy
cost can be inserted in multiple ways. Preferably the actuation energy cost is included, however,
to cut computation time effects that cause more energy consumption can be included instead,
such a join torque or acceleration.

9

Other factors in the cost function are usually based on design choices. These are factor the
designers wants to be as close to zero as possible, however, they don’t necessary have to be zero.

The constraints contain requirements that have to be met. Examples of this are laws of
physics and configuration. A common constraints in humanoid robots are range of motion of
the joints, the relationship between joint motion and body motion and the equation of motion.

Which factors are included in the cost function and which are included in the constraints
depend on the design and controller design choices. In some cases the computation time can be
lowered by moving factors from the constraints to the cost function. This way the controller will
try to adhere to the constraint as much as possible, but doesn’t have to make it exactly zero.
Whether to do this or not is dependant on the computation time and necessary accuracy of the
constraints.

2.6.2 Force limitations

There are a couple of force limitations that need to be taken into account. One clear force
limitation comes from the limited actuator torque. This can be considered a constant limit,
which simplifies this limit. However, a more detailed model might be necessary which includes
back EMF, where the torque limit is dependent on the joint velocity. Whether or not this is
necessary thus depends on the joint velocities reached during the walking motion and has to be
determined during the design process.

Another limitation comes from interaction with the environment, mainly making sure slip-
ping does not occur. One way to implement this is the contact wrench cone (CWC). A CWC
is built of all possible wrenches that could be applied to a surface at a specific point without
slipping. While this cone would in reality be a complicated shape, it seems to be sufficient
to approximate it as a square-based pyramid. The CWC usually assumes that the surface is
capable of handling an infinite normal force. Taking the Minkowki sum of the friction cones
gives all the wrenches that the exoskeleton can apply to the environment without slipping. [31]

By taking the Minkowski sum of the intersections of all the friction cones and the possible
actuation wrenches the Feasible Wrench Polytope (FWP) can be created. This is a convex three-
dimensional shape that contains all possible wrenches that can be applied by the exoskeleton
without slipping. [31] One downside of using the FWP as a factor in the quadratic program is
the expensive computation. This may result in the controller being too slow to be effective.

2.7 Low Level Control

Low-level control encompasses the control of individual, actuated, joints. Each joint needs a
controller to execute the tasks given by the higher-level controllers. The individual controllers
have two main objectives: follow the joint-specific trajectory, either force or position trajectory,
and keep the motor position within the desired limits.

2.7.1 Joint controllers

There are two main types of controllers used, based on the input given by higher-level controllers:
torque controllers and position controllers [5].

With torque control, the input of the low-level controller consists of a desired torque. The
goal of the low-level controller is to generate the input torque. One method of achieving this is
by controlling the energy input with a PD controller. A PD controller calculates an input based
on the proportional and derivative error.

With position control, the input of a the low-level controller consists of a desired position or
acceleration. The low-level controllers goal is to generate a torque that brings the joint in the
desired position or achieves the desired joint acceleration. This torque will be regulated by an
internal torque controller.

10

2.7.2 Joint position limitations

One method to adhere to the desired joint position limits while trying to minimize the required
torque is to limit the joint velocity near these limits. Meijneke et al. [15] implemented a formula
that determined the maximum velocity based on the distance to the limit and the maximal
deceleration,

vmax(φ) =
√

2amax(φ− φlimit). (2.6)

The method was successful in creating a strong limit while staying within the torque limits. The
downside is that tracking is poor near the joint limits.

Another method is to create a virtual spring-damper near the limits. When nearing the
edge, this model will create a virtual counter force that pushes the joint away from the limit.
The main downside of this method is that this virtual force is applied regardless of the input.
This will cause the joint to be pushed away from the limits when the input is lower than the
virtual spring damper.

2.8 Related momentum-based controllers

In the last decades, there have been a lot of developments regarding the control of humanoid
robotics and exoskeletons. For these systems, a wide variety of control systems are explored and
researched. To remain within the scope of this report, only the momentum-based controllers are
discussed.

Machietto et al. [32] used momentum-control to create a controller that is capable of con-
trolling the balance of a humanoid model. They used the relationship between the momentum
rate and the CoM acceleration to keep the CoM close to the center of the BoS. The angular mo-
mentum rate was used to determine the position of the CoP. The goal was to maintain balance
while the model was executing a perpetual leg swing with one leg and being disturbed. The
controller consisted of a single QP that used tracking goals in the form of joint accelerations
for the swing leg and momentum rate with a constraint to keep the stance foot at a constant
location.

Koolen et al. [28] implemented a momentum-based controller on the humanoid robot Atlas
for the DARPA robotics challenge in 2015. The controller consisted of a high-level controller that
translated the human operator’s input into motion tasks for the mid-level controller. The mid-
level controller consisted of a quadratic program and an inverse dynamics calculator. The QP
used a momentum rate tracking cost and constraint the feet acceleration tracking. It used the
momentum-rate equation as its overall dynamics constraint, which required an inverse dynamics
calculator for force calculation. During the challenges, the team was able to make the robot
climb into vehicles, walk various terrain and handle objects [28, 33].

Herzog et al. [17] designed a hierarchical momentum-based controller for a lower limb hu-
manoid. The controller consists of multiple QP which are solved in sequence. The sequence of
QPs is based on a task priority. Tasks with the highest priority are solved by the first QP in
the sequence. Lower priority tasks and subsequently solved in other QPs in the sequence. The
QPs must operate in the null space of the tasks solved by QP higher in the sequence. With
this controller, the group is able to robust balance control, in both double and single support.
Stepping and walking have not been tested.

A recent contribution was made by Soliman and Ugurlu. [34]. The duo designed a task
prioritization algorithm for an lower limb underactuated exoskeleton. The exoskeleton is similar
in design as the Symbitron, section 2.3. The task prioritization algorithm is hierarchical and
functions in a similar fashion as the hierarchical controller of Herzog et al. ([17]). With Soliman’s
design, QPs lower in the sequence used the results of higher QPs as equality constraints, thus
ensuring that lower priority tasks do not disrupt the higher priority tasks. Balanced was achieved
by keeping the CoM with a virtual spring-damper in the middle of the BoS. They implemented

11

this system with three different controller types: ZMP impedance feedback, basic admittance and
momentum-based control. Using this system they achieved stable unperturbed and perturbed
walking at velocities of 0.3 and 0.2 m/s.

12

Chapter 3

Model and Dynamics

This chapter covers the model for which a controller is designed. Section 3.1 contains an overview
of the model used. Section 3.2 goes into the dynamics model and section 3.3 covers the contact
model used.

3.1 Model overview

The goal of the model is to approach an exoskeleton as a 2D humanoid. The exoskeleton covers
the lower limbs of the wearer. This is approached by creating a humanoid consisting of a torso
and two legs. The upper limb movement of the wearer can be simulated as a disturbance to the
exoskeleton. The model does not include feet. The feet were excluded to simplify the model
as adding feet would double the number of contact points and increase the degrees of freedom.
The model has a total of seven degrees of freedom, three from the floating base attached to the
CoM of one of the legs and four actuated joints. An overview of the model is shown in figure
3.1.

3.2 Dynamic Model

The total dynamics of the 2D humanoid is given by:

M(q)q̈ + C(q, q̇)q̇ +G(q) = Sττ + JT (q)ρ,

The procedure to derive the dynamic model is largely taken from [35]. The theory is implemented
by Arvid Keemink and Ander Vallinas-Prieto. This section is written by Arvid Keemink and
adjusted to fit the report.

The kinematics of the humanoid structure are shown in Fig. 3.1. The locations of the center
of mass for each body i (pc,i(q)) can be determined from the model’s kinematic parameters and
q and be expressed in an inertial world frame. Each body has mass mi and rotational inertia Ii.
We can then determine the following (T describing the total kinetic energy and ωi the absolute

13

Figure 3.1: Overview of the 2D humanoid model. The model has 7 degrees of freedom. The
first three are the floating body DoF, given by the coordinates and rotation of the back leg with
respect to the world coordinates. The CoM is indicated with the red circle and the green circles
are the CoM of each body segment.

rotational velocity of a body):

ṗc,i(q, q̇) = Jc,iq̇ =
∂pc,i
∂q

q̇

ωi = Jω,iq̇ =
∂ωi
∂q

q̇

T =
6∑
i=1

1

2

{
ṗTc,imiṗc,i + ωTi Iiωi

}
=

1

2

6∑
i=1

{
q̇JTc,imiJc,iq̇ + q̇JTωi

IiJωi q̇
}

=
1

2
q̇

(
6∑
i=1

{
JTc,imiJc,i + JTωi

IiJωi

})
q̇

=
1

2
q̇M(q)q̇

M(q) =
6∑
i=1

{
JTc,imiJc,i + JTωi

IiJωi

}
.

The Coriolis and Centrifugal contributions is given by C(q, q̇)q̇. The elements of C(q, q̇) can be
determined as follows (for q ∈ R7):

Cij(q, q̇) =

7∑
k=1

cijk(q)q̇k

cijk(q) =
1

2

(
∂Mij(q)

∂qk
+
∂Mik(q)

∂qj
−
∂Mjk(q)

∂qj

)
The gravitational contribution can be found because we already have the center of mass of each

14

body i (pc,i(q)) and determine the generalized force from the potential energy V (q):

V (q) = g
6∑
i=1

[
0 1

]
pc,i(q)mi

G(q) =
∂V (q)

∂q
.

The Jacobian J(q) ∈ R4×7 of the interaction locations (the point-feet) is determined by:

J(q) =

[
∂pfoot1(q)

∂q
∂pfoot2(q)

∂q

]
,

where pfoot1(q) and pfoot2(q) are the point feet locations, determined from the kinematic model.
Joint-level damping is trivially added as an extra generalized force τd = −Bq̇ with B being
positive semi-definite and typically diagonal.

3.3 Contact Model

The contact model is based on the work of [36], but is adapted from the 3D case to the 2D
sagittal case. The code was implemented by Ander Vallinas-Prieto and Arvid Keemink.

The model determines the force impulse required to prevent a contact point from moving into
the ground once contact is made. Furthermore, it determines the forces generated by friction
according to the Coulomb friction model.

This model is chosen over a spring-damper contact model because it does not create a bounce
effect. With the spring-damper model, the ground is modelled as a dampened spring. Upon
contact, the spring generates a force to push the object out of the ground. This force is relative
to the displacement of the ground by the contact. This pushing force can cause the object to
lose contact with the ground and then fall back. The force impulse model only prevents the
object from acceleration into the ground and thus does not create a bounce effect.

The model is described in more detail in appendix A.

15

Chapter 4

Controller design

This chapter covers the design of the controller. Section 4.1 covers the design goals. Section
4.2 goes into the overall design of the controller and sections 4.3 and 4.4 cover the high- and
mid-level of the controller.

4.1 Design Goals

The controller will be a real-time momentum-based controller. The goal of the controller is to
track a given CoM trajectory while minimizing the amount of movement and energy required.
The high-level controller should be capable of generating a momentum trajectory given a CoM
path. It then has to generate a momentum rate reference that, if executed correctly, is capable
of tracking the momentum trajectory. Furthermore, it has to generate feet trajectories and feet
accelerations capable of tracking these trajectories. The mid-level controller has to find the
optimal joint torque that executes the momentum rate and feet acceleration references while
minimizing the energy expenditure.

The controller should be capable of handling two situations: walking at a constant pace and
recovering after a push. The walking will be simulated by giving the controller a CoM trajectory
with constant velocity. The push recovery will be simulated by applying a force impulse on the
CoM.

4.2 Controller Overview

Figure 4.1 shows a high-level overview of the control framework. The controller consists of two
layers: a high-level and a mid-level controller. Low-level control is assumed to be perfect and
thus is not implemented in the framework. The high-level controller consists of two systems that
are together responsible for creating tracking goals for the mid-level controllers. The mid-level
controller consists of a quadratic program that reconciles the tracking goals with the dynamics
and determines the optimal joint torques for the robot model. The robot model gives state
feedback to the control systems.

4.3 High-level control

The high-level controller consists of two systems: the reference generator and the motion refer-
ence planner. The reference generator creates reference trajectories for the CoM and feet. The
CoM trajectory is used as input and can be seen as the general task for the robot. The feet
trajectory is reactionary and generates stepping trajectories only when required to maintain
balance. These trajectories are then sent to the motion reference planner. The motion reference
planner consists of PD controllers that generate momentum rate and acceleration goals for the

16

Figure 4.1: High level overview of the information flow in controller framework.

mid-level controller. The CoM trajectory is transformed into a momentum rate that pulls the
CoM towards the trajectory, creating a momentum controlled system. The feet trajectories are
transformed into feet acceleration goals.

4.3.1 Reference Generator

The reference generator (RG) creates a desired reference trajectory for the CoM and feet posi-
tions, velocities, and accelerations at each time step. With a two-dimensional model, each object
has three configuration variables, one angular and two linear. Furthermore, for each variable,
the first two derivatives will be used. For the total system, this results in 27 trajectory variables,
nine for the chest and nine for each foot. These values are then used by the Motion Reference
Planner to create desired momentum rates and accelerations for the CoM and the feet.

The purpose of the CoM trajectory is to give an overall desired motion plan. As such the
CoM trajectory is predetermined and does not depend on the current state of the model. If a
selected trajectory consists of a stationary point, the robot will try to reach that point or return
to it when disturbed. If, on the other hand, a moving trajectory is made, the robot will follow
that trajectory and thus start walking. This design approach allows for a simple way to give the
robot tasks, such as walking to a certain point, executing a specific movement, or remaining as
stationary as possible.

Contrary to the CoM trajectory, the feet trajectory is reactionary and thus is dependent
on the state and dynamics of the model. The feet trajectory generation is controlled by a
state machine, shown in figure 4.2. The feet reference will remain in constant positions on the
supporting surface until a step is required to maintain stability. Once an appropriate step is
taken, the feet will remain stationary again.

The main benefit of this system lies in that no specific feet trajectories are required as in-
put beforehand. The robot will automatically step when necessary to follow the desired CoM
trajectory or to remain upright when disturbed. The main downside of the current implemen-
tation of the reference generation is that the height of the CoM trajectory has to be limited to
ensure feasibility. Since the stepping method is purely based on maintaining stability, it does
not consider the range of motion. This can result in the desired feet position moving outside of
the maximum range of the legs. If this occurs, the controller will attempt to match the desired
trajectory as much as possible, however, balance cannot be guaranteed. These situations can be
prevented by limiting the CoM height. This crouched gait requires higher torques compared to
a more upright gait, which is a significant downside.

17

Figure 4.2: The state diagram used for the feet trajectory generation.

Stepping decisions

The robot will automatically step when necessary to remain stable. To determine whether a
step is needed to maintain stability, the criterion of the XcoM is used. This criterion states that
a step is required when the XcoM moves out of the BoS.

When making stepping decisions, the desired CoM velocity and acceleration should be con-
sidered. As can be explained with the LIP model, the acceleration of the CoM during normal
movement is determined by the difference in the horizontal position of the CoP and the CoM.
During movement, the acceleration is determined by the difference in the horizontal position of
the CoP and XcoM.

If a step is taken at the exact moment the XcoM leaves the BoS, the XcoM will be close to
the back foot after the step has been taken. The CoP can only be moved within the BoS. If
the XcoM is close to the edge of the BoS, the maximum distance between the CoP and XcoM
is limited, thus limiting the maximum achievable acceleration. Delaying the stepping decision
will result in the XcoM being located further from the edge of the BoS after the step has been
taken, thus allowing a wider range of accelerations.

The trajectory generator will initiate a step when the XcoM is a certain distance away from
the edge of the BoS, thus ensuring that the XcoM does not end up too close to the edge of the
BoS. This distance is set as a percentage of the reference velocity, up to a maximum value. In
the current implementation, this percentage is set at 20%. This method results in a stable gait
without limiting the possible acceleration of the CoM by stepping too close to the XcoM.

Stepping trajectory

The stepping trajectory is determined by two parts: the shape of the trajectory and the height
and length of the motion. The shape of the trajectory is a sinusoid in both the horizontal and
vertical direction. The main benefit of using these trajectory shapes is the low velocity at the
start and end of the motion. The motion profile is given by

xf =
ls
2

sin

(
t
π

tT
− π

2

)
+
ls
2

(4.1)

yf =
hs
2

sin

(
t
2π

tT
− π

2

)
+
hs
2
, (4.2)

where ls represents the step length, hs the step height, xf and yf the horizontal and vertical
position of the foot respectively and tT the total step time.

As discussed in section 2.5.3, the energy needed for walking is minimal with minimal ground
clearance, provided enough clearance to prevent scuffing. Since the optimal solution is deter-
mined by a quadratic program, the feet may deviate from the trajectory. The step height is thus
kept low, however not so low as to risk scuffing due to controller decisions.

18

The stepping decision is based on the XcoM leaving the BoS, thus the goal of a step is to
move the BoS such that the XcoM again lies within it. To accomplish this, the foot has to be
placed further than the XcoM, keeping in mind the time it takes to execute the step. Using a
fixed step time and assuming no disturbances while stepping, the position of the XcoM after a
step is executed can be calculated with equation 2.5. The ideal step length is then determined
by taking this position and adding 10 percent of the difference between this position and the
current foot position. If the ideal step length exceeds the maximum step length, the maximum
step length is used instead. A minimal step length is also implemented to prevent the BoS from
becoming too small, which can result in the robot being required to take unnecessary steps.

Once the foot hits the ground, the foot reference is changed to keep the foot stationary on
that spot. This is done to prevent the robot from trying to slide on the ground when the feet do
not hit their exact target, resulting in unnecessary energy expenditure and less stable behavior.

4.3.2 Motion Reference Planner

The Motion Reference Planner(MRP) transforms the trajectory given by the reference generator
into momentum rate and acceleration goals for the mid-level controller. These transformations
are done by using PD control to correct for deviations between the actual and reference trajec-
tories, after which the reference accelerations are added. Since the CoM goals are momentum
rates, the desired accelerations have to be multiplied by the mass or inertia of the robot. The
desired momenta rates and accelerations are given by

k̇ = Pθ (θC,r − Iq̇) (4.3)

l̇ = PC (pC,r − pC) +DC (ṗC,r − ṗC) +mrp̈C,r (4.4)

p̈ = Pf (pf,r − pf) +Df (ṗf,r − ṗf) + p̈f,r, (4.5)

where I is the inertia matrix, P and D are the proportional and derivative gains, subscripts θ,C
and f refer to angle, CoM and foot and the additional subscript r refers to the reference value.

The controller is real-time and thus does not consider long-term strategies. Because of this,
the controller can make decisions that are favorable in the short term but are not sustainable
long term. One example is using the upper body angle to move the CoM, which will cause the
robot to fall over. To prevent this, the MRP generates a chest angle tracking goal given by

αD = Pa

(
− 5

180
π − Scq̈

)
+Da (0− Scq̇) , (4.6)

with αD being the desired angular acceleration of the chest, Pa and Da are the proportional and
derivative gains and the selection matrix for joints that determine the chest orientation given by

Sc =
(
0 0 1 1 1 0 0

)
. (4.7)

All PD gains are chosen to be critically damped. This ensures accurate tracking while
reducing overshoot. For the momentum rate controllers, the mass of the robot is incorporated
into the gains. A limit is set on the maximal horizontal linear momentum rate of the CoM. This
ensures that the momentum rate goals are not higher than the system can handle.

4.4 Quadratic program

The MRP outputs momentum rate and feet acceleration goals. The quadratic program (QP)
reconciles these goals with the dynamics of the robot and finds the optimal joint torques at each
controller time step. The optimal joint torque is found by minimizing the trajectory deviation,
joint accelerations, and ground reaction forces.

19

The remainder of this section covers the different components of the QP. The order of these
sections is chosen to give the best understanding of how the program is built up. First, the
constraints are discussed. The constraints contain the dynamics of the robot and thus give
an understanding of how the movement is calculated. After that, the decision variables are
discussed. The last subsections cover the full QP.

4.4.1 Constraints

The QP used has a total of five equality constraints and one inequality constraint. Three
constraints are used to capture the dynamics of the robot and ground contacts. The other three
are used to facilitate the tracking of the tracking goals given by the high-level controller.

Overall dynamics

The overall dynamics of the robot are captured in an equation of motion (EoM) equality con-
straint. The forces applied on the degrees of freedom of the robot consist of the force generated
in the actuated joints and external forces such as the ground reaction forces. The equation of
motion is described as:

M(q)q̈ + C(q, q̇)q̇ +G(q) = Sττ + JT (q)ρ, (4.8)

where M(q) is the mass matrix, C(q, q̇) the matrix containing the Coriolis and centrifugal forces,
G the gravitational forces, Sτ the selection matrix for the actuated joints, and Q the Jacobian
for the contact forces.

The M , C, G, and Q matrices are calculated at each time step and depend on the configura-
tion of the robot. The robot has seven degrees of freedom, of which the last four are actuated.
Selection matrix Sτ is thus defined as:

Sτ =

(
03×4
I4×4

)
, (4.9)

where I is an identity matrix.
The overall dynamics of the robot could also be described by the momentum rate equation

given as 2.3. The main argument for choosing for using the EoM as the main dynamic equation is
that the torque is included in the EoM equation. This allows the torque to be used as a decision
variable, resulting in the optimal torque being determined by the QP. If the overall dynamics
are described by the momentum rate equation, the required torque to execute the desired joint
acceleration has to be determined outside of the QP via inverse dynamics. If torque is a limiting
factor, the torque limits can easily be enforced when it is a decision variable. If the torque is
not a decision variable, the torque limits have to be enforced via the q̈ and ρ limits indirectly.
The EoM is chosen to make the torque limit more intuitive.

Contact constraint

The feet of the robot are modeled as point feet, resulting in a total of two possible contact points
with the ground. The contact points can only apply force to the ground when in contact with
the ground. The first contact constraint is a complementary constraint in the form of

dfρc =

(
0
0

)
, (4.10)

where df is the vertical distance between the foot and the ground and ρc is the grf of one foot.
Once in contact, the contact points are subject to two interaction constraints: the feet can

only push on the ground and the feet must not slip. The first of these constraints can easily be

20

Figure 4.3: Friction cone according to static Coulomb friction. The friction is linearly dependent
on the normal force. Slipping will occur when the tangential force exceeds the friction force,
which is shown as the gray cone.

enforced by requiring the grf to be net positive along the normal vector of the contact surface.
The ground reaction forces are solved in a Cartesian frame. To apply the constraint the Cartesian
grfs have to be projected on the normal vector resulting in the following constraint:

Pnρc ≥ 0, (4.11)

where ρc is the grf of one contact point and Pn is the vector projecting the grf onto normal
vector given by

P Tn =

(
cos θ − sin θ
sin θ cos θ

)(
0
1

)
=

(
− sin θ
cos θ

)
, (4.12)

with θ the slope of the contact surface. Please note that Pn is transposed in the equation.
The friction is modeled as static Coulomb friction. This entails that the tangential force

should not exceed the Coulomb friction. The friction is linearly dependent on the normal force,
resulting in:

−µfn ≤ ft ≤ µfn, (4.13)

with µ the friction coefficient, fn the grf along the normal vector of the supporting surface and
ft the grf tangent to the normal vector. A visual representation of the friction cone is shown in
figure 4.3.

To apply this constraint the grf has to be projected into the normal and its tangential vectors
resulting in:

−µPnρc ≤ Ptρc ≤ µPnρc, (4.14)

where Pn is given by 4.12 and Pt is the tensor projecting the grf onto the tangential vector given
by

P Tt =

(
cos θ − sin θ
sin θ cos θ

)(
1
0

)
=

(
cos θ
sin θ

)
. (4.15)

Combining equations 4.11 and 4.14 into one matrix results in a single inequality constraint −Pn

Pt − µPn

−Pt − µPn

 ρc ≤ 0. (4.16)

Trajectory tracking

The Motion Reference Planner generates a total of four references to track, one momentum rate,
two feet accelerations and one chest angular acceleration. The tracking can be done with either
constraints or include the equations directly into the cost. In this section we consider them as
constraints first.

21

For the momentum tracking, a momentum constraint has to be added. Using equation 2.3
and replacing the momentum rate with the desired momentum rate gives:

Ȧ(q)q̇ +A(q)q̈ = ḣD, (4.17)

where ḣD is the desired momentum generated by the MRP.
The velocity of the foot can be calculated with:

Jf(q)q̇ = vf, (4.18)

with Jf the geometric Jacobian of the foot and vf the velocity of the foot.
Taking the time derivative and replacing the acceleration with the desired acceleration p̈D

from the MRP gives the feet acceleration constraint

Jf(q)q̈ + J̇f(q)q̇ = p̈D. (4.19)

The chest orientation is determined by three rotational joints in series. The tracking can
thus be done by adding the angular accelerations of these joints, resulting in

Scq̈ = αD, (4.20)

where Sc is given by equation 4.7.

4.4.2 Decision variables and cost functions

Choosing to use the EoM as the overall dynamics equation requires the quadratic program to
be solved for the joint acceleration, ground reaction forces, and joint torques. As such, these
variables are automatic inclusions in the cost function of the QP. However, these variables do
not necessarily need to have a cost associated with them in order to find a solution.

It is desired to achieve the tracking goals while minimizing the amount of movement and
energy required to achieve them. There is a multitude of decision variables that can be chosen
to achieve this. For a clearer explanation, the decision variables will be split into operating costs
and tracking costs.

Operating costs

The operating costs consist of the costs associated with executing the movement. Three clear
variables can be associated with this cost: joint acceleration, ground reaction forces, and joint
torque. By including a joint acceleration cost the QP minimizes the number of changes in the
movement. This both helps create a more fluent movement pattern and minimizes the number
of unnecessary movements. The inclusion of a grf cost can serve two purposes: it minimizes the
contact forces, which reduces strain to both the environment as well as to the robot itself, and
it will spread out the grf in the case of multiple contact points. Putting a cost on torque can
serve the purpose of reducing the cost. However, as shown by Herzog et al. [17], decomposition
of the EoM into the floating base and internal degrees of freedom leads to the equations

Mb(q)q̈ + Cb(q)q̇ +Gb(q) = JTb ρ, (4.21)

Mj(q)q̈ + Cj(q)q̇ +Gj(q) = τ + JTj ρ, (4.22)

where subscript b and j represent the body and joint matrices respectively. The second shows
that the torque, τ , is linearly dependent on the joint acceleration and grf. Thus associating a
cost with the torque is not needed if costs are already applied on the joint acceleration and grf.

Applying costs to the joint acceleration and grf, the operation cost becomes

Co = minimize
q̈,ρ,τ

q̈TCvq̈ + ρTCρρ+ τTCττ , (4.23)

with Cv and Cρ the costs for joint acceleration and grf and Cτ being a zero matrix for the torque.
This cost has a total of 15 decision variables: 7 joint accelerations, 4 torques, 4 grfs.

22

Performance costs

The performance costs are used to facilitate the tracking. There are multiple options to imple-
ment the tracking into the cost. One approach is to directly put the tracking constraints into
the cost function. For the momentum rate, using equation 4.17, this would result in

minimize
q̈

(
Ȧq̇ +Aq̈ − ḣD

)T
Cm

(
Ȧq̇ +Aq̈ − ḣD

)
. (4.24)

Reformulating this into the form of 1
2 q̈
THq̈ + gT q̈ + c results in

minimize
q̈

q̈TATCḣAq̈ + 2
(
q̇T ȦT − ḣD

)
CḣAq̈ +

(
q̇T ȦTCmȦq̇ + ḣTCmḣ− 2ḣCmȦq̇

)
. (4.25)

Another approach is to introduce slack variables. The slack variables are added to the
tracking constraints and function as errors values. The tracking can them be achieved by
minimizing these slack values. For the momentum rate, this results in the cost

minimize
q̈

sTmCmsm, (4.26)

subject to: Ȧq̇ +Aq̈ = ḣD + sm (4.27)

where sm is the slack variable for the momentum rate constraint.
While both approaches essentially give the same result, as sm represents the same error value

as used in the cost function 4.24, the approach of slack values creates a shorter cost function.
Furthermore, the cost function of the slack variable approach consists of only a quadratic part,
while the direct approach also contains linear and constant parts.

The slack variable approach is chosen for the controller design as this will create a clearer
cost function. Applying slack variables to all tracking constraints results in the performance
cost

Ct = minimize
sm,sf,sa

sTmCmsm + sTf Cfsf + sTa Casa, (4.28)

where sm, sf and sa are the tracking errors of the momentum rate, feet acceleration and angular
acceleration of the chest. Matrices Cm, Cf and Ca are cost function weighting matrices. This
cost function has a total of 8 decision variables, 3 momentum rate errors, 4 feet and 1 angular
acceleration error.

4.4.3 QP formulation

The full QP can now be formulated by a combination of the cost equations and the constraints.
The cost is a combination of equations 4.23 and 4.28. The constraints consist of the dynamics
constraint 4.8, the tracking constraints 4.17, 4.19 and 4.20 with the added deviation variables
and the contact constraints 4.10 and 4.16. With this the full QP can be formulated:

minimize
q̈,ρ,τ,sm,sf,sa

q̈TCvq̈ + ρTCρρ+ τTCττ + sTmCmsm + sTf Cfsf + sTa Casa, (4.29)

subject to:

M(q)q̈ + C(q)q̇ +G(q) = Sττ + JT (q)ρ,

Ȧ(q)q̇ +A(q)q̈ = ḣD + sm,

Jf(q)q̈ + J̇f(q)q̇ = p̈D + sf,

Scq̈ = αD + sa,

dfρ = 0,

Qcρ ≤ 0,

(4.30)

23

where Qc is given by

Qc =



 −Pn

Pt − µPn

−Pt − µPn

 0

0

 −Pn

Pt − µPn

−Pt − µPn



 . (4.31)

The full QP written in the standard form of 1
2x

THx+ gTx+ c can be found in appendix B.

4.4.4 Bounds

In addition to the constraints, several limits have to be enforced on the decision variables. The
torque limits on robotic systems are normally determined by the maximal torque that can be
delivered by the motors in the joints. For the model used in the thesis they are determined in
the analysis step. Grf limits are enforced to ensure the robot does not launch itself of the ground
or does not put unnecessary strain on the contact points.

The joint acceleration limits are used to enforce the joint limits. An overview of the used
joint limits can be found in table C.1 in the appendix. The joint limits are enforced by limiting
the maximum acceleration allowed in the direction of the joint limits. First the maximum joint
acceleration is set. Then for each controller time step the distance bi required for each joint to
reach zero velocity is calculated with

bi =
q̇2i

2q̈max
, (4.32)

where q̈max is the maximum joint acceleration. If the current joint position plus the breaking
distance bi is larger than the joint limit, the joint is forced into maximal deceleration. This
results in the following limit for each joint

• If qi + bi ≥ qm then q̈i,l = −q̈max,

• Else q̈i,l = q̈max

where q̈i,l is the limit for joint i.
The deviation variables are unbound since they are not directly connected to a physical

property.

24

Chapter 5

Analysis method

This chapter will cover the analysis method used to analyze the control parameters. Section
5.1 details the method used to analyze the control parameters. Section 5.2 discusses the control
parameters that will be analysed. Section 5.3 covers the variables which will be used for the
analysis.

5.1 Approach

The robot should be capable of walking at a constant velocity and recovering from force impulses
large enough to require at least one step to recover balance. During these two scenarios, the
performance with different parameter values will be analyzed. Then the optimal parameters
values will be determined and analyzes of the final optimal design will be performed.

Walking will be analyzed by creating a CoM trajectory starting the initial CoM position
of the robot and moving in positive x-direction at a constant velocity of 0.5 m/s. The push
recovery will be analyzed by creating a stationary CoM trajectory at the initial location of the
robot’s CoM. After 0.5 seconds, a 700N horizontal force will be applied on the CoM for 0.2
seconds, resulting in a 140 Ns force impulse. This force impulse is strong enough for the robot
to require multiple steps to recover balance.

Because almost all control parameters are influenced by each other, a baseline model is
required to analyze the impact of individual control parameters. The baseline is created by
estimating values for the control parameters. These estimated values will then be tested by
running the simulation and tuned till the design goals are met.

With this baseline, the individual control parameters can be analyzed by testing different
values. For each parameter, a range of values will be created. For each value, a simulation will
be run and the analysis variables will the plotted. From these plots, the ideal value will be
determined.

As torque is often a limiting factor in exoskeleton systems, the torque limit is the first
parameter to be analyzed. The minimal operating torque limit will be determined by determining
the lowest torque limit where the robot with the baseline controller is still able to achieve the
design goals and where increasing the limit does not drastically increase the performance. This
torque limit will then be used as the baseline parameter value for the analysis of the other
parameters. This allows the other control parameters to be analyzed at a lower torque, which
will increase the effects of changing the values.

One important thing to note is that only the torque limit will be changed in the baseline
controller after its analysis. The other analysis will be done with the same baseline. The results
of one analysis thus do not influence the other variables.

25

5.2 Control parameters selection

The control parameters can be divided into three groups: the decision variable limits, the decision
variable weights and the PD values of the MRP.

The decision variable limits control the maximum values for different physical properties,
which are often determined by the design of the system rather than the controller. However, it
is still relevant to analyze these in a simulated environment since this can give a indication of the
design requirement of the robot. The joint acceleration limit is used to enforce the joint limits.
The joint acceleration that can be achieved in limited by the configuration of the robot and the
torque limits. Thus it is not relevant to analyze. It is assumed that the ground is able to handle
the GRFs the robot wants to generate. This parameter is still analyzed to see how much GRF
are actually required to still achieve the design goals. The torque limit is important and will
thus be analyzed. The slack limits are virtual and thus do not have any physical significance.
These limits will not be analyzed.

The cost function of the QP has six decision variables. The torque weight is set to 0 and
will not be analyzed for reasons explained in section 4.4.2. The weight parameters for the other
decision variables will be analyzed.

The MRP uses PD control to create tracking goals that execute the desired trajectories.
While the PD values can be chosen by analyzing the step response, this does not take the
interaction with the QP controller into account. Because of that, these values will also be
analyzed. The derivative value is chosen such that the PD controller is critically dampened. As
such, when the proportional parameter is changed, the derivative value will change automatically.

This will result in the following nine parameters that will be analyzed:

1. Torque limits

2. GRF limits

3. Joint acceleration weight

4. GRF weight

5. Momentum rate deviation weight

6. Feet acceleration deviation weight

7. Chest angulare acceleration weight

8. Momentum rate PD values

9. Feet acceleration PD values

5.3 Analysis variables

There are two factors to be analyzed: the tracking performance and the operational factors.
The controller has two goals: tracking a given CoM trajectory and remaining stable. The

performance regarding the first goal can be analyzed by looking at the accuracy of the CoM
tracking. To achieve the second goal, it required for the QP to be able to track the feet trajecto-
ries generator by the trajectory generator in the high-level controller. Furthermore, to maintain
long-term stability, the controller attempts to keep the chest at a certain angle. The overall
performance of the robot can thus be analyzed by looking at these three tracking goals. This is
done by looking at the average error between the robot and the trajectories and the peak errors.

26

The operational factors consist of operational costs and effects. These are the joint torques,
GRFs, and the average energy expenditure. The energy expenditure is related to the torque.
The average expenditure over a whole simulation is given as

u2 =

nt∑
i=1

(
4∑

k=1

(
τ2k,i
))

(5.1)

where k are the actuated joints and nt are the number of time steps in the simulation. For the
torques and GRFs, both the average and the peak value are analyzed.

27

Chapter 6

Analysis results and discussion

This section will cover and briefly discuss the results of the analysis. The analysis contains
multiple steps where the steps are dependent on the results of the previous steps. As such, this
section covers both the results and a brief discussion of the results. The baseline values can be
found in appendix D. The walking simulations are done at a walking speed of 0.5 m/s. The
push recovery is simulated with a force impulse of 140 Ns applied at the CoM.

Section 6.1 covers the torque analysis. Section 6.2 covers the baseline performance. The
baseline performance is covered after the torque analysis as this analysis is done with the optimal
torque from the torque analysis implemented. This order is chosen so a fair comparison can be
made between the baseline performance and the final design performance. Section 6.3 covers
the analysis all parameters except for the torque limit. Section 6.4 covers the performance of
the final design.

An overview of the configuration of the robot at different time steps during the simulations
is shown in figure 6.3.

6.1 Torque limit analysis

The results of the torque limit analysis can be found in appendix E. Tests show that torque
limits under 200 Nm are not feasible for this controller. These torque values do not allow the
controller to follow the feet trajectory, resulting in the robot toppling.

The performance graphs show that a higher torque limit increases the tracking accuracy for
all trajectories of the robot. However, increasing the torque limit also increases the operation
cost. The improvement gained from increasing the torque limit slows above 220 Nm. This is
clearly illustrated by the average feet error, highlighted in figure 6.1.

As the torque limit is often a limiting factor of exoskeleton systems, the other parameters
will be analysed with a baseline torque of 220 Nm. The graphs show that increasing the torque
limit above 220 Nm does not have large effect.

Figure 6.1: Average feet error for different torque limits. Increasing the torque limit improves
the feet tracking. However, the improvement gained above 220 Nm is limited.

28

(a) Tracking performance in x direction during
walking. A step is taken when the XcoM leaves
the BoS.

(b) Tracking performance in y direction during
walking. The y-positions of the feet use the left
y-axis. The y-positions of the CoM use the right
y-axis.

(c) Tracking performance in x direction during push
recovery. A step is taken when the CoM leaves the
BoS.

(d) Tracking performance in y direction during push
recovery. The y-positions of the feet use the left
y-axis. The y-positions of the CoM use the right
y-axis.

Figure 6.2: Tracking performance of the baseline controller with a torque limit of 220 Nm.

6.2 Baseline performance

The baseline performance is analyzed with a torque limit of 220 Nm. Torque limit is a property
determined by the physical design of a robotic system and often not a chosen control parameter.
Furthermore, due to the impact of the torque limit, analysing the baseline model with a torque
limit of 220 Nm will allow a fair comparison with the final design.

The tracking performances over time are displayed in figure 6.2. The values of the perfor-
mance and operation variables are displayed in tables 6.1 and 6.2, for walking and push recovery
respectively.

6.3 Parameter Analysis

The full results of the parameter analysis can be found in appendix F. The tests are performed
with a torque limit of 220 Nm.

29

Table 6.1: The values of the performance and operational variables of the base line controller
during walking.

Variable Average value Peak value

CoM error 0.012 m 0.027 m

Feet error 2.6 · 10−3 m 0.034 m

Chest angle devation 0.015 rad 0.058 rad

Joint torques 70.4 Nm 220 Nm

Ground reacion force 355.3 N 1024 N

u2 3.0 · 104 N2m2 1.17 · 105 N2m2

Table 6.2: The values of the performance and operational variables of the base line controller
during push recovery.

Variable Average value Peak value

CoM error 0.40 m 0.91 m

vertical CoM error 8.3 · 10−3 m 0.042 m

Feet error 2.3 · 10−3 m 0.79 m

Chest angle devation 0.019 rad 0.058 rad

Torque 60.6 Nm 220 Nm

Ground reacion force 359.1 N 1059 N

u2 2.8 · 104 N2m2 1.3 · 105 N2m2

6.3.1 Ground reaction force limit

The graphs show that performance increases significantly for limits up to 750 N for normal
walking. Limits lower than 750 are no feasible for the push response however. Values higher
than 750 N increase the peak grf, however, do not increase the tracking performance of the
controller.

6.3.2 Ground reaction force weight

For weight values lower than 10−1 changing the ground reaction force weight has no effect.
However for values above 10−1 the controller becomes unstable. Moving requires a temporary
increase in the grf. Increasing the cost of the grf results in the controller only starting to move
once the error becomes too large. The feet trajectory tracking is then too weak to perform a
stable gait, resulting in the toppling of the robot.

6.3.3 Joint Acceleration Weight

Changing the joint acceleration cost shows much of the same behaviour as the grf cost. For
values up to 10, changing the cost does not have a noticeable impact. For value higher than 10,
the feet trajectory tracking becomes weaker. This results in a higher average torque, which in
turn increases the amount of energy used.

6.3.4 Momentum rate error weight

Momentum trajectory tracking is one of the primary tasks of the controller. The data shows
that choosing a momentum rate error weight lower than 10 results in poor tracking. This leads
to unstable behaviour. Increasing the weight to above 1000, will result in poor tracking of the
feet. The tracking of the momentum rate is too strong, causing an unstable gait.

30

6.3.5 Feet acceleration error weight

The feet tracking become too weak when the feet acceleration error weight is decreased to 1000.
Increasing the error weight improves the feet tracking and lowers the average torque and thus
energy spending. However, due to the balancing effects in the cost, higher values of the error
cost decreases the chest angular acceleration tracking.

Removing the error variable from the feet acceleration constraint, thus making it a full
equality constraint, creates highly unstable behaviour. The robot cannot match the desired foot
acceleration at the start of a step while maintaining proper tracking of the other tracking goals
in order to stay stable.

6.3.6 Chest angular acceleration error weight

Increasing the chest angular acceleration error weight decreases the chest angle error while not
influencing the feet and CoM errors for values up to 104. Values above 104 increase the angle
tracking slightly but lowers the feet trajectory tracking and increases operation costs.

6.3.7 Momentum rate PD values

The PD controller of the MRP is critically dampened. The derivative gain changes when varying
the proportional gain due to the following relationship: DC =

√
2mPC , where m is the mass of

the robot.
Increasing the CoM PD gains lowers the CoM error during walking, with deminishing returns

for higher values. The feet error increases for higher CoM PD gains in what seems a linear
relationship. In the case of being pushed the PD gains do not have a large effect. Since the
momentum rate that can be generated by the robot, while remaining stable, is limited, there is
a limit on the desired momentum rate that can be generated by the MRP. For high CoM errors,
such as after a push, this limit is reached for most PD values.

Higher PD values increase the operational costs for walking but slightly lower the operational
costs of when the robot is pushed.

6.3.8 Feet acceleration PD values

The feet PD values are also critically damped, resulting the following relation between propor-
tional and derivative gain: Df =

√
2Pf . Increasing the feet PD values decreases the feet error,

especially at lower values. For walking the increase also causes an increase in the CoM error.
The operational costs decrease with increasing PD values.

6.4 Final Design performance

The control parameters of the final design can be found in table 6.3. The parameters were
chosen based on the ideal values determined with the results of the analysis.

The results of the parameter analysis show that higher values of Cf and Pf increase the
performance. However, both have mostly the same effect: making the feet trajectory tracking
stronger. This causes the effects to stack and setting both parameters on their separate ideal
values will cause an unstable gait. To prevent this, the chosen values for the final design are
slightly less than the ideal values that came out of the analysis.

Figure 6.3 shows the position and configuration of the robot at different time steps in the
simulations. The tracking performances over time are displayed in figure 6.4. The values of the
performance and operational variables are shown in tables 6.4 and 6.5.

31

Table 6.3: The final design values of the controller parameters.

Variable name Value

torque limit 220 Nm

grf limit 1000 N

Cv 1.0 · 10−2

Cρ 1.0 · 10−4

Cτ 0

Cm 1.0 · 101

Cf 5.0 · 105

Ca 1.0 · 105

PC 1500

Pf 1500

(a) Walking in positive x-direction at a constant
velocity of 0.5 m/s.

(b) Push recovery. Force impulse is applied between
0.5 and 0.7 seconds.

Figure 6.3: Position of the robot at different time steps during simulation using the final design
of the controller. The red circle is the CoM and the purple asterisk the CoM reference. The red
and cyan asterisks are the references of the right and left foot respectively. The red and cyan
lines are grf at the right and left contact points, the magenta line is the net grf of all contact
points. The green asterisk is the XcoM.

Table 6.4: The values of the performance and operational variables of the final design during
walking

Variable Average value Peak value

CoM error 0.013 m 0.028 m

Feet error 1.8 · 10−3 m 0.034 m

Chest angle devation 0.017 rad 0.058 rad

Joint torques 69.6 Nm 220 Nm

Ground reacion force 356.1 N 1027 N

u2 3.0 · 104 N2m2 1.17 · 105 N2m2

32

(a) Tracking performance in x direction during
walking. A step is taken when the XcoM leaves
the BoS.

(b) Tracking performance in y direction during
walking. The y-positions of the feet use the left
y-axis. The y-positions of the CoM use the right
y-axis.

(c) Tracking performance in x direction during push
recovery. A step is taken when the CoM leaves the
BoS.

(d) Tracking performance in y direction during push
recovery. The y-positions of the feet use the left
y-axis. The y-positions of the CoM use the right
y-axis.

Figure 6.4: Tracking performance of the final design.

Table 6.5: The values of the performance and operational variables of the final design during
push recovery

Variable Average value Peak value

CoM error 0.36 m 0.85 m

vertical CoM error 9.3 · 10−3 m 0.028 m

Feet error 1.5 · 10−3 m 0.055 m

Chest angle devation 0.024 rad 0.058 rad

Torque 59.6 Nm 220 Nm

Ground reacion force 362.2 N 1051 N

u2 2.8 · 104 N2m2 1.3 · 105 N2m2

33

Chapter 7

Discussion

7.1 Performance Final Design

The controller was made to achieve two goals: follow a given CoM trajectory and recover from
a push with a force impulse large enough to require at least one step to recover balance. The
final design is able to achieve both these goals.

7.1.1 High-level controller

The reference generator uses a reactive step planner based on the XcoM stability criterion. This
means that a step will be taken when the XcoM leaves the BoS, with a delay based on the
desired CoM velocity. This behavior is displayed clearly in figure 6.4a. This design allows the
controller to respond to disturbances without requiring new CoM trajectories, as shown in figure
6.4c. One limitation of the state machine managing the step decisions, figure 4.2, is that a step
always has to be completed before new feet trajectories are created. This makes the system
unable to adjust to changing circumstances while stepping.

The motion reference planner is capable of translating the given CoM trajectory and the
feet trajectories generated by the RG into tracking goals. The tracking goals achieve accurate
tracking of the trajectories and can correct deviations from the trajectory. The design of the
MRP allows the robot to move to a given CoM position without requiring a full CoM trajectory.
Figure 6.4c shows that the robot is capable of moving back to the constant CoM target after
balance recovery.

7.1.2 Quadratic program performance

The quadratic program has as goal to reconcile the tracking goals with the dynamics of the robot
and find the optimal balance between the tracking goals and energy costs. The QP is capable of
translating the tracking goals into accurate torques. While the tracking goals are met, it is not
fully capable of balancing these goals with the energy consumption. Increasing the weight of
the operational decision variables leads to unstable behavior. Whether this instability is caused
by the QP itself or the trajectories generated by the high-level controller cannot be concluded
with the results of the analysis.

7.1.3 Walking performance

While walking at a speed of 0.5 m/s, the robot is capable of tracking the CoM trajectory with
an average error of 0.013 meters and a peak error of 0.028 meters. The CoM error data is
taken after 0.4 seconds into the simulation. This is the time the robot needs to correct the error
caused by the initial CoM position of the robot not being the same as the desired CoM position.
Including the first 0.4 seconds would thus give inaccurate data.

34

The feet trajectory can be tracked with an average error of 1.8 ·10−3 meters and a peak error
of 0.034 meters. The peak errors occur at the top of the feet trajectory arc. The likely reason
for this is that not enough torque can be generated to achieve the desired feet acceleration.

The robot is capable of walking with a stable, reliable gait while tracking the CoM trajectory.
In its current implementation, the robot is capable of walking at a maximum velocity of 0.60 m/s
or 2.16 km/h. Increasing the torque limit to 300 Nm allows the robot to reach stable velocities
up to 1.25 m/s or 4.50 km/h. Suggesting that the robot could achieve normal walking velocities
with a better high-level controller.

7.1.4 Push recovery

The robot is able to recover from a force impulse large enough to require multiple steps.
The robot will automatically step when necessary to remain stable. This allows the robot

to maintain balanced when disturbed without requiring an adjusted CoM trajectory.
The robot is capable of recovering from horizontal push disturbance impulses up to 140 Ns.

The robot recovers balance after 0.85 m. After recovering balance, the robot moves back to the
desired CoM position. During the simulation, the peak vertical CoM error is 0.28m with an
average error of 9.3 · 10−3. The total recovery time is 4.2 seconds.

7.1.5 Improvements on Baseline

The final design parameter values are determined by the analysis done with the base line model.
The analysis showed that most parameters were already near their optimal values. The pa-
rameters that saw significant change where the parameters related to the feet tracking, Cf from
1.0 · 105 to 5.0 · 105 and Pf from 1000 to 1500, and the GRFs, Cρ from 1.0 · 10−4 to 1.0 · 10−6.

During walking, the only performance improves were seen in the feet trajectory tracking,
where the average error decreased by 31%. No other improvements were made for the walking
simulation.

For the push recovery simulation, more improvements were gained. Similar to the walking
simulation, the feet error got reduced by 35%. Furthermore, the peak vertical CoM error got
reduced by 33% and the distance to recover was reduced by 0.06m.

7.2 Design Limitations

7.2.1 Movement pattern

The gait generated by the high-level controller is purely reactionary, only initiating a step when
it is required to maintain balance. This system allows the robot to walk and recover from
disturbances. Since it is independent of the desired CoM position, it does not require the
CoM trajectory to adjust to disturbances. However, there are a couple of limitations to this
implementation.

The first major limitation is that a reactionary feet trajectory generator does not create a
fluent gait. The double support phase is long, so it requires short step times. During walking,
the gait consists of about 35%, while normal human gait consists of about 80% single support
phase [20]. This means that the average feet velocity has to be about 2.3 times during a step
then during normal human gait to achieve the same walking speed. The steps thus require high
feet acceleration changes, which require high torques. Furthermore, the high accelerations of
the stepping leg during the single support phase generate a momentum rate on the CoM. This
causes the CoM to deviate from its trajectory which will have to be compensated for during the
double support phase.

The second limitation of the reactionary step planner is that it requires a large range of
motion. The system reacts to the XcoM and does not take the position of the CoM into

35

account. In some situations, this can result in the desired foot position moving outside of the
range of motion of the foot. In these cases, the controller will try to move the foot as close
to the desired position as possible. However, this can result in undesired or unstable behavior.
One example is the feet hitting the ground, which can cause unexpected ground reaction forces
that cause the robot to become unstable. To counter this, the robot has a crouched gait, which
increases the horizontal range of motion of the feet. This is not desired since it requires higher
knee torque and thus results in higher than necessary energy requirements.

7.2.2 Point feet

The contact points of the robot are modeled as point feet, resulting in only two contact points.
While this simplifies the dynamics, it has a couple of limitations. The absence of feet and ankle
torques limits the step planner. During normal gait, a lot of momentum can be generated by
the feet pushing off the ground. Since these are absent in the model, all ground reaction forces
have to be generated by the knee and hip joints. This results in a higher torque requirement
since more force has to be generated by these joints.

Furthermore, the absence of the feet decreases the range of motion of the contact points
relative to the CoM. To generate momentum, a bipedal system has to push against the supporting
surface. This requires the limb to extend. With feet, this extension can be created by extending
the ankle as well as the knee and hip. For a model with point feet, this extension has to come
solely from knee and hip extension. This requires the knees and hips to not be fully extended
while stationary, otherwise, the momentum required for walking cannot be generated. This
crouched stance requires more torque and thus increases the energy expenditure.

Another limitation is that during the single support phase, there is only one contact point
with the ground. This fixes the CoP on the same contact point, while a model with feet is
capable of moving the CoP within the area of the foot. Since the CoP is fixed, the direction of
the momentum cannot be altered once a step is initiated.

7.3 Analysis limitations

The controllers of exoskeletons and humanoid robots are complicated systems. They often
involve multiple smaller controllers working together. This results in a lot of different control
parameters. The effects of individual parameters on the final performance are not immediately
clear.

The goal of the parameter analysis was to analyze the effects of individual parameters. This
was done by creating a baseline model from which the effects of changing different parameters
were analyzed.

The main limitation of the analysis is the interdependence of parameters. Most control
parameters influence each other. Changing the value of one parameter can have a different
effect depending on the value of another parameter. To fully analyze the effect of individual
parameters, combinations of different values of interdependent variables have to be analyzed.
However, the number of control parameters involved does not make this feasible.

Another limitation that follows from the previous one is the dependence on the baseline. The
influence of individual parameters was analyzed by choosing different values from the baseline.
A result that may happen is that changing the value of the parameter does not seem to have a
large effect, while the effect may be larger if different baseline values were chosen for the other
control parameters.

36

7.4 Quadratic Program

When it comes to the QP there are two important choices made with regards to the cost function.
The first is that all tracking goals have been added to the cost. The second choice is to implement
the cost with the use of slack values in the constraints.

The constraint equations in a QP have to be met. As such, if the tracking equations are
used as constraint equations, the tracking will very strong when feasible. The main downside
of this method is its feasibility. Using the feet tracking as an example, if the feet acceleration
goal cannot be met, the QP will not be solvable. This will cause the robot to crash or a backup
controller has to be designed to deal with these cases. Including the tracking into the cost allows
for errors when necessary.

The second decision was to implement the cost on the tracking goals via slack variables. The
use of slack simplifies the cost function since it only contains quadratic parts. Furthermore, the
output of the cost function now contains the slack variables, which are the errors on the tracking
goals. This will a more intuitive insight into the decisions made by the QP. The downside of
using slack variables is an increase in the number of constraint equations.

The simulations have shown that both using slack variables and applying a cost to all tracking
goals results in a controller with strong trajectory tracking. The added flexibility of adding the
feet tracking to the cost function allows the system to deviate from infeasible changes in feet
acceleration. The analysis shows that removing the cost from the feet acceleration, making it
a full equality constraint, leads to unstable behavior. It is unknown whether the use of slack
variables over the direct implementation of the tracking in the cost leads to any differences in
the computation time.

7.5 Applicability to Exoskeletons

The goal of this thesis was to explore the option of using a momentum-based controller for the
Symbitron exoskeleton. This was done by approaching the exoskeleton with a two-dimensional
humanoid (2DM) robot. Using a 2DM robot as a platform creates a system that has fewer
variables than an exoskeleton. This makes it simpler to test different controller variations and
analyze the effect of different controller parameters. However, this does also brings with it some
limitations to the applicability of the controller to an exoskeleton.

An important aspect of humanoid control is task priority. The main focus of a humanoid
system is balance. The requirements for balance are mostly the same for any bipedal robot.
Furthermore, tracking goals for a 2DM robot are the same as is used for exoskeleton control.
Because of this, the relative cost between performance decision variables concluded by the anal-
ysis should apply to an exoskeleton.

The high-level controller was built to provide a simple balance system and tracking goal
generator. However, this controller has a couple of limitations as discussed in section 7.2.1.
These limitations make it undesirable to apply this high-level controller on an exoskeleton.
The balance criterion applies to an exoskeleton, however, the feet trajectory should be more
sophisticated and generate a smoother gait.

The quadratic program has shown to be capable at achieving the tracking goals. The cost
function and constraints should be applicable to an exoskeleton when expanded to three dimen-
sions.

The model uses point feet. While this is sufficient for a 2DM, feet will have to be added in
order to expand it to a three-dimensional model. The complexity of the feet lies mostly in the
additional contact points. These contact points can be added to the feet tracking constraint, as
these equations track the Cartesian accelerations of the contact points. If these are added, the
QP should be able to function in the same form as for the 2DM.

37

7.6 Contribution to the field

While humanoid robotic control is a complex field, this thesis attempted to contribute to the
understanding of these control systems. Using a momentum-based controller for humanoid
robots in itself is not a novel design. It has been applied by Koolen et al. in 2013 and 2016 [28, 33],
for example. However, this thesis does give a couple of new insights.

To my knowledge, the control systems used so far put the feet tracking as an equality
constraint. The analysis of the controller designed in this thesis shows that this is not required
to achieve a stable gait and adding it to the cost allows the system to be more flexible and more
robust.

Furthermore, the analysis performed on the control parameters gives a more detailed insight
into the effects of these parameters on achieving the tracking goals. While the parameter values of
other momentum-based controllers will have been chosen based on a form of analysis. However,
to my knowledge, no analysis has been published.

38

Chapter 8

Recommendations

8.1 Recommended controller settings

The final controller parameters can be found in table 6.3. While these parameters are specific for
this design, they give indications of recommended controller settings for other bipedal systems.

8.1.1 Overall quadratic program design

Regarding the overall QP design, it is recommended to include all tracking goals in the cost
function. The results show including the tracking functions in the cost allows for strong trajec-
tory tracking while still allowing for some errors when necessary. These errors can be preferred
or even necessary when sudden changes in the reference momenta rates or acceleration occur,
for example when the movement is disturbed. A further benefit is that it is no longer required
for the reference momenta rates and accelerations to be smooth. If the change in desired ac-
celeration is too steep, the controller is able to approach it as best as possible without the QP
becoming infeasible.

8.1.2 Cost function

Since the QP balances the costs of the different decision variables in the cost, increasing the
weight of one variable has the same result as lowering the others. As such, recommendations
for the cost function weights can only be given in the form of which variables to prioritize and
the cost of certain variables relative to others. The results of the parameter analysis give a clear
indication of the recommended prioritization in the cost function.

Regarding the performance variables, the first tracking priority should be the feet. The
experiments have shown that when using lower values for the feet acceleration error weight
makes the QP choose to use the legs to compensate for momentum rate errors. While this might
be very efficient in the short term, it is not a feasible long-term strategy and leads to instability.
The second priority should be the chest angle. When low priority is given to the chest angle, the
QP decides to create momentum by leaning forward or backward, since this requires less torque
and ground reaction forces. This often results in the robot toppling. The last prioritization
should be the momentum rate. While the input of the controller is only a CoM trajectory, the
overall momentum rate is less important than maintaining balance. The analysis indicates that
if a stable gait is achieved, accurate CoM tracking can also be achieved.

For the operational cost parameters, a strong recommendation cannot be given. The move-
ment pattern created by the high-level controller requires quick steps. This results in a require-
ment for high joint acceleration and torque during the stepping arc. Increasing the weight of
the operational weight thus cause instability. A controller with a more fluent movement pattern
might have different recommended settings for the operational weights.

39

8.2 Future Work

In order to develop this controller further, a recommendation can be given on which steps to
take before implementing it for a exoskeleton. It is first recommended to expand the humanoid
model with feet. Adding feet in a two-dimensional model will increase the amount of contact
points from two to four. A model with feet has a larger range of motion, which should lead to
more robust movement and a smoother gait. Furthermore, feet are required to achieve a stable
three dimensional model as point feet do not give a proper BoS to maintain balance.

The high-level controller used in this thesis is very basic and likely won’t perform well in a
three dimensional setting. A controller that provides a smoother gait pattern will decrease the
required torque limit and bring it more in line with the capabilities of motors used in exoskeleton
design. Assuming the human gait is near optimal, a gait with a longer single support phase is
recommended.

40

Bibliography

[1] W. H. Organization, “Spinal cord injury,” 2013. Accessed on: 01/11/2019.

[2] A. K. Varma, A. Das, G. Wallace, J. Barry, A. A. Vertegel, S. K. Ray, and N. L. Banik,
“Spinal cord injury: A review of current therapy, future treatments, and basic science
frontiers,” Neurochemical Research, vol. 38, pp. 895–905, May 2013.

[3] A. Esquenazi, M. Talaty, and A. Jayaraman, “Powered exoskeletons for walking assistance
in persons with central nervous system injuries: A narrative review,” PMR, vol. 9, pp. 46–
62, 1 2017.

[4] A. J. Young and D. P. Ferris, “State of the art and future directions for lower limb robotic ex-
oskeletons,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25,
no. 2, pp. 171–182, 2017.

[5] K. Anam and A. A. Al-Jumaily, “Active exoskeleton control systems: State of the art,”
Procedia Engineering, vol. 41, pp. 988 – 994, 2012. International Symposium on Robotics
and Intelligent Sensors 2012 (IRIS 2012).

[6] S. Wang, L. Wang, C. Meijneke, E. van Asseldonk, T. Hoellinger, G. Cheron, Y. Ivanenko,
V. La Scaleia, F. Sylos-Labini, M. Molinari, F. Tamburella, I. Pisotta, F. Thorsteinsson,
M. Ilzkovitz, J. Gancet, Y. Nevatia, R. Hauffe, F. Zanow, and H. van der Kooij, “Design
and control of the mindwalker exoskeleton,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 23, no. 2, pp. 277–286, 2015.

[7] A. J. Young and D. P. Ferris, “State of the art and future directions for lower limb robotic ex-
oskeletons,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25,
no. 2, pp. 171–182, 2017.

[8] N. Aliman, R. Ramli, and S. Haris, “Design and development of lower limb exoskeletons,”
Robot. Auton. Syst., vol. 95, p. 102–116, Sept. 2017.

[9] S. Jatsun, A. Malchikov, and A. Yatsun, “Comparative analysis of the industrial exoskeleton
control systems,” in Proceedings of 14th International Conference on Electromechanics and
Robotics “Zavalishin’s Readings” (A. Ronzhin and V. Shishlakov, eds.), (Singapore), pp. 63–
74, Springer Singapore, 2020.

[10] M. Mistry, J. Nakanishi, G. Cheng, and S. Schaal, “Inverse kinematics with floating base
and constraints for full body humanoid robot control,” in Humanoids 2008 - 8th IEEE-RAS
International Conference on Humanoid Robots, pp. 22–27, 2008.

[11] J. Vantilt, K. Tanghe, M. Afschrift, A. Bruijnes, K. Junius, J. Geeroms, E. Aertbeliën,
F. De Groote, D. Lefeber, I. Jonkers, and J. Schutter, “Model-based control for exoskeletons
with series elastic actuators evaluated on sit-to-stand movements,” Journal of NeuroEngi-
neering and Rehabilitation, vol. 16, 06 2019.

41

[12] D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a humanoid robot,”
Autonomous robots, vol. 35, no. 2, pp. 161–176, 2013.

[13] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning with centroidal
dynamics and full kinematics,” in 2014 IEEE-RAS International Conference on Humanoid
Robots, pp. 295–302, 2014.

[14] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa,
“Resolved momentum control: humanoid motion planning based on the linear and angular
momentum,” in Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2003) (Cat. No.03CH37453), vol. 2, pp. 1644–1650 vol.2, 2003.

[15] C. Meijneke, G. van Oort, V. Sluiter, E. van Asseldonk, N. L. Tagliamonte, F. Tambu-
rella, I. Pisotta, M. Masciullo, M. Arquilla, M. Molinari, A. R. Wu, F. Dzeladini, A. J.
Ijspeert, and H. van der Kooij, “Symbitron exoskeleton: Design, control, and evaluation of
a modular exoskeleton for incomplete and complete spinal cord injured individuals,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, pp. 1–1, 2021.

[16] L. Lanari and S. Hutchinson, “Inversion-based gait generation for humanoid robots,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1592–
1598, 2015.

[17] A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, and L. Righetti, “Momentum
control with hierarchical inverse dynamics on a torque-controlled humanoid,” Autonomous
Robots, vol. 40, no. 3, pp. 473–491, 2016.

[18] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen,
P. Marion, and R. Tedrake, “Optimization-based locomotion planning, estimation, and
control design for the atlas humanoid robot,” Autonomous Robots, vol. 40, no. 3, pp. 429–
455, 2016.

[19] C. G. Atkeson, B. P. W. Babu, N. Banerjee, D. Berenson, C. P. Bove, X. Cui, M. DeDonato,
R. Du, S. Feng, P. Franklin, M. Gennert, J. P. Graff, P. He, A. Jaeger, J. Kim, K. Knoedler,
L. Li, C. Liu, X. Long, T. Padir, F. Polido, G. G. Tighe, and X. Xinjilefu, “No falls, no
resets: Reliable humanoid behavior in the darpa robotics challenge,” in 2015 IEEE-RAS
15th International Conference on Humanoid Robots (Humanoids), pp. 623–630, 2015.

[20] H. F. N. Al-Shuka, B. Corves, W.-H. Zhu, and B. Vanderborght, “Multi-level control of
zero-moment point-based humanoid biped robots: a review,” Robotica, vol. 34, no. 11,
p. 2440–2466, 2016.

[21] L. Lanari, S. Hutchinson, and L. Marchionni, “Boundedness issues in planning of locomotion
trajectories for biped robots,” in 2014 IEEE-RAS International Conference on Humanoid
Robots, pp. 951–958, 2014.

[22] H. F. N. Al-Shuka, F. Allmendinger, B. Corves, and W.-H. Zhu, “Modeling, stability and
walking pattern generators of biped robots: a review,” Robotica, vol. 32, no. 6, p. 907–934,
2014.

[23] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt, “Capturability-based analysis
and control of legged locomotion, part 1: Theory and application to three simple gait
models,” Int. J. Rob. Res., vol. 31, p. 1094–1113, Aug. 2012.

[24] L. Lanari and S. Hutchinson, “Planning desired center of mass and zero moment point
trajectories for bipedal locomotion,” pp. 637–642, 11 2015.

42

[25] A. Hof, M. Gazendam, and W. Sinke, “The condition for dynamic stability,” Journal of
Biomechanics, vol. 38, no. 1, pp. 1–8, 2005.

[26] M. Vukobratovic and B. Borovac, “Zero-moment point - thirty five years of its life.,” I. J.
Humanoid Robotics, vol. 1, pp. 157–173, 03 2004.

[27] A. L. Hof, “The ‘extrapolated center of mass’ concept suggests a simple control of balance
in walking,” Human Movement Science, vol. 27, no. 1, pp. 112–125, 2008.

[28] T. Koolen, S. Bertrand, G. Thomas, T. de Boer, T. Wu, J. Smith, J. Englsberger, and
J. Pratt, “Design of a momentum-based control framework and application to the humanoid
robot atlas,” International Journal of Humanoid Robotics, vol. 13, no. 01, p. 1650007, 2016.

[29] A. R. Wu and A. D. Kuo, “Determinants of preferred ground clearance during swing phase
of human walking,” Journal of Experimental Biology, vol. 219, no. 19, pp. 3106–3113, 2016.

[30] G. Meinsma, Optimal Control. University of Twente, November 2019.

[31] R. Orsolino, M. Focchi, C. Mastalli, H. Dai, D. G. Caldwell, and C. Semini, “Application
of wrench-based feasibility analysis to the online trajectory optimization of legged robots,”
IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3363–3370, 2018.

[32] A. Macchietto, V. Zordan, and C. R. Shelton, “Momentum control for balance,” in ACM
SIGGRAPH 2009 Papers, SIGGRAPH ’09, (New York, NY, USA), Association for Com-
puting Machinery, 2009.

[33] T. Koolen, J. Smith, G. Thomas, S. Bertrand, J. Carff, N. Mertins, D. Stephen, P. Abeles,
J. Englsberger, S. McCrory, J. van Egmond, M. Griffioen, M. Floyd, S. Kobus, N. Manor,
S. Alsheikh, D. Duran, L. Bunch, E. Morphis, L. Colasanto, K.-L. H. Hoang, B. Layton,
P. Neuhaus, M. Johnson, and J. Pratt, “Summary of team ihmc’s virtual robotics challenge
entry.”

[34] A. F. Soliman and B. Ugurlu, “Robust locomotion control of a self-balancing and underac-
tuated bipedal exoskeleton: task prioritization and feedback control,” IEEE Robotics and
Automation Letters, vol. 6, no. 3, pp. 5626–5633, 2021.

[35] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling, planning and
control. Springer Science & Business Media, 2010.

[36] J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for solving contact
dynamics,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 895–902, 2018.

43

Appendix A

Contact model

This work follows [36], but is adapted from the 3D case to the 2D sagittal case. The code was
implemented by Ander Vallinas-Prieto and Arvid Keemink.

Given our dynamics:

M(q)q̈ + C(q, q̇)q̇ +G(q) = Sττ + JT (q)ρ,

we first rewrite h(q, q̇) = C(q, q̇)q̇ +G(q) so that we obtain:

M(q)q̈ = Sττ − h(q, q̇) + JTρ

Using Euler integration with time step ∆t, denoting the contact impulse that happens over this
duration as λ = ∆t · ρ and omitting dependence on q, we obtain:

M(q̇+ − q̇−) = ∆t(Sττ − h) + JTλ

Mq̇+ = Mq̇− + ∆t(Sττ − h) + JTλ

q̇+ = q̇− +M−1
(
∆t(Sττ − h) + JTλ

)
where q̇+ is the generalized velocity for the next time step. The goal is to find an impulse that
will bring the velocity of the contact-end-effector to zero.

For each contact point i = 1, 2 we have contact-point Jacobian Ji and can transform these
EoM to those frames:

Jiq̇
+ = Jiq̇

− + JiM
−1

(
∆t(Sττ − h) +

2∑
k=1

JTk λk

)

v̇+i = τ∗i + JiM
−1JTi λi + JiM

−1
2∑

k=1,k 6=i
JTk λk,

where τ∗i = Jiq̇
− + JiM

−1∆t(Sττ − h). Then if we define1:

ci = τ∗i + JiM
−1

2∑
k=1,k 6=i

JTk λk,

we would have v+i = ci + JiM
−1JTi λi and λv0 = −

(
JiM

−1JTi
)−1

ci, where λv0 is the impulse
needed to stay obtain zero velocity of the contact point after impact.

The following steps we iterate until convergence, starting with λi = 0, if we have more than
one contact point:

1Using the sum is superfluous when having only 2 contact points, but its structure shows a direct generalization
for an arbitrary number of contact points

44

• If the contact is opening (ci,y > 0) then λi = λi(1− α).

• Else if we are stationary (µλv0,y ≥ |λv0,x|) then λi = αλv0 + (1− α)λi

• Else if we are slipping (µλv0,y < |λv0,x|) then we find the impulse λ∗i by solving a QP

λ∗i = arg min
λi

λTi JiM
−1JTi λi −+cTi λi

s.t.

conform to friction cone[
0 1

]
JiM

−1JTi λi = −ci,y

and λi = αλ∗i + (1− α)λi.

For a single contact point, α = 1 and we stop after a single iteration. We also would obtain the
simplification that ci = τ∗i .

The ground reaction forces (average over ∆t) given by ρ are readily determined from this
procedure:

ρ = λ/∆t

45

Appendix B

Final quadratic program in standard
form

This appendix puts the QP formulated in equations 4.29 and 4.30 into the standard form.
The vector with decision variables is defined as

x =



q̈
ρ
τ
sm
sf
sa

 , (B.1)

where the individual variables are defined as

q̈ =



q̈1
q̈2
q̈3
q̈4
q̈5
q̈6
q̈7


, ρ =


fx,r
fy,r
fx,l
fy,l

 , τ =


τ1
τ2
τ3
τ4

 , sm =

sm,a

sm,x

sm,y

 , sf =


sf,x,r
sf,y,r
sf,x,l
sf,y,l

 , sa = sa, (B.2)

where subscripts r and l represent the right and left foot respectively, subscript a represents
angular. Adding the individual variables up results in a total of 23 decision variables.

The standard form of a quadratic program has the form of

1

2
xTHx+ gTx+ c. (B.3)

The cost contains only quadratic components, thus the g and c components are zero. H is a
23-by-23 symmetric matrix given by

H =



Cv 07×4 07×4 07×3 07×4 07×1
04×7 Cρ 04×4 04×3 04×4 04×1
04×7 04×4 Cτ 04×3 04×4 04×1
03×7 03×7 03×7 Cm 03×4 03×1
04×7 04×7 04×7 04×3 Cf 04×1
01×7 01×7 01×7 01×3 01×4 Ca

 (B.4)

46

H =



Cv

Cρ 0
Cτ

Cm

0 Cf

Ca

 (B.5)

The inequality constraints have the form of

Aineqx ≤ b. (B.6)

Matrix A and vector b are given by

Aineq =
(
06×7 Qc 06×12

)
, b =

(
06×1

)
, (B.7)

where Qc is given by matrix 4.31.
The equality constraints have the form of

Aeqx = beq, (B.8)

of which the matrices are given by

Aeq =


M(q) −JT (q) −Sτ 07×3 07×4 07×1
A(q) 03×4 03×4 I3×3 03×4 03×1
J(q) 04×4 04×4 04×3 I4×4 04×1
Sc 01×4 01×4 01×3 01×4 1

04×4 df 04×4 04×3 04×4 04×1

 , beq =


−C(q)q̇ −G(q)

ḣD − Ȧ(q)q̇

p̈D − J̇f(q)q̇
αD

04×1

 , (B.9)

where df is the diagonal matrix

df =


df,r 0 0 0
0 df,r 0 0
0 0 df,l 0
0 0 0 df,l

 . (B.10)

47

Appendix C

Joint limits

Table C.1: The joint limits of the humanoid model. The first two joint are translation joints.
The other joints are rotation joint.

Joint lower limit upper limit

q1 -∞ m ∞ m

q2 -∞ m ∞ m

q3 -175◦ 175◦

q4 10◦ 175◦

q5 -175◦ 175◦

q6 -300◦ -60◦

q7 -175◦ -10◦

48

Appendix D

Base line values

Table D.1: The baseline values of the controller parameters used in the parameter analysis.

Variable name Value

torque limit 500 Nm

grf limit 1000 N

Cv 1.0 · 10−2

Cρ 1.0 · 10−6

Cτ 0

Cm 10

Cf 1.0 · 105

Ca 1.0 · 105

PC 1500

Pf 1000

49

Appendix E

Torque limit analysis data

(a) (b)

Figure E.1: Walking analysis of different torque limit values. Values under 200 Nm have shown
to be infeasible with this controller.

50

(a) (b)

Figure E.2: Push disturbance analysis of different torque limit values. Values under 200 Nm
have shown to be infeasible with this controller.

51

Appendix F

Parameter analysis data

F.1 Ground reaction forces limits

(a) (b)

Figure F.1: Walking analysis of different ground reaction force limit values

52

(a) (b)

Figure F.2: Push analysis of different ground reaction force limit values

53

F.2 Ground reaction force weight

(a) (b)

Figure F.3: Walking analysis of different joint acceleration weight,Cρ, values

54

(a) (b)

Figure F.4: Push analysis of different joint acceleration weight,Cρ, values

55

F.3 Joint Acceleration Weight

(a) (b)

Figure F.5: Walking analysis of different joint acceleration weight,Cv, values

56

(a) (b)

Figure F.6: Push analysis of different joint acceleration weight,Cv, values

57

F.4 Momentum Rate Deviation Weight

(a) (b)

Figure F.7: Walking analysis of different momentum rate deviation weight,Cm, values

58

(a) (b)

Figure F.8: Push analysis of different momentum rate deviation weight,Cm, values

59

F.5 Feet Acceleration Deviation Weight

(a) (b)

Figure F.9: Walking analysis of different joint acceleration weight,Cv, values

60

(a) (b)

Figure F.10: Push analysis of different joint acceleration weight,Cv, values

61

F.6 Chest Angular Acceleration Deviation Weight

(a) (b)

Figure F.11: Walking analysis of different joint acceleration weight,Cv, values

62

(a) (b)

Figure F.12: Push analysis of different joint acceleration weight,Cv, values

63

F.7 Momentum Rate PD Values

(a) (b)

Figure F.13: Walking analysis of different Momentum Rate proportional gain ,PC, values. The
system is critically damped, making the derivative gain DC =

√
2mPC , with m being the mass

of the robot.

64

(a) (b)

Figure F.14: Push analysis of different Momentum Rate proportional gain ,PC, values. The
system is critically damped, making the derivative gain DC =

√
2mPC , with m being the mass

of the robot.

65

F.8 Feet Acceleration PD Values

(a) (b)

Figure F.15: Walking analysis of different Momentum Rate proportional gain ,Pf, values. The
system is critically damped, making the derivative gain Df =

√
2Pf .

66

(a) (b)

Figure F.16: Push analysis of different Momentum Rate proportional gain ,Pf, values. The
system is critically damped, making the derivative gain Df =

√
2Pf .

67

Appendix G

Final design parameter values

Table G.1: The baseline values of the controller parameters used in the parameter analysis.

Variable name Value

torque limit 220 Nm

grf limit 1000 N

Cv 1.0 · 10−2

Cρ 1.0 · 10−4

Cτ 0

Cm 10

Cf 5.0 · 105

Ca 1.0 · 105

PC 1500

Pf 1500

68

Appendix H

Final design torque over time

Figure H.1: Torque over time during walking simulation of the final design

Figure H.2: Torque of time during push recovery simulation of the final design

69

