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ABSTRACT 

One of the major sources of pollution affecting coastal water bodies in urbanized watersheds is related to 

poorly treated or untreated wastewater discharge. The excess of nutrients, organic matter and pathogens 

cause an overall deterioration of water quality and impair valuable ecosystem services. The detection of 

wastewater pollution is therefore essential for the sustainable management of coastal resources and remote 

sensing can provide the means for monitoring at extended spatial scales and high temporal frequencies. 

 

This study investigated the utility of optical remote sensing in detecting wastewater spills in Conceição 

Lagoon, a coastal lagoon in Southern Brazil that suffers from recurrent problems of wastewater 

contamination. Inherent Optical Properties (IOPs) derived from Sentinel-2 MSI imagery using the 

2SeaColor model were used to characterize a representative wastewater plume. Modal analysis was applied 

to capture the spatial dynamic of the plume with respect to the background water, whereas the temporal 

features were captured by temporal standardization. This combination allowed the formulation of a novel 

Wastewater Contamination Index (WCI).  

 

The WCI consists of the standardized anomalies of a linear combination of IOPSs, namely:  diffuse 

attenuation coefficient of photosynthesis available radiation, 𝑘𝑑(PAR)  (a quasi-IOP), the absorption 

coefficient of phytoplankton green pigment Chlorophyll-a, 𝑎𝑐ℎ𝑙𝑎(440) , the absorption coefficient of 

detritus and coloured dissolved organic matter, 𝑎𝑑𝑔(440), and backscattering of suspended particulate 

matter, 𝑏𝑏𝑠𝑝𝑚(440). The weigths of the linear combination are constructed from the eigenvectors of the 

IOPs Spatial Principal Component Analysis (PCA) during a wastewater outfall event. Results showed that 

wastewater optical signal is mostly characterized by 𝑏𝑏𝑠𝑝𝑚
(440) and 𝑘𝑑(PAR), with a relative importance 

of approximately 40% each to the WCI. This can be associated to the elevated concentration of suspended 

solids in wastewater and its effect on water transparency. Despite dissolved organic matter being also 

characteristic of wastewater, 𝑎𝑑𝑔(440) showed a secondary role in the description of the wastewater 

plume, with a weight of 15%. The lowest influence on WCI came from  𝑎𝑐ℎ𝑙𝑎(440), with 8%. This was 

expected, as algal blooms would be a post-effect following nutrient enrichment from wastewater and 

depending on other environmental conditions.  

 

The WCI was applied to 139 Sentinel-2 images from 2019 to 2021 to detect specific outfall events and 

examine their spatio-temporal patterns. With the aid of photographic records, meteorological, water 

quality and hydrodynamics data, it was possible to find agreement between high WCI values and four 

wastewater outfalls in Conceição Lagoon. The spatio-temporal analysis of WCI did not indicate significant 

recurrent patterns of wastewater pollution in the area, highlighting the irregular nature and unpredictability 

of wastewater outfalls.  
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1. INTRODUCTION 

Coastal environments are highly complex systems with distinct dynamics, high productivity, and rich 

biodiversity, providing thereby a wide range of valuable ecosystem services (Turner, 2015). Because of 

these services, coastal areas are historically associated with intense human occupation and, as a 

consequence, anthropogenic pressures and environmental degradation are often observed (Lopez y Royo 

et al., 2009). One of the major disturbances affecting coastal water bodies is related to poorly treated or 

untreated wastewater discharge (Fraschetti et al., 2006; Raj, 2013). This can be caused by irregular 

connections of sewage to the stormwater network, leaks and overflows from the sewerage system itself, or 

bad performance of the wastewater treatment plant and outfall pipe. The excess of organic matter and 

nutrients in wastewater that enters the aquatic systems can cause an increase in the trophic state, algal 

blooms, and eventually, oxygen depletion from their decay, resulting in an overall deterioration of water 

quality and ecological imbalance (El Mahrad et al., 2020). Untreated wastewater effluents can therefore 

negatively affect the chain of services and goods and could result in irreversible damage to marine 

ecosystems. Furthermore, climate change can contribute to the issue of wastewater discharge in coastal 

areas, as extreme rainfall events and sea-level rise are projected to increase in frequency and intensity in 

the coming decades (IPCC, 2018). This makes wastewater treatment plants (WWTP), typically located at 

low elevations such as coasts, more prone to flooding and overflows (Hummel et al., 2018). As a 

consequence, the exposure of coastal areas to wastewater contamination tends to escalate.  

Conceição Lagoon, located in Florianópolis, southern Brazil, is a subtropical semi-enclosed coastal lagoon 

that is widely used by the local population for fishing, recreation, sports practice and is considered a major 

tourist attraction (Martini et al., 2006). Due to disordered urban sprawl and deficient sanitation, the water 

body has been subject to persistent nutrient and organic matter loading from sewage discharge, which has 

led to a process of eutrophication, with recurrent algal blooms and hypoxia/anoxia conditions (Cabral et 

al., 2019; Silva et al., 2017). This is a chronic situation with its characteristics and impacts studied by 

several researchers over the last years, who indicate the critical need for spatial-temporal monitoring of the 

water body (Cabral et al., 2019). Recent acute events, such as the rupture of the disposal pond of a WWTP 

in January 2021 and its severe consequences to the lagoon’s ecosystem, have evidenced the urgency of 

integrated monitoring and management to prevent further damage and support recovery actions (Odreski 

et al., 2021).   

The detection of wastewater plumes and their dispersion is of paramount importance for the sustainable 

management of coastal resources (Hafeez et al., 2019). Once it is accomplished, efforts can be efficiently 

invested in sealing the source, restoring affected areas, protecting vulnerable species, and preventing 

human intoxication by direct or indirect contact (i.e. bathing, swimming, ingestion of aquaculture 

products, etc.). Customarily, the monitoring of such pollution events is conducted with in-situ 

measurement campaigns, but these lack the combined spatial coverage, temporal resolution, and agility 

that are required for an adequate response in the intricate scenario that is observed in most coastal 

environments (Kratzer et al., 2014).  
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In this respect, satellite observation emerges as a necessary complement that provides near-real-time 

monitoring at extended spatial scales and high temporal frequencies, especially in the case of recently 

developed sensors (El Mahrad et al., 2020; Trinh et al., 2017). Satellite observations are moving towards 

operational monitoring of key spectral and biophysical features (Groom et al., 2019), which can be 

associated with water pollution. For example, reduced surface roughness caused by the presence of oil, or 

surfactants can be detected by active microwave sensors (radar), temperature differences are captured by 

thermal sensors, and variation of water-leaving reflectance caused by a higher concentration of 

chlorophyll-a, organic matter, or suspended material, can be tracked with optical sensors (Trinh et al., 

2017). There have been a few studies on the detection of wastewater using data from different types of 

sensors, such as Synthetic Aperture Radar (SAR) (DiGiacomo et al., 2004) and optical multispectral 

images (Ayad et al., 2020; Bondur et al., 2020). Some other studies have made use of a combination of 

earth observation data for the indication of these pollution events. Marmorino et al. (2010) analysed 

airborne hyperspectral and infrared imagery to detect sewage discharge on the south coast of Florida, 

USA, where high levels of coloured dissolved organic matter (CDOM) and lower sea surface temperature 

(SST) were found to be associated with the effluent of wastewaters. In Southern California, USA, Gierach 

et al. (2017) assessed the capability of thermal, ocean color, and SAR products to detect wastewater 

plumes during an outfall diversion event. They found it to be related to lower SST and reduced radar 

backscattering. For another outfall diversion event at the same location, Trinh et al. (2017) could associate 

wastewater discharge to lower SST and increased chlorophyll-a concentration as derived from Landsat 8 

sensors. 

Studies on remote sensing of wastewater pollution conducted so far have mainly focused on the 

identification of the different spectral signals produced by wastewater plumes that can be captured by 

sensors (Bondur et al., 2020; Gierach et al., 2017; Trinh et al., 2017) and how these can be different from 

stormwater runoff and ambient waters (Ayad et al., 2020; DiGiacomo et al., 2004). Nonetheless, the 

combination of these spectral signals to constitute one single indicator of wastewater presence has not 

been explored yet. In this context, high spatial and temporal resolution imagery, coupled with hydro-

optical models, dimensionality reduction methods and spatio-temporal analysis, provide an opportunity 

for the development of a method for more operational identification of wastewater plumes. Still, 

challenges arise from the reduced scale of the discharges, the strong influence of meteorological 

conditions, interaction with other local phenomena (i.e. seasonal phytoplankton blooms), and the optical 

complexity of waters (Gancheva et al., 2020).  

In this study, the utility of optical remote sensing in detecting wastewater spills in Conceição Lagoon is 

investigated. Inherent Optical Properties (IOPs) derived from Sentinel-2 MSI imagery are used to 

characterize a representative wastewater plume in the area and derive the Wastewater Contamination 

Index (WCI). The WCI is intended to capture the spatial differences between wastewater plumes and 

ambient waters, and spot anomalous conditions across time. Spatio-temporal analysis further allows the 

assessment of potential recurring patterns of pollution in the area and characterize their drivers. 
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1.1. RESEARCH OBJECTIVES AND QUESTIONS 

The main objective of this research is to investigate the utility of optical remote sensing in detecting 

wastewater spills in Conceição Lagoon. 

The sub-objectives and their related research questions (RQ) are the following: 

Sub-Objective  1:  

To build a consistent time-series of inherent optical properties (IOPs) of Conceição Lagoon waters from 

Sentinel-2 imagery. 

 RQ1.1: How do the IOPs derived from in-situ reflectance spectra compare with the ones derived from 

Sentinel-2 imagery? 

 RQ1.2: How do the IOPs derived from in-situ reflectance spectra and Sentinel-2 imagery compare 

with in-situ concentration of water constituents? 

 

Sub-Objective  2:  

To formulate an index that optimally captures spatial and temporal dynamics of wastewater plumes. 

 RQ2.1: What is the optimal linear combination of IOPs that captures most of the spatial dynamics of a 

wastewater spill? 

 

Sub-Objective  3:  

To detect potential wastewater spills in Conceição Lagoon between 2019 and 2021. 

RQ3.1: Can the WCI produce a distinguishable signal in association with wastewater spills in 

Conceição Lagoon?  

 

Sub-Objective  4:  

To identify the main spatio-temporal patterns of the WCI in Conceição Lagoon. 

RQ 4.1: Where do we have hotspots of WCI throughout time? 

RQ 4.2: Are the spatial-temporal patterns of the WCI related to other environmental variables? 
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2. LITERATURE REVIEW 

2.1. REMOTE SENSING OF WATER POLLUTION 

Remote sensing has the potential to provide comprehensive and frequent information on key spectral and 

biophysical features that could be associated with water pollution. For instance, reduced surface roughness 

caused by the presence of oil or surfactants can be detected by active microwave sensors (radar), 

temperature differences are captured by thermal sensors, and variation of water-leaving reflectance caused 

by a higher concentration of chlorophyll-a, organic matter, or suspended material, can be tracked with 

optical sensors (Trinh et al., 2017).  

 

This setting has encouraged the development of a few studies using remote sensing for the detection of 

pollution hazards in coastal areas, which are mainly represented by contaminated urban stormwater runoff 

and discharge of treated or untreated wastewater. One of the oldest studies on the subject is from 

DiGiacomo et al. (2004), in which they used space-borne SAR data to detect stormwater runoff, 

wastewater and natural hydrocarbon seepage in the Southern California Bight, USA. According to the 

authors, these occurrences have in common the release of surfactants that damp the surface and reduce 

radar backscattering, appearing darker in the SAR imagery. Although the study identified 10 dB 

differences the between the plumes and the background of unpolluted waters, the shadow caused by 

natural phenomena forms a great challenge in radar observations (Krestenitis et al., 2019). 

 

Other subsequent studies made use of optical remote sensing to identify stormwater and/or wastewater 

plumes. Nezlin and DiGiacomo (2005) were able to define a threshold for the normalized water-leaving 

radiation (nLw) at 555 nm (associated with suspended sediments concentration) derived from SeaWiFS to 

delineate stormwater plumes in southern California. Nezlin et al. (2008) found that nLw at wavelengths 

531-551 nm from MODIS were the most adequate to identify stormwater plumes because its high 

concentrations of suspended material and CDOM provided a larger nLw difference between plume and 

no-plume. Bondur et al. (2018) used colour indices derived from optical multispectral images to detect 

anomalies that were caused by wastewater discharged from submerged outfalls in the Black Sea. In their 

study, the index defined as the product of the green and blue bands (𝐼 = 𝐺 ∗ 𝐵) was the most useful for 

identifying wastewater plumes, with higher values associated with wastewater. Ayad et al. (2020) were able 

to classify and differentiate stormwater and wastewater plumes based on the surface reflectance in the 

visible and NIR bands of RapidEye imagery using hierarchical cluster and principal component analysis. 

They observed that overall the highest reflectance values were seen in stormwater plumes, then wastewater 

followed with slightly lower spectra and clean water with the lowest reflectance. The researchers also 

verified that turbidity and CDOM were higher in stormwater, followed by wastewater and clean water. 

 

There have also been studies that combined different remote sensing data for the indication of water 

pollution events. For instance, Marmorino et al. (2010) analysed airborne hyperspectral and infrared 

imagery to detect sewage discharge on the south coast of Florida, USA, where high levels of CDOM 

(obtained via empirical algorithm) and lower sea surface temperature (SST) were found to be associated 

with wastewater that was discharged via a submerged pipe. In southern California, USA, Trinh et al. 

(2017) used Landsat 8 OLI and TIRS sensors to monitor the effects of a wastewater diversion event in 
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2015, when secondary treated wastewater (no nutrient removal)  was discharged through a shorter outfall 

pipe. During the diversion, a higher concentration of chlorophyll-a derived from OLI was observed as 

well as lower SST (around 1°C colder than ambient water), which the authors related to the surfacing of 

wastewater. For the other 2 outfall diversion events at the same location, Gierach et al. (2017) explored 

the advantages of a multi-sensor approach, using a combination of thermal, optical and SAR products to 

detect the surfacing wastewater plumes. In this case, lower SST and reduced radar backscattering were 

associated with the plumes. Optically derived chlorophyll-a concentration did not provide a detectable 

feature during the events, which could be associated with the short duration of the outfall, chlorination of 

the effluent, or strong dilution. This muffled response from chlorophyll-a was also observed by Seegers et 

al. (2017), who related it to a strong water column mixing detected using an autonomous underwater 

vehicle.  

 

From a monitoring point of view, the creation of an index that summarizes the different remotely-sensed 

signals of water pollution could be especially useful for the identification of plumes, but this has not yet 

been explored in the literature. 

 

 

2.2. SPATIO-TEMPORAL ANALYSIS OF EARTH-OBSERVATION DATA 

 

Earth Observation (EO) products provide multitemporal geospatial data that can contribute to a better 

comprehension of a system’s dynamics over space and time (Koehler and Kuenzer, 2020; Xia et al., 2018). 

Spatio-Temporal Analysis comprises the complex task of extracting the underlying patterns that could 

explain the spatial and temporal variability of the analysed feature with physical meaning and in an 

interpretable manner (Bueso et al., 2020).  

 

One way of investigating spatio-temporal patterns is temporal decomposition, which has long been used 

for time-series analysis (West, 1997). It consists of separating the time-series into 3 components, namely 

the trend, the seasonality and the residuals (Kuiper, 1978). Several methods have been proposed to 

decompose time-series into its underlying components, which can be applied to spatio-temporal data in a 

pixel-by-pixel approach. The most simple approach to separate the trend is the Linear Trend Model, 

which finds a linear regression in a time-series via least-squares fitting. Other methods can be based on 

moving-averages to smooth the series, such as the X-11 (Shiskin et al., 1967), or local polynomial fitting 

(i.e. Seasonal-Trend Decomposition Procedure Based on Loess (STL) (Cleveland et al., 1990)). 

 

Another approach for spatio-temporal analysis is a raster-cube decomposition, which derives at the same 

time spatial patterns and their associated temporal profiles (related to all pixels together, as opposed to 

pixel-by-pixel in temporal decomposition). Principal Component Analysis (PCA) (or Empirical 

Orthogonal Function (EOF)) is a raster-cube decomposition method commonly used to evaluate 

spatiotemporal variability (Liang et al., 2012). EOF and PCA are the same method, but the term EOF is 

commonly used when the variable has spatial and temporal components (Bierman et al., 2011). Some 

authors refer to this type of analysis with temporal component as an extended PCA, which can be in t-

mode if images at different time steps are considered statistical variables, or s-mode when the statistical 

variables are the temporal profiles of each sample in space (pixel) (Machado-Machado et al., 2011). 
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PCA analysis has been largely used  to investigate the dynamic modes of the process under study, 

especially in climatic and meteorological research (Hannachi et al., 2007; Roundy, 2015). For instance, 

studies have shown that the first PCA mode of global monthly sea surface temperature can be linked to 

the El Niño-Southern Oscillation (Tippett and L’Heureux, 2020). With the same objective of finding 

patterns, PCA has been expanded to many other fields, including ocean color. Navarro and Ruiz (2006) 

used PCA on SeaWiFS’s weekly composite chlorophyll-a maps and detected the first mode as the seasonal 

pattern of phytoplankton blooms in the Gulf of Cadiz, which explained 20% of the variability. It should 

be noted that the spatial patterns do not necessarily represent any physical principle, and their association 

requires careful evaluation (Bjornsson and Venegas, 1997). In the study of Navarro and Ruiz (2006), they 

observed that the first spatial mode was in agreement with the climatology of chlorophyll-a in the area and 

that the expansion coefficient time series had alternating signals between spring-fall and summer-winter, 

therefore indicating the seasonal component. In addition, the investigation of correlation between the 

temporal coefficient and other environmental variables (i.e. tide, precipitation, wind ) can indicate whether 

the identified patterns are influenced by them (Jawson and Niemann, 2007). As an example, the study by 

Normandin et al. (2019) showed that the main spatial pattern of SPM verified in the Gironde estuary is 

highly correlated to the tidal range and river discharge.  

 

So far in the literature, neither PCA or temporal decomposition have been applied to time series of water 

color variables to investigate wastewater spatio-temporal patterns. Yet, such an analysis could further 

evidence whether there are recurring patterns of pollution in an area and what are the potential drivers of 

it. 
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3. STUDY AREA 

Conceição Lagoon is a subtropical coastal lagoon located in Santa Catarina Island, in the municipality of 

Florianópolis, southern Brazil (Figure 1). The system is considered one of the main attractions in the 

region and provides a range of valuable ecosystem services (Lisboa et al., 2008; Silva et al., 2017). Being a 

natural nursery habitat for crustaceans, fish and molluscs, it is considered of great biotic importance, but 

also a source of income for local artisanal fishermen who exploit this resource (Lüchmann et al., 2008). 

The lagoon is also widely used for transportation, recreation and the practice of water sports, such as 

sailing, kitesurfing and canoeing. These characteristics attract many visitors and stimulate human 

occupation in the area, which at the same time exerts pressure on the ecosystem and demands 

preservation efforts to maintain the provision of services (Silva et al., 2017). 

 

 
Figure 1: Location of Conceição Lagoon and main pollution sources 
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Conceição Lagoon ecosystem comprises a water surface area of 20.3 km2 in an elongated form, which 

extends 13.4 km in the North-South direction, with heterogeneous bathymetry and bottom composition. 

Depths vary from less than 0.5 m in the eastern sandbanks to up to 8.6 m in the opposite margin. The 

shallower regions are also associated with a sandy substrate, while muddy sediment occurs where higher 

depths and river outlets are present (Porto Filho, 1993). According to these morphological features and 

water properties, the lagoon is traditionally divided into 3 subsystems: Northern, Central and Southern 

Lagoon (Fontes et al., 2010; Lisboa et al., 2008; Lüchmann et al., 2008; Martini et al., 2006). In the Central 

Lagoon, a meandering 2.8 km channel (Barra channel) solely connects the water body to the Atlantic 

Ocean, classifying it as a choked lagoon. This type of lagoon has a limited exchange with the ocean and 

resulting in a long residence time (Mahapatro et al., 2013). According to Silva et al. (2017), the lagoon’s 

hydrodynamics respond primarily to meteorological forcings, especially wind, and hydrological conditions 

in the contributing watershed, with little to no tidal effects. These conditions increase the importance of 

controlling pollutant loads (CASAN, 2021). 

The watershed that drains into Conceição Lagoon has an area of 61.8 km2, with several small sub-

watersheds of distinct characteristics. The western drainage area is delimited by high steep granitic slopes. 

To the east, sand deposits constitute a sedimentary coastal plain, while in the southeast a large dune field is 

present. Most of the area of the watershed is covered with natural vegetation. Nevertheless, around 15% 

of its area has been undergoing a disordered urbanization process over the last 30 years (Odreski et al., 

2021), with a sharp increase in population density, which grew 93.2% between 2001 and 2015 (Silva et al., 

2017). This situation has caused strong pressures on the lagoon’s ecosystem, with a progressive decrease in 

water quality that compromises aquatic life, human health and economic activities. Drivers are mainly 

associated with sewage discharge, urban runoff and sediment loading due to the occupation of hillslopes 

(Martini et al., 2006). An important factor is the lack of a sewerage collection system for approximately 

43% of the population of the basin (Odreski et al., 2021). The individualized solutions adopted by the 

unserviced buildings commonly present irregularities related to waterproofing and distance to 

groundwater level (Cabral et al., 2019). Where a sewage system is installed, recurrent issues relate to the 

overflowing of pumping stations and irregularities in the connections (Odreski et al., 2021). According to 

the municipality’s inspection program, up until August 2021, 477 buildings in Conceição Lagoon sewer 

network had been identified with no or incomplete connection to the system or discharging effluents in 

the stormwater system, corresponding to 35% of the inspection sites. 

As a result of these circumstances, frequent algae blooms and anoxic/hypoxic events have been observed 

in Conceição Lagoon over the last years, indicating a process of anthropic eutrophication (de Barros et al., 

2017; Fontes et al., 2010; Silva et al., 2017). In May 2020 a large patch of scum was observed in the South 

Lagoon. Researchers identified the scum as decaying organic matter and biofilm formed by bacteria, 

diatoms, cyanobacteria and dinoflagellates, which was likely to be associated with wastewater discharge 

into the lagoon, considering the detection of high levels of thermotolerant coliforms and a leak in the 

sewage network (UFSC, 2020). The most recent, and possibly acute, event occurred on January 25th, 2021, 

with the rupture of an evapo-infiltration pond (EIP) that received the effluents from the Conceição 

Lagoon wastewater treatment plant. Due to a combination of intense rainfall and defective operation, the 

EIP burst and approximately 79 m3 of nutrient-rich sediment-water mixture entered Conceição Lagoon 

(CASAN, 2021). According to Odreski et al. (2021), the detected hypoxic conditions, harmful algae bloom 

and fish die-offs following the event could be a consequence of the synergistic effects caused by the 

incident and the historical eutrophication process taking place in the lagoon. The occurrence of such 

events in Conceição Lagoon highlights the need for efficient management actions, which could strongly 

benefit from a continuous monitoring system and detection of possible pollution sources.  
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4. DATASETS 

4.1. SATELLITE IMAGE TIME-SERIES 

 

Sentinel-2 MSI (S2-MSI) imagery from the European Space Agency’s (ESA) was selected due to its high 

spatial and temporal resolution and radiometric quality, yielding recognized suitability for aquatic studies 

(Caballero et al., 2020). The combination of two polar-orbiting satellites (Sentinel-2 A and Sentinel 2-B) 

equipped with the MultiSpectral Instrument (MSI) provides multi-spectral images in the study area every 

2-3 days with a spatial resolution of 10 m in the visible range (Table 1).  

 
Table 1: Sentinel-2 mission band characteristics 

Band Description Resolution Central Wavelength 

B1 Aerosols 60 meters 443.9nm (S2A) / 442.3nm (S2B) 

B2 Blue 10 meters 496.6nm (S2A) / 492.1nm (S2B) 

B3 Green 10 meters 560nm (S2A) / 559nm (S2B) 

B4 Red 10 meters 664.5nm (S2A) / 665nm (S2B) 

B5 Red Edge 1 20 meters 703.9nm (S2A) / 703.8nm (S2B) 

B6 Red Edge 2 20 meters 740.2nm (S2A) / 739.1nm (S2B) 

B7 Red Edge 3 20 meters 782.5nm (S2A) / 779.7nm (S2B) 

B8 NIR 10 meters 835.1nm (S2A) / 833nm (S2B) 

B8A Red Edge 4 20 meters 864.8nm (S2A) / 864nm (S2B) 

B9 Water vapor 60 meters 945nm (S2A) / 943.2nm (S2B) 

B11 SWIR 1 20 meters 1613.7nm (S2A) / 1610.4nm (S2B) 

B12 SWIR 2 20 meters 2202.4nm (S2A) / 2185.7nm (S2B) 

 

Sentinel 2 Level-2A Products (i.e. surface reflectance), which are processed using sen2cor for atmospheric 

correction, were downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/). 

This product is only available for images from December 2018, therefore the period of analysis was 

defined as January 2019 to December 2021. 

 

In total, 139 images acquired for the tile that covers the study area (T22JGQ) were selected to compose 

the Sentinel-2 time series. The condition for selection was the product’s metadata cloud cover lower than 

50%, with Conceição Lagoon completely or at least partially clear through visual inspection. The image 

distribution per month and year are presented in Figure 2. Every year the total number of images is 

consistent (42 - 49) and each month is represented by at least one image, except for October 2021. 
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Figure 2: Selected Sentinel-2 images distribution per year and month 

4.2. FIELD MEASUREMENTS 

Field measurements took place in December 2021 in Conceição Lagoon, comprising seven Field 

Campaigns (FC), of which three coincided with satellite’s overpass and mostly clear sky (see details in 

Table 2).  In total, 67 combined radiometric and water quality (WQ) measurements were taken, of which 

11 could be matched up with Sentinel-2 images (9 points from FC 04 and 2 points from FC 06) and 8 

points from FC 07 could be matched up with Landsat 8 images. 

 
Table 2: Field campaigns details 

FC Date Sampling Time 
(UTC -3) 

Duration 
(hour) 

Satellite 
Overpass 
(UTC -3) 

Points 
Sampled 

Sky 
Condition 

01 02/12/2021 9:38 – 11:15 01:37 S2 B – 10:12 9 (P1 to P9) Overcast 

02 03/12/2021 9:47 – 10:41 00:54 L8 – 10:05 6 (P10 to P15) Overcast 

03 07/12/2021 9:38 – 12:21 02:43 S2 A – 10:12 15 (P1 to P15) Partly Cloudy 

04 10/12/2021 9:25 – 10:36 01:11 S2 A – 10:22 9 (P1 to P9) Mostly Clear 

05 13/12/2021 11:32 – 12:49 01:17 - 6 (P10 to P15) Mostly Clear 

06 17/12/2021 9:33 – 10:43 01:10 S2 A – 10:12 7 (P1 to P7) Mostly Clear 

07 28/12/2021 9:34 – 11:32 01:58 L8 – 10:05 15 (P15 to P1) Mostly Clear 

Note: S2 A/B denotes Sentinel-2 A and B satellites; L8 denotes Landsat 8 satellite 

 

There were in total 15 sampling points, for which the locations are presented in Figure 3. These were 

defined based on the previous work of Horn (2021), who conducted a geostatistical analysis for the 

definition of homogeneous reflectance areas at different bathymetry intervals and established 60 points 

with the most variability in reflectance over time within the visible bands of Sentinel-2 MSI. Considering 

that the Central and South Lagoon have more anthropic pressure and are more prone to wastewater 

discharge, points were selected only in that area for this study and a few others were included to form 

transects. 
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 Figure 3: Sampling points for field measurements and water depth 

The parameters measured in the field campaigns, the type of measurement, the method/equipment used 

and their objective are presented in Table 3. 

 
Table 3: Parameters measured in field campaigns 

Parameter Type Method/Equipment Objective 

Sky-sun downwelling 

irradiance - 𝑬𝒅 

Radiometric In-
situ 

Hyperspectral radiometer - TriOS 
RAMSES-ACC-VIS 

Characterize 
AOPs; 
Validate orbital 
optical remote 
sensing products; 
Calibrate hydro-
optical model. 

Water leaving upwelling 

radiance - 𝑳𝒘 

Radiometric In-
situ 

Hyperspectral radiometer - TriOS 
RAMSES-ARC 

CDOM concentration WQ In-situ Fluorometer – TriOS microFlu 

Calibrate and 
Validate the 
hydro-optical 
model. 

Chlorophyll-a 
concentration 

WQ Laboratory 
Analysis 

Labs 1 and 2: Spectrophotometry 
following SMWW 22 10200 H  

SPM concentration 
WQ Laboratory 
Analysis 

Labs 1 and 2: Total Suspended Solids 
Dried from 103 to 105 °C following 
SMWW 2540 D 

Thermotolerant 
coliforms 

WQ Laboratory 
Analysis 

Lab 1: Multiple tube fermentation 
following SMWW 9221 E 
Lab 2: Enzyme substrate following 
SMWW 9223 B 

Indicate possible 
faecal 
contamination. 

Temperature WQ In-situ 
CTD – SonTek CastAway-CTD 

Characterization 
of general physical 
conditions  

Salinity 
WQ In-situ 

Note: SMWW denotes the Standard Methods for the Examination of Water & Wastewater from the American Public Health 
Association 
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The sampling logistics involved the use of a motorized boat as a means of transportation, which was 

harboured in a Marina located at the entrance of the Barra Channel (see Figure 3). The general strategy 

was alternating between starting at P1 in the South Lagoon and starting at P10 in Central Lagoon, aiming 

to cover as many points as possible during the available time (maximum 1h before and after the satellite 

overpass).  

 

At each sampling point, the downwelling irradiance (𝐸𝑑) and water-leaving upwelling radiance (𝐿𝑤) signals 

were recorded simultaneously at least 3 consecutive times together with the CDOM measurement (see the 

layout in Figure 4). The recordings are calibrated automatically in the software of the equipment 

(MSDA_XE) using the calibration files provided by the manufacturer. For the other WQ In-Situ 

measurements, the CTD device (vertical profiler) was deployed from the boat. For the parameters that 

required laboratory analysis, water samples were collected by the researcher and analysed by accredited 

local laboratories (hereby called Lab 1 and Lab 2): 

• Lab 1 (FC 01 to 06): QMC Saneamento Ltda. - http://www.qmcsaneamento.com.br/ 

• Lab 2 (FC 07): Acquaplant Química do Brasil Ltda. - https://www.acquaplant.com.br/  

A more detailed description of the sampling procedures is presented in APPENDIX A – FIELDWORK 

SAMPLING PROCEDURES. 
 

Pre-processing of the radiometric data included the interpolation of each 𝐸𝑑  and 𝐿𝑤  spectra for 1 nm 

interval (originally 3.3 nm), followed by Data Quality Control procedures. This indicated likely 

contamination by sunglint of most of the 𝐿𝑤 spectra. Therefore, for each sampled point, the lowest 𝐿𝑤 

and corresponding 𝐸𝑑  were used to calculate the remote sensing reflectance 𝑅𝑟𝑠  (𝑅𝑟𝑠 = 𝐿𝑤/𝐸𝑑) and a 

flagging system based on a feature on the oxygen absorption band (760 nm) was used to discard the 

spectra that were still likely contaminated, leaving us with 34 of the original 67 spectra to use. All of this is 

described in detail in APPENDIX D – FIELD DATA QUALITY CONTROL. 

 
The compiled results of the water quality measurements and characterization of the overall conditions 

observed during fieldwork are presented in APPENDIX C –  OVERALL CONDITIONS DURING 

FIELDWOR. The quality of these measurements was also evaluated (see APPENDIX D – FIELD 

DATA QUALITY CONTROL). This indicated that the results of the two laboratories’ analyses were 

incompatible and that the ones from Lab 1 were more consistent with other studies in the area. We, 

therefore, excluded the results of Lab 2 from the study.  

 
 

http://www.qmcsaneamento.com.br/
https://www.acquaplant.com.br/
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Figure 4: Layout configuration for radiometric and fluorometer measurements 

4.3. COMPLEMENTARY DATASETS 

 

4.3.1. Meteorological Data 

 
To investigate the relation between wastewater events and other environmental variables in Conceição 

Lagoon, meteorological data from a weather station were used. The weather station is from the National 

Institute of Meteorology (INMET) and is located approximately 15 km from the lagoon (Station Code: 

A806). Hourly measurements of precipitation, wind direction and wind speed were obtained from 

INMET’s website (https://portal.inmet.gov.br/dadoshistoricos) for the period between January 2019 and 

December 2021. 

4.3.2. Conceição Lagoon Characteristics 

The Maritime Hydraulics Laboratory of the Federal University of Santa Catarina (LahiMAR/UFSC) has 

conducted several studies of hydraulic, hydrological and water quality conditions in Conceição Lagoon for 

more than 15 years. Their outputs, mainly in the form of MSc Thesis, have been used as references in this 

study and are detailed in Table 4. 

 
Table 4: Details of LahiMAR studies used as references for Conceição Lagoon Characteristics 

Year Type Title Author 

2021 MSc Characterization of the behavior of chlorophyll-a 

concentration in a coastal lagoon using remote sensing 

bio-optical models 

(Horn, 2021) 

2016 MSc Space-time analysis of the trophic state of a subtropical 

coastal lagoon: Lagoa da Conceição, Florianópolis, Santa 

Catarina 

(Silva, 2016) 

2013 MSc Numerical Analysis of the Influence of River and 

Anthropic Inputs on Residual Hydrodynamics and the 

Water Quality of Conceição Lagoon, Florianópolis/SC 

(Silva, 2013) 

2012 MSc Hydrological Influence in the Hydrodynamic Processes of 

Conceição Lagoon, Florianópolis/SC 

(Odreski, 2012) 
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4.3.3. Photographic and Video Recordings 

The local community of Conceição Lagoon is highly active and has channels for sharing photographic and 

video recordings of anomalous conditions observed in the Lagoon. These records were shared by a local 

leader and were used in this study to support analysis. 
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5. RESEARCH METHODS 

The methodology conducted in the research is summarized in the form of a flowchart in Figure 5. The 

main blocks of processes in the methodology, which are highlighted and numbered, correspond to each of 

the research sub-objectives and are described in this section. 
 

 
Figure 5: Flowchart summarizing the research methodology  
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5.1. DERIVING INHERENT OPTICAL PROPERTIES 

 
Hydro-optical models are algorithms developed to retrieve Inherent Optical Properties (IOPs) from 

Apparent Optical Properties (AOPs), which are composed by: 

 

1- Forward model (that describes the AOP in terms of IOP); 

2- Parametrization (that minimizes the number of  IOPs by modelling their spectral response); 

3- An inversion scheme (that derives IOP from AOP). 

In this research, the analytical 2SeaColor model (Salama and Verhoef, 2015) is used to derive absorption 

by chlorophyll-a (𝑎𝑐ℎ𝑙𝑎), absorption by coloured dissolved organic matter and non-algal particles (𝑎𝑑𝑔), 

backscattering by suspended particulate matter (𝑏𝑏𝑠𝑝𝑚) and diffuse attenuation coefficients in Conceição 

Lagoon from Sentinel-2 surface reflectance time-series (2019-2021) and remote sensing reflectance 

measured in-situ during Fieldwork. 

 

The 2SeaColor simulates light interactions within water bodies in the visible part of the electromagnetic 

spectrum by analytically solving the two-stream radiative transfer equations, including the three radiation 

components: downwelling direct and diffuse fluxes and upwelling diffuse flux. Parametrization and an 

inversion scheme are used to derive the water column IOPs, which have been shown to provide accurate 

results in coastal turbid waters (Arabi et al., 2018, 2016).  

 

The two-stream approach is an approximation of the radiative transfer theory that considers two discrete 

directions for radiant flux. A schematization of how this would apply to an infinitely deep water column is 

presented in Figure 6. 

 
Figure 6: Representation of the 2 streams approximation for an infinitely deep water column 
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Based on Salama and Verhoef (2015), right below the water surface, we have the downwelling direct solar 

flux (𝐸↓𝑆), the downwelling diffuse flux (𝐸↓𝐷), and the upwelling flux (𝐸↑). The total downwelling flux 

would then be: 

 

𝐸↓ = 𝐸↓𝑆 + 𝐸↓𝐷 = (1 − 𝑓)𝐸↓ + 𝑓𝐸↓ 1 

Where 𝑓 is the fraction of diffuse light. 

 

The total upwelling flux (𝐸↑), on the other hand, depends on how 𝐸↓𝑆 and 𝐸↓𝐷 interact with the water 

molecules and the optically active constituents (OACs) by absorption and backscattering. For diffuse light, 

this interaction is represented by the bi-hemispherical reflectance for a semi-infinite medium (𝑟∞), which is 

given by the Kubelka Munk equation: 

𝑟∞ =
𝑥

1 + 𝑥 + √1 + 2𝑥
 2 

Where 𝑥 is the ratio between backscattering (𝑏𝑏) and absorption (𝑎) coefficients: 𝑥 = 𝑏𝑏/𝑎. 

 

For direct sunlight, Salama and Verhoef (2015) propose the directional-hemispherical reflectance of the 

semi-infinite medium (𝑟𝑠𝑑
∞ ), which they solved as the following: 

𝑟𝑠𝑑
∞ =

√1 + 2𝑥 − 1

√1 + 2𝑥 + 2𝜇𝑤

 3 

Where 𝜇𝑤  is the cosine of the solar zenith angle beneath the water surface. 

 

The total upwelling flux, therefore, can be represented by: 

𝐸↑ =  𝑟∞𝑓𝐸↓ + 𝑟𝑠𝑑
∞ (1 − 𝑓)𝐸↓ 4 

 

And the irradiance reflectance just beneath the water surface (𝑅∞) is given as: 

𝑅∞ =
𝐸↑

𝐸↓
= 𝑟∞𝑓 + 𝑟𝑠𝑑

∞ (1 − 𝑓) 5 

Ultimately, we can convert it to the above surface remote sensing reflectance (𝑅𝑟𝑠 ) considering the 

differences between the two media (air and water), which constitutes the forward model: 

𝑅𝑟𝑠 =
𝑡(𝑎, 𝑤)𝑡(𝑤, 𝑎)

𝑛𝑤
2[1 − 𝑟(𝑤, 𝑎)𝑅∞]

×
𝑅∞

𝑄
 6 

Where 𝑄 is the radiance to irradiance conversion factor, 𝑛𝑤 is the index of refraction of water, 𝑡(𝑎, 𝑤) 

and 𝑡(𝑤, 𝑎) are respectively the air-to-water and water-to-air transmittances and 𝑟(𝑤, 𝑎) is the water-to-

air reflectance. 

 

By inverting the forward model we go from remote sensing reflectance to inherent optical properties 

(IOPs), in this case, the total backscattering (𝑏𝑏) and absorption (𝑎) coefficients. 
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These represent the bulk IOPs of the water column and result from the sum of the properties of each 

optically active constituent Mobley (1994): 

 

𝑎 (𝜆) = 𝑎𝑤(𝜆) + 𝑎𝑐ℎ𝑙𝑎(𝜆) + 𝑎𝑑𝑔(𝜆) 7 

𝑏𝑏(𝜆) = 𝑏𝑏𝑤
(𝜆) + 𝑏𝑏𝑠𝑝𝑚

(𝜆) 8 

Where 𝑎 denotes absorption coefficient, 𝑏𝑏 is the backscattering coefficient and the subscripts 𝑤, 𝑐ℎ𝑙𝑎, 

𝑑𝑔 and 𝑠𝑝𝑚 correspond respectively to water, chlorophyll-a, detritus + coloured dissolved organic matter 

and suspended particulate matter. 

 

To allow the retrieval of the IOPs of interest, the following parametrizations based on Lee et al. (1999), 

Kirk (1994) and Kopelevich (1983) are used: 

 

𝑎𝑐ℎ𝑙𝑎(𝜆) = (𝑎0(𝜆) + 𝑎1(𝜆) ln[𝑎𝑐ℎ𝑙𝑎(440)]) 𝑎𝑐ℎ𝑙𝑎(440) 9 

𝑎𝑑𝑔(𝜆) = 𝑎𝑑𝑔(𝜆0)𝑒−𝑆(𝜆−𝜆0) 10 

𝑏𝑏𝑠𝑝𝑚
(𝜆) = 𝑏𝑏𝑠𝑝𝑚

(𝜆0) (
𝜆0

𝜆
)

𝑌

 11 

Where 𝑎0 and 𝑎1 are parameters given by Lee et al. (1999), 𝑆 is the spectral slope of  𝑎𝑑𝑔 and 𝑌 is the 

power law for 𝑏𝑏𝑠𝑝𝑚, for which initial values are given based on literature.  

 

The diffuse attenuation coefficient 𝑘𝑑  is calculated analytically from the derived IOPs (Salama and 

Verhoef, 2015): 

𝑘𝑑(𝜆) =  
((𝑘 − 𝑠′)𝐸↓𝑆 + 𝛼𝐸↓𝐷 − 𝜎𝐸↑

𝐸↓
 12 

 

Where 𝑘 , 𝑠′ , 𝛼  and 𝜎   are the coefficients that represent extinction from the different irradiance 

components (more details in  Salama and Verhoef (2015)) 

 

A summary of the equations and parametrizations to be used within the 2SeaColor model is presented in 

Table 5. 
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Table 5: Summary of equations and parametrizations for 2SeaColor model 

Variable Parametrization Reference 

Above-surface remote 
sensing reflectance 

𝑅𝑟𝑠 =
𝑡(𝑎, 𝑤)𝑡(𝑤, 𝑎)

𝑛𝑤
2[1 − 𝑟(𝑤, 𝑎)𝑅∞]

×
𝑅∞

𝑄
 

(Mobley, 1994) 

Irradiance reflectance 
beneath the surface 

𝑅∞ = 𝑟∞𝑓 + 𝑟𝑠𝑑
∞ (1 − 𝑓) (Salama and Verhoef, 

2015) 

Bi-hemispherical 
reflectance for a semi-
infinite medium 

𝑟∞ =
𝑥

1 + 𝑥 + √1 + 2𝑥
 (Salama and Verhoef, 

2015) 

Directional-
hemispherical reflectance 
of the semi-infinite 
medium 

𝑟𝑠𝑑
∞ =

√1 + 2𝑥 − 1

√1 + 2𝑥 + 2𝜇𝑤

 
(Salama and Verhoef, 
2015) 

Backscattering to 
absorption ratio 

𝑥 = 𝑏𝑏/𝑎 (Salama and Verhoef, 
2015) 

Total absorption 
coefficient 

𝑎 (𝜆) = 𝑎𝑤(𝜆) + 𝑎𝑐ℎ𝑙𝑎(𝜆) + 𝑎𝑑𝑔(𝜆) (Mobley, 1994) 

Total backscattering 
coefficient 

𝑏𝑏(𝜆) = 𝑏𝑏𝑤
(𝜆) + 𝑏𝑏𝑠𝑝𝑚

(𝜆) (Mobley, 1994) 

Water molecules 
absorption 

𝑎𝑤(𝜆) (Mobley, 1994) 

Chla absorption 𝑎𝑐ℎ𝑙𝑎(𝜆) = (𝑎0(𝜆) + 𝑎1(𝜆) ln[𝑎𝑐ℎ𝑙𝑎(440)]) 𝑎𝑐ℎ𝑙𝑎(440) (Lee et al., 1999) 

CDOM + NAP 
absorption 

𝑎𝑑𝑔(𝜆) = 𝑎𝑑𝑔(𝜆0)𝑒−𝑆(𝜆−𝜆0) (Kirk, 1994) 

Water molecules 
backscattering 

𝑏𝑏𝑤
(𝜆) (Mobley, 1994) 

SPM backscattering 
𝑏𝑏𝑠𝑝𝑚

(𝜆) = 𝑏𝑏𝑠𝑝𝑚
(𝜆0) (

𝜆0

𝜆
)

𝑌

 
(Kopelevich, 1983) 

Diffuse attenuation 
coefficient 

𝑘𝑑(𝜆) =  
((𝑘 − 𝑠′)𝐸↓𝑆 + 𝛼𝐸↓𝐷 − 𝜎𝐸↑

𝐸↓
 

(Salama and Verhoef, 
2015) 

 
The 2SeaColor inversion of Sentinel-2 Level-2A images derives the following variables: 

• 𝑘𝑑(443) (Band 1) 

• 𝑘𝑑(490) (Band 2) 

• 𝑘𝑑(560) (Band 3) 

• 𝑘𝑑(665) (Band 4) 

• 𝑘𝑑(705) (Band 5) 

• 𝑘𝑑(740) (Band 6) 

• 𝑘𝑑(783) (Band 7) 

• 𝑘𝑑(842) (Band 8) 

• 𝑎𝑐ℎ𝑙𝑎(440) (Band 9) 

• 𝑎𝑑𝑔(440) (Band 10) 

• 𝑏𝑏𝑠𝑝𝑚(440) (Band 11) 

• 𝑆 (Band 12) 

• 𝑌 (Band 13) 

To evaluate the agreement between the model retrievals on images and in-situ spectra, their matched-up 

IOPs (𝑎𝑐ℎ𝑙𝑎(440), 𝑎𝑑𝑔(440), 𝑏𝑏𝑠𝑝𝑚(440)) were compared via type 2 regression. The values for the 

images were extracted considering the average of a 3x3 pixel window. The goodness-of-fit measures used 

for evaluation were the slope and intercept of the regression line. 
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To compare the IOPs derived by the model and concentration of water quality variables, a type 1 

regression was conducted relating the IOPs (from in-situ and images) and the water quality in-situ 

measurements.  

 

The correlation was assessed for the following pairs of variables: 

• 𝑎𝑐ℎ𝑙𝑎(440) Vs. chlorophyll-a concentration 

• 𝑎𝑑𝑔(440)  Vs. CDOM concentration 

• 𝑏𝑏𝑠𝑝𝑚(440)  Vs. SPM concentration 
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5.2. FORMULATION OF A WASTEWATER INDEX 

 

The light attenuation caused by the presence of wastewater plumes was assessed to formulate a 

Wastewater Index (WCI). One image capturing a wastewater outfall in Conceição Lagoon was selected as 

a reference to investigate the main optical properties that could indicate wastewater. This event was 

selected due to its large proportion (79 m3) and the presence of a persistent plume that was identifiable 

from a natural-color image of the 8th of February 2021 (Figure 7). An assumption is made that the signals 

associated with the plume of this specific event would be representative of other wastewater plumes in the 

area. The following sections describe the steps to reach the final formulation of the index. 

 

5.2.1. Band Subset: Selection of IOPs 

The IOPs included in this analysis were chosen considering their potential indication of wastewater: 

 

• 𝑎𝑑𝑔(440) : higher CDOM has been associated with wastewater plumes (Ayad et al., 2020; 
Marmorino et al., 2010; Nezlin et al., 2008). 

• 𝑏𝑏𝑠𝑝𝑚(440) : higher SPM has been associated with wastewater plumes (Ayad et al., 2020; 
Nezlin et al., 2008; Nezlin and DiGiacomo, 2005). 

• 𝑎𝑐ℎ𝑙𝑎(440) : higher chlorophyll-a has been observed following a wastewater outfall (Trinh et 
al., 2017). Note that this would probably be the result of after-effect algae 
bloom and its occurrence depends on other environmental conditions, such as 
temperature, light availability and column mixing (Caballero et al., 2020). 

• 𝑘𝑑𝑃𝐴𝑅: is a quasi-IOP (Yu et al., 2016) that represents the photosynthetically active 
radiation (PAR) penetration in the water column and is a function of both bulk 
IOPs and illumination conditions. It has not been reported in the literature as 
being directly associated with wastewater, but it was included due to its relation 
with the water column biogeochemistry (Salama and Verhoef, 2015). 

 

Derived values of 𝑎𝑐ℎ𝑙𝑎(440), 𝑎𝑑𝑔(440) and 𝑏𝑏𝑠𝑝𝑚(440)  are already given as output raster bands from 

the 2SeaColor processing. 𝑘𝑑𝑃𝐴𝑅 is calculated as the discrete summation of values of 𝑘𝑑 from the visible 

bands of Sentinel-2 MSI (B1 to B5) over the spectral interval: 

𝑘𝑑𝑃𝐴𝑅 =
∑ 𝑘𝑑𝑖

𝑛
𝑖=1 𝜆𝑖

∑ 𝜆𝑖
𝑛
𝑖=1

 13 

 

Where 𝜆𝑖 is the spectral interval covered by the band 𝑖 and 𝑛 is the total number of bands (5 in this case). 

 
An Interactive Data Language (IDL) routine coupled with ENVI software was used to: 

• Get all the 139 2SeaColor output rasters 

• Calculate 𝑘𝑑𝑃𝐴𝑅 for each raster 

• Save new rasters with only the bands of interest: 𝑘𝑑𝑃𝐴𝑅, 𝑎𝑐ℎ𝑙𝑎(440), 𝑎𝑑𝑔(440)and 𝑏𝑏𝑠𝑝𝑚(440). 

 

5.2.2. Spatial Subset 

The next step was to subset the rasters to an area of interest (AOI) where the wastewater plume was 

observed on the image of February 8th 2021. The subset was also performed via IDL/ENVI routine, 

defining the AOI as a rectangle with approximately 0.9 by 0.4 km, avoiding optically shallow waters 

(Figure 7). 
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Figure 7: Sentinel-2 Image of 2021-02-08 with a visible wastewater plume coming from the area of the EIP burst and 
the Area of Interest (AOI) determined for the Spatial Subset 

 

5.2.3. Principal Component Analysis (PCA) 

A Principal Component Analysis (PCA) was performed on the subsets of the IOPs rasters. The aim was 

to reduce the dimensionality of the data and find a linear combination of IOPs that best captured the 

differences between wastewater plume and the background. PCA is a widely used technique for data 

compression, and its applicability in remote sensing to derive indices that synthesize the effects of multiple 

indicators has been demonstrated (Guo et al., 2020; Hu and Xu, 2019; Ingebritsen and Lyon, 1985; Yu et 

al., 2021). According to Hu and Xu (2019), the formulation of indices by PCA is an unbiased method that 

can objectively provide weights to each indicator in such a way that the index best explains the data 

variation. Furthermore, Ayad et al. (2020) have shown that PCA of reflectance values was able to 

distinguish between stormwater, wastewater and clean water in Southern California coast. 

 

The classic approach of PCA is based on the mathematical technique of Eigen-decomposition of the 

covariance matrix. Taking a centred matrix  𝐀̅(𝒎 × 𝒏), the covariance matrix is calculated as: 

𝐂𝐎𝐕 =
𝐀̅T ×  𝐀̅

𝑛 − 1
 14 
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Where 𝐂𝐎𝐕  is an 𝑛 × 𝑛  symmetric matrix. Eigenanalysis suggests that any symmetric matrix can be 

decomposed as: 

𝐂𝐎𝐕 ×  𝐕 =  𝐋 × 𝐕 15 

Where 𝐕  is an 𝑛 × 𝑛  matrix with orthogonal Eigenvectors as columns that give the direction of 

transformation: 𝐕 = [

𝑣11 … 𝑣1𝑛

⋮ ⋱ ⋮
𝑣𝑛1 … 𝑣𝑛𝑛

], 

 

 And 𝐋 is an  𝑛 × 𝑛   diagonal matrix of Eigenvalues: 𝐋 = [
𝜆11 … 0

⋮ ⋱ ⋮
0 … 𝜆𝑛𝑛

] 

 

The projection of the centred matrix 𝐀̅ onto the orthogonal matrix 𝐕 gives the Principal Components 

(PC) matrix: 

𝐏𝐂 = 𝐀̅ ×  𝐕 16 

Each column of PC is a Principal Component, each Eigenvector (column of 𝐕)  associated with a PC 

gives the direction of transformation of the data, and their corresponding Eigenvalue 𝜆  gives a 

quantitative assessment of the explained variance: 

 

% Var. Explained PC𝑖 =  
𝜆𝑖

∑ 𝜆𝑘
𝑛
𝑘=1

 × 100 17 

The PCs are organized in order of variance explained, with the first PC, transformed by the first 

Eigenvector, being the one that contains most of the information in the dataset.  

 

In this analysis, the PCA is conducted on single images with multiple variables (IOPs), and the rasters can 

be represented by the following matrix: 

 

𝐀 = [

𝑘𝑑𝑃𝐴𝑅1
𝑎𝑐ℎ𝑙𝑎1

𝑎𝑑𝑔1
𝑏𝑏𝑠𝑝𝑚1

⋮ ⋮ ⋮ ⋮
𝑘𝑑𝑃𝐴𝑅𝑚

𝑎𝑐ℎ𝑙𝑎𝑚
𝑎𝑑𝑔𝑚

𝑏𝑏𝑠𝑝𝑚𝑚

] 

 

Where 𝑛 = 4 and 𝑚 represents the reshaped 2D image with 𝑘 rows and 𝑖 columns (𝑚 = 𝑘 × 𝑖). 

 

The first PC of each raster is given by:  

The first Eigenvectors obtained for each raster (𝑣11, 𝑣12, 𝑣13, 𝑣14) were extracted for further analysis. This 

procedure was conducted in IDL for all the subsetted rasters in the time series to allow comparison 

between natural conditions and when the plume was present.  

 

 

 

𝑃𝐶1 = 𝑣11.  𝑘𝑑𝑃𝐴𝑅
̅̅ ̅̅ ̅̅ ̅̅ + 𝑣12. 𝑎𝑐ℎ𝑙𝑎̅̅ ̅̅ ̅̅ + 𝑣13.  𝑎𝑑𝑔̅̅ ̅̅ ̅  + 𝑣14. 𝑏𝑏𝑠𝑝𝑚

̅̅ ̅̅ ̅̅ ̅̅  18 
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5.2.4. Eigenvectors Analysis 

The next step was analysing the first Eigenvectors obtained for each of the rasters to assess whether the 

one associated with the plume was distinct from the others. For this, an approach based on the Spectral 

Angle Mapper (SAM) technique was used, which is called in this case Eigenvector Angle Difference 

(EAD). This technique calculates the angle difference between a test and a reference vector, both of n-

dimensions: 

 

Where 𝑡𝑖 is the test vector, 𝑟𝑖 is the reference vector and 𝑛 represents the dimension of the vectors. In this 

case, the reference is taken as the Eigenvector extracted from the raster that contains the visible 

wastewater plume, with 4 dimensions, and the other Eigenvectors are compared to it. Figure 8 shows a 

graphical representation of the EAD in a 2-D space. The smaller the angle between the plume and other 

rasters’ Eigenvectors, the more similar they are. This procedure was conducted in R. 

 

 
Figure 8: Graphical representation of the Eigenvector Angle Difference (EAD) method  

 

5.2.5. Construction of the Index 

After comparison between the plume and the other Eigenvectors, the most similar ones (smaller angle 

difference) are selected, as they give the direction of transformation that best captures the difference 

between the plume and the background spatially. The similar Eigenvectors are evaluated, considering the 

sign (positive or negative) and the relative importance that they give to each IOP, and an optimal linear 

combination of IOPs (hereby called LCI) is defined from it. To formulate the final WCI, this LCI is 

applied to each centralized raster and the standardized anomalies are calculated: 

 

𝑊𝐶𝐼 =
𝐿𝐶𝐼 − 𝜇

𝜎
 20 

𝛼 = cos−1 (
∑ 𝑡𝑖

𝑛
𝑖=1 𝑟𝑖

√∑ 𝑡𝑖
2𝑛

𝑖=1 √∑ 𝑟𝑖
2𝑛

𝑖=1

) 19 
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Where 𝐿𝐶𝐼 is the pixel value after centralization and application of the linear combination, 𝜇 is the mean 

LCI pixel value across time and 𝜎 is the standard deviation across time.  

 

Standardized anomalies indicate deviations in an easy-to-interpret way since the mean is equal to 0 and the 

standard deviation is equal to 1. It also enables setting up thresholds for extreme values based on the 

standard deviation, and the comparison between locations that might have different conditions overall. It 

detects, therefore, unusual conditions for that specific location. 
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5.3. DETECTION OF WASTEWATER PLUMES 

Applying the WCI onto the IOPs time-series generated the WCI time series. Areas with depth lower than 

1.5 m are excluded in this process to avoid bottom reflectance contamination caused by optically shallow 

waters. The bathymetric map used for this procedure was obtained from Horn (2021). 

 

To evaluate if the WCI is consistent in detecting wastewater plumes in Conceição Lagoon, the signals 

produced on images associated with outfalls that occurred in the area between 2019 and 2021 were 

investigated. Although six incidents have been officially reported in that period, most of them did not 

coincide with satellite overpass or there was cloud cover impeding analysis. Worth mentioning that 

overflows from sewage pumping stations, for instance, are typically associated with heavy rainfall and 

cloud cover conditions. This constitutes a constraint of the method since optical remote sensing relies on 

clear skies. Yet, depending on the scale and duration of the outfall, the plumes might be detectable after a 

few days.  

 

Two officially reported wastewater outfall events were analysed by inspection of the WCI classes at the 

locations of the expected plume. Environmental conditions (i.e. wind, precipitation, water quality 

measurements, hydrodynamics) and photographic records were also considered for interpretation of the 

results. In addition, WCI maps of two other dates with potential outfalls were inspected. These were not 

officially reported events, but the WCI maps indicated anomalous water conditions. Data on other 

environmental variables were also used to support the hypothesis. 

 

 
Table 6: Details of analysed wastewater outfall events in Conceição Lagoon between 2019 and 2021 

Event Location Reported Type of Outfall S2 Images 

1 – EIP Burst  Middle of 

Rendeiras Avenue 

– Central Lagoon 

Yes, on 

2021-01-25 

Burst of WWTP Evapo-

infiltration pond. Very large 

volume of sewage-sediment 

mixture 

2021-01-31 
2021-02-03 
2021-02-05 
2021-02-08 

 

2 – Leak from 

Sewage Pipe 

Centrinho, in front 

of Via Lagoa 

Shopping – South 

Lagoon 

Yes, on  

2020-05-19 

Leak from a broken sewage 

pipe. Raw waste was being 

discharged into the stormwater 

pipe and directly into the lagoon 

a few days before reported 

2020-05-16 

3 – Potential 

Outfall 2021-06-13 

Middle of 

Rendeiras Avenue 

– Central Lagoon 

No Potential 2021-06-13 

4 – Potential 

Outfall 2021-12-10 

Bridge between 

South and Central 

Lagoon 

No Potential 2021-12-10 
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5.4. IDENTIFICATION OF WCI SPATIO-TEMPORAL PATTERNS  

 

PCA t-mode was applied to the time series of WCI for the identification of the spatio-temporal patterns in 

Conceição Lagoon. PCA t-mode decomposes a dataset with spatial and temporal components into 

orthogonal spatial patterns that explain the maximum variance of the dataset over space (PC modes) and 

Eigenvectors that give the temporal variability of the PC modes (Mascaro et al., 2015). The mathematical 

principle of the method is the same as described in item 5.2.3 Principal Component Analysis (PCA), but in 

t-mode each image in time is considered a statistical variable (columns) and the samples in space (pixels) 

are the observations (rows). The dataset analysed is therefore be represented by the following matrix: 

 

𝐀(𝐭, 𝐦) = [

𝑊𝐶𝐼1,1 ⋯ 𝑊𝐶𝐼1,𝑡

⋮ ⋱ ⋮
𝑊𝐶𝐼𝑚,1 ⋯ 𝑊𝐶𝐼𝑚,𝑡

] 

 

Where 𝑡 represents a time-step (each image) and 𝑚 represents the reshaped 2D image with 𝑘 rows and 𝑖 

columns (𝑚 = 𝑘 × 𝑖).  

 

In this arrangement, the PCA detects recurrent spatial patterns over time (Neeti and Eastman, 2014). Each 

image is centralized (mean is subtracted) prior to the analysis.  

 

As described before, the projection of the centred matrix 𝐀̅ onto the Eigenvectors 𝐕 of the covariance 

matrix gives the Principal Components (PC) matrix: 

𝐏𝐂 = 𝐀̅ ×  𝐕 

In this case, each column of PC is a spatial pattern (PC mode) and each Eigenvector (column of 𝐕) gives 

the temporal profile of the corresponding PC mode. The eigenvalues of the covariance matrix report the 

fraction of variance explained by the PCs and are sorted in descending order. This means that the first PC 

mode (𝑃𝐶1) explains most of the variability in the dataset, while the last PC mode  (𝑃𝐶𝑁) explains it the 

least. 

 

The method results  in 139 PC modes (number of images) and the “broken-stick” method (Frontier, 1976) 

is used to select the ones that represent the main spatio-temporal patterns of the WCI in Conceição 

Lagoon. In this method, the modes are selected if they explain more variance than the corresponding 

element of the broken stick model. The variance explained by the kth element in the broken-stick model is 

calculated as (Jolliffe, 2002): 

 

𝜔𝑘 =
1

𝑁
∑

1

𝑖

𝑁

𝑖=𝑘

 

 

Where 𝑁 is the total number of PC modes (139 in this case). 

 

The selected PC modes represent the main spatial patterns observed in the analysed period, and their 

associated Eigenvectors show how these patterns vary in time. For a better interpretation of the results 

and association with physical processes, the correlation between Eigenvectors and other environmental 

variables was also investigated. Considering that the occurrence of wastewater outfalls is frequently 

associated with rainfall and that the hydrodynamics of the Lagoon is mainly influenced by meteorological 

and hydrological forcings (Silva et al., 2017), the environmental variables examined were accumulated 
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precipitation, wind speed and wind direction. The correlation between Eigenvectors and environmental 

variables can indicate if the latter are potential drivers of the spatial patterns (Normandin et al., 2019).  

 
The Linear Trend is also calculated via least-square fitting for the WCI time-series to evaluate the tendency 
of improvement or worsening of water quality over time, considering a confidence interval of 95%.  In 
addition, the mean, coefficient of variation1 and linear trend of the four IOPs that comprise the index 

(𝑎𝑐ℎ𝑙𝑎(440), 𝑎𝑑𝑔(440), 𝑏𝑏𝑠𝑝𝑚(440)  and 𝑘𝑑(𝑃𝐴𝑅)) were calculated to support interpretation of the 

spatio-temporal patterns.  

  

 
1 Coefficient of variation is calculated as the ratio between standard deviation and the mean: CV=(σ/µ)*100 
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6. RESULTS AND DISCUSSION 

6.1. DERIVING INHERENT OPTICAL PROPERTIES 

 

6.1.1. IOPs from In-Situ Rrs 

 

The 2SeaColor model was applied to the 34 in-situ remote sensing reflectance (𝑅𝑟𝑠) spectra which were 

classified as glint-free (process described in APPENDIX D – FIELD DATA QUALITY CONTROL). 

As a result, the IOPs associated with each spectrum were obtained, and histograms of these are presented 

in Figure 9. Absorption by chlorophyll-a (𝑎𝑐ℎ𝑙𝑎 ) varied from 0.51 to 2.47 m-1, and had most values 

centered around 1 m-1. Absorption by non-algal particles and CDOM ( 𝑎𝑑𝑔) varied from 0.053 to 1.83 m-1, 

with most values centered around 0.25 m-1. Backscattering by suspended particulate matter (𝑏𝑏𝑠𝑝𝑚) varied 

from 0.051 to 0.41 m-1, with most values around 0.075 m-1. This results suggest that chlorophyll-a is the 

main responsible for light attenuation in the waters of Conceição Lagoon.  

 

 
Figure 9: Histograms of the IOPs obtained from in-situ measured remote sensing reflectance  

 

6.1.2. Matchups of Images and In-Situ Spectra-derived IOPs 

The 2SeaColor was also applied to a Sentinel-2 image that was coincidental with in-situ measurements and 

had clear sky conditions with all sampled points visible (2021/12/10 – FC04). The IOPs extracted from 

the image and the ones obtained from the in-situ measurements are compared in Figure 10 via type 2 

regression. For all the IOPs it is observed low R2, which means that there is weak or no correlation 

between the values derived from the image and the ones from the in-situ spectra. For 𝑎𝑑𝑔 it is seen the 
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best correlation, with a slope close to 1 and an intercept of 0.15 m-1, meaning that overall the 𝑎𝑑𝑔 derived 

from the image are slightly higher than the ones from the in-situ spectra. For 𝑏𝑏𝑠𝑝𝑚 the values obtained 

from the image are much higher than the in-situ (range of 8.5-10 m-1 in comparison to 0.06-0.15 m-1). For 

𝑎𝑐ℎ𝑙𝑎 the range of values from in-situ and image are very similar, but there is no agreement between the 

match-ups. These extremely high values of 𝑏𝑏𝑠𝑝𝑚 could be associated with glint contamination in the 

image. 

 

 

 
Figure 10: Comparison between IOPs derived from the in-situ measured 𝑅𝑟𝑠  and the corresponding image on 
2021/12/10 via type 2 regression 

 

 

6.1.3. Matchups IOPs and Water Constituents Concentration 

Figure 11 shows the scatterplots of the concentration of water constituents against their respective IOPs 

derived from the in-situ spectra. There was no correlation observed between them, which could indicate 

problems with the in-situ spectra, the water quality measurements, or the model.  The same analysis was 

performed for the IOPs derived from a Sentinel-2 image that was coincidental with in-situ water quality 

measurements (2021/12/10 – FC04 - Figure 12). In this case, a seemingly high correlation coefficient is 

observed for chlorophyll-a (R=0.61), but the p-value is also high (>0.1), which means the correlation is 

not statistically significant. 

 
The application of empirical indices established in the literature to the in-situ spectra also did not provide 
a statistically significant correlation with water constituents concentration (details about this procedure in   
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APPENDIX E– COMPARISON 2SEACOLOR WITH EMPIRICAL INDICES). This gives a stronger 

indication that the in-situ measurements of the Fieldwork might not be consistent. Another potential 

reason for the poor correlation could be related to the optical complexity of the area. It has been shown 

that for complex waters, absorption by chlorophyll-a can differ by a factor up to three for the same 

chlorophyll-a concentration (Yacobi et al., 2015). It should be noted that species of brown algae have been 

reported in the area several times and were observed during the Fieldwork. These algae have fucoxanthin 

as an accessory pigment, which has overlapping absorption features with chlorophyll-a and CDOM, 

influencing their retrievals. Considering all these uncertainties, it was not possible to calibrate the model to 

retrieve the concentrations of optically active constituents. Nevertheless, a strong agreement between the 

2SeaColor-derived IOPs and empirical indices applied to in-situ spectra (see APPENDIX E) gives more 

confidence that the model is able to at least capture the main features expected of the IOPs and indicate 

the proportion of the main water quality variables. Since the method is based on variability of IOPs and 

relative proportion between them, the 2SeaColor was considered adequate for further use despite the 

mentioned limitations. 

 

  

 

 

Figure 11: Scatterplots of concentration of water constituents from in-situ samples against their respective IOPs 
derived from in-situ spectra, with the regression line in black, the confidence interval in grey, the Pearson correlation 
(R) and the corresponding p-value (p) 
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Figure 12: Scatterplots of the concentration of water constituents from in-situ samples against their respective IOPs 
derived from Sentinel-2 image, with the regression line in black, the confidence interval in grey, the Pearson 
correlation (R) and the corresponding p-value (p) 
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6.2. FORMULATION OF THE WASTEWATER INDEX 

 
PCA analysis of subsetted IOPs rasters resulted in 139  Eigenvectors that best explain the variance in 

them. Comparing the Plume Eigenvector (associated with the plume observed on 2021/02/08) with the 

others via EAD, we observe angle differences ranging from 0.07 to 2.37 radians, with a mean of 0.78 

radians or 45° (see Figure 13).  This indicates that the Plume Eigenvector is distinct from most of the 

other Eigenvectors, but there are similar ones that give the direction of transformation that best captures 

the difference between the plume and the background spatially. 

 

 
Figure 13: Histogram of the Eigenvectors Angle Difference, representing the distribution of the angle difference 
between the Plume Eigenvector (reference) and the Eigenvectors of other images. 

Based on the distribution of angles differences, a threshold of 0.15 radians (8.5 degrees) was established to 

select the equivalent Eigenvectors, which are detailed in Table 7. It can be seen that the elements of the 

Eigenvectors are all positive, which means that the IOPs associated with them positively influence the PC. 

The relative importance of each IOP, hereby called the weight (𝑤), can be calculated from the elements of 

the Eigenvectors (𝑤1𝑖 = 𝑣1𝑖/ ∑ 𝑣).  

 

Table 7: Details of the Eigenvectors which are the most similar to the Plume Eigenvector (Reference) 

Date 𝒗𝟏𝟏  (𝒌𝒅𝑷𝑨𝑹) 𝒗𝟏𝟐 (𝒂𝒄𝒉𝒍𝒂) 𝒗𝟏𝟑 (𝒂𝒅𝒈) 𝒗𝟏𝟒 (𝒃𝒃𝒔𝒑𝒎
) 

2021-02-08 - Reference 0.95 0.17 0.32 0.9 

2019-09-27 1.23 0.15 0.44 1.04 

2019-10-22 1.81 0.3 0.64 2.22 

2019-12-28 0.9 0.25 0.35 0.72 

2020-01-15 0.78 0.05 0.26 0.89 

2020-02-24 0.71 0.19 0.22 0.52 

2020-08-04 2.64 0.89 0.68 2.72 

2020-08-07 0.59 0.1 0.29 0.7 

2021-09-26 1.15 0.29 0.45 0.91 
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Table 8 presents the  weights of each IOP in the equivalent Eigenvectors, which are very similar to each 

other. The strongest weights are given to 𝑘𝑑𝑃𝐴𝑅 and 𝑏𝑏𝑠𝑝𝑚, with approximately 40% each. We can derive 

from it that the wastewater plume is mostly characterized by a high concentration of particulate matter 

and low light penetration. Coloured dissolved organic matter and detritus have a secondary role in the 

description of the wastewater plume, with 15%, while chlorophyll-a has the lowest influence (8%). This 

was expected, as chlorophyll-a increase due to wastewater would likely be a post-effect following nutrient 

enrichment and depending on other environmental conditions (i.e. temperature, column mixing, etc.). 

 
Table 8: Weights of each IOP in the Eigenvectors 

 

The mean weights are used to compute the optimal Linear Combination of IOPs (LCI) for wastewater 

detection: 

 

The WCI is then given as the standardized anomalies of the LCI. Based on the expected normal 

distribution of standardized anomalies, classes of Water Quality can be derived from the WCI values, as is 

presented in Figure 14. Finally, the WCI was applied to the images, generating a WCI maps time series 

with Water Quality Classification. 

 
Figure 14: Classes of Water Quality and their relation to WCI values and the expected probability distribution 

Date 𝒘𝟏𝟏  (𝒌𝒅𝑷𝑨𝑹) 𝒘𝟏𝟐 (𝒂𝒄𝒉𝒍𝒂) 𝒘𝟏𝟑 (𝒂𝒅𝒈) 𝒘𝟏𝟒 (𝒃𝒃𝒔𝒑𝒎
) 

2021-02-08 - Reference 0.41 0.07 0.14 0.38 

2019-09-27 0.43 0.05 0.15 0.36 

2019-10-22 0.36 0.06 0.13 0.45 

2019-12-28 0.41 0.11 0.16 0.32 

2020-01-15 0.39 0.03 0.13 0.45 

2020-02-24 0.43 0.12 0.13 0.32 

2020-08-04 0.38 0.13 0.10 0.39 

2020-08-07 0.35 0.06 0.17 0.42 

2021-09-26 0.41 0.10 0.16 0.33 

Mean 0.40 0.08 0.14 0.38 

Standard Deviation 0.03 0.04 0.02 0.05 

𝐿𝐶𝐼 = 0.40.  𝑘𝑑𝑃𝐴𝑅
̅̅ ̅̅ ̅̅ ̅̅ +  0.08. 𝑎𝑐ℎ𝑙𝑎̅̅ ̅̅ ̅̅ + 0.14.  𝑎𝑑𝑔̅̅ ̅̅ ̅  + 0.38. 𝑏𝑏𝑠𝑝𝑚

̅̅ ̅̅ ̅̅ ̅̅  21 
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6.3. DETECTION OF WASTEWATER PLUMES 

 
The WCI Maps Time-Series was used to investigate plumes of four wastewater outfall events, two 

officially reported and two potential. The meteorological data used to support the analysis are presented in 

APPENDIX F– COMPILATION OF METEOROLOGICAL DATA. The following sections describe 

the results for each of them.  

6.3.1. Event of EIP Burst – 2021-01-25 

The Evapo-Infiltration Pond (EIP) of the Conceição Lagoon Wastewater Treatment Plant (CL WWTP) 

burst on the 25th of January 2021 after intense rainfall, releasing approximately 79,000 m3 of effluent-

sediment mixture directly into Conceição Lagoon (Figure 15). The EIP is where the sewage is disposed of 

after treatment, but monitoring showed that on several occasions the efficiency of the WWTP was below 

what is required by law, presenting high biological oxygen demand (BOD), nitrogen and phosphorus 

levels (ARESC, 2021). It is estimated that the event released to the lagoon 1.44 tons of BOD, 2.04 tons of 

ammoniacal nitrogen, 0.43 tons of nitrate and 0.36 tons of total phosphorus (Odreski et al., 2021).  

 

 
Figure 15: Picture of the EIP burst on the 25th of January 2021 (Source: Corpo de Bombeiros, 2021) 

Following the event, there were four Sentinel-2 images for which the WCI was applied: 

• 2021-01-31 

• 2021-02-03 

• 2021-02-05 

• 2021-02-08 
 
The one from 2021-01-31 had scattered clouds in the area of interest, and, therefore, was discarded.  
 
The image of the WCI for 2021-02-03 is presented in Figure 16. It can be observed that there are high 
values (indicating poor quality) towards the East of the burst area, which could suggest the transport of 
the plume into that area. Other studies have indicated a residual hydrodynamic flux in that direction (Silva 
et al., 2017). In addition, the wind was blowing from NW, favouring this transport. Cloud cover prevents 
interpretation of the rest of the image.  
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The image of 2021-02-05  (Figure 17) shows that the WCI values are overall very similar to the average. 

The noise seen in the Northern part of the Lagoon corresponds to clouds, while in the South Lagoon the 

2SeaColor model masked some values as NoData. A potential reason why the plume is not seen on this 

day anymore could be the wind, which was coming from the NE direction, with an average speed of 1.6 

m/s. The wind from this direction tends to create waves that provide intense mixing to the water column 

and it also goes in the opposite direction of the expected flow of the plume. 

 

On the 8th of February, 14 days after the event, it is seen again a plume coming from the area of the EIP 

burst, with high WCI values (Figure 18). In-situ measurements conducted 4 days later by the State’s Public 

Services Regulation Agency (ARESC, 2021) indicated very high values of Nitrogen and BOD in the 

Central Lagoon. On this day the wind was from the SE direction, which tends to keep the water calmer in 

that area and favour the flow of the plume towards the NW. High WCI values are also seen in the 

Northern Lagoon. This could indicate contamination of the waters of that area, which is in line with 

reported events of fish die-offs and oxygen depletion in the extreme North of the lagoon in the following 

days (UFSC, 2021). 

 
Figure 16: Map of the WCI in Conceição Lagoon on 2021-02-03, with detail of area with poor quality and Sentinel-2 
RGB image showing the cloud cover that impairs analysis 
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Figure 17: Map of the WCI in Conceição Lagoon on 2021-02-05 with detail of Sentinel-2 RGB image showing cloud 
cover in the North Lagoon that impairs analysis 
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Figure 18: Map of the WCI in Conceição Lagoon on 2021-02-08 with detail of the EIP burst area and plume of 
worse water quality 

6.3.2. Leak from Sewage Pipe – 2020-05-19 

On the 19th of May 2020, it was identified a leak from the sewage pipe in Centrinho da Lagoa, the 

neighborhood’s urban centre. Inspection by the city’s Environmental Agency (FLORAM) verified that, 

due to a broken sewage pipe, raw waste was being discharged into the stormwater system and directly into 

the Lagoon (Figure 19). In the WCI image of 2020-05-16 (Figure 20) there are high values indicating poor 

water quality around the area of the leak and across the bridge, in Cooperbarco Pier. The presence of 

shallow waters in that region prevents evaluation of the conditions closer to land. 

 

Areas with worse quality are also seen in the South Lagoon. This is supported by reports that showed 

extensive scum patches since the 14th of May (2 days before the image) in that region. Laboratory analysis 

showed that the scum was decaying organic matter and biofilm formed by bacteria, diatoms, cyanobacteria 

and dinoflagellates (UFSC, 2020). Other deviant hotspots in Central Lagoon were caused by cloud cover 

and boats, as it can be seen in the true-color image. 
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Figure 19: Picture of the inspection test that verified raw sewage being discharged into the Lagoon on the 19th of 
May 2020 (Source: Eduardo Cristófoli/NDTV, 2020) 

 
a) Centrinho da Lagoa 
 
 
 

 
b) Cooperbarco Pier 
 
 
 
 

 
c) Canto da Lagoa 

 
Figure 20: Map of the WCI in Conceição Lagoon on 2020-05-16, with the detail of the leak area. Pictures a), b) and 
c) show scum that was seen in the locations pointed in the map.  

a) 
b) 

c) 
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6.3.3. Potential Outfall – 2021-06-13 

On the WCI map of the 13th of June 2021 (Figure 21), we can observe a plume-like shape in the Rendeiras 

area, close to several stormwater discharge points and the drainage area of the CL WWTP EIP (see detail 

in Figure 21). It follows a period of heavy rainfall, with accumulated precipitation in the last five days 

equal to 121 mm, almost double the climatological precipitation for June (75.7 mm (Odreski et al., 2021)). 

The wind was blowing from the SE direction, which favours the spread of the plume as seen on the map.  

 

Hotspots of worse water quality are also seen in the South Lagoon. It should be noted that three days 

later, on the 16th of June, photographic records show foam in the area close to the bridge (Figure 22). 

Since the recurrent hydrodynamic flux in this area is from the South to Central Lagoon (Figure 23 (Silva, 

2013)), this could mean that the worse quality water verified on the 13th further South moved towards the 

bridge and into Central Lagoon. Furthermore, on the 19th of June, in-situ measurements from the Treaty 

for the Lagoon2 showed values of faecal coliforms higher than the allowed by Brazilian legislation for 

bathing waters (>1,000 MPN/100 ml) in the areas around the bridge. 

 

 
Figure 21: Map of the WCI in Conceição Lagoon on 2021-06-13 with detail of a potential wastewater plume with 
very poor water quality 

 
2 Inspection and monitoring program of the sewage system operator (CASAN) in partnership with the municipality – 
data publicly available from https://tratopelalagoa.com.br/pt/resultado_testes_qualidade_agua/  

https://tratopelalagoa.com.br/pt/resultado_testes_qualidade_agua/
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Figure 22: Picture of foam present around the bridge area on the 16th of June 2021 

 
Figure 23: Mean circulation in the area of connection between the South and Central Lagoon. This is the result of a 
hydrodynamic model simulating a period between 2012 and 2013. Adapted from Silva (2013)  
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6.3.4. Potential Outfall – 2021-12-10 

On the WCI map of December 10th, 2021 (Figure 24) we observe plume-like shapes of worse water quality 

coming from stormwater discharge points or urbanized stream outlets. The 5 days accumulated 

precipitation was 42 mm, 25% of the climatological mean for December, which could be contributing to 

the worsening of the water quality in those areas. It should be noted that this is the touristic high season, 

when the population of the basin can triplicate and problems of contamination tend to worsen (Silva et al., 

2017). 

 

One potential wastewater plume is observed in Rendeiras Avenue’s extreme eastern point, called Retiro 

(see detail Figure 24). Retiro receives stormwater contribution from a relatively large urbanized area and is 

one of the points monitored by the State’s Environmental Institute (IMA) for bathing quality3 that is 

frequently classified as unsafe, influenced by low velocities (Figure 25). The direction of the wind (SE, 

131°) also corroborates the shape of the plume.  

 

Other hotspots are seen in the South Lagoon: at the outlet of Apa stream, at the Badejo Hill Bay and 

Porto da Lagoa. These are also typically low circulation areas that tend to accumulate the load carried by 

streams (Figure 25)(Odreski, 2012). Very close to the outlet of Apa stream there is a sewage pumping 

station, which on several occasions following heavy rainfall has been recorded overflowing raw sewage 

directly into the stream and, consequently, to the lagoon. This could be another event like this. In Porto da 

Lagoa we see that there is no sewage collection system, meaning that the buildings must dispose of sewage 

via individual septic tanks, which commonly present irregularities with waterproofing and distance to 

groundwater level (Cabral et al., 2019). In conditions of persistent rainfall and heavy human occupation, 

the chances of polluted water reaching the lagoon are higher. It is worth mentioning that on the night of 

the 6th of December (4 days before the image), the community recorded a large number of aquatic 

organisms (i.e. fish, crabs, shrimp) dead in that area.   

 

Hotspots of very poor water quality to the North of the lagoon were caused by cloud cover and the values 

are therefore not interpretable. 

 

 
3 IMA Bathing Water Quality Monitoring data are publicly available from https://balneabilidade.ima.sc.gov.br/  

https://balneabilidade.ima.sc.gov.br/


REMOTE SENSING OF WASTEWATER CONTAMINATION IN COASTAL AREAS: A CASE STUDY OF CONCEIÇÃO LAGOON, BRAZIL 

44 

 
Figure 24: Map of the WCI in Conceição Lagoon on 2021-12-10, with details of potential wastewater plumes in 
Retiro, Apa Stream Outlet, Porto da Lagoa and Badejo Hill Bay 

  
Figure 25: Mean velocities in Conceição Lagoon as a result of a hydrodynamic model simulating a period between 
2012 and 2013. Adapted from Silva (2013) 

Velocity (cm/s) 
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6.4. WCI SPATIO-TEMPORAL PATTERNS 

The t-mode PCA transformed the WCI maps time-series into 139 PC modes (spatial patterns) with their 

associated Eigenvectors (temporal scale). After applying the broken-stick method, the first 7 PC modes 

were considered relevant patterns (higher values in comparison to broken-stick – see Figure 26).  

 

 
Figure 26: Variance explained by each PC mode in comparison with the broken-stick model 

The selected PC modes and the variance explained by them are presented in Figure 27. We observe that 

the first mode explains 11.29% of the variance in the WCI time series, and all the seven modes together 

account for only 36% of the total variance. This suggests that there are no strongly recurrent patterns of 

the WCI, highlighting the irregular nature and unpredictability of wastewater outfalls. 

 

Figure 28 presents the Eigenvectors of each PC mode in time. There is no clear seasonality verified, but 

the values change between negative and positive constantly, and the associated pattern is reversed 

according to the sign Eigenvectors elements assume. For instance, in PC1, when the Eigenvector elements 

are positive there are high values of WCI in the North Lagoon and low values in the South. When 

Eigenvector elements assume negative values, South Lagoon has higher WCI and therefore worse water 

quality than the North. 

 

Looking at the correlation between the Eigenvectors of the modes and environmental variables (Table 9), 

it is observed that precipitation does not seem to influence the spatial patterns, while wind could be 

playing a role. The Eigenvectors of PC1 and PC3 have slight correlations with wind speed and direction. 

This means that the variation in the Eigenvector elements (which in turn influence the spatial pattern in 

sign and scale) are somewhat affected by wind speed and direction. Eigenvectors of PC5 and PC7 are only 

correlated with wind direction. The highest correlation is seen between wind direction and Eigenvector of 

PC7, with 0.31. This means that the pattern of PC7 is potentially driven by wind direction. 

 

We can derive that WCI is highly variable both in time and space, with no significantly recurrent temporal 

or spatial patterns, but the wind could play a role in the dispersion and detection of wastewater plumes. 

Worth mentioning that patterns in PCA are influenced by noise (cloud cover and shadows, for instance) 

and could be the result of statistical artifacts, especially considering the low explainability of the modes. 
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Figure 27: PC modes of  WCI and their respective explained variance.
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Figure 28: Eigenvectors of the first seven PC modes. Red colour denotes positive values and blue negative values. 

 
Table 9: Pearson correlation coefficient between the first seven modes’ Eigenvectors and environmental variables, 
highlighting the ones that are statistically significant at 95% confidence level. 

Eigenvectors of 5-Days Accumulated 

Precipitation 

Wind Speed Wind Directiona 

PC1 0.09 0.23 b 0.19b 

PC2 0.08 -0.09 0.08 

PC3 -0.06 0.24b 0.17b 

PC4 -0.03 0.01 0.13 

PC5 0.16 -0.07 0.18b 

PC6 0.17 0.03 0.09 

PC7 0.02 -0.03 0.31b 
a Circular-Linear correlation between a circular variable (wind direction) and linear variable (Eigenvector) 
b Statistically significant correlation at 95% confidence level. 
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6.4.1. IOPs General Patterns 

To aid interpretation of the WCI spatio-temporal patterns, the mean and coefficient of variation (CV) of 

𝑘𝑑(𝑃𝐴𝑅) , 𝑏𝑏𝑠𝑝𝑚
(440), 𝑎𝑑𝑔(440)  and 𝑎𝑐ℎ𝑙𝑎(440)  were calculated and are presented in Figure 29, 

Figure 30, Figure 31 and Figure 32, respectively.  
 

The mean 𝑘𝑑(𝑃𝐴𝑅) is highest closer to the margins of the lagoon and there are hotspots in the middle of 

the Central and in the South Lagoon. A very similar pattern is observed for 𝑎𝑐ℎ𝑙𝑎(440) and 𝑏𝑏𝑠𝑝𝑚
(440), 

but for the latter lower values are seen, especially in the South Lagoon. Mean 𝑎𝑑𝑔(440) is very high in the 

South Lagoon and in the extreme North arm, regions characterized by outlets of urbanized rivers. 
 
It is possible to observe a hotspot of high values for all IOPs in the central lagoon, which is very 
persistent (low CV for all IOPs as well). This is an area under the influence of drainage from the CL 
WWTP disposal site and stormwater from urbanized area in general, which could be potential drivers.  
 
For all four IOPs it is also observed high CV towards the North Lagoon and some spots closer to land in 
Central and South Lagoon. This is an indication that on those locations the values deviate from the mean 
considerably over time. This could be associated with the PC modes obtained from PCA of the WCI, 
where high magnitude PC values (positive or negative) are also often observed in the same areas. 
Nevertheless, this is just a visual interpretation that is not straightforward and further analysis would be 
required to establish a relation. 
 
 

 
Figure 29: Mean and coefficient of variation (CV) of 𝑘𝑑(𝑃𝐴𝑅)  
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Figure 30: Mean and coefficient of variation (CV) of 𝑏𝑏𝑠𝑝𝑚

(440) 

 
Figure 31: Mean and coefficient of variation (CV) of 𝑎𝑑𝑔(440)  
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Figure 32: Mean and coefficient of variation (CV) of 𝑎𝑐ℎ𝑙𝑎(440) 
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6.4.2. Trend Analysis 

The trend of the WCI per day between 2019 and 2021 is shown in Figure 33, where we can see areas with 

water quality improvement (negative values) or worsening (positive values). Worsening is seen mainly in 

the South Lagoon, in areas closer to the land and also in the extreme North. The worsening in the South 

Lagoon could be associated with the surrounding urban occupation and lower exchange with seawater. 

There has been several reports of raw sewage outfalls into the Apa river, which flows into that area. Closer 

to the land we also have more influence of anthropic activities and river outlets, which could be increasing 

pollutant loads. Worsening in the extreme North of the Lagoon could be due to the expansion of Rio 

Vermelho district. Rio Vermelho has been experiencing accelerated and disordered population growth 

(ICES-BID, 2015), with the added issue that there is no sewage collection and the hydrographic basin 

drains into the Lagoon. Improvement of the water quality can be seen in the deeper areas of Central 

Lagoon, potentially due to the exchange with the Barra Channel. 
 

 
Figure 33: Linear trend of the WCI per day for the period between 2019 and 2021 
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In Figure 34 the trend of each IOP is presented. It is possible to observe a strong decrease of 

𝑏𝑏𝑠𝑝𝑚
(440)  throughout the whole lagoon, which indicates sedimentation of solids over time. This 

suggests that the regions with a positive trend for WCI are mostly influenced by the combination of the 

other IOPs (𝑘𝑑(𝑃𝐴𝑅), 𝑎𝑑𝑔(440) and 𝑎𝑐ℎ𝑙𝑎(440)), which have positive trends in the same area and 

combined are able to surpass the negative trend of SPM.  
 
 

 
Figure 34: Linear trend of 𝑘𝑑(𝑃𝐴𝑅), 𝑏𝑏𝑠𝑝𝑚

(440), 𝑎𝑑𝑔(440) and 𝑎𝑐ℎ𝑙𝑎(440) per day for the period between 2019 

and 2021 
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7. CONCLUSION AND RECOMMENDATIONS 

With this study, the capabilities of optical remote sensing in the detection of wastewater outfalls in 

Conceição Lagoon were recognized.  Even with certain constraints, it was possible to formulate a novel 

index from IOPs that captured spatial differences between wastewater plumes and ambient waters, and 

detected anomalous conditions across time, which was called Wastewater Contamination Index (WCI).  

 

One of the constraints is related to the retrieval of Inherent Optical Properties (IOPs) in Conceição 

Lagoon. The IOPs were derived from Sentinel-2 imagery using the 2SeaColor model, and evaluation of 

the model performance showed poor agreement between in-situ measurements and model-derived 

variables. Possible reasons for it were associated with uncertain quality of the field measurements, reduced 

number of in-situ-satellite matchups, the optical complexity of the water and the sensitivity of the model. 

Analytical models, such as the 2SeaColor, have the forward model based on the exact solution of RTE 

and are more sensitive to noise, which can be caused by glint and errors in atmospheric correction (Sagan 

et al., 2020). Therefore, it was not possible to convert IOPs into concentration of water constituents. 

Nevertheless, a strong agreement between the 2SeaColor-derived IOPs and empirical models established 

in the literature applied to in-situ spectra gave us more confidence that the model is able to at least capture 

the main features expected of the IOPs and indicate the proportion of the fundamental water quality 

variables. Since the method is based on variability of IOPs and relative proportion between them, the 

2SeaColor was considered acceptable for further use despite the mentioned limitations. 

 

The proportion of optical signals associated with a wastewater plume was used to derive the WCI. It was 

shown that wastewater is mostly characterized by a high concentration of particulate matter and low light 

penetration, which are given a weight of approximately 40% each. Coloured dissolved organic matter and 

detritus have a secondary role in the description of the wastewater plume, with a weight of 15%, while 

chlorophyll-a has the lowest influence (8%). It should be noted that in this case only one plume was used 

as a reference to assess the relative weights of IOPs and it was assumed that it would be representative of 

other wastewater spills in the area. Ideally, a larger number of images portraying visible and confirmed 

wastewater plumes should be used to give statistical strength to the hypothesis, but it was not available in 

this case. Nonetheless, the application of the WCI to images of other suspected outfall events indicated 

the suitability of the index for wastewater detection. With the aid of photographic records, meteorological, 

water quality and hydrodynamics data, it was possible to find agreement between high WCI and four 

wastewater outfalls. Results indicated that wind could be an important factor in the observation of plumes, 

probably due to its importance to the lagoon’s circulation and column mixing. Clouds, on the other hand, 

constitute a limitation of the method. The cloud mask from Sentinel-2 does not efficiently remove clouds 

and their shadows, and these harm the interpretation of WCI due to deviant signals. The spatio-temporal 

analysis of WCI did not provide significant recurrent patterns of wastewater pollution in the area, which 

highlights the irregular nature and unpredictability of wastewater outfalls.  

 

In this context, the following recommendations are given for improvement of the method and future 

studies: 

• Quality assured in-situ water quality measurements, including other pigments such as chlorophyll-

b and fucoxanthin; 

• Quality assured radiometric measurements: use of fixed sensors and viewing geometry, third 

radiance radiometer to capture sky radiance and allow correction for glint; 
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• Improvements to the Hydro-Optical model, including parametrization for other pigments and 

inclusion of bottom reflectance effects; 

• Use of larger number of reference wastewater plumes to characterize the proportion of IOPs that 

best captures the wastewater signal; 

• Evaluation of the WCI performance in other locations; 

• Effective identification and masking of clouds and cloud shadows; 

• Machine Learning to automate the process of wastewater detection. It should be noted that in this 

case, a large number of reference images of wastewater plumes would be required for training. 

• Inclusion of shapes and other remote sensing features (i.e. radar, thermal) in the detection 

process. 
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APPENDICES 

APPENDIX A – FIELDWORK SAMPLING PROCEDURES 

The sampling procedures started before going to the field, with the preparation of the equipment. This 

included: 
1.  Preparing water sampling bottles: 

a. Add tags with the date and name of the points; 

b. Wrap bottles for chlorophyll-a analysis with aluminum foil (to avoid light interaction); 

c. Place them in a cool box. 

2. Configuring the TriOS software (MSDA_XE): 

a. Add external trigger for all instruments and enable automatic measurement (‘auto’); 

b. Select saving of Calibrated and Raw files 

c. Select saving as File and on Database 

d. Select saving folder according to the date 

In the field, the sampling logistics involved the use of a motorized boat as a means of transportation, 

which was harbored in a Marina located at the entrance of the Barra Channel (see Figure 3). Each day of 

measurement the equipment was prepared there: connection of the sensors to the logger and computer, 

connection of the logger to the power supply and mounting of the irradiance sensor onto a vertical 

metallic bar on the boat (see Figure 35). The next step was to move to the sampling locations, with the 

general strategy of alternating between starting at P1 in the South Lagoon and starting at P10 in Central 

Lagoon, aiming to cover as many points as possible during the available time (maximum 1h before and 

after overpass). 

 

 
a) 

 
b) 

Figure 35: a) Boat used for the field measurements at the Marina and its b) Deck layout. 

The procedure for performing the measurements at each sampling point can be summarized in the 

following steps: 

 
1. Go to the specified sampling point without going with the boat over the point (to avoid 

turbulence and mixing); 

2. Drop the anchor and get stable; 
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3. Note down in the Recording Sheet (APPENDIX C): 

a. Point number 

b. GPS coordinates 

c. Time 

d. Weather conditions 

e. Wind speed and direction  

f. Water aspect 

4. Check TriOS software (MSDA_XE) configurations: 

a. Turn off the continuous measurement of CDOM, re-configure external trigger and 

automatic measurement (‘auto’); 

b. Select saving folder according to the sampling point; 

c. Select integration time for radiance and irradiance radiometers. In this case, it was left on 

‘auto’ for automatic selection according to illumination conditions. 

5. Do radiometric and fluorometer measurements with the following arrangement:  

a. Downwelling Irradiance radiometer (Ed): should be placed looking upwards, with no 

interference of parts of the boat in the field of view. In this case, mounted on a vertical 

bar on the boat (see Figure 36) 

b. Water Leaving Radiance radiometer (Lw): stand with the back to the sun, turn 90 degrees 

to one of the sides, trying to find the best spot without shadows and sun glint. Point the 

radiometer to the water at an angle between 40-45 degrees from nadir. 

c. CDOM fluorometer: place it underwater, approximately 15 cm depth. 

When everything is ready, hit the trigger and wait for the measurement to finish (purple signal). 

Repeat this three times at least. 

 
Figure 36: Layout configuration for radiometric and fluorometer measurements 
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6. Collect water samples (Figure 37 a)): 

a. Get the 3 bottles (one for each laboratory analysis) labeled with the according sampling 

point; 

b. Collect water from the surface with the inox jar, discard it once and collect it again; 

c. Fill the sampling bottles; 

d. Place bottles in the cool box. 

7. Do CTD measurements (Figure 37 b)): 

a. Lower the device with a cable until it reaches the bottom and bring it back to the surface; 

b. Note down the depth and water surface temperature in the Recording Sheet. 

8. Get everything settled and move to the next point. 

 

 
a) 

 

 
b) 

Figure 37: a) Water sample collection. b) CTD measurement 

Once all the field measurements of the day were completed, the boat returned to the Marina and the water 

samples were directly transported in the cool box to the laboratory for analysis. 
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APPENDIX B – SAMPLE FIELDWORK RECORDING SHEET 
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APPENDIX C –  OVERALL CONDITIONS DURING FIELDWORK 

The following sections describe in general the behavior of the sky conditions and water quality 

parameters measured during the Field Campaigns. The last section presents the compiled water quality 

results for consultation. 

a) Sky Conditions 

The sky-sun downwelling irradiance (𝐸𝑑 ) measurements from each Field Campaign (FC) day were 

analyzed to evaluate the variability of the illumination conditions. Table 10 shows the sky condition and 

the respective average values of measured 𝐸𝑑 and its range (min to max) for each day of measurement.  

It can be observed that during FC 01 and 02, when the sky condition was completely overcast, 𝐸𝑑 spectra 

were relatively low, with the average value reaching a maximum of 0.6 W m-2 nm-1 at around 450 nm. The 

variability within the measurements on those days was also low, as the range was less than 0.4 W m-2 nm-1.  

 

On the day of FC 03 it was partly cloudy, with a few openings. As expected, 𝐸𝑑 average values were 

higher than the overcast days, reaching a maximum of 1.1 W m-2 nm-1 at around 450 nm. The range was 

also broader. For example, at 450 nm the minimum 𝐸𝑑 was around 0.5 W m-2 nm-1 and the maximum 1.8 

W m-2 nm-1. 

 

From FC 04 to FC 07 the conditions were very similar, with mostly clear skies and high scattered clouds. 

The average 𝐸𝑑  spectrum measured on those days was higher than on the previous ones, reaching a 

maximum of 1.5 W m-2 nm-1 at around 450 nm. The ranges were broader than on the overcast days, with 

the maximum variability happening on FC 07, with similar values to FC 03. 

   

It should be noted that the variability of the 𝐸𝑑 spectra measurements for each day is influenced by the 

time and duration of the campaign, as the Solar Zenith Angle (SZA) will change and therefore the 

amount of direct irradiance (Ruddick et al., 2019). The higher variability on FC 03 and FC 07 could be 

explained by their longer duration (2:43 and 1:58 respectively) when the SZA also varied more: 72° to 37° 

on FC 03 and 75° to 50° on FC 07. 
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Table 10: Sky condition with the respective average irradiance values and range (min, max) for each Field Campaign (FC) 

FC Sky Condition Irradiance  

01 Overcast 

  

02 Overcast 
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03 Partly 
Cloudy 

  
04 Mostly 

Clear 
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05 Mostly 
Clear 

  
06 Mostly 

Clear 
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07 Mostly 
Clear 
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b) Surface Temperature 

The temperature was measured with the CTD during all Field Campaigns, except for FC 05 (13/12/21) 

when the equipment was unavailable.  

 

The water surface temperature ranged from 24.96 °C on FC 02 (03/12/21) up to 28.57 °C on FC 06 

(17/12/21). Despite the variability between days, the spatial variability was low within each Field 

Campaign, with not much temperature difference between sampling points. 

 

 

Figure 38: Temperature measured for each sampling point across the different Field Campaigns (FC) 

c) Surface Salinity 

Salinity was also measured with the CTD during all Field Campaigns, except for FC 05 (13/12/21) when 

the equipment was unavailable.  

 

As a result of the marine influence caused by the Barra Channel, surface salinity showed very distinct 

characteristics between the South Lagoon and Central Lagoon. The points in the South Lagoon (P01 to 

P08) showed on average a salinity of 18.35 PSU, while in Central Lagoon the points (P09 to P15) had an 

average salinity of  24.82 PSU. The lowest salinity values were measured on P1, highlighting the influence 

of freshwater inputs on that location (outlet of the Apa river). 
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Figure 39: Salinity measured for each sampling point across the different Field Campaigns (FC) 

d) Vertical Profiles of Temperature and Salinity 

 

The CTD measurements also provide the vertical profile of water temperature and salinity, which indicate 

the physical characteristics of the water column that have implications for its biogeochemistry.  

 

For the points most representative of the South Lagoon (P01 to P06) a relatively well-mixed water column 

was observed during all of the field campaigns (see the example of FC01 in Figure 40). Only points P05 

and P06, which have higher depths (up to 5.4 m ), present a slight gradient at the bottom layer with 

temperatures decreasing up to 1° C and salinity increasing between 2 and 4 PSU. The highest salinity 

observed was 22.5 PSU at the bottom layer of P06 during FC03 – 07/12/21. 
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Figure 40: Temperature and Salinity vertical profile of the points in the South Lagoon (P01 to P06) during FC01 – 
02/12/2021 

 

For the points in the Central Lagoon (P10 to P15) consistent higher salinity was observed as expected due 

to the proximity to the channel that connects the Lagoon to the ocean. P10, P13, P14 and P15 are all 

located in shallower parts of the lagoon, with depths varying from 1.0 to 2.2 m, and presented uniform 

temperature and salinity profiles for all the FCs. For P11 and P12, which have depths of around 5.0 m, 

profiles with rather constant salinity up until 2.0 m depth followed by a steep increase up to values very 

close to seawater conditions (around 32 PSU) were observed (see example Figure 41), indicating that the 

bottom layer is likely dominated by water that comes from the ocean through Barra Channel. Comparing 

the temperature at the surface and the bottom there is also a strong negative thermal gradient, with cooler 

water at the bottom. This condition leads to a high density difference which hampers vertical mixing and 

has the potential to cause anoxic conditions in the deeper layers, as has been reported several times in this 

location (de Barros et al., 2017; Silva et al., 2017). An unexpected feature was observed in the vertical 

profile during FC02 and FC07 when the temperature had a slight increase with depth in the first layers 

before decreasing at higher depths (Figure 42).  

 

P01 

P02 

P03 

P04 

P05 

P06 
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Figure 41: Temperature and Salinity vertical profile of P11 and P12 during FC07 – 28/12/2021 

 

 

 

Figure 42: Temperature and Salinity vertical profile of P11 and P12 during FC02 – 03/12/2021 
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P12 

P12 

P11 
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For the points in the transition between the South Lagoon and Central Lagoon (P07, P08 and P09), a very 

well-mixed column was seen for P07 and P08, which was expected as these points are right in the channel 

that connects the two parts of the lagoon, where stronger flux is observed. P09 already represents the 

conditions typical of the Central Lagoon, which receives more influence from the sea and therefore higher 

salinity overall and a bottom layer saltier and cooler. The profiles obtained for these points during FC07 

are presented in Figure 43 as an example. 

 

 

 

 

Figure 43: Temperature and Salinity vertical profile of the points in the transition between South and Central Lagoon 
(P07, P08 and P09) during FC07 – 28/12/2021 
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e) Thermotolerant Coliforms 

Thermotolerant coliforms, also known as faecal coliforms, are common indicators of faecal contamination 

in waters. According to Brazilian legislation, water is considered inappropriate for bathing when in more 

than 20% of a set of samples collected over 5 weeks in the same place, there are more than 1,000 faecal 

coliforms (thermotolerant) in 100 mL. During the research Field Campaigns, the thermotolerant coliforms 

were always lower than 1,000 MPN4/100 mL, with the highest value (940 MPN/100mL) observed on P8, 

which is located close to the most occupied area of the watershed, during FC 01 (02/12/21). It should be 

noted that on the last campaign (FC 07), the laboratory that analysed the samples for this parameter used a 

different method, called enzyme substrate, and all the results were < 10 MPN/100mL (assumed as 0). For 

the other campaigns, the method used was multiple tube fermentation. 

 

Figure 44: Thermotolerant coliforms measured for each sampling point across the different Field Campaigns (FC) 

 

f) Coloured Dissolved Organic Matter – CDOM 

 

Coloured Dissolved Organic Matter (CDOM) was measured in-situ on each of the Field campaigns at 

least 3 consecutive times per sampled point. During FC 01, all of the recorded values were below the 

detection limit of the instrument (0.25 µg/L), which meant they were invalid and therefore discarded. The 

same happened on FC 02 and FC 04 for the first sampling point of that day (P10 and P1 respectively). 

 
4 MPN means the Most Probable Number, a statistical procedure commonly used in microbiology for estimating the 
number of organisms in a sample. 



 

76 

The average CDOM concentration was calculated for each point per campaign considering the valid 

measurements.  

 

Overall, the highest values of CDOM were observed at P1, close to the outlet of river Apa. The maximum 

value of CDOM was recorded at that point on FC 06 (17/12/21), reaching 58.64 µg/L. It was also 

possible to observe that CDOM values were consistently higher in the South Lagoon points (average 

39.24 µg/L)  in comparison to the Central Lagoon points (average 32.10 µg/L). This highlights the 

stronger influence of freshwater inputs in the South Lagoon in comparison to the Central Lagoon, as 

CDOM is considered a tracer of riverine inputs because of its negative linear correlation with salinity 

(IOCCG, 2000).  

 

 

Figure 45: CDOM concentration measured for each sampling point across the different Field Campaigns (FC) 

 

g) Suspended Particulate Matter – SPM 

 

Suspended Particulate Matter (SPM) values ranged from 26 mg/L to 464 mg/L. It should be noted that 

the analysis from FC 07 was conducted by a different laboratory from the previous campaigns and the 

values were systematically larger, even though they used the same method (see discussion on APPENDIX 

D – FIELD DATA QUALITY CONTROL). No other obvious patterns were observed a priori. 
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Figure 46: SPM concentration measured for each sampling point across the different Field Campaigns (FC) 

h) Chlorophyll-a 

 

Chlorophyll-a measurements ranged from 0 to 223.87 µg/L. The detection limit of the laboratory that 

analyzed the samples from FC 01 to FC 06 was 0.25 µg/L, so on several occasions when the result was < 

0.25 µg/L, it was assumed to be 0. It should be noted that the analysis from FC 07 was conducted by a 

different laboratory from the previous campaigns (though the same method was applied) and the values 

were systematically an order of magnitude larger (see discussion on APPENDIX D – FIELD DATA 

QUALITY CONTROL). Disregarding FC 07, the highest chlorophyll-a measurement (7.12 µg/L)  was 

observed on P3 during FC 03 (07/12/21), right after an algae bloom event that occurred between 

04/12/21 and 06/12/21 (Figure 48). Nonetheless, most of the other points sampled on that day resulted 

in chlorophyll-a below the detection limit (<0.25 µg/L). Similarly, on P3 during FC 04 (10/12/21), when 

floating algae were observed on the field (Figure 49), the result was <0.25 µg/L. This could mean 

potential problems with the analysis from the laboratory or the conservation of the samples. Another 

hypothesis would be the predominance of other photosynthetic pigments due to the algae species (most 

probably brown algae Fibrocapsa japonica, already recorded in other bloom events in the Lagoon). 
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Figure 47: Chlorophyll-a concentration measured for each sampling point across the different Field Campaigns (FC) 
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Figure 48: Pictures of the algae bloom washing toward the margins of the lagoon on the 6th of December 2021 

 

  

Figure 49: Pictures of the floating algae observed on P3 during FC 04 on the 10th of December 2021 
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i) Compilation of Water Qualilty Measurement Results 

 

Date Time Point Chlorophyll-a CDOM SPM Faecal Coliforms Surface Temperature Surface Salinity    
(µg/L) (µg/L) (mg/L) (MPN/100ml) (°C) (PSU) 

02-Dec 09:34 P01 <0.25 NA 34 490 27.25 17.88 

02-Dec 09:45 P02 <0.25 NA 33 330 27.56 18.06 

02-Dec 09:56 P03 <0.25 NA 33 480 27.28 18.07 

02-Dec 10:09 P04 <0.25 NA 32 330 26.34 18.25 

02-Dec 10:21 P05 <0.25 NA 33 460 26.68 18.25 

02-Dec 10:31 P06 <0.25 NA 27 630 26.63 18.26 

02-Dec 10:45 P07 4.01 NA 29 700 26.35 18.14 

02-Dec 11:00 P08 <0.25 NA 30 940 26.07 18.20 

02-Dec 11:08 P09 5.35 NA 38 580 26.48 24.23 

03-Dec 09:39 P10 <0.25 NA 71 430 25.20 25.13 

03-Dec 10:00 P11 <0.25 32.61 73 310 24.96 25.10 

03-Dec 10:08 P12 <0.25 34.27 41 430 24.98 25.14 

03-Dec 10:19 P13 <0.25 34.51 41 580 25.13 24.23 

03-Dec 10:27 P14 <0.25 33.91 45 310 25.12 24.41 

03-Dec 10:35 P15 <0.25 34.22 55 250 24.97 24.28 

07-Dec 09:28 P01 3.11 48.74 46 430 25.22 16.21 

07-Dec 09:42 P02 <0.25 44.14 29 310 25.71 17.84 

07-Dec 09:52 P03 7.12 43.42 27 460 25.33 18.14 

07-Dec 10:08 P04 <0.25 43.09 28 490 25.67 18.49 

07-Dec 10:19 P05 <0.25 42.96 31 490 25.30 18.37 

07-Dec 10:30 P06 <0.25 41.79 32 700 25.45 18.28 

07-Dec 10:43 P07 <0.25 40.31 32 580 25.54 18.34 

07-Dec 10:53 P08 <0.25 40.11 27 700 25.54 18.30 

07-Dec 11:04 P09 <0.25 29.89 45 430 25.09 23.85 
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Date Time Point Chlorophyll-a CDOM SPM Faecal Coliforms Surface Temperature Surface Salinity    
(µg/L) (µg/L) (mg/L) (MPN/100ml) (°C) (PSU) 

07-Dec 11:18 P10 1.77 28.25 39.5 460 25.13 25.22 

07-Dec 11:34 P11 <0.25 35.77 40 270 25.11 23.78 

07-Dec 11:42 P12 <0.25 33.22 41 430 25.04 24.03 

07-Dec 11:55 P13 <0.25 36.01 37 310 25.24 23.07 

07-Dec 12:05 P14 <0.25 35.97 37.5 250 25.42 23.44 

07-Dec 12:14 P15 <0.25 32.22 40 490 25.36 24.51 

10-Dec 09:18 P01 6.05 NA 89 460 26.07 17.85 

10-Dec 09:28 P02 1.34 30.90 29 330 25.76 18.34 

10-Dec 09:36 P03 <0.25 42.78 31 400 25.66 18.39 

10-Dec 09:46 P04 2.67 37.92 37 410 25.65 18.61 

10-Dec 09:55 P05 <0.25 38.75 31 430 25.30 18.61 

10-Dec 10:03 P06 <0.25 38.49 32 630 25.32 18.49 

10-Dec 10:12 P07 2.2 37.90 33 630 25.51 18.43 

10-Dec 10:20 P08 1.34 35.27 34 580 25.59 18.57 

10-Dec 10:29 P09 3.02 24.09 65 430 25.08 24.57 

13-Dec 11:43 P10 <0.25 39.88 30.8 310 NA NA 

13-Dec 11:56 P11 1.34 35.29 20.5 250 NA NA 

13-Dec 12:08 P12 <0.25 33.02 25 580 NA NA 

13-Dec 12:20 P13 2.67 34.20 30 450 NA NA 

13-Dec 12:31 P14 <0.25 33.24 22.5 430 NA NA 

13-Dec 12:42 P15 <0.25 33.02 22 210 NA NA 

17-Dec 09:35 P01 1.8 58.64 32 340 28.08 15.34 

17-Dec 09:37 P02 1.52 40.99 34 230 28.57 17.92 

17-Dec 09:48 P03 0.87 39.51 33.3 410 28.04 18.25 

17-Dec 10:00 P04 <0.25 42.20 26 330 27.46 18.50 

17-Dec 10:13 P05 1.63 44.96 29.3 310 27.55 18.40 

17-Dec 10:22 P06 1.72 44.44 28 580 27.60 18.40 
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Date Time Point Chlorophyll-a CDOM SPM Faecal Coliforms Surface Temperature Surface Salinity    
(µg/L) (µg/L) (mg/L) (MPN/100ml) (°C) (PSU) 

17-Dec 10:35 P07 0.83 43.03 28 430 28.37 18.22 

28-Dec 11:26 P01 46.4 33.44 64 <10 28.25 19.28 

28-Dec 11:19 P02 124.94 30.71 360 <10 27.79 19.28 

28-Dec 11:11 P03 223.87 31.73 142 <10 27.77 19.26 

28-Dec 11:00 P04 43.14 30.93 318 <10 27.47 19.20 

28-Dec 10:49 P05 43.25 32.42 324 <10 27.69 19.25 

28-Dec 10:41 P06 61.32 31.06 294 <10 27.66 19.26 

28-Dec 10:34 P07 35.17 33.15 356 <10 27.84 19.27 

28-Dec 10:26 P08 34.22 33.33 88 <10 27.86 19.30 

28-Dec 10:18 P09 57.15 25.91 74 <10 28.02 25.73 

28-Dec 10:09 P10 25.61 27.63 368 <10 28.15 26.00 

28-Dec 10:01 P11 41.87 26.70 452 <10 27.76 25.99 

28-Dec 09:53 P12 9.51 29.76 464 <10 27.63 25.90 

28-Dec 09:44 P13 8.86 33.16 78 <10 27.76 25.93 

28-Dec 09:36 P14 21.36 33.10 178 <10 27.46 25.76 

28-Dec 09:28 P15 11.3 40.76 478 <10 27.74 25.72 
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APPENDIX D – FIELD DATA QUALITY CONTROL 

Quality control was performed on the data collected during fieldwork to certify it was fit for use in the 

following steps of the research. The next sections describe the procedures and analysis conducted for the 

quality assessment of the radiometric and water quality data collected in the field 

 

RADIOMETRIC DATA 

In the case of above-water radiometric field measurements, several factors may contribute to uncertainties 

of the measured reflectance, with glint contamination being considered the main challenge (IOCCG 

Protocol Series, 2019). Although there are recommendations for the viewing geometry in order to 

minimize its effects (viewing angle θ of 40° and azimuth ϕ of 135° relative to the sun (Mobley, 1999)), 

these are in practice difficult to follow precisely in the field, especially with smaller boats and hand-held 

instruments as was the case of this research fieldwork. With this limitation in mind, at least three 

consecutive radiance and irradiance paired measurements were taken within one to three minutes at each 

sampling location. This approach is recommended for further assessment of the quality of the data and 

identification of potential disturbances in the measurements (IOCCG Protocol Series, 2019).   

 

The 𝑅𝑟𝑠  spectra calculated from raw data collected during fieldwork showed high variability within 

consecutive measurements taken under less than three minutes (see Figure 50). In addition, most of the 

measurements had considerably high reflectance at the NIR and UV parts of the spectrum. According to 

Kutser et al. (2013), high values in these regions can be associated with glint contamination. 
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Figure 50: Rrs spectra calculated from raw consecutive Ed and Lw measurements  

 

Bottom reflectance was discarded based on the Near-Infrared Bottom-Effect Index – NIBEI (Arabi et al., 

2020), which is taken as the ratio of the reflectances at 900 nm and 750. For optically deep waters this 

ratio can be approximated as the ratio of pure water absorption at 750 and 900, equal to a constant value 

of 2.67. For all the spectra the NIBEI was lower than this value, varying from 1.01 to 2.27 (Figure 51), 

therefore the hypothesis of bottom reflectance contamination in the measured spectra was discarded. 

 

The variability of the sky-sun downwelling irradiance (𝐸𝑑) and the upwelling radiance (𝐿𝑢) were therefore 

investigated, as well as their potential link to glint contamination and correction procedures. 
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Figure 51: Histogram of the NIBEI calculated for the 67 measured reflectance spectra 

 

a) Variability in Downwelling Irradiance (𝑬𝒅) and Above-Water Upwelling Radiance (𝑳𝒘) 

The sky-sun downwelling irradiance (𝐸𝑑) and above-water upwelling radiance (𝐿𝑤)  measurements were 

inspected to evaluate their variability and how this could affect the 𝑅𝑟𝑠 spectra.  

 

During overcast days (FC01 and FC02), it was observed that 𝐸𝑑 spectra were relatively low and presented 

a reduced range (see Table 10 in APPENDIX C –  OVERALL CONDITIONS DURING 

FIELDWORK). Looking at consecutive 𝐸𝑑 measurements (taken at the same point within less than three 

minutes) (Figure 52), the variability can be considered negligible (mean coefficient of variation equal to 

0.9%). The 𝐿𝑤 spectra, on the other hand,  with a mean coefficient of variation equal to 16%, showed 

considerable variability within consecutive measurements for most points (Figure 53). This is likely 

associated with variation in the viewing geometry of the handheld sensor due to wobbling of the boat 

and/or water surface perturbations (i.e. from wind and waves), which may introduce specular reflection 

(glint) in the measurements. In these conditions it is possible, therefore, to assume that variability in 𝑅𝑟𝑠 

spectra does not come from changes in 𝐸𝑑 , but only from 𝐿𝑤 and probably sun-glint contamination.  

 

During mostly clear days with scattered clouds (FC03 to FC07), 𝐸𝑑 spectra were higher and more variable 

(see Table 10 in APPENDIX C –  OVERALL CONDITIONS DURING FIELDWORK), even for 

measurements at the same point taken within less than three minutes (Figure 52). Mean coefficients of 

variation equal to 5% for 𝐸𝑑 and 13% for 𝐿𝑤 measurements were observed. 

 

In such unstable conditions, both 𝐸𝑑 and 𝐿𝑤 variability will influence the 𝑅𝑟𝑠 spectra and in theory they 

should be synchronized (i.e. higher 𝐸𝑑 matching higher 𝐿𝑤 and vice-versa). This was not always the case, 

as can be seen for P13 during FC03 (Figure 54), where the measurement taken at 12:02:04 had the highest 

𝐿𝑤 and the lowest 𝐸𝑑 of the consecutive spectra, which will yield a discrepantly high spectrum for 𝑅𝑟𝑠. 

This is likely to be a combined effect of changing illumination conditions and the introduction of specular 

reflection. 
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Figure 52: Mean Ed (solid lines) and standard deviation (ribbon) of consecutive measurements at each point for all 
the Field Campaigns. 
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Figure 53: Mean Lw (solid lines) and standard deviation (ribbon) of consecutive measurements at each point for all 
the Field Campaigns. 
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Figure 54: Consecutive Ed and Lw measurements taken at P13 during FC03 – 07/12/2021, with unstable sky conditions
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b) Glint Contamination 

Considering that the main source of instability in the measurements was likely glint, our first approach was 

to look into the days with stable 𝐸𝑑 (overcast) and assume that the lowest 𝐿𝑤 spectrum was glint-free and 

the difference between the lowest and highest spectra would represent the glint component. This analysis 

was performed for Field Campaigns (FC) 01 and 02, which took place on the 2nd and 3rd of December 

2021. The illumination conditions on those two days were very similar, but the wind was much lighter on 

the FC 02 (~1 knot) when compared to FC 01 (~8 knots). 

 

It was possible to observe that the normalized residual radiance (difference between the highest and 

lowest spectra, divided by the maximum value observed) was fairly stable on the day with no wind, with a 

spectral shape resembling the sky radiance in overcast conditions (Figure 55), which could be explained as 

sunlight reflected on the water surface due to the mirroring effect observed in such conditions (see picture 

on Figure 57). For FC 01, with stronger wind, the residuals were more variable, possibly associated with 

surface roughness and the effect of the capillary waves, but were still resembling the same pattern. 
 

 
Figure 55: Normalized Lw residuals (difference between lowest and highest measured spectra) during FC02, with 
overcast conditions and no wind. 

 
Figure 56: Normalized Lw residuals (difference between lowest and highest measured spectra) during FC01, with 
overcast conditions and moderate wind. 
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a) 

 
b) 

Figure 57: Pictures of the conditions observed during a) FC01, with an overcast sky and moderate wind that result in 
rough water surface; and b) FC02, with an overcast sky and no wind, resulting in a smooth water surface with an 
observable mirror effect 

Based on this, it was opted for selecting the lowest reflectance ( 𝑅𝑟𝑠 ) spectra of the consecutive 

measurements at each point, assuming these would be the least glint contaminated ones. Nevertheless, 

some reflectance spectra were consistently high in the NIR (Figure 58), potentially still containing glint.  

 

 
Figure 58: Lowest reflectance (𝑅𝑟𝑠) spectra of the consecutive measurements at each point for the different field 
campaigns 
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The method proposed by Kutser et al. (2013) to remove glint effects from in-situ radiometric data was 

then applied to the measurements. Their method is based on the assumption that the water reflectance 

near 900 nm is negligible (for optically deep waters) due to strong absorption by water molecules and that 

it is also commonly very close to zero in the UV part of the spectrum for optically complex waters. As 

such, 𝑅𝑟𝑠  spectra can be corrected by fitting a power function between reflectance values in the 

wavelengths range of 350-380 nm and 890-900 nm and subtracting it from the original spectrum. 

Groetsch et al. (2017) used an analytical model and matching above- and below-water radiometric 

measurements to show that indeed a correction factor that is wavelength dependent (instead of a constant 

value) represents well the glint component, which in most conditions resembles a power relation as 

proposed by Kutser et al. (2013). Nevertheless, the application of the method to this research’s field data 

resulted in over-correction of the spectra, with even negative reflectance values in several cases (see an 

example of measurements from FC05 in Figure 59). This problem had been reported by the authors and 

was mostly seen in CDOM-rich waterbodies. Since the reflectance measurements were to be used as input 

to the 2SeaColor model, which is based on the curvature of the spectra to derive IOPs, the use of the 

spectra with negative (or ignored) values would hamper the results. 

 

 
Figure 59: Visualization of the Kutser et al. (2013) correction method applied to the reflectance spectra measured 
during FC05. Solid lines are the original spectra, dotted lines are the fitted power function that represents the glint 
component and dashed lines are the corrected spectra calculated as the difference between original and glint spectra. 

 

The presence of a feature at the oxygen absorption wavelength (near 760 nm) was then investigated, as it 

was indicated by other authors to be related to problems in the measurements, most likely glint (Kutser et 

al., 2009). According to the authors, a dip or a peak in that position would be only visible in case the 

downwelling irradiance and upwelling radiance signals are not proportional and therefore can be used as 
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an indicator of glint. In the collected data it was observed that the spectra which had a higher signal in the 

NIR also presented a peak around 760 nm (Figure 58). Similar to what was proposed by Kutser et al. 

(2009) for removing glint from hyperspectral imagery and later applied by Busch et al. (2013) in the case of 

field radiometric data, the height of the oxygen absorption feature was used to flag the spectra which were 

likely contaminated by glint. The height of the feature (𝐻) is calculated as: 

 

𝐻 = 𝑅𝑟𝑠(760) −
𝑅𝑟𝑠(750) + 𝑅𝑟𝑠(775)

2
 22 

Where 𝑅𝑟𝑠(𝜆) is the remote sensing reflectance at wavelength 𝜆 
 
This was applied to the already selected lowest spectra at each point. By manual tuning, a threshold of 

5.00E-05 sr-1 was established for the flagging. Spectra with 𝐻 higher than the threshold were assumed to 
have glint and therefore flagged and removed from further processes. From the 67 measured spectra, only 
34 were not flagged. 
 
 

 
Figure 60: Remote sensing reflectance spectra after the application of the flagging procedure based on the height of 
the oxygen absorption feature (H), with flagged spectra when H > 5E-05. 
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c) Satellite Images’ Surface Reflectance 

 

During the Fieldwork, there were three occasions when measurements were taken with satellite overpass 

and mostly clear sky conditions: FC 04, FC 06 and FC 07.  

 

During FC 04 (10/12/21) there was Sentinel-2A MSI sensor overpass and 9 points were sampled (P1 to 

P9) (Figure 61). On FC 06 (17/12/21) again there was Sentinel-2A MSI sensor overpass and 7 points were 

sampled (P1 to P7), but due to cloud cover only two points (P4 and P5) were visible in the image (Figure 

62). On FC 07 (28/12/21) there was Landsat 8 OLI sensor overpass at the time of measurements and all 

the 15 points were sampled, but only P7 to P14 were potentially free from cloud contamination by visual 

inspection (Figure 63). 

 

 

Figure 61: Sentinel-2A MSI RGB image from 10/12/2021 with the location of the points where in-situ radiometric 
measurements were taken  
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Figure 62: Sentinel-2A MSI RGB image from 17/12/2021 with the location of the points where in-situ radiometric 
measurements were taken 

 

Figure 63: Landsat 8 OLI RGB image from 28/12/2021 with the location of the points where in-situ radiometric 
measurements were taken 
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The reflectance values corresponding to the sampling points were extracted from the atmospherically 

corrected satellite images in Google Earth Engine using the mean value of a 3x3 pixel window. 

 

In order to compare the reflectance measured in-situ with the satellite-derived surface reflectance, it was 

necessary to convert the hyperspectral into multispectral radiometric data. Spectral convolution based on 

the satellite’s spectral response function (SRF) is the procedure for that, which uses the following 

equation: 

𝐿̅(𝐵) =  
∫ 𝐿(𝜆)𝑆𝐵(𝜆)𝑑𝜆

 

𝜆∈𝐵

∫ 𝑆𝐵(𝜆)𝑑𝜆
 

𝜆∈𝐵

 23 

Where 𝐿̅(𝐵) is the convolved spectral value at band 𝐵, 𝐿(𝜆) is the hyperspectral value at wavelength 𝜆 

and 𝑆𝐵(𝜆) is the SRF value at 𝜆 for the band 𝐵, with 𝜆 taking all the different wavelengths comprised in 

𝐵. 

 

Although many authors apply convolution directly to the reflectance spectra, Burggraaff (2020) shows that 

the correct way is to convolve the downwelling irradiance (𝐸𝑑 ) and the water-leaving radiance (𝐿𝑤 )  

separately and then divide them to get the convolved reflectance spectra. As such, the convolution of 

remote sensing reflectance was calculated as follows: 

𝑅𝑟𝑠
̅̅ ̅̅ (𝐵) =  

𝐿̅𝑤(𝐵)

𝐸̅𝑑(𝐵)
=  

∫ 𝐿𝑤(𝜆)𝑆𝐵(𝜆)𝑑𝜆
 

𝜆∈𝐵

∫ 𝐸𝑑(𝜆)𝑆𝐵(𝜆)𝑑𝜆
 

𝜆∈𝐵

 24 

Another necessary step to allow comparison between both measurements is the conversion of the remote 

sensing reflectance (𝑅𝑟𝑠, in sr-1) into water-leaving reflectance (𝜌𝑤, unitless). Assuming an isotropic light 

field, we have: 

𝜌𝑤 =
𝜋 𝑑2𝐿𝑤

𝐸𝑒𝑥𝑡 cos 𝜃𝑠 𝑡
 25 

Where 𝑑 is the Earth-Sun distance in Astronomic Units (AU), 𝐿𝑤 is the water-leaving radiance, 𝐸𝑒𝑥𝑡 is the 

extraterrestrial solar irradiance at the mean Earth-Sun distance (1 AU), 𝜃𝑠 is the sun zenith angle and 𝑡 is 

the atmospheric diffuse transmittance. Since 𝑅𝑟𝑠 is defined as: 

𝑅𝑟𝑠 =
𝐿𝑤

𝐸𝑑
 26 

and the irradiance just above the water (𝐸𝑑) can be described as: 

𝐸𝑑 =
𝐸𝑒𝑥𝑡  cos 𝜃𝑠 𝑡

𝑑2
 27 

Substituting 27 in 26 and comparing to 25 it follows that: 

𝜌𝑤 =  𝜋 𝑅𝑟𝑠 28 

 

Figure 64 shows the comparison of in-situ measured convolved reflectance and Sentinel-2 A MSI Level 

2A surface reflectance (atmospherically corrected using sen2cor) for the 9 points sampled on FC 04 

(10/12/21). All of the sampled points had good pixel quality, classified as water in the Scene Classification 

Map of the product. Comparing both measurements it is possible to observe that they follow a very 

similar response, but the Sentinel-2 reflectance is systematically higher. It should be noted that in-situ 

reflectance spectra from points P01, P05 and P06 were flagged as likely glint contaminated in the previous 

quality control procedure (see Glint Contamination) and P01 and P05 were the measurements with the 

lowest difference from the S2-SR. For the other points, it is observed a relatively uniform ratio between 

in-situ and S2 reflectance (Figure 65), which could indicate glint contamination of the satellite imagery or a 

bias in the atmospheric correction procedure. To investigate the potential bias of the sen2cor algorithm 

for reflectance retrieval over water, ACOLITE algorithm was applied to the image of this date also, which 

was designed for water applications (Vanhellemont, 2019). The results show that, although ACOLITE 
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provides lower reflectance values in the VIS compared to sen2cor, both perform very similarly and have a 

considerable offset from the in-situ measurements (Figure 66). 

 
Figure 64: Comparison of the Sentinel-2 MSI and in-situ water-leaving reflectance (𝝆𝒘) measured at the sampling 
points P01 to P09 during FC04 10/12/2021 

 
Figure 65: Ratio between in-situ convolved reflectance and Sentinel-2 surface reflectance during FC04 10/12/2021 
for sampling points P01 to P09 
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Figure 66: Comparison between in-situ derived reflectance, Sentinel-2 surface reflectance obtained via ACOLITE 
and sen2cor algorithms and TOA  

Figure 67 shows the comparison of in-situ measured and Sentinel-2 A MSI reflectance for points P04 and 

P05 sampled on FC 06 (17/12/21). The image pixels were classified as of good quality in the product, but 

the in-situ spectrum from P05 was flagged as potentially glint contaminated. It is possible to observe that 

the difference between in-situ and satellite measurements is smaller when compared to the results of FC 

04 (see the difference in y-axis values). In-situ and satellite reflectance show a very similar pattern, except 

for Band 1 (443 nm), where satellite data is peaked in comparison to in-situ measured. The satellite 

reflectance again is systematically higher than in-situ measurements, with the exception of P04 in the NIR, 

when satellite values are matching the in-situ ones. 

 

 

Figure 67: Comparison of the Sentinel-2 MSI and in-situ water-leaving reflectance (𝝆𝒘) measured at the sampling 
points P04 and P05 on 17/12/2021 
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For FC 07 (28/12/21), the corresponding Landsat 8 OLI image acquired was not found fit to be 

compared with the in-situ measurements. The pixel quality band indicates cirrus, high clouds for points 

P07, P08, P09, P12 and P14, and a combination of dilated cloud and cloud shadow for P10, P11 and P13. 

The surface reflectance (from LaSRC atmospheric correction algorithm) extracted for the pixels showed 

negative values for almost all sampling points. 
 

WATER QUALITY DATA 

For the water quality data collected during fieldwork, errors could arise from problems in the instruments, 

their use, sample collection, conservation, or the laboratory analysis itself. 

 

For the CTD measurements (Temperature, Salinity and Depth) the quality control procedure was based 

on the fieldwork notes. On some occasions, the anchor detached from the substrate and the boat was 

adrift during the deployment of the instrument. When this happened, a note was made as to the time and 

point of the erroneous record and it was discarded later. After resettlement, the measurement was 

repeated under appropriate conditions. 

 

For the CDOM measurements, the range of the values recorded was analyzed to check potential errors. 

During FC 01, all of the recorded values were below the detection limit of the instrument (0.25 µg/L), 

which meant they were invalid and therefore discarded. The same happened on FC 02 and FC 04 for the 

first sampling point of that day (P10 and P1 respectively).  

 

For the measurements that required laboratory analysis (Chlorophyll-a, SPM and Coliforms), uncertainties 

were added due to the use of two different laboratories. Laboratory QMC (hereby called Lab 1) did the 

analysis for the first 6 Field Campaigns (in total 52 points), while Aquaplant (Lab 2) analyzed the samples 

from the last Campaign (15 points). From the boxplots in Figure 68, it is possible to observe that there 

was a clear discrepancy between the results provided by the two labs, with Lab 2 giving much higher 

values of SPM and chlorophyll-a concentration. There was no observed change in conditions of the 

lagoon that could explain such a difference and both laboratories used the same methods for the analysis. 

Compared to other studies conducted in Conceição Lagoon (de Barros et al., 2017; Horn, 2021), the range 

of values of Lab 1 seems to represent better the typical conditions observed there. For thermotolerant 

coliforms, Lab 2 results were all under the detection limit < 10 MPN/100mL, while Lab 1 provided values 

in the range of 210 to 940 MPN/100mL. In this case, Lab 2 used the enzyme-substrate method, while Lab 

1 used multiple tube fermentation. After request, Lab 2 double-checked their procedures and values, but 

confirmed the result that was provided. It was opted then to not use the data from Lab 2 in the research. 

 



 

99 

 
a) 

 
b) 

Figure 68: Boxplots of the concentration of a) chlorophyll-a and b) suspended particulate matter (SPM) provided by 
the different laboratories that conducted the analysis 
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APPENDIX E– COMPARISON 2SEACOLOR WITH EMPIRICAL INDICES 

 

Due to the lack of correlation observed between the IOPs derived by the 2SeaColor and the water 

constituents concentration measured in-situ, it was decided to apply other empirical algorithms established 

in the literature and assess whether they could give better results. Empirical algorithms link apparent 

optical properties (AOPs) on the satellite level to the concentration of optically active constituents in the 

water using simultaneously acquired field data and statistical regression methods. Although such 

algorithms are regional-specific and need to be tuned with local data, the use of band ratios and/or 

spectral indices has the advantage of minimizing the effects of the atmospheric and illumination 

conditions (Mishra and Mishra, 2012). Analytical models, such as the 2SeaColor, have the forward model 

based on the exact solution of RTE and are more sensitive to noise and errors in the atmospheric 

correction (Sagan et al., 2020). 

 

Considering the regional specificity, it was opted for trying a range of empirical indices for each water 

constituent, which is summarized in Table 11. Figure 69, Figure 70 and Figure 71 show the scatterplots of 

concentration measured in-situ against index values for chlorophyll-a, CDOM and SPM respectively. Very 

low correlation coefficients and high p-values are observed, indicating the lack of correlation. With log 

transformation (to assess non-linear relationship) still no correlation was found.  

 
Another approach to evaluate the performance of the 2SeaColor was based on the method developed by 

Loisel et al. (2014) and also applied by Normandin et al. (2019). An inter-comparison is performed 

between the 2SeaColor-derived IOPs and the empirical indices to verify their agreement. This was 

conducted for both the in-situ reflectance spectra and for Sentinel-2 image of a day with matched up 

measurements (2021-12-10).  

 

Figure 72 shows the scatterplot of the absorption by chlorophyll-a derived from 2SeaColor against 

empirical indices (both applied to the in-situ spectra) and it is possible to observe a high positive linear 

correlation (R > 0.73) for the indices MPH, NDCI, SLOPE and TwoB. The low p-values indicate that the 

correlation is statistically significant at a 99% confidence interval. Figure 73 compares the log-transformed 

values of absorption by CDOM from 2SeaColor against the empirical indices (both applied to the in-situ 

spectra)  and a strong exponential relationship for indices Ficek5, Mannino and Menken (|R|>0.54)  are 

seen. For SPM it is also seen a very good correlation between the log-transformed backscattering from 

2SeaColor and the Doxaran, Dsa and Gernez indices applied to the in-situ spectra (R>0.61) (Figure 74).  

 

For the Sentinel-2 image inter-comparison, selected indices were applied considering the availability of 

bands. For chlorophyll-a, the indices FLH, HP, NDCI, SLOPE and TwoB were applied to the image and 

compared to the absorption derived from 2SeaColor for pixels that corresponded to the in-situ sampling 

points (Figure 75). No correlation was observed in this case, as p-values are higher than 0.05. This is 

influenced by the number of samples (n=9), which reduces statistical significance. Comparing the index 

values from the image with the chlorophyll-a concentration measured in-situ (Figure 78) it is observed 

high p-values, which also do not grant statistical significance to the correlation. It should be noted that the 

quality of the image of this day is not ideal, as clouds are largely present in the North Lagoon and glint 

contamination also seems to be occurring.  

 

 
5 Ficek’s model suggests negative correlation between the index and absorption by CDOM (Ficek et al., 2011).  
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For CDOM an inter-comparison is conducted between absorption derived from 2SeaColor and the 

empirical models BR and Ficek, all applied to the Sentinel-2 image and extracted for the sampling points. 

As seen in Figure 76, no correlation was found in this case. The same applies to the comparison between 

CDOM concentration measured in-situ and index values derived from the image (Figure 79). 

 

The comparison of backscattering of SPM derived from 2SeaColor and empirical indices Bernardo, 

Doxaran, Dsa and Nechad applied to the Sentinel-2 image and extracted for the sampling points is 

presented in Figure 77. It is possible to observe strong positive correlation between backscattering and the 

Dsa and Nechad indices in this case, with high coefficient of correlation and a confidence level above 

99%. This suggests that the retrieval of 𝑏𝑏𝑆𝑃𝑀(440) by the 2SeaColor from Sentinel-2 image would be 

consistent in case of spectra offset caused by errors in the atmospheric correction, though probably would 

contain an offset as well. Comparing the index values applied to the image with in-situ measured 

concentration of SPM (Figure 80), no significant correlation is observed. Exception is Nechad index, 

which gives a significant negative correlation, but only positive correlation is expected for this model. 

 

This procedure revealed no correlation between the in-situ measurements of water constituents 

concentration (from samples) and the empirical models (refer to Table 11) applied to in-situ spectra and 

Sentinel-2 image, which supports the hypothesis that the water quality in-situ measurements might not be 

consistent. A strong agreement between the 2SeaColor derived IOPs and indices from the literature 

applied to in-situ spectra gives more confidence that the model is working as expected in terms of deriving 

IOPs from reflectance spectra. The inter-comparison of 2SeaColor derived IOPs and indices applied to a 

Sentinel-2 image provided lower than expected agreement, but the analysis suggests that the utilized image 

had potential issues regarding cloud cover and glint contamination. 
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Table 11: Summary of empirical indices used in the research: their name, formulation, what it is used for and the reference 

Index Acronym Index Formulation Estimation of Reference 

Height Peak  
HP 𝑅𝑟𝑠(705) − [

𝑅𝑟𝑠(665) + 𝑅𝑟𝑠(740)

2
] 

Chlorophyll-a (Toming et al., 2016) 

Two Bands 
TwoB 

𝑅𝑟𝑠(705)

𝑅𝑟𝑠(665)
 

Chlorophyll-a (Dall’Olmo and 

Gitelson, 2005) 

Normalized Difference 

Chlorophyll Index NDCI 

𝑅𝑟𝑠(705) − 𝑅𝑟𝑠(665)

𝑅𝑟𝑠(705) + 𝑅𝑟𝑠(665)
 

Chlorophyll-a (Mishra and Mishra, 

2012) 

Slope 
SLOPE 

𝑅𝑟𝑠(705) − 𝑅𝑟𝑠(665

705 − 665
 

Chlorophyll-a (Mishra and Mishra, 

2010) 

Fluorescence Line Height FLH 
𝑅𝑟𝑠(681) − [𝑅𝑟𝑠(709) +  

(709 − 681)

(709 − 665)
∗ (𝑅𝑟𝑠(665) − 𝑅𝑟𝑠(709) ] 

Chlorophyll-a (Letelier and Abbott, 

1996) 

Maximum Peak Height MPH 
𝑀𝑎𝑥(𝑅𝑟𝑠(680 − 750)) − 𝑅𝑟𝑠(664) − [((𝑅𝑟𝑠(885) − 𝑅𝑟𝑠(664)) ∗

𝜆𝑚𝑎𝑥 − 664

885 − 664
] 

Chlorophyll-a (Matthews et al., 2012) 

Blue-Red BR 𝑅𝑟𝑠(450)

𝑅𝑟𝑠(650)
 

CDOM (Harringmeyer et al., 

2021) 

Brezonik1 - 𝑅𝑟𝑠(705)

𝑅𝑟𝑠(910)
 

CDOM (Brezonik et al., 2015) 

Brezonik2 - 𝑅𝑟𝑠(490)

𝑅𝑟𝑠(740)
 

CDOM (Brezonik et al., 2015) 

Menken - 𝑅𝑟𝑠(670)

𝑅𝑟𝑠(560)
 

CDOM (Menken et al., 2009) 

Mannino - 𝑅𝑟𝑠(490)

𝑅𝑟𝑠(555)
 

CDOM (Mannino et al., 2008) 

Ficek - 𝑅𝑟𝑠(570)

𝑅𝑟𝑠(655)
 

CDOM  

(neg corr.) 

(Ficek et al., 2011) 

Bernardo - 𝑅𝑟𝑠(561)

𝑅𝑟𝑠(482)
 

SPM (Bernardo et al., 2020) 

Doxaran - 𝑅𝑟𝑠(865)

𝑅𝑟𝑠(555)
 

SPM (Doxaran et al., 2003) 

Dsa - 𝑅𝑟𝑠(670)

𝑅𝑟𝑠(555)
 

SPM (D’Sa et al., 2007) 

Gernez - 𝑅𝑟𝑠(865)

𝑅𝑟𝑠(560)
 

SPM (Gernez et al., 2014) 

Nechad - 384.11𝜋 𝑅𝑟𝑠(655)

1 −
𝜋 𝑅𝑟𝑠(655)

0.1747

+ 1.44 
SPM (Nechad et al., 2010) 
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Figure 69: Scatterplots of the concentration of chlorophyll-a measured in-situ against empirical indices derived from 
in-situ reflectance spectra, with the regression line in black, the confidence interval in grey, the Pearson correlation 
(R) and the corresponding p-value (p) 

 

 

 

 
Figure 70:Scatterplots of the concentration of CDOM measured in-situ against empirical indices derived from in-situ 
reflectance spectra, with the regression line in black, the confidence interval in grey, the Pearson correlation (R) and 
the corresponding p-value (p) 
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Figure 71: Scatterplots of the concentration of SPM measured in-situ against empirical indices derived from in-situ 
reflectance spectra, with the regression line in black, the confidence interval in grey, the Pearson correlation (R) and 
the corresponding p-value (p) 

 

 
Figure 72: Scatterplots of the absorption by chlorophyll-a derived from 2SeaColor against empirical indices (both 
applied to the in-situ spectra), with the regression line in black, the confidence interval in grey, the Pearson 
correlation (R) and the corresponding p-value (p) 
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Figure 73: Scatterplots of the log of absorption by CDOM derived from 2SeaColor against empirical indices (both 
applied to the in-situ spectra), with the regression line in black, the confidence interval in grey, the Pearson 
correlation (R) and the corresponding p-value (p) 

 

 
Figure 74: Scatterplots of the log of backscattering derived from 2SeaColor against empirical indices (both applied to 
the in-situ spectra), with the regression line in black, the confidence interval in grey, the Pearson correlation (R) and 
the corresponding p-value (p) 
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Figure 75: Scatterplots of the absorption by chlorophyll-a derived from 2SeaColor against empirical indices (both 
applied to Sentinel-2 image of 2021-12-10 and extracted for the sampling points), with the regression line in black, 
the confidence interval in grey, the Pearson correlation (R) and the corresponding p-value (p) 

 
Figure 76: Scatterplots of the absorption by detritus and CDOM derived from 2SeaColor against empirical indices 
(both applied to Sentinel-2 image of 2021-12-10 and extracted for the sampling points), with the regression line in 
black, the confidence interval in grey, the Pearson correlation (R) and the corresponding p-value (p) 
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Figure 77: Scatterplots of the backscattering by SPM derived from 2SeaColor against empirical indices (both applied 
to Sentinel-2 image of 2021-12-10 and extracted for the sampling points), with the regression line in black, the 
confidence interval in grey, the Pearson correlation (R) and the corresponding p-value (p) 
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Figure 78: Scatterplots of the concentration of chlorophyll-a measured in-situ against empirical indices derived from 
Sentinel-2 Image, with the regression line in black, the confidence interval in grey, the Pearson correlation (R) and 
the corresponding p-value (p) 

 

 
Figure 79: Scatterplots of the concentration of CDOM measured in-situ against empirical indices derived from 
Sentinel-2 Image, with the regression line in black, the confidence interval in grey, the Pearson correlation (R) and 
the corresponding p-value (p) 
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Figure 80: Scatterplots of the concentration of SPM measured in-situ against empirical indices derived from Sentinel-
2 Image, with the regression line in black, the confidence interval in grey, the Pearson correlation (R) and the 
corresponding p-value (p) 
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APPENDIX F– COMPILATION OF METEOROLOGICAL DATA 

 
Meteorological data coinciding with dates of images in the time series. 
 

Date 
 
 

5-Days Accumulated 
Precipitation [mm] 

Wind Direction* 
[deg] 

Average Wind 
Speed* [m/s] 

02/01/2019  0.4 348 3.2 

10/01/2019  8 21 2.6 

17/01/2019 54.6 147 1.3 

30/01/2019 5 21 1.7 

01/02/2019  0 92 0 

09/02/2019  3.8 318 1.8 

24/02/2019 5.2 40 1.8 

01/03/2019  37.8 130 1.6 

03/03/2019  3.2 134 1.5 

06/03/2019  0.4 5 2.1 

23/03/2019 11.2 291 2.4 

12/04/2019  47.2 357 2.4 

15/04/2019 1.2 143 1 

17/04/2019 22.4 264 3.8 

30/04/2019 9.2 334 2 

02/05/2019  5.6 22 1.2 

05/05/2019  0.2 349 2.5 

04/06/2019  112.2 283 0.6 

19/06/2019 0.4 23 1.6 

21/06/2019 0.4 299 1.8 

04/07/2019  19.8 181 2 

06/07/2019  19.8 315 0.3 

11/07/2019  0.4 134 0.4 

16/07/2019 15.2 207 1.9 

29/07/2019 6.6 8 1.6 

03/08/2019  2.2 261 0.8 

05/08/2019  2.2 256 0.7 

13/08/2019 0 165 4.4 

23/08/2019 11.6 16 1.3 

30/08/2019 1.4 359 4.2 

22/09/2019 35.2 137 1.3 

27/09/2019 0 154 5.3 

09/10/2019  10.4 146 1.7 

22/10/2019 0.8 165 1.3 

24/10/2019 0 358 2.2 

16/11/2019 NA 121 2.1 

18/11/2019 NA 32 2.5 

03/12/2019  0.8 27 2.6 

06/12/2019  38.2 147 1.9 

08/12/2019  37.4 32 2.2 
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Date 
 
 

5-Days Accumulated 
Precipitation [mm] 

Wind Direction* 
[deg] 

Average Wind 
Speed* [m/s] 

26/12/2019 5 18 2.8 

28/12/2019 0 32 3.1 

15/01/2020 31 9 3.7 

25/01/2020 50 49 1.3 

01/02/2020  15.8 149 2.1 

11/02/2020  83.2 163 2.7 

24/02/2020 1.8 11 2.4 

29/02/2020 29 156 1.9 

10/03/2020  0 42 2 

12/03/2020  0 320 2.6 

15/03/2020 0.4 316 2.6 

20/03/2020 6.8 149 4.3 

22/03/2020 3.8 254 0.6 

27/03/2020 6.4 205 0.6 

21/04/2020 0 343 2.6 

24/04/2020 0 343 2.5 

26/04/2020 0.2 160 1.5 

04/05/2020  0 317 1.8 

09/05/2020  2.8 356 1.9 

11/05/2020  2.2 359 3.4 

16/05/2020 6.2 142 1 

19/05/2020 3.6 165 0.3 

24/05/2020 5 282 2.4 

26/05/2020 4.8 175 0.9 

29/05/2020 0 2 1.8 

31/05/2020 0.2 115 1.1 

03/06/2020  1.4 118 1.2 

08/06/2020  66 147 1.2 

20/06/2020 5.6 6 1.9 

03/07/2020  23.2 208 0.9 

10/07/2020  28.6 22 0.9 

15/07/2020 34.6 168 1.1 

20/07/2020 16.2 5 2.1 

23/07/2020 0.2 15 0.4 

02/08/2020  15.2 358 2 

04/08/2020  1.2 4 2.1 

07/08/2020  0.4 332 1.1 

09/08/2020  0.4 43 1 

22/08/2020 22.4 124 1.2 

24/08/2020 5.4 112 1.6 

27/08/2020 2 357 3.3 

11/09/2020  101.2 11 2.3 

18/09/2020 11 146 1.6 

01/10/2020  23.4 29 1.6 
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Date 
 
 

5-Days Accumulated 
Precipitation [mm] 

Wind Direction* 
[deg] 

Average Wind 
Speed* [m/s] 

11/10/2020  9.2 13 1.4 

21/10/2020 2 168 2.4 

28/10/2020 47.4 144 1.6 

07/11/2020  7.6 133 2 

17/11/2020 20.6 156 4 

20/11/2020 17 153 1.5 

30/12/2020 51 32 2.1 

04/01/2021  0.6 343 2.3 

06/01/2021  1 2 2.6 

09/01/2021  28.4 274 1.2 

11/01/2021  31.4 5 2.9 

31/01/2021 45.8 307 2.3 

03/02/2021  66.8 25 2.5 

05/02/2021  43.4 335 1.6 

08/02/2021  8.6 147 2.5 

27/03/2021 14.2 131 0.8 

30/03/2021 12.8 137 1.1 

04/04/2021  0.6 233 1.1 

09/04/2021  23.4 346 2.6 

24/04/2021 50.6 142 0.9 

26/04/2021 40.6 130 1.1 

29/04/2021 3.4 150 1 

26/05/2021 21.8 110 0.9 

29/05/2021 0.4 292 0 

03/06/2021  25.8 166 0.9 

13/06/2021 121.2 123 0.5 

15/06/2021 44.6 146 0.9 

25/06/2021 14 204 0.7 

30/06/2021 15.4 42 0.5 

03/07/2021  15.6 147 0.6 

08/07/2021  10.2 170 1.4 

10/07/2021  10 21 0.8 

13/07/2021 0.2 13 1.5 

18/07/2021 3.8 286 4.1 

20/07/2021 3.8 203 0.4 

23/07/2021 0 5 2.9 

25/07/2021 0.2 11 2 

28/07/2021 7.8 322 0.9 

30/07/2021 7.6 185 0.6 

02/08/2021  0.4 153 2.1 

04/08/2021  1 200 1.3 

17/08/2021 10.8 360 2.7 

19/08/2021 8.8 3 1.8 

24/08/2021 0.2 10 2.1 



 

113 

Date 
 
 

5-Days Accumulated 
Precipitation [mm] 

Wind Direction* 
[deg] 

Average Wind 
Speed* [m/s] 

26/09/2021 0.8 38 1.5 

02/11/2021  99.6 37 1.7 

22/11/2021 69 15 1.6 

27/11/2021 17.2 147 1.5 

30/11/2021 20.4 160 1.9 

10/12/2021  42.8 131 2.3 

17/12/2021 15 143 3.5 

20/12/2021 10.6 352 2.6 

22/12/2021 1.6 157 2.9 

25/12/2021 0.4 26 2.3 

27/12/2021 0.2 166 1.7 

          * Wind speed and direction values correspond to the time of satellite overpass (approx.. 1300 UTC) 


