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ABSTRACT 

Human-elephant conflict (HEC) is a common form of human-wildlife conflict in African and Asian 

countries where wild elephants are present. The cross-border regions between Nepal and India are the 

natural habitats for Asian elephants. However, this region has experienced dramatic land cover and land 

use changes due to human pressure and infrastructure development over the last several decades. Habitat 

loss and fragmentation drive elephants closer to human settlements and cause more frequent human-

elephant conflicts. The study of this phenomenon does not just concern the conservation of wildlife but 

also human security. This study aims to predict the risk of human-elephant conflict along the 

transboundary landscape of Nepal-India using machine learning algorithms. To do so, I first modelled the 

habitat suitability of elephants using an ensemble species distribution modelling approach and identified 

key factors determining habitat suitability. Then I predicted the risk of human-elephant conflict using a 

random forest algorithm and identified major factors contributing to the risk. The results of my study 

show that 26,679 km2, approximately one-third of the total transboundary landscape area, is predicted to 

be suitable for Asian elephants. Only twenty per cent of the predicted suitable habitat is located within the 

protected areas. Elevation, precipitation of the driest month and wettest month, and temperature of the 

warmest month are the key variables determining the habitat suitability for elephants in this region. The 

result of the predicted human-elephant conflict indicated high human interference in the remaining 

suitable habitats of Asian elephants. Human settlements and agricultural fields near protected areas 

experienced a high risk of conflict. The human disturbances and the expansion of settlements in the 

migratory route of elephants are expected to intensify human-elephant conflict. This is the first study that 

attempts to use state-of-the-art machine learning algorithms to predict the risk of human-elephant conflict 

along the cross-border landscape of Nepal-India. The suitable elephant habitat and the human-elephant 

risk areas identified by this study are important, which could serve as a basis for developing transboundary 

conservation of elephants as well as strategies for mitigating man-elephant conflicts. The study 

recommends that the transboundary conservation efforts need to be strengthened, and special attention 

should be paid to human colonisation around the protected area while implementing measures to mitigate 

the risks of conflict between humans and elephants.  

 

Keywords: Asian elephant, species distribution modelling, ensemble model, habitat suitability, human-

wildlife conflict, cross border  
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1. INTRODUCTION 

1.1. Background 

Humans have a long evolutionary history of interactions with wildlife. Such interactions can be positive or 

negative. The positive interaction is observed when wildlife or humans benefit each other without posing 

substantial problems (Buijs and Jacobs, 2021). The negative interaction is when the encounter between 

wildlife and humans causes adverse effects on each other, threatening the survival of respective species 

(Nyhus, 2016). Such negative interaction is termed human-wildlife conflict (HWC). Currently, HWC is a 

serious problem escalating globally attributed to increased competition for the overlapping niche, habitat, 

and resource uses, thus endangering human well-being and wildlife conservation (Gross et al., 2021). 

There are visible and hidden impacts associated with HWC. The visible impacts of HWC on humans are 

manifested as human death/injury, crop and property losses or economic losses, and livestock losses to 

wildlife (Leslie et al., 2019; Treves et al., 2006).  The hidden negative impacts include diminished psycho-

social well-being caused due to human death/injury, food insecurity due to crop damage and transactions 

cost associated with while pursuing compensation for the wildlife damage (Barua et al., 2013). The 

additional impact of HWC on wildlife is the retaliatory killing, which threatens wildlife conservation. Such 

retaliatory killing phenomena are common in areas where crop damage and livestock killed by wildlife are 

high (Distefano, 2005).  

There are multiple factors associated with HWC, including ecological, anthropogenic and social factors 

(Dickman, 2010; Gross et al., 2021), as well as political-economic structure (Fletcher and Toncheva, 2021). 

The negative consequences of these factors get intertwined, making the issue of HWC complex. 

Nonetheless, anthropogenic factors are directly linked with forest encroachment and the conversion of 

forests into the urban and agricultural areas, which results in habitat loss and fragmentation (Lamarque et 

al., 2009). As the human population grows, the demand for space and resources increases; there is a 

continuum of conflict between the need for wildlife and human. An extreme consequence of HWC is the 

significant decline in the wildlife population (Gross et al., 2021) or even the extinction of already 

endangered species (Nyhus, 2016). Overall, HWC compromises the sustainable development goals of 

protecting, restoring and promoting sustainable use of natural ecosystems (Secretariat of the Convention 

in Biological Diversity, 2016). Although not particularly indicated in the Strategic Plan for Biodiversity 

2011-2020 and the Aichi Targets, the ongoing negotiations towards the post-2020 Global Biodiversity 

Framework have highlighted the issue of HWC (Secretariat of the Convention in Biological Diversity, 

2016). This allows an opportunity to draw attention from the international and national level to analyse the 

multiple contributing factors of HWC and focus on mitigation of HWC for bio-diversity conservation and 

human-wildlife co-existence. 

The impacts of a fight between humans and wildlife for space and resource use are prominent in large 

mammals like elephants with a relatively large home range. The protected areas (PAs) provide the intact 

forest habitat for elephants, whereas the remaining forest outside the PAs sustains extensive human 

pressure. The elephants utilise forest cover primarily for their movement triggered by habitat and food 

requirements (Williams et al., 2008). However, the shrinking of natural habitats, the expansion of human 

settlements, and the development of infrastructures have brought elephants into frequent contact with 

humans (Shaffer et al., 2019).  Habitat loss, habitat fragmentation and the expansion of farmland have 

been attributed to HEC (Distefano, 2005; Lamarque et al., 2009; Leslie et al., 2019; Naughton et al., 1999; 

Nyhus, 2016; Shaffer et al., 2019). The extent of the interface between forest and agriculture, as well as the 
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percentage of farmers involved in crop cultivation each year, contribute to the increased frequency of 

HEC (Baskaran et al., 2013). When the native habitat is disturbed and unable to provide sufficient 

resources, elephants get lured toward nutritious crops such as rice, wheat and sugarcane (Sukumar, 2003). 

Given elephants’ colossal body size and weight, crop damage is severe by trampling or consuming crops 

from agricultural fields and destroying stored grain. The incidents of human casualties occur when people 

try to chase off attacking elephants. The deaths of 1,713 humans were reported between 2015 and 2018 

due to HEC in India (FAO, 2021), whereas USD 245,431 was spent in Sri Lanka in 2018 to compensate 

for the human casualty and physical property damage caused by elephants (Prakash et al., 2020). 

Transboundary landscapes are often characterised by ecologically connected areas involving at least two 

national borders. Most national borders are imposed based on geographical features like mountainous 

terrain or other geologically complex landscapes that support high species richness and endemism (Liu et 

al., 2020). The conservation effort from the individual country is essential to protect threatened and 

endemic species. However, the transboundary prevalence of species demands combined conservation 

initiatives beyond the national borders. The management plan for a specific protected area along the 

transboundary landscape is limited to a local level. It, therefore, overlooks the connectivity and linking 

corridors to many other protected areas essential for animal movement (Plumptre et al., 2007). Many 

international communities like the International Union for Conservation of Nature (IUCN), the United 

Nations Convention on Biological Diversity (CBD) and the Convention on International Trade of 

Endangered Species (CITES) have been advocating for coordinated conservation actions to avert 

biodiversity losses, reduce human-wildlife conflicts, stop illegal wildlife trade and promote international 

governance (Mason et al., 2020; Sandwith et al., 2001; Vasilijević et al., 2015). 

The habitat range of more than 50% of terrestrial species shares the international border globally, of 

which Asia harbours approximately 82% of the border hotspots (Mason et al., 2020). In the context of 

elephant conservation in Southern Asia, contiguous and connected habitats between countries like 

Bhutan-India, Bangladesh-India, and India-Nepal is pivotal, ensuring the conservation and free movement 

of elephants and other wildlife. The open border between Nepal and India allows the free movement of 

people and animals. The practice of transboundary conservation between India and Nepal is exercised, 

and there are multiple protected areas and corridors across the transboundary region managed for 

biodiversity conservation. The Terai arc landscape (TAL) and the Kanchenjunga landscape (KL) are 

products of such transboundary conservation efforts initiated by Nepal and India (Ministry of Forests and 

Soil Conservation, 2016), which are home to endangered species like Tiger in TAL (Chanchani et al., 

2014), One-horned rhinoceros and Asian elephants in both TAL and KL (Chanchani et al., 2014; Sharma 

et al., 2020a). However, transboundary conservation is particularly challenging on the Nepal-India border 

due to the high human pressure (Mason et al., 2020). The effects of habitat loss and fragmentation, road 

and railway construction, deteriorating habitat quality, forest encroachment, and erection of solar-powered 

fences compromise the movement of Asian elephants in these landscapes, which contributes to increased 

human-elephant conflict (Tiwari, 2017). Understanding suitable habitat and resource use by elephants in 

the landscape and how human pressure modifies those habitats are essential for reducing human-elephant 

conflict. 

The advancement in technology and improvement of data science coupled with a wide range of remotely 

sensed data acquisition has allowed the potential application of machine learning in ecology and wildlife 

conservation (Tuia et al., 2022). Machine learning techniques have been applied to perform a multitude of 

tasks such as land cover change mapping, (Gislason et al., 2006), comparing the performance of different 

machine learning algorithms in forest fire burn area mapping (Bar et al., 2020), identifying animal species 

(Willi et al., 2019), species distribution modelling (Gobeyn et al., 2019) and conflict prediction (Kitratporn 

and Takeuchi, 2019). The growing use of machine learning is the direct result of their ability to deal with 
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the multi-dimensionality of data and model complex nonlinear relationships of variables (Belgiu and 

Drăgu, 2016; Olden et al., 2008). Machine learning tools and techniques have proved to excel in prediction 

and enhancing the capabilities to model complex ecological systems (Olden et al., 2008).  

Species distribution models (SDMs) are widely used in modelling habitat suitability and extrapolating 

species distribution over space and time (Guisan and Thuiller, 2005). The earliest use of SDMs can be 

dated back to the 1920s, assessing the role of climatic determinants in species distribution (Guisan and 

Thuiller, 2005). Since then, SDMs have evolved to be used in diverse fields (Elith and Graham, 2009) 

using both statistical and machine learning algorithms (Gobeyn et al., 2019). SDMs are used to develop 

prediction maps by creating relationships between species occurrence and sets of corresponding 

environmental variables (Franklin, 2012). These predictive output maps are used to draw conclusions on 

the species-environment relationship. However, each machine learning based SDM has its unique way of 

learning from a given training dataset. Each algorithm functions on different assumptions and has its 

strengths and flaws. 

The ensemble learning method is a type of machine learning technique that combines the result number 

of base learners to produce more generalised final results (Zhou, 2009). The application of ensemble 

learning is evolving and has been applied in diverse fields, including predicting disease hotspots (Simons et 

al., 2019), mineral mapping (Wang et al., 2020), landslide susceptibility mapping (Hu et al., 2020), 

predicting range shift of elephants due to climate change (Kanagaraj et al., 2019) and mapping human-

carnivore conflict (Mpakairi et al., 2018). The concept of the ensemble method revolves around the idea 

that combining the result of individual forecasts lowers the mean error of any of the particular constituent 

forecasts (Araujo and New, 2007). The ensemble methods in SDMs have an advantage over the single 

model for the comprehensive assessment, given the plethora of data developed for species modelling 

(Araujo and New, 2007). The common ensemble methods include bagging, boosting and stacked 

generalisation (also called stacking) (Sewell, 2008). Ensemble stacking methods refers to combining the 

prediction of base learners developed from multiple machine learning algorithms by the second-level 

learner, also known as the meta-learner (Zhou, 2009). 

The focus and study on human-wildlife conflict have grown in the last 20 years (König et al., 2020). 

However, the literature review suggests that studies on habitat suitability and HEC are either focused on 

small pockets that primarily look at the elephant habitat inside the protected region (Lamichhane et al., 

2017) or are limited to individual countries. The cross-border regions between Nepal and India, which 

provides natural habitats for Asian elephants, have experienced dramatic land cover land-use changes due 

to human pressure and infrastructure development over the last few decades (Chanchani et al., 2014). The 

consequence is human-elephant conflict, and it is a problematic issue for both countries. The future of 

Asian elephants and their habitat conservation, as well as promoting livelihood and well-being of people 

living in the transboundary region of Nepal and India, are intertwined. Therefore, it is crucial to have 

knowledge of the distribution of suitable habitats and human-elephant conflict risk in the transboundary 

landscape for effective management of the landscape in a holistic and ecologically sound manner.  

1.2. Asian elephant and its habitat use 

The historical records indicate that the distribution of the Asian elephant (Elephas maximus) ranged from 

Tigris-Euphrates in western Asia, throughout the southern region of the Himalayas in South Asia and 

north into China as far as the Yangtze river (Olivier, 1978). At present days, the habitat of Asian elephants 

is lost in western Asia, and the status of the species remains extinct (Williams et al., 2020). The current 

distribution is now limited to 13 ranging countries, including Bangladesh, Bhutan, Burma, China, 

Cambodia, India, Indonesia, Laos, Malaysia, Nepal, Sri Lanka, Thailand, and Vietnam (Sukumar, 2003; 
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Williams et al., 2020) with a population of 48,323-51,680 in the wild (Menon and Tiwari, 2019). India has 

the highest number of Asian elephants, with a population of 29,964, while the population ranges from 109 

to 145 in Nepal (Menon and Tiwari, 2019). However, these elephant populations are widespread in 

isolated landscapes and persist as fragmented populations. The Asian elephant is listed as endangered on 

the IUCN Red List (Williams et al., 2020). It is also listed in Appendix I of the Convention on 

International Trade in Endangered Species of Wild Flora and Fauna (UNEP-WCMC, 2021) and protected 

under the Wildlife Protection Act (1972) of India and the National park and wildlife conservation act 2029 

(1973) of Nepal (Singh et al., 2019). 

Asian elephants are mega-herbivores and generalist feeders. Given the large body size, elephants spend 

most of their time (up to 14-19 hrs a day) feeding, during which they can consume up to 150 kg (Williams 

et al., 2020) and between 38-57 litres (10-15 gallons) of water daily (Eisenberg, 1980). Elephants are both 

grazers and browsers and feed on a variety of plants. Elephants primarily graze on tall and newly grown 

grasses during the wet season and browse on tall trees during dry seasons (Sukumar, 1990). The study in 

Southern India reports that elephants feed on fresh foliage of species like Acacia pennata, fruits of species 

like Tamarindus indica, culms and lateral shoots of bamboo species, leaves and twigs of species like Acacia 

and Ficus species and bark of certain plant species like Tectona grandis and Eucalyptus spp. (Sukumar, 1990).  

Depending on the availability and seasonality, elephants also raid different crops, including maize, paddy, 

wheat and garden fruits like banana, sugarcane, jackfruit, and mango (Pant et al., 2016; Sukumar, 1990).  

Asian elephants exhibit distinct seasonal movements to optimise the use of resources in different habitat 

types (Sukumar, 2003). During their movement, elephants make use of diverse vegetation types whose 

spatial distribution is not only influenced by topographic and climatic factors but also by human 

intervention. Even though the primary native habitat of Asian elephants consists of a naturally vegetated 

forest habitat (Sukumar, 1989; ten Velde, 1997), they have learned to take advantage of the human-

modified agrarian landscape in the present scenario (Krishnan et al., 2019; Lamichhane et al., 2017). In 

fact, the study finding by Calabrese et al. (2017) suggests that forest and agricultural mix habitat promotes 

elephant abundances in the given landscapes. The fragmented forest remnants in such habitat mixtures 

serve the purpose of shelter and foraging needs in the natural habitat while providing an opportunistic 

switch to the agricultural field for nutritious and palatable crops (de la Torre et al., 2021; Sitompul et al., 

2013; Sukumar, 2003). The indulgence of elephants in such crop-raiding for nutritional benefits, however, 

is counteracted by the HEC as it increases the contact with humans and cultivation (Calabrese et al., 2017; 

Sukumar, 2003).  

The home range of Asian elephants differs according to the available habitat, resource requirement, sex, 

and reproductive necessity. Previous studies showed that the home range of elephants in Southern India 

was estimated to be 105 to 320 km2 (Sukumar, 1989), 188 to 400 km2 in northwest India (Williams et al., 

2008) and 34 to 232 km2 in Sri Lanka (Fernando et al., 2008). Elephants can travel up to 10-20 km in a day 

(Sukumar, 2003). 

1.3. Problem statement 

An important step in understanding the distribution of human-elephant conflict risk is to develop 

knowledge about the ecology of elephants, their habitat preferences, and the distribution of suitable 

habitats. Since the Asian elephant is a large migratory animal that knows no political boundary, it becomes 

crucial to understand habitat preference in larger landscapes and, in this case, the transboundary landscape 

of Nepal and India. While most of the research is focused in either a single country, there are a very few 

numbers of researches on Asian elephant being done that focuses on the transboundary level. Kanagaraj 

et al. (2019) studied the current suitable habitat and predicted range shift under climate change along with 
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the elephant’s range in Nepal and India. Padalia et al. (2019) and Ram et al. (2021b) assessed forest loss 

and fragmentation in the historical range of Asian elephants in India and Nepal, respectively. The study by 

Ram et al. (2022) predicted HEC in the Chure Terai Madhesh landscape located in Nepal, whereas Sharma 

et al. (2020a) mapped human-wildlife conflict hotspots in the Kanchenjunga transboundary landscape 

between Nepal, India and Bhutan in eastern Himalayan. However, to my best knowledge, a study on 

human-elephant conflict integrating the information of habitat suitability covering the entire Nepal-India 

transboundary landscape has not been done before.   

Humans influence land-use dynamics and modify the landscape attributes, causing socio-economic, 

climatic, and biophysical changes (Shaffer et al., 2019). The conceptual diagram (Figure 1) describes the 

intricacies between the elephant and people’s attributes and how they contribute to human-elephant 

conflict. HEC incidents are expected to be observed in the area where the common interest of humans 

and elephants in resource use overlaps. The delicate harmony between human and elephant existence is 

broken down because of anthropogenic factors like population growth and forest encroachment, thus, 

exacerbating negative interactions as the overlapping area of shared resource use expands. Every year, 

there is a record of elephants raiding crops and killing elephants either by electrocution (Onlinekhabar, 

2021) or explosion (The Guardian, 2020).  

Effective conservation planning requires a deeper understanding of the use of landscape attributes by 

elephants and the impacts of humans on those attributes. While it is crucial to analyse the relationship 

between elephant habitat preference and HEC to embrace the HEC mitigation approach promoting 

human-elephant co-existence, the issue is sensitive given the national and international conservation status 

of the Asian elephant. The use of machine learning algorithms in modelling habitat suitability and 

predicting human-elephant conflict risk is expected to produce accurate and reliable information to assist 

in informed decision-making for the management of HEC mitigation strategy. 

Figure 1: Conceptual diagram illustrating human-elephant conflict. 
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1.4. Research objective 

The overall objective of this study is to predict the risk of human-elephant conflict along the 

transboundary landscape of Nepal-India using machine learning algorithms. The specific objectives are: 

1. To map the suitable habitat for Asian elephants 

2. To determine the key factors influencing the habitat suitability of Asian elephants 

3. To predict the risk of human-elephant conflict 

4. To identify key factors shaping the spatial distribution of human-elephant conflict 

1.5. Research questions 

1. Where and how many suitable habitats are available for the Asian elephant in the transboundary 

landscape of Nepal-India? 

2. What are the key factors determining the habitat suitability for the Asian elephant in the 

transboundary landscape of Nepal-India? 

3. Where are the risk areas for human-elephant conflict in the transboundary landscape of Nepal-

India? 

4. What are the key factors determining the human-elephant conflict in the transboundary landscape 

of Nepal-India? 

1.6. Research hypothesis 

H0: Habitat suitability of elephants is not a key factor (i.e., top four factors) contributing to the 

risk of human-elephant conflict. 

H1: Habitat suitability of elephants is one of the key factors (i.e., top four factors) contributing to 

the risk of human-elephant conflict. 
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2. MATERIALS AND METHODS 

2.1. Study area 

The study area includes the transboundary region of Nepal and India (Figure 2). The total size of the study 

area is approximately 74,808 km2. Elephants in India are distributed in four general regions: northeastern 

India, central India, northwestern India and southern India, whereas in Nepal, they are found along 

southern lowland Terai, which borders India (Williams et al., 2020). The elephant populations in Nepal 

can be found in four isolated groups: eastern, central, western and far-western (Pradhan et al., 2011). The 

transboundary movement of elephants is observed mainly between northeastern India and the eastern 

border of Nepal and between northwestern India and the southwest border of Nepal, extending along the 

foothills of the Shivalik/Churia and lowland Terai floodplains (Pradhan et al., 2011; Williams et al., 2020). 

Within this area, there are fifteen protected areas (PAs) (Figure 2). Nine PAs lie in India: Nandhaur 

Wildlife Sanctuary(1), Pilibhit Tiger Reserve(2), Kishanpur Wildlife Sanctuary(4), Dudhwa National 

Park(5), Katarniaghat Wildlife Sanctuary(6), Sohelwa National Park(9), Sohagibarwa Wildlife 

Sanctuary(10), Valmiki Tiger Reserve(11) and Mahananda Wildlife Sanctuary(15), whereas six PAs are 

located in Nepal: Suklaphanta National Park(3), Bardiya National Park(7), Banke National Park(8), 

Chitwan National Park(12), Parsa National Park(13) and Koshi Tappu Wildlife Reserve(14). A total of 

7,835 km2 of the study area is protected under the PAs. The habitat corridors in the study area connect the 

PAs and other forest habitats allowing the safe passage for wildlife movements.  

 

Figure 2: Study area map in the transboundary region of Nepal and India. The map shows protected areas 
which serve as the prime natural habitat of Asian elephants. 

The climate in the study area is divided into four distinct seasons: winter (Nepal: mid-December/mid-

March; India: January-February), pre-monsoon or hot weather season (Nepal: mid-March/mid-June; 
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India: March-May), monsoon (Nepal: mid-June/mid-September; India: June-September) and autumn or 

post-monsoon (Nepal: mid-September/mid-December, India: October-December) (De et al., 2005; 

Lamichhane et al., 2017). The mean temperature ranges from 35-40°C during the hot weather season and  

14-16°C during the winter season (Lamichhane et al., 2017).  

The vegetation is characterised by moist tropical and subtropical forests (Naha et al., 2019). It is 

composed of mostly Shorea robusta and Terminalia species forests, riverine forests of Acacia catechu and 

Dalbergia sissoo, plantations of Tectona grandis and Eucalyptus spp., and grasslands, including tall floodplain 

and open grasslands (Chanchani et al., 2014). This region supports a diverse ecosystem. Apart from the 

elephant, the region is home to mammalian species like a tiger (Panther tigris), greater one-horned 

rhinoceros (Rhinoceros unicornis), gaur (Bos gaurus), wild buffalo (Babulus bubalis), blackbuck (Antilope 

cervicapra), sloth bear (Ursus ursinus), dhole (Cuon alpinus) and many other species (Chanchani et al., 2014). 

The Nepal-India transboundary landscape is a human-dominated landscape where most of the area is used 

for agriculture cultivation. The forest cover is mainly observed in the northern part along the foothills of 

Shivalik/Churia, as shown in the landcover/land-use map of the study area (Figure 3) developed by the 

European Space Agency (ESA) for the year 2020. 

 

Figure 3: Land cover/land-use map of the study area. 

2.2. Datasets 

2.2.1. Elephant occurrence data 

The elephant occurrence data were collected from various sources from January 2017 to June 2020. The 

occurrence points of Asian elephants for Nepal were compiled from occupancy field survey data of the 

PhD research project that I assisted in data compilation and analysis (Ram, 2021). I took permission from 

principal researcher Ashok Kumar Ram to partially use the data owned by him for my research work. For 

an occupancy field survey, the study area in Nepal was divided into 15×15 km grids and 7.5×7.5 km sub-

grids. Elephant presence signs were surveyed along the transects within the grids. A total of 136 presence 

points were collected from the occupancy survey in Nepal. Additional two presence points were collected 
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from the published article (Sharma et al., 2020b). In the case of India, a total of 20 presence points were 

collected from local newspapers which reported the sighting of elephants. The smallest administrative 

bodies, like the village name mentioned in the newspaper, were identified from local knowledge. An 

additional five elephant occurrence points were collected from the global biodiversity information facility1. 

A total of 163 elephant presence points were used in habitat suitability modelling.  

In order to reduce spatial autocorrelation in the dataset, which may produce biased results, elephant 

occurrence points were selected at least 5.6 km apart from each other, which is the radius of the minimum 

circular home range size of elephants, taken as 100 km2 in the study area (Kanagaraj et al., 2019). 

2.2.2. Human-elephant conflict incidence data 

The HEC incidence data were also collected from various data sources from January 2017 to June 2020. 

The HEC data for Nepal was collected from a PhD research project (Ram, 2021). I was involved in the 

research project for data collection, compilation, and analysis. I partially used the primary field data with 

permission from the principal investigator. The details of the data and data collection method can be 

sourced back to the published paper by the same author (Ram et al., 2022). The additional data on HEC 

incidence was collected from other published articles (Naha et al., 2019) and local news sources. The total 

number of incidence points collected from published articles was 62, whereas 38 points were collected 

from news sources.  

In order to reduce spatial autocorrelation in the dataset, which may produce biased results, HEC incidence 

points were selected at least 5.6 km apart from each other. 

2.2.3. Predictor variables for elephant habitat suitability modelling 

The choice of predictor/explanatory variables is the centre step in species distribution modelling (SDM) 

because the choice drives the modelled spatial distribution output (Araújo and Guisan, 2006). In this 

study, potential relevant predictor variables were selected based on the literature on the ecology, range and 

habitat distribution of elephants (Baskaran et al., 2013; Chen et al., 2016; de la Torre et al., 2021; Kanagaraj 

et al., 2019; Kitratporn and Takeuchi, 2019; Lamichhane et al., 2017; Shaffer et al., 2019; Sharma et al., 

2020a; Sukumar, 1989). The identified twenty-seven predictor variables were grouped into five categories: 

bio-climatic, vegetation, topographic, and water (Table 1). All predictor variables were downloaded from 

different sources with different spatial resolutions and projections. It is essential to maintain the same 

extent and spatial resolution of all layers for analysis using SDMs. The spatial resolution of ~1km was 

maintained for all the variables justifiable based on the large area of study area and behaviour of the Asian 

elephant. Thus, all the other variables with different spatial resolutions were resampled to ~1km using the 

bilinear method for continuous data and the majority votes method for categorical data. They were then 

reprojected to EPSG: 32644 – WGS 84/UTM 44N zone and clipped to the study area.  

The nineteen bioclimatic variables represent the climatic factors derived from monthly temperature and 

precipitation data and aggregated across the temporal range of 1970 to 2000 (Fick and Hijmans, 2017).  

The topography of the geographical area determines the habitat used by Asian Elephants (ten Velde, 

1997). The SRTM 90m elevation data produced by NASA was used to derive two topographical factors – 

elevation and slope.  

The availability and distribution of vegetation, including forest and grassland, largely influence the habitat 

use and home range of elephants (Sukumar, 1989; ten Velde, 1997). The vegetation indices are widely used 

remote sensing products used to represent the greenness, variation, and primary productivity of the 

 

1 https://www.gbif.org/ 

https://www.gbif.org/
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vegetation. The study area is characterised mainly by tropical habitats, and therefore, Moderate Resolution 

Imaging Spectro-radiometer (MODIS) enhanced vegetation index (EVI) data was used, which is known to 

have improved sensitivity over high biomass. Three 12-months MODIS (MOD13Q1 version 6.1) time 

series of 16 days composite with 23 granules each at 250 m spatial resolution for 2017-2019 were created 

for the study area. Two tiles of MODIS data were required to cover the study area. From each 

downloaded MODIS granule, EVI data was extracted by tiles, mosaicked, reprojected from sinusoidal to 

EPSG:32644 UTM zone 44N and subset to the study area. The Savitzky-Golay filtering was used to 

smoothen the observed anomalies in the temporal profiles of EVI time series data. Four EVI indices – 

annual mean, annual minimum, annual maximum, and annual standard deviations EVI were derived in 

ENVI Classic 5.6.1. Vegetation vertical structure also influences the distribution of species. It is the proxy 

for vegetation productivity and modification in the habitat type. The forest canopy height developed by 

integrating NASA GEDI lidar forest structure measurements and Landsat analysis-ready data series by the 

Global Land Analysis and Discovery lab at the University of Maryland (Potapov et al., 2021) was used to 

represent the vertical vegetation structure.  

The OpenStreetMap (OSM) data provides free access to the geographic database of the world. The 

QuickOSM plugin in the Quantum-GIS (Q-GIS) software enables the extraction of OSM spatial data 

through overpass API. The extraction process requires a query specifying the “key” and “value” based on 

the OSM map features to cull and organise the required data. The layer of water bodies, including rivers 

and reservoirs, were generated using OSM data through overpass API in Q-GIS 3.22.2. The “key = 

natural” and “value=water” was used to query the available waterbodies layer from the OSM data for the 

given extent of the study area. The final water bodies layer was filtered based on the water presence for 

more than eight months and local knowledge on which water sources are used mainly by elephants. The 

Euclidean distance to water bodies was calculated using the Spatial Analyst toolbox in ArcMap 10.8.2.   

Table 1: Predictor variables for elephant habitat suitability modelling 

Category Variables Unit Abbreviatio

n 

Data source 

Bio-Climatic Annual Mean Temperature °C  bio1 WorldClim 

 

 

Mean Diurnal Range °C bio2 

Isothermality Unitless bio3 

Temperature Seasonality °C bio4 

Max Temperature of Warmest Month °C bio5 

Min Temperature of Coldest Month °C bio6 

Temperature Annual Range °C bio7 

Mean Temperature of Wettest Quarter °C bio8 

Mean Temperature of Driest Quarter °C bio9 

Mean Temperature of the Warmest 

Quarter 

°C bio10 

 

Mean Temperature of Coldest Quarter °C bio11 

Annual Precipitation mm bio12 

Precipitation of Wettest Month mm bio13 

Precipitation of Driest Month mm bio14 

Precipitation Seasonality Unitless bio15 
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Category Variables Unit Abbreviatio

n 

Data source 

Precipitation of Wettest Quarter mm bio16 

Precipitation of Driest Quarter mm bio17 

Precipitation of Warmest Quarter mm bio18 

Precipitation of Coldest Quarter mm bio19 

Topographic Elevation m elev SRTM/NASA 

Slope Degree slope 

Vegetation Forest Canopy Height m forHeight UMD GLAD 

Annual maximum EVI Unitless evi_max NASA/EART

HDATA 

 

Annual minimum EVI Unitless evi_min 

Annual mean EVI Unitless evi_mean 

Standard deviation EVI Unitless evi_stddev 

Water Distance from water bodies m dist2water OSM 

 

 

2.2.4. Predictor variables for human-elephant conflict risk prediction 

HEC is attributed chiefly to anthropogenic factors. The nine variables used to predict HEC risk are 

habitat suitability map, forest fragmentation metrics, settlement density, population density, distance to the 

protected area, distance to road and distance to the forest (Table 2). The variables were resampled to 

~1km using the bilinear method, reprojected to EPSG: 32644 – WGS 84/UTM 44N zone and clipped to 

the study area for further analysis. 

Understanding the spatial extent of suitable habitats for elephants in human-dominated landscapes is 

essential to draw insights into the dimensions of HEC and risk areas. The development of the habitat 

suitability layer in this research is the intermediate step which is used as one of the predictor variables in 

HEC risk prediction.  

Forest fragmentation was taken as a proxy for habitat fragmentation. The forest/non-forest raster layer 

available at 30 m resolution for 2017 was downloaded from ALOS PALSAR2 and used to calculate forest 

fragmentation metrics. The raster version of FRAGSTATS 4.2 computes continuous fragmentation 

metrics for statistical analysis using a circular moving window sampling strategy (Mcgarigal, 2015). For this 

study, the choice of appropriate scale (radius of a circular moving window) was based on the elephant’s 

average home range in the study area. The average size of the home range of elephants was assumed to be 

circular and taken as 300 km2 which gives a radius scale of 9.7 km for calculating fragmentation metrics at 

a landscape level. The binary forest/non-forest layer was coded as 1-non-forest and 2-forest area, and 

three forest fragmentation metrics— landscape division index, splitting index, and effective mesh size 

were calculated.  

The landscape division index is based on the degree of cohesion, defined as the probability of two animals 

finding each other when they are present in a different area within a given landscape (Jaeger, 2000). The 

degree of landscape division indicates that two forest patches are not situated in the same undissected 

 

2 https://www.eorc.jaxa.jp/ALOS/en/index_e.htm 

https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/
https://glad.umd.edu/dataset/gedi
https://lpdaac.usgs.gov/products/mod13q1v061/
https://lpdaac.usgs.gov/products/mod13q1v061/
https://www.openstreetmap.org/export#map=5/50.513/23.687
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patch in a given landscape (Mcgarigal, 2015). The value of the landscape division index ranges from 0 ≤ 

Division ≤ 1. The highest value means that the patch type consists of a single small patch of one cell in 

the area. A division equal to one indicates a highly fragmented landscape (Mcgarigal, 2015).  

The splitting index is defined as the resulting number of patches when the entire landscape is divided into 

equal-sized patches so that the new configuration leads to the same degree of landscape division as 

obtained for the observed cumulative area distribution (Jaeger, 2000). The splitting index value ranges 

from 1≤ Split ≤ number of cells in the landscape area squared.  The value of split is 1 when the landscape 

consists of single continuous patches. The upper limit increment corresponds to an increase in the 

number of single small patches indicating forest fragmentation (Mcgarigal, 2015). The value of SPLIT is 

unitless. 

The effective mesh size indicates the size of the patches one gets when the landscape is divided into S 

areas of the same size with the same degree of landscape division as obtained for the observed cumulative 

area distribution (Jaeger, 2000). The range of effective mesh size is the ratio of cell size to landscape area 

≤ Mesh ≤ total landscape area, where the lower limit corresponds to a single one-pixel patch meaning 

highly fragmented. It is maximum when the landscape is a single continuous patch (Mcgarigal, 2015).  

The Euclidean distance to the forest was calculated using the Spatial Analyst toolbox in ArcMap 10.8.2 

from the same binary forest/non-forest raster layer used to calculate the forest fragmentation metrics.  

The human settlement density layer (GHS-BUILT-S2 R2020A) was downloaded from the Global Human 

Settlement Layer (GHSL) datasets at 10 m spatial resolution for the year 2017-2018 provided by the Joint 

Research Centre (JRC), European Commission. The GHS-BUILT-S2 layer is derived from the Sentinel-2 

global image composite for the reference year 2018 using Convolutional Neural Networks (Corbane et al., 

2021). The GHS-BUILT-S2 layer grid corresponds to the built-up area probability percentage values 

(Corbane et al., 2021).  

The population density layer (GHS_POP_E2015_GLOBE_R2019A_4326_9SS_V1_0) was downloaded 

from the GHSL dataset provided by the JRC at 250 m spatial resolution. The GHS population data is 

derived from the Gridded Population of the World collection, fourth version (GPW4.1), and Landsat-

based GHS-BUILT were used as target layers for disaggregation of population estimates for the reference 

year 2015 (Marcello et al., 2019). The value represents the number of people per cell.  

The polygon shapefile of protected areas for Nepal was downloaded from NTNC3 . In the case of 

protected areas for India, the layer was generated from OSM data through overpass API in Q-GIS 3.22.2 

using “key=boundary” and “value=protected_area” for the query. The protected area layer consists of 

national parks and wildlife reserves/sanctuaries for the study area. The Euclidean distance to the protected 

area was calculated using the Spatial Analyst/Euclidean distance toolbox in ArcMap 10.8.2.  

The linear shapefile of the road layer was generated from OSM data using overpass API in QGIS 3.22.2 

using “key=highway” and “value=trunk”, “value=primary” and “value=secondary” for the query. The 

road layer consists of major highways and sub-highways. The Euclidean distance to the road was 

calculated using the Spatial Analyst/Euclidean distance toolbox in ArcMap 10.8.2. 

 

3 http://geoportal.ntnc.org.np/ 

http://geoportal.ntnc.org.np/
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Table 2: Predictor variables for human-elephant conflict risk prediction 

Variables Unit Abbreviation Data source 

Habitat Suitability Unitless hab_suit  

Distance from forest m dist2forest OSM 

Human Population Density Number of people/sq. km pop_den EC JRC 

Settlement Density Proportion settle_den EC JRC 

Distance to roads m dist2road OSM 

Distance to the protected area m dist2PA OSM 

Landscape Division Index Proportion division  

Splitting Index Unitless split 

Effective Mesh Size ha mesh 

2.3. Multi-collinearity analysis of predictor variables 

The issue of multi-collinearity occurs when two or more explanatory variables are intercorrelated so that 

the phenomena of one variable can be predicted by others to a great extent. The effect of collinearity in 

SDMs can be observed while training the model and extrapolating the model prediction to unfamiliar 

environmental conditions (Dormann et al., 2013), thus producing uncertainty in model results. There is a 

growing consensus that machine learning algorithms such as Maximum Entropy might take advantage of 

existing collinearity in prediction capability (De Marco and Nóbrega, 2018; Feng et al., 2019); nevertheless, 

the multi-collinearity might pose a severe problem while extrapolating beyond the environmental range of 

sampled data (Dormann et al., 2013; Feng et al., 2019) and change the variable importance in the models 

(Genuer et al., 2010). The Variance Inflation Factor (VIF) and pairwise correlation coefficient (r) were 

used to diagnose the collinear variables. The variables with VIF > 10 and |r| > 0.7 have the multi-

collinearity issue (Dormann et al., 2013) and, thus, are removed from model training. 

2.3.1. Multi-collinearity analysis of predictor variables for elephant habitat suitability modelling 

Most bioclimatic variables had a VIF value greater than ten and were highly correlated to each other and 

the topographic factors (Annex 1). Out of twenty-seven predictor variables, nine were selected for habitat 

suitability modelling. The final selection of predictor variables had VIF < 10 (Table 3) and |r| < 0.7 

(Figure 4), which reflects the relative importance of habitat suitability modelling of Asian elephants in the 

study area. 

 

 

 

 

 

 

https://www.openstreetmap.org/export#map=5/50.513/23.687
https://ghsl.jrc.ec.europa.eu/download.php?ds=pop
https://ghsl.jrc.ec.europa.eu/download.php?ds=buS2
https://www.openstreetmap.org/export#map=5/50.513/23.687
https://www.openstreetmap.org/export#map=5/50.513/23.687
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Table 3: VIF values of the selected variables for 
elephant habitat suitability modelling 

S.N. Variables VIF 

1 bio5 8.18 

2 elev 7.70 

3 bio6 3.19 

4 bio3 5.71 

5 bio14 2.58 

6 bio13 1.92 

7 evi_min 1.77 

8 evi_stddev 1.35 

9 dist2water 1.26 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.2. Multi-collinearity analysis of predictor variables for human-elephant conflict risk prediction 

None of the identified predictor variables for human-elephant conflict risk showed an issue of multi-

collinearity. All nine variables had a VIF value of less than ten (Table 4) and a Pearson’s correlation 

coefficient value of less than 0.7 (Figure 5). 

Table 4: VIF values of the selected variables for 
human-elephant conflict risk prediction 

S.N. Variables VIF 

1 dist2forest 1.58 

2 settle_den 1.56 

3 division 1.44 

4 pop_den 1.41 

5 hab_suit 1.36 

6 mesh 1.32 

7 dist2PA 1.22 

8 split 1.13 

9 dist2road 1.08 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Pearson's correlation coefficient of 
predictor variables selected for human-elephant 
conflict risk prediction 

Figure 4: Pearson's correlation coefficient of 
predictor variables selected for elephant habitat 
suitability modelling 
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2.4. Methods 

2.4.1. Machine learning models for habitat suitability modelling 

The modelling of habitat suitability to produce a final habitat suitable map was done in two steps. First, 

three individual Boosted Regression Trees (BRT), Maximum Entropy (MaxEnt) models, and Random 

Forest (RF) were built as base learners. Second, the habitat suitability predictions from each base learner 

were combined by meta learners to produce a final habitat suitable map. The process is known as 

ensemble stacking, and the general structure is shown in Figure 6. Logistic Regression (LR) was taken as a 

meta-learner as suggested and applied in previous studies (Hu et al., 2020; Ting and Witten, 1999; Wang et 

al., 2020). 

 

 

 

 

 

 

 

 

2.4.1.1. Boosted Regression Trees  

The Boosted Regression Trees (BRT), an extended form of decision trees, is an ensemble method that 

uses a single base learning algorithm to produce homogenous base learners (Zhou, 2009). It is a non-

parametric regression technique that uses two algorithms; first, building regression trees and second, 

boosting to build the regression trees and combining a collection of results. Boosting is a form of 

functional gradient descent opted as a numerical optimisation technique to minimise the loss (loss in 

predictive performance) function by adding a new tree at each step. The existing trees are left unchanged 

as the new trees are added based on loss functions like deviance. Usually, the linear combinations of 

hundreds to thousands of such trees give the BRT model (Elith et al., 2008). Decision trees are greedy 

learners, and there are three main factors for regularising BRT and constraining overfitting. One is the 

learning rate, also known as the shrinkage parameter, which indicates the contribution and strength of 

each tree to the final model. The second factor is tree complexity, which determines the number of trees 

splits to check the fitted interactions. The third factor is the number of trees, determined based on 

learning rate and tree complexity, to find the optimal prediction (Elith et al., 2008). 

The particular advantages of BRT include the ability to deal with different types of response variables 

(Elith et al., 2008), predictive accuracy, accommodating the ability of missing data and the ability to 

describe complex non-linearities and interactions between variables (Colin et al., 2017). However, 

challenges can arise in remote sensing to accommodate large data sizes and incorporate spatial information 

with disjoint geographic areas while using BRT (Colin et al., 2017). 

2.4.1.2. Maximum Entropy  

The Maximum Entropy (MaxEnt) is a widely accepted machine learning technique that originated from 

statistical mechanics. MaxEnt calculates the distribution of target species over geographical spaces based 

Input  

variables 
Habitat 

Suitable Map 

Prediction 
Meta learner 

LR 

Base learners 

BRT 

RF 

MaxEnt 

Figure 6: Ensemble stacking process for habitat suitability mapping 
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on maximum entropy (closest to uniform) under an assumption that the expected value of each feature 

matches its empirical average under the estimated distribution (Phillips et al., 2004). It has the advantage 

of requiring the presence-only data to produce a probability distribution of species based on an informed 

set of climatic/environmental features, including continuous and categorical variables (Phillips et al., 

2006). The modelling of habitat suitability of plant species like Juniperous spp. (Boogar et al., 2019), Aedes 

albopictus using Bioclim variables (Ibáñez-Justicia et al., 2020), Panthera uncia (Bai et al., 2018) and Elephas 

maximus (Asian elephant) (Huang et al., 2019) using MaxEnt suggests its frequent and comprehensive use. 

Maxent is known to perform well with sparse samples (Elith and Graham, 2009) and samples with spatial 

error (Baldwin, 2009). However, MaxEnt is prone to overfitting if the regularisation parameter is not fine-

tuned properly. 

2.4.1.3. Random Forest 

Random Forest (RF), a non-parametric classifier, is an extension of decision trees that uses ensemble 

bagging approaches where each model/classifier is trained on a random subset of training data through 

replacement, also called bootstrap samples (Belgiu and Drăgu, 2016). Bootstrapping allows the selection of 

two-thirds of total samples, also known as in-bag samples, to be used for training the classifier, whereas 

one-third of total samples, also known as out-of-bag (OOB) samples, are used as internal cross-validation 

on a model developed by a classifier to assess the performance of the model (Breiman, 2001). 

In RF, there are two parameters to consider for fine-tuning the model to avoid overfitting. The ‘mtry’ is 

the number of randomly drawn features, and the best split is selected within the subset of features 

allowing the tree to grow without pruning (Breiman, 2001; Probst et al., 2019). The ‘ntree’ defines the 

number of trees to be grown. Both parameters are user-defined and used to develop trees with a reduced 

bias (Breiman, 2001). 

RF is relatively robust to outliers and noise and provides an internal estimate of error and variable 

importance (Breiman, 2001). RF can deal with multi-dimensionality and mislabelled data in remote 

sensing; however, it is sensitive to spatial autocorrelation of the training classes (Belgiu and Drăgu, 2016). 

2.4.1.4. Training machine learning models and ensemble stacking 

The elephant’s occurrence dataset contained only presence data; therefore, background or pseudo absence 

data were generated to create a binary dataset for training the models. Generally, it is recommended to 

generate large background samples representing the wider range of environmental conditions being 

considered for habitat suitability modelling (Barbet-Massin et al., 2012). A total of 5000 background points 

were generated randomly across the study area to produce a dataset with presence and pseudo-absence 

points for habitat suitability modelling. All the values from the layer of predictor variables were extracted 

for the given presence and pseudo-absence points and randomly divided into 70% for training and the 

remaining 30% for testing the model for the performance assessment.  

For training the three base learners, the 70 per cent training dataset was divided randomly into five equal 

subsets, of which four sets were used for training, and one set was used for predictions for each model. 

The process was repeated five times, and the predictions were used to train the meta learner – LR model 

for producing the final predicted habitat suitability map. The ensemble stacking training process is shown 

in Figure 7. 

All the models were fitted in R version 4.1.2., using different R-based packages to facilitate the model 

fitting. The BRT model was fitted using dismo package version 1.3-5 in the R environment. The BRT 

model was regularised by trying the different values of regularisation parameters: learning rate (lr), tree 

complexity (tc) and number of trees (nt). The number of trees has an inverse relationship with learning 
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rate and tree complexity (Elith et al., 2008). It is preferable to have a minimum of 1000 trees and slower 

learning rate values because the contribution of each tree is shrunk more, which helps reduce error and 

produce a reliable estimate of the response by the model (Elith et al., 2008). The BRT model was fitted 

with the value lr = 0.001 and tc =3 such that the number of trees is more than 1000, and the fitted model 

was used to predict the suitability of the habitat in the study area. 

The RF model was fitted using randomForest package version 4.7-1 in the R environment. In the remote 

sensing community, it is recommended to set ntree = 500 and mtry to the square root of the number of 

input variables (Belgiu and Drăgu, 2016). When implementing RF for species distribution modelling with a 

large number of background samples compared to presence samples, it is known that the performance of 

the RF model is compromised and prone to biased classification because of the class imbalance and 

overlap between the number of presence and background samples (Valavi et al., 2021). This is due to 

over-representation of majority class –background samples, leading to type II error causing under-

prediction of minority class – presence samples. A down-sampling approach is one of the effective ways 

to address the class imbalance issue and is known to improve the model’s predictive power substantially 

(Valavi et al., 2021). The down-sampling approach in the classification-RF utilises the same number of 

background samples in each classification tree by sampling with replacement from the complete 

background set (Valavi et al., 2021). The RF model was fitted by down-sampling the majority class and 

setting the value of ntree =500 and mtry =3. The probability of presence samples was computed for 

habitat suitability prediction in the study area. 

The MaxEnt model was fitted using dismo package version 1.3-5 in the R environment. The model was 

fitted using the same presence and background training samples as for BRT and RF. Finally, the 

predictions from each base learner model were compiled and used as training data for fitting the LR 

model producing the final habitat suitability map for the study area.     
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2.4.2. Machine learning models for human-elephant conflict risk prediction 

The HEC incidence dataset contained only presence data, and therefore, background or pseudo absence 

data were generated to create a binary dataset to train the RF model for HEC conflict risk prediction. A 

total of 5000 background points were generated randomly across the study area representing the range of 

and extent of predictor variables identified for HEC risk prediction. All the values from the layer of 

predictor variables were extracted for the given presence and pseudo-absence points and randomly 

divided into 70% for training and the remaining 30% for testing the model for the performance 

assessment.  

The RF model was fitted using randomForest package version 4.7-1 in the R environment. Most samples 

were down-sampled to address the issue of class imbalance, and overlap and parameters were set to 

ntree=500 and mtry = 3 for model fitting. The process of RF model fitting was repeated 15 times, and the 

model with the lowest OOB error rate was chosen for further analysis. The chosen model was used to 

predict the HEC risk probability across the study area. 

2.4.3. Variable importance assessment for elephant habitat suitability modelling 

The variable importance assessment was done to understand the key factors influencing the habitat 

suitability of Asian elephants in the study area. The variable importance output from the MaxEnt gives the 

estimate of the relative importance of the predictors in the modelling. The Jackknife approach followed in 

MaxEnt for variable importance excludes one variable at a time during the training process (Baldwin, 

2009). The training gain based on the amount of variations on a model with or without the variable is 

assessed (Bradie and Leung, 2017). This approach provides information on the contribution of each 

Figure 7: The ensemble stacking training process for elephant habitat suitability modelling 
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variable and the unique information the variable has to offer in the model, which allows for determining 

important variables in the model (Baldwin, 2009). In addition to the variable importance information, the 

response curves from MaxEnt show the logistic predictions change as the value of each predictor variable 

varies. 

2.4.4. Variable importance assessment for human-elephant conflict risk prediction 

The variable importance assessment identifies the key factors shaping the spatial distribution of the 

human-elephant conflict risk. The importance of the variable can be estimated from the permutation 

importance (Mean Decrease Accuracy) from the RF model. The permutation importance of predictor 

variable x is estimated by randomly permuting the predictor variable x in the OOB samples in each 

classifier and subtracting the predictive accuracy of each classifier before and after the permutation of 

variable x, i.e. with or without the variable (Strobl et al., 2008). The predictor variable x holds high 

importance if the mean decrease value is high for that variable. 

Similarly, the partial dependence plot, one of the output components of the RF model, shows the 

response of the predicted probability of HEC risk with respect to each predictor variable. 

2.4.5. Model performance assessment 

Model performance assessment is crucial for any machine learning algorithms and modelling process, as it 

evaluates the model’s predictive capacity (Guisan et al., 2017). The predictive performance of all trained 

machine learning algorithms for both habitat suitability modelling and human-elephant conflict risk 

prediction was assessed by the ‘area under the curve’ (AUC) of the receiver operating characteristics 

(ROC) function (Elith et al., 2006) and True skill statistics (TSS) (Allouche et al., 2006) using an 

independent testing dataset. AUC and TSS are commonly used accuracy assessment metrics in species 

distribution modelling.  

The AUC is a threshold independent accuracy metric that assesses the model’s capability to discriminate 

species’ presence from absence (Elith et al., 2006; Guisan et al., 2017). The value of AUC lies between 0 

and 1, indicating 1 gives the perfect discriminating accuracy, 0.5 meaning the predictive accuracy is no 

better than random. At the same time, less than 0.5 implies the model's performance is worse than 

random (Elith et al., 2006). Even though widely used in species distribution modelling, AUC is also 

criticised for the measure of accuracy (Lobo et al., 2008).  

Another model performance assessment metric, TSS, was used to test the accuracy of the model. TSS is 

not affected by the prevalence and accounts for both omission and commission errors (Allouche et al., 

2006). The value of TSS ranges from +1 to -1, where +1 indicates perfect performance and zero or less 

than zero indicates the performance of classifiers no better than random (Allouche et al., 2006). Because 

TSS is threshold dependent metric, the maximum sum of sensitivity and specificity threshold value was 

used as recommended by a previous study (Liu et al., 2013). The PresenceAbsence package version 1.1.10 was 

used in the R environment for model performance assessment.  
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3. RESULTS 

3.1. Elephant habitat suitability modelling 

3.1.1. Model performance assessment 

The model performance assessment on the testing dataset indicates that all four machine learning models 

were successful at discriminating species’ presence from absence (AUC > 0.87) within the study area 

(Table 6). The AUC value for all the models did not differ vastly, even though ensemble stacking had the 

highest AUC (0.90) value, followed by MaxEnt (0.89), RF (0.88) and BRT (0.88).  

The calculated TSS value (Table 6) shows that the ensemble stacking (TSS=0.65) depicted good predictive 

accuracy, although the performance of the RF model was relatively better. However, the ensemble model 

combines and generalises all the predictions of individual base models. 

Table 5: Performance of four different models on elephant habitat suitability modelling, showing the 
threshold dependent and independent model evaluation results 

Accuracy metrics Machine learning models 

BRT RF MaxEnt Ensemble stacking 

AUC 0.88 0.88 0.89 0.90 

TSS 0.65 0.66 0.62 0.65 

3.1.2. Spatial distribution of suitable habitat for Asian elephant 

The threshold that maximised sensitivity plus specificity value (threshold =0.34) was chosen to convert 

the habitat suitability map produced from the ensemble stacking model into a binary suitable/non-suitable 

map. The discrete suitable/non-suitable map allowed us to calculate the total suitable area for Asian 

elephants in the transboundary landscape (Figure 8). The model identified a total of 26,679 km2 of suitable 

habitat for the Asian elephant, approximately 36 % of the total area. The overlay of the habitat suitability 

map with the binary forest map showed that 13,578 km2 of suitable habitat provides natural forested 

habitat for the Asian elephant. The predicted suitable habitat is composed of an almost equal proportion 

of natural forested habitat to non-forest (i.e., closer to 50:50) in the study area. Only 5,366 km2 of suitable 

habitat were located inside the fourteen protected areas, which is only 20% of the predicted suitable 

habitat in the Nepal-India transboundary landscape. The connection of large continuous suitable habitat 

of the Asian elephant in the Nepal-India transboundary landscape is broken in between, thus divided 

broadly into two isolated suitable habitats supporting the eastern and western population of elephants.  

The suitable habitat map produced from BRT, RF and MaxEnt based on a threshold that maximised 

sensitivity and specificity are shown in Annex 2, 3 and 4, respectively.  
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3.1.3. Factors determining the habitat suitability of Asian elephants 

 

(a) 

(b) 

Figure 8: Predicted (a) habitat suitability and (b) suitable habitat for Asian elephant in the Nepal-India 
transboundary landscape produced from ensemble stacking model. The map shows study area, national 
border of Nepal and India, Asian elephant occurrence points used in habitat suitability modelling and 
protected areas. Nine protected areas lie in India: Nandhaur Wildlife Sanctuary(1), Pilibhit Tiger 
Reserve(2), Kishanpur Wildlife Sanctuary(4), Dudhwa National Park(5), Katarniaghat Wildlife 
Sanctuary(6), Sohelwa National Park(9), Sohagibarwa Wildlife Sanctuary(10), Valmiki Tiger Reserve(11) 
and Mahananda Wildlife Sanctuary(15), whereas six PAs lie in Nepal: Suklaphanta National Park(3), 
Bardiya National Park(7), Banke National Park(8), Chitwan National Park(12), Parsa National Park(13) and 
Koshi Tappu Wildlife Reserve(14). 
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The Jackknife test gave information about the contribution and relative importance of predictors variables 

to generate a MaxEnt model for habitat suitability modelling of Asian elephants in the study area (Figure 

9). The variable is considered to have greater predictive ability than others if it offers the highest training 

gain when used in isolation (with only variable). In addition, a variable contains unique information if the 

overall training gain is decreased when a variable is omitted (without a variable). The result from Jackknife 

showed that elevation (elev) followed by precipitation of the driest month (bio14), precipitation of the 

wettest month (bio13) and temperature of the warmest month (bio5) are the top four variables with the 

highest contribution to habitat suitability modelling. These four predictor variables together accounted for 

around 80% contribution to model development, whereas the contribution of elevation alone was around 

40%. Elevation showed the highest training gain and contributed substantial unique information alone in 

model development. Although the maximum temperature of the warmest month (bio5) did not offer 

significant training gain, it provides significant information that may not be included in other variables, 

suggesting its substantial contribution to model fitting. Precipitation of the driest month (bio14) offered 

the second-highest training gain when used in isolation. However, it also showed an overall loss in training 

gain when it was not included in the model fitting process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Response curves are complementary information to the Jackknife test, which facilitates the interpretation 

of species presence probability and identified predictor variables with the highest contribution and 

importance in habitat suitability modelling. The response curve shows how habitat suitability logistic 

prediction changes as each predictor variable varies, keeping all other variables at their average sample 

check. Only the response curves of the four variables with the highest contribution are shown in Figure 

10. According to the response curves, the elephant’s occurrence probability was less in both the lowest 

and highest elevation zone in the study area. This indicates that elephant distribution in the study area is 

limited to a specific range of elevation, i.e., 100-300 m. The highest habitat suitability responded to the 

highest precipitation in driest months, lowest precipitation in the wettest month and lowest temperature of 

the warmest month. This indicates that elephants are most likely to occur in areas with maximum rainfall 
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Figure 9: Influence of predictor variables representing climatic and non-climatic factors in modelling 
habitat suitability of Asian elephant in Nepal-India transboundary landscape. The regularised training 
gain describes the contribution of each variable “with” and “without” in model fitting process. “With 
only variable” indicates the result of the training gain when a variable is used in isolation. “With variable” 
indicates the result of the training gain when a variable is omitted in model fitting. “With all variables” 
indicates total training gain when all the variables are used in model fitting process. 
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in the driest month. The scenario changed in the wettest month, where elephants are most likely to favour 

the region that receives minimum rain (less than 800 mm). The habitat suitability decreases when the 

temperature of the driest month is beyond 38 °C. 

 

3.2. Human-elephant conflict risk prediction 

3.2.1. Model performance assessment 

The assessment of the model performance for analysing HEC risk areas was done using two metrics - 

AUC and TSS. The performance assessment on the testing dataset indicates that the RF model performed 

well in discriminating HEC occurrence in the study area, with an AUC value of 0.87. Since TSS is the 

threshold-dependent accuracy assessment metric, the threshold that maximised sensitivity plus specificity 

value (threshold =0.36) was chosen to calculate TSS. The calculated TSS value was 0.67, indicating good 

predictive accuracy of the RF model in predicting HEC risk in the Nepal-India transboundary landscape. 

3.2.2. Spatial distribution of human-elephant conflict and conflict risk map 

The predicted HEC risk map (Figure 11) shows that HEC is concentrated broadly in two regions- eastern 

and western similar to the distribution of suitable habitats for Asian elephants in the Nepal-India 
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Figure 10: Response curves illustrating the relationship between species occurrence probability and 
predictor variables used in habitat suitability modelling of Asian elephants in Nepal-India transboundary 
landscape. The response curve shows how habitat suitability logistic prediction changes as each predictor 
variable vary, keeping all other predictor variables at their average sample check. 
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transboundary landscape. The HEC risk map predicted high risk along the eastern and western border 

between Nepal and India, which extended to Nepal. The transboundary migratory route between Nepal 

and India on the eastern side observed high conflict risk where elephant migrates from Mahananda WLS 

in India towards Nepal to connect with the elephant population in Koshi Tappu wildlife reserve and 

beyond in Nepal. The predicted HEC risk is also high on the migratory route between Nepal and India on 

the western side of Nepal. On the western side, elephant migrates from Katarniaghat WS and Dhudhwa 

NP in India towards Bardiya NP in Nepal and from Pilibhit WS in India to Suklaphanta NP in Nepal. 

3.2.3. Factors determining the risk of human-elephant conflict  

The variable importance bar plot based on the “mean decrease accuracy” value from the RF model 

provides information on the contribution of each variable to the predictive accuracy of a model. The 

result from the RF model showed that settlement density (settle_den) played a crucial role in predicting 

HEC conflict risk in Nepal-India transboundary landscape (Figure 12). The decrease in mean accuracy of 

the model was relatively high for settlement density, which signifies that the variable is most important in 

predicting HEC risk in the study area. The second significant variable in predicting the HEC risk is the 

distance to protected areas (dist2PA), followed by habitat suitability (hab_suit) and effective mesh size 

(mesh). 

Figure 11: Predicted human-elephant conflict risk probability in Nepal-India transboundary landscape. 
The probability of HEC risk ranges from 0 to 1. The high value of probability indicates high risk 
represented by red colour gradient. The map also shows study area, national border of Nepal and India, 
HEC incidence points used in HEC risk prediction and protected areas. Nine protected areas lie in India: 
Nandhaur Wildlife Sanctuary(1), Pilibhit Tiger Reserve(2), Kishanpur Wildlife Sanctuary(4), Dudhwa 
National Park(5), Katarniaghat Wildlife Sanctuary(6), Sohelwa National Park(9), Sohagibarwa Wildlife 
Sanctuary(10), Valmiki Tiger Reserve(11) and Mahananda Wildlife Sanctuary(15), whereas six PAs lie in 
Nepal: Suklaphanta National Park(3), Bardiya National Park(7), Banke National Park(8), Chitwan National 
Park(12), Parsa National Park(13) and Koshi Tappu Wildlife Reserve(14). 
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One of the outputs of RF modelling is the partial dependence plot similar to the response curve output 

from MaxEnt. The partial dependence plot shows how the logit probability of the class presence of HEC 

incidence varies with the changing value of predictor variables in HEC risk prediction. Only four partial 

dependence plots are presented in Figure 13, corresponding to the top four significant contributors to 

HEC risk prediction. Settlement density had a positive relationship with the likelihood of HEC risk. The 

probability of conflict risk between humans and elephants increased as the human settlement density 

increased. The probability of HEC risk was high in the vicinity of protected areas (within ~ 2 km from the 

protected areas). The village or town near the protected area bore a high chance of experiencing negative 

interactions with elephants. There was a positive relationship between HEC and habitat suitability. The 

partial dependence plot of habitat suitability indicated that HEC risk is in the suitable habitat of an 

elephant. The partial dependence plot of effective mesh size showed a high probability of experiencing 

HEC risk in the area with a higher effective mesh size value. 
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Figure 12: Importance of predictor variables in predictive accuracy of Random Forest model for 

predicting HEC risk in Nepal-India transboundary landscape. The predictor variable holds high 

importance if the mean decrease accuracy value is high for that variable. 
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Figure 13: Partial dependence plots illustrate the relationship between probability of human-elephant 
conflict risk and predictor variables used in Random Forest model. The figure shows partial dependence 
of only four identified variables that had highest contribution in human-elephant conflict risk prediction 
in Nepal-India transboundary landscape. 
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4. DISCUSSION 

This study attempted to understand the dynamics of habitat suitability of Asian elephants and human-

elephant conflict in the human-dominated transboundary landscape of Nepal and India. The results 

provide strong evidence that humans are coming in the way of elephants, and the consequence is an 

increased risk of human-elephant conflict. To my knowledge, this is the first study that integrated the 

information on habitat suitability to predict human-elephant conflict covering the entire Nepal-India 

transboundary landscape. 

4.1. Suitable habitat for Asian elephant  

The study on the habitat suitability of Asian elephants presents the applicability of machine learning-based 

species distribution models to predict the suitable habitat in the Nepal-India transboundary region. The 

result of habitat suitability modelling showed that only one-third of the total transboundary landscape area 

was predicted to be a suitable habitat for Asian elephants. Once distributed throughout the lowland of 

Nepal in the 1920s (Smith and Mishra, 1992), elephant distribution is now restricted to two geographically 

distinct suitable habitats. The connectivity of predicted suitable habitats yet remains to be explored. 

Nonetheless, the forest in the transboundary landscape, which provides the prime natural habitat to 

elephants, has been lost and fragmented in the last couple of decades, causing significant problems in 

elephant habitat management.  The forest cover within the historical range of Asian elephants decreased 

by 39.6 % from 1930 to 2013 in India, and forest cover loss counts to 21.5 % in Nepal from 1930 to 2020 

(Padalia et al., 2019; Ram et al., 2021b). Albeit the loss of forest cover, elephants have learned to take 

advantage of non-forest habitats. The predicted suitable habitat is a mix of forest and non-forest (human 

settlement, farmland, sparse vegetation) in almost equal proportion (ratio closer to 50:50) which suggest a 

high overlap in space and resource use between elephants and humans. These results resemble with results 

obtained by other studies on Asian elephant habitat selection and distribution (de la Torre et al., 2021; 

Kanagaraj et al., 2019; Lamichhane et al., 2017). Even though Nepal and India have been promoting the 

conservation of migratory species like elephants and their historical habitat in the transboundary 

landscape, it is surprising that only 1/4th of suitable areas are conserved under protected areas as national 

parks or wildlife sanctuaries in the transboundary landscape. The management of protected areas strictly 

follows the habitat protection strategy. However, forest outside protected areas is sustaining human 

pressure. The implication is increased confrontation between elephants and humans which directly reflects 

on the conservation of elephants and their habitat.  

4.2. Factors determining the habitat suitability of Asian elephant 

The results of elephant habitat suitability show that the topographic factor, i.e., elevation has the most 

significant influence in determining the suitable habitat and distribution of elephants in the landscape. The 

low suitability in the high elevated areas was expected; however, it was surprising to observe low suitability 

in the low elevated regions. The reason behind the elevation range (neither high nor low) that defines the 

suitable habitat for Asian elephants may be associated with the distribution of forests in the study area. 

The preferred elevation range corresponds to the foothills area of Shivalik /Churia hills extending from 

east to west in the northern part of the study area, which harbours over 75% of the remaining forest of 

the Terai landscape in Nepal.  The flat surface in the lowest elevation area is dominated by agriculture with 

little or no presence of forest cover (Chanchani et al., 2014). Most forest area is found between 150 to 300 
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m elevations along the foothills of Shivalik/Churia. The result is similar to the study of the Asian elephant 

in Peninsular Malaysia, where elephants prefer forested habitats at lower elevations and close to the river  

(Mohd Taher et al., 2021). Elevation was positively correlated with slope (see Annex 1), which indicates 

that elephants avoid rugged terrain and steep slopes and favour flat forest plains while migrating from one 

place to another (de la Torre et al., 2021; ten Velde, 1997). A similar pattern was seen with African 

elephants in South Africa, where they were found to avoid very flat and very steep slopes, attributed to the 

availability of nutritious food in an undulating terrain (de Knegt et al., 2011). Low elevation flat land in the 

study area is also prone to flood in the rainy season, and elephants avoid flooded or flood-prone areas 

(Kanagaraj et al., 2019).    

In addition to the elevation, the precipitation of the driest and wettest months influences the habitat 

suitability of Asian elephants. The precipitation of the driest month is defined as the lowest cumulative 

total precipitation during the driest month. In contrast, precipitation of the wettest month is the highest 

cumulative total precipitation during the wettest month (O’Donnell and Ignizio, 2012). These two 

bioclimatic variables represent the precipitation extremities. The result suggests that the distribution of 

elephants is influenced by extreme precipitation conditions, which corroborates with the study (Li et al., 

2019) findings on the vast influence of precipitation in the coldest quarter on habitat suitability. The study 

area exhibits a distinct seasonal pattern, and the dry season limits the forages and water availability in the 

study area. The seasonal onset and offset of rainfall characterise the availability of different vegetation 

types and are associated with vegetation productivity. Vegetation productivity is often controlled by 

interannual variability precipitation, especially dry season precipitation (Murray-Tortarolo et al., 2017). 

Elephants are known to respond to such seasonal vegetation changes. Elephants occupy riverine 

vegetation during dry seasons, whereas they move to the tall grass savannah region to take advantage of 

newly grown grass high in nutrition in the wet season (Sukumar, 1989; ten Velde, 1997). Apart from the 

influence on vegetation, precipitation affects the water availability in seasonal streams and rivers. Elephant 

preference for the habitat closer to water resources links to general water requirement for intake and the 

thermoregulation when the temperature rises (Williams et al., 2008). Elephants are sensitive to high heat 

and avoid areas with the highest temperature in the warmest months (Kanagaraj et al., 2019). Elephants 

look for shade in close canopy forests during the daytime (Sitompul et al., 2013), wetting or mud bathing 

to regulate the ambient heat load when exposed to high environmental temperatures (Mole et al., 2016).   

The habitat selection pattern is also affected by the individual behaviour of elephants (de Knegt et al., 

2011). Nonetheless, it can be concluded that elephants prefer an area of intermediate elevation with 

abundant forest, grassland and water availability rather than a flood-prone low elevated area with no forest 

cover. The movement of large animals like elephants is governed by forage quality than quantity (Bohrer 

et al., 2014; Owen-Smith, 2014). The topographic and bioclimatic variables influence the habitat suitability 

of Asian elephants by changing the environment for elephants themselves and changing the habitat in 

which elephants survive. Depending on the availability of resources like abundant vegetation and fresh 

biomass in their original habitat, elephants seem to take a risk by travelling longer distances and covering a 

human-dominated landscape, which might result in frequent conflict with humans.  

4.3. Spatial distribution of the risk of human-elephant conflict 

The predicted HEC conflict risk map shows that HEC risk is unevenly distributed throughout the Nepal-

India transboundary landscape. The risk of HEC is observed within the suitable habitat of Asian 

elephants. Given the probability of elephant occurrence in the study area, it seems evident that areas 

experiencing high HEC risk can be divided into two distinct regions: western and eastern.  

The Nepal-India transboundary landscape shows the prominent presence of human interference in the 

composition of suitable remnant habitats for the Asian elephant. Elephants in the transboundary 
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landscape have been migrating from India to Nepal for as long as people can remember. In the landscape 

where only half of the current predicted suitable habitat is forested, elephants utilise forested and human-

dominated landscapes (Lamichhane et al., 2017) while moving through the diverse landscape mosaic. 

There is historical evidence of clearing forests to establish farmland and human settlement in the study 

area (Chanchani et al., 2014; Smith and Mishra, 1992). Thus, when elephants move from one protected 

area to another within or across the country, elephants often come across the cultivated land along the 

forest fringes and raid crops. This might explain the high probability of HEC risk between and around 

protected areas, like Baridya NP and Katarniyaghat WS or Mahananda WS and Koshi Tappu WR. 

Most people in the study area follow subsistence agriculture and rely on the forest for livestock grazing, 

forage and fuelwood collection (Chanchani et al., 2014), implying that people like settling near forest areas. 

Such subsistence farmers establish settlements near water sources where they can easily access water for 

daily use. Because elephants also prefer areas with available water sources and forest cover, subsistence 

farmers are likely at high risk of crop-raiding and physical property damage by elephants.  

4.4. Factors determining the risk of human-elephant conflict 

The result reports that settlement density is the most important factor contributing to HEC. The 

probability of HEC risk increases in the high settlement as opposed to African elephants in Botswana, 

where elephants use pathways with low settlement density to capitalise on the opportunity of risk 

avoidance (Songhurst et al., 2016). However, traditional migratory routes of elephants in the study area 

landscape are suffering adversely due to human settlement and agricultural expansion (Naha et al., 2019), 

which brings close contact between humans and elephants. There is a growing problem of expansion of 

illegal settlements in forests in the study area landscape (Chanchani et al., 2014), which ultimately leads to 

the permanent conversion of forests into non-forests (Acharya et al., 2011). Nepal and India have 

witnessed a decrease in forest cover in the last few decades (Padalia et al., 2019; Ram et al., 2021b) for 

large scale-expansion of agriculture and human settlement (Chanchani et al., 2014). The large continuous 

patch of forests that once used to be a safe harbour for the passage of elephants are being encroached, 

and traditional migratory routes of elephants have sustained persistent human disturbances for different 

land-use activities resulting in habitat loss or fragmentation (Naha et al., 2019; Padalia et al., 2019). Only 

20% of the forest in suitable habitat is located in protected areas where wildlife and habitat conservation 

efforts are practised extensively. The remaining forests are either national or community forests or 

commercial forest plantations managed with an objective of resource utilisation rather than biodiversity 

conservation. The national and community forests are under direct pressure from humans and are 

characterised as areas with low-quality forage availability (Wilson et al., 2013). Such forests are less 

preferred by elephants (Lamichhane et al., 2017), although they act as a temporary refuge area for the 

movement of elephants. Elephants are observed to use such forest refuge areas to take shelter and surf 

around the agricultural field and human settlement areas in proximity to the forest area in search of food 

resulting in conflict (Fernando et al., 2022). 

The probability of experiencing high HEC risk increases in the proximity of protected areas, similar to the 

finding of other studies (Chen et al., 2016; Fernando et al., 2022; Naha et al., 2019; Sharma et al., 2020a; 

Tiller et al., 2021; Wilson et al., 2013). The elephant comes out of its forested habitat during the harvesting 

season of crops like paddy, maize and wheat (Naha et al., 2019; Pant et al., 2016; Ram et al., 2021a) and 

raids crops on the agricultural field or destroys physical property for harvested grains. Elephants are 

willing to travel more than 1 km to enter the agricultural field when resources are plentiful (Chen et al., 

2016; Wilson et al., 2013). Even though physical barriers like electric fences around protected areas are 

installed to minimise the crop-raiding, the success of electric fences is highly dependent on regular 

maintenance and understanding of elephant behaviour (Gunaratne and Premarathne, 2005). 
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The higher value of mesh means the presence of connected large forest patches and less fragmentation. 

The study predicts high HEC risk in areas with high mesh value, i.e., in the forest area.  This seems 

unexpected from other research claiming forest fragmentation is causing the escalation of HEC 

(Chanchani et al., 2014; Fernando et al., 2022; Sharma et al., 2020a). However, the maximum mesh value 

calculated in the study area (~216 km2) is less than the average home range assumed in this study. The 

study result does not contradict the claim that forest fragmentation escalates HEC. The communities with 

subsistence farming depend on forest resources directly or indirectly and go inside the forest for fuelwood, 

forage collection, and livestock rearing. The attack on humans by elephants inside the forest happens 

when elephants encounter people participating in forage collection, livestock rearing, or collecting water 

(Ram et al., 2021a). Forest loss/fragmentation has a compounding effect on an escalation of HEC by 

reducing the forest cover required for elephants and increasing the human presence within the suitable 

habitat of the elephants. 

The overall result of the HEC risk prediction in the Nepal-India transboundary region supports the 

hypothesis that high conflict areas are situated in the suitable habitat of Asian elephants due to the 

increased human interference. Forest cover loss and fragmentation is causing a frequent confrontation 

between humans and elephants. The settlements and tea plantations in and around Siliguri in India, 

settlements in Jhapa and other Terai districts in Nepal are examples of such human interference in the 

eastern region of the transboundary landscape (connected habitat is Mahananda-KoshiTappu-Chitwan 

Parsa Complex) (Naha et al., 2019). Similarly, the migratory route and habitat corridors between 

Katarniaghat/Dudhwa to Bardiya/Suklaphanta complex have been disturbed due to human settlement 

and agricultural expansion (Chanchani et al., 2014). The conflict risk is high in these areas.  

The study investigated HEC by associating the habitat preferences of elephants in the Nepal-India 

transboundary landscape. However, HEC is also associated with multiple factors like ranging patterns and 

populations of elephants (Fernando et al., 2008), forage quality available in the forest (Sukumar, 1990), 

elephant behaviour (Fernando et al., 2022), human tolerance (Neupane et al., 2017) and management 

practice (Hoare, 2000) which were not considered in the study. Additional investigation on seasonal 

habitat preferences by elephants will better help to understand the temporal patterns of HEC in the 

Nepal-India transboundary landscape. 
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5. CONCLUSION AND RECOMMENDATIONS 

This study modelled habitat suitability for Asian elephants in the Nepal-India transboundary landscape. In 

addition, the study predicted the risk of human-elephant conflict by including habitat suitability, forest 

fragmentation and other anthropogenic variables. The study further explored the factors driving habitat 

suitability and human-elephant conflict in the transboundary landscape. The main conclusions that can be 

drawn from this study are: 

a) Approximately one-third of the entire transboundary landscape is predicted to be a suitable 

habitat for Asian elephants. Only twenty per cent of the predicted suitable habitat is located 

within the protected areas. The predicted suitable habitat is a mix of forest and non-forest (human 

settlement, farmland, sparse vegetation) in almost equal proportion (ratio closer to 50:50), 

suggesting a high overlap in space and resource use between elephants and humans. 

b) The habitat suitability of Asian elephants in the Nepal-India transboundary landscape is mainly 

determined by elevation, precipitation of the driest month and wettest month, and temperature of 

the warmest month. It suggests that Asian elephants exhibit seasonal preference in habitat use. 

c) High human-elephant conflict risk happens in areas of highly suitable elephant habitats suggests 

strong human interference in the remnant suitable habitats of the Asian elephants in the Nepal-

India transboundary landscape. 

d) The risk of human-elephant conflict in the Nepal-India transboundary landscape is mainly 

determined by human settlement density, distance to protected areas, elephant habitat suitability, 

and forest fragmentation. The human settlements established along the migratory routes and 

agricultural fields enveloping the protected area are prone to crop-raiding and intense HEC.  

The suitable elephant habitat and the human-elephant risk areas identified by this study are important, 

which could serve as a basis for strengthening the transboundary conservation of elephants and strategies 

for mitigating man-elephant conflicts. The study revealed that only 1/4th of suitable habitat is under legal 

protection as protected areas. The fragmented forest outside the protected area classified as suitable 

habitat by this study needs to be protected. The maintenance of ecological corridors that connect 

fragmented habitats and PAs is necessary to facilitate the migration of elephants.  However, in doing so, it 

is crucial to understand and address how people living in between fragmented habitats and PAs make 

decisions about current and future resource use (Shaffer et al., 2019). Given that human-elephant conflict 

in the transboundary landscape is centred around overlapping space and competition for resource use, 

land use planning like slum resettlement, expansion of farmland and development of infrastructures like 

airports, irrigation canals or road constructions should be envisaged in a way that does not degrade the 

elephant's habitat and the migratory route. The study on seasonal habitat preference by Asian elephants 

might give additional information about temporal patterns of habitat use by elephants which might assist 

in implementing HEC management effectively.  

The study recommends that the transboundary conservation efforts need to be strengthened through 

regional cooperation and building common strategies. The cross-border cooperation programme like the 

Terai arc landscape and Kanchenjunga landscape are appreciative efforts to ensure wildlife conservation 

and promote human well-being. Such collaboration ensures combined synergies and capitalises on 

opportunities to pave the way for sustainable use of natural resources. However, more study at the 

transboundary landscape level is required to understand the interplay of ecological, anthropogenic, social, 



 

32 

 

and political-economic scenarios in an escalation of human-elephant conflict. This information will benefit 

the long-term conservation of Asian elephants and promote human welfare in the Nepal-India 

transboundary landscape. 
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ANNEX 

Annex 1: Pearson's correlation coefficient and variance inflation factor (VIF) of all the predictor variables selected for habitat suitability modelling 
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Annex 2: Predicted suitable habitat from boosted regression tree algorithm for Asian elephants in Nepal-India transboundary landscape 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The map shows study area, national border of Nepal and India, Asian elephant occurrence points used in habitat suitability modelling using boosted regression 
tree algorithm (BRT) and protected areas. Nine protected areas lie in India: Nandhaur Wildlife Sanctuary(1), Pilibhit Tiger Reserve(2), Kishanpur Wildlife 
Sanctuary(4), Dudhwa National Park(5), Katarniaghat Wildlife Sanctuary(6), Sohelwa National Park(9), Sohagibarwa Wildlife Sanctuary(10), Valmiki Tiger 
Reserve(11) and Mahananda Wildlife Sanctuary(15), whereas six PAs lie in Nepal: Suklaphanta National Park(3), Bardiya National Park(7), Banke National 
Park(8), Chitwan National Park(12), Parsa National Park(13) and Koshi Tappu Wildlife Reserve(14). 

Suitable habitat = 22,487 km2 

Unsuitable habitat = 52,321 km2 
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Annex 3: Predicted suitable habitat from random forest algorithm for Asian elephants in Nepal-India transboundary landscape 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The map shows study area, national border of Nepal and India, Asian elephant occurrence points used in habitat suitability modelling using random forest 
algorithm (RF) and protected areas. Nine protected areas lie in India: Nandhaur Wildlife Sanctuary(1), Pilibhit Tiger Reserve(2), Kishanpur Wildlife 
Sanctuary(4), Dudhwa National Park(5), Katarniaghat Wildlife Sanctuary(6), Sohelwa National Park(9), Sohagibarwa Wildlife Sanctuary(10), Valmiki Tiger 
Reserve(11) and Mahananda Wildlife Sanctuary(15), whereas six PAs lie in Nepal: Suklaphanta National Park(3), Bardiya National Park(7), Banke National 
Park(8), Chitwan National Park(12), Parsa National Park(13) and Koshi Tappu Wildlife Reserve(14). 

Suitable habitat = 26,783 km2 

Unsuitable habitat = 48,025 km2 
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Annex 4: Predicted suitable habitat from maximum entropy model for Asian elephants in Nepal-India transboundary landscape 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suitable habitat = 26,546 km2 

Unsuitable habitat = 48,262 km2 

The map shows study area, national border of Nepal and India, Asian elephant occurrence points used in habitat suitability modelling using maximum entropy 
model (MaxEnt) and protected areas. Nine protected areas lie in India: Nandhaur Wildlife Sanctuary(1), Pilibhit Tiger Reserve(2), Kishanpur Wildlife 
Sanctuary(4), Dudhwa National Park(5), Katarniaghat Wildlife Sanctuary(6), Sohelwa National Park(9), Sohagibarwa Wildlife Sanctuary(10), Valmiki Tiger 
Reserve(11) and Mahananda Wildlife Sanctuary(15), whereas six PAs lie in Nepal: Suklaphanta National Park(3), Bardiya National Park(7), Banke National 
Park(8), Chitwan National Park(12), Parsa National Park(13) and Koshi Tappu Wildlife Reserve(14). 


