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Abstract

In railway systems, secondary delays occur when a delayed train causes delays
for other trains as well. In the Dutch Railway Network, for passengers this
seems to happen regularly, but it is not tracked how often it occurs. To find
out, this report proposes a mathematical model based on queuing theory from
communication systems, resulting in an acceptance probability for the train
lines arriving at the station. Next to the model, a simulation is made with the
same assumptions. The results for both are compared. Also, insensitivity was
proven for the model and tested in the simulation, resulting in a more accurate
representation of reality. Both were applied to a simple made-up station and
the Dutch station Arnhem C. and Amersfoort C. For the latter, with input
variables based on data, a general acceptance rate of 46% and 69% was found,
respectively, but in both cases it highly depends on the different arriving train
lines. As multiple assumptions have been made for the model, this will be an
overestimation of reality and it can be seen as an upper limit. Improvements
for the model have been proposed to attain more realistic results.
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1 Introduction

Climate change makes us reconsider travel choices. To reduce travel pollution,
switching from car and plane to train travel could be a part of the solution.
However, the delays at Dutch Railways (NS) and their uncertainties are one
of the main reasons for dissatisfaction when traveling by train [1]. Delays in
the railway system can occur due to different reasons, such as weather condi-
tions, system malfunction, occupancy, etc. Such train-specific delays are called
primary delays. However, a major part of train delays in the Dutch Railway
Network are those caused by other delayed trains[2], the so-called knock-on or
secondary delays. To improve on a train timetable and make it more robust, it
will be interesting to know where and how this type of delay occurs.

The Dutch Railway Network is a complex system of stations, signaling lights,
train switches, and other (infra)elements. Making a robust train schedule is
not an easy task. The utilization of the capacity should be high to serve all,
yearly increasing number of customers, mainly during peak hours. On the other
hand, it should provide enough space between trains so that fewer secondary
delays occur and the overall punctuality increases. The punctuality of the NS in
2019 was, according to their own research, 92.6%[3]. However, delays within 5
minutes are also considered by the NS to be on time, but these short delays can
result in a missing connection for travelers. Until 2013 a 3-minute punctuality
was also measured, at that time it was 87.4% and 5-minute punctuality of
93.6% [4]. Although the numbers are not bad, no improvement over the last
few years has been made and it would be better to measure and strive for higher
punctuality in shorter time frames.

The capacity can be determined in different ways. The International Union
of Railways (UIC) code 406 is the most widely used method [5]. The NS uses
its own build simulation programs to evaluate the capacity and also to see the
influence of delays in the system. The performance of one of these programs,
named RailSys, is analyzed for the Swedish railway network in [6], but it was
concluded that it cannot be used to determine node capacities. These current
simulation programs do not take into account the relation between factors that
affect the delay propagation, such as the behavior of train drivers (faster/slower
riding). It turns out that evaluating the delay propagation for a full railway
network will most often not give a correct indication due to this large number
of factors.

Therefore, delay propagation can be better analyzed for specific and smaller
part of the network to get more correct results. The propagation of delays can
occur in different ways and at different places. [7] considers the delays due to
different running times of different trains, where a faster train can be held up
by slower trains on the same track. [8] uses Markov chains to predict delay
throughout a line considering arrival, departure and dwell times. A specific
type of Markov chain, a quasi-birth-and-death process, is used in [9] to model
train operations, failure characteristics, and capacity change.

Whereas the three studies above all consider lines between stations, already
in the early days of railway analysis, it was discovered that the main bottle-
necks are located at stations. A delayed train can take up a spot on a platform
of another train, resulting in a delay for that train as well. Stations are more
difficult to model than tracks/lines as there are more options for trains to go
to. Therefore, more complicated simulations should be made or more advanced
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mathematical tricks used. The stations can be modeled via both linear program-
ming and queueing theory. So far, linear programming has not given correct
results as it is difficult to set up an objective function, e.g. combining the cost
for delays and deviations of trains to other platforms as in [10]. [11] also uses
linear programming to analytically estimate the propagation of knock-on delays,
tested this for a part of the Dutch railway station Den Haag Holland Spoor and
used it to optimize capacity utilization.

Markov chains and queueing theory can also be applied for station modeling.
This mathematical modeling theory originates from communication systems,
but when the incoming rail is seen as the incoming line and a platform as
the server, the equivalence can be seen. One of the most used queues, also
called the Erlang queue, describes a queue with an arrival rate according to a
Poisson distribution, an expected serving time of E[B], c number of servers and
a maximum of c trains waiting. A queuing model tries to represent reality, but
assumptions often have to be made. How an Erlang queuing model approximates
reality and what its error bounds are is evaluated in [12].

Different assumptions can be made, and different combinations of types of
queues can be used when modeling a station and incoming and outcoming trains.
For example, a standard Erlang queue describes the whole station in [13] after
which it is numerically applied to a freight station in Russia and a marshaling
yard in the USA. In [14], sets of infra-elements are treated separately, each
having its own Erlang queue with one server and an infinite waiting room. An
analysis of the literature of multiple proposed methods is performed in [15], and
the methods evaluated are applied to stations in China.

Although much research has been done on delay propagation at the railway
station, not many studies have been performed on the Dutch Railway system,
which differs quite a lot from the railways in USA, Russia and China because the
system is denser and trains follow each other up more quickly. Therefore, in this
report, an analytic model based on birth-death queuing and the queuing theory
typically used for communication systems is proposed for a railway station. This
type of queue is a queue with 1 server and no waiting room. The main goal
is to analyze the blocking probability for the arriving trains and where in the
station these blockages occur, the infra-elements that withhold a train to arrive
at the station because of another train that occupies that infra-element. Next,
a simulation model is made, with the goal is to visualizing and locating the
conflict points. The analytic model and simulation model are compared and
the validity of both is tested with data from reality. Next to a simple made-
up station, the Dutch stations that are modeled and simulated are Arnhem
Centraal and Amersfoort Centraal.

In the second chapter of this article, an overview of the theory used in the
report will be given. The third and fourth chapter consists of an explanation
of the analytic model and simulation respectively. The comparison and valida-
tion for the three evaluated stations are written in the fourth, fifth, and sixth
chapters, after which a discussion and conclusion follow in the seventh chapter.
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Part I

Mathematical model

2 Theory

The model proposed in section 3 is based upon continuous time Markov chains,
specifically birth-death queues. To better explain the model, first an introduc-
tion to the theory used in the model is given based upon [16] and [17].

2.1 Continuous Time Markov chains

Consider a system that can be described by various states, depending on the
situation the system is in, e.g. the number of people in a queue, the position of
a robot, etc. The total of all admissible states of such a system is described by
the discrete state space C. The system can jump between a state i and a state
j with a probability of pij , called the transient probability and which should be
independent of the duration that the system is in state i.

In such a system, we can also define an infinitesimal transition rate as how
often the system switches from a state i to state j in a very small, infinitesimal
time frame or:

qij = lim
∆t↓0

1

∆t
[P (X(t+∆t) = j|X(t) = i)] (2.1)

With this transition rate, probability that the system switches from state i to
state j in the upcoming (very small) time interval ∆t is given by:

P (X(t+∆t) = j|X(t) = i) = qij∆t+ o(∆t) ∀i, j ∈ C

And, in the same way, for the probability that systems stays in state i with this
upcoming small time interval

P (X(t+∆t) = i|X(t) = i) = 1−
∑
j ̸=i

qij

From these definitions, we can define a variable vi such that

νi =
∑
j ̸=i

qij and qij = νipij ∀i, j ∈ C (2.2)

This value also describes the exponentially distributed time the system is in
a state i, with an expected value of 1/νi.

Now, we can define the random variable X(t) to be:

X(t) = state of the system at time t

The stochastic process {X(t), t ≥ 0} is an continuous time Markov chain (CTMC)
as the current state of the system does not influence the next state, nor does
does any of the other states before.

Definition 1 (Continuous Time Markov chain). A process {X(t), t ≥ 0} with
countable or finite state space C is a continuous time Markov chain if
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P (X(t+ s) = j|X(s) = i,X(u) = x(u), 0 ≤ u < s) = P (X(t+ s) = j|X(s) = i)

∀s, t > 0, for every x(u) = 0, 0 ≤ u < s and i, j ∈ C

(2.3)

Transient probabilities

As described above the transient probability is the probability that a system
switches from a state i to a state j. These can be described by

pij(t) = P (X(t) = j|X(0) = i) ∀i, j ∈ C, t ≥ 0 (2.4)

The matrix P(t) describes all transient probabilities, for all i, j ∈ C.

Ergodicity

Definition 2 (Ergodic). A CTMC is ergodic if for any initial state i, the prob-
ability that the system described by the Markov chain will eventually reach the
state r is 1 and that the expected time to reach this state is finite.

When a CTMC is ergodic, one can define the limiting probability for a state
j to be

πj = lim
t→∞

pij(t) (2.5)

Due to the continuity, in the cases of this report, it will always exist and be
independent of state i.

Theorem 2.1. For every i ∈ C, the following holds:

dpij(t)

dt
=
∑
k ̸=j

pkj − pij(t)νj for j ∈ C and t > 0 (2.6)

Proof. Here, this theorem is only proven if I is finite, which will be true in case
of railway systems. It can be shown that as for a small time-frame, ∆t, the
following holds:

pij(t+∆t) = P (X(t+∆t) = j|X(0) = i)

=
∑
k∈C

P (X(t+∆t) = j|X(t) = k,X(0) = i)P (X(t) = k|X(0) = i)

=
∑
k∈C

P (X(t+∆T ) = j|X(t) = k)pik(t)

(2.7)

If now the summation is split into k ̸= j and k = j, the following it obtained:

pij(t+∆t)− pij(t)

∆t
=
∑
k ̸=j

qkjpik(t)− νjpij(t) +
o(∆t)

∆t
(2.8)

If ∆t goes to zero, it meets the desired result.
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Theorem 2.2. If a Markov chain is ergodic, the limiting probabilities πj for
all j ∈ C from an unique solution to the global balance equations (2.9) and
normalization equation (2.10).

vjπj =
∑
k ̸=j

πkqkj ∀j ∈ C, (2.9)

∑
j∈C

πj = 1 (2.10)

Proof. The complete theory will not be proven here, only for I is finite it will be
shown that it holds. It is known that for t → ∞, pij(t) → πj and, by theorem
2.1, p′ij → 0. So, in the case that time goes to infity,

∑
k ̸=j = πkqkj−πjνj = 0 for

all j ∈ C. The normalization condition is also met, as for t → ∞,
∑

j∈C pij(t) =
1.

Long run time fraction

Define indicator 1{A} as:

1{A}(m) =

{
1 if A is true at time m

0 if A is false at time m

Assume a time interval [1, n] and let 1{j}(m) be an indicator for a system
at time m to be in state j. Then the expected proportion of the time that the
system is in this state is:

E
( 1
n

n∑
m=1

1{j}(m)
)
=

1

n

n∑
m=1

P (X(m) = j|X0 = i) =
1

n

n∑
m=1

pij(m)

(2.11)

Because of (2.5), this is equal to πj . So, the limiting probability πj can also be
considered as the actual long run fraction of the time that the system is in state
j.

With the property PASTA property (Poisson Arrivals See Time Averages”,
it can be proven that the probability of that the system is in a certain state for
an outside observer is the same for an arriving customer, provided the arrival
process is a Poisson process.

Balance equations

Assume the system is in a state k and knowing the limiting probability of πk,
the long-run expected number of transition per unit from this state k to state
j can described as πkqkj . So total expected number of transition per unit time
from any state to state j being

∑
j ̸=k πkqkj

At the same time, the long-run expected number of transition per unit time
from state j to any other state can be described as πjvj =

∑
j ̸=k πjqjk. And in

the long run the input in state j should be the same as the output of state j,
therefore the global balance equations can also be written as:∑

j ̸=k

πjqjk(rate out) =
∑
j ̸=k

πkqkj(rate in) (2.12)
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Reversibility

Definition 3 (Reversibility). A Markov chain with steady states πj ∀j ∈ C is
reversible if and only of

πjqjk = πj = kqkj ∀i, j ∈ C (2.13)

These reversibility equations satisfy the balance equations (2.12) and are the
most detailed form in which the global balance equations (2.12) can be written.
They are therefore also called the detailed balance equations.

2.2 Birth-death queues

A special type of continuous Markov chains is the so-called birth and death
process. Let a system be described by a continuous Markov chain with a state
space C = {0, 1, 2, ...}. The system transitions from a state j to a state j + 1
with an exponential rate λj (a birth) and from a state j to a state j − 1 with
an exponential rate of µj (a death). Assume that λj > 0 and µj > 0 for all j.
Now the Markov chain can be described by

vj = λj + µj for j > 0

vo = λj

And the infinitesimal transition rates are

qij =


λj : if k = j + 1, i ≥ 0

µj : if k = j − 1, i ≥ 1

νj : if k = j, j ≥ 0

According to global balance equations (2.9), the global balance equations
can now be written as:

λ0π0 = µ1π1 (j = 0)

λjπj + µjπj = λj−1πj−1 + µj+1πj+1 (j ≥ 1)

Combining these two equations (or according to the detailed balance (2.13)),
it can be concluded that:

λjπj = µj+1πj+1 (2.14)

or equivalently
λj−1πj−1 = µjπj (2.15)

The latter also has a physical rate in versus rate out. As these equations can
be written this, the reversibility condition as in definition 3 is met.

When iterating this equation, the steady state distributions can be found:

πj = π0

j−1∑
k=0

λk

µk+1
(2.16)

Such a system of birth and deaths is also used for the railway station model,
only it will be adapted to a multidimensional frame.
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2.3 The exponential distribution

In the birth-death queue, it is assumed the birth and death rate follow a Poisson
distribution meaning that the time between two births (or two deaths) is expo-
nentially distributed. Where the Poisson distribution describes the number of
occurrences within a certain time period, the exponential distribution described
the time between two such occurrences. The probability density functions of
the exponential distribution is given in (2.17). This distribution has interesting
properties.

f(x, λ) = λe−λx (2.17)

Definition 4 (Memoryless property). A random variable X has the memoryless
property if its distribution satisfies

P (X > a+ b|X ≥ a) = P (x > b) ∀a, b ≥ 0 ∈

Theorem 2.3. The exponential distribution has the memoryless property.

Proof. Consider the random variable X with has an exponential distribution
with mean 1/λ and ∀a, b > 0 then

P (X > a+ b|X ≥ a) =
P (X > a+ b, A ≥ a)

P (A > a)
=

P (X > a+ b)

P (X ≥ a

=
eλ(a+b)

eλa
= eλa = P (X > h)

(2.18)

As the exponential distribution describes the time between two events of a
Poisson process, it is also possible to describes the distribution of the sum of
a number (integer) k Poisson events each with mean 1/λ. This distribution
is called the Erlang-(k, λ) distribution, described by the following probability
density as in (2.19).

f(x, k, λ) =
λkxk−1e−λx

(k − 1)!
(2.19)

The mean value of an Erlang distribution is k/λ and the variance is k/λ2.
Therefore, with increasing both k and λ with the same rate, the mean will
stay the same while the variance decreases, being able to approach a discrete
situation. An example can be seen in figure 2.19. Here the mean values for
both figures is 2, but the left function has variance 0.05, while the right one has
variance 0.005, due to the increase λ and k. Therefore, the peak is smaller and
steeper. Increasing both values even more, with the same rate, will result in an
even smaller variance.
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Figure 2.1: Probability density function for an Erlang distribution with mean
2, but with different input variables
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3 Mathematical model for a railway station

Using the theory of continuous time Markov chains and birth-death processes,
a simple model of train arrivals at a station is made. This model is based
upon communication networks. The model only takes into account the arrival
at a station and assumes either that a train arrives, is handled and after that
removed or that a train is blocked and vanishes.

Take a station that that S different arriving train lines. One could say that
each of these form a different source s, which if busy generates a train for that
line. Such a source has:{

λs : an exponential scheduling rate

µs : an exponential transmission rate

Let state B = {s1, s2, ..., sn} denote the set of busy sources, and let space C be
the state space of admissible states, indicating which sources can be busy at the
same moment. Then A(s|B) can be introduced as the access function, where
we can assume:

A(s|B) = 1 for B + s ∈ C

A(s|B) = 0 for B + s /∈ C
(3.1)

Or in words, a source can become busy if its addition to the current busy sources
is possible by the set of admissible combinations.

Furthermore, assume a certain state B, having a combination of sources that
are busy, is possible. Then any state B − s, where one of the busy sources in
state B has become idle, has also to be possible. This is because less arriving
trains is for sure possible if more arriving trains is possible. So blocking can only
occur when a source becomes busy, not when becoming idle. Mathematically,
we can write:

B ∈ C ⇒ B − s ∈ C ∀s ∈ B (3.2)

This property is called coordinate convex blocking, and due to it the system is
reversible.

3.1 Product form

An idle source s /∈ B generates a train with an rate

λsA(s|B) (3.3)

From this the following transition rates follow

qB,B+s = λsA(s|B) (s /∈ B)

qB,B−s = µs (s ∈ B)
(3.4)

The remaining transition rates will be zero: q(B,B′) = 0. Now, according to
equation(2.12), the balance equations can be written as:∑

B′

π(B)q(B,B′) =
∑
B′

π(B′)q(B′, B) (3.5)
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With filling in the transition rates (3.4) into (3.5).∑
s∈B

π(B)µs +
∑
s/∈B

π(B)λsA(s|B)1{B+s∈C}

=
∑
s∈B

π(B − s)λsA(s|B − s) +
∑
s/∈B

π(B + s)µs1{B+s∈C}
(3.6)

as we assume (3.1) and imply the condition that

Theorem 3.1. Define the following product to be

P (s1, s2, ..., sn) =

n∏
k=1

A(sik |si1 , ..., sik−1
) (3.7)

With this product P (s1, ..., sn) the source balance (3.5) can be written as

π(B) = cP (B)
∏
s∈B

(
λs

µs
) (3.8)

Proof. Any permutation (i1, ..., in) ∈ (1, ..., n) does not change the outcome of
P , since this product will be

P (B) = 1 B ∈ C (3.9)

P (B) = 0 B /∈ C (3.10)

Therefore, the detailed balance equation as described in (2.9) can be used, filling
this in the following is obtained. (This is can also be done via (3.6) as for a
generating source s for any B ∈ C and s ∈ B the second part of both sides fall
out):

π(B)µs = π(B − s)λsA(s|B − s) (3.11)

Now, by using equations (3.8) and (3.7), the detailed balance equations (3.11)
are verified as follows:

π(B)

π(B − s)
=

cP (B)
∏

a∈B(
λa

µa
)

cP (B − s)
∏

a∈B−s(
λa

µa
)
=

λs

µs

P (B)

P (B − s)
= A(s|B − s)

λs

µs
(3.12)

Expression (3.8) is called the product form. With this equation, the steady
state distributions for all state of arriving trains can be determined. For each
state, its steady distributions is, by equation (2.11), equal to the long run time
fraction a system in that state. With this for each source and using the PASTA
property (section 2), two important variables can be determined:

• the fraction of the time a source is busy (by summing over all states that
in which that source s is busy):

time fraction busy source s:
∑
B∈C

π(B)1{s∈B} (3.13)

• the accepting probability by summing over all states to which the source
s can be added and that state is still in the set of admissible states:

accepting probability source s:
∑
B∈C

π(B)1{s/∈B,B+s∈C} (3.14)
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3.2 Insensitivity

The above model is based upon exponentially distributed arrival and handling
rates, see section 2.3. However, in real life the arrival and handling rates for train
arrivals at railway stations are not necessary exponentially distributed. To be
able to validate the use of the model in practical situations, it is useful to prove
that the model has the insensitivity property, meaning that these assumptions
cannot be loosened.

To prove the insensitivity, assume that every source is described by a two-
station queue. Each status can either can be at station 1, and so being idle,
ls = 1 or at station, being busy ls = 2. See the schematic overview in figure 3.1.

Figure 3.1: Schematic overview of two-station idle-busy sources. Black dots
indicated in which state a source is.

Then the sources can be described by

B = {s1, ..., sn} (3.15)

L = {ls; s = 1, ..., S} (3.16)

[L,A] = {(ls, as); s = 1, ..., S} (3.17)

Where B is the set of busy sources, as described already above. L is the set
describing the state of each of the sources. as exponentially describes when the
sources will become active (in case s = 1) or when the source switches off (in
case ls = 2). This system of [L, A] can also be described by a Markov chain.

One can describe the time the first case (source is now idle and will become
busy, l=1) and the second case (the time that the source is still busy until
becoming idle, l=2) by

Gs
l =

∞∑
m=1

qsl (m)E(m, νsl ) (l = 1, 2) (3.18)

Here, qsl (m) describes the probability that the change of status takes m time
phases. These phases are described by an E(m, νsl ) Erlang distribution, as is
described in section 2.3. νsl is the phase parameter for a source s in status l.

As in the latter, the expected mean of an (k, ν)-Erlang distribution is k/ν,
the mean duration of each of the cases can be described by

τsl =

∞∑
m=1

qsl (m)
m

νsl
(3.19)

13



Let Hs
l (a) be the steady-state probability that a source s is in state l for more

than a time phases.

Theorem 3.2. The solutions for the global balance equation for the [L,A]
Markov chain is given by

Hs
l (a) =

1

νsl τ
s
l

∞∑
k=a

qsl (k) (3.20)

Proof. The rate into a state a is described by

Hs
l (a)ν

s
l (3.21)

while the rate out of the state is

Hs
l (a+ 1)νsl +Hs

l (1)ν
s
l q

s
l (a) (3.22)

where the first part considers the transition to a + 1 and the second part the
transition back to a = 1. The relation between the rate in and out is

Hs
l (a) = Hs

l (a+ 1) +H(1)qsl (3.23)

which is satisfied by equation (3.20).
Furthermore, the sum of the solution equals to 1:

∞∑
a=1

Hs
l (a) =

1

νsl τ
s
l

∞∑
a=1

∞∑
k=a

q(k) =
1

τsl

∞∑
k=1

k

νsl
= 1 (3.24)

Theorem 3.3. The steady-state distribution of the Markov chain of the system
[L,A] under the invariance conditions (3.7-3.10), with normalizing constant c̄
and with P (B) as in (3.7).

π(ls, as) = c̄P (B)
[ ∏
s/∈B

τs1H
s
1(as)

][ ∏
s∈B

τs2H
s
2(as)

]
fors = 1, ..., S (3.25)

Proof. To prove the equation above, it must be proven that for all sources in
the [L,A] Markov chain rate into a state of the source is equal to the rate out of
this state. As the source in the Markov chain [L,A] can only be either in state
1 or in state 2, and only two cases need to be considered, which are valid for all
sources.
(i) Source h is idle
When the source is idle, the rate out is given by

π([L,A])νs1 (3.26)

while the rate into the idle state is the sum of the rates that the system moves
one time interval further while source stays idle [L,A] − (1, a) + (1, a + 1) and
that the source is not accepted to be become busy, but time interval start any-
way [L,A]− (1, a) + (1, 1).

π
(
[L,A]− (1, a) + (1, a+ 1)

)
νs1+

π([L,A]− (1, a) + (1, a+ 1))[1−A(s|B)]νh1 q
s
1(a)

(3.27)
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Now note that by means of (3.20):

Hs
l (1) = 1/νsl τ

s
l

that by (3.12), it is known that

P (B + s)

P (B)
= A(s|B) (3.28)

and that by (3.25),

π([L,A])− (ls, as)s + (l′s, a
′
s)s = π([L,A])

Hs
l′s
(a′s)

Hl
s
s(as)

τsl′s
τsls

[
P (B + s)

P (B)

]
s

(3.29)

Therefore, the rate into can also be written as:

π([L,A])

(
Hs

1(a+ 1) +A(s|B)
qs1(a)

τs1ν
s
1

+ [a−A(s|B)]
qs1(a)

τs1ν
s
1

)
/Hs

1(a) (3.30)

which satisfies the detailed balance equation if

Hs
l (a) = Hs

l (a+ 1) +
qsl (a)

τsl ν
s
l

(3.31)

which is true by (3.20).
(ii) Source s is busy The same way of proving can be applied here. It needs to
be proven that the rate in

π([L,A])νs2 (3.32)

is equal to the rate out

π([L,A])− (2, a)s + (2, a+ 1)s)ν
s
2

+π([L,A])− (2, a)s + (1, 1)s)ν
s
1A(s|B − s)qs2(a)

= π([L,A])νs2

(
Hs

2(a+ 1) +
qs2(a)

τs2ν
s
2

)
/Hs

2(a)

(3.33)

So the rate in is equal to the rate out of all states for all sources s ∈ C by
(3.20).

Theorem 3.4 (Insensitivity of the model). Assuming the invariance conditions
and P in (3.7 until 3.2) and with c and c as normalization constants, the product
can be written as

π(B) = cP (B)
∏
s

τs1
∏
s

τs2 = cP (B)
∏ λs

µs
(3.34)

Proof. See that

S∑
s=1

∞∑
as=1

S∏
s=1

Hs
l (as) =

S∏
s=1

( ∞∑
as=1

Hs
l (as)

)
(3.35)
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With equations (3.35) and (3.24), the steady states can be described as

π(B) =

S∑
s=1

∞∑
as=1

π(ls, as) for s = 1, ..., S

=cP (B)
[ S∏
s=1

τsl

][ S∏
s=1

∞∑
as=1

Hs
l (as)

]

=cP (B)

S∏
s=1

τsl

=cP (B)
∏
s

τs1
∏
s

τs2

(3.36)

with λs =
1
τs
1
, µs =

1
τs
2
and c = c[λ1λ2...λS ], (3.34) is proven.

By theorem 3.4, the model is insensitive for different distribution of handling
times. Meaning that product-form results given in (3.8) are also valid for non-
exponential distribution and only depends on the mean values.

3.3 Discussion

The main advantage of the model described above is that is it (easily) solvable.
However, it does not display the reality. In the model, two main assumptions
are made that are not met in reality.

Firstly, it is assumed that an arriving train uses this route for all time that
the train is in the station. However, in reality, the train only uses the route upon
arrival, then waits at the track next to its platform, before departing. During
the wait, other trains can make use of the route the waiting train took before
except from the track next to the platform.

Secondly, the model assumes no waiting room and let a train ”vanish” if it
is blocked to arrive at the station. Of course, in real life, this is not possibly
and a train will have wait until they can enter the station. Therefore, a waiting
room should be assumed.

Another point, not unimportant, is that only arrival are taken into account.
Typically, in Dutch Railways network, tracks are used both ways and the delayed
departures can make incoming arrivals delayed as well.

One could say to implement these parts to get a model that better fits reality,
however implementing this will make the model more difficult and it might
become unsolvable. Possible directions to improve on the model are given in
the appendix part 11.
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Part II

Simulation model

4 Explanation of the simulation model

In addition to the analytical model, also simulation model has been made. The
two can be compared. In both cases, the same assumptions are made. But in
the model, a product form is filled in, immediately showing the result. In the
simulation, trains are randomly arriving at the station and the (non)blocking is
tracked to see what happens throughout the time. The two can be compared
to see what difference arise.

The simulation for this report is done in Python. Python suits well for Object
Oriented programming and has multiple packages which make simulating easier.
For this simulation , among others, the Simpy package is used. This package
accommodates to simulate for a given amount of time and having multiple active
functions at the same time, used to simulate the different sources.

The simulation is made in such way that it suits any station, given a range
of input variables. In this way, it is easier to also evaluate other stations. The
simulations assumes multiple sources that generate trains to arrive at the sta-
tion, just as in the model. The input variables for the simulation are lists where
each elements indicates a certain input variable for a sources. These are lists
for arrival and handling rates, both expected to be exponentially distributed.
Furthermore, a list for the serial numbers of a source and a list having a route
indicating which tracks a train from a certain source uses to arrive at its plat-
form. Next, also the total number of tracks in the station, number of sources,
and the total time the simulation will simulate (the simulation itself will take
much shorter than this given time) should be given.

In the simulation, each source generates randomly, by the given arrival rates,
train objects. Upon generation, it is checked if the train can ”arrive”, that is if
all tracks of the route are free. If so, the train takes in the space of the tracks
and wait for an random time, by the handling rate. If not, the train is added
to the block list and ”vanishes” from the system. This is done for the indicated
simulation time, after which the total blocking numbers are returned such that
accepting/blocking rates can be calculated.

The code for the simulation function is given in the Appendix part 12.
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Part III

Application

5 A simple station

Figure 5.1: A simple made-up station

Think of a simple station with two platforms and four switches, as shown
above in figure 5.1. Assume that there are four train lines arriving at this
station, evaluated as four different sources in the model. This station can also
be depicted as figure 5.2, showing the sources and the numbered tracks. Tracks
are numbered between intersections, the numbering itself can be done randomly.

Figure 5.2: Schematic overview of a simple station with sources and numbering
of tracks.

Each source takes a different route upon arriving at the station. The routes
take the following line segments:

source 1 : 1− 2− 3

source 2 : 1− 4− 7− 8

source 3 : 6− 7− 5− 3

source 4 : 6− 7− 8

(5.1)
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5.1 Application of the analytical model

This simple station can be parameterized by the model proposed in section 3.
Following (3.1), the access functions for the four sources are:

A(s1|H) = 1{M1=0,M2=0,M3=0}

A(s2|H) = 1{M1=0,M4=0,M7=0,M8=0}

A(s3|H) = 1{M7=0,M5=0,M3=0}

A(s4|H) = 1{M6=0,M7=0,M8=0}

(5.2)

and as only the source s1 and s4 can be generating at the same time, the
state space C is given by:

C = {∅, {s1}, {s2}, {s3}, {s4}, {s1, s4}} (5.3)

From (3.8), the steady state probabilities for the simple station example become

π(∅) = c

π({s1}) = c
λs1

µs1

π({s2}) = c
λs2

µs2

π({s3}) = c
λs3

µs3

π({s4}) = c
λs4

µs4

π({s1, s4}) = c
λs1

µs1

λs4

µs4

(5.4)

where c = 1/(1 +
λs1

µs1
+

λs2

µs2
+

λs3

µs3
+

λs4

µs4
+

λs1

µs1

λs4

µs4
) to meet the normalization

condition
∑

H∈C π(H) = 1.
These steady state distribution also describe the amount of the time the

system is in a certain state, as is explained in section 2.1. This can be recalcu-
lated to the fraction of the time that a source is busy/idle. For sources s2 and
s3, the fraction of time to be busy is equal to steady state distribution of the
state there are busy. For sources s1 and s4, the fraction of time that both these
sources are active can be added to the state there are alone active. Also, the
acceptance probability for each source can be calculated, being the chance that
a train originated from that source is acceptable.

For example, assume arrival times that follow a Poisson process, with means
of 15, 20, 20 and 15 minutes and exponentially distributed handling times av-
eraging 2, 1, 1.5 and 1 minutes for sources s1, s2, s3 and s4 respectively. Using
(3.8), (3.13) and (3.14), the fraction of the time that a source is busy and the
acceptance probability can be determined. The outcomes are shown in table 1.
The fraction of the time that no trains are present in the system, and therefore
also the general acceptance probability, is equal to π(∅) = 0.75.
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Table 1: Input variables and corresponding results using the model for the
simple station.

source arrival time
handling
times

fraction
busy

acceptance
probability

1 15 2 0.107 0.80
2 20 1 0.037 0.75
3 20 1.5 0.056 0.75
4 15 1 0.056 0.85

5.2 Application of simulation model

With the simulation model in section 3, this simple station is also simulated. In-
teresting is to see if there are any differences between the model and simulation,
and particularity whether the insensitivity also holds when using a simulation.

Assume arrival rates and handling rates as proposed in the last paragraph of
the previous subsection for the sources s1, s2, s3 and s4 respectively. The total
number of tracks is 8 and the routes that the trains follow in as in (5.1). For
each cycle a total time of 1440 minutes is given, to match the number of minutes
in a day. Although, the train schedules differ during night and weekends, this
is not taken into account. This ”day”-cycle is repeated for 100 times, such that
a good representation is acquainted of the simulation results.

In tables 2 and 3, the results for both the analytical model as the simulation
model are shown. For the simulation model, the mean value for each source is
determined. In the first of the table, the time fraction that the sources are busy
can be seen. To show statistically, that the mean of the simulation results is
equal to the product form result, a students T-test is performed for each of the
sources, with a null hypothesis for all sources that the mean of the simulation
results is equal to the result of the product form with an alpha level of 5%.
The results, shown in table 2, show that this null hypothesis cannot be rejected.
The same is done for the acceptance probability, the results for this are shown
in table 3. Here, also the null hypothesis that the model and mean of the
simulation results are the same could in none of the sources be rejected.

Table 2: Fraction of the time busy for model and mean of simulation results
and P-value for students T-test to compare model and simulation results for the
simple station with inputs as in table 1.

source
Fraction of time busy

analytic model
Fraction of time busy
simulation model mean

p-value
t-test

1 0.107 0.106 0.13
2 0.038 0.037 0.24
3 0.057 0.056 0.18
4 0.057 0.056 0.10

In figure 5.3, for each source an histogram for the 1000 simulation runs
of the acceptance rate is shown. As can be seen, the acceptance rate varies
highly between each simulation run, due to the randomization of the arrival
and handling rate, but the mean is close to the product form result.
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Table 3: Results for the acceptance probability of the simulation for the simple
station, p-values to compare the model and simulation results and to test the
insensitivity property.

source
acceptance prob.
analytic model

acceptance prob.
mean

simulation model

acceptance prop.
mean simulation model
mixed Erlang handling

p-value
p-value

insensitivy test

1 0.80 0.802 0.805 0.67 0.22
2 0.75 0.750 0.759 0.59 0.62
3 0.75 0.747 0.757 0.13 0.69
4 0.85 0.851 0.857 0.17 0.07

Figure 5.3: Distribution of the acceptance probability for each of the sources
in the simple station with input variable as in table 1.

Insensitivity

The analytical model is build upon exponentially distributed inter-arrival and
handling times. However, in section 3.2 it was proven that the analytical model
has the insensitivity property, and therefore handling times that follow any
mixture of Erlang distributions (see section 2.3) but with the same mean value
should attain the same result.

In the following example, the exponentially distributed handling times in
the simulation model are changed into a mixture of Erlang distribution with
random number of phases (between 1 and 10). This results in the acceptance
probability given in table 3. With a student T-test it tested if the distribution
of the initial simulation results are statistically in line with to the distribution
of the mixed Erlang handling times simulation.
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Indication of busy places

It can be stated that the (easily to be calculated) product form acquaints the
same results as (more difficult to perform and longer taking) simulation. How-
ever, a reason why one would still implement a simulation is to see at which
tracks of the station the congestion occurs the most, such that other routing
strategies can more easily be determined.

When looking where the trains are blocked, the simulation can also calculate
the average blocking probability for each individual track, being the number of
trains that wanted to ride that track but where blocked divided by the total
number of trains generated that wanted track. An overview of the mean blocking
rates of each of the tracks is given in table 4. It can be concluded that on tracks
1, 3 and 7 occur the most blockages as can be seen in figure 5.4.

Figure 5.4: Indication of tracks where blockage occurs the most)

Table 4: Blocking rates and decrease in utilization from a theoretical no block
scenario, per track for the simple station. Color indicate high (red) to low
(green) blocking rates and decreased percentage

track blocking rate
theoretical
utilization

percentage decreased
utilization

1 0.156 0.183 22.3
2 0.116 0.133 21.0
3 0.168 0.208 13.8
4 0.045 0.05 26.0
5 0.065 0.075 1.3
6 0.122 0.147 8.5
7 0.158 0.192 13.1
8 0.104 0.117 20.6

In the same table 4, the theoretical utilization and the decrease in utilization
after the blocking model(s) are applied are shown. The theoretical utilization
is the time fraction that a track will be occupied in case that no blocking. The
other value shown in the table is the percentage is the decrease from this theo-
retic utilization to the utilization from the analytical and simulation model. It
shows that an high blocking rate, meaning that many trains are blocked because
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that track is already occupied, does not necessary means that the utilization of
that track has also decreased the most. This is because the number of trains
that make use of the tracks and how fast they travel over that track (here deter-
mined by the handling time). The indication of the most busy tracks and the
decrease of utilization can be used to redesign the route that trains take trough
a station. To give a good indication of what a better rerouting would be, it is
important to take into account which train line and so tracks have preference
to be less blocked and/or a less decrease in utilization. An example how to
determine the qualities for a possible rerouting is given in the section of the
evaluation of Amersfoort C.

Conclusion

To sum up, the analytical model can give first insight in the probability of con-
flicts at a station. The, more detailed, simulation model results are statistically
verified as by the analytic product form results. The same applies for the in-
sensitivity statements. With the simulation model, an indication of the busy
tracks can be made. Later in this report, for the more difficult railway station
of Amersfoort C., this will be used to determine possible rerouting through the
station.
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6 Arnhem Centraal

Railway station Arnhem Centraal is a relative big sized railway station in the
Netherlands. Build in middle of the nineteenth century, the last major, 20 year
during, reconstruction was finished in 2015, to accommodate for more passengers
and more trains. After this, the station attained the predicate ”Centraal” as
one of the eight stations in the Netherlands [1].

A simplified overview including arrival routes can be seen in figure 6.1. This
is based upon the map designed by [18]. In the appendix, table 17, an overview
of the arrival times to the station during a typical weekday is shown.

Figure 6.1: Arrival routes to Arnhem Centraal station based upon [18].
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6.1 Data Analysis

The data regarding all real time trains is public available via an API provided
by the NS. The people behind OVData have been saving this data since 2013
publicly, however they only start taking into account arrival times since 2018.
As the data from 2020 are modified due to the COVID pandemic, it is chosen
to evaluated all data over 2018 and 2019.

Arrival delay

The NS only denotes a train to be officially delayed at a delay of 5 minutes or
higher and so does not registered for any smaller delays nor what the cause is.
Therefore, it is hard to analyze with the data what the fraction of secondary
delays is, the analytical model and simulation model can give answer to this.
However, what can be analyzed is the arrival delay of all trains at Arnhem C.
Taking into account all arrivals at Arnhem centraal in 2018 and 2019, the mean
arrival delay is 56 seconds with a standard deviation of 184 seconds. However,
the arrival delay depends highly on the train line. The mean arrival delay split
for the different lines arriving at Arnhem C. are given in table 5. As the line
3200 is not recorded in the OVDATA, but is considered to be under line 3100,
therefore, these numbers are the same.

Table 5: Mean arrival delay in seconds for lines arriving at Arnhem C., includ-
ing and excluding arriving trains with no delay, showing the number of trains
on time. The names of the abbreviations can be found in the table 16.

Line number Origin Mean
Mean

excl. zeros
Non zero

delay fraction
3000 NM 50 124 0.402
3000 HDR 50 121 0.413
3100 NM 52 131 0.398
3100 SHL 54 92 0.592
3600 RSD 52 52 0.267
3600 ZL 36 36 0.346
7600 WC 47 113 0.416
7600 ZP 31 114 0.271
6600 157 330 0.476
31100 101 231 0.438
7500 100 150 0.67
30700 85 218 0.391
20000 352 815 0.432
100 AM 175 276 0.633
100 FFFM 280 484 0.578

Handling times

To be able to use both models, the expected handling time for each line entering
Arnhem must also be determined. With the data given, this is done for the lines
that did not have Arnhem as the final station, as this made it able to determine
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the time between arrival and departure. The values for the handling times for
the different handling times can be seen in table 6.

Table 6: Mean handling times for the train arriving at Arnhem C. in sec-
onds and in minutes per different lines and origins. Meaning for the origin
abbreviations can be found in appendix section 9.

Line number Origin Mean (s) Mean (min)
3000 NM 348 5.8
3000 HDR 296 4.9
3100 NM 327 5.5
3100 SHL 362 6.0
3600 RSD 278 4.6
3600 ZL 210 3.5
7600 WC 328 5.5
7600 ZP 244 4.1
100 AM 129.6 2.2
100 FFFM 130.4 2.2

Lines 6600, 31100, 30900, 7500, 30700 and 20000 could not be analysed as
these have Arnhem as final station.
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6.2 Application of the analytical model

As can be seen in figure 6.1, every line arriving at Arnhem has its own route
and platform. The model does not assume scheduling, meaning that it does not
take into account rescheduled arriving times. Regularly, 17 different train lines
arrive in Arnhem and so 17 sources are assumed in the model.

For every source a fixed route through the station is determined, as also
shown in table 7. In figure 6.2, the numbering of the tracks between infra-
elements is given.

Figure 6.2: Abstract view of Arnhem C. with numbered arrival tracks and
platform. Tracks that not used are left out.

The set of possible combinations of sources has a size of
∑n

k=0

(
17
k

)
= 217 =

131072 and will therefore not be given here. Based upon figure 6.1, the sources
can be grouped by direction.

Direction A: s1, s3, s6, s8s11, s13

Direction B: s2, s4, s5, s10, s15, s17

Direction C: s7, s9, s12, s14, s16

Two sources from the same direction cannot be busy at the same time.
Furthermore, s16 and s17 use the same platform and cannot be busy at the
same time. Therefore, the total set of admissible states has a size of 2 × 6 +
1 × 5 + 6 × 6 + 2 × 5 × 6 + 63 + 1 − 1 = 293. In the table 7, the numbering
of sources is given with the determined handling times. For the arrival times,
the expected difference between two following trains is used. For the turning
trains, a handling of 3 minutes is used, as it cannot be determined how long
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these trains stay at the station, so only the time to arrive until the platform is
taken into account.

Table 7: Overview of sources with arrival and handling rates in trains per
minute.

source nr from serial number
arrival
times

handling
times

route

1 Nijmegen 3000 30 5.3 12-13
2 Den Helder 3000 30 5.8 1-3-5
3 Nijmegen 3100 30 5.5 12-13
4 Schiphol Airport 3100 30 6 1-3-5
5 Rotterdam C. 3200 30 6 1-3-4
6 Roosendaal 3600 30 4.6 12-14-16-18
7 Zwolle 3600 30 3.5 6-7-8
8 Wijchen 7600 30 5.5 12-14-16-18
9 Zutphen 7600 30 4.1 6-7-8
10 Dordrecht 6600 30 3 12-14-16-17
11 Tiel 31100 30 3 12-14-15
12 Winterswijk 30900 30 3 6-9-10
13 Ede-Wagingen 7500 30 3 1-2
14 Doetinchem 30700 30 3 6-9-10
15 Dusseldorf 20000 60 3 6-9-11
16 Frankfurt 100 60 2.2 6-7-4
17 Amsterdam C. 100 60 2.2 1-3-4

Knowing the admissible states and the arrival and handling rates, the steady
state distribution can be calculated using equation 3.8. Due to the size of set
C, this is done using a self-written Python code shown in the Appendix section
12. The steady state distribution can now be used to show the amount of time
that each of the sources is busy, these result in the numbers shown in table 8.

Taking into account the amount of train each source generates hourly, the
general acceptance probability can be calculated, being 46%. Here it is not
taken into that the train schedule differs during night and during the weekends.

6.3 Application of the simulation model

With the simulation made, only the input variables of the arrival and handling
times, see table 7, the total number of sources (17) and the number of tracks
and routes the trains. The latter can be seen in table 7.

The simulation with these entries was first run for 1000 times, each simu-
lating about 8 hours. The mean of the results are taken and shown in table 8.
The simulation results are in most cases higher than the model results, except
from source 16.

Scheduling

As in the model, the initial simulation does not take into account the current
scheduling, rather than only the time between arrivals. Interesting is to see if
the same results are acquired when taking the scheduling into account. This is
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Table 8: Results of the model and the simulation for Arnhem C. with the input
variables given in table 7.

source nr origin
serial

number
fraction busy

model
fraction busy

simulation mean
accept prob.

model
accept prob.

simulation mean
1 NM 3000 0.068 0.076 0.423 0.426
2 HDR 3000 0.082 0.098 0.470 0.514
3 NM 3100 0.070 0.077 0.423 0.425
4 SHL 3100 0.085 0.101 0.470 0.512
5 RTD 3200 0.085 0.100 0.470 0.508
6 RSD 3600 0.059 0.064 0.423 0.422
7 ZL 3600 0.054 0.054 0.511 0.478
8 WC 7600 0.070 0.077 0.423 0.432
9 ZP 7600 0.063 0.065 0.470 0.476
10 DDR 6600 0.142 0.142 0.423 0.435
11 TI 31100 0.128 0.141 0.423 0.427
12 WW 30900 0.155 0.157 0.511 0.473
13 ED 7500 0.128 0.171 0.423 0.518
14 DTC 30700 0.155 0.158 0.511 0.476
15 QDU 20000 0.071 0.080 0.470 0.471
16 FFFM 100 0.017 0.015 0.507 0.423
17 ASD 100 0.016 0.018 0.466 0.507

done by modifying the simulation slightly. For each source, the generation starts
at a different moment, given by the schedule as can be seen in table 17. The new
code can be seen in the appendix, 12. After 1000 simulations, the simulation
with scheduling returns the results given in table 8. The null hypothesis that
the mean values of the outcome with scheduling and without are the same could
not be rejected for all sources.

Insensitively

As is proven in section 3.2, the model made is also valid for non-exponentially
distributed handling rates. The simulation for Arnhem C. is also run for mixed
Erlang distributed (see section 2.17) handling rates. The statistically same time
fraction that sources are busy and acceptance probabilities are found with this
input.

Indication of conflicting tracks

A simulation, unlike the product form, makes it possible to get an indication
where in the station the conflicts takes place. For the input variables used above,
this results in figure 6.3 and table 9. Especially the entrance tracks, 1, 6 and
12 do have a high blocking rate, as trains use this track quickly after one and
other.
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Figure 6.3: Indication of conflict chance for different tracks in Arnhem C.

Table 9: Blocking rates and decreased utilization compared to a no blocking
scenario, per track for Arnhem C., colors indicate high blocking rate / percentage
(red) to low blocking rate /percentage (green).

track blocking rate percentage decreased utilization
1 0.487 -58.9
2 0.237 -61.6
3 0.382 -57.5
4 0.21 -57.3
5 0.275 -57.5
6 0.431 -54.4
7 0.223 -53.8
8 0.197 -53.8
9 0.453 -54.3
10 0.34 -53.5
11 0.127 -57.4
12 0.575 -60.6
13 0.255 -61.7
14 0.499 -60.2
15 0.239 -61.6
16 0.397 -59.6
17 0.235 -57.4
18 0.249 -61.7
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7 Amersfoort Centraal

Build in the middle of the nineteenth century, railway station Amersfoort also
received the predicate ”Centraal” in 2019[19]. The station has about 40.000
boarding/getting off a train each year[20], being one of the main station that
connect the West of the Netherlands (the Randstad) with the North-East.

Figure 7.1: Overview of arrival routes at Amersfoort Centraal

A simplified overview that includes arrival routes can be seen in figure 7.1.
In the appendix, table 18, an overview of the arrival times to the station during
a typical weekday is shown.

7.1 Data analysis

Just as for Arnhem C., a data analysis was performed to find the handling rate
for the different arriving lines at Amersfoort C. For this data of 2018 and 2019
is used, provided by OVData. Also, the mean arrival delay is analysed.

Arrival Delay

The Dutch Railways does not registered the type of delay if this is caused by
other delayed trains. However, to get a view of the mean arrival delay of arriving
trains at Amersfoort C., this is still analysed. On average, an arriving trains at
Amersfoort C. has a delay of only 45 seconds. Taking only the non-zero delay,
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Table 10: Mean arrival delay in seconds for lines arriving at Amersfoort C.,
including and excluding arriving trains without delay and showing the fraction
of trains arriving without delay. The names of the railway stations can be found
in table 9.

serial number origin
mean

arrival delay
mean arrival delay

excl. zeros
fraction zeros

15800 ASD 29 112 0.263
AVAT 38 105 0.357

11700 AMFS 17 119 0.143
GVC 24 114 0.213

11600 AMFS 15 126 0.120
SHL 25 121 0.207

1700 ES 54 147 0.371
GVC 31 140 0.226

1600 ES 59 162 0.361
SHL 40 157 0.254

5600 UT 34 136 0.250
ZL 57 156 0.365

1500 ASD 58 178 0.327
DV 52 171 0.302

600 RTD 31 153 0.205
LW 53 160 0.330

500 RTD 33 116 0.196
GN 59 172 0.340

200 ASD 111 231 0.481
BHF 366 814 0.450

31300 ED 120 287 0.417
31400 DTC 129 406 0.316
2000 GVC 89 242 0.366

this increases to an average of 147 seconds, so about 2.5 minutes. In table 18,
an overview of the arrival delay including and excluding no delays is shown.

Handling times

For all non-turning lines, the mean handling time is determined with data pro-
vided by the OV-loket for the years 2018-2019.
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Table 11: Mean handling times for the non-turning lines between arrival and
departure from Amersfoort C. in seconds and minutes.

Serial
number

Origin
Mean

handling (s)
Mean

handling (min)
15800 AVAT 71 1.2
15800 ASD 76 1.3
11700 GVC 184 3.1
11700 AMFS 134 2.2
11600 AMFS 136 2.3
11600 SHL 240 4.0
1700 ES 126 2.1
1700 GVC 138 2.3
1600 ES 127 2.1
1600 SHL 133 2.2
5600 UT 134 2.2
5600 ZL 124 2.1
1500 DV 128 2.1
1500 ASD 130 2.2
500 RTD 180 3.0
500 GN 161 2.7
600 RTD 159 2.7
600 LW 178 3.0
200 ASD 108 1.8
200 BHF 130 2.2

33



7.2 Application of the analytical model

As is shown in table 12, one can assume 23 sources to generate trains arriving
at Amersfoort C. For the handling times of the turning trains (those with fi-
nal destination Amersfoort C.) are assumed to have an exponentially distributed
handling time with mean of 10 minutes. In comparison with Arnhem C., Amers-
foort C. has less platforms while more lines arriving at the station. Therefore,
more lines make use of the same infra-elements and platforms than in the first.
An overview of the numbering of tracks can be seen in figure 7.2.

Figure 7.2: Abstract view of Amersfoort C. with number arrival tracks and
platforms.

Track 24 is later added when looking for possible rerouting options.

For Amersfoort C. the total set of possible busy sources has a size of 223 =
8388608, and will therefore not be given here. One can define four direction
from which trains arrives and so the sources can be grouped in. From each
direction, two of more sources cannot be active at the same moment.

Direction A: s2, s6, s9, s14, s22

Direction B: s3, s10, s11, s17, s18, s21

Direction C: s1, s4, s5, s12, s15, s16

Direction D: s7, s8, s13, s19, s20, s23

Due to the shared use of platform of trains from different directions, also for
the following groups no two or more sources can be active at the same time.

Platform 6: s1, s5, s7, s13, s22, s23

Platform 7: s4, s8, s12, s15, s16
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Table 12: Sources as in the analytical model and simulation model for Amers-
foort C. with arrival and handling rates and route through the station.

Sources from serial number arrival rate handling rate platform routes
1 AVAT 15800 0.033 0.843 7 6,12,13
2 ASD 15800 0.033 0.786 5a 1,2,3
3 GVC 11700 0.017 0.326 2 19,20
4 AMFS 11700 0.017 0.448 6 6,10,11
5 AMFS 11600 0.017 0.442 7 6,12,13
6 SHL 11600 0.017 0.250 1 1,21
7 ESD 1700 0.017 0.477 7 7,8,12,13
8 EC 1600 0.017 0.471 6 7,9,11
9 SHL 1600 0.017 0.451 1 1,21
10 GVC 1700 0.017 0.434 2 19,20
11 UR 5600 0.033 0.447 2 19,20
12 ZL 5600 0.033 0.484 6 6,10,11
13 DEV 1500 0.033 0.470 7 7,8,12,13
14 ASD 1500 0.033 0.461 1 1,21
15 LW 600 0.017 0.338 6 6,10,11
16 GN 500 0.017 0.373 6 6,10,12
17 RTD 500 0.017 0.373 2 19,20
18 RTD 600 0.017 0.377 2 19,20
19 ED 31300 0.033 0.100 5b 7,9,5,4
20 BNZ 31400 0.033 0.100 4b 7,9,5,17
21 GVC 2000 0.033 0.100 4a 19,18,15,16
22 ASD 200 0.008 0.556 7 1,2,14,13
23 BHF 200 0.008 0.460 7 7,8,12,13

Therefore, the total admissible set has a size of 1633. Knowing this, and the
arrival and handling rates, the steady state distributions of all admissible states
can be computed. To do so, the Python code in Appendix 12 is written and
used.

The results can be seen in table 13. The acceptance probability for the
different lines is between 50% and 85%. Taking into account the number of
trains that each source generates on average, assuming the same schedule all
day, the general acceptance probability is 69%.

7.3 Application of the simulation model

With the simulation model function made as given in appendix 12, Amersfoort
C. can be simulated. Assume the arrival and handling rate and routes as given
in table 12. The total number of tracks, as in figure 7.2, is 23. The simulation
model is run for 1000 times, each times simulating about 8 hours. The mean
fraction of the time that each source is busy and corresponding acceptance prob-
ability is given in table 13. The simulation model results differ only slightly from
the product form outcome. Performing a Student’s t-test with null hypothesis
that the mean of the analytical model is the same as the result from the model,
this hypothesis for most sources for both the fraction of the time busy as the
acceptance probability could not be rejected.
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Table 13: Analytical model and simulation model results for Amersfoort C.
with the input variables as in table 12.

Sources name
fraction busy

analytical model
fraction busy

simulation model
accept prob.

analytical model
accept prob.

simulation model
1 AVAT 0.029 0.028 0.755 0.738
2 ASD 0.034 0.035 0.810 0.820
3 GVC 0.032 0.031 0.630 0.634
4 AMFS 0.029 0.029 0.778 0.790
5 AMFS 0.029 0.027 0.755 0.727
6 SHL 0.054 0.054 0.811 0.818
7 ESD 0.019 0.017 0.529 0.501
8 EC 0.018 0.017 0.506 0.478
9 SHL 0.03 0.03 0.811 0.807
10 GVC 0.024 0.024 0.629 0.621
11 UR 0.047 0.047 0.629 0.631
12 ZL 0.053 0.054 0.778 0.767
13 DEV 0.038 0.036 0.529 0.502
14 ASD 0.059 0.058 0.811 0.817
15 LW 0.038 0.038 0.778 0.771
16 GN 0.035 0.032 0.778 0.741
17 RTD 0.028 0.028 0.629 0.630
18 RTD 0.028 0.028 0.629 0.620
19 ED 0.183 0.189 0.550 0.563
20 BNZ 0.183 0.182 0.550 0.544
21 GVC 0.211 0.212 0.629 0.634
22 ASD 0.011 0.011 0.766 0.721
23 BHF 0.009 0.009 0.529 0.481

7.4 Indication of conflicting tracks and rerouting of lines

With the simulation model, unlike with the product form, an indication of the
tracks where the conflicts occur can be made. In figure 7.2, an overview of
the fraction of the trains that is blocked at that tracks. Red indicates a high
blocking rate, while green indicates little to no blocking. In table 15, the mean
accepting rates are also given. Mainly tracks 5, 9 and 7 and 19 and 20 are
highly used and have a high blocking rate. Also, the decrease in utilization of
the tracks, compared to a no blocking system is given in this table. Here, often
track with a high blocking rate also have a higher decreased utilization. But
this does not necessary has to be so.

With the simulation model made, it can easily be seen if a rerouting of trains
through the station can have benefits.

For example, the routes for the following sources can be changed: source 1:
6-10-11-23, source 3: 19-18-24-14-13, source 8: 7-8-12-13, source 19: 7-9-11-22-
3. In this case, track 24 has been added to the system, as can be seen as the
dashed line in figure 7.2. With this it is tried to move the decrease the number
of trains over tracks 5,9 and 7 and 20. In the third column of table 14, the
new blocking rate on the differences tracks has been shown. The rate for track
5 has been considerably lowered. However, the acceptance probability is, on
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Figure 7.3: Indication of the conflict chance for different tracks in Amersfoort
C.

average for all sources, lower with this set of changes to the routes through the
station. Also, on average the utilization has even further decreased. Therefore,
this rerouting scheme will not be beneficial.

With the analytical model and simulation model it becomes more easy to
express if a certain redesign of the routes be advantageous. However, before
this can be applied, first further research to get an indication of the prioritized
trains should be made, being the highest number of travelers, most beneficial
train line, usable platforms for a train line etc. Then possible redesigns of the
routes can be considered.
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Table 14: Indication of blocking rate for each track for Amersfoort C. with
input of table 7. The color ranges from green, indicating little to no blocking, to
red, very high blocking rate.

track number
blocking rate

initial
blocking rate
with rerouting

percentage decreased
utilization

percentage decreased
utilization after rerouting

1 0.191 0.193 -19.4 -19.4
2 0.054 0.053 -21.6 -21.6
3 0.25 0.235 -19.8 -19.8
4 0.24 0 -45.1 -45.1
5 0.396 0.244 -45.1 -45.1
6 0.217 0.215 -23.2 -23.2
7 0.455 0.446 -45.5 -45.5
8 0.108 0.135 -46.2 -47.3
9 0.414 0.396 -45.3 -45.1
10 0.164 0.191 -22.6 -23.2
11 0.19 0.33 -26.5 -36.0
12 0.161 0.162 -41.9 -47.3
13 0.172 0.205 -37.4 -40.7
14 0.016 0.056 -26.6 -34.9
15 0.247 0.245 -36.7 -36.7
16 0.247 0.245 -36.7 -36.7
17 0.247 0.244 -45.1 -45.1
18 0.247 0.279 -36.7 -36.8
19 0.369 0.369 -36.9 -36.9
20 0.2 0.167 -37.1 -37.1
21 0.147 0.149 -18.8 -19.0
22 0 0.244 - -45.1
23 0.19 0.191 -26.5 -23.2
24 - 0.044 - -37.3
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Table 15: Acceptance probabilities before and after the rerouting. The orange
cells indicate a change in route. The red cells indicate a lower acceptance prob-
ability, green cells a higher acceptance probability.

Sources name routes different routes accept probability old accept probability new
1 AVAT 6,12,13 6,10,11,23 0.755 0.723
2 ASD 1,2,3 1,2,3 0.810 0.807
3 GVC 19,20 19,18,24,14,13 0.630 0.577
4 AMFS 6,10,11 6,10,11,23 0.778 0.723
5 AMFS 6,12,13 6,12,13 0.755 0.747
6 SHL 1,21 1,21 0.811 0.807
7 ESD 7,8,12,13 7,8,12,13 0.529 0.536
8 EC 7,9,11 7,8,12,13 0.506 0.536
9 SHL 1,21 1,21 0.811 0.807
10 GVC 19,20 19,20 0.629 0.624
11 UR 19,20 19,20 0.629 0.624
12 ZL 6,10,11 6,10,11,23 0.778 0.723
13 DEV 7,8,12,13 7,8,12,13 0.529 0.536
14 ASD 1,21 1,21 0.811 0.807
15 LW 6,10,11 6,10,11,23 0.778 0.723
16 GN 6,10,12 6,10,11,23 0.778 0.723
17 RTD 19,20 19,20 0.629 0.624
18 RTD 19,20 19,20 0.629 0.624
19 ED 7,9,5,4 7,9,11,22,3 0.550 0.505
20 BNZ 7,9,5,17 7,9,5,17 0.550 0.559
21 GVC 19,18,15,16 19,18,15,16 0.629 0.624
22 ASD 1,2,14,13 1,2,14,13 0.766 0.751
23 BHF 7,8,12,13 7,8,12,13 0.529 0.536
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8 Conclusion and Discussion

The Dutch Railway network is a busy and complex system of trains, station
and infra elements. It occurs that trains are blocked and have to wait to arrive
at a station due to other delayed trains. The actual amount that this happens
is not registered. To get better insight in the probability that such conflicts
happens, both a mathematical model and a simulation model are proposed in
this report. The mathematical model for trains entering a railway station, is
based upon queuing theory for communication systems. This results in a so-
called product form expression for the steady state distribution as is given in
(3.8). The corresponding simulation mode for the arrival of trains at a railway
station is made, written in Python. Both models can be applied to any station,
given the right input variables.

It was shown that this analytical model and simulation model attain similar
results. Also, insensitivity was proven for the mathematical model and was also
tested and approved for the simulation model. This makes both more accurate
for real-life purposes.

The analytical and simulation models were first applied to a simple fictitious
station. Next, also two real-life Dutch railway stations are evaluated: Arnhem
Centraal and Amersfoort Centraal. For the last two, a data-analysis was per-
formed to attain the real-life waiting time at platforms to be used in both model.
Also, with this data analysis it was found that trains arriving at Arnhem C. and
Amersfoort C. have on average a delay of 56 seconds and 45 seconds, respec-
tively. However, it is unknown which part of these delays are secondary delays
(caused by other delayed trains), as the Dutch Railways does not register this.

Applying the analytical model and simulation model to the two stations, an
accepting probability, the chance that a train can arrive at the station with-
out being blocked by other trains, is 40-55% and 50-85% for Arnhem C. and
Amersfoort C. respectively. However, this probability highly differs between the
different train lines arriving at the two stations. Detailed results can be found in
tables 8 and 13. It is noted that international trains are not taken into account
here.

With the analytical model and the simulation model, an indication of the
busy tracks in a station can be made, where the most blockage of trains occurs.
Next, an indication of the amount of utilization that is lost due to the blocking
has been made for the three stations. Both factors can help to create different
routes through a station, such that the acceptance probability can be increased.
This was tried for a couple of new routes for Amersfoort C., but a better result
was not attained. To improve on this, more combinations of new routes should
be tested. Importantly, it was noted that in choosing other routes a lot of factors
should be considered. It is hard to increase all acceptance rates and at the same
time satisfy all requirements and wishes.

The analytical model and simulation model can give a good indication of the
accepting rate for the different trains arriving at stations. However, its makes
certain assumptions which are generally not true in real-life. An arriving train
is assumed to block all tracks it uses in the station (from entry until platform),
in real life a train only rides on the first tracks and then takes the space of
the tracks next to the platform. In the mean time, other tracks can be used
again. For the proposed model, this results in an overestimation of reality.
Second, in both models, when a train is blocked, it vanishes from the system.
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In reality, the train will wait until the route to the platform is free or a different
platform is chosen. This mean that either a waiting room in the models should
be created, and/or a routing strategy to a different, free, platform should be
applied. Lastly, departures from the station are not taken into account. In the
models, after handling a train, it is removed from the system without using
any tracks. When departing, often the same tracks are used, which can result
in more delay propagation, meaning that the models can also underestimate
reality.

To better suits for this assumptions, the model should be improved. In sec-
tion 11 in the appendix, possibilities for further research are given. These are
based upon the model proposed in this report, but loose some of the assump-
tions made. However, whether the proposed direction is solvable needs to be
researched.
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Part IV

Appendix

9 Station names

Table 16: Names and abbreviations of the stations stated in this report

Abbreviation Station name
AM Amsterdam C.
AMFS Amsersfoort Schothorst
AVAT Amersfoort Vathorst
BHF Berlin Ostbahnhof
DDR Dordrecht
DTC Doetinchem
DV Deventer
ED Ede-Wagingen
ES Enschede
FFFM Frankfurt Main Hbf.
GN Groningen
GVC Den Haag C.
HDR Den Helder
LW Leeuwarden
NM Nijmegen
QDU Dusseldorg Hbf.
RSD Roosendaal
RTD Rotterdam C.
SHL Schiphol Airport
TI Tiel
UT Utrecht C.
WC Wijchen
WW Winterswijk
ZL Zwolle
ZP Zutphen
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10 Arrival schedules

Arnhem

Table 17: Arrival schedule for Arnhem Central on a workday. The nightjet
are not taken into account in this report

Arrivals from Final Stop Arrival Platform Serial number Type
Nijmegen Schiphol Airport/ .40/.10 11 3100 NS Intercity

Rotterdam
Nijmegen Den Helder .56/.26 11 3000 NS Intercity
Den Helder Nijmegen .59/.29 8 3000 NS Intercity
Schiphol Airport Nijmegen .15/.45 8 3100 NS Intercity
Rotterdam Centraal Nijmegen .08/.38 9 3200 NS Intercity
Roosendaal Zwolle .37/.07 3 3600 NS Intercity
Zwolle Roosendaal .49/.19 7 3600 NS Intercity
Wijchen Zutphen .19/.49 3 7600 NS Sprinter
Zutphen Wijchen .36/.06 7 7600 NS Sprinter
Last station
Dordrecht Arnhem .02/.32 4a 6600 NS Sprinter
Tiel Arnhem .23/.53 4b 31100 Arriva
Winterswijk Arnhem .25/.55 6b 30900 Arriva
Ede-Wagingen Arnhem .26/.56 10 7500 Arriva
Doetinchem Arnhem .10/.40 6b 30700 Breng
Dusseldorf Arnhem .13 6a 20000 VIAS
International trains
Frankfurt Amsterdam Centraal .27 9 100 ICE International
Amsterdam Centraal Frankfurt .35 9 100 ICE International
Daily trains
Basel SBS Amsterdam Centraal 20.57 9 Nightjet
Frankfurt Amsterdam Centraal 7.51 10 Nightjet
Nurnberg Amsterdam Centraal 8.51 10 Nightjet
Amsterdam Centraal Innsbruck 19.48 9 Nightjet
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Amersfoort Centraal

Table 18: Arrival schedule for Amersfoort Centraal on workday around the
middle of the day (no rush hours or during night times)

Arrivals from Final Stop Arrival at Platform Number Type
Amersfoort Vathorst Amsterdam C .00/.30 7 15800 NS Sprinter
Amsterdam C. Amersfoort Vathorst .28/.58 1 15800 NS Sprinter
Den Haag C. Amersfoort Schothorst .20 2 11700 NS Intercity
Amersfoort Schothorst Den Haag C. .38 6 11700 NS Intercity
Amersfoort Schothorst Schiphol Airport .08 7 11600 NS Intercity
Schiphol Airport Amersfoort Schothorst .49 1 11600 NS Intercity
Enschede Den Haag C. .08 7 1700 NS Intercity
Enschede Schiphol Airport .38 6 1600 NS Intercity
Schiphol Airport Enschede .18 1 1600 NS Intercity
Den Haag C. Enschede .50 2 1700 NS Intercity
Utrecht C. Zwolle .10/.40 2 5600 NS Sprinter
Zwolle Utrecht C. .17/.47 6 5600 NS Sprinter
Deventer Amsterdam C .24/.54 7 1500 NS Intercity
Amsterdam C Deventer .04/.34 5a 1500 NS Intercity
Leeuwarden Rotterdam C. .25 6 600 NS Intercity
Groningen Rotterdam C. .54 6 500 NS Intercity
Rotterdam C Groningen .01 2 500 NS Intercity
Rotterdam C Leeuwarden .31 2 600 NS Intercity
Last station
Ede-Wageningen Amersfoort C. .01/.31 5b 31300 Stoptrein Valleilijn
Barneveld Zuid Amersfoort C. .17/.47 4b 31400 Stoptrein Valleilijn
Den Haag C. Amersfoort C. .04/.34 4a 2000 NS Intercity
International trains
Amsterdam Berlin Ost .34 (bihourly) 7 200 Intercity Int.
Berlin Ostbahnhof Amsterdam .24 (bihourly) 7 200 Intercity Int.
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11 Possible further research

In the model made in this report, it is assumed that a train takes over all tracks
on its route in the station. In reality, a train only uses the tracks for riding to
the platform and it will wait there for a longer time. Below, a way of modeling
this is given.

A train station can be divided into N separate modeling parts, each acting
as their own queue. Such parts can for example be between the numbered tracks
indicated in in figures 6.2 and 7.2. Let every line have its own train type t, with
T being the set of all train types. Let λt be the external arrival intensity of a
train type t. And let µit be handling at tracks i for train type t. Then one could
write µ0,t = λt. For the handling rate, this could be hard to analyze from real
life data, as it is not publicly recorded at what time the trains arrive at certain
infra-elements. However, a basic distance/speed should give a rough indication.

A state n̄ includes the number of trains at each of the stations. Let I be the
set of admissible states. When a train of type t moves from modeling track i
to track j, one can write n̄− ei,t + ej,t. However, since such a transition is not
always possible, introduce the following :

bij(n̄): probability that a transition n̄+ ei,t → n̄+ ej,t for a train t is possible

Often, just as in equation (5.2), this can be described as bij = 1{nj<NJ}
Now one can parameterize the following{

pijt(n̄) = pijtbij(n̄) (j ̸= i)

piit(n̄) = 1− piotbiot(n̄)−
∑

j ̸=i pijtbij(n̄)

where in the latter, it is assumed that a train is blocked and does the handling
time for that modelling track i again.

Or, when assuming that a train which cannot move on to the next modeling
station is removed out of the system,{

pijt(n̄) = pijtbij(n̄) (j ̸= i)

pi0t(n̄) = 1−
∑N

j=1 pijtbij(n̄)

Now, following the balance and normalization equations as in (2.9) and
(2.10), the steady state distribution π(n̄) at the set of admissible states I is
given by

π(n̄)

N∑
j=0

∑
t∈T

µjt

∑
i

pjit(n̄) =

N∑
j=0

∑
i

∑
t∈T

π(n̄− ejt + eit)µitpijt(n̄− ejt + eit)

(11.1)

And just as in the proposed model, also here a detailed balance equations
can be made, this will be written as:

π(m̄+ ej)µj

∑
t∈T

∑
i

pji(m̄+ ej) =∑
t∈T

∑
i

π(m̄+ ei)µipij(m̄+ ei)
(11.2)
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Which for all j = 0, 1, ..., N wiht n̄ = m̄+ ej , indeed verifies the global balance
equation (11.1).

Now one continue with the same reasoning as in the model in section 3, and
propose a function H(n̄) such that

H(m̄+ ej)
∑
t∈T

∑
i

pji(m̄+ ej) =∑
t∈T

∑
i

H(m̄+ ei)pij(m̄+ ei)
(11.3)

and so

π(n̄ = cH(n̄)

N∏
i=1

(
1

µi
)ni (11.4)

However, unless in the model proposed, this equations does not necessary
have a solution and can therefore not be so easily used as the problem proposed.
Therefore, further research need to be done in order to expand the model in this
way. Next to better model the reality in term of track use, this type of model
will also make it easier to implement departure from the railway station.
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12 Code

Model Arnhem

Python function to be used to calculate the model results for Arnhem Centraal
railway station

#inport packages

from unicodedata import name

from numpy import equal

import pandas as pd

from openpyxl import load_workbook

import itertools

class TrainSource(): #to keep track of the train sources in the

system

def __init__(self, name, serialnr, arrival, handling):

self.name = name

self.serialnr = serialnr

self.arrival = arrival

self.handling = handling

def __str__(self):

about = f"Source␣{self.name}␣with␣arrival␣{self.arrival}␣

and␣handling␣rate␣{self.handling}"

return about

class ActiveSources():

def __init__(self, listOfSources):

name = ""

for i in listOfSources:

name = name + i.name

self.name = name

self.sources = listOfSources

def PFArnhemFunction():

df = pd.read_excel(’model/sources.xlsx’, index_col=0)

sources = []

possible =[]

#combinations that are not allowed

prohibitedCombi = [[’’,’s1’, ’s3’, ’s6’, ’s8’, ’s11’ , ’s13’],

[’’,’s2’, ’s4’, ’s5’, ’s10’, ’s15’, ’s17’], [’’,’s7’, ’s9

’, ’s12’, ’s14’, ’s16’]]

for i in range(1, df.__len__()+1): #make source list

thisSource = TrainSource("s"+str(i),df.loc[i][’serial␣

number’], df.loc[i][’arrival␣rate’], df.loc[i][’

handling␣rate’] )

sources.append(thisSource)
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#get list of possible combitions of source names

possibleNames = []

for i in prohibitedCombi[0]:

for i2 in prohibitedCombi[1]:

for i3 in prohibitedCombi[2]:

combi = [i, i2, i3]

combi2 = [i for i in combi if not i==’’]

if combi2==[’s17’, ’s16’]: #this combinations makes

use of the same platform

break

possibleNames.append(combi2)

#get list of possible combinations of sources

for i in possibleNames:

sc = []

if i==[’s17’, ’s16’]:

break

for name in i:

for s in sources:

if s.name.__eq__(name):

sc.append(s)

possible.append(sc)

steadyStates =[]

sourcesBusy =[]

accept = []

for i in range(0, len(sources)+1):

sourcesBusy.append(0)

accept.append(0)

#calculate steady state distributions with product form

for p in possible:

pi = 1

for s in p:

pi = pi*s.arrival/s.handling

steadyStates.append(pi)

for s in p:

nameint = int(s.name[1:])

sourcesBusy[nameint] += pi

#apply normalisation condition

sumSS = sum(steadyStates)

steadyStatesNorm=[x/sumSS for x in steadyStates]

sourcesBusyNorm =[x/sumSS for x in sourcesBusy]

#calculate acceptance rate for every source

count = 1

for source in sources:

countp = 0

for p in possibleNames:
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p2= p.copy()

p2.append(source.name)

lists = itertools.permutations(p2, len(p2))

for lis in lists:

listTest = list(lis)

if list(lis) in possibleNames:

accept[count] += steadyStatesNorm[countp]

countp+=1

count +=1

return sourcesBusyNorm, accept
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Model Amersfoort

Python function to be used to calculate the model results for Amersfoort Cen-
traal railway station. It includes a general function, for the routing how it is
done now and an function to opt for rerouting.

#import packages

from unicodedata import name

from numpy import equal

import pandas as pd

from openpyxl import load_workbook

import itertools

import inspect

class TrainSource(): #to keep track of the train sources in the

system

def __init__(self, name, serialnr, arrival, handling):

self.name = name

self.serialnr = serialnr

self.arrival = arrival

self.handling = handling

def __str__(self):

about = f"Source␣{self.name}␣with␣arrival␣{self.arrival}␣

and␣handling␣rate␣{self.handling}"

return about

class ActiveSources():

def __init__(self, listOfSources):

name = ""

for i in listOfSources:

name = name + i.name

self.name = name

self.sources = listOfSources

def productFormAmersfoort(): #function to calculate model results

#to get input variables

df = pd.read_excel(’model/sources.xlsx’, index_col=0,

sheet_name="Amersfoort")

sources = []

possible =[]

#combinations that are not allowed due to same entrance tracks

prohibitedCombi = [[’’,’s2’, ’s6’, ’s9’, ’s14’, ’s22’], [’’,’

s21’, ’s17’, ’s18’, ’s10’, ’s11’, ’s3’], [’’,’s1’, ’s4’, ’

s5’, ’s12’, ’s15’, ’s16’], [’’,’s7’, ’s8’, ’s13’, ’s19’, ’

s20’, ’s23’]]

for i in range(1, 24):

thisSource = TrainSource("s"+str(i),df.loc[i][’serial␣

number’], df.loc[i][’arrival␣rate’], df.loc[i][’

handling␣rate’] )
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sources.append(thisSource)

pp=[]

#other not allowed combinations due to same platform use

prohibitedPlatform = [[’s23’, ’s22’, ’s13’, ’s7’, ’s5’, ’s1’],

[’s4’, ’s8’, ’s12’, ’s15’, ’s16’]]

for k in prohibitedPlatform[0]:

for l in prohibitedPlatform[0]:

pp.append([k, l])

for k in prohibitedPlatform[1]:

for l in prohibitedPlatform[1]:

pp.append([k, l])

#create list of possible sources combinations names list

possibleNames = []

for i in prohibitedCombi[0]:

for i2 in prohibitedCombi[1]:

for i3 in prohibitedCombi[2]:

for i4 in prohibitedCombi[3]:

combi = [i, i2, i3, i4]

combi2 = [i for i in combi if not i==’’]

for p in pp:

if combi2==p:

break

else: possibleNames.append(combi2)

#create list of possible combinations of sources

for i in possibleNames:

sc = []

for name in i:

for s in sources:

if s.name.__eq__(name):

sc.append(s)

possible.append(sc)

#calculate steady state distributions with product form

steadyStates =[]

sourcesBusy =[]

accept = []

for i in range(0, len(sources)+1):

sourcesBusy.append(0)

accept.append(0)

for p in possible:

pi = 1

for s in p:

pi = pi*s.arrival/s.handling

steadyStates.append(pi)

for s in p:

nameint = int(s.name[1:])

sourcesBusy[nameint] += pi

#apply normalisation condition
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sumSS = sum(steadyStates)

steadyStatesNorm=[x/sumSS for x in steadyStates]

sourcesBusyNorm =[x/sumSS for x in sourcesBusy]

#calculate acceptance rate

count = 1

for source in sources:

countp = 0

for p in possibleNames:

p2= p.copy()

p2.append(source.name)

lists = itertools.permutations(p2, len(p2))

for lis in lists:

listTest = list(lis)

if list(lis) in possibleNames:

accept[count] += steadyStatesNorm[countp]

countp+=1

count +=1

return sourcesBusyNorm, accept

#same function as above, but with the input variables from the

rerouting.

#The routing can easily be adapted by changes the route in the

excel sheet

def productFormAmersfoortREROUTING():

df = pd.read_excel(’model/sources.xlsx’, index_col=0,

sheet_name="Amersfoort")

sources = []

possible =[]

prohibitedCombi = [[’’,’s2’, ’s6’, ’s9’, ’s14’, ’s22’], [’’,’

s21’, ’s17’, ’s18’, ’s10’, ’s11’, ’s3’], [’’,’s1’, ’s4’, ’

s5’, ’s12’, ’s15’, ’s16’], [’’,’s7’, ’s8’, ’s13’, ’s19’, ’

s20’, ’s23’]]

for i in range(1, 24):

thisSource = TrainSource("s"+str(i),df.loc[i][’serial␣

number’], df.loc[i][’arrival␣rate’], df.loc[i][’

handling␣rate’] )

sources.append(thisSource)

pp=[]

prohibitedPlatform = [[’s23’, ’s22’, ’s13’, ’s7’, ’s8’,’s5’, ’

s3’], [’s4’, ’s1’, ’s12’, ’s15’, ’s16’, ’s19’]]

for k in prohibitedPlatform[0]:

for l in prohibitedPlatform[0]:

pp.append([k, l])

for k in prohibitedPlatform[1]:
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for l in prohibitedPlatform[1]:

pp.append([k, l])

possibleNames = []

for i in prohibitedCombi[0]:

for i2 in prohibitedCombi[1]:

for i3 in prohibitedCombi[2]:

for i4 in prohibitedCombi[3]:

combi = [i, i2, i3, i4]

combi2 = [i for i in combi if not i==’’]

for p in pp:

if combi2==p:

break

else: possibleNames.append(combi2)

for i in possibleNames:

sc = []

for name in i:

for s in sources:

if s.name.__eq__(name):

sc.append(s)

possible.append(sc)

steadyStates =[]

sourcesBusy =[]

accept = []

for i in range(0, len(sources)+1):

sourcesBusy.append(0)

accept.append(0)

for p in possible:

pi = 1

for s in p:

pi = pi*s.arrival/s.handling

steadyStates.append(pi)

for s in p:

nameint = int(s.name[1:])

sourcesBusy[nameint] += pi

sumSS = sum(steadyStates)

steadyStatesNorm=[x/sumSS for x in steadyStates]

sourcesBusyNorm =[x/sumSS for x in sourcesBusy]

count = 1

for source in sources:

countp = 0

for p in possibleNames:

p2= p.copy()

p2.append(source.name)

lists = itertools.permutations(p2, len(p2))

for lis in lists:

listTest = list(lis)
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if list(lis) in possibleNames:

accept[count] += steadyStatesNorm[countp]

countp+=1

count +=1

return sourcesBusyNorm, accept
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Simulation function

The functions in these code can be used to attain simulation results. The first
function assumes exponentially distributed handling rate, the second one has an
mixed Erlang distribution. The function makes use of randomization, so results
will differ each run.

from re import S

import simpy

import random

import bisect

import cv2

import numpy as np

from itertools import chain

from collections import Counter

def simulationStationArrivals(totTime, arrivalRates,

handlingRates, nrSources, nrTracks, lines, routes):

NUM_TRACKS = nrTracks #number of set tracks in station

NUM_SOURCES = nrSources #number of sources generating trains

for the station

TOT_TIME = totTime #total time to simulate

#make sure input variables are (more or less) correct

if not len(arrivalRates)==NUM_SOURCES:

raise Exception("not␣good␣amount␣of␣arrival␣rates")

if not len(handlingRates)==NUM_SOURCES:

raise Exception("not␣good␣amount␣of␣arrival␣rates")

class Source():

#setting up the Source

def __init__(self, name, line, arrivalRate, handlingRate,

enterTracks):

self.name = name

self.line = line

lines.append(line)

self.arrivalRate = arrivalRate

self.handlingRate = handlingRate

self.enterTracks = enterTracks

self.generated = []

self.busy = 0

self.blocked = 0

#activate function to start generating trains

def generate(self, env):

self.count = 0 #to keep track of amount of trains

generated

while True:

interArrival = getArrivalTime(self.arrivalRate)

yield env.timeout(interArrival) #block source for
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self.count += 1

trainName = "Train"+self.line+"."+str(self.count)

t = Train(trainName, self.line, self.handlingRate,

self) #make train

env.process(t.arrivalProcess(self.enterTracks, env)

) #start process of train arriving

def getCount(self):

return self.count

def addBusy(self, time):

self.busy += time

def getBlocking(self): #to get blocking rate

if self.count ==0:

return 0

else: return self.blocked/self.count

class Train():

def __init__(self, name, line, handlingRate, source):

self.name = name

self.line = line

self.handlingRate = handlingRate

self.handlingTime = getHandlingTime(self.handlingRate)

self.source = source

def arrivalProcess(self, enterTracks, env):

if not checkFreeTracks(enterTracks): #train is blocked

and is removed from system

occupied = getOccupiedTrack(enterTracks)

blockedTracks.append(occupied)

blockedLines.append(self.line)

self.source.blocked +=1

else: #train can arrive at station

goTracks(enterTracks, self.name)

self.source.addBusy(self.handlingTime)

yield env.timeout(self.handlingTime)

leaveTracks(enterTracks, self.name)

def getArrivalTime(arrivalRate):

return random.expovariate(arrivalRate) #exponentially

distributed arrival rate

def getHandlingTime(handlingRate):

return random.expovariate(handlingRate) #exponentially

distributed handling rate

def goTracks(enterTracks, trainNumber): #set train to the

given tracks

if trainNumber.__eq__("0"):
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print("trainNumber␣cannot␣be␣zero")

raise Exception("train␣number␣is␣zero")

if not checkFreeTracks(enterTracks):

raise Exception("Tracks␣already␣occupied")

for enter in enterTracks:

tracks[enter].enterTrain(trainNumber)

def checkFreeTracks(enterTracks): #to check if given tracks

are free

for enter in enterTracks:

if not tracks[enter].train.__eq__(’0’):

return False

else:

return True

def getOccupiedTrack(enterTracks): #in case tracks are not

free, this function return the tracks that are blocked

occupied = []

for enter in enterTracks:

if not tracks[enter].train.__eq__(’0’):

occupied.append(enter)

return occupied

def leaveTracks(enterTracks, trainNumber): #train is removed

from tracks

for enter in enterTracks:

if not tracks[enter].train.__eq__(trainNumber):

raise Exception("train␣not␣on␣this␣track")

tracks[enter].removeTrain(trainNumber)

class Track(): #track object to keep track of train that are

on it

def __init__(self, name):

self.name= name

self.train = "0"

self.previousTrains = []

self.nrtrains = 0

def enterTrain(self, trainNumber):

self.train = trainNumber

def removeTrain(self, trainNumber):

self.previousTrains.append(trainNumber)

self.nrtrains += 1

self.train = "0"

def getNrTrains(self):

return self.nrtrains

#list for the track and tracknames

tracks = []

trackList = [i for i in range(0, NUM_TRACKS+1)]

#to keep track of which tracks and trainlines are blocked
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blockedTracks = []

blockedLines = []

sources = []

for t in trackList:

tracks.append(Track(name = t))

#setting up all the sources

for i in range(0, NUM_SOURCES):

thisSource = Source("s"+str(i+1), lines[i], arrivalRates[i

], handlingRates[i], routes[i])

sources.append(thisSource)

#create simulation environment

env = simpy.Environment()

#starting up the source to generate trains

for s in sources:

env.process(s.generate(env))

#run simulation

env.run(until=TOT_TIME)

#determine for each track how often it is blocking

tracksBlockedCounter = []

def countList(list, x):

return Counter(chain.from_iterable(set(i) for i in list))[

x]

for i in range(0, NUM_TRACKS+1):

tracksBlockedCounter.append(countList(blockedTracks, i))

#calculate blocking rate for tracks

count = 0

conflictTracks = []

for tr in tracks:

counter = tracksBlockedCounter[count]

if counter == 0:

conflictTracks.append(0)

count+=1

else:

percentageConflict = counter/(tr.getNrTrains()+counter

)

conflictTracks.append(percentageConflict)

count +=1

#calculate results for the differen sources

result = []

percentageBlocked = []

for t in sources:

result.append(t.busy/TOT_TIME)
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v= t.getBlocking()

percentageBlocked.append(v)

return result, blockedTracks, percentageBlocked,

conflictTracks

#same function as above but instead of exponentially dsitributed

handling rate, here a mixed Erlang distribution is used

def simulationStationArrivalsERLANG(totTime, arrivalRates,

handlingRates, nrSources, nrTracks, lines, routes):

NUM_TRACKS = nrTracks #number of set tracks in station

NUM_SOURCES = nrSources #number of sources generating trains

for the station

TOT_TIME = totTime #total time to simulate

#make sure input variables are (more or less) correct

if not len(arrivalRates)==NUM_SOURCES:

raise Exception("not␣good␣amount␣of␣arrival␣rates")

if not len(handlingRates)==NUM_SOURCES:

raise Exception("not␣good␣amount␣of␣arrival␣rates")

class Source():

#setting up the Source

def __init__(self, name, line, arrivalRate, handlingRate,

enterTracks):

self.name = name

self.line = line

lines.append(line)

self.arrivalRate = arrivalRate

self.handlingRate = handlingRate

self.enterTracks = enterTracks

self.generated = []

self.busy = 0

self.blocked = 0

#activate function to start generating trains

def generate(self, env):

self.count = 0 #to keep track of amount of trains

generated

while True:

interArrival = getArrivalTime(self.arrivalRate)

yield env.timeout(interArrival) #block source for

self.count += 1

trainName = "Train"+self.line+"."+str(self.count)

t = Train(trainName, self.line, self.handlingRate,

self) #make train

env.process(t.arrivalProcess(self.enterTracks, env)

) #start process of train arriving

def getCount(self):
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return self.count

def addBusy(self, time):

self.busy += time

def getBlocking(self): #to get blocking rate

if self.count ==0:

return 0

else: return self.blocked/self.count

class Train():

def __init__(self, name, line, handlingRate, source):

self.name = name

self.line = line

self.handlingRate = handlingRate

self.handlingTime = getHandlingTime(self.handlingRate)

self.source = source

def arrivalProcess(self, enterTracks, env):

if not checkFreeTracks(enterTracks): #train is blocked

and is removed from system

occupied = getOccupiedTrack(enterTracks)

blockedTracks.append(occupied)

blockedLines.append(self.line)

self.source.blocked +=1

else: #train can arrive at station

goTracks(enterTracks, self.name)

self.source.addBusy(self.handlingTime)

yield env.timeout(self.handlingTime)

leaveTracks(enterTracks, self.name)

def getArrivalTime(arrivalRate):

return random.expovariate(arrivalRate) #exponentially

distributed arrival rate

def getHandlingTime(handlingRate):

k=np.random.randint(1, 100)

#k=100

theta = 1/(handlingRate*k)

return np.random.default_rng().gamma(k, theta) #

exponentially distributed handling rate

def goTracks(enterTracks, trainNumber):

if trainNumber.__eq__("0"):

print("trainNumber␣cannot␣be␣zero")

raise Exception("train␣number␣is␣zero")

if not checkFreeTracks(enterTracks):

raise Exception("Tracks␣already␣occupied")

for enter in enterTracks:

tracks[enter].enterTrain(trainNumber)
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def checkFreeTracks(enterTracks):

for enter in enterTracks:

if not tracks[enter].train.__eq__(’0’):

return False

else:

return True

def getOccupiedTrack(enterTracks):

occupied = []

for enter in enterTracks:

if not tracks[enter].train.__eq__(’0’):

occupied.append(enter)

return occupied

def leaveTracks(enterTracks, trainNumber):

for enter in enterTracks:

if not tracks[enter].train.__eq__(trainNumber):

raise Exception("train␣not␣on␣this␣track")

tracks[enter].removeTrain(trainNumber)

class Track():

def __init__(self, name):

self.name= name

self.train = "0"

self.previousTrains = []

self.nrtrains = 0

def enterTrain(self, trainNumber):

self.train = trainNumber

def removeTrain(self, trainNumber):

self.previousTrains.append(trainNumber)

self.nrtrains += 1

self.train = "0"

def getNrTrains(self):

return self.nrtrains

tracks = []

trackList = [i for i in range(0, NUM_TRACKS+1)]

blockedTracks = []

blockedLines = []

sources = []

for t in trackList:

tracks.append(Track(name = t))

for i in range(0, NUM_SOURCES):

thisSource = Source("s"+str(i+1), lines[i], arrivalRates[i

], handlingRates[i], routes[i])

sources.append(thisSource)
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env = simpy.Environment()

for s in sources:

env.process(s.generate(env))

env.run(until=TOT_TIME)

tracksBlockedCounter = []

def countList(list, x):

return Counter(chain.from_iterable(set(i) for i in list))[

x]

for i in range(0, NUM_TRACKS+1):

tracksBlockedCounter.append(countList(blockedTracks, i))

count = 0

conflictTracks = []

for tr in tracks:

counter = tracksBlockedCounter[count]

if counter == 0:

conflictTracks.append(0)

count+=1

else:

percentageConflict = counter/(tr.getNrTrains()+counter

)

conflictTracks.append(percentageConflict)

count +=1

result = []

blockedLinesCount = []

percentageBlocked = []

for t in sources:

result.append(t.busy/TOT_TIME)

v= t.getBlocking()

percentageBlocked.append(v)

return result, blockedTracks, percentageBlocked,

conflictTracks
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Simulation function with scheduling

Same function as above, but here an extra input variable for scheduling is pro-
vided.

from re import S

import simpy

import random

import bisect

import cv2

import numpy as np

from itertools import chain

from collections import Counter

from simpy.util import start_delayed

def simulationStationArrivalsTiming(totTime, arrivalRates,

handlingRates, nrSources, nrTracks, lines, routes,

startingTimes):

NUM_TRACKS = nrTracks

NUM_SOURCES = nrSources

TOT_TIME = totTime

if not len(arrivalRates)==NUM_SOURCES:

raise Exception("not␣good␣amount␣of␣arrival␣rates")

if not len(handlingRates)==NUM_SOURCES:

raise Exception("not␣good␣amount␣of␣arrival␣rates")

class Source():

#setting up the Source

def __init__(self, name, line, arrivalRate, handlingRate,

enterTracks):

self.name = name

self.line = line

self.arrivalRate = arrivalRate

self.handlingRate = handlingRate

self.enterTracks = enterTracks

self.generated = []

self.busy = 0

def generate(self, env):

self.count = 0

while True:

interArrival = getArrivalTime(self.arrivalRate)

yield env.timeout(interArrival)

self.count += 1

trainName = "Train"+self.line+"."+str(self.count)

t = Train(trainName, self.line, self.handlingRate,

self)

env.process(t.arrivalProcess(self.enterTracks, env)

)
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def getCount(self):

return self.count

def addBusy(self, time):

self.busy += time

class Train():

def __init__(self, name, line, handlingRate, source):

self.name = name

self.line = line

self.handlingRate = handlingRate

self.handlingTime = getHandlingTime(self.handlingRate)

self.source = source

def arrivalProcess(self, enterTracks, env):

if not checkFreeTracks(enterTracks):

occupied = getOccupiedTrack(enterTracks)

blockedTracks.append(occupied)

blockedLines.append(self.line)

else:

goTracks(enterTracks, self.name)

self.source.addBusy(self.handlingTime)

yield env.timeout(self.handlingTime)

def getArrivalTime(arrivalRate):

return random.expovariate(arrivalRate)

def getHandlingTime(handlingRate):

return random.expovariate(handlingRate)

def goTracks(enterTracks, trainNumber):

if trainNumber.__eq__("0"):

print("trainNumber␣cannot␣be␣zero")

raise Exception("train␣number␣is␣zero")

if not checkFreeTracks(enterTracks):

raise Exception("Tracks␣already␣occupied")

for enter in enterTracks:

tracks[enter].enterTrain(trainNumber)

def checkFreeTracks(enterTracks):

for enter in enterTracks:

if not tracks[enter].train.__eq__(’0’):

return False

else:

return True

def getOccupiedTrack(enterTracks):

occupied = []

for enter in enterTracks:
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if not tracks[enter].train.__eq__(’0’):

occupied.append(enter)

return occupied

def leaveTracks(enterTracks, trainNumber):

for enter in enterTracks:

if not tracks[enter].train.__eq__(trainNumber):

raise Exception("train␣not␣on␣this␣track")

tracks[enter].removeTrain(trainNumber)

class Track():

def __init__(self, name):

self.name= name

self.train = "0"

self.previousTrains = []

def enterTrain(self, trainNumber):

self.train = trainNumber

def removeTrain(self, trainNumber):

self.previousTrains.append(trainNumber)

self.train = "0"

tracks = []

trackList = [i for i in range(0, NUM_TRACKS)]

blockedTracks = []

blockedLines = []

sources = []

for t in trackList:

tracks.append(Track(name = t))

for i in range(0, NUM_SOURCES):

thisSource = Source("s"+str(i+1), lines[i], arrivalRates[i

], handlingRates[i], routes[i])

sources.append(thisSource)

env = simpy.Environment()

count = 0

for s in sources:

start_delayed(env, s.generate(env), startingTimes[count] )

count+=1

env.run(until=TOT_TIME)

result = []

for t in sources:

result.append(t.busy/TOT_TIME)

return result, blockedTracks
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Image making

The functions below can be used to make the imaging showing the blocking rate
at the different tracks for stations. The function are made for the simple made-
up station and Arnhem C. The results are not as clear as if hand made and
making such a code takes a lot of time. Therefore, no function for Amersfoort
C. has been made.

import cv2

import numpy as np

import pandas as pd

green = (0, 255, 0)

red = (52, 52, 235)

orange = (0, 165, 255)

yellow = (10, 219, 254)

white = (255, 255, 255)

black = (0, 0, 0)

def makeImageSimpleStation(blockedTracks):

first, median, third = np.quantile(blockedTracks, [0.25, 0.5,

0.75])

def getColor(number, first, median, third):

if number>third:

return red

elif number>median:

return orange

elif number>first:

return yellow

elif number>0:

return green

else:

return white

height = 512

width = 700

img = np.zeros((height, width, 3), np.uint8)

img.fill(255)

track0 = [(30, 170),(130, 170), getColor(blockedTracks[0],

first, median, third)]

cv2.putText(img, "1", (80, 180), fontFace=FONTTHIS, fontScale

=0.5, color=black,thickness=1)

track5 = [(30, 340),(230, 340), getColor(blockedTracks[5],

first, median, third)]

track1 = [(130, 170),(380, 170), getColor(blockedTracks[1],

first, median, third)]

track3= [(130, 170),(230, 340), getColor(blockedTracks[3],

first, median, third)]

track4 = [(280, 340),(380, 170), getColor(blockedTracks[4],

first, median, third)]

track6= [(230, 340),(280, 340), getColor(blockedTracks[6],

first, median, third)]
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track2 = [(380, 170),(450, 170), getColor(blockedTracks[2],

first, median, third)]

track7 = [(280, 340),(450, 340), getColor(blockedTracks[7],

first, median, third)]

FONTTHIS = cv2.FONT_HERSHEY_DUPLEX

tracksImage = []

tracksImage.append(track0)

tracksImage.append(track1)

tracksImage.append(track2)

tracksImage.append(track3)

tracksImage.append(track4)

tracksImage.append(track5)

tracksImage.append(track6)

tracksImage.append(track7)

for track in tracksImage:

cv2.line(img, track[0], track[1], track[2], 3)

cv2.rectangle(img, (450, 226),(600, 286), color=black,

thickness=5)

cv2.putText(img, "platform␣1", (475, 215), fontFace=FONTTHIS,

fontScale=0.5, color=black,thickness=1)

cv2.putText(img, "platform␣2", (475, 305), fontFace=FONTTHIS,

fontScale=0.5, color=black,thickness=1)

cv2.rectangle(img,(450, 10), (650, 150), color=black,thickness

=3)

cv2.line(img, (470, 38), (520, 38), red, 3)

cv2.putText(img, ">"+str(int(third)), (550, 40),fontFace=

FONTTHIS, fontScale=0.5, color=black,thickness=1)

cv2.line(img, (470, 66), (520, 66), orange, 3)

cv2.putText(img, ">"+str(int(median)), (550, 68),fontFace=

FONTTHIS, fontScale=0.5, color=black,thickness=1)

cv2.line(img, (470, 94), (520, 94), yellow, 3)

cv2.putText(img, ">"+str(int(first)), (550, 96),fontFace=

FONTTHIS, fontScale=0.5, color=black,thickness=1)

cv2.line(img, (470, 122), (520, 122), green, 3)

cv2.putText(img, ">0", (550, 124),fontFace=FONTTHIS, fontScale

=0.5, color=black,thickness=1)

#cv2.line(img, pt1, pt2, color)

cv2.imshow(’Binary’,img)

cv2.waitKey(0)

def makeImageArnhem(blockedTracks):

def getColor(number):

if number>third:

return red

elif number>median:

return orange

elif number>first:
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return yellow

elif number>0:

return green

else:

return white

height = 512

width = 700

img = np.zeros((height, width, 3), np.uint8)

img.fill(255)

first, median, third = np.quantile(blockedTracks, [0.25, 0.5,

0.75])

track1 = [(10,170), (110,170), getColor(blockedTracks[1])]

track2 = [(110, 170), (140, 100), getColor(blockedTracks[2])]

track21 = [(140, 100), (170, 100), getColor(blockedTracks[2])]

track3 = [(110, 170), (140, 170), getColor(blockedTracks[3])]

track41 = [(140, 170), (150, 150), getColor(blockedTracks[4])]

track4 = [(150, 150), (180, 150), getColor(blockedTracks[4])]

track5 = [(140, 170), (170, 170), getColor(blockedTracks[5])]

track42 = [(180, 150), (190, 170), getColor(blockedTracks[4])]

track7 = [(190, 170), (200, 170), getColor(blockedTracks[7])]

track6 = [(200, 170) , (240, 90), getColor(blockedTracks[6])]

track8 = [(190, 170), (180, 190), getColor(blockedTracks[8])]

track81 = [(180, 190), (150, 190), getColor(blockedTracks[8])]

track9 = [(200, 170), (180,210 ), getColor(blockedTracks[9])]

track10 = [(180, 210), (150, 210), getColor(blockedTracks[10])

]

track111= [(180, 210),(170, 230), getColor(blockedTracks[11])]

track11 = [(170, 230), (140, 230), getColor(blockedTracks[11])

]

track151 = [(170, 260), (140, 260), getColor(blockedTracks

[15])]

track15 = [(140, 260), (135, 250), getColor(blockedTracks[15])

]

track152 = [ (135, 250), (110,250), getColor(blockedTracks

[15])]

track17 = [(132, 260), (115, 260), getColor(blockedTracks[17])

]

track16 = [ (115, 260),(110,250), getColor(blockedTracks[16])]

track14 = [(110,250),(50, 250), getColor(blockedTracks[14])]

track181 = [(115, 260), (120, 270), getColor(blockedTracks

[18])]

track18 = [(170,270), (120, 270), getColor(blockedTracks[18])]

track13 = [(110,80),(50, 250), getColor(blockedTracks[13])]

track131 = [(110,80), (170,80), getColor(blockedTracks[13])]

track12 = [(50, 250), (10, 250), getColor(blockedTracks[12])]

tracksImage = [track1, track2, track21, track3, track4,

track41, track5, track6, track7, track42, track81, track8,

track9, track10, track111 , track11, track15, track151,

track152, track17, track16, track14, track18, track181,

track13, track131, track12]
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for t in tracksImage:

cv2.line(img, t[0], t[1], t[2], thickness=2)

cv2.imshow(’Binary’,img)

cv2.waitKey(0)
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Attaining and comparing result

The code below can serve as an example how to attain the results using the
functions above and to make plots. The code for both Arnhem C, including the
image making, and Amersfoort C, which includes taking all variables from all
excel sheet. The latter provide for easy change making. Same codes are used
for insensitivy and rerouting tests.

Arnhem results

from simulationFunction import simulationStationArrivals

from simulationFunction import simulationStationArrivalsERLANG

from itertools import chain

from collections import Counter

import matplotlib.pyplot as plt

import statistics as stats

import pandas as pd

from scipy import stats as st

from PFArnhem import PFArnhemFunction

from imageMaking import makeImageArnhem

NUM_TRACKS = 19

NUM_SOURCES = 17

TOT_TIME = 1000

arrivalRates = []

handlingRates = []

lines = ["3000_NIJ","3000_DH", "3100_NIJ", "3100_SCH", "3200_ROT"

, "3600_ROO", "3600_ZWO", "7600_WIJ", "7600_ZUT" ,"6600", "

31100", "30900", "7500", "30700", "20000", "100_FRA", "100

_AMS"]

routes = [[12, 13], [1, 3, 5], [12,13], [1, 3,5], [1, 3, 4], [12,

14, 16, 18], [6, 7, 8], [12, 14, 16, 18], [6, 7, 8], [12,

14, 16, 17], [12, 14, 15], [6, 9, 10], [1, 2], [6, 9, 10],

[6, 9, 11], [6, 7, 4], [1, 3, 4]]

lenLines = len(lines)

df = pd.read_excel(’model/sources.xlsx’, index_col=0)

for i in range(1, df.__len__()+1):

arrivalRates.append(df.loc[i][’arrival␣rate’])

handlingRates.append(df.loc[i][’handling␣rate’] )

allResults =[]

allBlockedTracks = []

percentageBlocked = []

conflictTracksPercentage = []

for i in range(0, NUM_SOURCES+1):

allResults.append([])

percentageBlocked.append([])

for i in range(0, NUM_TRACKS+1):

conflictTracksPercentage.append([])
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for i in range(0, 1000):

result, blockedTracks, pb, conflictTracks =

simulationStationArrivals(TOT_TIME, arrivalRates,

handlingRates, NUM_SOURCES, NUM_TRACKS, lines, routes)

count = 1

for r in result:

allResults[count].append(r)

count+=1

for b in blockedTracks:

allBlockedTracks.append(b)

c = 1

for w in pb:

percentageBlocked[c].append(w)

c +=1

c = 0

for ct in conflictTracks:

conflictTracksPercentage[c].append(ct)

c+=1

def countList(list, x):

return Counter(chain.from_iterable(set(i) for i in list))[x]

meanConflictTracks = []

tracksBlockedCounter = []

for i in range(0, NUM_TRACKS):

tracksBlockedCounter.append(countList(allBlockedTracks, i))

meanConflictTracks.append(stats.mean(conflictTracksPercentage[

i]))

productForm, acceptModel = PFArnhemFunction()

t = []

p = []

means = []

meanAccept = []

stdevs =[]

for i in range(1, NUM_SOURCES+1):

meanNow = stats.mean(allResults[i])

means.append(meanNow)

stdNow = stats.stdev(allResults[i])

stdevs.append(stdNow)

meanAccept.append(1-stats.mean(percentageBlocked[i]))

makeImageArnhem(meanConflictTracks)

print("wait")

Amersfoort results

from simulationFunction import simulationStationArrivals

from itertools import chain
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from collections import Counter

import matplotlib.pyplot as plt

import statistics as stats

import pandas as pd

from scipy import stats as st

from PFAmersfoort import productFormAmersfoort

import numpy as np

NUM_TRACKS = 23

NUM_SOURCES = 23

TOT_TIME = 1500

arrivalRates = []

handlingRates = []

lines = []

routes =[]

lenLines = len(lines)

df = pd.read_excel(’model/sources.xlsx’, index_col=0, sheet_name=

’Amersfoort’)

for i in range(1, df.__len__()+1):

arrivalRates.append(df.loc[i][’arrival␣rate’])

handlingRates.append(df.loc[i][’handling␣rate’] )

serialNumber = int(df.loc[i]["serial␣number"])

thisName = df.loc[i][’name’]

thisLine = str(serialNumber)+"_"+str(thisName)

thisRoute = [int(i) for i in list(str(df.loc[i][’routes’]).

split(’,’))]

lines.append(thisLine)

routes.append(thisRoute)

result, blockedTracks, pb, conflictTracks =

simulationStationArrivals(TOT_TIME, arrivalRates,

handlingRates, NUM_SOURCES, NUM_TRACKS, lines, routes)

allResults =[]

allBlockedTracks = []

percentageBlocked = []

conflictTracksPercentage = []

for i in range(0, NUM_SOURCES+1):

allResults.append([])

percentageBlocked.append([])

for i in range(0, NUM_TRACKS+1):

conflictTracksPercentage.append([])

for i in range(0, 1000):

result, blockedTracks, pb, conflictTracks =

simulationStationArrivals(TOT_TIME, arrivalRates,

handlingRates, NUM_SOURCES, NUM_TRACKS, lines, routes)

count = 1
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for r in result:

allResults[count].append(r)

count+=1

for b in blockedTracks:

allBlockedTracks.append(b)

c = 1

for w in pb:

percentageBlocked[c].append(w)

c +=1

c = 0

for ct in conflictTracks:

conflictTracksPercentage[c].append(ct)

c+=1

def countList(list, x):

return Counter(chain.from_iterable(set(i) for i in list))[x]

tracksBlockedCounter = []

meanConflictTracks = []

for i in range(0, NUM_TRACKS+1):

tracksBlockedCounter.append(countList(allBlockedTracks, i))

meanConflictTracks.append(stats.mean(conflictTracksPercentage[

i]))

productForm, acceptModel = productFormAmersfoort()

first, median, third = np.quantile(tracksBlockedCounter, [0.25,

0.5, 0.75])

t = []

p = []

pBlock = []

means = []

meanAccept = []

acceptSimu = []

for i in range(1, NUM_SOURCES+1):

meanNow = stats.mean(allResults[i])

means.append(meanNow)

meanAccept.append(1-stats.mean(percentageBlocked[i]))

tNow, pNow = st.ttest_1samp(a=allResults[i], popmean =

productForm[i])

t.append(tNow)

p.append(pNow)

t2, p2Now = st.ttest_1samp(percentageBlocked[i], popmean=1-

acceptModel[i])

pBlock.append(p2Now)

plt.figure()

plt.hist(allResults[i])

plt.axvline(productForm[i], color=’b’)
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plt.axvline((stats.mean(allResults[i])), linestyle=’dashed’,

color=’b’)

plt.show()

print("wait")

plt.close()

sourcesNR = [i for i in range(1, NUM_SOURCES+1)]

print("wait")
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