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Abstract

This paper investigates the effect of a position error in anchor node position in time of
arrival based systems. A positioning error, in the form of a random variable, is added to
the anchor node coordinates. Then the localisation accuracy is compared to to the per-
formance of distance error of similar value. The paper shows the results for the following
estimation methods: the least squares, the weighted least squares, and the two step least
squares. These are compared against the maximum likelihood estimator. This is done in
2D and 3D scenarios.



1 Introduction

Time-delay based localisation methods are becoming more and more common with with
the increase of wireless sensor networks. In these networks there are multiple nodes,
to which an distinction can be made. Anchor nodes are nodes which position is known.
Target nodes are the nodes which position is unknown. An important aspect of time-delay
based localisation is the position of anchor sensor nodes. When there are a large number
of nodes, it is sometimes impractical to determine the position of each node individually.
It is better to calculate the position of most of the nodes using a local positioning system
such as time of arrival based localisation. [3] By measuring the time it takes for signals
to travel from transmitter to receiver, the position can be determined if enough distance
measurements are available. There are a few ways to measure this. An approach this pa-
per uses is using the time of arrival approach (TOA), which will be explained in more detail
in a later section. It is desirable to get the most precise estimation possible. Therefore it
is useful to investigate sources of measurement uncertainty, which will result in an error
in the determination of the target location. This paper mainly investigates the influence of
noise in the anchor node position. And how this affects the localisation performance.

1.1 Research question

The main research questions that this paper tries to answer are the following. What is
the effect of a positioning error of anchor nodes on localisation accuracy? How can its
effect be minimized? To answer these questions, the influence of position error in the
anchor nodes will be compared to the influence of another error in TOA localisation, the
distance measurement error. These errors are compared in different scenarios. The main
scenarios that will be looked at are a symmetric scenario, and an asymmetric scenario.
There is also a 3D scenario. The organisation of this paper is as follows. First, the
background theory of time based localisation will be explained. Then, in the second
section, the different localisation methods are explained. After this, it is explained how the
simulation is set up, and how the results are obtained. Finally the conclusions are drawn.

1.2 Time of Arrival

TOA uses the time it takes for a signal to travel from an anchor node to the target node.
The signal path can also be a round-trip, in case of , for example, a passive system that is
based on a reflected signal such as a radar. However for simplicity, a cooperative scenario
is considered where the TOA distances can be directly measured. In order to determine
the time, the target also needs to know the time at which the signal was sent, to determine
the distance between the nodes. For a 2D scenario, TOA based approaches need at least
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3 measurements to be able to determine the desired location. [5] For the 2D scenario,
the target position can be calculated as follows.

dTOA =
t1− t0

c
(1)

dTOA =
√

(mix − x)2 + (miy − y)2 (2)

In equation 1, t0 is the time at which the signal is sent, t1 is the time at which the signal
is received. dTOA is the measured distance between the target and node, x and y are the
coordinates of the target, and mix and miy are the coordinates of the position of anchor
node i, which is the number of the corresponding anchor node.

At least 2 equations, thus two TOA measurements, are required to calculate the po-
sition of the target. Three equations are needed to guarantee a single solution. Before
the location of a target node can be determined, a few things need to be known. The
nodes need to be synchronized such that the signals can be sent at the same time. The
location of the anchor nodes need to be known. These are all variables in which noise
can be present. For example, in the synchronisation, a small time delay can be present.
It is important to know how the noise behaves in order to determine the accuracy of the
final determined position. This paper will look into the effect of adding noise to the node
position.

In the scenario above, there is no noise present. The position noise will be added to
the position of the node as nix and niy. The distance noise will be nid. The variance of the
position noise is σ2

p, and the variance of the distance noise σ2
d. This results in the following

TOA model.
dTOA =

√
(mix − x+ nix)2 + (miy − y + niy)2 + nd (3)

2 Methods used

2.1 Maximum likelihood estimator

To compare the different methods the maximum likelihood estimator is used (MLE). The
MLE is a baseline for how accurate an estimation can be[1]. It is expected that the MLE
is the best estimation compared to the other methods. The MLE is calculated by calcu-
lating the maximum likelihood cost function, and minimizing the cost using optimization
algorithms. In this paper, it is calculated using fminunc() function in Matlabs optimization
library. A grid based approach is used to make sure that the function does not fall into a
local minimum.
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2.2 Least squares

One of the most common estimation methods is the least squares method. This method
is chosen due to it’s computational simplicity, and it is an widely used algorithm. The
ordinary least squares algorithm is an algorithm that geometrically finds the point which
is closest to all TOA measurements, by minimizing the sum of the squares. [4]

To calculate the linear least squares for the TOA approach, the distance measurement
needs to be squared first. The calculations are taken from [3].

d2TOA = (mx − x+ nx)
2 + (my − y+ ny)

2 + n2
d +2nd

√
(mx − x+ nx)2 + (my − y + ny)2 (4)

Expanding this equation results in the following equation 5

d2TOA = m2
x + y2 + n2

x − 2mxx+mxnx − xnx +m2
y + y2 + n2

y

−2myy +myny − yny + n2
d + 2nd

√
(mx − x+ nx)2 + (my − y + ny)2

(5)

For convenience the terms that contain noise are substituted using ntoa

ntoa = mxnx − xnx +myny − yny + n2
d + 2nd

√
(mx − x+ nx)2 + (my − y + ny)2 (6)

−2mxx− 2myy + x2 + y2 + ntoa = d2toa −m2
x −m2

y (7)

This equation is just for a single TOA measurement. If there are M anchor nodes. Then
the complete set of equations can be expressed in the following matrix form in equation 8

Aϕ+ q = b (8)

A =


−2m1x −2m1y 1

−2m2x −2m2y 1

... ... ...

−2mxi −2mMi 1

 (9)

ϕ =
[
x y (x2 + y2)

]
(10)

q = [ntoa1, ntoa2, ..., ntoai]
T (11)

b =


(d2TOA1 −m2

x1 −m2
y1)

(d2TOA2 −m2
x2 −m2

y2)

...

(d2TOAi −m2
xi −m2

yi)

 (12)

Then, the least squares solution can be calculated using

ϕ′ = (ATA)−1ATb (13)
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2.3 Weighted least squares

The least squares method is quite simple. However it can be improved by using the
weighted least squares. The weighted least squares (WLS), uses extra information of the
known variance of the error. The weighing matrix is calculated as follows. [3]

W = E{qqT}−1 (14)

W ≈ 4 ∗ diag(4σ2
1d

2
1, 4σ

2
2d

2
2, ..., 4σ

2
i d

2
i ) (15)

Here di are the actual distances between the target node and anchor node i. This can be
approximated with the TOA measurement.

W ≈ 1/4 ∗ diag( 1

σ2
1d

2
toa1

,
1

σ2
2d

2
toa2

, ...,
1

σ2
i d

2
toai

) (16)

Then the final result of the weighted least squares is given by:

ϕ′ = (ATWA)−1ATWb (17)

2.4 Two step least squares

An additional step to the WLS can be added to improve the accuracy at the cost of some
calculation time. By using the 3rd component of the result of the WLS. Which is the
resulting ϕ′ from the WLS. This contains a small error which can again be minimized
using another weighted least squares approximation. The weighing matrix for the 2SWLS
can be calculated from the weighing matrix of the WLS [3].

W2 = ([H(ATWA)−1HT ])−1 (18)

With H being the following:

H =

2x 0 0

0 2y 0

0 0 1

 (19)

The entries of the WLS are added in b2:

b2 =
[
ϕ(1)′ ϕ(2)′ ϕ(3)′

]
(20)

G =

1 0

0 1

1 1

 (21)
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Together with G, the final result can be calculated with equation 22

ϕ′
2 = (GTW2G)−1GTW2b2 (22)

The obtain the x and y values of the 2SWLS method, it is required to take the root of
ϕ2. To retain the sign information, the signum function is used in equation 23 and 24

x′ = signum(ϕ(1)′)
√
ϕ2(1)′ (23)

y′ = signum(ϕ(1))′
√
ϕ2(2)′ (24)

3 Simulation

In the simulations, 4 nodes are used. This results in a total of 4 TOA measurements. The
nodes are positioned in a square with sides of 1000 meters. The target position for the
symmetric scenario is located at the center of the square at position [500m, 500m]. For
the asymmetric situation the target is chosen to be at [200m,300m]. An example is shown
in the figure below.

0 200 400 600 800 1000

x axis

0

200

400

600

800

1000

y
 a

x
is

target

nodes

target asymetric

Figure 1: Simulation Layout

For the variance of the simulations there are two main noise parameters that are var-
ied: the variance of the position error, and the distance error. Where both of these errors
are modelled as zero-mean independent Gaussian variables. Most simulations are done
for 1000 runs for each 1000 values of noise. The result is evaluated with the root mean
squared position error (RMSE), which is calculated between the resulting target estima-
tion and the real target value.
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4 Results

4.1 2D Scenario

In figure 2 and figure 3, different types of noise are separately plotted for the 2D scenario.
Figure 2 shows the symmetric scenario and figure 3 shows the asymmetric scenario. For
these figure 10000 runs are simulated. The MLE is calculated using 100 runs. In these
figures, the result of the methods and the maximum likelihood are shown. Sub figure 2a
there is an error in the position of the anchor nodes. Sub figure 2b shows the results
when a distance error is added to the distance of the TOA measurement. The variance
of these errors are plotted on the x-axis. The resulting mean squared position error is
plotted on the y-axis. The WLS and the 2SWLS are weighted on distance error variance.
This is why only the asymmetric scenario shows an improved estimation for the WLS, and
2SWLS calculation.

In figure 4 the methods are plotted against distance error on the x-axis, all methods
are plotted two times, one time with with no position error added, and one time with a
position error with variance 5m2. The distance error is expressed in SNR, such that the
variance is proportional to the distance. For each SNR values, a 1000 values of position
errors are computed, for which again are a 1000 values of distance errors are computed.
This results in a RMSE calculated from a million different values. Interestingly, with the
position error added, the value converges to about 5m, which is the same as the position
error variance. The maximum likelihood estimator is also plotted. The result of the MLE is
sometimes worse than the estimated value. This is likely because the MLE is calculated
using only a 100 runs, compared to the 10000 runs of the other methods. Also for the
symmetric scenario, the error is as large as the MLE, while the asymmetric scenario is
worse compared to the MLE.

The same result has been plotted for the asymmetric scenario in figure 5. It again
shows a slightly higher RMSE compared to the symmetric scenerio. This is because the
distance variance is based on the distance between the target and anchor node. The sum
of all these distances is larger in the asymmetric scenario resulting in a slightly higher total
variance. It is also interesting that once the position error is way smaller than the distance
error, the WLS starts to outperform the 2SWLS. This could be because the calculation of
the weighing matrix does not hold anymore for the 2SWLS.
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Figure 2: symmetric scenario
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Figure 3: Asymmetric scenario
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Figure 6: Caption for this figure with two images

Weighing on position vs distance

In the next figures the difference between weighing based on position error, and based
on distance error is explored. Figure 6 shows the WLS and 2SWLS weighed on position
and on distance in the same figure. The x-axis shows the variance of the distance error
in case of the methods weighing on distance, or the variance of position error based on
when the methods are weighed on position. In the second figure there is an additional
noise added. In case of weighing on position error, a distance error is added with variance
5. And in case of weighing on the distance error, an additional position error is added,
again with a value of 5. Again this is simulated with a 1000 different distance errors, for
each 1000 different position errors. It does not look like either one outperforms the other.
It again shows that the WLS outperforms the 2SWLS in figure 6a.

Figure 8 shows the same figure however, here there is an position error added with
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Figure 7: Weighing on distance vs position variance, with added σm/σd = 5
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Figure 8: Caption for this figure with two images

again a variance of 5m. Again both types of weighing perform quite similar. However
weighing on position does seem to give a slight performance increase when the distance
error is higher than the position error.
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Figure 9: Heatmap of the least squares result

Heatmap

A heatmap is shown in figure 9 for the least squares method. On the x axis the position
error is varied and on the y axis the distance error is varied. The color intensity shows the
value of the RMSE. It shows symmetric and linear behaviour for both axes. Increasing the
distance error does introduce more noise in the results than increasing the position error.

4.2 3D scenario

For this section, the calculations are extended to a 3D scenario[2]. In this case the hor-
izontal positions of the nodes and target are identical to the 2D scenario. However the
height of the target is varied starting at 0, while the variances of the errors stayed the
same. Three different error combinations are shown are shown in figure 10. What be-
comes immediately clear is that the error increases with the height, even though the total
error is kept the same. Also the 2SWLS provides a improvement over the WLS even
though the situation is still completely symmetric. Figure 10b shows that the position er-
ror give an more noisy result. This means that the variance of the RMSE is higher when
adding position noise. Adding both types of noises such as in figure 10c results in a higher
RMSE, with the added noise from the position error.
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Figure 10: varying height in a 3D scenario
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5 Conclusions

The goal of this report was to study the effect of adding a position error to the anchor
nodes. This was done by comparing localisation methods such as the least squares,
weighted least squares, and the two step least squares to the maximum likelihood estima-
tor in different scenarios. Independently the position error and the distance error perform
very similar. Independently, they result in comparable RMSE. It appears that the errors
behave additive and their effect is uncorrelated. The RMSE of the MLE seems to scale
exactly with the position error variance: position noise causes a higher variance in results
than distance error. However it does still converge to the same RMSE. This could be be-
cause for the position error, for both the x axis, and y-axis an error is added for each node,
compared to just an error based on the distance. Comparing the result of the LS to the
results of WLS and 2SWLS, it is clear that in symmetric scenarios all three methods give
nearly the same accuracy for both position variance and distance variances. However
when introducing asymmetry, the methods start to perform worse than the asymmetric
scenario, with the least squares having consistently the lowest accuracy, then the WLS,
then the 2SWLS in most cases. The 2SWLS needs to be weighed correctly Comparing
the 2D scenario to the 3D scenario, it becomes clear that the geometry matters. Just like
introducing asymmetry, increasing the height decreases the accuracy of all the methods.
For future research, it would be interesting to see if that also were to happen to the MLE.

14



Bibliography

[1] Steven M Kay. Fundamentals of statistical signal processing: Practical algorithm de-
velopment. Vol. 3. Pearson Education, 2013.

[2] Jiang Li and Zhang Lei. “3D Localization Algorithm Based on Linear Regression and
Least Squares in NLOS Environments”. In: Computer and Information Science 11
(Sept. 2018), p. 1. DOI: 10.5539/cis.v11n4p1.

[3] S Ravindra and SN Jagadeesha. “Time of arrival based localization in wireless sen-
sor networks: A linear approach”. In: arXiv preprint arXiv:1403.6697 (2014).

[4] Eric W. Weisstein. ”Least Squares Fitting.”. URL: https://mathworld.wolfram.com/
LeastSquaresFitting.html.

[5] Reza Zekavat and R Michael Buehrer. “Fundamentals of Time-of-Arrival-Based Po-
sition Location”. In: (2019).

15

https://doi.org/10.5539/cis.v11n4p1
https://mathworld.wolfram.com/LeastSquaresFitting.html
https://mathworld.wolfram.com/LeastSquaresFitting.html

	References
	Introduction
	Research question
	Time of Arrival

	Methods used
	Maximum likelihood estimator
	Least squares
	Weighted least squares
	Two step least squares

	Simulation
	Results
	2D Scenario
	3D scenario

	Conclusions


