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Abstract

In this paper the effect of a Triple Modular Redundancy(TMR) implementation
on the reliability of a system is examined. To accomplish this, a micro-processor
with a RISC-V architecture has been simulated with and without the TMR
implementation. In the simulation are both Single Event Transients(SET) and
Multiple Event Transients(MET) injected. Additionally, a transistor fault has
been simulated with the TMR implementation. The TMR is applied to the
Multi/Div block of the processor and the faults will be injected at the input
of these triplicated blocks. The performance of the systems with and without
TMR will be compared using the ratio of the number of faults injected to the
number of faults propagated. When the system is only injected with SET’s,
the system without TMR has a ratio from 0.058 to 0.389 depending on the
probability of a SET occurring, while the system with TMR does not propagate
any fault at all. If MET’s are injected the system without TMR performs better
with a ratio between 0.069 and 0.291, while the system with TMR has a ratio
between 0 and 0.036. The TMR implementation reduces the probability of an
error propagating significantly, but if a Multiple Event Transient hits multiple
similar wires, it can still fail. To combat this other forms of redundancy should
be implemented.
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1. Introduction
An embedded system is a combination of a processor, memory and input/output
peripheral devices, where it has a dedicated function within a larger mechani-
cal or electronic system [6]. Because these micro-controllers have a dedicated
function, they can be optimized for a specific task. In the field of embedded
systems, efficiency is extremely important. The efficiency is so important be-
cause of the specific implementation of these micro-controllers. Often, these
embedded systems can be found in small devices, or wireless devices that run on
battery power or a number of other use cases. Because of this, some embedded
systems should be optimized for maximum performance, while others might be
constrained by their power consumption or limited by the physical space they
have available to them. One of the ways that these goals can be achieved is
by removing redundant parts from the system. But over the years, redundant
components have been used in many places in almost every computing sys-
tem. For instance, in the aviation industry it is very common to see multiple
types of redundancy implemented. The Boeing 777 uses a triple modular re-
dundancy scheme of it’s computing system, airplane electrical power, hydraulic
power and communication path [12]. Another example is the recently launched
James Webb telescope. This telescope has a lot of different systems, many with
redundant components, such as it’s "Hemispherical Resonator Gyros". Inter-
nally these include two processors and power supply boards of which one pair
is redundant. They also include 4 internal gyro’s of which 3 are redundant[5].
In the aviation and space industry, weight is one of the most important factors,
so the weight of every system should be as low as possible. Thus this seems
counter intuitive. The reason given for implementing these redundant systems
is that it would improve reliability which is a major concern when it comes
to human life or space projects that cannot be repaired. This results in the
following question: "How does redundancy improve reliability?". To answer
this question, we made a simulation of a micro-processor and implemented a
redundancy scheme on it. We will target the aviation industry where the ap-
plication is time critical thus the redundancy scheme should reflect this. The
implementation will be tested by injecting the simulated micro-processor with
multiple bit flips and monitor the output to test the reliability of the system.
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2. Theory
2.1 Processor
To implement a redundancy scheme, a customizable processor is needed. In this
case, we chose the Ibex RISC-V Core [8]. The core is heavily parametrizable
which makes it perfect for this application. A general overview of the core
can be seen in fig. 1. Because the specific specification of the module aren’t
that important for this research, we chose to use a bare metal setup. To test
the redundancy scheme, two different versions are made. One version with the
redundancy scheme implemented, an one without the redundancy to compare
the results with. The multiple variation will be discussed in section 2.3. Both
versions will be based on the ibex "Simple system". The simple system is an
Ibex based system that is targeted for simulation. To actually simulate these
variations, verilator is used. More on this simulator in section 2.2. The ibex
core consist of a two-stage pipeline. The first stage is the Instruction Fetch
(IF) stage. This stage fetches the instruction from memory and is capable of
doing this with an IPC (Instruction per Cycle) of 1. The second stage is the
Instruction Decode and Execute (ID/EX) stage. The fault injection will take
place in this location. More specifically, it will take place in the multiplier
and division block contained within the execution block. This has been chosen
because the use of flip-flops that are able to be influenced by the fault injection
and the potential of the errors propagating and cascading into multiple errors.
This can be analysed and used to see whether a redundancy scheme is effective
enough to compensate for this behaviour.

Figure 1: Ibex core block diagram

2.2 Simulation
To simulate the ibex core processor, Verilator is used in combination with Gtk-
wave. Gtkwave is used to generate wave-forms and it is neatly integrated into
Verilator, it only requires an extra flag to work. There are a few big reasons
why we chose to use verilator. Verilator is not a traditional simulator, but it
acts more like a compiler. It converts the SystemVerilog files from the ibex
processor into a C++ model, after which this model can be executed. Because
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this runs compiled code, this simulation is extremely fast when compared to
other simulators. According to verilator[11], if the simulator is running on a
single thread, verilator is about 100x faster than interpreted Verilog simula-
tors. When multi-threading this can increase with another 2-10x times speed
increase, resulting in a 200-1000x speed improvement over interpreted simula-
tors. Secondly, Verilator has a Verification Procedural Interface (VPI) which
will be very important. We will use this interface to inject faults into the sim-
ulation, more on how exactly that is implemented in section 2.4. The VPI is
able to directly access the public signals of the processor. These signals can
be read from and written to by using the corresponding functions provided by
the library. Using this interface, faults can be inserted at the correct time at
the correct place. The final reason why verilator was chosen as a suitable sim-
ulator for this research is linked to the previous advantage. Verilator is highly
customizable using c++ code. Due to this the system for injecting faults can
be implemented by editing the verilator simulator. Unfortunately, Verilator
also comes with a few disadvantages. Because verilator is not a traditional
simulator, it can conflict with injecting faults. The way verilator works is dif-
ferent from an event based simulator. Values that are changed by the VPI
will only propagate when the whole system is evaluated, by calling the eval()
function. This can only happen once per clock cycle. This means that reading
a value, editing this value and writing it back to the signal cannot happen in
one clock cycle. This will be further elaborated on in 2.4. Furthermore, be-
cause verilator acts more like a compiler, it can optimize certain parts of code
if it concludes that these have no influence on the program or will always be
true/false. Verilator does not take into account that some of these values might
actually be changed by the VPI and thus shouldn’t be optimized away. There
are workarounds for this issue that have been implemented. But together with
the previous issue these are one of the biggest short comings of Verilator when
using it for fault injection.

2.3 Redundancy Implementation
2.3.1 Redundancy schemes

There are currently many different redundancy schemes[7]. These can be cat-
egorised in four main categories, information, time, software and hardware
redundancy. Information redundancy in general is implemented by appending
additional bits to stored or transmitted data. The additional bits are gener-
ated in a certain pattern such that it can convey information about the block
of bits that have been sent. A well known example of this is the hamming
codes. The additional bits can be used by the receiver to detect if there were
errors and is able to correct them. Of course, different types of information
redundancy schemes have different capabilities and different levels of overhead.
The second category is time redundancy, time redundancy often doesn’t need a
change in hardware, which can be very valuable when physical space is limited.
Unfortunately this does come at different cost. It works by having the system
perform the same task multiple times. It then compares the output of the same
task and can correct for any errors that possibly have occurred. This comes
with a substantial execution time cost. As with the information redundancy,
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there are many different ways of implementing this and each have their own
positives and drawbacks. Next are software redundancy schemes, these are
mainly used against software failures. This targets man made errors (bugs)
and tries to avoid them by having for instance multiple teams work on the
same functionality but separate from each other. These two different software
implementations are then used side by side. When one encounters a bug it is
unlikely that both software programs have the same bugs and thus can prevent
the issue. This however are not the faults that we are targeting in this research
thus will not be looked at further. Finally, there is the hardware redundancy,
in general this redundancy category copies certain parts of the processor. After
these copies a voter block is placed to decide the correct outcome. A common
example of hardware redundancy is Triple Modular Redundancy or TMR in
short. Because we want our application to have a high execution speed and
the program running on the system will be time critical, the time redundancy
will not be suitable for this system. To be able to correct for multiple faults in-
jected at the same time, hardware redundancy will be a good choice. A deeper
dive into the specifics of the chosen hardware redundancy can be found in sec-
tion 2.3.2. These different types of redundancy schemes can all be used at the
same time but because hardware redundancy and time redundancy both cover
the same type of errors it is uncommon to see both of them combined. Often
only one of these redundancy methods is used in combination with information
redundancy.

2.3.2 Triple Modular Redundancy

TMR is a method where a certain module is triplicated and a voter block is
placed behind it. For this research this redundancy scheme will be applied
to the Multi/Div block in the EX stage of the ibex controller (section 2.1).
This module has been chosen because this module is actively being used by the
benchmark that we will run on the processor. It also provides a possibility of the
error propagating through the module before it hits the voter block. This could
make it harder for the TMR to error correct, but will result in better "Worst
case scenario" results. A very simple overview of a TMR system can be found
in fig. 2. The true implementation however, is a little bit more complicated.
This is because instead of one output, the multi/div block has 6 outputs that
need to be connected to voters. This means that there should be either one
very big voter block that can account for all 18 inputs and 6 outputs, or many
small ones that all take in 3 inputs and 1 output, or something in between. In
this case many small voter blocks were chosen for multiple reasons. First, it
provides better flexibility, these voter blocks are not depended on the block that
came before, in this case the multi/div block. Instead these can be more easily
relocated and implemented compared to the big voter blocks that can only be
used in one. Secondly it allows for a more organized structure and changes are
more easily made. However, there are different types of voter blocks. For this
setup a standard majority voter is used. This voter block is works by receiving
three different inputs from the three duplicate blocks. Then compares these
inputs bit by bit, this is needed when arrays are passed. When two signals
are identical, it duplicates the value of one of the inputs to a buffer, which is
assigned to the output. If all three signals are different, the voter block will
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choose an input at random as it’s output. In the case of these specific blocks,
input three is always chosen. Of course, this voter block only works for TMR,
if the system instead of three, has five duplicates, the voter block should be
adjusted accordingly and compare five inputs.

Figure 2: Simple Triple Modular Redundancy overview

2.3.3 Single Event Effects

As with everything in computing, there are trade-offs that need to be made.
This is no different selecting which parts will be triplicated. Even though we
are not constrained by physical space, cost or performance goals, to keep the
results relevant for other use-cases not everything will be triplicated. This
would be a huge investment for extra hardware. The decision on where the
triplication takes place depends on the type of error it should filter out. Sin-
gle Event Effects (SEE’s) are caused by charged particles that hit electronic
components. This can result in multiple different effects which can be divided
into two categories, soft errors and hard errors. In computing, a soft error is
a type of error where a signal is incorrect, however these errors do not imply
a mistake in design or construction[2]. If a soft error is observed, there is no
implication that the system is any less reliable than before. Due to this fact,
soft errors do not persist over a power cycle. These soft errors can be caused by
neutrons from cosmic rays or alpha particles from packaging material. It used
to be the case that soft errors were only a major concern for space applications
[9]. Both because reliability is very important as these space projects often
could not be repaired if anything went wrong, but also because of the increase
in exposure to cosmic radiation, making soft errors more likely to occur. Fur-
thermore as technology progressed and the transistors got smaller and smaller,
the probability that one of these bits got flipped by a radiation particle grew.
This is because smaller transistors are less resilient against charged particles
hitting them. Soft errors can be caused by two different events, Single Event
Upsets and Single Event Transients. A Single Event Upset (SEU) is an event
where a charged particle hits a memory bit and flips it. This bit will stay in
memory until it is overwritten. This means that it can cause problems when
this memory bit is being accessed. The second event that can cause a soft error
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is the Single Event Transient (SET). This event occurs when a charged parti-
cle hits combinational logic and flips a bit in a wire for a very short time. It
creates a peak or negative peak that will decay over time. If this peak lines up
with the use of this signal in the combinational logic it can cause a soft error.
Please note, such a SET could transform into a SEU if this fault is propagated
through the combinational logic and stored in a register. The second category
is hard errors. These, in contrast to soft errors, are destructive. A Single Event
Latch-up (SEL) is such a hard error. This event can cause an apparent short-
circuit. Without proper countermeasures in place, this error often destroys the
device due to thermal runaway[1]. Because we are planning on simulating the
Event Effects injected, this type of error will not be used.

The type of event that occurs in a certain block is dependent on the com-
position of that block. If a block contains many flip flops, it is more likely that
there will be many more SEU’s with respect to SET’s. Thus to know what
would be realistic for the ibex system that we have. We need to look at what
the composition is of the system. Because the Ibex simple system only consist
out of a pipeline of two stages (see section 2.1, it has very few flip flops. Most
blocks in the system do have flip flops but these are barely used and most of the
processes work combinational. Because of this, implementing SET’s is more
realistic and an addition of SEU would not yield different results. There are of
course flip flops in the system registers but writing faults to these will result
in an early termination of the system because it cannot function with faults in
these locations. This would make gathering results much harder and thus not
feasible.

2.4 Fault injection
The fault injection is assisted by special fault injection blocks. These are placed
before the triplicated blocks on all of the inputs that need to be manipulated.
A more complete overview of the system can be found in fig. 3. The fault
injection blocks are very small, it only consist of a single XOR gate per input
signal. The each XOR gate is connected to a input signal that normally would
have connected straight to the multi/div block and with a dummy signal that
is zero by default. This dummy signal is used to actually execute the bit flip.
The decision on when and where to flip a bit will be done by the error generator
which will be explained in 2.4.1. If the dummy signal is set to something other
than a zero, the manipulated signal is send to the corresponding Multi/Div
block. Naturally, if there is no fault scheduled the dummy signal will be zero,
there will be no manipulation done and the input is directly propagated to
the output. As stated before, the injection takes place before the triplicated
blocks to simulate an Single Event Transient. This is easier to implement
and to upscale compared to injecting the faults into the Multi/Div themselves.
The bit flip can be implemented in two ways. The first involves using the
Verification Procedural Interface (VPI). Using this method a value can be read,
manipulated and be written back to the same location. This method however
can run into some issues. To read a value of the current cycle, the system first
needs to be evaluated, otherwise a value from the previous cycle will be read.
After evaluating, the correct value can be read out for that clock cycle and
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manipulated. Unfortunately, attempts to make the system evaluate again (In
the same clock cycle) were unsuccessful. This means that while the modified
value was written to the correct signal, it was not propagated. This again
could be more easily done on a more traditional simulator. The second option
which is the one that is implemented here, in contrast to the first option, extra
injection blocks need to be implemented for this method to work. This is very
unfortunate, because this means that the actual structure of the processor has
to be changed for the injection of faults. This makes the representation of the
real world slightly less accurate because of the extra components needed. The
fault generator chooses a bit to be switched. The location of this bit is passed
to the dummy signal of the injection block using the VPI. Here the bit flip is
applied by simply having an XOR operation on the input with the bit location.
During evaluation this dummy signal is taken into account and thus the bit flip
is applied. After a half cycle, the dummy variable is reset to zero and thus the
bit flip is reversed. This emulates the behaviour of an SET which wouldn’t be
saved in memory.
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Figure 3: Fault injection setup with TMR on Multi/Div blocks

2.4.1 Error generation

The error generation is not a trivial part of the fault injection. These errors
should be inserted in a realistic manner to receive realistic results. The main
source of bit flips is radiation, so it would make sense to let the error generation
be related to the amount of radiation the processor receives. While this is true,
there are a lot of different processors with different types of protection, such
as a thicker casing around the processor. Radiation applied from outside of
the processor does not always have the same influence on the number of bit-
flips that occur in the system. This resulted in choosing for a more general
measurement: The probability of a bit-flip occurring for each bit in a cycle.
Every bit that can flip, thus all the bits going trough the injection blocks, have
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the same probability to flip. The script for deciding which bits will be flipped
and when was written in Python. The results were stored in a csv file, the
information contains the time when this fault should be injected, the specific
injection block that should be targeted, and the bit that should be flipped.
Some of the wires are arrays of multiple bits, because of this the location of
the specific bit in that array is provided. All of this information is read out by
the simulation and carried out during run-time.

2.4.2 Propagation checker

To gather results on whether TMR makes a difference in error propagation, a
method needs to be implemented to check how many of the injected faults affect
the outcome of the voter blocks. The way this is done is by first running the
benchmark once without any faults injected. The outputs of the voter blocks
are recorded and saved. Whenever there are errors propagated through the
voter blocks, they will deviate from these expected outputs. The two results
will be compared and checked for the number of differences. This will also be
done using a small python script to compare the two outputs. Of course, the
implementation without TMR doesn’t have voter blocks thus here the direct
output of the multi/div block is read and compared.

2.5 Probabilities of Single Event Effects occurring
A study from NASA has observed the amount of SEU’s a satellite with a
memory block encountered in orbit [10]. The SEU’s were counted by using
hamming error detection and correction code. Every 15 minutes the memory
was read, corrected, counted and written back to the memory. The memory
block could store 512Mbits and there were two present for redundancy reasons.
Both memory blocks were also shielded to reduce the amount of SEU’s. The
average rate of Single Event Upsets was 250 per day. But because we don’t
want any errors propagating we shouldn’t look at the average rate, but at the
worst case for the number of SEU’s. There are huge spikes of event upsets
during solar flares. These flares release a sudden wave of charged particles
which increases the number of SEU’s to over 1200 in a day. This would still
mean only 0.0139 SEU’s per second. From this we can calculate the number
of upsets per bit per second. But this would be pretty inaccurate given the
big time range in which the number of SEU’s were gathered. Because this was
measured in orbit, the rate for events varied a lot (especially when traversing
over the poles where there is a higher concentration of particles because of the
magnetic field of the earth). Luckily another study by the CERN institute has
been done to estimate the SEU rate [4]. This study created radiation with a
flux of 4.9 ∗ 107/cm2s1 which resulted in an estimated SEU rate of 8.3 ∗ 10−7

upsets per bit per second. Accounting for the number of bits that we use, which
is 134 for the system without TMR, and for the time the program runs, which
is 26ns it gives us an average rate of 2.89 ∗ 10−9. Using this average rate, we
can use the Poisson distribution to know the expected result(eq. (1)), where λ
is the average rate and k is the number of occurrences. Using this formula, the
probability that a single SEU happens in the run-time of the simulated system
is 2.89 ∗ 10−9, while the chance that two events happen in this run-time (Not
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even at the same time or location) is 4.18 ∗ 10−18.

P (SEU) =
λke−λ

k!
(1)

But, according to the NASA paper, around 20% of the telemetry files
showed that multiple upsets occurred during a 10 second window. Multiple
particles hitting the same memory in this time-frame is so unlikely as we’ve
just calculated, that NASA concluded that it was most likely a single particle
hitting multiple memory cells. These are called Multiple Event Upsets (MEU’s)
and most of these Events affected two or three memory cells. To simulate this
properly the SEU rates have been drastically increased from the more realistic
average values. In the appendix there are figures that show the distribution of
how many faults are injected in the same cycle is given for different probabil-
ities of a SEU happening per bit per cycle (section 5). As can be seen from
the figures, starting with a probability of 0.05% chance of a SEU per bit per
cycle(2ps), there are cases where 3 faults are injected at the same time. Of
course the amount of faults is unrealistic but it can better demonstrate the
functioning of the TMR.
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3. Methods
All of the following tests are conducted using different probabilities for a Tran-
sient Event to happen. This is the probability for a Transient Event to happen
on a bit, every clock cycle. Thus there could theoretically be multiple bit flips
at the same time at the same place, if the probability for a Transient Event is
high enough. The probabilities given are not necessarily the most realistic as
discussed in 2.5, rather they are showing what TMR is capable of and what it’s
limits are. All the systems are running a Coremark benchmark, which utilizes
the Multi/Div block. This benchmark runs for 13143 cycles. All of the results
found in the tables below are averages over three runs. However the averages
of 0.5% and 1.0% probability of a SET are made over five runs. This is because
of the bigger fluctuation of the results. The figures of the results do include
all runs, not only the averages. First, the system will be tested without any
redundancy implemented. This will provide a good baseline to compare the
results of the TMR with.

3.1 Without redundancy
3.1.1 Single Events Only

The first test will be conducted without TMR and with only Single Events.
Because this is a simulation of a Single Event Transient there shouldn’t be
more than one fault injected at the same time into the system. The fault
generator has been altered to make sure that if an error has been generated for
a specific time, no other error can be generated in that cycle. The results can
be found in table 1 and fig. 4.

Probability of SET(%) Avg. Faults injected Avg. Faults propagated Ratio
0.005 87.3 5.0 0.058
0.01 190.3 15.0 0.080
0.05 845.7 52.0 0.062
0.1 1618.0 113.3 0.070
0.2 3096.3 220.7 0.071
0.5 6299.4 1576.6 0.250
1.0 9624.4 3745.4 0.389

Table 1: Average results from SET test without TMR implemented

If we look at fig. 4 we can see that the number of faults injected is not
linear even though we would expect it to be. This phenomenon is most likely
caused by the number of faults injected nearing the maximum number of faults
possible at the higher probabilities. The maximum possible number of injected
faults for this system with single events only is 13143 faults, for each cycle
one. Thus a lot of faults that would normally occur are not present here which
is why the number of faults injected is lower than we would normally expect.
Furthermore is the ratio of number of faults injected to faults that are detected
at the output very high, but maybe not as high as some would assume. The
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Figure 4: All results from SET test without TMR implemented

reason that not every fault injected directly results in a fault detected at the
outputs of the Multi/Div block, is most likely because for a SET to be effective
it must be injected when the system is actively using that specific signal. But
often not all signals are used at the same time, thus the SET is injected for
a clock-cycle, but it disappears afterwards. This fact also explains why the
ratio goes up when there is a higher probability of bit flips. When there are
more faults injected, more faults are located on signals that are being actively
used. To properly simulate a particle hitting multiple wires at the same time,
we need to test for Multiple Transient Events.

3.1.2 Multiple Transient Events

MET is an abbreviation for Multiple Event Transient. This means that two or
more Transient Events can happen at the same time. This does not have to
be the case, and is more common the more faults are injected into the system.
This test just does not exclude these events anymore like the previous SET
test. The distribution of these faults that will be injected can be found per
probability of a SET in the appendix (section 5). The results of this test can
be found in table 2 and fig. 5.

Comparing these results with the results of the SET injection, we can see
that the injected faults now increase linearly. As discussed before, this is in line
with the expected behaviour. Because there can be multiple faults at the same
time and even in the same location, the possible number of faults injected
is much higher. Again, we see the ratio increase linearly, but this time the
average ratio is lower than the average ratio of SET. Especially with the higher
probabilities of faults injected. When the number of faults injected is higher,
the probability of faults being injected into the same location is also higher.
This is likely what is happening at the higher probabilities. Two faults are
injected into the same signal at the same time, this results in essentially only
one fault injected which causes the ratio to go down. Now that the baseline
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Probability of SET(%) Avg. Faults injected Avg. Faults propagated Ratio
0.005 90.0 6.3 0.069
0.01 169.7 13.3 0.078
0.05 913.3 54.0 0.059
0.1 1731.0 115.0 0.066
0.2 3457.7 220.0 0.064
0.5 8671.6 1664.6 0.192
1.0 17338.6 5046.2 0.291

Table 2: Average results from MET test without TMR implemented

Figure 5: All results from MET test without TMR implemented

has been set, we can test the performance of the Triple Modular Redundancy.

3.2 With redundancy
This will conduct the same two test as has been done without the TMR imple-
mentation. Because of the increase in Multi/Div blocks, there are also more
points where faults can happen. This means that there will automatically be
more faults injected.

3.2.1 Single Events Only

Again, first the test without multiple faults at the same time is done here, the
results can be found in table 3 and fig. 6.

In these results we see a big difference compared to SET without TMR.
The first most obvious difference is that there are 0 faults propagated, no
matter how many faults are injected. If we look at the theory of TMR this
is exactly as we would expect and a different result would have indicated an
incorrect implementation of TMR. TMR is always able to correct for single
events. Secondly a less obvious difference is the number of faults injected.
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Probability of SET(%) Avg. Faults injected Avg. Faults propagated Ratio
0.005 285.0 0.0 0.0
0.01 531.3 0.0 0.0
0.05 2581.7 0.0 0.0
0.1 5187.3 0.0 0.0
0.2 10461.0 0.0 0.0
0.5 26145.0 0.0 0.0
1.0 52171.4 0.0 0.0

Table 3: Average results from SET test with TMR implemented

Figure 6: All results from SET test with TMR implemented

Because the hardware of the system is now increased, so is the number of wires
that a Transient Event can occur. Because there are more bits that can bit
flip with the same probability for each bit, there are more bit flips in total.
Thirdly, the correlation between SET probability and the number of faults
injected is linear which was not the case for SET without TMR. This is also
because of the increase of hardware and thus the number of possible bit flip
locations. To account for a particle hitting multiple wires at the same time,
the Multiple Transient Events should also be simulated to test the robustness
of the redundancy implementation.

3.2.2 Multiple Transient Events

The TMR will be tested were multiple faults can be injected at the same time.
The results of this test can be found in table 4 and fig. 7.

This time, because the number of faults injected was not limited by the
possible maximum number of faults, the number of faults injected are nearly
identical of the SET case. However, here some errors are detected at the output
of the voters. As can be seen from fig. 7, the ratio of faults injected versus faults
propagated seems to be exponentially related. If multiple faults are injected at
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Probability of SET(%) Avg. Faults injected Avg. Faults propagated Ratio
0.005 262.7 0.0 0.000
0.01 514.3 0.0 0.000
0.05 2586.3 2.0 0.001
0.1 5255.7 9.7 0.002
0.2 10480.3 41.0 0.004
0.5 26245.2 194.6 0.007
1.0 52257.8 1866.8 0.036

Table 4: Average results from MET test with TMR implemented

Figure 7: All results from MET test with TMR implemented

the same time at the same signal but on a different Multi/Div block, possibly
an incorrect value will be propagated. Thus the more faults are injected, the
higher the probability that faults of this kind are found in the system. But
even if that is the case, it is very unlikely that the bit-flip will happen at the
same bit position in both blocks because some signals consist of arrays of up
to 34 bits. This means that there often will not be a majority at the voter
block, and it will pick a random Multi/Div block input as it’s output (In this
system it will always pick the third output). This means that even if there are
multiple bit flips on the same signal, there is still a chance that the correct
output is given. Comparing the ratio of this system to the ratio of the system
without TMR a huge difference can be seen. At lower SET probabilities the
TMR system doesn’t propagate any incorrect outputs, while at a very high
SET probability the system still has a 10x lower ratio of faults injected versus
faults propagated.

3.3 Transistor fault
From the previous results we observed that having TMR implemented increased
the amount of faults injected because of the higher number of possible locations
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where faults could occur. This raises the question, is it possible that this
increase of faults could be detrimental for the reliability in certain situations?
In this hypothetical situation, an transistor fault has occurred. This is a fault
that can force a bit to either a zero or an one. Because a TMR system has
many more components it is more likely to have such a fault somewhere in the
system. To model this in the worst case scenario, a frequently used input signal
of the Multi/Div block has been used and a bit in this signal has been set to
0. The reason for this is because the signal in the signal is very often a 1.

3.3.1 Transistor fault at position one

In this case, we place the stuck transistor on the first Multi/Div block. If
the voter block doesn’t have a straight up majority, it will pick a random
Multi/Div block input as it’s output. In the case of this system it is always the
third Multi/Div block. Thus we expect this case to do better in comparison to
a stuck transistor at location three.

Probability of SET(%) Avg. Faults injected Avg. Faults propagated Ratio
0.005 255.3 2.3 0.009
0.01 523.7 3.7 0.007
0.05 2635.0 28.3 0.011
0.1 5137.7 57.7 0.011
0.2 10461.7 127.3 0.012
0.5 26140.4 296.0 0.011
1.0 52244.2 2120.2 0.041

Table 5: Average results from MET test with a transistor fault at position one

Figure 8: All results from MET test with a transistor fault at position one

The overall behaviour of the system is similar to the behavior of the regular
system with TMR. One notable difference is that on lower probabilities of
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a SET some faults are detected at the output of the voter blocks. This is
because the threshold of a fault propagating is much lower. If an fault is
injected on the signal with a transistor fault on the third position, a fault will
be propagated. At higher probabilities of a SET the transistor fault isn’t that
noticeable anymore because it’s relative impact is reduced. But even with this
handicap, looking at the ratio, the system performs much better compared with
a system without TMR across the board.

3.3.2 Transistor fault at position three

To now create the worst possible scenario is if there is a transistor fault at po-
sition three. This is the default input that is propagated in case of a undecided
vote in the voter block. The results can be found in table 6 and fig. 9.

Probability of SET(%) Avg. Faults injected Avg. Faults propagated Ratio
0.005 263,3 3,0 0,011
0.01 514,7 7,0 0,014
0.05 2634,3 28,7 0,011
0.1 5160,0 65,7 0,013
0.2 10432,7 136,0 0,013
0.5 26198,0 319,8 0,012
1.0 52529,6 1824,8 0,035

Table 6: Average results from MET test with a transistor fault at position three

Figure 9: All results from MET test with a transistor fault at position three

As can be seen from the results, it performs slightly worse than the case
with a transistor stuck at position one. Especially at lower probabilities of a
SET, where the transistor fault is more significant. But even in this absolute
worst case scenario, the whole system still performs much better compared to
a system without TMR.
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4. Discussion
When comparing the two systems, with TMR implemented and without TMR
there is an obvious advantage. But as discussed before, this does come at a cost.
The TMR requires extra hardware which increases cost and physical space.
Therefore, TMR should only be applied to the components that need it. Even
though the ratio between the injected faults versus the faults propagated is a
good tool to compare the result of different SET probabilities with each other,
it is not a good way to compare both systems. From an end-user perspective
only the number of faults propagated matters. From the results the TMR might
not seem as impressive but this is because it was pushed to it’s breaking point.
As calculated in section 2.5, the probability of an SET to happen even once is
around 2.89 ∗ 10−9. While we are injecting the system with tens of thousands
of faults and more importantly, tens of thousands of METs. Needless to say
this will never happen in real life, and the SET results are far more realistic.
However, the SET results do have a minor issue that could have affected the
results of the case without TMR. This is because of the way that the error
generation is done. The error generator passes by every bit where a fault
injection is possible, every cycle. It then decides if this bit should be flipped
or not. But because the SET case could only have a single bit flip per cycle,
when a fault was generated, all other bits in that cycle were skipped. Because
these steps were done in the same order every time, the positions earlier in
the array we much more likely to be flipped compared to the bits later in the
array. This might have slightly affected the results. Future studies should be
conducted using a bigger processor which consist of more flip flops that are
in use. This way the effect of SEU could also be studied. The probabilities
calculated in section 2.5 will also be more applicable because these are derived
from probabilities of SEUs happening and not SETs.
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5. Conclusion
With the emerging nanoscale CMOS technology, MET’s are expected to be-
come more frequent than SET’s[3]. This means that redundancy becomes even
more important in all industries. Having redundancy in your system will not
automatically improve reliability. But as can be seen from the results, when
redundancy is implemented in a specific way it can improve the reliability of
the system greatly. Of course, the probabilities of a SET happening simulated
here is much bigger than what would be normal for a regular system, but it
proves the effectiveness of implementing the redundancy scheme. As discussed
before, TMR will struggle when there are too many bit flips such that the voter
blocks don’t have a majority. But even with this being the case, at the very
worst case scenario, it still outperformed having no redundancy implemented
by a big margin. With having triple the amount of faults injected, it reduced
the number of faults propagated by 2.7x. But in a more realistic environment,
the TMR would correct for every fault injected. The system can even correct
for a transistor fault where it performed only slightly worse compared to a case
without a transistor fault. Such a transistor fault would be catastrophic for a
system without TMR, even when there are no extra faults being injected into
the system. This shows how redundancy can greatly improve reliability. But
having a TMR might not be enough for your application. The NASA study
discussed earlier mentioned that they had encountered charged particles that
could hit up to 30 memory cells[10]. While the memory blocks they used are
much denser and thus it is easier to hit multiple memory cells at once, there is
a chance that if 30 memory cells are affected, TMR might not be enough. For
some systems the consequences for a single error to propagate past the TMR
might be too great to leave it up to chance. In this case TMR is still very
valuable because as could be seen from the results it reduces the number of
faults propagated drastically but it should be combined with some other form
of redundancy such as information redundancy.
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Appendix

(a) With TMR (b) Without TMR

Figure 10: The distribution of faults for a SEU/bit*cycle probability of 0.005

(a) With TMR (b) Without TMR

Figure 11: The distribution of faults for a SEU/bit*cycle probability of 0.01
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(a) With TMR (b) Without TMR

Figure 12: The distribution of faults for a SEU/bit*cycle probability of 0.05

(a) With TMR (b) Without TMR

Figure 13: The distribution of faults for a SEU/bit*cycle probability of 0.1

(a) With TMR (b) Without TMR

Figure 14: The distribution of faults for a SEU/bit*cycle probability of 0.2
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(a) With TMR (b) Without TMR

Figure 15: The distribution of faults for a SEU/bit*cycle probability of 0.5

(a) With TMR (b) Without TMR

Figure 16: The distribution of faults for a SEU/bit*cycle probability of 1.0
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