
MULTIROTORS EMBEDDING ELASTIC SENSORS
TO MEASURE ARM DEFLECTION: SYSTEM

MODELING AND CONTROL

S. (Salma) Bahaa El Din Hassan Abdelhalim

BSC ASSIGNMENT

Committee:
prof. dr. ir. A. Franchi

C. Gabellieri, Ph.D
dr. ir. D. Alveringh

July, 2022

031RaM2022
Robotics and Mechatronics

EEMCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

M U LT I R OTO R S E M B E D D I N G E L A S T I C S E N S O R S TO M E A S U R E A R M
D E F L E C T I O N S : S Y S T E M M O D E L I N G & C O N T R O L

A thesis submitted to the University of Twente in partial fulfillment
of the requirements for the degree of

Bachelor of Science in Electrical Engineering

by

Salma Bahaa

July 2022

Salma Bahaa: Multirotors Embedding Elastic Sensors to Measure Arm Deflections: Sys-
tem Modeling & Control (2022)

The work in this thesis was made in:

Supervisors: Prof.dr.ir. Antonio Franchi
Dr. Chiara Gabellieri

A B S T R A C T

In state-of-the-art UAVs, the input to the control scheme - which affects the position
and orientation of the UAV - is considered to be the thrust forces of the propellers.
However, the actual input to the control scheme that has any effect on the system
is, in fact, the angular velocity of the rotors. A direct relation is drawn between the
rotor velocity and the thrust force, which is a very crude estimation that does not
allow for the most efficient control of the vehicle in cases like: change in air-density,
malfunctions, presence of other objects in the vicinity.

This research builds up on the findings of an alumnus of the University of Twente,
E.B. (Bernard) Prakken, who explored the implementation of strain gauges in a
multirotor UAV. In his research, these strain gauges are used to estimate the thrust
force, which in turn are fed into the control scheme to improve the stability of the
system.

Essentially, this report discusses the feasibility of using the thrust forces as con-
trol inputs to observe and control the system. The goal to excavate empirical results
regarding the observability and controllability from MATLAB and Simulink simu-
lations of the system. The system is first linearized, its observability studied, and
then the propeller thrust forces were estimated using an open-loop state estimator.
The results showed that the thrust forces can be estimated accurately enough to be
used as control inputs to Model Predictive Control scheme, given that the model
approximations remain true.

v

A C K N O W L E D G E M E N T S

I would like to thank the Robotics and Mechatronics department for providing me
with the opportunity to work on a thesis that I have been passionate about for the
longest time, and accommodating my preferences and needs. Foremost, I would
like to thank my supervisors, prof.dr.ir. Antonio Franchi and dr. Chiara Gabellieri
for their continued support and encouragement throughout this assignment, even
when morale was low and times were tough. Dr. Chiara’s intelligence, enthusiasm
and motivation as my day to day supervisor helped me overcome the obstacles I
faced during this time period.

Furthermore, I would like to thank the Ph.D. candidates residing in Carré 3714

for providing me with endless free coffee and tolerating my temper tantrums and
existential dread. Special thanks to Yannik Wotte and Christophe van der Walt for
lending out a helping hand when the solutions were not always clear. Their insights
and patience have definitely helped me on a professional and personal level.

I would also like to thank Nikolai Schauer for being a friend in hard times, a
chauffeur when I fractured my ankle, an emotional beacon and a thesis writing
buddy.

A special thanks to dr.ir. Dennis Alveringh for being a part of my graduation
committee.

At last, I would like to thank Ph.D. candidate Youssef Aboudorra, who helped
me with the overarching mathematical topics even though he was not assigned to
be my supervisor.

vii

C O N T E N T S

1 introduction 1

1.1 General Overview . 1

1.2 Context . 1

1.3 Research Questions & Goals . 1

1.3.1 Questions . 1

1.3.2 Goals . 2

1.4 Thesis Outline . 2

2 literature review 3

2.1 Introduction . 3

2.2 Design, Modeling, and Control of a Novel Multirotor Thrust Force
Sensor [2] . 3

2.3 Optimal Kalman Filter for State Estimation of a Quadrotor UAV [3] . 4

2.4 Model Predictive Path-Following Control of an AR.Drone Quadrotor
[6] . 6

2.5 Conclusion . 6

3 modeling 7

3.1 Introduction . 7

3.2 Mathematical Model . 7

3.2.1 Overview . 7

3.2.2 Euler-Lagrangian Dynamic Equations 8

3.2.3 State of the Art . 9

3.3 System Linearization . 10

3.3.1 Overview . 10

3.3.2 Change of Coordinates . 10

3.3.3 Computing Equilibrium . 11

3.3.4 Jacobian Linearization to State Space Representation 12

4 system observability 15

4.1 Introduction . 15

4.2 Augmenting the States . 15

4.3 Observability . 16

4.3.1 Overview . 16

4.3.2 The Matrix . 16

4.3.3 First Results . 17

4.4 Conclusion . 18

4.4.1 Main Insights . 18

4.4.2 Model Reliance . 18

4.4.3 Back to Basics . 18

5 state estimation 19

5.1 Introduction . 19

5.2 Methodology . 19

5.2.1 Force Estimation . 19

5.3 Simulations & Results . 20

5.3.1 Overview . 20

5.3.2 Firing Up the Simulator . 20

5.4 Discussion . 21

5.4.1 General Remarks . 21

5.4.2 The Luenberger Observer . 22

5.5 Conclusion . 24

6 controller design 25

6.1 Introduction . 25

6.2 Controllability Matrix . 25

ix

x contents

6.2.1 Overview . 25

6.2.2 The Matrix . 25

6.2.3 Results . 26

6.3 Model Predictive Control Strategy . 26

6.3.1 Overview . 26

6.3.2 Mathematical Formulation . 26

6.3.3 MPC for Flight Control . 27

6.4 Conclusion . 27

7 discussion, conclusion & recommendations 29

7.1 Introduction . 29

7.2 Discussion . 29

7.2.1 Can the system be observed, taking into consideration the
added flexibility to the model, as well as the forces? 29

7.2.2 Is a state observer feasible to implement? 29

7.2.3 Is the system controllable? . 29

7.3 Recommendations . 30

7.3.1 The Optimal Kalman Filter . 30

7.3.2 Fully-Actuated Model . 30

7.4 Conclusion . 30

a matlab excerpt 33

a.1 Jacobian Linearization . 33

a.2 Observability Calculation . 33

a.3 Linear Model Inversion . 33

a.4 Trajectory Planning . 34

a.5 Controllability Calculation . 35

a.6 Mean Absolute Error . 35

b simulink 37

b.1 Model Overview . 37

b.2 Luenberger Observer . 38

c simulation results 39

c.1 Force-time graphs . 39

c.2 Error-time graphs . 40

L I S T O F F I G U R E S

Figure 2.1 How the Optimal Kalman Filter is used to minimize the vari-
ance of the predicted state x̂k to obtain an optimal state esti-
mate. 5

Figure 3.1 A picture of the plant, showing the variables that govern the
behavior of the birotor . 7

Figure 5.1 The force (N) - time (s) graphs of the estimated force (in
green) and the real force (in red), given a static trajectory. . . 21

Figure 5.2 Normalized error plot of freal − fest.. 22

Figure 5.3 A block diagram of a state observer, showing the plant, the
estimates of the mathematical model, and how by using neg-
ative feedback and adjusting the gain K, the error can be
minimized such that x and x̂ match. 23

Figure 5.4 A block diagram showing how a state observer reconstructs
the states by relying on the state-space model. 24

Figure 6.1 The principle of the cost function of model predictive control.
From [35] . 26

Figure 6.2 Block diagram showing the overall process of how MPC con-
trollers optimize the control sequence [34] 27

Figure B.1 Overview of the birotor model in Simulink (rotates 90◦) . . . 37

Figure B.2 State observer implementation in Simulink. 38

Figure C.1 The force (N) - time (s) graph of the estimated forces and the
measured forces, given a gentle moving trajectory. 39

Figure C.2 The force (N) - time (s) graph of the estimated forces and the
measured forces, given a gentle moving trajectory. 40

Figure C.3 Error (N) - time (s) graphs. 40

xi

1 I N T R O D U C T I O N

1.1 general overview
In recent years, unmanned aerial vehicles (UAVs) have grown in popularity in the
scientific community. As control technologies improved and associated costs de-
clined, their use expanded to many applications, such as monitoring and control of
natural disasters, photography, and surveillance [1].

In a multirotor (i.e. UAV with more than two rotors), the control scheme is said
to take the force produced by each propeller as inputs. The propeller’s thrust is, in
fact, empirically determined using motor and propeller specifications, thus linking
the thrust forces to the propeller’s angular velocity and the dynamic model itself.
This approach leaves the control scheme vulnerable to external conditions: loss
of communication, wind, propeller damage, motor failure, and other factors that
impact the actual value of the thrust forces [2].

This thesis will explore the possibility of using embedded elastic sensors (i.e.
strain gauges) to precisely estimate the propellers’ thrust forces, in an effort to
improve the control scheme of a given birotor.

1.2 context
Until now, in order to identify the input force to the control scheme of the UAV in
question, the spinning velocity of the propeller is used to compute the amount of
force. However, this is considered a crude estimation that is necessary, since con-
trolling the spinning velocity instantaneously and accurately is an approximation
in and of itself. At this stage, errors in the model itself translate into errors between
the commanded control force and the actual input force produced. Adding external
disturbances (e.g. air density, wind, walls, etc.) that affect the model, a closed loop
controller is preferred.

In this assignment, a state-of-the-art strain gauge is attached to each arm to mea-
sure a deflection angle, in an interest to find out what the propeller force is by
defining an empirical relationship between those measured deflection angles and
the propellers’ thrust forces. Note that such gauges introduce elasticity in the sys-
tem, which influences the model dynamics, as well as system observability and
controllability.

Given the aforementioned state of affairs, this research begins by defining clear
questions and goals.

1.3 research questions & goals

1.3.1 Questions

This research build up on the findings of an alumnus of the University of Twente,
Bernard Prakken, who found an empirical relation between the measurement of the
strain gauges and the thrust forces of the propeller. The main research question in
this project is whether or not it is actually feasible to use this empirical relation to

1

2 introduction

observe and control a system model of a birotor, taking into account the flexibility
introduced by the elastic sensors.

Answering this research question is substantial to the Robotics and Mechatronics
group at the University of Twente. In the aerial robotics subgroup, it occurs more
often than not that the UAVs are used to perform menial labor and force exertion,
in which cases it would be beneficial to know the thrust output of the propellers of
the UAV in question, and be able to use that as an input to the control scheme.

1.3.2 Goals

The goals of this research can be discretized into clear bullet points that relate to
the overarching topics that are meant to be studied throughout this thesis: system
modeling and control.

System Modeling

This topic concerns itself with representing the UAV system in question using a
set of mathematical equations (i.e. a mathematical model). By manipulating this
mathematical model, the design and analysis of the controller is made possible.
Thus, the following goals are defined:

1. Study the observability of the birotor in question.

2. Decouple the dynamic system of linear equation.

3. Estimate the states of the system, given that the propeller forces are also part
of the state.

Control

This topic concerns itself with the analysis of a controller: finding the output when
the input and the mathematical model are known, and closing the loop such that
the system is considered stable. Thus, the following goals are defined:

1. Estimate the parameters of the values that govern system behavior, such as
the time constant of the first-order relation between the desired PWM and the
propeller’s actual velocity.

2. Design a controller with the commanded velocity or PWM to the propellers as
inputs. Specifically, Model Predictive Control can be used to exploit the new
measurements to improve tracking control of the UAV.

1.4 thesis outline
Considering that the aforementioned goals are the pillars of this assignment, this
thesis paper will have the following construction:

1. Literature Review

2. Modeling

3. System Observability

4. State Observer

5. Controller Design

6. Discussion, Conclusion & Recommendations

2 L I T E R AT U R E R E V I E W

2.1 introduction

A literature review was carried out in order to identify relevant research papers
and scholarly sources. Upon reviewing and surveying these papers, an overview
of current knowledge on this topic is provided, allowing for the identification of
relevant theories, mothods, and gaps in existing research.

In this section, three research papers are evaluated in terms of their relevance to
the topic of this report and their most important insights highlighted and discussed.

2.2 design, modeling, and control of a novel mul-
tirotor thrust force sensor [2]

Written by an alumnus of the University of Twente, E.B. (Bernard) Pakken, this first
paper serves as a general overview of the problem at hand. In the introduction to
this paper, a similar problem is described: the rotor velocity is the actual input to
the control scheme, albeit the thrust force of the propeller being widely considered
as the input. This is because the thrust force is seen to have an effect on the position
and orientation of the UAV, which are system states. In this paper, the implemen-
tation of strain gauges, that essentially function as sensors, in a multirotor UAV is
explored, discussed and analyzed.

The paper makes the following proposition: the strain gauges measure the strain
in the arms they are mounted on, that is produced by the thrust of the propeller
associated to the arm. Such measurement goes hand in hand with a deflection
angle, as previously described in the introduction of this literature review, thus
introducing flexibility. This flexibility is, according to this paper, as unwanted effect,
since it causes unwanted vibrations and can lead to an uncontrollable system.

Contextually speaking, the paper focuses on the design of the strain gauges and
how different setups and environments influence the resulting measurement. How-
ever, in chapter 1, the paper talks about something more relevant: the System Mod-
elling of the UAV. To avoid over-complexity, the model should require as few pa-
rameters as possible, while still faithfully representing the system. In the model, it
is important to include the flexibility in the arms that is introduced by the strain
gauges. This leads Pakken to formulate his research goal: can the strain that is
measured by the strain gauges be related to the amount of force of the propellers?
This research is crucial. Based on the answers to this research question, the control
scheme of the UAV at hand can be changed drastically.

Lastly, in section 6.3, the paper tackles an extremely insightful and relevant topic:
the Observability of the system. An observability analysis was carried out in order
to discuss the relationship between the joint angles (i.e. deflection angles) and the
thrust force. Throughout section 3, the author assumes that the sensor is a fixed,
rigid body, and uses the EulerBernoulli beam theory to connect the two parameters
in question. However, when the UAV is flying, the sensors are not clamped or fixed
to anything, due to the absence of ground. Therefore, an empirical research that
put the dynamics of the UAV to the test was carried out.

3

4 literature review

It was expected that the applied force F and the joint angle β to have a linear re-
lationship. While some test trajectories did indeed show a linear relationship, with
the peaks and valleys of sinusoidal signals lining up perfectly, (See figures 6.13 and
6.15), one of the trajectories proved that this assumption does not hold. The result
in question is shown in figure 6.14. The trajectory demonstrated the UAV mov-
ing along the positive side of the x-axis, which means that the UAV has to rotate
horizontally. This causes one of the motors to exert a higher force than the other,
and vice versa when the UAV stops. Based on these results, the author concluded
that applied thrust force can not be measured through linear computations, thus de-
bunking the Euler-Bernoulli model discussed previously. Essentially, this paper acts
as a proof of concept: the force can indeed be estimated (under some reservations
and conditions) from the angle of deflection that is measured by the strain gauges,
based on empirical research that the author generously carried out and provided.

2.3 optimal kalman filter for state estimation
of a quadrotor uav [3]

After successfully modeling the system and simplifying the system equations, the
states of the system need to be estimated. In control theory, state observers or state
estimators provide an estimate of the internal state of a given real system (i.e. the
multirotos with embedded elastic sensors) [4]. To do so, measurements of the input
and output of the real system are required, and obtaining such measurements has
been established in the second section of this paper. By combining information
about a system’s behavior and external measurements to estimate the true state
of the system, a state observer can be implemented successfully. As previously
discussed, the system in question is linear. A common observer used for linear
systems is the Kalman Filter.

This research paper has a main objective of studying the Optimal Kalman Fil-
tering method for estimating the states of a UAV. In control theory, a Kalman Fil-
ter (also known as Linear Quadratic Estimator) is an algorithm that uses a series
of measurements observed over time, while incorporating internal disturbances,
including the white Gaussian process (statistical noise), measurement noises and
other inaccuracies. Drawing from probability theory, the estimates that the Kalman
filter produces are more accurate in comparison to the estimates produced from
one measurement [5]. This, however, implies that a Kalman filter requires sufficient
measurements.

The authors also provide the design of a discrete-time flight controller in order to
perform high accuracy position and altitude tracking. However, since this paper is
only relevant for its Optimal Kalman Filtering, the controller design section of this
paper will not be discussed.

The paper starts by introducing the kinematic and dynamic model of the quadro-
tor. From the basic understanding of Kalman filtering, it is clear that the dynamic
characteristics of the quadrotor must be known in order to successfully build the
Kalman filter for the state estimation. Therefore, the system is expressed in the form
of a discrete-time state model:

x(k + 1) = Ax(k) + Bu(K) + Gw(k)

y(k) = Cx(k) + v(k)

where x(k) is the state vector at time k, A is the state transition matrix, B is the
control distribution matrix, G is the transition matrix of system noises, y(k) is the
measurement vector at time k, C is the measurement matrix, w(k) and v(k) are the
white Gaussian process and measurement noises.

Hereafter, the Kalman filter is found by separating the process into 5 steps:

2.3 optimal kalman filter for state estimation of a quadrotor uav [3] 5

1. State prediction: the Kalman filter produces estimates of the current state
vector x(k), along with its associated uncertainties that were previously men-
tioned.

2. Covariance prediction: these estimates are then updated as a new measure-
ment is obtained using a weighted average, where the weights are calculated
from the covariances in the system.

3. Kalman gain: the estimates that have greater certainty are assigned more
weight. This certainty-grading of the current state vector and new measure-
ments can be discussed in terms of the Kalman filter’s gain. The Kalman gain
is essentially the weight given to the measurements and current state vector,
which can be ”tuned” to achieve a particular performance.

4. State estimation: since the Kalman filter algorithm is recursive, the process is
repeated at every discrete time step k to reach an optimum value for the state
vector.

5. Covariance estimation: the Kalman filter also estimates the covariance matrix,
since the new estimate and its covariance inform the Kalman filter about the
prediction of the next iteration. As the Kalman filter reaches an optimum state
vector, an optimum covariance matrix is also found.

fig. 2.1 shows, graphically, how the Kalman Filter uses the probability density
functions of the states (i.e. the covariance) to estimate, or tune, the optimum value
for the state vector.

Figure 2.1: How the Optimal Kalman Filter is used to minimize the variance of the
predicted state x̂k to obtain an optimal state estimate.

The paper proceeds to test the Kalman filter in combination with the flight con-
troller. The simulation tests included both process and measurement noise, and the
authors reached the following conclusions about the Kalman filter:

“Under the noise disturbances, the high accuracy position and atti-
tude tracking are obtained using the Optical Kalman Filter. The Optical
Kalman Filter is an effective estimation method in autonomous naviga-
tion systems, especially its good robustness to measurement noise.”

6 literature review

2.4 model predictive path-following control of
an ar.drone quadrotor [6]

The final stage to be addressed in this literature review is the controller design. This
last paper addresses the design and implementation of Model Predictive Control for
path-following in a UAV. Model Predictive Control is a novel concept to electrical
engineering bachelor students, this paper is deemed very relevant and useful for its
comprehensible overview of MPC.

In section 2, the authors write:

“Model Predictive Control (MPC) is a general designation for con-
trollers that make an explicit use of a model of the plant to obtain the
control signal by minimizing an objective function over a time horizon
in the future.”

In control theory, Model predictive control (MPC) is an advanced method of con-
troller design that is typically used for plants with a certain set of constraints. Such
controllers usually rely on linear empirical models, thus rendering MPC suitable for
this assignment. The main advantage of MPC is that it predicts the change in the de-
pendent variables (constraints) of the system (that are caused by the changes in the
independent variables, such as disturbances). MPC considers an iterative, finitehori-
zon optimization of a model. By using current system measurements and dynamic
states, the MPC calculates the future changes in dependent variables. These changes
are calculated to hold the dependent variables close to target while honoring con-
straints on both independent and dependent variables [7].

2.5 conclusion
In conclusion, all points mentioned in the introduction have been assessed through
the means of reviewing relevant, peer-reviewed research papers. Pertinent and
applicable insights and information have been extracted, discussed, and critiqued
in terms of how helpful they are to the assignment. This literature review may then
continue to be a solid ground for this bachelor thesis.

3 M O D E L I N G

3.1 introduction
In control system theory, a plant or a system can be represented with a set of math-
ematical equations known as a mathematical model [8]. Such models, as previously
shed light upon, are useful for the analysis and design of control systems.

In this chapter, the model will be introduced, its nuances explained, linearized
and manipulated into a state space form such that its observability and controllabil-
ity can be studied.

3.2 mathematical model

3.2.1 Overview

Considering the birotor in question, a list of variables may be defined to describe
the plant, as shown in fig. 3.1.

Figure 3.1: A picture of the plant, showing the variables that govern the behavior of the
birotor

The angles of deflection b1, b2 are measured using the state-of-the-art elastic sen-
sors and are defined in an inertial frame of reference, as well as their derivatives.
The same applies to the tilt angle ϕ, then length L of the propeller arm, the mass
m of the UAV, and the masses of the propeller arms. The position of the center of
mass of the birotor, velocity and acceleration (i.e. the first and second derivatives
of the position, respectively) of the birotor are also defined in the inertial frame of
reference and are included in the system configurations. The birotor is essentially a
projection of a quadrotor on a plane; the position is then defined as:

p =

[
x
z

]
(3.1)

7

8 modeling

The system configurations are defined as follows:

q =

p
ϕ
b1
b2

 , q̇ =

ṗ
ϕ̇

ḃ1
ḃ2

 , q̈ =

p̈
ϕ̈

b̈1
b̈2

 (3.2)

The propeller positions are defined in terms of the position p of the center of
mass of the birotor, the length of the propeller, the angle of deflection and the tilt
angle ϕ. This transformation is done by the means of a rotation matrix to go to the
body-fixed frame of reference:

R =

[
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

]
(3.3)

This matrix is typically used to rotate points in a 2-dimensional plane counter-
clockwise through an angle ϕ with respect to the original position p [9]:

ppropeller = p + R(ϕ)(R(b1,2)L) (3.4)

The velocities of the propellers are also defined by taking the jacobian of eq. (3.4).
These velocities are important in the calculation of the kinetic energy of the birotor
to be substituted in the Euler-Lagrangian dynamic equation.

3.2.2 Euler-Lagrangian Dynamic Equations

In theory of robotics, the Euler-Lagrangian equations are an energy-based method
that is used to represent dynamic equations in a symbolic form [10]. This method
is typically used to to study the dynamic properties of systems and analyze control
schemes. A general assumption that all N links in the model are rigid bodies [11].

Considering eq. (3.2), the Lagrangian function is written as follows [12]:

L(q, q̇) = K(q, q̇)− U(q) (3.5)

Where T and U are the kinetic and potential energies of the model, respectively.
By assuming the stationary-action principle1 as well as the principle of virtual
work2, the Euler-Lagrangian equations can then be written as:

d
dt

∂L
∂q̇i

− ∂L
∂qi

= τi (3.6)

Where τi is defined as the non-conservative generalized forces, for i = 1, ..., N
[11].

The kinematics of the UAV are calculated by first finding the potential and kinetic
energies, as dictated by eq. (3.6). The kinetic energy is calculated while taking
into consideration the mass of the birotor, the mass of the propellers, the angular
velocity ϕ̇, the velocity of the birotor, and the velocities of the propellers, to fulfill
the equation:

K =
1
2

mv2 (3.7)

1 The stationary-action principle is a variational principle that produces the equations of motion of a
mechanical system when applied to that system [13]

2 The principle of virtual work states that in equilibrium the virtual work of the forces applied to a system
is zero [14]

3.2 mathematical model 9

The potential term U includes both the gravitational potential energy and the
elastic potential energy that is introduced by the flexibility of the strain gauges,
both fulfilling the equations:

Ugravitational = mgh (3.8)

Uelastic =
1
2

kx2 (3.9)

Where g is the gravitational acceleration of approximately 9.81ms2, and k is the
elastic spring constant of the strain gauges (refer back to Prakken’s paper). After
finding K and U, eq. (3.5) can then be found and substituted in eq. (3.6).

3.2.3 State of the Art

The non-conservative generalized forces found in eq. (3.6) can be expressed in terms
of inertia, coriolis and gravitational forces:

M(q)q̈ + C(q, q̇) + G(q) = τ (3.10)

To find an expression for all system configurations q̈, M, C and G have to be found
first before rearranging eq. (3.10) to change the subject to q̈. Essentially, eq. (3.6) is
expanded into a linear inertial terms M that is dependant on the acceleration q̈,
quadratic centrifugal and coriolis terms C that are dependant on the velocity q̇, and
nonlinear gravity terms that are dependent on the configuration q [11].

M = J(τ, q̈) (3.11)

G =

0

g(m + 2mp)
−Lgmp(cos(b1 + ϕ)− cos(b2 + ϕ))

b1k − Lgmpcos(b1 + ϕ)
b2k + Lgmpcos(b2 + ϕ)

 (3.12)

C = τ − M − G (3.13)

Where M is the jacobian of the non-conservative forces τ with respect to q̈, and
G is found by exploring the dependency of each entry in the system configuration
q on gravity [15].

The most recent stage in the development of this model assigns symbolic values to
the all system configurations q̈. The following equation fully describes the actuated
dynamics of the birotor in question.

q̈ = M−1(−C − G + τ) (3.14)

Using MATLAB’s Symbolic Math Toolbox [16], q̈ can be represented, manipu-
lated and solved symbolically, without having to assign values to all of the afore-
mentioned variables. This allows for the analysis to take on a more comprehensive
approach, where the states, their trajectories, and the controller behaviour can be
clearly observed.

10 modeling

3.3 system linearization

3.3.1 Overview

The birotor in question, much like most real systems, exhibits nonlinear behavior,
where its inputs and outputs can be expressed in the form{

ẋ = f (x, u)
y = h(x, u)

Typically, it is an arduous process to analyze nonlinear systems and use them in
controller design [17]. Therefore, nonlinear systems are linearized to obtain a linear
model that is much easier to deal with.

Given the current system equations, a few steps need to be taken before the
system can be approximated linearly to a state space model.

3.3.2 Change of Coordinates

In order to simplify the system equations, consider the sum of and difference be-
tween the two deflection angles, where the sum bs = b1 + b2 and the difference
bd = b1 − b2. This simple substitution allows for q̈ to be simplified into simpler
terms, and will allow for the linearization process to be easier as well, as will be
explained later.

In order to introduce these variables, the system equations need to be rewritten
in terms of those new variables. This means that the system equation needs to be
rewritten from

q =

p
ϕ
bs
bd

 , q̇ =

ṗ
ϕ̇

ḃs
ḃd

 , q̈ =

p̈
ϕ̈

b̈s
b̈d

 (3.15)

Starting with q: by changing the subjects, the deflection angles can be substituted
in the system equations with:

b1 =
bs + bd

2
(3.16)

b2 =
bs − bd

2
(3.17)

Moving on to q̇: the derivative terms ḃs and ḃd can be substituted into q̇, by simply
differentiating eq. (3.16) and eq. (3.17), and carrying out the following substitution:

ḃ1 =
ḃs + ḃd

2
(3.18)

ḃ2 =
ḃs − ḃd

2
(3.19)

Finalizing with q̈: in order to change the coordinates for q̈, the second derivative
terms b̈s and b̈d have to first be found out.

Consider the original q̈ in eq. (3.2). The aforementioned derivative terms can
simply be found out via some matrix manipulation:

b̈s = b̈1 + b̈2 = q̈4 + q̈5 (3.20)

b̈d = b̈1 − b̈2 = q̈4 − q̈5 (3.21)

3.3 system linearization 11

where q̈4 and q̈5 denote the 4th and 5th entries in q̈ respectively.
Now that all matrices are written in terms of bs, bd, and their derivative terms and

all required substitutions have been carried out successfully in the system equations,
the change of coordinates is complete.

3.3.3 Computing Equilibrium

The key idea to linearizing the system is to create a linear approximation of the
nonlinear system that is valid in a small region around an operating point, known
as the equilibrium point. At this point, all states are constant (i.e. their derivative
terms are equal to zero) [17].

Mathematically, a system that is described by a differential equation ẋ = f (x, u)
has an equilibrium point (xe, ue) if f (xe, ue) = 0.

In order to solve for the above equation, the system is redefined as follows:

x =

[
q
q̇

]
, ẋ =

[
q̇
q̈

]
(3.22)

By rewriting the system equations as shown in eq. (3.22), the equations to be
solved are clearer: to find (xe, ue), the derivative terms ṗ, ϕ̇, ḃs and ḃd are zeroed,
and then ẋ has to be equated to zero.

Using MATLAB, the equations to be solves are as follows:

bdk(bsm + bsmp + mϕ)

Lm(m + 2mp)
== 0 (3.23)

− bdk + Lgm
Lm

== 0 (3.24)

bsk
J

== 0 (3.25)

−
JL f1 − JL f2 + Jbsk + 2L2bskmp

JL2mp
== 0 (3.26)

−
L f1m + L f2m + bdkm + 2bdkmp

L2mmp
== 0 (3.27)

These equations were then solved manually to maintain the integrity of the calcu-
lation.

• By taking a look at the equations above, it can be noticed that the position p
does not show up in the equations. This is because the position of the UAV in
the inertial frame of reference does not influence its equilibrium and stability
in any way, and can therefore be left as symbolized variables in xe.

• The tilt angle ϕ was set to zero, since the model assumes near hovering con-
ditions of the UAV at static equilibrium. The model also assumes small angle
approximations.

• From eq. (3.25), bs = 0 at equilibrium. This makes sense; the deflection angles
are equal and opposite to one another (refer back to fig. 3.1).

• From eq. (3.24), at equilibrium:

bd = − Lgm
k

When bd is then substituted back into the expression for position x, the gravity
term g will appear. This makes sense, because the birotor performs the un-
deractuated dynamics of a quadrotor, yet cannot translate in the x-direction.
The birotor has to first tilt, and then move in the x-direction, and this tilting is
dependant on g.

12 modeling

• To find u3, eq. (3.26) and eq. (3.27) were solved simultaneously:

f1 = f2 =
1
2

g(m + 2mp)

This, again, makes sense that the propellers will exert equal forces at equilib-
rium, to counteract the gravitational force.

After finding the equilibrium point, the system may then be linearized around
this point.

3.3.4 Jacobian Linearization to State Space Representation

A linearized model can be fully expressed by state space equations in the form:

ẋ = Ax + Bu (3.28)

y = Cx + Du (3.29)

where eq. (3.28) is the dynamic equation in terms of the state matrix A and input
matrix B, and eq. (3.29) is the output equation of the system in terms of the output
matrix C and feed-through matrix D.

This section will explore the expression of eq. (3.28).

The linearization is based on Taylor approximations [18], where:

ẋ = f (x, u) = f (xe + δx, ue + δu)

≈ f (xe, ue) +
∂ f
∂x

|xe ,ue δx +
∂ f
∂u

|xe ,ue δu
(3.30)

By relating eq. (3.30) to the dynamic equation eq. (3.28), it can be concluded that:

A =
∂ f
∂x

|xe ,ue (3.31)

B =
∂ f
∂u

|xe ,ue (3.32)

Matrix A is then known as the Jacobian of f with respect to x, essentially repre-
senting the first differential of f at every point where f is differentiable over small
variations of x around the equilibrium point (xe, ue). Matrix B is, in turn, the Jaco-
bian of f with respect to u, and represents the first differential of f at every point
where f is differentiable over small variations of u around the equilibrium point
(xe, ue) [19].

In MATLAB, this process is relatively easy, as can be seen in appendix A.1, thanks
to the inbuilt jacobian function [20]. The following matrices were found:

3 u is the input, which can be expressed with the propeller thrust forces, where u =

[
f1
f2

]
.

3.3 system linearization 13

A =

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 −g −g m+mp

m+2mp
0 0 0 0 0 0

0 0 0 0 − k
Lm 0 0 0 0 0

0 0 0 k
J 0 0 0 0 0 0

0 0 0 −k 2mp L2+J
JL2mp

0 0 0 0 0 0

0 0 0 0 −k m+2mp
L2mmp

0 0 0 0 0

(3.33)

B =

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

− 1
Lmp

1
Lmp

− 1
Lmp

− 1
Lmp

(3.34)

These matrices can then be plugged back into eq. (3.28) to provide a full repre-
sentation of the aerodynamic system. In this representation, all state derivatives
are considered with respect to their dependencies on the state vector and the input
propeller’s thrust forces.

Some important observations that can be made about the state equation are:

• The first 5 entries, which concern the first derivatives of the state, show that
the homogeneity of the equation is preserved: the velocities are not influenced
by the the force inputs and are only dependent on themselves.

• As previously explained, the acceleration in the x direction shows dependen-
cies on gravity, given that g appears in the 6th entry in matrix A, which con-
firms the speculations made about the under-actuated dynamics of the birotor.

• By looking at matrix B, the only non-zero entries are the last two row entries.
This means that the force inputs only influence the angular accelerations of
the small angle deflections bs and bd.

The output dynamics in eq. (3.29) will be derived after what is known as state
augmentation, explained in section 4.2.

4 S Y S T E M O B S E R VA B I L I T Y

4.1 introduction
In control system theory, the system must be deemed observable in order to see the
processes that are taking place inside the system under observation. In essence,
observability is the ability to measure the internal states of a system by examining
its outputs, namely sensor data [21].

One of the main goals of this research is to determine whether the propeller thrust
forces can be estimated and are observable by relying on the measured propeller
speed output. In order to verify this, the states of the system have to be augmented,
such that the propeller forces are considered to be part of the states. Then, the ob-
servability can be studied depending on which outputs are selected as observable.

4.2 augmenting the states
In order to find the state space representation of the output that is necessary to
study the observability of the system, the states need to be augmented first. This
means that the propeller thrust force will be considered as part of the state vector x̃.
In this way, the observability analysis will be more meaningful. Therefore, the state
vector can be rewritten as follows:

x̃ =

q
q̇
f1
f2

 =

[
x
u

]
(4.1)

since the thrust propeller forces are lumped together in the input vector u.
Therefore, considering eq. (4.1), the augmented state space representation can be

written as follows:

˙̃x =

[
ẋ
u̇

]
= Ãx̃ + B̃ũ

=

[
A B
0 0

]
x̃ +

[
1 0
0 1

]
ũ

(4.2)

where ũ is selected to include the first derivatives of the thrust forces, ḟ1 and ḟ2
to maintain the homogeneity of the equation.

The output eq. (3.29) will also be augmented, where the augmented output matrix
C̃ ”selects” which outputs are of interest with regards to estimating the propeller
thrust forces.

To properly address the main goal of this research, the deflection angles will be
selected, since the whole idea is to explore the feasibility of estimating the thrust
forces via the deflection angles measured by the strain gauges attached. Therefore,
bs, bd, ḃs and ḃd will be selected by C̃. Intuitively speaking, the position p and the
the tilt angle ϕ, as well as their first derivatives, need to be selected in the output
matrix such that the plant is observable. Considering that C̃ is a row matrix, 1’s can
be inserted in correspondence to the selected states. Therefore:

15

16 system observability

C̃ =

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

(4.3)

where the 1’s correspond to x, z, ϕ, bs, bd, ẋ, ż, ϕ̇, ḃs and ḃd in order, and the 0’s
correspond to f1 and f2.

In this application, the feed-through matrix D̃ is zero. As long as the mathemati-
cal model of the birotor is understood and accurately captured, which has already
been established, matrix D̃ can provide a performance boost that can mitigate some
unwanted influences of controllers, e.g. a PID controller. Therefore, in this case,
matrix D̃ is set to zero, and further exploration of what this matrix could be is done
after the controller design.

The output eq. (3.29) can then be written as follows:

ỹ = C̃x̃ (4.4)

4.3 observability

4.3.1 Overview

Now that the system is modeled in state space representation, its observability can
be studied using conventional methods, such as the observability matrix. This sec-
tion will provide a more formal and full definition of observability, adding onto
section 4.1.

Circling back to the original research question, it is important to find out whether
the forces can be estimated. After augmenting the states and considering the forces
to be state variables, some limitations are introduced to the calculation of the ob-
servability of the system. Considering the forces as state variables allows us to
explore whether their state trajectories can be estimated by measuring the outputs
of the strain gauges.

4.3.2 The Matrix

Drawing from this definition, the observability matrix makes use of the output
matrix and the state matrix to determine how many observable states exist in a
system. Formally, the observability matrix is calculated as follows:

O =

C
CA
CA2

.

.

.
CAn−1

(4.5)

4.3 observability 17

where n is the number of state variables [22]. In this case, the augmented C̃ and
Ã are used in the calculation of the observability matrix.

The rank of the observability matrix, as calculated in eq. (6.1), is the measure that
is sought out. In linear algebra, the rank of a matrix is defined as the vector space
that is spanned by its columns. Ideally, the rank of the observability matrix should
be equal to the number of states in the state vector. If that is the case, then the
system is fully observable.

In MATLAB, the obsv function that calculates the observability of a given system
does not accept symbolic input arguments [23]. Therefore, a new function was
written, found in appendix A.2 to calculate the observability of the system.

The observability matrix of this system has full rank, which means that all states
are observable [22]. Note that matrix C̃ selects all possible hypothetical sensors,
which is inefficient and not realizable. The next step is to select as few states as pos-
sible, in turn utilizing fewer sensors, that allow the observability matrix to sustain
its full rank.

4.3.3 First Results

The matrix C̃ shown in eq. (4.3) was adjusted to select as few states as possible, such
that the observability matrix O, shown in eq. (6.1) to maintain its full rank.

When only the states bs and bd are selected, the rank of the observability matrix
turns out to be 6. This means that, out of the 12 states, 6 of them are observable. The
null space of O holds the information that indicates which states these are, and is
usually referred to as the unobservable subspace [24]. Using MATLAB function null()

[25], the unobservable subspace is:

null =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

(4.6)

where the 1’s correspond to the unobservable states. Considering the state vector
is eq. (4.1), it can be seen that the unobservable states are x, z, ϕ, ẋ, ṗ, ϕ̇. This
means that, by only measuring the deflection angles, then the deflection angles
themselves are observable, their derivatives, as well as the thrust forces.

After reaching this resounding result, matrix C̃ was changed to see how utilizing
different sensors affects the observability of the system. The following observations
were made:

• If the positions x and z are not explicitly selected, they will remain unobserv-
able, even if their derivatives ẋ and ż are selected.

• If the output matrix C̃ selects only the positions x and z, then the observability
matrix O has full rank, and the system is fully observable.

18 system observability

4.4 conclusion

4.4.1 Main Insights

In chapter 4, the first results of this research were found: the thrust forces of the
propellers can indeed be estimated through the strain gauge measurements, i.e. the
small angle deflections of the arms.

By further examining how different measurements influence the observability
of the system, it was found out that measuring the position provides complete
observability of the system. This is not strange, since, at the end of the day, a linear
system can be considered a chain of integrators, and the output is measured at the
end of this chain.

4.4.2 Model Reliance

This result, however, shows that the system is currently reliant on the mathematical
model itself, as described in section 3.2. This might be an indicator that the approx-
imations that were made to obtain a linear model of the birotor were, in fact, not
true to the real physical system. It could be argued that some information about
the real physical system was lost along the way, which gives counterintuitive results
while exploring the observability of the system.

This could potentially be solved by relaxing some of the assumptions and approx-
imations in the model, or by introducing an additional state to the system that rep-
resents the uncertainty. In this way, the observability analyses could be conducted
in a more meaningful way.

However, the estimation of the forces from the position could be very slow, prone
to noise, and not robust to model uncertainties. So, it is still interesting to see of the
forces are observable from the angles.

4.4.3 Back to Basics

These insights and conclusions beg the question: is the original research goal prop-
erly formulated?

Given a multirotor, it could be considered a rigid body, to which forces are ap-
plied such that it hovers, translates, and rotates. In order to be able to control an
input, e.g. these applied forces, they have to be assigned precisely. Usually, it is
assumed that there is a linear map between the spinning velocity of the propellers
and the thrust forces of the propellers, and it is therefore sufficient to use the spin-
ning velocities as control inputs1. However, the existence of this linear, fixed map
is untrue. It is not possible to assign the forces with such great precision as to
control them, which is the main premise of this thesis. The main function of the
strain gauges is to be able to estimate the trajectories of the thrust forces, so that the
control loop can be closed on the forces as inputs.

The strain gauges introduce flexibility in the system, as previously described in
section 3.2. The observability analysis in section 4.1 should answer the question: is
it feasible to estimate the propeller thrust forces using the measurements from
the stain gauges?

The results that are discussed above show that the position of the rotor can be
used to estimate the forces, which implies that the current system is heavily reliant
on the model, and is very sensitive to uncertainties and external disturbances.

The point of ”closing the control loop” and using feedback, is to cope with the
uncertainty of the parameters.

1 There is a cascading controller effect, since there is a controller (considered a black box in this thesis) that
assigns the spinning velocity to the propeller as requested.

5 S TAT E E S T I M AT I O N

5.1 introduction

Currently, the system has been deemed fully observable, albeit being very sensitive
to external disturbances. The next step is to implement a state observer. In control
theory, a state observer is a dynamical system that produces estimates of the state
variables of the system under consideration. In order to close a feedback loop to
control and stabilize a system, all of its state space variables must be available at all
times [21][26]. This, intuitively, is not feasible. It is usually not practical to measure
all state variables, since the added sensors will also add weight, complex modeling
dynamic, and are costly. Therefore, by using a state observer, the system can be
reconstructed from the available measurements.

In this chapter, a Simulink model has been provided, based on the mathematical
model described in section 3.2. The goal is to estimate the forces, and compare
these results to what is produced by the empirical relation defined by Prakken
in section 2.2. This comparison will allow us to draw conclusions whether the
estimation is adequate enough to control and stabilize the system. An overview of
the model is shown in appendix B.1. This model was developed by Ph.D. candidate
Youssef Aboudorra, for the master’s course Control for UAVs, and further adapted
by alumnus Bernard Prakken to suit the specific birotor in question by defining a
separate MATLAB file parameters.m that includes all birotor specifications. This file
gets called by Simulink when the model is opened.

5.2 methodology

5.2.1 Force Estimation

Overview

By looking at the original state equation eq. (3.28), given that the input u =

[
f1
f2

]
,

the forces can be estimated via linear model inversion. What this means is that,
by looking at the state derivatives and their dependencies on the state variables as
well as the forces, it is possible to re-arrange the dynamic equation to make u the
subject, and estimate the forces using the available states and state derivatives from
the measurements.

To elaborate, consider the last two entries in the dynamic equation (which are the
only two entries that are influenced by the input forces, see section 3.3.4), taking
into consideration eq. (3.33) and eq. (3.34):

[
b̈s
b̈d

]
=

−k 2mp L2+J
JL2mp

0

0 −k m2mp
L2mmp

 [
ḃs
ḃd

]
+

[
− 1

Lmp
1

Lmp

− 1
Lmp

− 1
Lmp

] [
f1
f2

]
(5.1)

Given that the angular velocities and accelerations of b1 and b2 are known from
the model, eq. (5.1) can be rearranged as follows:

19

20 state estimation

[
f1
f2

]
=

[
− 1

Lmp
1

Lmp

− 1
Lmp

− 1
Lmp

]−1([
b̈s
b̈d

]
−

−k 2mp L2+J
JL2mp

0

0 −k m2mp
L2mmp

 [
ḃs
ḃd

])
(5.2)

Implementation

This is considered an open-loop estimator, and is a concrete first step to affirm
that the forces can indeed be estimated, given that the model closely resembles the
birotor. To test this in Simulink, a new MATLAB function block was created to take
in ḃs, ḃd, b̈s, b̈d, and calculates the forces using the matrix inversion according to
eq. (5.2). It is important to note that all the aforementioned inputs are assumed to
be readily available from the sensors on the birotor, i.e. the strain gauges, and can
be directly used from the model.

Since the model is non-linear, whereas matrix inversion is drawn up from the
linearized model that operates around an equilibrium point, it is important to define
that operating equilibrium point for the inputs to the MATLAB block. As was
explained in section 3.3.3, given that all the inputs are first and second derivatives,
their equilibrium is defined as 0. The operating point for the forces, previously
calculated, is found by running the nonlinear Simulink model and noting down the
steady-state value of the forces. The value was found to be 22.4465N. This MATLAB
function can be found in appendix A.3

The output can then be plotted and compared to the forces produced by the non-
linear model. A trajectory planning block is defined, such that a reference trajectory
can be fed to the UAV model (including a position and a rotation trajectory). This
allows us to explore what the UAV would do under different circumstances, thus
allowing us to draw more concrete conclusions.

5.3 simulations & results

5.3.1 Overview

In Simulink, a trajectory planning block is defined such that it is possible to ex-
plore the UAV’s behavior when subjected to different reference trajectories - at near-
hovering conditions, as well as trajectories that vary from gentle maneuvers to more
aggressive ones. The trajectory planning block consists of a position trajectory and
a rotation trajectory in 3D space. The initial conditions are first defined, then the
trajectory is set by defining the end conditions of the trajectory. The MATLAB code
for the trajectory planning can be found in appendix A.4.

5.3.2 Firing Up the Simulator

Since the linearized model, and in turn the estimation of the forces, is based on the
assumption that the UAV is in near-hovering position, the position trajectory was
set such that the UAV does not move from its initial position or rotate. Given that
the two forces are identical, and so are their estimated counterparts, only one of the
two forces is plotted in fig. 5.1, along with its estimation.

More tests were conducted to see how the estimator behaves as the UAV moves.
The reference rotation trajectory was kept the same, but the UAV was instructed
to move from p = (0, 0, 0) to p = (0.5, 0, 0.5) and p = (1, 0, 1) (respectively, in two
separate tests) in the xz-plane, thus maintaining the homogeneity of the 2D model.
The position trajectory is set to follow a smooth, quintic polynomial function, such
that the UAV does not undergo any aggressive maneuvers that would be considered
far from the operating point. The results to these simulations can be found in
appendix C.1, and are consistent with the results displayed in fig. 5.1.

5.4 discussion 21

(a) Full-scale.

(b) Close-up.

Figure 5.1: The force (N) - time (s) graphs of the estimated force (in green) and the real
force (in red), given a static trajectory.

5.4 discussion

5.4.1 General Remarks

From the previous plots, it can be seen that the force estimator tracks the real forces
with minimal visible error. Some general remarks as summarized below:

• The estimator takes a number of samples to start tracking the forces. This is
because of how Simulink initializes the force estimator.

• The force estimator is sensitive to noise. If the real forces show any small
fluctuations, the estimator output amplifies these fluctuations, before tracking
the real forces closely again. This sensitivity to noise implies that the estimator

22 state estimation

is reliant on how accurate the linearized model is, making the force estimator
vulnerable to external disturbances.

• The error between the real and estimated forces seems to fluctuate in a sinu-
soidal waveform similar to the steady-state waveform of the forces. However,
these fluctuations remain between ± 0.003, and the larger spikes remain be-
tween ± 0.004 - 0.014, with anomalies that can reach 0.029. The results re-
mained consistent throughout all 3 tests (see fig. 5.2 and compare with the
figures in appendix C.2). This is a mean absolute error of 0.017N, which is
negligible compared to the actual quantities of the forces. The calculation of
the mean absolute error is shown in appendix A.6.

Figure 5.2: Normalized error plot of freal − fest..

5.4.2 The Luenberger Observer

Overview

In control theory, a state observer is often dubbed as a Luenberger observer, credit-
ing David Luenberger, who first introduced the methods used to construct closed-
loop state observers today [27]. This section will explore how a Luenberger observer
can compensate for what the open-loop force estimator lacks and provide more ro-
bustness against noise and external disturbances.

The Math

A Luenberger observer aims to minimize the error dynamics between the measured
and estimated states by closing the loop with a gain K that converges the error 0

[28]. Such feedback loop is visualized in fig. 5.3.
Mathematically, by defining:

eobs = x − x̂ (5.3)

the dynamics of the state observer model can then be expressed as follows:

5.4 discussion 23

Figure 5.3: A block diagram of a state observer, showing the plant, the estimates of the
mathematical model, and how by using negative feedback and adjusting the

gain K, the error can be minimized such that x and x̂ match.

ẋ = Ax + Bu (5.4)
˙̂x = Ax̂ + Bu + K(y − ŷ) (5.5)

Given that y = Cx and ŷ = Cx̂, eq. (5.5) can be subtracted from eq. (5.4) to obtain
the error dynamics by substituting eq. (5.3):

ẋ − ˙̂x = Ax − Ax̂ + Bu − Bu − K(y − ŷ) (5.6)

ėobs = (A − KC)eobs (5.7)

The solution to eq. (5.7), given that y − ŷ = Ceobs, is an exponential function in
the form of:

eobs(t) = e(A−KC)teobs(0) (5.8)

It is clear that eq. (5.8) is an exponentially decaying function as time approaches
infinity if A − KC < 0. What this means is that, in state space representation, the
poles of A − KC term can be changed by varying K, such that the error dynamics
converge [29]. In the case at hand, the system is fully observable to begin with,
and the states can be estimated only using matrix A. The significance of having
the feedback loop is that varying the gain K will control the decay rate of the error
function, alleviating the reliance on the mathematical model and relieving the state
observer of some uncertainties and sensitivities.

Implementation

The state observer was implemented in Simulink according to the block diagram
shown in fig. 5.4. The Simulink implementation can be found in appendix B.2.

The gain matrix K was first initialized as the identity matrix. The poles of A−KC,
given that K = I, had negative and zero real parts. This means that the feedback

24 state estimation

Figure 5.4: A block diagram showing how a state observer reconstructs the states by relying
on the state-space model.

loop is marginally stable for some states. It was decided to test the state observer with
an identity gain matrix first, to explore how the marginally stable states affected
the overall performance of the state observer. However, the simulations were not
successful due to a number of errors, including:

• MATLAB and Simulink had problems converting the original symbolic matri-
ces to numerical ones, which resulted in a number miscalculations.

• The integral block shown in fig. 5.4 did not function properly due to a size
mismatch between matrix dimensions because of how Simulink initializes the
feedback loop from x to ẋ.

• Errors in the state observer caused Simulink to propagate these errors back to
the original birotor model, causing the birotor model to behave unexpectedly
and incorrectly.

• Simulink would often resolve the errors in the state observer block by entirely
bypassing the state observer and producing seemingly perfect results, since
the states were replicated exactly.

5.5 conclusion
Even though the state observer was not an overwhelming success, the implemented
Simulink model and the observations and conclusions made about the observer
provide a good basis for further development. The open-loop estimator on the
other hand, did prove that the propellers’ thrust forces can indeed be estimated
accurately enough to be used as control inputs. This is still a profound result that
allows this thesis to move forward.

6 C O N T R O L L E R D E S I G N

6.1 introduction
Controller design often refers to the techniques used to control the modes of a given
dynamical system, and is a realm of knowledge, possibilities, and innovation [21].
Control algorithms such as PID, linear-quadratic regulator, fuzzy-based controllers1,
robust control, and model-predictive control all have the same objective: to govern
the system behavior by driving its inputs to a desired state. Different algorithms
achieve different levels of optimality and control stability, depending on how well
they minimize delay, overshoot, and steady-state error.

In this chapter, the controllability of the UAV system will be studied, and a Model
Predictive Control algorithm will be explored. This chapter will not include the
implementation of the controller and will not present any results to the feasibility
of implementation, since controller design is a complicated process, with the chosen
control algorithm adding to the complexity and time demands.

6.2 controllability matrix

6.2.1 Overview

Similar to the problem associated with system observability, as explained in sec-
tion 4.3, controllability is another crucial property of a given system: is it possible
to maneuver the system in all possible configuration space, using certain manip-
ulating inputs?

The controllability of a system allows engineers to determine which states govern
system behavior and dynamics, assess the feasibility of stabilization of unstable
states, and settle on the most optimal controller design.

6.2.2 The Matrix

Controllability and observability are dual concepts that concern themselves with the
same problem, and their formal derivations are analogous. The controllability ma-
trix uses the state matrix and the input matrix (essentially, the dynamics equation)
to assess the stability of a system with n state variables [22]:

C =
[
B AB ... An−1B

]
(6.1)

If matrix C maintains full rank, then the system is controllable. In this calculation,
the original, unaugmented A and B matrices were used, since the main goal of the
controllability study is to find out whether it is possible to use the forces as inputs
to the proposed control scheme. The unaugmented dynamics equation deploys the
forces as inputs, and is therefore more appropriate to use.

In MATLAB, the ctrb function that calculates the controllability of a given system
does not accept symbolic input arguments [31]. Therefore, a new function was
written, found in appendix A.5 to calculate the controllability of the system.

1 A fuzzy-based controller is based on what is known as fuzzy logic, which computes a ”degree of truth”,
rather than the conventional digital logic which relies on discrete 0’s and 1’s [30]

25

26 controller design

6.2.3 Results

The controllability matrix C does indeed maintain its full rank. This means that all
states can be manipulated as desired.

6.3 model predictive control strategy

6.3.1 Overview

Model Predictive Control, as described in section 2.4, is a control algorithm that is
best suited for a model or a plant that comes with a certain set of constraints. This
is because MPC is an optimal control sequence that can handle large time-delays,
non-minimum phase plants, or unstable plants, while satisfying indispensable con-
straints, like safety constraints.

Since the main research goal is to be able to improve the control scheme such it
is not vulnerable to external conditions, MPC presents a better control algorithm
in comparison to its other alternatives, like PID or LQR controllers. While PID
can be easily tuned, its perfomance is often only sufficient for SISO systems. LQR
controllers can be implemented on MIMO systems, yet signal constraints are not
very well addressed2. MPC, on the other hand, handles structural changes, such
as sensor and actuator failure, wind, propeller or motor damage, and other factors
that change system parameters and system structure.

6.3.2 Mathematical Formulation

The mathematical formulation of MPC relies on 3 main elements [33]:

• Prediction Model: MPC uses the system model to predict future outputs
based on a pre-defined prediction model over a pre-defined prediction hori-
zon. The prediction horizon is defined as Ny = N2 − N1, where N1 and N2
are the lower and upper horizons respectively. This represents the number of
future control intervals that the MPC must evaluate by prediction [33][34].

• Cost Function: the cost function is often formulated to ensure that the output
y tracks the reference trajectory over the pre-defined upper prediction horizon
N2. fig. 6.1 depicts this explanation quite well. A cost function may make use
of one or multiple weighting matrices such that the output target trajectory is
reached by repeating the predcition and optimization in each time instant [33]
[35].

Figure 6.1: The principle of the cost function of model predictive control. From [35]

2 LQR computes and uses only one optimal solution for the entire time horizon, whereas MPC computes
a new optimal solutions in regular sample intervals, thus addressing said constraints better [32]

6.4 conclusion 27

• Control Laws: defined by the control horizon and its associated parameters,
the control horizon is the number of moves made by the manipulated variables
such that they are optimized at a control interval.

MPC builds upon classical control theory, as can be concluded from the explana-
tion above. In essence, MPC directly and explicitly considers the system constraints
(defined by the states, inputs, outputs, control and prediction horizons, and the cost
function) to optimize a control sequence that minimizes said cost function [34][35].
This process is visualized in fig. 6.2. Because of MPC’s ability to predict and opti-
mize at every time instant, the control sequence solution is optimal for the defined
finite time horizon [36].

Figure 6.2: Block diagram showing the overall process of how MPC controllers optimize the
control sequence [34]

6.3.3 MPC for Flight Control

The design parameters required to implement MPC are plenty, as explained pre-
viously, and the process of choosing and tuning these parameters is arduous and
nontrivial. As P. Miotto and R. C. LePome stated at the AIAA GUidance, Naviga-
tion, and Control Conference and Exhibit, controller design becomes more of an art
than a science when dealing with MPC [37].

Finding out which control parameters to use to control the attitude and position
of the birotor model requires the mathematical formulation to be figured out in
great detail, lots of tuning, and a lot of time dedicated. Due to the time constraints
of this thesis assignment, the modeling of MPC is outside the scope of this research.

MATLAB offers a Model Predictive Control toolbox that allows engineers to
specifically design model-predictive controllers. In concatenation with MATLAB’s
Aerospace Blockset, the UAV can be simulated with high fidelity, to simulate, ana-
lyze, and optimize system behavior.

6.4 conclusion
In this chapter, the linearized model was found to be controllable. This allows for
the implementation of a controller. The idea and the possibility of implementing
MPC were explored. The appropriate control inputs and algorithm were discussed,
and a clear plan for the implementation steps was laid out. However, due to the

28 controller design

limited time dedicated to this research and the nuanced complexity of MPC, the con-
troller was not implemented in Simulink nor tested. However, this thesis may still
serve as solid grounds for continuing the research on this topic and implementing
an MPC.

7 D I S C U S S I O N , C O N C L U S I O N &
R E C O M M E N DAT I O N S

7.1 introduction
In the introduction of this thesis report, section 1.3, several research questions and
goals have been elaborated, with an intention to find answers and accomplish said
goals throughout the phases of this research. In this chapter, a summary will be pro-
vided: the most important discussion points will be addressed, some recommenda-
tions will be proposed, and the research answers and most important findings will
be concluded.

7.2 discussion

7.2.1 Can the system be observed, taking into consideration the added flexibility
to the model, as well as the forces?

The flexibility introduced to the model manifested itself in elastic potential terms,
which added complexity to the non-linear model and made it hard to work with.
Based on various assumptions, the model was linearized and put into state space
representation. The observability of this linearized system was then studied, after
augmenting the states to include the thrust forces as well. The observability ma-
trix retained its full rank, meaning that the system is fully observable. However,
the observability study did exhibit some unusual results. By making such strong
assumptions about the non-linear model, the observability study conveyed that the
system depends on the original model assumptions. However, since this research
is focused on one particular model and has purely theoretical goals, this model
reliance was not an issue for the continuation of this research.

7.2.2 Is a state observer feasible to implement?

This research set out to estimate the forces in two ways: an open loop estimator, and
a closed loop state observer. The open loop estimator merely used the linearized
state space equations to estimate the forces from the readily available sensor mea-
surements. The results showed that, given the linear model still closely resembles
the non-linear model at hand, the forces can be estimated fairly well, with a mean
absolute error of 0.017N. The results also showed that the estimator is sensitive to
noise: the error increases when there are any jitters in the inputs. In an attempt to
solve this, a closed loop state observer was implemented. No results were yielded
due to systematic and computational simulation errors, and lack of time to debug
such errors.

7.2.3 Is the system controllable?

By conducting a controllability study, the linear system dynamics are fully control-
lable. This means that all definite system states can be reached from any fixed initial
state fed into a controller in a finite amount of time. This result is considered an
important property of the control system to be defined. The design of the controller

29

30 discussion, conclusion & recommendations

can then start by making a simple PID controller for a MIMO system, since PID
controllers are easier to tune, before trying to implement a more complex algorithm
such as MPC. In this way, more concrete, comparative conclusions can be drawn.

7.3 recommendations

7.3.1 The Optimal Kalman Filter

In control theory, the Optimal Kalman Filter is an optimal estimation algorithm that
is typically used when a dynamic system has states that are subject to stochastic
processes (i.e. Gaussian processes): the state cannot be measured directly from
the available sensor data or the sensor data is subject to noise. A Kalman Filter
estimates such states by using a series of measurements observed over time, and
by estimating the joint probability distribution, produces an estimate of the unknown
variable in question. The intricate workings of a Kalman Filter were discussed in
section 2.3.

The complexity of a Kalman Filter is justified when an optimal estimation algo-
rithm is needed. If, after the implementation of the Luenberger Observer, the results
showed that estimating the states is subject to noise, a Kalman Filter may then be
implemented.

An extended Kalman Filter might even be used for the non-linear birotor model.

7.3.2 Fully-Actuated Model

In partial fulfillment of his bachelor’s degree, fellow student Idse Kuijper investi-
gated the possibility of estimating the forces more accurately. Essentially, Kuijper
compared two dynamical models: one with 3 differently oriented propellers with 3

strain gauges mounted on each arm, in contrast to a system with 3 propellers but
with only 2 strain gauges. The author found that the lack of a strain gauge in the
latter model manifested in a deficiency in observability, whereas the former system
with 3 sensors was fully observable. This is because the 2 strain gauges only allow
for the small angle deflections and their derivatives to be measured, producing a
linear combination of all 3 forces of the propellers, whereas the 3 strain gauges al-
lowed the all 3 forces to be measured independently. the author also implemented
a generalized 3D controller, which showed decent performance under the condition
that the tilt angle ϕ was zero [38]. This means that to sufficiently control the rotation
and the attitude of the UAV, a more complex control scheme, such as the controller
design discussed in this thesis, presents a better solution to this control problem.

7.4 conclusion
This research provided an analysis on the feasibility of using elastic strain gauges
that measure small angle deflection on multirotor arms to estimate the forces em-
pirically, and use these forces as control inputs. Throughout this research, some
interesting answers were found: the linear system is fully observable and control-
lable. As far as the goals of the research go, the observability of the system was
studied, the dynamic system was successfully decoupled to augment and estimate
the states of the system, including the propeller forces. Unfortunately, the control-
related goals were not accomplished. Nevertheless, some controller designs were
explored and elaborated, thus laying down a strong foundation for further research
and progress to come. In conclusion, the topics learned throughout the bachelor’s
degree were revisited and utilized to a greater depth and new control theories were
explored.

B I B L I O G R A P H Y

[1] E. Alvarado, 237 Ways Drone Applications Revolutionize Business — Droneii, en-US, May
2021. [Online]. Available: https://droneii.com/237-ways-drone-applications-revolutionize-

business (visited on 06/30/2022).

[2] E. Pakken, “Design, modeling, and control of a novel multirotor UAV with embedded
3D-printed thrust force sensor — Robotics and Mechatronics,” 2022. [Online]. Avail-
able: https://www.ram.eemcs.utwente.nl/education/assignments/design-modeling-

and-control-novel-multirotor-uav-embedded-3d-printed-thrust.

[3] J.-J. Xiong and E.-H. Zheng, “Optimal Kalman Filter for state estimation of a quadrotor
UAV,” en, Optik, vol. 126, no. 21, pp. 2862–2868, Nov. 2015, issn: 0030-4026. doi: 10.
1016/j.ijleo.2015.07.032.

[4] State Observers and Kalman Filters, en.

[5] R. Kálmán, “A new approach to linear filtering and prediction problems” transaction
of the asme˜journal of basic,” 1960. doi: 10.1115/1.3662552.

[6] J. A. H. Naranjo, H. Murcia, C. Copot, and R. Keyser, “Model predictive path-following
control of an A.R. drone quadrotor,” en, 2014.

[7] M. Nikolaou, “Model predictive controllers: A critical synthesis of theory and indus-
trial needs,” 2001. doi: 10.1016/S0065-2377(01)26003-7.

[8] Mathematical model — Britannica, en. [Online]. Available: https://www.britannica.com/

science/mathematical-model (visited on 06/30/2022).

[9] J. J. Craig, Introduction to robotics: mechanics and control, eng, 3. ed., international ed,
ser. Pearson education international. Upper Saddle River, NJ: Pearson, Prentice Hall,
2005, isbn: 9780131236295 9780201543612.

[10] L. N. Hand and J. D. Finch, Analytical mechanics. Cambridge ; New York: Cambridge
University Press, 1998, isbn: 9780521573276 9780521575720.

[11] A. De Luca, Dynamic Model of Robots: Lagrangian Approach, English, Robotics 2 Lecture,
Sapienza University of Rome. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/

http://www.diag.uniroma1.it/deluca/rob2 en/03 LagrangianDynamics 1.pdf .

[12] L. D. Hoffmann, G. L. Bradley, and K. H. Rosen, Calculus for business, economics, and
the social and life sciences, 8th ed. Boston: McGraw Hill Higher Education, 2004, isbn:
9780072424324.

[13] R. Feynman, The Feynman Lectures on Physics Vol. II Ch. 19: The Principle of Least Action.
[Online]. Available: https://www.feynmanlectures.caltech.edu/II 19.html (visited on
06/30/2022).

[14] H. P. Gavin, Matrix Structural Analysis, English, CEE 421L, Duke University, 2012.

[15] L. A.B. Torres, Robot Dynamic - Part I: Euler-Lagrangian Approach, English, Lecture, Fed-
eral University of Minas Gerais. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/

http://www.cpdee.ufmg.br/∼torres/wp-content/uploads/2018/02/Robot Dynamics

part 1.pdf .

[16] Symbolic Math Toolbox, en. [Online]. Available: https://nl.mathworks.com/products/

symbolic.html (visited on 06/30/2022).

[17] A. Franchi, Control Engineering, English, Version-2021.3, ser. Systems and Control for
EE. Enschede, Netherlands: Robotics and Mechatronics, University of Twente, Nov.
2021.

[18] T. Hägglund, State Space Models, Linearization, Transfer Function, Automatic Control,
Basic Course, Lecture 2, Lund University, Oct. 2019.

[19] E. W. Weisstein, Jacobian, en, Text. [Online]. Available: https://mathworld.wolfram.

com/ (visited on 06/30/2022).

[20] Jacobian matrix - MATLAB jacobian - MathWorks Benelux. [Online]. Available: https://nl.
mathworks.com/help/symbolic/sym.jacobian.html (visited on 06/30/2022).

31

https://droneii.com/237-ways-drone-applications-revolutionize-business
https://droneii.com/237-ways-drone-applications-revolutionize-business
https://www.ram.eemcs.utwente.nl/education/assignments/design-modeling-and-control-novel-multirotor-uav-embedded-3d-printed-thrust
https://www.ram.eemcs.utwente.nl/education/assignments/design-modeling-and-control-novel-multirotor-uav-embedded-3d-printed-thrust
https://doi.org/10.1016/j.ijleo.2015.07.032
https://doi.org/10.1016/j.ijleo.2015.07.032
https://doi.org/10.1115/1.3662552
https://doi.org/10.1016/S0065-2377(01)26003-7
https://www.britannica.com/science/mathematical-model
https://www.britannica.com/science/mathematical-model
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.diag.uniroma1.it/deluca/rob2_en/03_LagrangianDynamics_1.pdf
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.diag.uniroma1.it/deluca/rob2_en/03_LagrangianDynamics_1.pdf
https://www.feynmanlectures.caltech.edu/II_19.html
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.cpdee.ufmg.br/~torres/wp-content/uploads/2018/02/Robot_Dynamics_part_1.pdf
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.cpdee.ufmg.br/~torres/wp-content/uploads/2018/02/Robot_Dynamics_part_1.pdf
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.cpdee.ufmg.br/~torres/wp-content/uploads/2018/02/Robot_Dynamics_part_1.pdf
https://nl.mathworks.com/products/symbolic.html
https://nl.mathworks.com/products/symbolic.html
https://mathworld.wolfram.com/
https://mathworld.wolfram.com/
https://nl.mathworks.com/help/symbolic/sym.jacobian.html
https://nl.mathworks.com/help/symbolic/sym.jacobian.html

32 bibliography

[21] R. E. Kalman, “On the general theory of control systems,” en, IFAC Proceedings Vol-
umes, 1st International IFAC Congress on Automatic and Remote Control, Moscow,
USSR, 1960, vol. 1, no. 1, pp. 491–502, Aug. 1960, issn: 1474-6670. doi: 10.1016/S1474-
6670(17)70094-8. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S1474667017700948 (visited on 06/30/2022).

[22] R. W. Zhang, Observability and Controllability, English. [Online]. Available: chrome -

extension : / / efaidnbmnnnibpcajpcglclefindmkaj / https : / / www . ece . rutgers . edu /
∼gajic/psfiles/chap5traCO.pdf .

[23] Observability matrix - MATLAB obsv - MathWorks Benelux. [Online]. Available: https :
//nl.mathworks.com/help/control/ref/ss.obsv.html (visited on 06/30/2022).

[24] S. Boyd, Observability and state estimation, EE263, University of Stanford, 2007.

[25] Null space of matrix - MATLAB null - MathWorks Benelux. [Online]. Available: https :
//nl.mathworks.com/help/matlab/ref/null.html (visited on 06/30/2022).

[26] Z. Gajic, Introduction to Linear and Nonlinear Observers, Lecture, Rutgers University.

[27] J. H. Davis, “Luenberger Observers,” en, in Foundations of Deterministic and Stochastic
Control, ser. Systems & Control: Foundations & Applications, J. H. Davis, Ed., Boston,
MA: Birkhäuser, 2002, pp. 245–254, isbn: 9781461200710. doi: 10.1007/978- 1- 4612-
0071-0 8. [Online]. Available: https://doi.org/10.1007/978-1-4612-0071-0 8 (visited
on 06/30/2022).

[28] Understanding Kalman Filters, Part 2: State Observers Video, en. [Online]. Available: https:
//nl.mathworks.com/videos/understanding-kalman-filters-part-2- state-observers-

1487694734527.html (visited on 06/30/2022).

[29] G. Ellis, Control system design guide: using your computer to understand and diagnose feed-
back controllers, Fourth edition. Amsterdam: Elsevier/BH, 2012, isbn: 9780123859204.

[30] V. Novák, I. Perfilieva, and J. Močkoř, Mathematical principles of fuzzy logic, ser. Kluwer
international series in engineering and computer science secs 517. Boston: Kluwer
Academic, 1999, isbn: 9780792385950.

[31] Controllability matrix - MATLAB ctrb - MathWorks Benelux. [Online]. Available: https:
//nl.mathworks.com/help/control/ref/ss.ctrb.html (visited on 06/30/2022).

[32] L. Wang, Model predictive control system design and implementation using MATLAB, ser. Ad-
vances in industrial control. London: Springer, 2009, OCLC: ocn403385816, isbn: 9781848823303

9781848823310.

[33] Z.-j. Yang, X.-h. Qi, and G.-l. Shan, “Simulation of flight control laws design using
model predictive controllers,” in 2009 International Conference on Mechatronics and Au-
tomation, ISSN: 2152-744X, Aug. 2009, pp. 4213–4218. doi: 10 . 1109 / ICMA . 2009 .

5246511.

[34] Understanding Model Predictive Control, en. [Online]. Available: https://nl.mathworks.

com/videos/series/understanding-model-predictive-control.html (visited on 07/01/2022).

[35] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control:
An engineering perspective,” en, The International Journal of Advanced Manufacturing
Technology, vol. 117, no. 5, pp. 1327–1349, Nov. 2021, issn: 1433-3015. doi: 10.1007/
s00170-021-07682-3. [Online]. Available: https://doi.org/10.1007/s00170-021-07682-3
(visited on 07/01/2022).

[36] L. Singh, “Autonomous Missile Avoidance Using Nonlinear Model Predictive Con-
trol,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, ser. Guidance,
Navigation, and Control and Co-located Conferences, American Institute of Aeronau-
tics and Astronautics, Aug. 2004. doi: 10.2514/6.2004-4910. [Online]. Available: https:
//arc.aiaa.org/doi/10.2514/6.2004-4910 (visited on 07/01/2022).

[37] P. Miotto and R. LePome, “Design of a Model Predictive Control Flight Control System
for a Reusable Launch Vehicle,” in AIAA Guidance, Navigation, and Control Conference
and Exhibit, ser. Guidance, Navigation, and Control and Co-located Conferences, Amer-
ican Institute of Aeronautics and Astronautics, Aug. 2003. doi: 10.2514/6.2003-5360.
[Online]. Available: https : / / arc . aiaa . org /doi / 10 . 2514 / 6 . 2003 - 5360 (visited on
07/01/2022).

[38] I. Kuijper, “Fully-actuated multirotors embedding elastic sensors to measure arm de-
flection: System modeling and control,” 2022.

https://doi.org/10.1016/S1474-6670(17)70094-8
https://doi.org/10.1016/S1474-6670(17)70094-8
https://www.sciencedirect.com/science/article/pii/S1474667017700948
https://www.sciencedirect.com/science/article/pii/S1474667017700948
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.ece.rutgers.edu/~gajic/psfiles/chap5traCO.pdf
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.ece.rutgers.edu/~gajic/psfiles/chap5traCO.pdf
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.ece.rutgers.edu/~gajic/psfiles/chap5traCO.pdf
https://nl.mathworks.com/help/control/ref/ss.obsv.html
https://nl.mathworks.com/help/control/ref/ss.obsv.html
https://nl.mathworks.com/help/matlab/ref/null.html
https://nl.mathworks.com/help/matlab/ref/null.html
https://doi.org/10.1007/978-1-4612-0071-0_8
https://doi.org/10.1007/978-1-4612-0071-0_8
https://doi.org/10.1007/978-1-4612-0071-0_8
https://nl.mathworks.com/videos/understanding-kalman-filters-part-2-state-observers-1487694734527.html
https://nl.mathworks.com/videos/understanding-kalman-filters-part-2-state-observers-1487694734527.html
https://nl.mathworks.com/videos/understanding-kalman-filters-part-2-state-observers-1487694734527.html
https://nl.mathworks.com/help/control/ref/ss.ctrb.html
https://nl.mathworks.com/help/control/ref/ss.ctrb.html
https://doi.org/10.1109/ICMA.2009.5246511
https://doi.org/10.1109/ICMA.2009.5246511
https://nl.mathworks.com/videos/series/understanding-model-predictive-control.html
https://nl.mathworks.com/videos/series/understanding-model-predictive-control.html
https://doi.org/10.1007/s00170-021-07682-3
https://doi.org/10.1007/s00170-021-07682-3
https://doi.org/10.1007/s00170-021-07682-3
https://doi.org/10.2514/6.2004-4910
https://arc.aiaa.org/doi/10.2514/6.2004-4910
https://arc.aiaa.org/doi/10.2514/6.2004-4910
https://doi.org/10.2514/6.2003-5360
https://arc.aiaa.org/doi/10.2514/6.2003-5360

A M AT L A B E X C E R P T

a.1 jacobian linearization

1 %% jacobian linearization
2 %define A and B matrices
3 A = jacobian(dx state,x state);
4 A = subs(A, x state, x0);
5 A = subs(A, u, u0);
6 A = simplify(A);
7

8 B = jacobian(dx state,u);
9 B = subs(B, x state, x0);

10 B = subs(B, u, u0);
11 B = simplify(B);
12

13 %state space representation
14 dx state linear = A*x state + B*u;

a.2 observability calculation

1 %% observability
2 %since obsv() matlab function does not accept symbolic input arguments, the
3 %calculation of observability has to be done manually
4

5 %define the dimensions of the observability matrix
6 n = size(tilde A,1);
7 ny = size(tilde C,1);
8

9 %allocate ob symbolically and compute each C Aˆk term
10 ob = sym('ob',[n*ny n]);
11 ob = subs(ob, ob(1:ny,:), tilde C);
12

13 for k=1:n−1
14 ob = subs(ob,ob(k*ny+1:(k+1)*ny,:),ob((k−1)*ny+1:k*ny,:) * tilde A);
15 end
16

17 ob = simplify(ob);
18

19 %the number of unobservable states is the number of state variables − rank
20 %of the observability matrix
21 unob = length(tilde A) − rank(ob);

a.3 linear model inversion

1 function [f1, f2] = inversion(db, ddb, UAV)
2 % INPUTS
3 % db : vector including dbs and dbd
4 % ddbd : vector including ddbs and ddbd
5 % UAV : calls parameters.m to define UAV specifications
6 % OUTPUTS
7 % [f1, f2] : vector including the two forces to be estimated
8

9 % UAV specifications to be called

33

34 matlab excerpt

10 J = UAV.J(2,2);
11 k = UAV.K;
12 L = UAV.L tot;
13 m1 = UAV.mass arm; % mass of the propeller
14 m = UAV.mass; % mass of the UAV
15 g = 9.81;
16

17 % separate the inputs
18 dbs = db(1);
19 dbd = db(2);
20 ddbs = ddb(1);
21 ddbd = ddb(2);
22

23 % define matrix B
24 B = [−1/(L*m1), 1/(L*m1);...
25 −1/(L*m1), −1/(L*m1)];
26

27 % define the two entries from matrix A
28 a1 = −(k*(m + 2*m1))/(Lˆ2*m*m1);
29 a2 = −(k*(2*m1*Lˆ2 + J))/(J*Lˆ2*m1);
30

31 % linear model inversion
32 y = B\[ddbs − a1*dbs; ddbd − a2*dbd];
33

34 % adding the operating point
35 f1 = y(1) + 22.446;
36 f2 = y(2) + 22.446;
37

38 end

a.4 trajectory planning

1 %% initial condtioins
2

3 % pos
4 init.p = [0;0;0];
5 % velocity (world−frame)
6 init.v = [0;0;0];
7 % orientation (Rotation Matrix)
8 init.R = Rz(0)*Ry(0)*Rx(0);
9 % angular velocity (body−frame)

10 init.w = [0;0;0];
11

12 init.B dot = [0;0];
13 init.B = ...

[−0.0018664783741618794096049504710784;0.0018664783741618794096049504710784];
14 %−0.0000025225968479695000858312376350061 for K = 6,2..E4;
15 % orientation (Quaternion)
16 init.q = rotm2quat(init.R);
17 % tilting angles
18 init.u v = deg2rad(0);
19

20 % important: compute nominal rotor velocities to sustain gravity given
21 % initial orientation and initial tilting angles
22 init.u lambda = [0;0;(UAV.mass+2*UAV.mass arm)*env.g];
23

24 %% trajectory parameters
25

26 % position
27 traj.p start = init.p;
28 traj.p end = init.p; % or [0.5;0;0.5]; or [1;0;1]; for different test ...

conditions
29

30 % orientation
31 traj.R start = init.R;
32 traj.R end = Rz(0)*Ry(0)*Rx(0);
33

34 % trajectory time

a.5 controllability calculation 35

35 traj.T = 10;
36

37 %% elementary rotations
38 function R = Rx(a)
39 R = [1 0 0 ;
40 0 cos(a) −sin(a);
41 0 sin(a) cos(a)];
42 end
43

44 function R = Ry(a)
45 R = [cos(a) 0 sin(a);
46 0 1 0 ;
47 −sin(a) 0 cos(a)];
48 end
49

50 function R = Rz(a)
51 R = [cos(a) −sin(a) 0;
52 sin(a) cos(a) 0;
53 0 0 1];
54 end

a.5 controllability calculation

1 n = size(A,1);
2 nu = size(B,2);
3

4 co = sym('co',[n n*nu]);
5 co = subs(co,co(:,1:nu),B);
6 for i=1:n−1
7 co = subs(co,co(:,i*nu+1:(i+1)*nu), A * co(:,(i−1)*nu+1:i*nu));
8 end
9

10 unco = length(A) − rank(co);

a.6 mean absolute error

1 % This function calculates the mae of a signal with reference to original ...
signal

2 % OUTPUT
3 % mae : mean absolute error
4 %
5 % INPUTS
6 % orgSig : original (reference) signal
7 % recSig : reconstructed (estimated) signal
8

9

10 function mae = fcn(orgSig,recSig)
11

12 absErr = norm(orgSig(:)−recSig(:),1);
13 mae = absErr/length(orgSig(:));
14

15 end

B S I M U L I N K

b.1 model overview

Figure B.1: Overview of the birotor model in Simulink (rotates 90◦)

37

38 simulink

b.2 luenberger observer

(a) Overview of the state observer, showing the selection of the UAV states, the observer gain block that
multiplies y − ŷ by observer gain K, as well as the feedback loop.

(b) The Observer block, showing how the states are reconstructed using the state-space model.

Figure B.2: State observer implementation in Simulink.

C S I M U L AT I O N R E S U LT S

c.1 force-time graphs

(a) Full-scale.

(b) Close-up.

Figure C.1: The force (N) - time (s) graph of the estimated forces and the measured forces,
given a gentle moving trajectory.

39

40 simulation results

(a) Full-scale.

(b) Close-up.

Figure C.2: The force (N) - time (s) graph of the estimated forces and the measured forces,
given an aggressive moving trajectory.

c.2 error-time graphs

(a) Error-time plot for the second test: the
UAV was moving gently from p = (0, 0, 0)

to p = (0.5, 0, 0.5).

(b) Error-time plot for the second test: the
UAV was moving more aggressively from

p = (0, 0, 0) to p = (1, 0, 1).

Figure C.3: Error (N) - time (s) graphs.

colophon
This document was typeset using LATEX. The document layout was generated using
the arsclassica package by Lorenzo Pantieri, which is an adaption of the original
classicthesis package from André Miede.

	1 Introduction
	1.1 General Overview
	1.2 Context
	1.3 Research Questions & Goals
	1.3.1 Questions
	1.3.2 Goals

	1.4 Thesis Outline

	2 Literature Review
	2.1 Introduction
	2.2 Design, Modeling, and Control of a Novel Multirotor Thrust Force Sensor noauthordesignnodate
	2.3 Optimal Kalman Filter for State Estimation of a Quadrotor UAV xiongoptimal2015
	2.4 Model Predictive Path-Following Control of an AR.Drone Quadrotor naranjomodel2014
	2.5 Conclusion

	3 Modeling
	3.1 Introduction
	3.2 Mathematical Model
	3.2.1 Overview
	3.2.2 Euler-Lagrangian Dynamic Equations
	3.2.3 State of the Art

	3.3 System Linearization
	3.3.1 Overview
	3.3.2 Change of Coordinates
	3.3.3 Computing Equilibrium
	3.3.4 Jacobian Linearization to State Space Representation

	4 System Observability
	4.1 Introduction
	4.2 Augmenting the States
	4.3 Observability
	4.3.1 Overview
	4.3.2 The Matrix
	4.3.3 First Results

	4.4 Conclusion
	4.4.1 Main Insights
	4.4.2 Model Reliance
	4.4.3 Back to Basics

	5 State Estimation
	5.1 Introduction
	5.2 Methodology
	5.2.1 Force Estimation

	5.3 Simulations & Results
	5.3.1 Overview
	5.3.2 Firing Up the Simulator

	5.4 Discussion
	5.4.1 General Remarks
	5.4.2 The Luenberger Observer

	5.5 Conclusion

	6 Controller Design
	6.1 Introduction
	6.2 Controllability Matrix
	6.2.1 Overview
	6.2.2 The Matrix
	6.2.3 Results

	6.3 Model Predictive Control Strategy
	6.3.1 Overview
	6.3.2 Mathematical Formulation
	6.3.3 MPC for Flight Control

	6.4 Conclusion

	7 Discussion, Conclusion & Recommendations
	7.1 Introduction
	7.2 Discussion
	7.2.1 Can the system be observed, taking into consideration the added flexibility to the model, as well as the forces?
	7.2.2 Is a state observer feasible to implement?
	7.2.3 Is the system controllable?

	7.3 Recommendations
	7.3.1 The Optimal Kalman Filter
	7.3.2 Fully-Actuated Model

	7.4 Conclusion

	A MATLAB Excerpt
	A.1 Jacobian Linearization
	A.2 Observability Calculation
	A.3 Linear Model Inversion
	A.4 Trajectory Planning
	A.5 Controllability Calculation
	A.6 Mean Absolute Error

	B Simulink
	B.1 Model Overview
	B.2 Luenberger Observer

	C Simulation Results
	C.1 Force-time graphs
	C.2 Error-time graphs

