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Abstract

Surface Electromyography (sEMG) is the technique of measuring the electrical activity that
forms on the skin surface in in response to a muscle contraction. sEMG signals can be used to
determine the status of muscles and the movement intention and is therefore commonly used
as a control interface for robotic prosthesis or in the medical field to monitor muscle activity.
To convert the measured surface potential into a usable signal, the data needs to be processed
to filter out noise and determine the envelope. Even though a lot of research has been done into
various processing techniques, a general overview comparing the differences in performance
of these techniques is lacking. This report aims to give insight into the degree of effectiveness
of pre-whitening, various filtering methods, and multiple envelope estimation techniques. The
goal is to find a combination of methods that can accurately estimate exerted force from the
sEMG signals in real-time. The filtering methods that are compared are a static filter (bandpass
and notch filters), a Wiener filter, and an adaptive LMS filter. The envelope detection meth-
ods that are compared are a moving average filter, an infinite impulse response Butterworth
low-pass filter, and a root-mean-square filter. Each method has been applied in a simulated
environment to determine the optimal parameters, and every combination of pre-whitening,
filtering, and envelope detection has also been applied on a measured sEMG sample. The re-
sulting force estimates are subsequently compared to force measurements obtained using a
calibrated load cell. The measurement results indicate that using adaptive filtering using the
LMS algorithm combined with RMS envelope detection results in predicting the exerted force
approximately half a second before it is measured. Whitening does not seem to improve the
quality of force estimation and introduces consistent lag compared to non-whitened process-
ing methods.

Keywords: sEMG, force estimation, signal processing
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CONTENTS 1

0.1 List of symbols

This table contains an overview of the symbols used in this work, their associated meanings,
and their units.

Symbol Definition Unit
f Frequency Hertz (Hz)
fcut Cut-off frequency Hertz (Hz)

Table 1: Symbol definitions

0.2 List of medical terms

A list of medical terms is given because the reader is expected to be an electrical engineer and
not a medical student.

Term Definition
Skeletal Muscles Muscles that are used to control voluntary body movement
Flexor A muscle that when contracted causes the angle between bones

connecting to a joint to decrease (e.g. a Bicep)
Extensor A muscle that when contracted causes the angle between bones

connected to a joint to increase (e.g. a Tricep)
Antagonistic Muscles A set of a flexor and extensor that have the ability to freely move a

limb around a joint
Isometric Contraction A muscle contraction that does not result in a change of joint angle

(e.g. the joint is blocked or antagonistic muscles contract simulta-
neously)

Isotonic Contraction A contraction of antagonistic muscles that causes the angle of the
joint to change

Table 2: Medical terms

Robotics and Mechatronics Tjeerd Bakker



2 Comparing processing techniques for real-time force estimation from sEMG

1 Introduction

1.1 Context

Electromyography (EMG) is the technique of measuring the electrical activity that forms in a
muscle in response to a nerve stimulating the muscle fibers [1] [2]. EMG is a popular method
of measuring a person’s intent to contract a muscle as it measures the muscle activation rather
than the muscle contraction [3] [4]. This means that it can still be used in scenarios where
muscles can not respond accurately to nerve stimulation due to for example muscular dystro-
phy [5]. As a result, EMG is a good way of creating a control interface for exo-aids in various
scenarios. Additionally, the amplitude of the EMG signal has a roughly linear relation with the
force produced by the muscles in specific circumstances [6] and is therefore suitable for human
machine interfaces [7].

The electrical activity of a muscle can either be measured by probing the inside of a muscle
(called intramuscular EMG or iEMG), or by measuring the electrical potential on the surface
of the skin (called surface EMG or sEMG). iEMG has a high selectivity for individual motor
neuron units which is desirable for a precise control interface registering multiple degree of
freedoms [8], but has as a downside that it is an invasive and difficult procedure [9]. sEMG
is a non-invasive method of measuring requiring only sticking electrodes on the skin but this
method can only measure the combined electrical activity of many muscle fibers resulting in a
noisy and imprecise signal [10].

During the last two decades research has attempted to gather more accurate sEMG readings by
increasing the number of electrodes on a muscle with a technique called high-density sEMG
[11]. This technique has allowed the measuring of spatial muscle activation in addition to time
domain muscle activation. By measuring the muscle activation of a single muscle at multiple
points in space it is theoretically possible to determine the behaviour of individual motor units
[12].

However, this increased accuracy comes with a catch: each electrode outputs a single data
stream that needs to be processed. Adding more electrodes means requiring more amplifier
channels and smaller electrodes with higher contact impedance [13], both of which results in
more expensive amplifiers. Additionally, having to process more data requires a faster signal
processing chain as the introduction of additional processing delay may prevent successful
control of exo-aids [14].

This project aims to give an overview of the effectiveness of various EMG processing tech-
niques. The effect of whitening the input signal, different filtering techniques, and different
envelope detection techniques are discussed, with the overarching goal of performing accu-
rate force estimation from sEMG signals.

1.2 Related work

There are a number of works on applying different filtering techniques in the medical field.
Some interesting papers that closely relate to this assignment are discussed.

An example that shows the effectiveness of adaptive filters for real-time signal processing is the
work by M. Hanine et al. [15] which covers the removal of an EMG signal from an electrocar-
diogram (ECG, electrical activity around the heart) signal. This is notable because the signal
spectra of EMG and ECG overlap to a large extend and are therefore notoriously hard to remove
using static filters. Furthermore it is mentioned in [16] that adaptive filters might be the most
suitable type of filters for estimating force from sEMG signals.

Tjeerd Bakker University of Twente



CHAPTER 1. INTRODUCTION 3

The performance of adaptive filters and Wiener filters for noise cancellation in real-time envi-
ronments in general has been tested in the works of G. Yadav et al [17]. This report provides a
solid groundwork for an intuitive understanding of wiener filters and adaptive filters which are
used in this project.

A bold but promising implementation of Wiener filter in sEMG is presented in the work of J.
Liu et al [18]. This paper presents the problem of voluntary EMG signals being contaminated
by spontaneous unwanted motor activity from paretic muscles in for example stroke or spinal
cord injury patients. The research uses an ’a priori’ SNR (deduced from theory, not measure-
ments) to filter the EMG signal from the involuntary muscle contractions.

A common technique of improving signal integrity through pre-processing is ’whitening’.
Whitening decorrelates the sEMG signal to yield improved signal accuracy [19]. Whitening can
primarily be used for high-amplitude EMG signals and has trouble retaining effectiveness on
low amplitude signals. This problem has been attempted to solve by creating adaptive whiten-
ing filter which shows promising results when applied to low EMG amplitude signals as shown
in the work of E. Clancy and K. Farry [20].

An important paper in the field of EMG signals is the work by N. Hogan and R.W. Mann [21].
This research aims to provide a fully mathematical solution for an optimal myoelectric signal
processor, and to do so a phenomenological mathematical model of myoelectric activity is pre-
sented. In other words: This paper uses biology, physics and statistics to create a framework
that allows predicting the EMG signal that would form from muscle activity.

There are several papers related to signal processing of sEMG signals. One outstanding example
is the work by M.Z. Jamal et al [7], where it is shown that adaptive filters are an effective solution
to EMG signal processing. The paper presents the instrumentation scheme of a dry-electrode
sEMG measurement setup and explains a method of creating real-time adaptive finite impulse
response (FIR) filters. In essence this is close to a part of this research, but the aim of this
research project is aimed at comparing the performance between filtering methods rather than
the creation of a specific one.

Lastly it should be mentioned that static and adaptive filters are only a subset of the avail-
able tools for sEMG signal processing. An emerging topic in this field is the use of machine
learning methods for signal analysis. Applying machine learning could allow for fast, efficient,
and effective signal processing, with the downside of unpredictable behaviour in certain situa-
tions. Where static filters and adaptive filters exhibit deterministic behaviour (which is difficult
to confirm in the case of real-time adaptive filters), machine learning methods can be some-
what ’hit or miss’. [22, 23]. It has been found that machine learning models at times violate
their original expectations after deployment. The main reason for this is that the models of-
ten contain varying and unknown failure modes that are only revealed after deployment due
to the complexity of the model and the lack of understanding of internal systems (black-box
behaviour) [24].

1.3 Research goal

Even though a significant amount of research has been done into the digital processing of
sEMG signals, an overview comparing different techniques is lacking. This report aims to give
an overview of pre-whitening, different filtering techniques, and multiple envelope detection
techniques. The goal of this project is to explore the difference in performance of different
sEMG signal processing chains when applied to sEMG signals for real-time force estimation. In
Figure 1.1 a high-level overview of the signal processing chain is presented.

These research efforts are driven by the research question below.
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4 Comparing processing techniques for real-time force estimation from sEMG

Figure 1.1: High-level overview of the signal processing chain

What is the best combination of whitening, filtering, and envelope detection to esti-
mate force from sEMG in real-time?

This report consists of three main sections:

• In the theory section the background of each option in each processing step (whitening,
filtering, and envelope detection) is explained

• In the simulation section it is shown how different parameters influence the behaviour
of each option in a simulated environment

• In the measurements section it is shown how all possible combinations from each pro-
cessing step perform on a measured sEMG signal to find the optimal sEMG processing
chain

The observations that were made from the simulations and measurements are further dis-
cussed in the discussion section.

1.4 Conclusion

Surface EMG is a popular tool for determining muscle activation and user intent and can be
used as a human-machine interface. There exist many different methods to extract useful in-
formation from sEMG signals, but a general overview of different techniques and how they
compare to each other is lacking. The topics covered in this report are (pre-) whitening, fil-
tering using static filters, Wiener filter, and adaptive LMS filter, and envelope detection using
moving average, root mean square, and infinite impulse response low-pass filters.

Tjeerd Bakker University of Twente



5

2 Theory

The required background theory will be presented in a top-down approach. For someone ex-
perienced in the field of sEMG and signal processing some portions can be perceived as ubiq-
uitous but it is done to make this paper more accessible for readers from different fields.

2.1 Force estimation from sEMG

When moving a limb the most intuitive way of describing it is a change in position, moving
your hand from A to B. However, a more objective way of describing this movement is in terms
of forces applied on a mass [25–27]:

• The brain makes decision to move a limb and sends a signal through motor neurons

• The synaptic input received from the motor neuron results in contraction of the muscles

• This (simply put) causes a force to be applied on a mass, or a torque around a pivot point

• This force results in an acceleration in a certain direction

• This acceleration is maintained for a certain period of time

• The entire process is repeated for deceleration using visual, kinesthetic, proprioceptive
and tactile sensory signals [4]

• Your limb has arrived at a new location.

Understanding this reasoning of moving a limb in terms of forces being applied by contracting
muscles is vital because it forms the basis for recognizing a user’s intent. EMG can be used to
measure the intensity of muscle activation which indicates the amount of contraction [4]. By
measuring the amount of contraction of two antagonistic muscles it is possible to calculate the
amount of force applied in a certain direction. Even if the limb is replaced by a prosthesis this
idea of forces moving a mass will still apply, and thus EMG can be used as a human-machine
interface.

So to summarize the basic concept of force estimation:

• Movement of a limb is the result of a net force acting on that limb

• This net force is the result of certain muscles contracting stronger than other muscles

• The contraction of these muscles follows from muscle activation

• Muscle activation can be measured using EMG

• EMG can be used to estimate limb movement

Figure 2.1 illustrates the anatomy of a muscle. Large skeletal muscles such as the biceps con-
sists of hundreds of thousands of small muscle fibers. These muscle fibers are divided into
groups called motor units, and each motor unit is connected to a motor neuron which is a spe-
cial type of very long brain cell that runs through the spinal cord. A contraction of a skeletal
muscle is the result of many muscle fibers contracting individually and repeatedly [26]. The
contraction of these muscle fibers is the result of muscle activation which in turn is the result
of an action potential caused by the motor neuron. The activation of the muscle fibre is a small
yet measurable voltage. When measuring the surface EMG of an activating skeletal muscle the
result is the aggregate of the small voltages from all activating muscle fibers. This manifests

Robotics and Mechatronics Tjeerd Bakker



6 Comparing processing techniques for real-time force estimation from sEMG

Figure 2.1: Anatomy of a muscle [26].

itself into a signal resembling white noise where the amplitude of the noise correlates to the
number of activated muscle fibers and thus to the amount of contraction the skeletal muscle
will experiences [21]. An illustration of the form of the measured sEMG is shown in Figure 2.2
where a maximum voluntary contraction (MVC) is measured from a biceps.

2.2 sEMG signal properties

Figure 2.2: sEMG signal measured from bicep during contraction

To summarize: to determine the degree of activation of a skeletal muscle we simply need to
determine the amplitude of the noise at the surface of the muscle.

Tjeerd Bakker University of Twente



CHAPTER 2. THEORY 7

From this point onward ’noise’ will refer to the generated by muscle contraction as ’the signal’.
the reason for this is that noise is usually unwanted, but the signal caused by muscle contrac-
tion is the opposite of unwanted: It precisely what sEMG is trying to measure!

Unfortunately, when measuring sEMG signals it is impossible to measure solely the signal gen-
erated by muscle contraction. The signal may be contaminated by other signals coming from
the surrounding environment or from the amplifier used to amplify the measured signal. So in
reality we are measuring a combination of our desired signal from muscle contraction, and the
undesired noise from the environment and amplifier. An illustration of the frequency content
of the signal and noise is shown in Figure 2.3. Note how the noise has large peaks at 50 Hz and
multiples of 50 Hz; This is the noise generated by power lines nearby.

Figure 2.3: Frequency components of signal and noise in an sEMG signal. Noise is taken to be 0-2s and
Signal is taken to be 5-7s in 2.2

The ratio between how much of the measured signal is actual desired signal and how much is
undesired noise is called the Signal to Noise Ratio (SNR) and is defined as the average signal
power divided by the average noise power and can be seen in Equation 2.1 [28]. Intuitively one
might think that force can be more accurately estimated from sEMG signals with a high SNR,
this assumption will be tested in this report. SNR can be increased by removing noise from a
noisy signal which can be done by a selection of tools called filters.

SNR = Signal power

Noise power
(2.1)

2.3 Filters

Filters are a tool that can be used to remove something unwanted (noise) that is mixed with
something wanted (signal). In signal processing filtering is achieved by decomposing a mea-
sured signal into repeating patterns and subsequently deciding which patterns should be re-
tained and which patterns should be removed. Figure 2.4 displays how a time-domain signal
can be represented in the frequency domain to display information about which frequencies
are present in the signal.

A digital filter consists of a set of values called the filter coefficients. The input (measurements)
is multiplied with the filter coefficients to create the output. That is, the latest measurement

Robotics and Mechatronics Tjeerd Bakker



8 Comparing processing techniques for real-time force estimation from sEMG

Figure 2.4: Filtering a signal. In the top-left figure there is a low-frequency signal polluted by a 50Hz
signal. The frequency plot in the bottom-left shows these frequencies. By applying the low-pass filter as
displayed in the bottom-left it is possible to filter out the higher 50 Hz frequency. The resulting filtered
signal can be seen in the top-right, showing that there is still a little bit of noise left. This is also visible in
the bottom right showing the frequency contents of the signal after filtering

is multiplied with the first filter coefficient, the previous measurement is multiplied with the
second filter coefficient, and so on. This can also be interpreted as multiplying each filter co-
efficients with a delayed input sample. Figure 2.5 shows the working and standard notation of
a digital filter. By carefully choosing the number and value of filter coefficients it is possible to
attenuate specific frequencies while not influencing other frequencies such as the effect shown
in 2.4.

Analog signals and filters are conventionally presented as a continuous function of time (e.g.
x(t )). Digital signals and filters are discrete rather than continuous, and are conventionally
presented as a function of samples (e.g. x(n)). The variable n describes the n’th sample of

Tjeerd Bakker University of Twente



CHAPTER 2. THEORY 9

the signal. Converting a continuous signal to a discrete signal is done through the process of
sampling the continuous signal at equidistant points in time: s(n) = s(n ∗∆t ) [29].

Figure 2.5: The functioning of a digital filter. The filter coefficient at index i is multiplied by the input
that is delayed i samples [30]

2.3.1 Static filters, Wiener filter, Adaptive filters

The main difference between the different presented filter types is the way of calculating the fil-
ter coefficients. If a filter is static (e.g. high-pass, low-pass, band-pass, or band-stop) it simply
means that the number of filter coefficients and the values of the filter coefficients are prede-
termined. These filters are very popular due to their simplicity in terms of finding the value of
the filter coefficients.

A Wiener filter aims to produce an estimate of a target process by linear time-invariant filtering
of a noisy signal using knowledge of the spectrum of the stationary noise and target process
assuming additive noise [31, 32]. Figure 2.6 shows the use of a Wiener filter. It is assumed that
the noise component v(n) is correlated to the noise component in the input signal in input
d(n) and uncorrelated to the desired signal s(n). The Wiener filter coefficients aim to minimize
the correlated signals, leaving only the desired signal as the ’error’. It is the optimal solution
in terms of mean square error to statically filtering additive noise from a signal. The filter can
either be constructed from the cross-correlation between an input sample and a noise sample,
and the auto-correlation of the noise sample, or directly from the frequency contents of the
signal+noise and noise signals as seen in Equation 2.2.

Figure 2.6: Diagram that illustrates the functioning of a Wiener filter. s(n) is the desired signal, v(n) is
the additive noise, and d(n) is the combination of desired signal and noise [33]

Robotics and Mechatronics Tjeerd Bakker



10 Comparing processing techniques for real-time force estimation from sEMG

In sEMG, the signal+noise is measured at the point of muscle contraction while the noise can
be measured separately from a different body part that does not experience contraction. This
separately measured noise has similar frequency characteristics as the noise included in the
signal+noise as it experiences the same amplifier noise and environment noise. The resulting
frequency domain definition of the optimal Wiener filter is defined in Equation 2.2 [34]. D(z)
reflects the frequency contents of signal+noise (input signal), S(z) reflects the frequency con-
tents of the signal, and V (z) reflects the frequency contents of the noise.

Hopt(z) = S(z)

S(z)+V (z)
= D(z)−V (z)

D(z)
(2.2)

Assuming that the calculated Wiener filter approximates the optimal Wiener filter, multiplying
the filter (in frequency domain) with the signal+noise input will result in an approximation of
the signal as seen below.

Ŝ(z) = Ĥopt(z) · (S(z)+V (z)) (2.3)

= Ŝ(z)

Ŝ(z)+ V̂ (z)
· (S(z)+V (z)) (2.4)

≈ S(z) (2.5)

The Wiener filter requires both the signal and the noise to be stationary, i.e. the spectral density
does not change over time, and results in a linear time-invariant filter [35] [36]. If the signal and
noise were not stationary then the approximated frequency spectrum of signal+noise is not the
same as the actual frequency spectrum of signal+noise which means they no longer cancel out
in Equation 2.4 and Equation 2.5 no longer holds. As an example a Wiener filter was made from
the signal as seen in Figure 2.2. The time span from 0 s to 2 s is taken as the ’noise’, and the time
span from 5 s to 7 s is taken to be signal+noise. From these a Wiener filter is constructed and
can be seen in Figure 2.7.

Figure 2.7: Filter coefficients and frequency responses of a Wiener filter

Adaptive filters are a class of filters where the filter coefficients are adjusted over time to at-
tempt to find an optimal solution even without knowing the spectral properties of the signal

Tjeerd Bakker University of Twente



CHAPTER 2. THEORY 11

Figure 2.8: Block diagram of an adaptive filter [37]

beforehand [38]. Adaptive filters adjust the filter coefficients by decreasing the error that re-
mains after applying the filter. A diagram describing this process can be found in Figure 2.8.
One type of adaptive filter is the Least Mean Squares (LMS) algorithm. Where a Wiener filter
finds an optimal solution by using cross-correlation and auto-correlation, the adaptive LMS
algorithm converges to the optimal solution (i.e. the solution found by the Wiener filter given
complete knowledge of the spectral domain) using gradient descent. Filter coefficients will
never reach wopt but instead oscillate around it. The mathematical definition for calculating
the filter coefficients is given, derived from the work of J. Orfanidis [37, Ch. 7.3] and lectures
by S. Safapourhajari [39]. Again it is assumed that there is an input signal (d(n)) consisting of a
desired signal (s(n) = e(n)) and additive noise (x(n)), as well as a separate measure of the noise
that is correlated with the noise in the input signal but uncorrelated with the desired signal.
The desired signal s(n) is also called the error e(n) since it is the remainder after removing the
noise from the signal+noise, as well as the fact that this is convention [37].

The cost function for adjusting the adaptive filter as seen in figure 2.8 coefficients is taken to be
the Mean Square Error J (MSE):

J (w) = E(e2(n)) = E [(d(n)−w x(n))2)] (2.6)

To calculate the expected value of the square of the error we would normally need statistics over
a large block of data. An approximation of the expected value can be made by using a smaller
set of data. This can be done by taking the current samples as the estimates of the mean

E(e2(n)) ∼ e2(n) (2.7)

Since the error e(n) equals d(n)−w x(n) this can be filled into the equation

E
(
(d(n)−w x(n))2)∼ (d(n)−w x(n))2 (2.8)

To find w that minimizes the MSE we can take the derivative of MSE with respect to w for every
sample n

∂J

∂w
= 2(d(n)−w x(n))

∂ (d(n)−w x(n))

∂w
=−2e(n)x(n) (2.9)

This results in the following weight-adjusting algorithm

w(n +1) = w(n)−µ ∂J

∂w

∣∣∣∣
w(n)

(2.10)

= w(n)+2µe(n)x(n) (2.11)

This algorithm is implemented by performing the following steps.
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12 Comparing processing techniques for real-time force estimation from sEMG

1. The estimated value for signal+noise is computed from the filter and noise

x̂n = w(n) · y(n) (2.12)

2. The error is calculated by taking the difference between the expected signal+noise value
and the measured signal+noise value.

e(n) = x(n)− x̂n (2.13)

3. The coefficients are calculated for the next iteration

w(n +1) = w(n)+2µe(n)x(n) (2.14)

The steps in equations 2.12-2.14 are repeated for every next sample.

In the presented equations a constant µ is present; this is called the convergence coefficient.
Determining the value of the convergence coefficient µ is a double-edged sword. On the one
hand it determines how fast the gradient descent is traversed, and thus how fast the filter co-
efficients converge to the optimal filter coefficients. Ideally this happens as fast as possible,
and thus the convergence coefficient must be as large as possible. On the other hand it was
previously mentioned that the filter coefficients will never reach the optimal filter coefficients
but instead oscillate around this value. The convergence coefficient also determines how large
this oscillatory behaviour is, and thus to achieve an accurate estimation of the optimal filter the
convergence factor should be as small as possible.

A problem presented by the basic LMS algorithm is that scaling the input also results in scaling
the error term calculated in Equation 2.13. This makes it difficult (if not impossible) to find
a convergence factor that functions across a wide range of possible scaled inputs. A solution
to this problem is found in the work of Haykin [40] in the form of the Normalized LMS filter.
This normalizes the power of the input signal before multiplying the input with the error and
convergence factor. This is done by dividing the input signal with the dot product of the input
signal with itself. It turns Equation 2.14 into Equation 2.15 [40]. It should be noted that since
the filter coefficients are updated over time, the final result of the coefficients are only the ap-
proximation of the optimal coefficients that correspond to the last part of the signal. This holds
true especially for non-stationary signals. Purely for completeness the final result of an LMS
filter has been given in Figure 2.9.

w(n +1) = w(n)+2µe(n)
x(n)

x(n) · x(n)
(2.15)

Common applications of adaptive filters include speech recognition, echo cancellation, and
headphones employing active noise cancellation [17, 41].

2.3.2 FIR vs IIR

Another subdivision within filter design is concerned with the type of possible responses to a
specific input (impulse) and whether or not this can go to infinity.

The previously discussed filters were all described as Finite Impulse Response (FIR) filters. This
means that the output is the result of multiplying the filter coefficients with the input. This type
of filter is always stable and the output can never go to infinity as long as the input does not go
to infinity.

An Infinite Impulse Response filter calculates the output using two sets of filter coefficients.
The first set of filter coefficients is used to multiply the input with just like an FIR filter, but the
second set of filter coefficients is used to multiply the previous outputs with. This means that
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Figure 2.9: Filter coefficients and frequency response of an adaptive LMS filter

there is now a feedback loop in the system, and a system with feedback can become unstable.
Unstable in this case means that there is a possibility of positive feedback loops where increas-
ing output values result in future output values also increasing, eventually going to infinity.
Even though this feedback and possible instability may sound like a downside, it also results
in shorter filter length and thus fewer computations required per filter operation. This could
especially turn out to be beneficial in low memory and low compute power environments like
in prostheses [42].

Both static and adaptive filters can be implemented as either FIR or IIR filters. An adaptive
IIR filter offers the potential to meet desired performance levels with much less computational
complexity. However, the possibility for the system to become unstable combined with the fact
that filter coefficients are adjusted automatically leads to a high-risk high-reward scenario due
to a loss of control and hard to predict behaviour [43].

2.4 Pre-whitening

During literature research it was noticed that it was not uncommon in literature to mention
something along the lines of "including a temporal whitening filter [...] improves the perfor-
mance of the amplitude estimate" [19,20,45]. However, an intuitive explanation of why whiten-
ing works was consistently lacking. So to understand the reasoning behind whitening we need
to take a short detour to the world of computer science and information theory.

Back in 1948 a mathematician, electrical engineer, and cryptographer named C.E. Shannon
published a pioneering paper that formed the basis of information theory [46]. In this paper it is
shown that repetition does not carry information, and that the maximum information transfer
occurs when a signal is truly random. Imagine a signal with only a single frequency component.
After measuring a few samples of the signal the conclusion is drawn that this is a 50 Hz signal.
Since it is possible to predict the value of every future measurement of the signal after drawing
this conclusion it becomes unnecessary to continue measuring the signal because it will not
give any new information. A repeating pattern is predictable, and predictable events carry no
information.
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14 Comparing processing techniques for real-time force estimation from sEMG

Figure 2.10: A diagram displaying the difference between Finite impulse response filters, only using pre-
vious input, and Infinite impulse response filters, using previous inputs and previous outputs resulting
in a feedback loop [44]

The polar opposite of a signal containing a single frequency (and therefore predictable and
carries little information) is a signal that contains all frequencies an equal amount. This is
called a white noise signal and carries the maximum amount of information because there
exists no repetition and therefore every sample carries new, unpredictable information.

Between the existence of a signal containing a single frequency, and a signal containing all
frequencies (white noise), all other signals exist and have certain frequencies that are more
’present’ than other frequencies. These signals have different degrees of predictability (and
thus information density), and the degree of predictability is determined by how closely the
frequency content resembles white noise.

Whitening is a filtering technique that tries to equalize the presence of frequency components
in a signal to approximate white noise and thus increase information density. It reduces the
random error and yields a larger dynamic range because the small frequency components that
contribute to the ’randomness’ of the signal but not so much to the value of the measurement
sample become more present [47, Ch. 5.4.9] [45]. The serial correlation of the signal is de-
creased by reducing the presence of ’predictable’ signals, which increases the randomness and
thus information density [48].

This previous information manifests itself in sEMG signal processing by the fact that the mea-
sured sEMG signal is not white. Some frequency components are much more present than
others, but all frequencies equally contribute to the indication of muscle contraction. To get a
more accurate indication of muscle contraction the signal should be whitened to increase the
information of each sample.

Whitening in real-time is achieved through a digital filter with a frequency response that when
multiplied with the sEMG signal frequency spectrum yields a white noise spectrum.

To summarize: Whitening reduces the power of repeating frequencies and increase the power
of random frequencies in the signal. An example is given in Figure 2.11.
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Figure 2.11: An example of whitening a signal. The indicated peak contains the ’random’ signal of in-
terest. By whitening the powerful lower frequencies it is possible to give the information-carrying peak
more presence on the signal [47]. The focus with this figure should lie with the change in shape of the
frequency spectrum, the actual represented data is irrelevant.

Figure 2.12: Illustrating envelope detection of an analytical signal [49]

2.5 Envelope detection

The relation between the amplitude of a measured sEMG signal, the degree of contraction of a
skeletal muscle and the exerted force is very complicated. However, the relationship between
force and EMG amplitude during isometric contractions is usually linear or close to linear [6]
[7]. This is the reason that in this report it is assumed that there exists a linear relation between
force and sEMG signals.

Since the raw EMG signal consists of stochastic and unpredictable noise it is difficult to draw
conclusions about the degree of muscle contraction when solely looking at individual samples
[50]. By drawing an outline of the peaks of the signal a much more informative picture can be
drawn. This is called an envelope and an illustration of this process can be found in Figure 2.12.
In the case of more random sEMG signals it is preferred to perform full wave rectification on the
signal before calculating the envelope so that all of the signal energy is taken into account [50].
Applying this concept to an sEMG signal is illustrated in Figure 2.13.
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16 Comparing processing techniques for real-time force estimation from sEMG

Figure 2.13: On the left a time-domain sEMG signal. On the right an example of envelope estimation is
presented. By taking the absolute value of the sEMG signal on the left and calculating the envelope it is
possible to make an estimation of muscle contraction. The next step would be force estimation but this
requires two antagonistic muscles. This is discussed more in-depth in section 3.4

Computationally envelope detection can be achieved in a number of different methods where
"speed", or how much the detected envelope lags behind the true signal envelope, is traded
against accuracy or noisiness [51].

2.5.1 Moving average

The moving average filter used in this report is a special type of FIR filter with coefficients that
all have the value of 1

n where n is the number of samples over which the average is taken. Thus
the value of every smoothed sample is calculated to be the average of the previous n samples.
The upside of a moving average filter is that it introduces no phase distortion [52], is very simple
to implement, and requires only additions to apply which is much faster than multiplication
[53]. An illustration of the phase shift of a moving average filter is shown in Figure 2.14. An
intuitive downside of a moving average filter is that its output lags behind the signal: a change
in a static signal level is only properly reflected after n samples. The sEMG signal must also
be rectified before this method can be applied because EMG signal is of stochastic nature with
zero mean [54].

2.5.2 IIR Low-pass filter

A low-pass filter such as a Butterworth or Chebyshev can be used to determine the envelope
of a rectified signal in a more ’responsive’ (less lag) method compared to a moving average fil-
ter. The downside of this filter is that it introduces phase shift (as can be seen in Figure 2.15)
unless applied in forward and backward direction [54] which is not possible in real-time sig-
nals without introducing a static delay of a number of samples that equals the number of filter
coefficients.

2.5.3 Root Mean Square

The Root Mean Square (RMS) of a signal is the square root of average power of a signal for a
given period of time, a definition is given in Equation 2.16. A useful property of RMS is that
when it is applied to a signal with Gaussian distribution the RMS amplitude of the source is the

Tjeerd Bakker University of Twente



CHAPTER 2. THEORY 17

Figure 2.14: Frequency response of a moving average filter. This particular filter consists of 100 coef-
ficients all equal to 0.01. Notice how the filter has linear phase which indicates that there is no phase
distortion due to the time delay of frequencies relative to another [52]

Figure 2.15: Frequency response of an infinite impulse response (Butterworth) low-pass filter. The filter
has a fcut of 1 Hz and has a length of 3. Notice how the phase delay is not linear and thus phase distortion
is introduced

same as the standard deviation of the distribution [55]. In other words this means that RMS can
extract the signal power of all frequencies in a signal in the time-domain if the frequencies are
normally distributed. Since the probability density of surface EMG is approximately Gaussian,
RMS should theoretically be the maximum likelihood estimator of EMG amplitude [50].

RMS =
√

1

n
(x[1]2 +x[2]2 +·· ·+x[n]2) (2.16)
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18 Comparing processing techniques for real-time force estimation from sEMG

2.6 Standard sEMG signal processing

A conventional static real-time sEMG signal processing chain is described in [56]. The relevant
steps are as follows:

• Remove DC component from signal

• Band-pass filter 20-300 Hz

• Notch filter at 50 Hz

• Half-wave rectification

• Low-pass filter for envelope detection

This signal processing chain will also be tested in this report and compared to alternative tech-
niques.

2.7 Conclusion

In this theory section the required background information is given to understand the simu-
lations, measurements, and conclusions that are discussed in this report. For each processing
step, multiple processing methods have been discussed all of which can be seen in Figure 1.1,
and information about the relevant parameters has been given. For the Wiener filter and the
adaptive LMS filter a mathematical derivation is presented.

Tjeerd Bakker University of Twente



19

3 Simulation

This section of the report describes the testing of separate signal processing steps in a simulated
environment. Each block as seen in Figure 1.1 will be tested individually, and the method and
results will be discussion on a per-block basis:

• Pre-whitening

• Filtering

• Envelope estimation

Unless specified otherwise all signals will be high-passed with an fcut of 1 Hz to remove DC bias
before any operation is applied

3.1 Pre-whitening

A whitening filter is a digital filter with a frequency response that is (ideally) the inverse of the
frequency contents of an sEMG signal.

3.1.1 Method

A testing signal was created that approximates the frequency response of an sEMG signal. The
testing signal was created by creating a long white noise signal and multiplying the amplitudes
in the frequency spectrum with a curve that estimates the frequency response of an sEMG sig-
nal. After this the signal is passed through inverse fft to go back to a time-domain signal. The
result can be seen in 3.1 subplot 1 and 2.

The whitening filter is then created by taking the FFT of the time-domain test signal and taking
its reciprocal at every frequency. Lastly the whitening filter frequencies are multiplied by the
mean of the original signal frequencies to make sure that when the filter is applied the mean
stays the same. These steps can be seen in 3.1 subplot 3.

3.1.2 Results

Figure 3.1 shows the whitening filter that functions as expected. In the center subplot the ’ideal’
result are shown (multiplication in the frequency domain), and in subplot 5 the result from
convolution in the time domain is shown. In subplot 5 a smoothed version of the filtered signal
FFT is added to display that the signal power has a mean that approximates white noise. This
filter was made using a Savitzky-Golay filter with a window length of 31 and a polynomial order
of 3.

3.2 Filtering

First the metrics are introduced that will be used to compare filter performance. Subsequently,
the construction process of each filter is presented. Lastly the different filtering methods are
compared.

3.2.1 Comparison metrics

Each filter will be tested using two metrics: SNR (eq 2.1) and Bandwidth (definition of this will
be given shortly). All filters are linear time invariant which means the superposition principle
can be used to simplify SNR calculations [57]. The superposition principle simply states that
filtering the sum of two signals is the same as filtering the signals individually and adding the
results. An illustration of this can be seen in 3.2.
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Figure 3.1: Subplot 1 and 2 display the input simulated input signal with a frequency response that
approximates the frequency contents of an sEMG signal. Subplot 3 displays the frequency content of
the signal, the subsequently calculated whitening filter, and the multiplication of the signal with the
filter in frequency domain to show that the response is indeed white. Subplot 4 and 5 show the original
and ’whitened’ signal in time domain and frequency domain.

Due to the difficulty of creating a simulated signal that has the frequency contents of an sEMG
signal and environmental noise, a pre-recorded sample of sEMG of a bicep going through max-
imum voluntary contraction was used to test the filters. This sample is not used for force esti-
mation because it will not be compared to the contraction of an antagonistic muscle and purely
the frequency contents of the signal are of interest. The sample that is used can be seen in Fig-
ure 2.2. Noise is taken to be 0 s to 2 s and signal is taken to be 5 s to 7 s. The RMS of the filtered
signal is divided by the RMS of the filtered noise to create a signal to noise ratio.

Figure 3.2: Illustration of testing of filters. Signal and noise are passed through the filter individually and
the SNR is calculated for each filter.

SNR by itself is not a valid metric for judging a filters performance in this scenario. The purpose
of improving SNR is the assumption that force can be estimated more accurately from a signal
that contains primarily the signal generated by muscle contraction. However, a filter may be
able to attenuate the signal and noise in such a way that the SNR is very high, but the signal is
attenuated to such a degree that it no longer resembles the original signal that was generated
by the muscle contraction. An example of this can be seen in Figure 3.3.

A measure to define how much the frequency spectrum has changed is the bandwidth. Typi-
cally the bandwidth of a signal is defined as the range of frequencies between two frequency
points outside of which the signal is attenuated more than a specific threshold value [58]. This
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definition is not applicable to this problem as the frequencies that are ’present’ in an sEMG
signal are not necessarily consecutive. Therefore the bandwidth of an sEMG signal will be de-
fined as the number of frequency components that are larger than the mean of the frequency
spectrum, a mathematical definition is given in Equation 3.1. With this metric, a frequency
spectrum such as the one seen in Figure 3.3 will have a low bandwidth because most frequen-
cies are below the mean.

Bandwidth = #{x ∈ fft(sig) | x > fft(sig)} (3.1)

Figure 3.3: Example of filtering that results in good SNR but bad bandwidth.

3.2.2 Method

Static filter

The theory from section 2.6 specifies the removal of DC frequencies, a notch filter at 50 Hz, and
a bandpass filter between 20 Hz and 300 Hz. Looking at the noise spectrum in Figure 2.3 it can
be seen that there also exist significant peaks at 100 Hz and 150 Hz. Therefore different static
filters were tested with different amounts of notch filters.

• IIR Notch filters at 50 Hz, 100 Hz, 150 Hz, 200 Hz. All have a Q-factor of 10, are constructed
as numerator/denominator pairs and applied using scipy’s lfilter.

• The bandpass filter consists of a high-pass filter with an fcut of 20 Hz and a lowpass filter
with an fcut of 300 Hz. Both filters are of length 5, are constructed as numerator/denom-
inator pairs, and applied using scipy’s lfilter.

The frequency response of these filters can be seen in Figure 3.4. The resulting metrics can be
seen in the chart 3.5.

Wiener filter

As discussed in section 2.3.1 the Wiener filter coefficients are constructed from the cross-
correlation vector between signal+noise (d(n)) and the noise (v(n)) and the auto-correlation
of the noise as is presented in the Wiener-Hopf equation in Equation 3.2 [32].
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Figure 3.4: Frequency response of static filters with a different number of notch filters. The plots were
created by determining the frequency responses of each individual filter (notches, low-pass, high-pass),
then multiplying the amplitudes and adding the phase shifts. For the sake of illustration the amplitude
graphs have been shifted vertically to clearly show the existence of notch filters in different lines, during
simulations this shift was not present.

Figure 3.5: SNR and bandwidth of static filters with different numbers of Notch filters. Four notch filters
were chosen for the measurement section (4) as the bandwidth seems to not depend very much on
number of filters but the SNR seems positively correlated. Even though the peak around 200 Hz as seen
in Figure 2.3 could is not as significant as other multiples of 50 Hz

it is still included because it is significant compared to the rest of the noise spectrum.

wopt = R−1P (3.2)
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The number of Wiener filter coefficients have a strong influence on the performance of the
filter as can be seen in Figure 3.6. For the measurements section (4), a Wiener filter of length
500 was chosen as this is a middle ground for SNR and bandwidth.

Figure 3.6: The effect of the number of Wiener filter coefficients on the SNR and bandwidth. To clarify
the more general influence of filter length both plots were smoothed using a Savitzky-Golay filter with
length of 71 and poly order of 3. It appears there is a clear peak in SNR at 650 filter terms but this
corresponds to a low bandwidth. A filter length of 500 was chosen as this presents a good middle ground
between SNR and bandwidth peak in the bandwidth.

Figure 3.7: The frequency response of a Wiener filter at different levels of MVC. It can be seen that at
a lower MVC the filter appears to have a very aggressive frequency response (seen by the large peaks at
10 Hz and higher frequencies) while at higher MVC this response is much less pronounced.
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Adaptive filter

The functioning of an LMS filter has been described in the theory section 2.3.1. An LMS filter
has two properties that determine its behaviour: The filter length and the convergence coeffi-
cient. To determine the best combination of these parameters when applied to sEMG signals a
range of different values was tested. The results can be found in Figure 3.8. For the measure-
ment section (4) an LMS filter with length 500 and convergence value of 0.1 will be used.

Figure 3.8: SNR and bandwidth of an adaptive LMS filter using different combinations of filter length
and convergence value. It should be noted that each signal has been smoothed using a Savitzky-Golay
filter with a window length of 31 and a polynomial order of 3. This is done to make the difference in
performance between different convergence values clearer as without filtering the signals have a larger
deviation that makes the lines unreadable. A higher convergence value seems to result in a better SNR.
Furthermore it seems that increasing window length results to lower SNR (except for the convergence
value of 0.3), but to slightly higher bandwidth. The convergence value of 0.1 stands out as it seems to
increase with window size, but in practise this results in a larger error due to the swinging behaviour
that was discussed in the theory section 2.3.1. A convergence value of 0.1 with a filter length of 500 was
chosen as this yields a good middle ground between SNR and bandwidth

3.2.3 Results

A property that might be of interest is each filters performance in different levels of Maximum
Voluntary Contraction (MVC). This allows for insight into how well each filter functions in dif-
ferent levels of signal compared to the environment noise. This was realized by keeping the
noise constant, but scaling the signal to different levels (from 1-100 %) to simulate different
levels of MVC. The SNR of the filtered signal and filtered noise was divided by the reference
SNR (SNR of input signal and input noise) to be able to draw a clear conclusion about the fil-
ters performance. This has as effect that the unfiltered signal results in a horizontal line with
the value of 1 as can be seen in 3.9.

Again, the bandwidth was calculated for different filters and at different levels of MVC. The
results can be seen in Figure 3.10.

For bandwidth holds that the metric is independent of degree of muscle contraction as seen
in Figures 3.10 and for SNR this holds except for the non-static adaptive LMS filter as seen in
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Figure 3.9: The normalized SNR of each filter for different levels of MVC (filter SNR divided by unfiltered
signal SNR). It can be seen that there is no relation between the static and adaptive filters performance
and the degree of contraction. An interesting observation can be made about the Wiener filter as it
seems to perform better at lower MVC. This could be explained by the fact that if noise makes up a larger
portion of the signal it might be ’easier’ to find a set of filter coefficients that filter a larger portion of noise
away. If a few frequencies in the noise are orders of magnitudes larger than those frequencies in the
signal, a filter that removes that frequency will impact the noise much more than the signal which results
in a higher SNR. It can also be seen that the SNR of the Wiener filter is much lower than the numbers
presented in Figure 3.6, this may be caused because the plots shown in Figure 3.6 have been smoothed
to reflect general behaviour. Without this smoothing, the plot in Figure 3.6 has a large deviation and it
is possible that this specific filter length was not great for this specific signal but, given a larger data set,
will approximately follow the results presented in Figure 3.6.

Figure 3.9 Figure 3.9 shows that the best signal to noise ratio is achieved using a Wiener filter,
but this filter also has the worst bandwidth performance as seen in Figure 3.10.

3.3 Envelope estimation

3.3.1 Comparison metrics

There are two separate metrics that need to be measured when comparing envelope estimation
techniques. The first one is how ’fast’ a techniques is, and the second is how ’good’ the tech-
nique is. The first metric gives information about how much the ’detected’ signal lags behind
the ’true’ signal. The second metric is the quality of the envelope estimate when accounting for
the lag.

The lag is detected by calculating the cross-correlation between the true signal and the enve-
lope estimate. Cross-correlation is a metric that determines the similarity between two signals
as a function of displacement of one signal relative to another [59]. Since the ’true’ signal and
the estimated signal are most similar when their displacement equals the lag, a detectable peak
is formed in the cross correlation function. The left subplot in Figure 3.11 displays a ’true’ signal
(measured force), and a simulated estimation of this signal (estimated force) that lags behind
the true signal. The cross-correlation is also plotted that has a peak at 100 ms, which is the ex-
act amount of lag between the two signals. The right subplot shows the two signals where the
estimated signal has shifted to account for the lag.
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Figure 3.10: The bandwidth of each filter for different levels of MVC. It can be seen that there is no
relation between a filters performance and the degree of contraction for the static and adaptive filter.
The static filter performs as expected as it removes the same frequency components regardless of the
amplitude of the signal. The Wiener filter seems to have larger bandwidth at higher MVC. This can
logically be explained by the fact that the optimal filter uses the statistical spectral properties of the
entire signal sample, but in situations of low MVC may not result in good filtering on subsets of the
signal. The adaptive filter does not have this problem as it can adjust the filter terms to also accurately
filter subsets of the data.

The error can be determined by subtracting the true signal from the estimated signal, and the
root-mean-square-error can be calculated.

Figure 3.11: Illustration of method for judging envelope estimation
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An input signal was generated to be Gaussian white noise since it has signal properties close to
that of an sEMG signal, and is multiplied with a modulation that can be seen in the left subplot
of Figure 3.12. The envelope detection techniques are applied onto the input signal and the
results are plotted in the right subplot of Figure 3.12.

Figure 3.12: Left: Input signal and ’true’ envelope’. Right: Envelope detection using different techniques
to illustrate difference in behaviour

3.3.2 Method

IIR lowpass filter

A Butterworth filter was used to construct an IIR lowpass filter. The performance of such a
lowpass filter is defined by its fcut and the number of filter coefficients (or the filter order).
The highest frequency that the envelope should be able to produce is the frequency by which
one can contract and relax the measured muscle. It was empirically determined that the max-
imum frequency for switching between total relaxation and maximum voluntary contraction
and back was around 5 Hz and thus the fcut was varied from 1 Hz-9 Hz. The filter length was
varied from 2-8 because the minimum possible filter length is 2 (a single filter coefficient pro-
vides no filtering, just scaling the signal with a constant), and a filter length >8 resulted in un-
stable behaviour. A plot of the frequency response of the IIR Butterworth filter can be seen in
Figure 3.13. The filters are achieved as a numerator/denominator sequence. Since the purpose
of this filter is real-time envelope detection, it was applied using scipy’s lfilter since as that is
causal forward-in-time filtering only.

Moving average

The moving average filter only depends on the length of the filter, Figure 3.14 depicts the fre-
quency behaviour of the moving average filter of different lengths. The range of values that are
tested is chosen arbitrarily, but large enough to cover general use cases.

Root mean square

Similar to the moving average filter, the behaviour of the RMS filter is solely determined by the
length of the filter. The same range of filter lengths was chosen as for the moving average filter
so that the performance could be directly plotted against each other.
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Figure 3.13: Frequency response of IIR Butterworth filter of different order. The fcut was set to 5Hz.

Figure 3.14: Frequency response of moving average filter of different lengths. The coefficients of the
moving average filters are 1/length of filter.

3.3.3 Results

To properly evaluate the performance of the envelope detection techniques each method has
been tested individually across the range of variables that were described in the previous
method section and plotted against the resulting lag and error.

The graph describing the performance of the IIR Butterworth filter can be seen in Figure 3.15.
The graph describing the performance of the moving average filter and the RMS filter can be
seen in Figure 3.16.

Tjeerd Bakker University of Twente



CHAPTER 3. SIMULATION 29

Figure 3.15: Lag and error of an IIR Butterworth filter for different cut-off frequencies and filter lengths.
Note that filters with a lower fcut and high number of filter coefficients become unstable which can be
seen in the error-graph for cut-off frequencies 1 Hz-3 Hz. Additionally, the error in these graphs are all
below 0.125. This is caused by the fact that the modulation is between 0 and 1, the error is <1 and the
squared error is smaller still. So not the error value, but the relation between error values of different
methods is the truly useful information here.

Figure 3.16: Lag and error of RMS filter and moving average filter for different filter lengths

From Figure 3.15 it can be seen that an IIR LP Butterworth filter of length 3 and fcut of 4 Hz
results in the lowest error. A filter with fcut of 6 Hz has the lowest lag but this is only marginally
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less than a fcut of 4 Hz. For this reason an IIR LP Butterworth filter of length 3 and fcut of 4 Hz is
used in the the measurement section (4).

From Figure 3.16 it can be seen that moving average and RMS methods have similar lag, and
the lag has a linear relation to the filter length. In the same figure it can also be seen that the
error reaches a minimum at a filter length of 120. For this reason both the RMS and moving
average method are applied with a filter length of 120. The Figure also shows that the error
increases with more filter terms which may seem counter-intuitive. A possible explanation for
this is that filters with more filter coefficients can achieve a higher transition bandwidth. As a
result, the envelope may be detected through a sets of frequencies that does not accurately rep-
resent the applied force. Shorter filters have smaller transition bandwidth and thus a ’smoother’
frequency range is used to construct the envelope.

3.4 Force estimation

The measured sEMG signals from antagonistic muscles needs to be combined to form an es-
timate of the exerted force. Since this calculation is done in a consistent way throughout all
measurements this section serves purely to provide some insight into the method of calcula-
tion.

The previous step of envelope estimation is used to get a measure of muscle activation. Since
muscle activation leads to muscle contraction and exerted force around a joint is the difference
between how much antagonistic contract [4] it becomes possible to determine the force from
sEMG. To correlate the difference in muscle contraction from antagonistic muscles (such as bi-
ceps and triceps) to the exerted force, the muscle contraction needs to be scaled. As previously
mentioned, a linear relation between sEMG and force will be assumed [7] [6]. In Figure 3.17 it
is shown how the exerted force is estimated from simulated bicep and triceps sEMG.

3.5 Conclusion

In this chapter different filtering and envelope detection methods were compared. For each
method, different variations of parameters were tested to determine the most optimal solution
for each option. From the presented simulations the following expectations are made:

• The static filter performs the best in terms of SNR, but in terms of bandwidth performs
worse than other filters. The unfiltered signal yields the largest bandwidth but the lowest
SNR. From this it is expected that if a high SNR results in a more accurate force estima-
tion from sEMG that the static filter will perform best in force estimation as long as the
MVC is large as seen in Figure 3.9, but if MVC is small then the adaptive LMS filter is ex-
pected to perform best.If bandwidth is the most important property for estimating force
from sEMG it is expected that unfiltered signals perform the best, closely followed by the
adaptive LMS filter and Wiener filter.

• The RMS envelope detection method results in the smallest error compared to moving
average and IIR Low-pass filter for the determined filter parameters. In terms of lag the
RMS envelope detection performs about the same as the moving average envelope de-
tection, and both of these are expected to result in less lag than IIR LP filter.
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Figure 3.17: Process of estimating force from simulated sEMG (random Gaussian noise). The bicep
envelope is calculated at the top, notice how during downwards force exertion the bicep still activates
but to a lesser degree than during upwards force exertion. The same holds for the triceps in the bottom
figure. The subplot on the right shows the envelope of the bicep, triceps, the difference between these
two (identical to estimated force assuming linear scaling with factor 1), and the ’measured’ force .
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4 Measurements

This chapter aims to validate the accuracy of force estimation from sEMG after different pro-
cessing techniques by comparing it to measured data. The goal is to measure sEMG from biceps
and triceps, record the sEMG reference noise and to measure the estimated force using a load
cell during an exercise of isometric contraction. The sEMG data is then processed using the
different techniques that are discussed in the simulation chapter, and the final estimated force
will be compared to the measured force.

4.1 Experimental setup

The measurement setup consists of the following components:

• Siemens Single Point Load Cell, 20 kg Range, Compression Measure

• Keysight E3631A DC power supply at 2 V to power the load cell

• TMSi Refa8-16e 16 channel amplifier

• Kendall H124SG Foam-Hydrogel ECG Electrodes

The 16 channel amplifier performs uni-polar measurements. This means that each electrode
is connected to its own amplifier channel, and the measured values are compared to the value
of a reference. The opposite of uni-polar is bipolar which entails that the potential difference
between two electrodes is amplified by a single amplifier channel [60].

The load cell has 4 relevant terminals. Two terminals are connected to the power supply to
supply the load cell with power. The other two terminals are connected to the amplifier. The
’common’ terminal of the power supply is connected to the ’Patient ground’ on the amplifier.

Sets of two electrodes are placed on the subjects right bicep, right triceps, and left arm. The
electrodes were placed following SENIAM guidelines [61]. Two electrodes per set are chosen
to be able to do a differential measurement. Since each electrode in a set measures almost
identical sEMG signal the signals from the electrodes can be averaged to reduce any present
noise. The electrodes on the left arm are used to record a reference noise. It is expected that this
reference noise has an identical frequency spectrum as the noise present in the sEMG signal
since it is recorded at the same time, approximately same place, using the same amplifier, and
can therefore be used in some of the presented filtering techniques. The reference signal is
recorded using a TMSi provided armband that was soaked with water (for better connectivity)
and connected to ’Patient ground’ on the amplifier. A total measurement setup diagram is
shown in Figure 4.1. A photo of the measurement can be seen in Figure 4.2

A single long measurement was taken at a sampling rate of 1000 Hz where force was applied
following a predetermined pattern. This measurement is accompanied by a calibration mea-
surements where an object with known weight was attached to the load cell at the sampling
frequencies.

The applied force followed the following pattern:

• Slowly pulling the handle upwards followed by a slow pushing the handle downwards.
Repeated three times

• Slowly pull the load-cell upwards followed by returning to a neutral position. Repeated
three times

• Slowly push the load-cell downwards followed by returning to a neutral position. Re-
peated three times
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Figure 4.1: Diagram of the measurement setup

• Quickly pull the handle upwards followed by a quick push of the handle downwards. Re-
peated three times

4.2 Measurement data

The following configuration parameters were chosen based on simulation results:

• Whitening: A whitening filter was created from the signal spectrum between 5 and 10
seconds in Figure 4.4. The number of coefficients was limited to 500.

• Filtering

– Static filter: 3 notch filters at 50 Hz, 100 Hz, and 150 Hz with q-factor of 10, low-pass
Butterworth filter with fcut of 20 Hz and length 5, high-pass Butterworth filter with
fcut of 300 Hz and length 5

– Wiener filter: 200 filter terms, filter was created from the bicep signal

– Adaptive LMS filter: The filter length was 500 and the convergence value was 0.05

• Envelope detection
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Figure 4.2: Picture of the measurement setup

– Moving average envelope detection: Length of filter was 120 terms

– IIR LP filter: fcut of 4 Hz and a filter order of 3

– RMS: Length of filter was 120 terms

Figure 4.3: Calibration measurement at 1 kHz sampling rate. The force has been low-passed with an fcut

of 10 Hz to remove large 50 Hz noise component. The offset was determined to be −30µV. The weight
op the object was 1681 g which corresponds to a measured signal of 725µV

.

The calibration was performed to determine what the relation between the measured voltage
and the force was. A weight of 1681 g was attached to the measurement handle attached to the
load cell which resulted in the measurement that can be seen in Figure 4.3. Through visual
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Figure 4.4: Force measurements and accompanying sEMG signals at 1 kHz sampling rate

inspection, the steady state offset of the setup without attached weight was determined to be
30µV. After attaching the weight, the steady state voltage was determined to be 725µV.

∆weight [g]

∆signal [mV]
= 1681

7.25−0.30
= 0.00241[N /uV ] (4.1)

The measured force in Newton is approximately 0.00241 times the measured signal in micro
Volt.

All measurements were performed in bipolar electrode configuration and the measurement
for a set of two electrodes was found by adding the results together. This removes the average
signal that is present in all signals.

4.3 Measurement processing result

All combinations of whitening, filtering, and envelope detection were applied onto the signals
as seen in Figure 4.5. During processing it was noticed that some methods scaled the estimated
force by large amounts and this resulted in high error rates. To still compare the accuracy of
force estimation regardless of scaling factor the decision was made to intrude an intermediate
step between measuring/compensating the lag and calculating the error. After accounting for
the lag, a scaling factor is determined that minimizes the RMSE. The scaling factor is deter-
mined through the following algorithm:

• Calculate the RMSE
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• Calculate the RMSE of a slightly amplified signal

• Calculate the RMSE of a slightly reduced signal

• Compare if amplifying or reducing the signal decreases the RMSE. If amplifying/reducing
yields a lower RMSE, amplify/reduce the signal and repeat these steps. If amplifying and
reducing both yield an RMSE lower than the current RMSE, the ideal scaling value has
been found.

The estimated force is subsequently scaled by this scaling factor preparatory to calculating the
RMSE value. For the RMSE calculation, the first 3 seconds and the last 3 seconds of the signals
were discarded (after processing) because some processing steps did not yield their steady-
state response in that time [62]. The results for lag, error, and scaling can be found in the bar-
chart in Figure 4.5.

In Figure 4.5 it can be seen that whitening introduces significant lag. In the appendix are the
results of constructing the whitening filter using zero-phase, linear-phase, and negative input
signal phase A.3, A.2, A.1, A.4. If this were caused by the fact that the whitening filter was
constructed using the phase of the input signal then it would be expected that using nega-
tive source phase this introduced delay would be counteracted, but as can be seen in appendix
Figure A.2 this does not appear to be the case.
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Figure 4.5: This plot contains all relevant results for all different combinations of whitening, filters and
envelope detection
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Figure 4.6: This figure illustrates the effect that whitening of the sEMG signal has on the resulting enve-
lope. The signals were not filtered and moving average was used for envelope detection. Both unfiltered
and adaptive filtered versions show volatile behaviour compared to the non-whitened variant. In the
frequency domain it can be seen that whitening results in a spectrum of larger amplitude compared to
the non-whitened spectrum which seems to follow the measured force much more closely
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Figure 4.7: This figure illustrates the effect that different filtering techniques have on the resulting en-
velope. The signals were not whitened and moving average was used for envelope detection. The fre-
quency plots have been smoothed using a moving average filter of length 10 to clearer show the differ-
ence in behaviour.
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Figure 4.8: This figure illustrates the effect that different envelope estimation techniques have on sEMG
signal. The signals were not whitened and not filtered. Even though all methods seem to provide almost
identical behaviour in the time domain it can be seen from the frequency spectra that this only holds
for moving average and root mean square envelope detection. IIR Butterworth low-pass filtering results
in a more linear attenuation from the fcut on wards (set to 5 Hz) which is in line with the simulations as
seen in Figure 3.13
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Figure 4.9: The frequency response of the adaptive LMS filter over time. It can be seen that lower fre-
quencies are attenuated, as well as a constantly present signal around 60 Hz and one at 100 Hz. Very
faintly it can also be seen that around 150 Hz and 200 Hz the frequencies are attenuated, it is expected
that these are the harmonic overtones of nearby power lines.
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Figure 4.9 shows the adapting frequency response of the LMS filter. Comparing this spectro-
gram with the raw measurements as seen in Figure 4.4 the connection can be made between
muscle contractions (starting at 10 s) and the filter coefficients adjusting.

4.4 Conclusion

Figure 4.5 shows the results that allow comparing different signal processing chains. Further-
more the individual processing steps have been compared in the time and frequency domain
to show any notable characteristics. Further observations are made in the Discussion section
5.1 and compared to expectations made after the simulations.
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5 Discussion and conclusion

5.1 Discussion

It can be seen from the lag comparison subplot in Figure 4.5 that only signal processing chains
that use whitening appear to introduce lag. This could be caused by the phase delay that is
introduced by the whitening filter. If the filter were to have a linear phase then all frequencies
would be equally delayed resulting in a constant group delay. If this filter did not have linear
phase but instead introduces a stronger phase delay in higher frequencies, then the total delay
would become more apparent when amplifying these higher frequencies [63]. The amplifica-
tion of higher frequencies does happen in the whitening filter as can be seen in the simulation
in 3.1, and the time domain plot shows signs of introduction of delay in the filtered signal which
can stem from making higher frequencies with more phase delay more prominent. In the sim-
ulations the phase of the whitening filter was set to the phase of the input signal (’source’ of
filter).

A perhaps much more intriguing result stemming from the lag subplot in Figure 4.5 is the intro-
duction of negative lag in some processing combinations. This indicates that some processing
methods allow predicting when and how much force will be applied. Even though that may
seem impossible at first it can actually be explained very intuitively. sEMG measures the acti-
vation of a muscle, the activation of a muscle leads to muscle contraction, and muscle contrac-
tion results in a force being applied to the arm. Since the arm has weight, this force first results
in acceleration before it is transferred to the handle connected to the load cell. As a result the
sEMG signal is measured slightly before the actual force is measured by the load cell. This is in
line with literature [4]. Using some processing chains the force can be predicted around 500 ms
before it is applied to and measured by the load cell. In terms of lag it can also be noticed that
using zero phase for the whitening filter seems to reduce a large portion of the lag as can be
seen in appendix Figure A.4.

One processing step that stands out in the lag plot of Figure 4.5 is adaptive filtering. It can be
seen that applying an adaptive LMS filter results in unusually fast response time (negative lag)
of up to 550 ms when combined with RMS envelope detection. Adaptive filtering does seem
to introduce more error as seen in the error subplot, but this is marginal compared to other
filtering methods.

Lastly it seems that the IIR Butterworth lowpass filter for envelope detection consistently intro-
duces approximately 5% lag compared to moving average or RMS envelope detection. This is
consistent across all filters and whitening as can be seen in the lag subplot in Figure 4.5. This
is also consistent with simulations as seen in Figures 3.16 and 3.15 given the filter length and
cutoff frequency that were used in the measurements.

The goal of this research was to find the best combination of whitening, filtering, and envelope
detection to estimate force from sEMG.

The answer to this question depends on the application. If lag is the sole/primary concern then
the processing chain of no whitening, adaptive LMS filter, and RMS envelope detection is the
ideal solution as it results in the most negative lag, closely followed by moving average envelope
detection. If error is the primary concern then no whitening, no filtering, and RMS envelope
detection is the optimal solution.

The fact that the lowest error rates are achieved in processing chains that include no filtering
hints at the fact that improving the signal to noise ratio of an sEMG signal does not necessarily
result in a better estimation of the applied force. This observation can be used to construct pro-
cessing chains of lower computational complexity due to the omission of a major processing
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step as seen in Figure 1.1. It should be noted that this conclusion is drawn from a single mea-
surement at a single location and thus may yield different results in different environments.

5.2 Conclusion

In this report a complete signal processing chain for sEMG signals was presented. Within each
step in this processing chain various processing techniques were discussed and tested to illus-
trate their behaviour and performance when applied to sEMG signals.

In a simulated environment it was shown that static filter performance does not depend on
MVC, and that a Wiener filter provides the highest SNR after filtering (Figure 3.9). However, this
came at the cost of the worst bandwidth of all filtering techniques (Figure 3.10).

Applying filtering in a practical situation to accurately estimate force from sEMG shows that
high SNR but low bandwidth does not relate to high accuracy. As a result, not applying any
filtering on the sEMG signal provided the best results in terms of error. Adaptive LMS filtering
did perform the best in terms of lag in some scenarios preceding the measured force signal by
550 ms.

The conclusion drawn from comparing different envelope estimation techniques is that infi-
nite impulse response Butterworth lowpass filter introduces significantly more lag than mov-
ing average and RMS filtering, both of which performed approximately the same with moving
average yielding a slightly better in terms of lag.

Lastly, whitening introduced significant lag across all filters and envelope detection methods.

5.3 Recommendations

One area where the results presented in this report can be improved is by using a larger data set
to apply the processing techniques to. Since the techniques were only validated using a single
long measurement it is very well possible that the techniques function differently in different
environments or with different hardware.

Concerning the implementation of filters, it might be interesting to develop and test a more
elaborate algorithm that can for example change the window size of the adaptive filter based
on the amplitude of the signal. This could reduce the required processing power to implement
certain processing chains. Additionally the notable results from adaptive LMS filtering in terms
of lag suggests more research into optimization of this filter. Since only a single combination
of filter length and convergence coefficient was used (drawn from simulated data), it might be
useful to determine a wider range of variables on sEMG data sets.

This report also assumed a linear relation between the sEMG and the estimated force. Future
research could possible explore different relations and the influence of different signal process-
ing chains.

Lastly, this report has given insight into the performance of different processing techniques but
has mostly omitted the computational complexity that is required to apply them in real-time
such as robotic prostheses [64] which have limited processing power. Future research should be
done into the capabilities of modern processing techniques to draw a conclusion on whether
or not this forms an issue.
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A Appendix 1

Figure A.1: Lag, error, and scaling of different filtering and envelope techniques with whitening applied.
The whitening filter is constructed from the desired frequency amplitude response and a phase. The
frequency response is determined as described in the simulation section 3.1, and the phase is set to the
phase of the input signal that was used to construct the whitening filter.
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Figure A.2: Lag, error, and scaling of different filtering and envelope techniques with whitening applied.
The whitening filter is constructed from the desired frequency amplitude response and a phase. The
frequency response is determined as described in the simulation section 3.1, and the phase is set to the
negative phase of the input signal that was used to construct the whitening filter.
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Figure A.3: Lag, error, and scaling of different filtering and envelope techniques with whitening applied.
The whitening filter is constructed from the desired frequency amplitude response and a phase. The
frequency response is determined as described in the simulation section 3.1, and the phase is set to
linear phase.
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Figure A.4: Lag, error, and scaling of different filtering and envelope techniques with whitening applied.
The whitening filter is constructed from the desired frequency amplitude response and a phase. The
frequency response is determined as described in the simulation section 3.1, and the phase is set to zero
phase.
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