
BSc Thesis Applied Mathematics

Optimal Strategy to Charge a
Car using Stochastic Dynamic
Programming

Femke Wienk

Supervisor: N. van Dijk

July, 2022

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Preface
This report is written as part of my bachelor assignment. I would like to thank my

supervisor prof. dr. N. van Dijk for his help during my research and the meetings with
always useful feedback.

Optimal Strategy to Charge a Car using Stochastic
Dynamic Programming

Femke Wienk

July, 2022

Abstract
In this paper we want to compare different strategies to charge an electric vehicle

and see whether price dependency between periods can be used to an advantage. An
electric car needs to be charged regularly. Usually, a car is connected to the network for
a longer period than is needed to charge. This gives flexibility to charge the car during
periods when the prices are low. First, we approach the problem as a knapsack problem
with no uncertainty. Then we consider the prices as independently distributed. Next,
we want to include the dependency of the prices between periods. We test different
forecasting methods to predict the price of the next period. However, this makes
the problem computationally intractable. Instead, we use a Markov chain to include
the price dependency between periods. Another approach is also attempted, where
we forecast a whole timeseries and proceed by considering this as a knapsack model.
A conceptual model to include weather dependence is presented. Simulations with
real-world data shows that the strategy with price-dependency performed on average
significantly better than to assume the prices are independent between periods.

Keywords: Electric vehicles, Markov chain, forecasting, electricity prices

Contents

1 Introduction 2

2 Knapsack Problem 3

3 Stochastic dynamic program with independent prices 5

4 Forecasting Methods 5

5 Stochastic dynamic program with history of prices 7
5.1 Considering the history of prices . 7
5.2 Weather dependence . 8

1

6 Stochastic dynamic program with Markov chain 11

7 Deterministic Knapsack 14

8 Numerical Results 14
8.1 Parameters . 14
8.2 Knapsack Problem . 14
8.3 Stochastic dynamic program with independent prices 15
8.4 Forecasting . 16

8.4.1 Comparison . 19
8.5 Weather Dependence . 19
8.6 Stochastic Dynamic Program with Markov chain 20
8.7 Deterministic Knapsack . 22
8.8 Comparison Charging Strategies . 22

9 Discussion 24

10 Conclusion 25

11 References 26

12 Appendix 28
12.1 List of symbols . 28
12.2 Stochastic dynamic program with independent prices; continued 29
12.3 Forecasting methods; continued . 29
12.4 Example of Data . 30
12.5 Test Data Summary . 30
12.6 Policy 6 - 7 June . 30
12.7 Python Code: Knapsack Model . 31
12.8 Python Code: Stochastic Dynamic Program with Independent Prices 33
12.9 Python Code: Stochastic Dynamic Program with Dependent Prices 35

1 Introduction
Worldwide the sales of electric vehicles are increasing. In 2021 the sales increased with

108% in comparison to the year before [9]. Now charging an electric car the battery takes
longer than filling a tank of a fossil fuel car. A typical electric car has a battery capacity
of 60 kWh, which takes around 8 hours to completely charge (empty to full) with a 7
kW charging station.However, most drivers charge their car whenever the battery is not
completely full. They charge whenever they park, this can be at home, at work, or at the
supermarket. This is also know as “top up charging”. There exist also fast chargers, these
have a charging speed up to 50 kW, but these are expensive and difficult to install [14].

So the time to charge a battery can range from 30 minutes to 12 hours, depending on
the battery capacity, state of the battery (empty or full) and the charging speed. There-
fore, it is important to plan when and how much to charge. Usually, the car is connected
to the network at a fixed position (at home) for a longer period than is needed to charge.
This gives the owner flexibility to charge the car, and shift to periods when the load, and
so the prices are low [14]. (generally overnight)

In the Netherlands there are currently around 81000 public charging stations and more
than 3000 fast chargers, positioned at, for example, road restaurants, parking lots. This

2

is the highest density of charger per 100 km road in Europe. In Europe the charging
infrastructure is growing, especially the north of Europe has invested a lot in new charging
stations [1].

But charging at your private charging stations, means you have to pay the costs. Elec-
tricity prices fluctuate during the day. This is because electricity prices are dependent on
multiple factors. One part of the price consists of taxes and regulated components, the
other part depends on market developments. Here, the largest component of the price
depends on the cost of generating the electricity, which can change minute by minute [4].
Factors that can account for price changes are for example, the amount of load, market
developments in other energy markets, also malfunctions at powerplants (this will increase
the prices), or the generation of sustainable energy on sunny or windy days (this will
decrease the energy prices) [3].

However, it depends on the contract with the energy supplier whether you will ex-
perience these price fluctuations during the day. Most energy suppliers charge the same
rate for electricity during the day. Some suppliers do offer contracts with lower prices at
off-peak hours [15].

The prices are determined by an auction, where every supplier delivers a bidding curve,
that states how much energy it wants for all the different possible prices. Then all these
bidding curves are combined and a price is determined that balances the supply and demand
curves. Demand side management (DSM) methodologies aim to optimize the “consumption
pattern of consumers and to exploit the potential of distributed generation and electricity
storage systems” [13]. The Powermatcher is one of these management methodologies that
make the electricity grid smart. The PowerMatcher effectively matches supply and demand,
which results into better use of available sources of energy and allows more renewable
energy to be integrated into the electricity system. It also avoids overload situations by
shifting loads away from high peak demand moments. It is a methodology that uses the
available capacity in the most optimal way possible. The Powermatcher is available on an
open-source platform, so that is is widely accessible [11, 13].

In this paper we want to find a strategy that minimizes the charging costs of an electric
car. A similar study has been done in [11]. Here, the prices were assumed to be independent
between periods. Therefore, we want to compare different charging strategies, and see
whether price dependency between periods (e.g. as by wind) can be used to an advantage.

We let the car charge overnight between 8 pm and 8 am. The main research question
is: “Is there a significant cost reduction when price dependency is taken into account, as
opposed to assume independent prices in determining a charging strategy? ”

2 Knapsack Problem
First, we evaluate the problem as if we already know the time series of the electricity

prices beforehand. Since there is no uncertainty about the prices, we can choose the
cheapest periods to charge our car. This is known as a knapsack problem (see the example
at the end of this section). In a knapsack problem we have a given set of items, each with
a weight and value. We need to determine which item to include in a collection, such that
the weight is below or equal to a given limit and the total value is maximized. Here, we
want to minimize the total charging costs, while the amount of energy charged equals a
certain amount [17]. Let

• L be the total amount of energy to be charged,

3

• T be the total amount of periods,
• pt be the price value per unit energy at time t (during period t)
• umax be the maximum energy that can be charged in one period,
• ut ∈ [0, umax] be the amount of energy we charge in period t,

The decision variable is ut, which can range from 0 to umax. But ut equals either 0 or
umax when L is a multiple of umax. The problem can be described by a linear program
with t = 1, . . . , T :

min c = u1p1 + u2p2 + · · ·+ uT pT (1)
s.t. u1 + u2 + · · ·+ uT = L (2)

There are generic methods to solve such linear programs (such as the Branch-and-Bound
method). The knapsack problem can also be solved efficiently with a dynamic program.
We use the value function Vt(x), where

• xt is the state, which denotes the amount of energy left to charge at time t,
• Vt(x) is the minimal expected costs for periods t . . . T .

If the car is not fully charged at the end of period T , then we have a penalty cost. So for
t = T + 1, we obtain;

VT+1(x) =

{
0 if x = 0

∞ otherwise,
(3)

and for t = T, . . . , 1
Vt(x) = minu [upt + Vt+1(x− u)] . (4)

Example
We describe a simple knapsack problem, where the total weight must be below or equal

to a given limit and the total value is maximized
Suppose we have a backpack (knapsack), which can hold a weight of maximum 6 kg.

We have a number of items with weights in kg and values in euros (AC), as shown in Figure
1.

Figure 1: Available items to put in the backpack

To solve this problem, we first compute the value/weight ratio for each item. We then
put the items with the best ratio (here, the highest ratio) in our backpack. Each item can
only be chosen once. The ratios for the items shown in Figure 1 are, respectively:

4

2
= 2,

3

4
= 0.75, ,

2

3
= 0.66 . . . ,

4

3
= 1.33

We see that the yellow triangle has the highest ratio and then the blue diamond. The
backpack weights 5 kg with these two items and hence, there’s no room for another item.
The most optimal solution is to put the yellow rectangle and the blue diamond in the
backpack. Then the total value equals AC8. No other combination will result in a higher
value.

4

3 Stochastic dynamic program with independent prices
Now, we analyze the stochastic dynamic program (SDP) as described in [11, 2]. The

prices for the different periods are not known beforehand (else it would be a Knapsack
problem as in Section 2). The prices are assumed to be independent between periods. The
objective is again to minimize the total cost to charge an electric car within T intervals.
We use the following parameters and variables:

• L : The total amount to be charged,
• ut ∈ [0, umax] : The amount of energy to charge in period t,
• pt : Price value per unit energy at time t (during period t),
• Pt : Stochastic price variable for period t,
• xt : The amount of energy left to charge at time t,
• Vt(x, p): The expected minimized costs for periods t, . . . , T , when state at time t is

(x, p)

Recall that the decision variable ut can range from 0 to umax, but equals either 0 or umax

when L is a multiple of umax. It is assumed the prices Pt are independent and identically
distributed. Since the prices are not known beforehand, the price pt at time t is included
in the state. The state is denoted by (xt, pt). Further, we want the car to be fully charged
after T periods, else we have a penalty cost. Then the minimal expected costs Vt(x, p)
given that xt = x and Pt = p, is described by

VT+1(x) =

{
0 if x = 0

∞ otherwise,
(5)

and for t = T, . . . , 1

Vt(x, p) = minu

up+∑
p′

P(Pt+1 = p′)Vt+1(x− u, p′)

 [11]. (6)

In [11] the SDP is further approached by a heuristic with an optimal control law for ut
(See Appendix 12.2). However, we are only interested in Equations (5) and (6).

4 Forecasting Methods
Next, we want to consider the problem without the assumption that the prices are

independent between periods. Therefore, we consider the past price value(s). We can use
the past values of the price to make a forecast of the price for the next period. Using this
forecast, we can make a better prediction of the state for the next period.

The price distribution at time t is conditional and its expectation would be equal
to the forecast price for time t + 1. So, suppose at period t we have past values ht
and current value pt. Then we can use ht and pt to forecast the price value p for next
period . Denote the forecast value by p̃. Then the probability distribution for next period
P(Pt+1 = p | Pt = pt, ht) can be described by a normal distribution with expectation p̃.

There exist multiple forecasting methods. Forecasting methods can be divided into
extrapolation and causal forecasting methods. Extrapolation methods use past values of
a time series to forecast future values of that time series. It assumes that past patterns
and trends will continue in future time periods. Causal forecasting methods attempt to
forecast future values by taking into account what caused past data. So causal forecasting
methods have a dependent variable and one or multiple independent variables. Then past
data is used to estimate the relation between the dependent and independent variable [17].

5

We describe the Simple Exponential Smoothing method with Holt-Winter’s seasonal
component and Simple Linear regression. The Moving-Average method and Auto Regres-
sion Integrated Moving Average (ARIMA) method are described in Appendix 12.3.

Simple Exponential Smoothing
Simple exponential smoothing is an extrapolation forecast method. It is specifically,

suitable for time series that fluctuate around a base level. The forecast At is the smoothed
average after observing xt. At is described by

At = αxt + (1− α)At−1, (7)

here α is a smoothing constant with 0 < α < 1. Further, the forecast value of xt+k is
denoted by At = ft,k. We only forecast one period ahead so we have k = 1. Then the error
et is denoted by

et = xt − ft−1,1 = xt −At−1[17]. (8)

The mean absolute deviation (MAD) is the measure of forecast accuracy and given by

MAD =

∑
t |et|

#forecasts
. (9)

If the optimal α that minimizes the MAD exceeds 0.5, then trend, seasonality, or a cyclical
variation is possibly present. Another form of the exponential smoothing may be better
suitable. For example, the Holt-Winter’s smoothing method [17].

Holt-Winter’s smoothing method
Holt-Winter’s smoothing method captures the seasonality and trend. If we want to forecast
k periods in the future and we are now at time t, then the forecast Ft+k is given by

Ft+k = Lt + kTt + St+k−M , (10)

with Lt the level estimate for time t, Tt denotes the trend estimate at time t, and St is the
seasonal estimate at time t [8].

Simple Linear Regression
Simple linear regression is a causal forecast method. Here, we have a dependent variable

Y that we want to forecast using an independent variable X. As stated before, one of the
factors influencing the electricity prices is the wind and solar production [12]. Now, since
solar production peaks around noon and has no production during night, we focus on the
wind production. Therefore, we take the electricity price as the dependent variable and
the measured wind power production as the independent variable.

If both are related with a linear relation, then we can use simple linear regression.
The linear relation can be verified by finding the correlation coefficient r. This coefficient
measures the strength and direction of correlation. It is described by the following ratio
between the covariance and the product of the standard deviations:

r =
cov(X,Y)

σXσY
. (11)

The coefficient r has a value between −1 and 1, where r = 1 means a perfect positive
correlation, and r = −1 a perfect negative correlation. A value of r = 0 means that the
variables have no linear dependency. If the variables have a linear relation, then this can
be described by [17];

yi = β0 + β1xi + εi, (12)

here εi is the error. The parameters β0 and β1 have to be estimated, as the true values
are unknown. We denote the estimation by β̂0 and β̂1 respectively. The values of β̂0 and

6

β̂1 are determined by using least squares. Further, we take εi = 0, since εi is expected to
average out to zero. We obtain the least squares regression line for the prediction for yi,
denoted by ŷi;

ŷi = β̂0 + β̂1xi. (13)

The values β̂0 and β̂1, called the least squares estimates of β0 and β1 minimize the
errors ei = yi − β̂0 − β̂1xi:

F (β̂0, β̂1) =
∑
i

e2i =
∑
i

(yi − β̂0 − β̂1xi)
2 (14)

Then β̂0 and β̂1 are found by setting

∂F

∂β̂0
=

∂F

∂β̂1
= 0. (15)

This results into
β̂1 =

∑
i(x1 − x̄)(yi − ȳ)∑

i(xi − x̄)2
and β̂0 = ȳ − β̂1x̄, (16)

here x̄ and ȳ are the average values of, respectively all xi and yi [17].

5 Stochastic dynamic program with history of prices
5.1 Considering the history of prices

Now we want to include the history of prices and weather dependence in Equation (6),
by using one of the forecast methods from Section 4 and 12.3.

We no longer assume that the prices are independent. Instead, we will model the
prices as dependent random variables. More precisely, with the history of prices at time
1, . . . , t− 1, then the probability is described by P (pt = p|p1, . . . , pt−1). Therefore, we also
need to include the history

ht = (p1, . . . , pt−1)

of the prices to our state. The state is then described by (xt, pt, ht). Given the state at
the start of a period, a decision u has to be made. We let

• L be the total amount of energy to be charged,
• T be the total amount of periods,
• Pt be the stochastic price variable for period t,
• pt be the price value at time t (during period t),
• umax be the maximum energy that can be charged in one period,
• ut ∈ [0, umax] be the amount of energy we charge in period t (the decision variable),
• ht be an array of past price values p1, . . . , pt−1 ,
• Vt(xt, pt, ht) be the expected minimized costs for periods t, . . . , T , when state at

period t is (xt, pt, ht).

We want the car to be fully charged after T periods, else we have a penalty cost. With
this history included, we obtain the value function Vt(xt, pt, ht) with decision variable ut.
For t = T + 1 we have

VT+1(x) =

{
0 if x = 0

∞ otherwise,
(17)

and for t = T, T − 1, . . . , 1;

Vt(xt, pt, ht) = minu

upt +∑
p′

P(Pt+1 = p′|Pt = pt, ht)Vt+1(x− u, p′, ht+1)

 [11]. (18)

7

Example
To illustrate the stochastic process, we describe a fictitious situation. Suppose we want

to charge the car overnight (8 pm - 8 am). We have a total of T = 24 periods of 30
minutes. At the beginning of each period a decision u is to be made whether to not charge
(u = 0) or charge (u = 1) the car. The prices pt are dependent and pt ∈ [4, 5, 6]. The
prices are distributed according to an unknown conditional distribution. At t = T + 1 the
total amount of L = 8 kW should be charged, if not then the corresponding penalty costs
are infinite.

The decision tree with dependent prices for the above situation is shown in Figure 2.
The state is described by (xt, pt, ht), with x1 = 8. The background colour from the larger
rectangles, represent the price of the last stage. So a green background at time t implies
that at time t − 1 we had a price value of 4, orange represents price value 5, and purple
represents price value 6. It is unknown which value we had at t = 0, therefore is the colour
neutral for t = 1. The colours of the smaller rectangles denote the current price value,
with the same colour and price combinations, only these colours are more saturated. The
costs resulting from the decisions are shown on the lines connecting the different periods.

It can be seen that the problem becomes rapidly computationally intractable. This
is due to the fact that we need a lot more ‘space’ in the decision tree to describe all the
possible histories. This could be approached with an approximation algorithm, but this
can be tricky as the result may not be the optimal solution. Therefore we describe an
alternative method in Section 6.

5.2 Weather dependence
One of the factors causing the price changes is the generation of renewable energy,

such as solar power and wind power. Therefore, it can be of interest to include weather
dependence in our model. We know that the wind power production and solar power
generation are dependent on the weather [10]. Since there is no solar production at night,
we neglect the solar power in the model and focus on the wind power. Studies, such
as [10] have shown that there is a correlation between electricity prices and wind power
production. Therefore, we are interested in forecasting the wind power production, so that
we can use the correlation with the prices to determine whether we expect the prices to
drop tomorrow. We want to forecast the weather using a Markov chain. Then we can use
the Markov chain to predict whether we expect more wind power production tomorrow.

We already test the correlation between the wind production and short term fluctu-
ations of the electricity price in Section 4. Therefore, we now want to find the possible
correlation between the total wind power production overnight (8 pm - 8 am) and the
average electricity price overnight.

First, we need to find the correlation coefficient r, see Equation (11), to verify a pos-
sible negative correlation between the total wind power production overnight and the
mean electricity price overnight. Then we want to forecast the weather by using a simple
Markov chain. We describe a Markov chain with two states: 0 and 1. State 0 corresponds
with windless weather, so a low wind power production. State 1 corresponds with windy
weather, so a high wind power production. We need criteria to determine whether the state
is 0 or 1. Therefore, we say that we are in state 1, when the total wind power generation
is equal or exceeds a certain value M . This value M is determined by the relation between
electricity price and amount of wind energy generated, where if the amount exceeds M
then the prices are low. So the relation can be described as follows:

8

Figure 2: Decision tree of the SDP described by Equation (18) that considers
the past price values. The bright colours represent the current price value, and the
pastel colours represent the last price value. The green colour denotes price value
4, orange denotes 5, and purple denotes 6.

9

State Wind power production Price value
0 low (< M) high
1 high (≥ M) low

Table 1: Relation between wind production and the price values, with the corre-
sponding Markov chain state

A new strategy can be introduced: If given today we have a low production of wind
energy and it is expected that tomorrow we will have a high production of wind energy
(which will lower the prices significantly), then today the minimal amount of energy will
be charged and tomorrow the car will be fully charged. Further, we would charge fully
if today we have a high production of wind energy, regardless which state we will expect
tomorrow. This strategy contradicts the constraint that the car is fully charged at the end
of the night. Instead we make the constraint that at day d the car needs to be charged an
amount Ld at the end of the last period. We describe the Markov chain with a transition
probability matrix A.

A =

[]
a00 a01
a10 a11Example

To illustrate how this is combined with the SDP, we consider again the fictitious situa-
tion from before. Suppose this car owner has an electric car that has a total capacity C of
C = 60 kWh. Each day he commutes to work and back, which is a distance of around 40
km that uses 8 kWh [14], so there is 60 - 8 = 52 kWh left in the battery if the car was fully
charged at the beginning of the day. The battery still has enough energy left for another
commute to work.

Further suppose we have 6 nights of historical data, with the corresponding states 0,
0, 1, 1, 1, 0, Then we can determine the transition probabilities. We have that one out
of two times state 0 stays state 0, and one out of two times state 0 transitions to state 1.
Hence, a00 = 1/2, a01 = 1/2. Further, two out of three times state 1 transitions to state 0
and once stays state 1. Hence a10 = 2/3 and a11 = 1/3. Then the transition probability
matrix is given by

A =

[]
1/2 1/2
2/3 1/3 .

It can be of interest to make some constraints. For example, we always want to charge
the battery, when its capacity C is below 30 kWh (as we don’t want the car to run out
of energy in case the driver needs to make a detour), or when C is below 40 kWh (else
we need to charge during most periods and we will be unable to only choose the lowest
periods, which is not more optimal then if we would have charged in the lowest periods
during the night in state 0).

Suppose we use the constraint that we will always charge the car when the remaining
capacity is below C = 40 kW, let

• Ld denote the total amount we will charge at day d,
• Cd denote the remaining energy in battery at day d,
• sd denote the state of the Markov chain at day d.

So, we first look at the weather conditions and accordingly determine the amount L we
want to charge. We know that yesterday we were in state 0. Today we will either be in
state 0 or 1. The yellow colour denotes state 0 and the colour blue represents state 1.
Following our strategy, we charge the car fully whenever we are in state 1, and in state 0
we only charge to C = 40 if needed.

Further, everyday the driver uses 8 kWh. We get the following decision tree to determine
how much Ld to charge during day d, when the state is (Cd, sd).

10

Figure 3: Decision tree of the Markov chain that considers the wind production
and shows corresponding decisions, when current state is (Cd, sd), with d = 0, 1,
The yellow blocks denote state 0 and blue denotes state 1.

6 Stochastic dynamic program with Markov chain
A second method to implement the price dependency between two periods, is by fore-

casting the prices using a Markov chain. We define a Markov chain with, for example 4
states. Note that we do not want to have a Markov chain with as many states as we have
price values. Since the transition probabilities are based on past data, and most likely not
all price values appear in the data. This would result in a Markov chain with many zero
entries, which leads to a distorted distribution. We will categorize the prices p in one of
the 4 states, using the following constraints with constants a, b, c

State 0 if p < a (19)
State 1 if a ≤ p < b (20)
State 2 if b ≤ p < c (21)
State 3 if c ≤ p (22)

We define the constant b by the long run mean µ. Then the a and c are determined by
using the long run standard deviation σ. We get b = µ, a = µ − σ, c = µ + σ. Now that
we have categorized our prices in 4 states, we define the transition probability matrix by
P, with

∑3
j=0 pij = 1 for all i = 0, . . . , 3;

P =




p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23
p30 p31 p32 p33

11

Let the state of p and p′ be i and j, with i, j ∈ [0, 1, 2, 3], respectively. The probability
that next period we will be in state j given that we are now in state i, is Pij = pij . Note
that the probability from state i to j is pij , which has a double subscript, while the price
value at time t is denoted by pt. Since each category represents more than one value,
we need to give each category its own distribution for its values. So we let the prices be
conditional uniformly distributed within categories, that change by a Markov chain. So
suppose category j represents vj values, then the probability P(Pt+1 = p′|Pt = p) is given
by pij/vj . Further, let

• L be the total amount of energy to be charged,
• xt be the amount of energy that is still left to be charged at time t,
• ut ∈ [0, umax] be the amount of energy charged in period t,
• pt : price value at time t per unit energy,

We obtain the value function Vt(x, p)

VT+1(x) =

{
0 if x = 0

∞ otherwise,
(23)

and for t = T, . . . , 1,

Vt(x, p) = minu

up+∑
p′

P(Pt+1 = p′|Pt = p)Vt+1(x− u, p′)

 (24)

= minu

up+∑
p′

pij
vj

Vt+1(x− u, p′)

 . (25)

Example
We use a fictitious situation to describe the situation. We want to charge our car a total

amount L = 8 kWh. Between 8 pm and 8 am we have a total of 24 periods of 30 minutes.
Our decision variable is again u. At the beginning of each period we decide whether we
want to charge the car (u = 1 kWh) or not (u = 0)kWh. Suppose we have 3 possible prices;
p ∈ [4, 5, 6], then we define a Markov chain with 3 states. State 1 represents price value
4, state 2 represents price value 5, and state 3 represents price value 6. Let the transition
probability matrix be given by

P =

[]3/5 1/5 1/5
1/4 1/2 1/4
1/5 3/10 1/2

.

Here, each state represents one value, so when i is the state of pt and j is the state of p′,
then

P(Pt+1 = p′|Pt = p) = pij

The state of the value function is described by (xt, pt). Suppose p0 = 6, which corresponds
with state 2. The corresponding decision tree is shown in Figure 4. The large blocks
represent one period and the background has the color corresponding to the state of the
last price value. The green color represents state 0, orange represents state 1, and purple
represents state 2. So, since p0 = 6, the block at t = 1 is purple. The smaller blocks have
the color of the current state of the price value, with the same state and color combinations
as before, only now the colors are more saturated. The costs resulting from the decisions
are shown on the lines connecting the different periods.

12

Figure 4: Decision tree of the fictitious situation with the SDP with Markov chain
described by Equation (25). The bright colors represent the current price value, and
the pastel colors represent the last price value. Here, green denotes price value 4,
orange denotes 5, and purple denotes 6.

13

7 Deterministic Knapsack
Another approach to finding a charging strategy is to forecast the price values for

a whole timeseries ahead. Since the price values follow daily patterns, we use the Holt-
Winter’s exponential smoothing from Section 4. Then we can use this forecast and consider
it as a knapsack problem as described in Section 2. We obtain the strategy that is optimal
for the forecasting. Then we will use the same strategy on the true timeseries.

8 Numerical Results
8.1 Parameters

We let the car charge overnight between 8pm and 8am. We use periods of 15 minutes,
so the total amount of periods is T = 48.

A typical electric car has a battery capacity of 60 kWh [14]. Home charging stations
usually have a charging speed between 3.5 kw and 7 kw [14]. We take a charging station
with a speed of 4 kW per hour, so the maximum amount of energy that can be charged in
15 minutes is umax = 1 kWh.

In [16] a study has been done on driving behaviour. Most people use the car for
commuting between work and home. They found that people drive on average 40 km
per day. The most efficient electric vehicles have an efficiency between 0.15 kWh/km
and 100 kWh/km, where the average is 0.20 kWh/km [7]. Therefore, we need to charge
L = 40 · 0.20 = 8 kWh.

For our simulations, we use data from different days in the period between 28 April and
8 June 2022 from the Belgian network. The data containing the measured and upscaled
wind power production is available at Elia [5] The electricity prices for the Belgium network
are available at Epex Spot [6], but only for a limited time, therefore we only have a small
collection of data. Both data sources provide data for 15-minute periods. Elia also provides
solar production data, but we focus on wind production as there is no solar production at
night. See Appendix 12.4 for an example of how the price and wind data are formatted.
The simulations are performed in Python.

8.2 Knapsack Problem
For the knapsack problem, we used the electricity prices from Epex Spot [6]. We take
• umax = 1 kWh,
• L = 8 kWh.

In Table 2, we show the minimized costs for some dates. Later in Section 9, we can use
the knapsack problem to determine the performance of the other models, as the result of
the knapsack problem is the optimal solution. The policy for 6- 7 June is later shown in
Figure 12 or in tabular form in Appendix 12.6.

Table 2: Minimized costs of the Knapsack strategy

Date Minimized costs (AC)
28 - 29 April 1.45698

3 - 4 May 1.52983
18 - 19 May 1.00775
6 - 7 June 0.88145
7 - 8 June 1.19141
8 - 9 June 1.08151

14

8.3 Stochastic dynamic program with independent prices
Similar to the Knapsack problem, we take umax = 1 kWh, L = 8 kWh. Further, we use

a normal distribution for the random variables denoting the prices. We use the data from
22 May to 5 June as the training data to determine the long- run average and standard
deviation for the Normal distribution. We obtain expectation µ1 ≈ 0.164 and standard
deviation σ1 ≈ 0.0470. In theory, prices can take any value, but in practice they usually
don’t exceed AC0.40000/kWh, see also [6]. Therefore, we assume that prices can range from
0 to 0.40000 and don’t have negative values. However, this resulted in an unwanted long
duration for the computation. Therefore we decided to round the price values to 3 decimals
(the third decimal is a 1/10 part of a cent, hence four or five decimals could also be seen
as redundant). We obtain a range R1 from 0 to 0.400 with steps of 0.001. We also try the
range R2 from 0 to 0.350, since the maximum observed value in our training data is only
AC0.33329/kWh. So

• L = 8 kWh
• umax = 1 kWh
• µ1 = 0.164
• σ1 = 0.0470
• R1 : range of price values from 0 to 0.400 with stepsize 0.001
• R2 : range of price values from 0 to 0.350 with stepsize 0.001

The result is a lookup table, where for each possible price and state the optimal decision
is stated and the expected minimized cost. For a number of dates the resulting costs are
shown in Table 3 under “I(µ1, R1)” and “I(µ1, R2)”. We see that the results of I(µ1, R1)
and I(µ1, R2) are equal. So apparently, here the range does not matter. In the next
sections we continue with both ranges, to see whether it does make a difference in the
other model.

Not all of the policies are not as optimal as we would like; Most policies charge during
the last few periods. This is due to the fact that the test data did not have the low
values that the model expected based on the training data. Each date in our test data
had an average higher than µ1 = 0.164, see also Table 12 in Appendix 12.5. Therefore,
we inspected our training data and found three nights, namely 25 - 26 May, 26 - 27 May,
27 - 28 May, with a low average price (see Figure 5, note that the dates in the figure are
not continuous). We decided to consider these as outliers, and to remove these from our
training data to see whether this improved our results.

Figure 5: The price course from 28 April till 9 June

15

We obtain a new mean µ2 and standard deviation σ2

• µ2 = 0.193

• σ2 = 0.038

We use these values in the normal distribution and the results can be found in Table 3
under “I(µ2, R1)”, and “I(µ2, R2)”. Now, there is a small difference between the two ranges
R1 and R2. The costs from with the mean µ2 from the filtered data are overall lower than
the mean µ1 from the unfiltered data. Hence, the new mean appear to give better results.

To compare the overall results, we find the cost increase for I(µ1, R1), I(µ1, R2),
I(µ2, R1) and I(µ2, R2) with respect to the optimal strategy (the minimized costs from
the knapsack problem), The policy from I(µ2, R1) has lowest cost increase and performs
on average best. Therefore, we take I(µ2, R1) as the “Independent” strategy.

Table 3: Minimized costs for different dates of the I(µ,R) strategies, with µ =
µ1, µ2 and R = R1, R2

Minimized costs (AC)
Date of Night I(µ1, R2) I(µ1, R1) I(µ2, R1) I(µ2, R2)

28 - 29 April 2.09731 2.09731 1.95484 1.95484
03 - 04 May 2.08959 2.08959 1.87519 1.89097
18 - 19 May 1.27988 1.27988 1.087 1.08286
06 - 07 June 0.89699 0.89699 1.10755 1.06955
07 - 08 June 1.36178 1.36178 1.22317 1.20694
08 - 09 June 1.37132 1.37132 1.15291 1.24087
Cost increase 26% 26% 18% (17.7%) 18% (18.2 %)

8.4 Forecasting
Data from the electricity prices was again used from EpexSpot [6], and data for the

measured and upscaled wind production from Elia [5]. For all forecasting methods we
considered the dates 28 - 29 April, 3 - 4 May, 18 - 19 May and 22 - 23 May.

Moving-Average Method
We used the moving-average method (MA) on multiple nights and an overview of the

optimal window size and corresponding MAD is given in Table 4. Notably, the optimal
window size equals 5 for all dates. In Figure 6 the forecast is plotted together with the true
price for 3 - 4 May. It can be seen that the true price fluctuates a lot over the intervals,
and the moving-average somewhat follows the overall course.

Table 4: Results of the moving-average for different dates

Date of Night Optimal Window Size MAD
28 - 29 April 5 0.018149. . .
03 - 04 May 5 0.021821. . .
18 - 19 May 5 0.018179. . .
22 - 23 May 5 0.035986. . .

16

Figure 6: Moving-average (MA) forecast of the time series of May 3 - 4, from 8
pm - 8 am with 15-minute periods (resulting in a total of 48 periods)

Simple Exponential smoothing
For the simple exponential smoothing method are the optimal smoothing constants α

and corresponding MADs shown in Table 5. Recall that 0 < α < 1, and if the optimal α
exceeds 0.5, then most likely either trend, seasonality, or cyclical variation occurs. Here,
all smoothing constants in Table 5 are below 0.5. Therefore, we don’t need to use the
Holt-Winter’s seasonality components. In Figure 7 the forecast is plotted with the true
price.

Table 5: Results SES for different dates

Date of Night Optimal α MAD
28- 29 April 0.45379. . . 0.018671. . .
03 - 04 May 0.40572. . . 0.023955. . .
18 - 19 May 0.23627. . . 0.034593. . .
22 - 23 May 0.45398. . . 0.018761. . .

Figure 7: Simple exponential smoothing (SES) forecast for May 3 - 4, with α =
0.4057211 . . . , from 8 pm - 8 am with a total of 48 periods

17

Simple Linear Regression
We use the wind power production as the independent variable. Therefore, we consider

all wind power parks in Belgium on- and offshore. We first sum all the different locations,
so that we have the total generated wind power in Belgium. The dependent variable is the
electricity price. Now we are able to calculate the correlation coefficient r. This was found
to be r = 0.255 . . . for the night of 3 - 4 May. Recall that, the correlation coefficient ranges
from zero to one, where a coefficient around zero implies a weak linear relationship. Hence,
based on the correlation coefficient the linear relationship is low. Further, we would expect
a negative correlation, as the generation of wind energy is supposed to drop the energy
prices [10]. In Figure 8 the scatter plot of the wind production against the electricity prices
is shown with the according least square regression line, which is described by

y = 4.544 . . . 10−5x+ 0.222

It can be seen that the line has a very gentle slope. We validated this result with three
other nights. The result can be found Table 6. Some of the resulting correlation coefficients
do suggest a (weak) negative correlation. So the simple linear regression method is not
fitting for every night.

Table 6: Results simple linear regression for different dates

Date of Night Correlation Coefficient r

28 - 29 April -0.194. . .
03 - 04 May 0.255. . .
18 - 19 May -0.662. . .
22 - 23 May -0.305. . .

It follows from our results of the simple linear regression that there was no (consistent)
correlation between wind production and short term price fluctuations. This is in line
with the research in [12] which showed that the wind production had little effect on the
short term fluctuations in electricity prices. Therefore, we chose to not continue with this
method.

Figure 8: Relation between wind production and electricity prices with according
least square regression line of the time series from 8 pm - 8 am with 15 minute
periods (resulting in a total of 48 periods) from 3 - 4 May.

18

Auto Regressive Integrated Moving Average
The auto regressive integrated moving average (ARIMA) method is also used to forecast

one period ahead. The optimal ARIMA parameters for p, d, q are shown in Table 7.

Table 7: Optimal ARIMA-parameters for different dates.

Date of Night Optimal (p, d, q) MAD
28 - 29 April (0, 1, 1) 0.018996. . .
03 - 04 May (0, 1, 1) 0.024316. . .
18 - 19 May (0, 1, 1) 0.034820. . .
22 - 23 May (0, 1, 1) 0.019154. . .

All time series have the same optimal (p, d, q) values, namely (0, 1, 1). Again, the
forecast series and the true timeseries is shown for May 3 - 4 in Figure 9.

Figure 9: ARIMA forecast for May 3 - 4, from 8 pm - 8 am with 48 periods of 15
minutes

8.4.1 Comparison
Comparing the different forecasting methods, we find that the MAD for the moving-

average, simple exponential smoothing and ARIMA are close together. The average MAD
for the moving-average, simple exponential smoothing and ARIMA are MAD ≈ 0.023533,
MAD ≈ 0.023995, and MAD ≈ 0.024321 respectively. Therefore, one forecasting is not
performing significantly better.

8.5 Weather Dependence
To find a possible correlation between the wind production and the course of electricity

prices, we use data from several days in the period between 28 April and 5 June (we used
data of 17 nights). First, we select the period of time that we consider, which is 8 pm - 8
am, then we have to sum over all these periods to obtain the total wind production over
one night. Similar for the prices, but we use the average, so we divide by the number of
periods.

The resulting correlation coefficient is r = −0.714 . . . , implying a strong negative linear
relationship. The corresponding least squares linear regression line is

y = −6.204 . . . 10−7x+ 0.231 . . .

and is also shown in Figure 10.

19

Figure 10: Relation between the total overnight wind production and mean elec-
tricity prices with the according least square regression line.

Then we need to find a suitable value for M (see Section 5.2) to determine whether we
are in state 0 or state 1.

We find the mean value of the prices, this is µ = 0.177 . . . The corresponding total
wind production according to the regression line equals M = 87160.594

The resulting transition probability matrix is

A =

[]
2/3 1/3
1/2 1/2 .

8.6 Stochastic Dynamic Program with Markov chain
For the stochastic dynamic program with the Markov chain (which we now also refer

to as the SDP with dependent prices), we use
• L = 8 kWh,
• umax = 1 kWh,
• µ1 = 0.164 with σ1 = 0.0470,
• µ2 = 0.193 with σ2 = 0.038,
• R1 : range of price values from 0 to 0.400 with stepsize 0.001,
• R2 : range of price values from 0 to 0.350 with stepsize 0.001.

Now we determine the constraints for our transition probability matrix. For the Markov
chain we use both µ1 = 0.164 with σ1 = 0.047 and µ2 = 0.193 with σ2 = 0.038. Then for
the transition probability matrix with four states, we obtain the following parameters to
use in the constraints (19)-(22).
a1 = 0.164 · · · − 0.047 · · · ≈ 0.117
b1 = 0.164
c1 = 0.164 · · ·+ 0.047 · · · ≈ 0.211

and
a2 = 0.193 · · · − 0.038 · · · ≈ 0.155
b2 = 0.193
c2 = 0.193 · · ·+ 0.038 · · · ≈ 0.231.

We get the following four-state probability transition matrices P4(µ) with µ = µ1, µ2

20

P4(µ1) =




0.889 . . . 0.055 . . . 0.027 . . . 0.027 . . .
0.063 . . . 0.609 . . . 0.262 . . . 0.063 . . .
0.013 . . . 0.203 . . . 0.615 . . . 0.168 . . .
0.015 . . . 0.005 . . . 0.25 0.729 . . .

P4(µ2) =




0.592 . . . 0.283 . . . 0.061 . . . 0.061 . . .
0.144 . . . 0.659 . . . 0.175 . . . 0.020 . . .
0.020 . . . 0.289 . . . 0.455 . . . 0.234 . . .
0.027 . . . 0.009 . . . 0.379 . . . 0.583 . . .

.

We also use both ranges R1 and R2 for the price values. The resulting costs can be
found in Table 8 under “D(µ,R)” for µ = µ1, µ2 and R = R1, R2. We can conclude that
R1 with µ2 = 0.193 gives the lowest cost increase with respect to the optimal strategy and
hence, on average has the lowest costs.

Table 8: Minimized costs for different dates for the dependent SDP with Markov
chain with 4 states D4(µ,R) with µ = µ1, µ2 and R = R1, R2

Minimized costs (AC)
Date of Night D4(µ1, R1) D4(µ1, R2) D4(µ2, R1) D4(µ2, R2)

28- 29 April 1.88938 1.97840 1.57501 1.92001
03- 04 May 1.88545 2.0025 1.70824 1.88317
18- 19 May 1.18339 1.20396 1.17526 1.10276
06- 07 June 1.01760 1.04375 1.02163 0.98522
07- 08 June 1.32338 1.46242 1.32163 1.3245
08- 09 June 1.15392 1.35695 1.17485 1.24219
Cost increase 18% 27% 12% 18%

To possibly lower the costs even more, we consider a transition probability matrix with
6 states. We use the following constraints to determine whether a price value p is in state
0, 1, 2, 3, 4, or 5.

State 0 if p < µ− σ (26)
State 1 if µ− σ ≤p < µ− σ/2 (27)
State 2 if µ− σ/2 ≤p < µ (28)
State 3 if µ ≤p < µ+ σ/2 (29)
State 4 if µ+ σ/2 ≤p < µ+ σ (30)
State 5 if µ+ σ ≤p (31)

We again take µ = µ1, µ2 with σ = σ1, σ2, respectively. This gave the following six-state
probability transition matrices P6(µ) with µ = µ1, µ2

P6(µ1) =




0.889 . . . 0.036 . . . 0.018 . . . 0.018 . . . 0.009 . . . 0.027 . . .
0.127 . . . 0.553 . . . 0.148 . . . 0.127 . . . 0.042 . . . 0.0
0.031 . . . 0.117 . . . 0.446 . . . 0.244 . . . 0.063 . . . 0.095 . . .
0.013 . . . 0.034 . . . 0.227 . . . 0.289 . . . 0.144 . . . 0.089 . . .
0.012 . . . 0.0 0.098 . . . 0.308 . . . 0.271 . . . 0.308 . . .
0.015 . . . 0.0 0.005 . . . 0.096 . . . 0.153 . . . 0.729 . . .

21

and

P6(µ2) =




0.592 . . . 0.172 . . . 0.111 . . . 0.049 . . . 0.012 . . . 0.061 . . .
0.151 . . . 0.454 . . . 0.212 . . . 0.080 . . . 0.090 . . . 0.010 . . .
0.136 . . . 0.294 . . . 0.357 . . . 0.105 . . . 0.073 . . . 0.031 . . .
0.044 . . . 0.117 . . . 0.205 . . . 0.294 . . . 0.132 . . . 0.205 . . .

0.0 0.038 . . . 0.220 . . . 0.233 . . . 0.246 . . . 0.259 . . .
0.027 . . . 0.0 0.009 . . . 0.092 . . . 0.287 . . . 0.583 . . .

.

The resulting costs for the different policies are shown in Table 9. Some dates give
a lower cost than D4(µ2, R1). However, looking at the cost increase with respect to the
optimal solution, we determine that none has a lower cost increase than D4(µ2, R1). The
strategy D4(µ2, R1) has a cost increase of 12 %. Therefore, we take D4(µ2, R1) as the
“Dependent (MC)” strategy.

Table 9: Minimized costs for different dates for the dependent SDP with Markov
chain with 6 states D6(µ,R) with µ = µ1, µ2 and R = R1, R2.

Minimized costs (AC)
Date of Night D6(µ1, R1) D6(µ1, R2) D6(µ2, R1) D6(µ2, R2)

28- 29 April 1.84984 1.94805 1.61646 1.91099
03- 04 May 1.8617 1.88942 1.67789 1.88317
18- 19 May 1.09287 1.01976 1.29537 1.09126
06- 07 June 1.06567 1.03201 1.02163 0.98522
07- 08 June 1.20733 1.21757 1.3273 1.32345
08- 09 June 1.15392 1.21848 1.2424 1.24219
Cost increase 15% 16% 14% 17%

8.7 Deterministic Knapsack
We forecast the timeseries using Holt-Winter’s simple exponential smoothing as in

Section 4. We know that the length of the seasonal period equals the number of periods
in one night, which is T = 48. We used the two preceding nights for the forecast. We
experimented with different numbers of nights to include, but the most accurate results
were returned with only using the two preceding nights. For 6 - 7 June we obtain the
forecast shown in Figure 11.

Then we use the knapsack method as we did in Section 2 to determine the optimal
policy. Next we perform this policy on the true values. These resulting costs are shown in
Table 10. The dates 28 - 29 April, 3 - 4 May, 18 - 19 May are excluded, as the preceding
data was not available.

Table 10: Results of the Deterministic Knapsack strategy

Date of Night MAD forecast Minimized costs
6 - 7 June 0.0634. . . 1.34008
7 - 8 June 0.110. . . 1.41895
8 - 9 June 0.0538. . . 1.32699
Cost increase - 23%

8.8 Comparison Charging Strategies
We illustrate the different strategies for 6 - 7 June in Figure 12. In this figure are the

true price values shown, these run from 8 pm to 8 am in periods of 15 minutes. We show

22

Figure 11: Holt-Winter Exponential Smoothing forecast for the night 6 - 7 June.

the Knapsack, Independent , Dependent (MC) and the Deterministic Knapsack strategy.
The charging times of the policies are shown in the graph by a ⋆. Each charging time

we charge umax = 1 kWh during the 15 minute period. In Figure 12, we see that the
periods that are chosen by the Deterministic Knapsack strategy are not optimal, since
the forecast timeseries peaks at slightly different times than the true price values. The
dependent strategy somewhat follows the most optimal strategy, and the independent
strategy deviates more.

The costs for this night can be found in the previous tables or below in Table 11. The
total costs for all six nights are also shown and the cost increase compared to the optimal
strategy. For the Deterministic Knapsack, we determined the cost increase for the last 3
dates. We see that the Dependent (MC) strategy has the lowest cost increase and therefore
approaches the optimal strategy. The Dependent (MC) strategy is on average

(8.40066− 7.97122)

6
≈ AC0.07,

lower per night, which is a decrease of

(8.40066− 7.97122)

8.40066
· 100% ≈ 5%. (32)

23

Table 11: Minimized costs for different strategies

Minimized costs (AC)
Date Knapsack Det. Knapsack Independent Dependent (MC)

28 - 29 April 1.45698 - 1.95484 1.57501
3 - 4 May 1.52983 - 1.87519 1.70284

18 - 19 May 1.00775 - 1.087 1.17526
6 - 7 June 0.88145 1.12161 1.10755 1.02163
7 - 8 June 1.19141 1.41895 1.22317 1.32163
8 - 9 June 1.08151 1.32699 1.15291 1.17485
Total costs 7.14264 3.86755 8.40066 7.97122

Cost increase 0% 23% 18% 12%

Figure 12: The policies for 6 - 7 June, the charging times are denoted by a ⋆

9 Discussion
The knapsack problem gives the most optimal solution and is used to classify the per-

formance of the other models. Considering all past values makes the stochastic dynamic
program computationally intractable. Therefore, to consider the dependency between pe-
riods, we used a Markov chain.

From the simulations in Section 8, we found that on some days the Independent strategy
has lower costs than the Dependent (MC) strategy. Nevertheless, the dependent strategy
performs better on average. We saw that the total costs increases with 18% for the In-
dependent strategy, while the total costs for the Dependent strategy only increases 12%,
compared to the optimal strategy. This is in line with our expectations as prices are gen-
erally not independent and identically distributed. Nevertheless, the Independent strategy
does perform well. More precisely, on the days where the prices are closer to the long run
mean. This makes sense, since the normal distribution then approaches the prices more.

24

We were unable to find literature that used a similar approach by implementing the price
dependency with a Markov chain.

Further, we tried a different approach to possibly improve the results. Here, we used
the Holt-Winter’s exponential smoothing with seasonality to perform an out-of-sample
forecast. We saw that the forecast was not very accurate. Hence, unsurprisingly the
Deterministic Knapsack strategy returned did not return a more optimal strategy. This
can be a subject of further improvement and we could also test the ARIMA-method with
seasonality to possibly improve the forecast.

We also noticed that the training data is very important to the result, as a few outliers
can already result in less optimal strategies. Therefore, it would be interesting to perform
more simulations using a bigger sample size to test the results during a year and possibly
also work with a moving window. Besides, we could also forecast the expected average price
for today and use this value in the price distributions for the Independent and Dependent
(MC) strategies. Further, it would be interesting to implement the conceptual model that
considers the weather dependence. Another interesting subject for further research could
be to consider a whole fleet of cars that needs to charge.

10 Conclusion
In this paper we compared different charging strategies to find whether price depen-

dency between periods can be used to an advantage. This price dependency was attempted
to be included by means of the wind power production. But, we found that there’s no cor-
relation between short term price fluctuations and the wind production. Since, we did
find a correlation between the average energy prices and total wind production per night,
we presented a conceptual model that adapts the amount of energy to charge per day,
dependent on the amount of wind production. We included the price dependency in the
stochastic dynamic program by use of a Markov chain.

Real-world data was used to determine the performance of the different strategies. We
found that the stochastic dynamic program with price dependency approaches, on average
the optimal strategy best. On average the total costs are AC0.07 lower per night, which is
an improvement of 5% compared to the strategy with independent prices.

Therefore, coming back to our research question: Is there a significant cost reduction
when the price dependency is taken into account in determining a charging strategy? We
conclude that there is a significant reduction in the minimized costs.

25

11 References
[1] ANWB. Hier staan de laadpalen. https://www.anwb.nl/auto/elektrisch-rijden/

waar-staan-de-oplaadpunten, visited at 5-5-2022.

[2] R. Boucherie and N.M. van Dijk (Eds.). Markov Decision Processes in Practice.
International Series in Operations Research; Management Science. Springer, 2017.
10.1007/978-3-319-47766-4.

[3] CBS. Markt voor energieprijzen. https://www.cbs.nl/nl-nl/dossier/
energieprijzen/hoofdstukken/markt-voor-energieprijzen, visited at 29-4-2022.

[4] EIA. Electricity explained, factors affecting electricity prices, April
20, 2022. https://www.eia.gov/energyexplained/electricity/
prices-and-factors-affecting-prices.php, visited at 2-5-2022.

[5] Elia. Wind power generation data. https://www.elia.be/en/grid-data/
power-generation/wind-power-generation, (2022).

[6] Epexspot. Data. https://www.epexspot.com/en/market-data (2022).

[7] T. Fraser. What is a good energy consumption figure for
electric vehicles? https://www.drive.com.au/caradvice/
what-is-a-good-energy-consumption-figure-for-electric-vehicles/, vis-
ited at 9-6-2022.

[8] R.J. Hyndman and G. Athanasopoulos. Forecasting: principles and practice. OTexts,
2 edition. https://otexts.com/fpp2/.

[9] Roland Irle. Global EV Sales for 2021. https://www.ev-volumes.com/country/
total-world-plug-in-vehicle-volumes/, visited at 29-4-2022.

[10] D. Keles, M. Genoese, D. Möst, S. Ortlieb, and W. Fichtner. A combined modeling
approach for wind power feed-in and electricity spot prices. Energy Policy, pages
213–225, 2013. 10.1016/j.enpol.2013.03.028.

[11] P. kemper, N. van Dijk, W. Scheinhardt, H. van den Berg, and J. Hurink. Optimization
of Charging Strategies for Electric Vehicles in Powermatcher-Driven Smart Energy
Grids. Valuetools, 2015. 10.4108/eai.4-1-2016.151091.

[12] Š. Lyócsa L. P. C. Do and P. Molnár. Impact of wind and solar production on
electricity prices: quantile regression approach. Journal of the Operational Research
Society, pages 1752–1768, 2019. 10.1080/01605682.2019.1634783.

[13] J. Laarakkers. Powermatcher, Matching Energy Supply and Demand To Ex-
pand Smart Energy Potential. 14-04-2016. https://www.tno.nl/media/1986/
tno-powermatcher-jrv140416-01.pdf.

[14] Pod Point. How Long Does It Take to Charge an Electric car?, 11-11-2021. https:
//pod-point.com/guides/driver/how-long-to-charge-an-electric-car, visited
at 5-5-2022.

[15] Love Energy Savings. Off-Peak Electricity Explained: Is Electricity Cheaper at Night?
https://www.loveenergysavings.com/content-hub/energy-guides-and-advice/
off-peak-electricity-explained-is-electricity-cheapest-at-night/, visited
at 2-5-2022.

26

https://www.anwb.nl/auto/elektrisch-rijden/waar-staan-de-oplaadpunten
https://www.anwb.nl/auto/elektrisch-rijden/waar-staan-de-oplaadpunten
https://www.cbs.nl/nl-nl/dossier/energieprijzen/hoofdstukken/markt-voor-energieprijzen
https://www.cbs.nl/nl-nl/dossier/energieprijzen/hoofdstukken/markt-voor-energieprijzen
https://www.eia.gov/energyexplained/electricity/prices-and-factors-affecting-prices.php
https://www.eia.gov/energyexplained/electricity/prices-and-factors-affecting-prices.php
https://www.elia.be/en/grid-data/power-generation/wind-power-generation
https://www.elia.be/en/grid-data/power-generation/wind-power-generation
https://www.epexspot.com/en/market-data
https://www.drive.com.au/caradvice/what-is-a-good-energy-consumption-figure-for-electric-vehicles/
https://www.drive.com.au/caradvice/what-is-a-good-energy-consumption-figure-for-electric-vehicles/
https://otexts.com/fpp2/
https://www.ev-volumes.com/country/total-world-plug-in-vehicle-volumes/
https://www.ev-volumes.com/country/total-world-plug-in-vehicle-volumes/
https://www.tno.nl/media/1986/tno-powermatcher-jrv140416-01.pdf
https://www.tno.nl/media/1986/tno-powermatcher-jrv140416-01.pdf
https://pod-point.com/guides/driver/how-long-to-charge-an-electric-car
https://pod-point.com/guides/driver/how-long-to-charge-an-electric-car
https://www.loveenergysavings.com/content-hub/energy-guides-and-advice/off-peak-electricity-explained-is-electricity-cheapest-at-night/
https://www.loveenergysavings.com/content-hub/energy-guides-and-advice/off-peak-electricity-explained-is-electricity-cheapest-at-night/

[16] V. Silva, L. Glorieux, C. Kieny, M. Ortega-Vazquez, B. Roussien, J. Laaraakers,
C. Matrose, and M. Bolczek. Estimation of Innovative Operational Processes and
Grid Management for the Integration of EV. 2011.

[17] W. L. Winston. Operations Research; Applications and Algortithms. Thomson Learn-
ing, 4th edition edition, 2004.

27

12 Appendix
12.1 List of symbols

Symbol Description
A state transition matrix for wind production
a, b, c bounds to determine categories for prices for the prob-

ability transition matrix
Cd amount of energy left in car battery at day d

c total costs
I(µ,R) Independent strategy with µ and R

L total amount of energy to be charged at the end of
period T

Ld total amount of energy that we want to charge on day
d

M parameter for state determination in wind production
MAD Mean average deviation
p, d, q ARIMA parameters
Pt stochastic price variable for period t

pt price value at time t per unit energy
P probability distribution
P probability transition matrix
pij probability of transition from state i to state j

p̃ forecast price value
R1 range of price values from 0 to 0.400 with stepsize 0.001
R2 range of price values from 0 to 0.350 with stepsize 0.001
r correlation coefficient
sd state of wind production at day d

t current period
T the total amount of periods available to charge
umax maximum amount of energy that can be charged dur-

ing any period
ut amount of energy charged during period t

Vt(x) the expected costs when an amount of x is still to
charge at time t

Vt(x, p) the expected costs when an amount of x is still to
charge at time t and current price is p

xt amount of energy to still be charged at period t

µ mean
µ1 ≈ 0.163 mean of unfiltered data
µ2 ≈ 0.193 mean of filtered data
σ1 ≈, standard deviation of unfiltered data
σ2 ≈, standard deviation of filtered data
α simple exponential smoothing parameter

28

12.2 Stochastic dynamic program with independent prices; continued
To find explicit expressions for Vt(x, p) and ut(x, p) in [11], they continue by using order

statistics for Pt. We only know the long-run average price, hence the prices are assumed
to be independent ánd identically distributed (i.i.d.). So we have the random variables Pt

that, describe the price per unit of energy in period t, for t = 1, . . . , T . The variable Pt

has a distribution with an expectation equal to the long run expected average price. Then
an optimal decision rule is given by [11]

ut(x, p) =


0 if p > EP t+1

(k+1)

x− kumax if EP t+1
(k) < p ≤ EP t+1

(k+1)

min(umax, x) if p ≤ EP t+1
(k),

(33)

with its corresponding minimal cost [11]:

Vt(x, p) = ∞ if x
umax

> T − t+ 1, or else

Vt(x, p) = umax
∑k

l=1 E[P
t
(l)|Pt = p] + (x− kumax)E[P

t
(k+1)|Pt = p]

Which can be computationally demanding, hence they introduce an heuristic for the
optimal control law:

ut(x, p) =


0 if F (p) ≤ k

T−t+1

x− kumax if k
T−t+1 < F (p) ≤ k+1

T−t+1

min(umax, x) if F (p) > k
T−t+1 ,

(34)

12.3 Forecasting methods; continued

Moving-Average Method
Moving-average method is an extrapolation forecasting method. It uses the average of

the last N observations of a series of past data (x1, x2, . . . , xt, . . .) to predict value of the
next period. The variable ft,1 denotes the forecast for period t+ 1. We get

ft,1 =
xt + xt−1, . . . , xt−N+1

N
, (35)

where N is a chosen parameter. The forecast accuracy depends on N . The MAD is again
given by Equation (9), with forecast error et;

et = xt − ft,1 [17]. (36)

The moving-average method works well for a time series that fluctuates around a certain
value, the base value, but it is not very accurate for sudden fluctuations. Hence, the
moving-average method is less suitable for time series with a trend or seasonality [17].

Auto Regression Integrated Moving Average
An autoregressive model predicts future values based on past values, as extrapolation

methods. Autoregressive models assume that the future will resemble the past, it examines
the differences between the values in the time series instead of through actual values. An
Auto Regression Integrated Moving Average (ARIMA) model combines the autoregressive
features with that of moving averages. It makes use of lagged moving averages to smooth
the time series. Hence, ARIMA models can take into account trends, cycles and seasonality

29

when making forecasts.Time series regression predicts the behaviour of dynamic systems
from current and past observations. [8]

ARIMA uses three parameters p, d, q, where each parameter has an integer value that
indicate the type of ARIMA model. The parameter p is the “AR”-part of ARIMA. It
denotes the lag order, so the number of autoregressive terms in the model. The parameter
d is the “I”-part and denotes the degree of differencing needed to make the time series
stationary. Finally, q is the “MA”-part and represents the order of the moving average (size
of the moving window) [8].

The ARIMA model is then described by:(
1−

p∑
i=1

ϕiB
i

)
(1−B)dyt = c+

(
1 +

q∑
i=1

θiB
i

)
εt, (37)

where B is the lag operator, ϕi are the parameters of the autoregressive part, the parameters
θi are from the moving average part, ϵi are the error terms and c is a constant [8].

In case the timeseries is not stationary, it should be converted to one that is in order to
apply the ARIMA model. A time series is stationary if it does not have trend of seasonal
effects. Hence the data may need to be prepped. It can be made stationary by differencing
a d number of times. Differencing is done by computing the difference between consecutive
observations:

x′t = xt − xt−1 (38)

This stabilizes the mean of the time series. It may be possible that the series needs to
be differenced more than once, before it is stationary The series is stationary when the
p-value is below the treshold of 0.05. Selecting the right values for p, d, and q can be tricky.
Fortunately, the function auto_arima will pick the most optimal values automatically [8].

12.4 Example of Data
This appendix is purposely excluded for licensing reasons.

12.5 Test Data Summary

Table 12: Average price, minimum price, and maximum price of one night

Date of Night Mean Min Max
28- 29 April 0.23219. . . 0.18703 0.30127
03- 04 May 0.23379. . . 0.16986 0.31712
18- 19 May 0.21218. . . 0.05008 0.3412
06- 07 June 0.16134229. . . 0.07754 0.21028
07- 08 June 0.188202. . . 0.13594 0.25314
08- 09 June 0.2103108. . . 0.07991 0.31971

12.6 Policy 6 - 7 June

Amount to charge (kW)
Time Price Knapsack Det. knapsack Independent Dependent

20:00:00 0.18106 0 0 0 0
20:15:00 0.18849 0 0 0 0
20:30:00 0.19247 0 0 0 0

30

20:45:00 0.20021 0 0 0 0
21:00:00 0.19382 0 0 0 0
21:15:00 0.18515 0 0 0 0
21:30:00 0.18547 0 0 0 0
21:45:00 0.17442 0 0 0 0
22:00:00 0.21028 0 0 0 0
22:15:00 0.19164 0 0 0 0
22:30:00 0.17742 0 0 0 0
22:45:00 0.16933 0 0 0 0
23:00:00 0.17259 0 0 0 0
23:15:00 0.17259 0 0 0 0
23:30:00 0.17259 0 0 0 0
23:45:00 0.17259 0 1 0 1
00:00:00 0.18062 0 0 0 0
00:15:00 0.15282 0 0 1 1
00:30:00 0.13838 0 1 1 1
00:45:00 0.12368 1 1 1 1
01:00:00 0.16827 0 0 0 0
01:15:00 0.14816 0 0 1 0
01:30:00 0.15702 0 0 0 0
01:45:00 0.15245 0 0 1 0
02:00:00 0.13475 0 0 1 1
02:15:00 0.13618 0 0 1 0
02:30:00 0.1739 0 0 0 0
02:45:00 0.17392 0 0 0 0
03:00:00 0.12113 1 0 1 1
03:15:00 0.11445 1 0 0 0
03:30:00 0.15287 0 0 0 0
03:45:00 0.11685 1 1 0 0
04:00:00 0.10077 1 0 0 1
04:15:00 0.10785 1 0 0 0
04:30:00 0.12742 0 0 0 0
04:45:00 0.14081 0 0 0 0
05:00:00 0.07751 1 0 0 1
05:15:00 0.11921 1 0 0 0
05:30:00 0.16363 0 0 0 0
05:45:00 0.15932 0 0 0 0
06:00:00 0.13251 0 0 0 0
06:15:00 0.15916 0 0 0 0
06:30:00 0.19012 0 1 0 0
06:45:00 0.19586 0 0 0 0
07:00:00 0.18623 0 0 0 0
07:15:00 0.1935 0 1 0 0
07:30:00 0.20533 0 1 0 0
07:45:00 0.19963 0 1 0 0

12.7 Python Code: Knapsack Model

1 import pandas as pd

31

2 import numpy as np
3 import math
4

5 def valuefunction(T, x0, umax , df):
6 """
7 :param T: Total amount of available periods
8 :param x0: Total amount of charging needed
9 :param umax: Maximum charging speed

10 :param df: Dataframe containing the timeseries of the prices
11 :return: Results of the optimal value function
12 :return: The corresponding optimal decisions
13 """
14 prices_list = df[’Price’]. values.tolist () # Timeseries of prices in

list
15 states = [i / 10 for i in range(0, 10 * x0 + 1, int (10 * umax))]
16 D = [0, umax] # Decisions
17 if x0 <= 0:
18 return ’no charging needed ’
19 elif x0 > umax * T:
20 return ’car can not be fully charged during one night ’
21 else:
22 V = np.full(shape=(T, math.ceil(x0/umax) + 1), fill_value=np.inf)
23 choice = np.full(shape =(T, math.ceil(x0/umax) + 1), fill_value=np.

inf)
24 for x in states: # Last state
25 if x == 0: # No charging needed
26 u = 0
27 V[T - 1, states.index(x)] = 0
28 choice[T - 1, states.index(x)] = u
29 elif 0 < x <= umax: # Only one (or partial) charging period

needed
30 u = x
31 cost = u * prices_list [-1]
32 V[T - 1, states.index(x)] = cost
33 choice[T - 1, states.index(x)] = u
34 else: # Charge is not be fully charged at T + 1
35 u = np.inf
36 cost = np.inf
37 V[T - 1, states.index(x)] = cost
38 choice[T - 1, states.index(x)] = u
39

40 for t in range(T - 2, -1, -1):
41 for x in states:
42 V_all = [] # Empty list to store all values of all

decisions
43 if x == 0: # No charging needed
44 u = 0
45 V[t, states.index(x)] = 0
46 choice[t, states.index(x)] = u
47 elif 0 < x <= umax: # Only one (or partial) charging period

needed
48 for u in [0, x]:
49 cost = 0
50 cost += u * prices_list[t] + V[t + 1, states.index(

x - u)]
51 V_all.append(cost)
52 V[t, states.index(x)] = min(V_all)
53 choice[t, states.index(x)] = [0,x][V_all.index(min(

V_all))]
54 elif umax < x <= umax * (T-t): # More than one charging

period needed and at least this many periods left

32

55 for u in D: # Either charge on maximum speed or not
56 cost = 0
57 cost += u * prices_list[t] + V[t + 1, states.index(

x - u)]
58 V_all.append(cost)
59 V[t, states.index(x)] = min(V_all)
60 choice[t, states.index(x)] = D[V_all.index(min(V_all))]
61 else: # Car can not be fully charged at T + 1
62 u = np.inf
63 cost = np.inf
64 V[T - 1, states.index(x)] = cost
65 choice[T - 1, states.index(x)] = u
66

67 return V, choice
68

69 ### 8pm - 8am with regular intervals of 15 min -> 48 stages (first period
starts at 8:00 last at 7:45) ###

70 stages = 48
71 start = 8
72 umaximum = 1
73

74 """ UNCOMMENT THE DATE YOU WANT TO USE """
75 data = pd.read_excel(r’C:\Users\femke\PycharmProjects\BA1\

ElectricityPrices_EpexSpot.xlsx’, sheet_name=’28-29 April’, usecols
=[1,2], header=0, skiprows =[1]) #, skiprows =[1])

76 #data = pd.read_excel(r’C:\Users\femke\PycharmProjects\BA1\
ElelctricityPrices_EpexSpot_34.xlsx ’, sheet_name =’03-04May ’, usecols
=[1, 2], header=0, skiprows =[1])

77 #data = pd.read_excel(r’C:\Users\femke\PycharmProjects\BA1\
ElelctricityPrices_EpexSpot_1819.xlsx ’, sheet_name =’18-19May ’, usecols
=[1,2], header=0, skiprows =[1]) #, skiprows =[1])

78 #data = pd.read_excel(r’C:\Users\femke\PycharmProjects\BA1\
ElelctricityPrices_EpexSpot_2223.xlsx ’, sheet_name =’22-23May ’, usecols
=[1,2], header=0, skiprows =[1]) #, skiprows =[1])

79

80 """ EXECUTE THE VALUEFUNCTION """
81 V, choices = valuefunction(stages , start , umaximum , data)
82

83

84 """ PRINT RESULTS TO AN EXCEL FILE """
85

86 with pd.ExcelWriter("Output_Knapsack.xlsx") as writer:
87 for t in range(stages):
88 df1 = pd.DataFrame(V[:,:])
89 df2 = pd.DataFrame(choices [: ,:])
90 df1.to_excel(excel_writer=writer , sheet_name=f’E(c)’)
91 df2.to_excel(excel_writer=writer , sheet_name=f’choices ’)

12.8 Python Code: Stochastic Dynamic Program with Independent
Prices

1 import pandas as pd
2 import numpy as np
3 import math
4

5

6 def prob(x):
7 """

33

8 :param x: Random variable
9 :return: Probability of random variable x using normal distribution

10 """
11 mean = 1932 # Long run mean times 10000
12 stdev = 458 # Long run standard deviation times 10000
13 probability = 10*(1/ (stdev * (2 * math.pi)**(1/2))) * math.exp(-(x-

mean)**2/(2* stdev **2))
14 return probability
15

16 def valuefunction(T, x0, umax):
17 """
18 :param T: Total amount of available periods
19 :param x0: Total amount of charging needed
20 :param umax: Maximum charging speed
21 :return: Results of the optimal value function
22 :return: The corresponding optimal decisions
23 """
24 prices_list = [k/10000 for k in range(0, 4000 + 1, 10)]
25 states = [i / 10 for i in range(0, 10 * x0 + 1, int (10 * umax))]
26 D = [0, umax] # Either charge on maximum speed or not
27

28 if x0 <= 0:
29 return ’no charging needed ’
30 else:
31 V = np.full(shape=(T, math.ceil(x0/umax) + 1,len(prices_list)),

fill_value=np.inf)
32 choice = np.full(shape =(T, math.ceil(x0/umax) + 1, len(prices_list)

), fill_value=np.inf)
33 for x in states:
34 if x == 0:
35 u = 0
36 V[T - 1, states.index(x), :] = 0
37 choice[T - 1, states.index(x), :] = u
38 elif 0 < x <= umax:
39 for p in prices_list:
40 u = min(umax , x)
41 cost = u * p
42 V[T - 1, states.index(x), prices_list.index(p)] = cost
43 choice[T - 1, states.index(x), prices_list.index(p)] =

u
44 else:
45 u = np.inf
46 cost = np.inf
47 V[T - 1, states.index(x), :] = cost
48 choice[T - 1, states.index(x), :] = u
49

50

51 for t in range(T - 2, -1, -1):
52 print(t)
53 for x in states:
54 for p in prices_list:
55 V_all = [] # Empty list to store all values of all

decisions
56 if x == 0: # No charging needed
57 u = 0
58 V[t, states.index(x), prices_list.index(p)] = 0
59 choice[t, states.index(x), prices_list.index(p)] =

u
60 elif 0 < x <= umax: # Only one (or partial) charging

period needed
61 for u in [0, x]:

34

62 cost = 0
63 for l in prices_list:
64 cost += prob(l*10000) * V[t + 1, states.

index(x - u), prices_list.index(l)]
65 cost += u * p
66 V_all.append(cost)
67 V[t, states.index(x), prices_list.index(p)] = min(

V_all)
68 choice[t, states.index(x), prices_list.index(p)] =

[0, x][V_all.index(min(V_all))]
69 elif umax < x <= umax * (
70 T - t): # More than one charging period needed

and at least this many periods left
71 V_all = []
72 for u in D:
73 cost = 0
74 for l in prices_list:
75 cost += prob(l*10000) * V[t + 1, states.

index(x - u), prices_list.index(l)]
76 cost += u * p
77 V_all.append(cost)
78 V[t, states.index(x), prices_list.index(p)] = min(

V_all)
79 choice[t, states.index(x), prices_list.index(p)] =

D[V_all.index(min(V_all))]
80

81 else: # Charge can not be fully charged at T + 1
82 u = np.inf
83 cost = np.inf
84 V[T - 1, states.index(x), prices_list.index(p)] =

cost
85 choice[T - 1, states.index(x), prices_list.index(p)

] = u
86

87 return V, choice
88

89 """ EXECUTE THE VALUEFUNCTION """
90 ### 8pm - 8 am with regular intervals of 15 min gives a total of 48 stages

###
91 stages = 48
92 start = 8
93 umaximum = 1
94 V, choices = valuefunction(stages , start , umaximum)
95

96 """ PRINT RESULTS TO AN EXCEL FILE """
97 with pd.ExcelWriter("output_indep400.xlsx") as writer:
98 for t in range(stages):
99 df1 = pd.DataFrame(V[t,: ,:])

100 df2 = pd.DataFrame(choices[t, :,:])
101 df1.to_excel(excel_writer=writer , sheet_name=f’t={t} E(c)’)
102 df2.to_excel(excel_writer=writer , sheet_name=f’t={t} choices ’)

12.9 Python Code: Stochastic Dynamic Program with Dependent Prices

1 import pandas as pd
2 import numpy as np
3 import math
4

5 """ COLLECT PRICEDATA FOR TRANSITION PROBABILITY MATRIX """
6

7 data2223 = pd.read_excel(r’C:\ Users\femke\PycharmProjects\BA1\

35

ElelctricityPrices_EpexSpot_2223.xlsx’, sheet_name=’22-23May’, usecols
=[1,2], header =0)

8 data2324 = pd.read_excel(r’C:\ Users\femke\PycharmProjects\BA1\
ElectricityPrices_EpexSpot_2324.xlsx’, sheet_name=’23-24May’, usecols
=[1,2], header =0)

9 data2425 = pd.read_excel(r’C:\ Users\femke\PycharmProjects\BA1\
ElectricityPrices_EpexSpot_2425.xlsx’, sheet_name=’24-25May’, usecols
=[1,2], header =0)

10 data2526 = pd.read_excel(r’C:\ Users\femke\PycharmProjects\BA1\
ElectricityPrices_EpexSpot_2526.xlsx’, sheet_name=’25-26May’, usecols
=[1,2], header =0)

11 data2627 = pd.read_excel(r’C:\ Users\femke\PycharmProjects\BA1\
ElectricityPrices_EpexSpot_2627.xlsx’, sheet_name=’26-27May’, usecols
=[1,2], header =0)

12 data2728 = pd.read_excel(r’C:\ Users\femke\PycharmProjects\BA1\
ElectricityPrices_EpexSpot_2728.xlsx’, sheet_name=’27-28May’, usecols
=[1,2], header =0)

13 data2829 = pd.read_excel(r’C:\ Users\femke\PycharmProjects\BA1\
ElectricityPrices_EpexSpot_2829.xlsx’, sheet_name=’28-29May’, usecols
=[1,2], header =0)

14 data2930 = pd.read_excel(r’C:\ Users\femke\PycharmProjects\BA1\
ElectricityPrices_EpexSpot_2930.xlsx’, sheet_name=’29-30May’, usecols
=[1,2], header =0)

15 data3031 = pd.read_excel(r’C:\ Users\femke\PycharmProjects\BA1\
ElectricityPrices_EpexSpot_3031.xlsx’, sheet_name=’30-31May’, usecols
=[1,2], header =0)

16 data3101 = pd.read_excel(r’C:\ Users\femke\PycharmProjects\BA1\
ElectricityPrices_EpexSpot_3101.xlsx’, sheet_name=’31-1June’, usecols
=[1,2], header =0)

17 data60102 = pd.read_excel(r’C:\Users\femke\PycharmProjects\BA1\
ElectricityPrices_EpexSpot_60102.xlsx’, sheet_name=’01-02 June’, usecols
=[1,2], header =0)

18 data60203 = pd.read_excel(r’C:\Users\femke\PycharmProjects\BA1\
ElectricityPrices_EpexSpot_60203.xlsx’, sheet_name=’02-03 June’, usecols
=[1,2], header =0)

19 data60304 = pd.read_excel(r’C:\Users\femke\PycharmProjects\BA1\
ElectricityPrices_EpexSpot_60304.xlsx’, sheet_name=’03-04 June’, usecols
=[1,2], header =0)

20 data60405 = pd.read_excel(r’C:\Users\femke\PycharmProjects\BA1\
ElectricityPrices_EpexSpot_60405.xlsx’, sheet_name=’04-05 June’, usecols
=[1,2], header =0)

21

22 def state(df):
23 """
24 :param df: Dataframe with timeseries of price values
25 :return: Series of prices converted to states
26 """
27 timeseries = df[’Price’]. values.tolist ()
28 a = 0.155
29 b = 0.193
30 c = 0.231
31

32 series = []
33 for t in timeseries:
34 if t < a:
35 series.append (0)
36 elif a <= t < b:
37 series.append (1)
38 elif b <= t < c:
39 series.append (2)
40 else:

36

41 series.append (3)
42 return series
43

44 def onestate(t):
45 """
46 :param t: One price value whose state needs to be determined
47 :return: The corresponding state of price value t
48 """
49 a = 0.155
50 b = 0.193
51 c = 0.231
52

53 if t < a:
54 number = len(range(0,int(a*1000))) # The number of price

values in this category
55 return 0, number
56 elif a <= t < b:
57 number = len(range(int(a*1000) ,int(b*1000)))
58 return 1, number
59 elif b <= t < c:
60 number = len(range(int(b*1000) , int(c*1000)))
61 return 2, number
62 else:
63 number = len(range(int(c*1000) , 400+1)) # Price ranges from 0

to 0.400
64 return 3, number
65

66 def transprob(list_timeseries):
67 """
68 :param list_timeseries: list with states of a timeseries
69 :return: Transition probability matrix
70 """
71 maxstates = []
72 for timeseries in list_timeseries:
73 m = max(timeseries)
74 maxstates.append(m)
75 n = 1 + max(maxstates)
76 M = [[0] * n for _ in range(n)]
77 for timeseries in list_timeseries:
78 for (i, j) in zip(timeseries , timeseries [1:]):
79 M[i][j] += 1
80 for r in M:
81 s = sum(r)
82 if s > 0:
83 r[:] = [elem / s for elem in r]
84 return M
85

86 def valuefunction(T, x0, umax , P):
87 """
88 :param T: Total amount of available periods
89 :param x0: total amount to be charged at the end of period T
90 :param umax: Maximum charging speed
91 :param P: Transition probability matrix
92 :return: Results of the optimal value function
93 :return: The corresponding optimal decisions
94 """
95 states = [i / 10 for i in range(0, 10 * x0 + 1, int (10 * umax))]
96 D = [0, umax] # Decisions
97 prices_list = [k / 1000 for k in range(0, 400+1 , 1)]
98

99 if x0 <= 0:

37

100 return ’no charging needed ’
101 elif x0 > umax * T:
102 return ’car can not be fully charged during one night ’
103 else:
104 V = np.full(shape=(T, math.ceil(x0 / umax) + 1, len(prices_list)),

fill_value=np.inf)
105 choice = np.full(shape =(T, math.ceil(x0 / umax) + 1, len(

prices_list)), fill_value=np.inf)
106 for x in states: # Last state
107 if x == 0: # No charging needed
108 u = 0
109 V[T - 1, states.index(x), :] = 0
110 choice[T - 1, states.index(x), :] = u
111 elif 0 < x <= umax: # Only one (or partial) charging period

needed
112 u = x
113 cost = u * prices_list [-1]
114 V[T - 1, states.index(x), :] = cost
115 choice[T - 1, states.index(x), :] = u
116 else: # Charge is not be fully charged at T + 1
117 u = np.inf
118 cost = np.inf
119 V[T - 1, states.index(x), :] = cost
120 choice[T - 1, states.index(x), :] = u
121

122 for t in range(T - 2, -1, -1):
123 print(’t=’,t) # To keep track where the program is

running
124 for x in states:
125 for p in prices_list:
126 m, a = onestate(p)
127 V_all = [] # Empty list to store all values of all

decisions
128 if x == 0: # No charging needed
129 u = 0
130 V[t, states.index(x), prices_list.index(p)] = 0
131 choice[t, states.index(x), prices_list.index(p)] =

u
132 elif 0 < x <= umax: # Only one (or partial) charging

period needed
133 for u in [0, x]:
134 cost = 0
135 for l in prices_list:
136 n, b = onestate(l)
137 if P[m][n] > 0:
138 pass
139 else:
140 P[m][n] = 0.000001
141 cost += P[m][n] * V[t + 1, states.index(x -

u), prices_list.index(l)] / b
142 cost += u * p
143 V_all.append(cost)
144 V[t, states.index(x), prices_list.index(p)] = min(

V_all)
145 choice[t, states.index(x), prices_list.index(p)] =

[0, x][V_all.index(min(V_all))]
146 elif umax < x <= umax * (
147 T - t): # More than one charging period

needed and at least this many periods left
148 V_all =[]
149 for u in D: # Either charge on maximum speed or

38

not
150 cost = 0
151 for l in prices_list:
152 n, b = onestate(l)
153 if P[m][n] > 0:
154 pass
155 else:
156 P[m][n] = 0.000001
157 cost += P[m][n] * V[t + 1, states.index(x -

u), prices_list.index(l)]/b
158 cost += u * p
159 V_all.append(cost)
160 V[t, states.index(x), prices_list.index(p)] = min(

V_all)
161 choice[t, states.index(x), prices_list.index(p)] =

D[V_all.index(min(V_all))]
162

163 else: # Charge can not be fully charged at
T + 1

164 u = np.inf
165 cost = np.inf
166 V[T - 1, states.index(x), prices_list.index(p)] =

cost
167 choice[T - 1, states.index(x), prices_list.index(p)

] = u
168

169 return V, choice
170

171 """ EXECUTE THE VALUEFUNCTION """
172 # 8pm - 8 am with regular intervals of 30 min gives a total of 24 stages
173 stages = 48
174 start = 8
175 umaximum = 1
176 liststates_data = [state(data2223), state(data2324), state(data2425), state

(data2829), state(data2930), state(data3031),
177 state(data3101), state(data60102), state(data60203),

state(data60304), state(data60405)]
178 transmatrix = transprob(liststates_data)
179

180 V, choices = valuefunction(stages , start , umaximum , transmatrix)
181

182 """ PRINT RESULTS TO AN EXCEL FILE """
183 with pd.ExcelWriter("Output_SDP&MC.xlsx") as writer:
184 for t in range(stages):
185 df1 = pd.DataFrame(V[t,: ,:])
186 df2 = pd.DataFrame(choices[t, :,:])
187 df1.to_excel(excel_writer=writer , sheet_name=f’t={t} E(c)’)
188 df2.to_excel(excel_writer=writer , sheet_name=f’t={t} choices ’)

39

	Introduction
	Knapsack Problem
	Stochastic dynamic program with independent prices
	Forecasting Methods
	Stochastic dynamic program with history of prices
	Considering the history of prices
	Weather dependence

	Stochastic dynamic program with Markov chain
	Deterministic Knapsack
	Numerical Results
	Parameters
	Knapsack Problem
	Stochastic dynamic program with independent prices
	Forecasting
	Comparison

	Weather Dependence
	Stochastic Dynamic Program with Markov chain
	Deterministic Knapsack
	Comparison Charging Strategies

	Discussion
	Conclusion
	References
	Appendix
	List of symbols
	Stochastic dynamic program with independent prices; continued
	Forecasting methods; continued
	Example of Data
	Test Data Summary
	Policy 6 - 7 June
	Python Code: Knapsack Model
	Python Code: Stochastic Dynamic Program with Independent Prices
	Python Code: Stochastic Dynamic Program with Dependent Prices

