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ABSTRACT 

Since regular languages, often described with Regular 

Expressions, are much faster to parse than context-free 

languages, it can prove beneficial to define regular (parts of) 

languages using Regular Expressions rather than the more 

powerful yet slower to parse Context-Free Grammars. 

However, ambiguity in regular expressions can make this task 

more difficult. We have successfully replicated a deterministic 

parser generator for Ambiguous Regular Expressions, based on 

the Berry-Sethi algorithm, in Kotlin. This replication is written 

in a more simple manner, with the result that it is easier to read 

and develop from. 
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1. INTRODUCTION 

1.1 Background and Motivation 
Regular languages are significantly faster to parse than context-

free languages, and this makes it attractive to parse regular 

(parts of) languages with a parser built from Regular 

Expressions rather than with a parser built from a Context-Free 

Grammar. 

In the beginning of last year, a paper was published on the 

parsing of Ambiguous Regular Expressions (AREs) [5]. In this 

article, the authors describe how they implemented a 

deterministic parser generator for these AREs using an 

extended version of the Berry-Sethi algorithm [2], adding the 

power to parse these AREs rather than just recognize them. The 

parser generators produce a set of Linearized Syntax Trees 

(LSTs), compacted into directed acyclic graphs (DAGs). The 

authors have also written some code to achieve this, in Java, 

and have included a previously existing RE parser in C++ as 

well as a set of REs to test the implementations on [4]. 

An attempt at replicating this parser using only the paper as a 

source can locate potential unclarities or inconsistencies 

regarding its implementation. By keeping the replication 

simple, well-documented and concise, it can be easier to 

optimize this parser for a specific purpose or adapt the parser to 

build further on the concepts that this parser utilizes. 

1.2 Preliminaries 
Regular Expressions (REs) are a way to specify text patterns, 

and are built up of the empty word (ε) and symbols, with the 

operations of concatenation, union (|), zero or more (*) and one 

or more (+) allowing one to define any regular language with 

these elements. From a RE, it is possible to derive a 

Deterministic Finite-State Automaton (DFA) that recognizes 

this language.  

 

REs can also be represented through an Abstract Syntax Tree 

(AST). In this representation parentheses, symbols and ε are 

shown as leaves and the operators mentioned before are shown 

as nodes. The opening and closing parentheses are the left, 

respectively right, sibling of the enclosed expression. An AST 

with all leaves marked with a number is known as a Marked 

Abstract Syntax Tree (MAST), and its associated RE is known 

as a Marked Regular Expression [5, Definition 1]. In figure 1, 

an example of an AST and a MAST is shown. 

 

Figure 1. Example of an AST and a MAST [5] 

Parsing a word with a MRE results in a Marked Syntax Tree, 

showing the structure of the word. Using the markings of the 

symbols, it is possible to trace back which part of the MRE, and 

thus the corresponding RE, matches a given part of the word. 

Concatenating the leaves of a MST from left to right results in a 

Linearized Syntax Tree (LST), which is the ultimate result of 

parsing the word.  

Local languages are a strict subset of regular languages, and can 

be defined by its Initial set, its Digram set and its Final set, all 

of finite size. The Initial set is the set of all symbols that a word 

in this language can begin with, the Digram set is the set of all 

possible sequences of two symbols in a word in this language, 

and the Final set is the set of all symbols a word in this 

language can end with. In addition to this, the Follower set of a 

symbol is defined to contain all symbols that can come after this 

symbol. 

A LST can be factorized into segments, consisting of zero or 

more marked metasymbols ((, ), ε) and one marked symbol. An 

Acyclic Segment (AS) is a segment with all metasymbols 

marked distinctly, and can be treated like symbols themselves. 

This allows the Initial set of Acyclic Segments (IniAS) and 

Follower set of Acyclic Segments of a symbol ah (FolAS(ah)) to 

be defined similarly to before. 

2. GOALS 

2.1 Replication of the Algorithm 
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To help verify the process described in the paper and attempt to 

find potential flaws and/or unclarities in the method, we seek to 

replicate the process described in the paper without the 

guidance of the code written by the authors. This brought us to 

Research Question 1: 

Is the description of the parser generator implementation clear 

and consistent, such that the code can be replicated, and does 

this replication have the same behaviour as the author’s code? 

2.2 Analysis of the Implementation 
After the replication attempt, to properly compare the new 

implementation with the original, it is important to examine the 

original implementation and try to understand the design 

decisions taken by the authors. This poses Research Question 2: 

How does the authors’ implementation work, and for what 

purpose has it been defined? 

2.3 Comparison of the Implementations 
After the replication and the analysis of the original 

implementation, the two can be compared to see if they behave 

similarly. This poses Research Question 3: 

Does the replication produce the same behaviour as the original 

code, or is there a difference? If there is a difference, what is it 

and how is it caused? 

3. RELATED WORK 
It has already been proven that the ambiguity, or lack thereof, in 

a RE can be decided [3]. If this were not the case, the parsing of 

AREs would also be undecidable. 

The Berry-Sethi algorithm [2] has been derived in 1986 already, 

and forms the basis for the parsing of the REs in the similarly 

named BSP. If the paper is unclear about implementation 

details on this part, the original can provide help understanding 

the implementation. 

The authors of the paper have previously published other papers 

[6] that are also referred to in this one, indicating that this 

research has been going on for longer. Similarly to the 

previously mentioned paper, insights could be gained from 

these previous papers in case the paper is unclear about 

concepts they mentioned before. 

The authors have also generated a set of REs [4] to test the 

implementations on. Aside from this, the other sources referred 

to in the paper can prove useful. 

4. REPLICATION OF THE ALGORITHM 

4.1 Methodology 
We replicated the algorithm using the Kotlin [9] programming 

language. Kotlin is a multi-platform language that can compile 

to the JVM platform, among others that is inter-operable with 

Java. However, Kotlin has been refined to be more concise and 

safer, for example with its features to easily deal with 

nullability. This should make it easier to implement the 

algorithm and will hopefully help write it quicker by requiring 

less debugging than with, for example, Java. 

The intention is to replicate the system without looking at the 

code and without contact with the authors, so purely from the 

paper.  

The expected answer to Research Question 1 is that it is 

possible by following the description in the paper. If this turns 

out to be more difficult, there is the option to look into the 

articles referred to by the authors, like the original Berry-Sethi 

algorithm as well as the authors’ earlier publications. A 

repository has been created to house the replication [8]. 

4.2 Process 
To start, the RE had to be parsed and the symbols had to be 

marked. Since there is no particular way in which it needs to be 

parsed, an ANTLR [1] grammar was used in combination with 

a ParseTreeVisitor implementation to traverse the parse tree and 

mark the symbols to make a MRE [5, Definition 1]. To make 

the MRE from a RE, the parentheses, empty words and the 

symbols had to be given a number marking, following an in-

order traversal of the Abstract Syntax Tree. Using ANTLR, 

little work had to be done for parsing the RE itself, and a 

grammar is arguably simpler to read and adapt than custom 

code to parse the RE. Using the examples from the paper, the 

parsing of the RE and marking could be tested. 

From here, the set of Initial Acyclic Segments (IniAS) [5, 

Definition 6] has to be constructed as well as the sets of Acyclic 

Segments that follow each symbol ah (FolAS(ah)). The process 

for constructing these sets is not explicitly described in the 

paper, but similar concepts exist elsewhere and the descriptions 

of the sets themselves together with the examples given in the 

article was enough to derive an algorithm. For the IniAS, a 

recursive algorithm can easily be defined using the properties of 

the nodes and leaves of the MAST, for instance the property 

that symbols and ε do not have children and therefore are the 

contents of their IniAS. A more difficult case to implement is the 

concatenation, since a child’s IniAS is only included if the 

previous child is nullable, i.e. contains ε. For the FolAS of a 

symbol, the given symbol first has to be located in the MAST, 

and after that the set can be built up as the path through the 

MAST is taken in reverse. In the computation of these sets, an 

end-of-text symbol is appended to the MRE so that the 

Follower sets comprise both the Digrams set and the Final set of 

the MRE. These sets of the previous examples are also shown 

in the paper, making it easy to run a quick test of the replication 

with these. The IniAS and FolAS sets of the running example can 

be found below. 

 

Figure 2. IniAS and FolAS of the running example [5] 
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Given IniAS and FolAS(ah) for each ah, the modified Berry-Sethi 

algorithm [5, Algorithm 1] can be implemented from the 

pseudocode. This yields the Deterministic Finite-state 

Transducer (DFT) [5, Definition 7], from which a Directed 

Acyclic Graph (DAG) can be made and from which the LSTs 

can be derived. Since the pseudocode is more on the 

mathematical side, data structures in the implementation do not 

completely match those in the pseudocode but it would be 

possible to make them match perfectly if one were to follow it 

very closely. For example, in the pseudocode the contents of a 

state are denoted by the function I(q), but the reassignment 

combined with the requirement of the values after the 

construction of the DFT makes it more suitable to implement 

the contents of a state using a field. Also the DFT and LSTs for 

the running examples were given, allowing for another quick 

test. Below is a representation of the DFT for the 

example.

 

Figure 3. DFT of the running example [5] 

4.3 Conclusion and Further Work 
It is possible to replicate the parser generator described, 

following a successful attempt to do so. The source code can be 

found on the referenced Github repository [8]. Although some 

concepts were slightly more difficult to implement, the paper 

explains them clearly enough to conclude if the code gives the 

expected results.  

With a little work cleaning up the current codebase and some 

additional documentation, it will be easy to extend. A possible 

extension of the implementation is the inclusion of more RE 

operators like option and bounded repetition, and the simplicity 

of the code should allow one to transcribe the code into another 

programming language more easily, optimizing the code for 

that environment as this implementation is not optimized for 

performance. 

5. ANALYSIS AND COMPARISON OF 

THE IMPLEMENTATIONS 

5.1 Methodology 
By reading through the authors’ implementation, some insights 

can be gained on the design choices and purposes of their 

implementation. It also helps to find differences in code style 

which can be compared against the replication. 

After reading through the authors’ implementation, it was 

attempted to link the replication with the other implementations 

and compare their results. As the codebase includes code to 

measure performance, this could be a useful metric even if this 

replication is not optimized for performance, but more 

important is the verification that the implementations produce 

the same results. 

5.2 Analysis of the authors’ implementation 
The implementation by the authors has been written in one file, 

several thousands of lines long including comments on their 

deviations from the explained procedure. The implementation 

looks to be optimized for performance, and some other ARE 

parsing implementations have been included to compare 

against. In the same file, other adaptations have also been 

written to potentially increase performance even more. Names 

of variables and constants are often shortened strongly, making 

their purpose harder to derive from their name. However, after 

looking at the definition and corresponding documentation their 

purpose is made clear. Algorithms are often accompanied by 

long comment blocks where the approach taken is explained 

extensively. 

5.3 Results and Further Work 
Unfortunately, attempts to connect the replication to the 

authors’ codebase have not been successful, but static analysis 

has allowed to draw some early conclusions.  

The length of the authors’ implementation is usually more than 

in this replication. For example, the length of their buildBS() 

method is just over 100 lines, while the similar 

constructDFT() is only 50 lines, while the amount of blank 

lines and comment lines is similar. 

While the authors’ implementation, written in Java, uses mainly 

imperative-style code, the replication uses more functional-style 

code to shorten repetitive statements and use less mutation in 

favour of mainly immutable variables. Because Kotlin 

facilitates functional expressions better than Java currently, a 

programmer can reap the benefits of more readable and more 

robust code without paying a heavy price of performance. This 

can also make it easier to rewrite this in a fully functional 

language like Haskell without having to convert everything 

from imperative style to functional style. 

In the future, it would still be beneficial to attempt integrating 

this replication to the codebase again, and verify the results of 

the replication. 
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