

1

Replication and Analysis of the Berry-Sethi Parser for
Ambiguous Regular Expressions

Ivo Broekhof
University of Twente

PO Box 217, 7500 AE Enschede
the Netherlands

i.broekhof@student.utwente.nl

ABSTRACT

Since regular languages, often described with Regular

Expressions, are much faster to parse than context-free

languages, it can prove beneficial to define regular (parts of)

languages using Regular Expressions rather than the more

powerful yet slower to parse Context-Free Grammars.

However, ambiguity in regular expressions can make this task

more difficult. We have successfully replicated a deterministic

parser generator for Ambiguous Regular Expressions, based on

the Berry-Sethi algorithm, in Kotlin. This replication is written

in a more simple manner, with the result that it is easier to read

and develop from.

Keywords

Ambiguous Regular Expression, Berry-Sethi Parser, ARE, BS

algorithm

1. INTRODUCTION

1.1 Background and Motivation
Regular languages are significantly faster to parse than context-

free languages, and this makes it attractive to parse regular

(parts of) languages with a parser built from Regular

Expressions rather than with a parser built from a Context-Free

Grammar.

In the beginning of last year, a paper was published on the

parsing of Ambiguous Regular Expressions (AREs) [5]. In this

article, the authors describe how they implemented a

deterministic parser generator for these AREs using an

extended version of the Berry-Sethi algorithm [2], adding the

power to parse these AREs rather than just recognize them. The

parser generators produce a set of Linearized Syntax Trees

(LSTs), compacted into directed acyclic graphs (DAGs). The

authors have also written some code to achieve this, in Java,

and have included a previously existing RE parser in C++ as

well as a set of REs to test the implementations on [4].

An attempt at replicating this parser using only the paper as a

source can locate potential unclarities or inconsistencies

regarding its implementation. By keeping the replication

simple, well-documented and concise, it can be easier to

optimize this parser for a specific purpose or adapt the parser to

build further on the concepts that this parser utilizes.

1.2 Preliminaries
Regular Expressions (REs) are a way to specify text patterns,

and are built up of the empty word (ε) and symbols, with the

operations of concatenation, union (|), zero or more (*) and one

or more (+) allowing one to define any regular language with

these elements. From a RE, it is possible to derive a

Deterministic Finite-State Automaton (DFA) that recognizes

this language.

REs can also be represented through an Abstract Syntax Tree

(AST). In this representation parentheses, symbols and ε are

shown as leaves and the operators mentioned before are shown

as nodes. The opening and closing parentheses are the left,

respectively right, sibling of the enclosed expression. An AST

with all leaves marked with a number is known as a Marked

Abstract Syntax Tree (MAST), and its associated RE is known

as a Marked Regular Expression [5, Definition 1]. In figure 1,

an example of an AST and a MAST is shown.

Figure 1. Example of an AST and a MAST [5]

Parsing a word with a MRE results in a Marked Syntax Tree,

showing the structure of the word. Using the markings of the

symbols, it is possible to trace back which part of the MRE, and

thus the corresponding RE, matches a given part of the word.

Concatenating the leaves of a MST from left to right results in a

Linearized Syntax Tree (LST), which is the ultimate result of

parsing the word.

Local languages are a strict subset of regular languages, and can

be defined by its Initial set, its Digram set and its Final set, all

of finite size. The Initial set is the set of all symbols that a word

in this language can begin with, the Digram set is the set of all

possible sequences of two symbols in a word in this language,

and the Final set is the set of all symbols a word in this

language can end with. In addition to this, the Follower set of a

symbol is defined to contain all symbols that can come after this

symbol.

A LST can be factorized into segments, consisting of zero or

more marked metasymbols ((,), ε) and one marked symbol. An

Acyclic Segment (AS) is a segment with all metasymbols

marked distinctly, and can be treated like symbols themselves.

This allows the Initial set of Acyclic Segments (IniAS) and

Follower set of Acyclic Segments of a symbol ah (FolAS(ah)) to

be defined similarly to before.

2. GOALS

2.1 Replication of the Algorithm

2

To help verify the process described in the paper and attempt to

find potential flaws and/or unclarities in the method, we seek to

replicate the process described in the paper without the

guidance of the code written by the authors. This brought us to

Research Question 1:

Is the description of the parser generator implementation clear

and consistent, such that the code can be replicated, and does

this replication have the same behaviour as the author’s code?

2.2 Analysis of the Implementation
After the replication attempt, to properly compare the new

implementation with the original, it is important to examine the

original implementation and try to understand the design

decisions taken by the authors. This poses Research Question 2:

How does the authors’ implementation work, and for what

purpose has it been defined?

2.3 Comparison of the Implementations
After the replication and the analysis of the original

implementation, the two can be compared to see if they behave

similarly. This poses Research Question 3:

Does the replication produce the same behaviour as the original

code, or is there a difference? If there is a difference, what is it

and how is it caused?

3. RELATED WORK
It has already been proven that the ambiguity, or lack thereof, in

a RE can be decided [3]. If this were not the case, the parsing of

AREs would also be undecidable.

The Berry-Sethi algorithm [2] has been derived in 1986 already,

and forms the basis for the parsing of the REs in the similarly

named BSP. If the paper is unclear about implementation

details on this part, the original can provide help understanding

the implementation.

The authors of the paper have previously published other papers

[6] that are also referred to in this one, indicating that this

research has been going on for longer. Similarly to the

previously mentioned paper, insights could be gained from

these previous papers in case the paper is unclear about

concepts they mentioned before.

The authors have also generated a set of REs [4] to test the

implementations on. Aside from this, the other sources referred

to in the paper can prove useful.

4. REPLICATION OF THE ALGORITHM

4.1 Methodology
We replicated the algorithm using the Kotlin [9] programming

language. Kotlin is a multi-platform language that can compile

to the JVM platform, among others that is inter-operable with

Java. However, Kotlin has been refined to be more concise and

safer, for example with its features to easily deal with

nullability. This should make it easier to implement the

algorithm and will hopefully help write it quicker by requiring

less debugging than with, for example, Java.

The intention is to replicate the system without looking at the

code and without contact with the authors, so purely from the

paper.

The expected answer to Research Question 1 is that it is

possible by following the description in the paper. If this turns

out to be more difficult, there is the option to look into the

articles referred to by the authors, like the original Berry-Sethi

algorithm as well as the authors’ earlier publications. A

repository has been created to house the replication [8].

4.2 Process
To start, the RE had to be parsed and the symbols had to be

marked. Since there is no particular way in which it needs to be

parsed, an ANTLR [1] grammar was used in combination with

a ParseTreeVisitor implementation to traverse the parse tree and

mark the symbols to make a MRE [5, Definition 1]. To make

the MRE from a RE, the parentheses, empty words and the

symbols had to be given a number marking, following an in-

order traversal of the Abstract Syntax Tree. Using ANTLR,

little work had to be done for parsing the RE itself, and a

grammar is arguably simpler to read and adapt than custom

code to parse the RE. Using the examples from the paper, the

parsing of the RE and marking could be tested.

From here, the set of Initial Acyclic Segments (IniAS) [5,

Definition 6] has to be constructed as well as the sets of Acyclic

Segments that follow each symbol ah (FolAS(ah)). The process

for constructing these sets is not explicitly described in the

paper, but similar concepts exist elsewhere and the descriptions

of the sets themselves together with the examples given in the

article was enough to derive an algorithm. For the IniAS, a

recursive algorithm can easily be defined using the properties of

the nodes and leaves of the MAST, for instance the property

that symbols and ε do not have children and therefore are the

contents of their IniAS. A more difficult case to implement is the

concatenation, since a child’s IniAS is only included if the

previous child is nullable, i.e. contains ε. For the FolAS of a

symbol, the given symbol first has to be located in the MAST,

and after that the set can be built up as the path through the

MAST is taken in reverse. In the computation of these sets, an

end-of-text symbol is appended to the MRE so that the

Follower sets comprise both the Digrams set and the Final set of

the MRE. These sets of the previous examples are also shown

in the paper, making it easy to run a quick test of the replication

with these. The IniAS and FolAS sets of the running example can

be found below.

Figure 2. IniAS and FolAS of the running example [5]

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

36thTwente Student Conference on IT, Febr. 4th, 2022, Enschede, The

Netherlands. Copyright 2022, University of Twente, Faculty of Electrical
Engineering, Mathematics and Computer Science.

3

Given IniAS and FolAS(ah) for each ah, the modified Berry-Sethi

algorithm [5, Algorithm 1] can be implemented from the

pseudocode. This yields the Deterministic Finite-state

Transducer (DFT) [5, Definition 7], from which a Directed

Acyclic Graph (DAG) can be made and from which the LSTs

can be derived. Since the pseudocode is more on the

mathematical side, data structures in the implementation do not

completely match those in the pseudocode but it would be

possible to make them match perfectly if one were to follow it

very closely. For example, in the pseudocode the contents of a

state are denoted by the function I(q), but the reassignment

combined with the requirement of the values after the

construction of the DFT makes it more suitable to implement

the contents of a state using a field. Also the DFT and LSTs for

the running examples were given, allowing for another quick

test. Below is a representation of the DFT for the

example.

Figure 3. DFT of the running example [5]

4.3 Conclusion and Further Work
It is possible to replicate the parser generator described,

following a successful attempt to do so. The source code can be

found on the referenced Github repository [8]. Although some

concepts were slightly more difficult to implement, the paper

explains them clearly enough to conclude if the code gives the

expected results.

With a little work cleaning up the current codebase and some

additional documentation, it will be easy to extend. A possible

extension of the implementation is the inclusion of more RE

operators like option and bounded repetition, and the simplicity

of the code should allow one to transcribe the code into another

programming language more easily, optimizing the code for

that environment as this implementation is not optimized for

performance.

5. ANALYSIS AND COMPARISON OF

THE IMPLEMENTATIONS

5.1 Methodology
By reading through the authors’ implementation, some insights

can be gained on the design choices and purposes of their

implementation. It also helps to find differences in code style

which can be compared against the replication.

After reading through the authors’ implementation, it was

attempted to link the replication with the other implementations

and compare their results. As the codebase includes code to

measure performance, this could be a useful metric even if this

replication is not optimized for performance, but more

important is the verification that the implementations produce

the same results.

5.2 Analysis of the authors’ implementation
The implementation by the authors has been written in one file,

several thousands of lines long including comments on their

deviations from the explained procedure. The implementation

looks to be optimized for performance, and some other ARE

parsing implementations have been included to compare

against. In the same file, other adaptations have also been

written to potentially increase performance even more. Names

of variables and constants are often shortened strongly, making

their purpose harder to derive from their name. However, after

looking at the definition and corresponding documentation their

purpose is made clear. Algorithms are often accompanied by

long comment blocks where the approach taken is explained

extensively.

5.3 Results and Further Work
Unfortunately, attempts to connect the replication to the

authors’ codebase have not been successful, but static analysis

has allowed to draw some early conclusions.

The length of the authors’ implementation is usually more than

in this replication. For example, the length of their buildBS()

method is just over 100 lines, while the similar

constructDFT() is only 50 lines, while the amount of blank

lines and comment lines is similar.

While the authors’ implementation, written in Java, uses mainly

imperative-style code, the replication uses more functional-style

code to shorten repetitive statements and use less mutation in

favour of mainly immutable variables. Because Kotlin

facilitates functional expressions better than Java currently, a

programmer can reap the benefits of more readable and more

robust code without paying a heavy price of performance. This

can also make it easier to rewrite this in a fully functional

language like Haskell without having to convert everything

from imperative style to functional style.

In the future, it would still be beneficial to attempt integrating

this replication to the codebase again, and verify the results of

the replication.

6. REFERENCES
[1] https://www.antlr.org. Retrieved January 2022.

[2] Berry, G., Sethi, R.: From regular expressions to

deterministic automata. Theor. Comput. Sci. 48(1), 117–

126 (1986).

[3] R. Book, S. Even, S. Greibach and G. Ott, "Ambiguity in

Graphs and Expressions," in IEEE Transactions on

Computers, vol. C-20, no. 2, pp. 149-153, Feb. 1971, doi:

10.1109/T-C.1971.223204.

[4] Borsotti, A., Breveglieri, L., Crespi Reghizzi, S., Morzenti,

A.: A benchmark production tool for regular expressions.

In: Hospodár, M., Jirásková, G. (eds.) CIAA, LNCS, vol.

11601, pp. 95–107. Springer (2019)

[5] Borsotti, A., Breveglieri, L., Crespi Reghizzi, S. et al. A

deterministic parsing algorithm for ambiguous regular

expressions. Acta Informatica 58, 195–229 (2021).

https://doi.org/10.1007/s00236-020-00366-7.

[6] Borsotti, A., Breveglieri, L., Crespi Reghizzi, S., Morzenti,

A.: From ambiguous regular expressions to deterministic

parsing automata. In: Drewes, F. (ed.) CIAA, LNCS, vol.

9223, pp. 35–48. Springer (2015)

[7] https://www.jetbrains.com/idea/features/#built-in-tools-

and-integrations. Retrieved November 2021.

https://www.antlr.org/
https://doi.org/10.1007/s00236-020-00366-7
https://www.jetbrains.com/idea/features/%23built-in-tools-and-integrations
https://www.jetbrains.com/idea/features/%23built-in-tools-and-integrations

4

[8] https://github.com/brokhiv/bsp-kotlin [9] https://kotlinlang.org. Retrieved November 2022

https://github.com/brokhiv/bsp-kotlin
https://kotlinlang.org/

