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Triangular patterns in groups of moving individuals

Wessel Heerink∗
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Abstract

In this paper we discuss an exercise in systemic therapy. In a group of people, each
person chooses two others to form an equilateral triangle with. Then, everyone starts
moving to reach this goal. A stable state is defined as a state in which no persons are
moving anymore. The research question is "Given initial conditions, does the system
converge to a stable state?". We find that systems with a specific structure are stable
and we find that out of sixty possible configurations with four people, fifty-five are
stable.

Keywords: ordinary differential equations, linear difference equations, eigenvalues

1 Introduction

This article will analyze an exercise in systemic therapy. Systemic therapy is a form of
psychotherapy in which people are analyzed based on their relationships and life choices,
instead of on an individual level [1]. In this exercise, a group of people is put in a room
and each person chooses two other people they consider as close friends. Once everybody
has chosen, everyone tries to form an equilateral triangle with their two friends. A stable
state is defined as a state in which no persons are moving anymore. We will call the entire
system stable if it converges to a stable state. We are interested in the patterns that
emerge, and specifically whether they are stable. The research question hence is "Given
initial conditions, does the system converge to a stable state?".

In section 2, the model will be described mathematically, after which in section 3 the
stability of the system is described. Then, in section 4, we investigate systems with a
certain structure and their stability properties. Following on, we investigate all possible
systems with four persons in section 5. Finally, we draw up our conclusions and make
recommendations for future research.

2 Model

The model consists of n persons, represented as points and denoted by Pi, i = 1, . . . , n.
Each person has an (x, y) coordinate in the plane. We will denote the column vector of
the coordinates of person i at time t by Pi,t. All persons then also have two friends, with
whom they want to form an equilateral triangle. These friends of person i are denoted by
Fi,1 and Fi,2 and their locations at time t by Fi,1,t and Fi,2,t, respectively. The column
vector of all locations at time t is also denoted by Pt. The column vector of the final
vertex of the triangle, also known as the goal, of person i at time t is denoted by Gi,t. The
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coordinates of the goal are calculated by rotating a vector between the other two vertices
of the triangle by 60 degrees or π

3 radians in either direction. This is easily done using
rotation matrices. Below, R+ describes a counterclockwise rotation of 60 degrees, while
R− describes a clockwise rotation of 60 degrees.

R+ =

[
1
2 −

√
3
2√

3
2

1
2

]
R− =

[
1
2

√
3
2

−
√
3
2

1
2

]

There are two possible goal locations. The actual goal will be the one which is closer to
the person at t = 0. In order to still be able to describe a general system, we will also use
R± and R∓:

R± =

[
1
2 ∓

√
3
2

±
√
3
2

1
2

]
R∓ =

[
1
2 ±

√
3
2

∓
√
3
2

1
2

]
.

We can now calculate the next goal location for each person:

Gi,t+1 = Fi,1,t +R±(Fi,2,t − Fi,1,t), (1)

Let Ik denote the identity matrix of dimension k. Since I2 −R± = R∓, equation 1 can be
rewritten as follows:

Gi,t+1 = R±Fi,2,t +R∓Fi,1,t.

Then the step that each person will take is calculated:

∆Pi,t+1 = h(Gi,t+1 − Pi,t). (2)

Here h determines the step size, and, as we will see soon, should be small if we want the
system to converge to a stable state.

After the steps have been calculated for each person, they all move at the same time:

Pi,t+1 = ∆Pi,t+1 + Pi,t

= h(Gi,t+1 − Pi,t) + Pi,t

= h(R±Fi,2,t +R∓Fi,1,t − Pi,t) + Pi,t (3)
= h(R±Fi,2,t +R∓Fi,1,t) + (1− h)Pi,t. (4)

Based on equation 3, we can write the complete model using matrices and the previously
introduced Pt:

Pt+1 = hA′Pt +Pt (5)

A′
i,j =


−I2 if i = j

R± if Fi,2 = Pj

R∓ if Fi,1 = Pj

O2 otherwise,

where I2 denotes the 2 by 2 identity matrix and O2 denotes the 2 by 2 zero matrix. Each
block-row of the matrix consists of one −I2, one R+ and one R−, while the remainder is
filled with O2-matrices. The −I2 is always on the diagonal (i = j), while the R+ and R−
are in the columns corresponding to the friends of Pi. Note that each A′

i,j as described
above is a 2 by 2 matrix, which makes A′ a 2n by 2n matrix.
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However, we can also write the complete model based on equation 4:

Pt+1 = APt (6)

Ai,j =


(1− h)I2 if i = j

hR± if Fi,2 = Pj

hR∓ if Fi,1 = Pj

O2 otherwise.

Once again, A is a 2n by 2n matrix. The block matrices are distributed the same as before
in equation 5.

Remark. With A and A′ defined as above, A = hA′ + I2n.

3 Stability

Now that we have set up the model we can consider its stability. Recall that the model is
stable if it converges to a stable state.

Theorem 1. Let the initial locations P0 and the friend relations be given. If the corre-
sponding matrix A is diagonalizable and if for all eigenvalues λ of A, we have |λ| ≤ 1, then
the system is stable.

Proof. So let the initial locations P0 and the friend relations be given. Furthermore, let
A be diagonalizable with eigenvalues |λ| ≤ 1. Then we can find matrices Q and D such
that D is a diagonal matrix and A = QDQ−1. This diagonal matrix D will then have the
eigenvalues of A on its diagonal. Given the initial locations P0 and the friendship relations,
we can rewrite equation 6 into

Pt = AtP0.

Then

Pt = AtP0

= QDtQ−1P0

t→∞−−−→ QO2nQ
−1P0

= 0⃗,

where O2n is the 2n by 2n zero matrix. Note that the third step follows from the diagonality
of D and the fact that |λ| ≤ 1 for all eigenvalues λ. Since the system converges to a stable
state, the system is stable.

We will now show that the eigenvalues of A and A′ are related. However, we will first
show that if A is diagonalizable, then A′ is as well.

Lemma 2. Let A and A′ be 2n by 2n matrices such that A = hA′ + I2n. If A is diagonal-
izable, then A′ is also diagonalizable.
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Proof. Let A be diagonalizable and let A = hA′ + I2n. Since A is diagonalizable, we have
A = QDQ−1, where D is a diagonal matrix. Then

hA′ = A− I2n

= QDQ−1 − I2n

= Q(D − I2n)Q
−1

⇒ A′ = Q

(
1

h
(D − I2n)

)
Q−1.

Since D is diagonal, so is D′ = 1
h(D − I2n). Hence A′ is diagonalizable with diagonal

matrix D′.

We can now proof the following theorem.

Theorem 3. With A and A′ defined as in lemma 2, their respective eigenvalues λj and λ′
j

can be expressed in terms of each other as follows:

λj = hλ′
j + 1 ∀j = 1, . . . , 2n.

Proof. Since the eigenvalues of a diagonalizable matrix are on the diagonal of the corre-
sponding diagonal matrix, we can use the relation between D and D′ to find the relation
between λj and λ′

j .

D′ =
1

h
(D − I2n) ⇐⇒

D = hD′ + I2n ⇐⇒
λj = hλ′

j + 1 ∀j = 1, . . . , 2n.

We already have a condition for stability based on the eigenvalues λ of A from theorem
1. However we would like a condition for stability based on the eigenvalues λ′ of A′, since
this matrix is easier to construct. Since λ′ ∈ C, we let λ′ = a + bi. Using theorem 3, we
deduce the following:

0 ≤ |λ| ≤ 1 ⇐⇒ (Theorem 1)

0 ≤ |λ|2 ≤ 1 ⇐⇒
0 ≤ |hλ′ + 1|2 ≤ 1 ⇐⇒ (Theorem 3)

0 ≤ |ah+ 1 + bhi|2 ≤ 1 ⇐⇒
0 ≤ (ah+ 1)2 − (bh)2 ≤ 1 ⇐⇒

0 ≤ (ah)2 + 2ah+ 1− (bh)2 ≤ 1 ⇐⇒
−1 ≤ (ah)2 + 2ah− (bh)2 ≤ 0 ⇐⇒

−1 ≤ h2|λ′|2 + 2ah ≤ 0 ⇐⇒

− 1

2h
≤ h|λ′|2 + a ≤ 0. (7)

Since h|λ′|2 ≥ 0, we need to have a ≤ 0 in order to satisfy the right side of equation 7.
This may not be sufficient, but by choosing h small enough equation 7 will be satisfied.

Hence, in order to have a stable system, we need all eigenvalues λ′ to have Re(λ′) ≤ 0
and h sufficiently small.

4



4 One by one

We can simplify this problem by starting with three people who have all chosen each other
and then letting the others join one by one. If we then let the others only choose people
who joined before them, we will always have a stable solution. In this and the next section,
we will assume that the step-size h is constant and close to zero, i.e., 0 < h ≪ 1.

Theorem 4. If we have a system consisting of at least three persons where the first three
persons all chose each other as friends and if we let everyone after the first three persons
only choose people who joined before them, then the system will be stable for all initial
locations.

Proof. Let An be the matrix such that Pt = AnPt−1 for the system with n persons. For
stability, we need the An to be diagonalizable and all the eigenvalues of An need to be less
than or equal to 1 in absolute value. We will show this by induction.

We will first have the base case, n = 3. The matrix A3 for this system is then as
follows:

A3 =



1− h 0 h
2 −h

√
3
2

h
2 h

√
3
2

0 1− h h
√
3
2

h
2 −h

√
3
2

h
2

h
2 h

√
3
2 1− h 0 h

2 −h
√
3
2

−h
√
3
2

h
2 0 1− h h

√
3
2

h
2

h
2 −h

√
3
2

h
2 h

√
3
2 1− h 0

h
√
3
2

h
2 −h

√
3
2

h
2 0 1− h


We can now calculate the characteristic polynomial

χ3(λ) = |A3 − λI6| = (λ− 1)4(λ− (1− 3h))2

and find the eigenvalues λ1 = 1 and λ2 = 1 − 3h. We can now also find the eigenvectors
corresponding to λ1,

√
3
1
0
0
0
2

 ,



1

−
√
3

0
0
2
0

 ,



−
√
3

1
0
2
0
0

 and



1√
3
2
0
0
0


and the eigenvectors corresponding to λ2,

−
√
3

−1√
3
1
0
2

 and



−1√
3

−1

−
√
3

2
0

 .

Since we have six linearly independent eigenvectors, the matrix A3 is diagonalizable. Fur-
thermore, since 0 < h ≪ 1, we have h < 1

3 , hence all |λ| ≤ 1.
Now for the induction step, we assume for n = k > 3 that the eigenvalues of Ak are

less than or equal to 1 and we want to show that this then also holds for the eigenvalues
of Ak+1.
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Therefore, let Ak be a matrix describing the change in location of a system of k people,
where everyone after the first three persons can only choose their friends from the group
of persons who are already there. By the induction step, Ak will be diagonalizable with
all eigenvalues less than or equal to 1. We can then describe Ak+1 as follows:

Ak+1 =

[
Ak O
B (1− h)I2

]
,

where O is a 2k by 2 zero-matrix and B is a 2 by 2k matrix consisting of one R+-matrix,
one R−-matrix and 2 by 2 zero matrices elsewhere, with the exact locations of the R
matrices determined by who the new person chooses as their friends. We will now find the
eigenvalues of Ak+1 using the characteristic polynomial

χk+1(λ) = |Ak+1 − λI2k+2|

=

∣∣∣∣Ak − λI2k O
B (1− h− λ)I2

∣∣∣∣
= |Ak − λI2k| · |(1− h− λ)I2|
= χk(λ) (λ− (1− h))2.

Here the third equality follows by expanding the determinant about the final two columns,
which have (2n − 1) zero elements and one non-zero element [2]. Hence we find that the
eigenvalues of Ak+1 are the eigenvalues of Ak and λ = 1− h. For the new eigenvalue λ we
can find the following eigenvectors:

0
...
0
1
0

 and


0
...
0
0
1


We can extend each of the eigenvectors of Ak with two entries to create eigenvectors
for Ak+1. Even if these entries are non-zero, the eigenvectors will still all be linearly
independent. Together with the 2 new eigenvectors, we now have 2k + 2 eigenvectors, so
Ak+1 is diagonalizable. Furthermore, since the eigenvalues of Ak are less than or equal to
1 by the induction hypothesis and |1 − h| ≤ 1, we have that all eigenvalues are less than
or equal to 1 and hence completing the proof by induction.

Since all the eigenvalues are less than or equal to 1 for this type of system with at least
three persons, we conclude that each of these systems must also be stable.

As we will see in more detail in section 5.1, we can switch the numbering of the persons
to create new matrices with the same behaviour. For example, take the matrices in equation
8. The matrix in equation 8a is in the one-by-one form, while the matrix in equation 8b is
not. Therefore, by theorem 4, the matrix in equation 8a obviously corresponds to a stable
system. However, we can swap the 2nd and 5th persons in equation 8a to get equation
8b. Since changing the numbering does not affect the behaviour of a system, the system
corresponding to the matrix in equation 8b must also be stable.
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H R+ R− O2 O2

R− H R+ O2 O2

R+ R− H O2 O2

R− R+ O2 H O2

R+ O2 O2 R− H

 (8a)


H O2 R+ O2 R−
R− H O2 R+ O2

R− O2 H O2 R+

R+ O2 O2 H R−
R+ O2 R− O2 H

 (8b)

5 The case of n = 4

In order to describe the behaviour of the system with four persons, we will find all possible
matrices that describe such a system. In general, the diagonal is fixed and each row has
one R+, one R− and one O2 matrix. This yields six possibilities per row. With four rows,
we then have 64 = 1296 possible matrices. However, we will first only look at the different
locations we could place the O2 matrices, and after that look at the locations of the R+

and R− matrices. For the O2 matrix, there are three options per row, so this yields 34 = 81
different matrices.

5.1 The locations of the O2 matrices

Of these 81 matrices, some will describe the same behaviour. This occurs since the ordering
of the people does not matter. For example, take the matrix in equation 9a. If we swap
the numbers of persons one and three, we get the matrix in equation 9b. We achieved this
by switching the elements at (1, 3) and (3, 1) and then swapping the remainder of the first
and third rows with each other and swapping the remainder of the first and third columns
with each other.


H O2 R R
O2 H R R
R R H O2

R R O2 H

 (9a)


H R R O2

R H O2 R
R O2 H R
O2 R R H

 (9b)

In order to find the number of distinct matrices, we will transform the matrix to a
simpler form. Since we currently only care about the placement of the O2 matrix, we can
describe each matrix as a vector with four entries. Each entry will correspond to a row,
and will denote in which column the O2 matrix of that row is located. For example, the
matrices in equation 9a and equation 9b can be represented as follows:

(2, 1, 4, 3) (10a) (4, 3, 2, 1) (10b)

Not all vectors with four entries correspond to a matrix. The first requirement is
that all entries are integers between one and four, such that they correspond to a column
of the matrix. The second requirement comes from the fact that the diagonal entries
of the matrix are already taken. Therefore, for a vector (b1, b2, b3, b4), we must have
bj ̸= j ∀j ∈ {1, 2, 3, 4}.

We are now also able to do the permuting of rows and columns in this form. For the
switching two rows, we switch the corresponding entries, while for switching two columns
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we change all the numbers corresponding to the one column to the number of the other
column and vice versa. For example, in equation 10a and equation 10b we swapped the
first with the third person. Starting with equation 10a, we first swap the first and third
entries to get (4, 1, 2, 3) (row swap) and then change all the 1’s for 3’s and vice versa to
get equation 10b (column swap). Note that (4, 1, 2, 3) is just an intermediary step and not
necessarily a permutation of equation 10a and equation 10b. We can then create all other
permutations from this, since every permutation can be written as the product of 2-cycles
[4].

We can now start with a matrix, calculate all of its permutations and see how many
there are. This will yield at most 4! = 24 (vector representations of) matrices. However,
due to symmetry, there may be fewer.

After doing this until we’ve seen all 81 matrices, we find that there are six groups of
matrices, which can not be permuted to each other. From each group one matrix is shown
in equation 11, together with its vector representation. All 81 vector representations can
be found in appendix A.


H R+ R− O2

R+ H O2 R−
R+ O2 H R−
O2 R+ R− H


(4, 3, 2, 1) (11a)


H R+ R− O2

O2 H R+ R−
R+ O2 H R−
R+ R− O2 H


(4, 1, 2, 3) (11b)


H O2 R+ R−
R+ H R− O2

R+ R− H O2

R+ O2 R− H


(2, 4, 4, 2) (11c)


H R+ O2 R−
R+ H R− O2

R+ R− H O2

R+ O2 R− H


(3, 4, 4, 2) (11d)


H R+ R− O2

R+ H R− O2

R+ R− H O2

R+ R− O2 H


(4, 4, 4, 3) (11e)


H R+ R− O2

R+ H R− O2

R+ O2 H R−
R+ R− O2 H


(4, 4, 2, 3) (11f)

5.2 Burnside’s Lemma

We can check that there are indeed six groups of matrices using Burnside’s Lemma. Before
that, we need the definition of the fix of a permutation ϕ. It is defined as follows: [3]

fix(ϕ) = {i ∈ S | ϕ(i) = i}

This means that fix(ϕ) is the set of all elements i ∈ S that are not altered by ϕ. Burnside’s
Lemma then states the following: [3]

Lemma 5 (Burnside’s Lemma). If G is a finite group of permutations on a set S, then
the number of orbits of elements of S under G is

1

|G|
∑
ϕ∈G

| fix(ϕ)|.

In our case, G is the set of all 24 permutations of numberings, while S is the set of all
81 (vertex representations of) matrices. We can split the permutations up into five types,
each of which fixes the same amount of elements in S. For each type we can then count the
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amount of elements it fixes, multiply them and then add them all up. For example, there
are 6 permutations that swap two persons. Consider the permutation ϕ1 which swaps the
first two persons. The matrices in fix(ϕ1) must then look like equation 12, since ϕ1(B) = B.
Each Cj , j = 1, . . . , 7, in equation 12 is either an R-matrix or an O2-matrix.

B =


H C1 C2 C3

C1 H C2 C3

C4 C4 H C5

C6 C6 C7 H

 (12)

Recall that each row must have one O2 and two R-matrices. We can choose one of C1,
C2 and C3 to be the O2, and then the other two must both be R. Hence there are three
choices for these three matrices. However, the remainder is forced. In order to satisfy the
condition of having two R-matrices in the third and fourth row, we need C4 = C6 = R,
which then forces C5 = C7 = O2. Since each permutation that swaps two persons fixes
matrices which have a similar structure to B, each permutation that swaps two persons
fixes three elements. This results of this example are collected in the second row of table
1, with the other rows calculated similarly. For each type of permutation an example is
given using cycle notation [5].

Table 1: Applying Burnside’s Lemma (not distinguishing between R+ and R−)

Type of permutation #Permutations #Elements fixed Multiplied
Identity [(1) (2) (3) (4)] 1 34 = 81 81
Swapping two persons [(1 2) (3) (4)] 6 3 18
Swapping two pairs of persons [(1 2) (3 4)] 3 32 = 9 27
Swapping three persons [(1 2 3) (4)] 8 0 0
Swapping all four persons [(1 2 3 4)] 6 3 18
Total |G| = 24

∑
ϕ∈G |fix(ϕ)| = 144

This indeed yields that the number of orbits is 144/24 = 6, when we don’t distinguish
between R+ and R−.

We can also apply Burnside’s Lemma when we do distinguish between R+ and R−.
The procedure is the same, just the numbers are different. The results are in table 2.

Table 2: Applying Burnside’s Lemma (distinguishing between R+ and R−)

Type of permutation #Permutations #Elements fixed Multiplied
Identity [(1) (2) (3) (4)] 1 64 = 1296 1296
Swapping two persons [(1 2) (3) (4)] 6 0 0
Swapping two pairs of persons [(1 2) (3 4)] 3 62 = 36 108
Swapping three persons [(1 2 3) (4)] 8 0 0
Swapping all four persons [(1 2 3 4)] 6 61 = 6 36
Total |G| = 24

∑
ϕ∈G |fix(ϕ)| = 1440

This gives that there are 1440/24 = 60 different orbits, when we distinguish between
R+ and R−. Note that in these sixty different orbits, the initial locations are taken into
account, since the order of the R+ and R− in each row has already been determined. In
order to find all 60 different orbits we can use a similar procedure as before. Choose any
matrix, calculate all 24 permutations and keep going until we’ve got all 1296 matrices.
Using a computer, this does not take much time. In order to write them down succinctly,
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we extend the vector representation with a plus or minus in each element. A plus denotes
that in the corresponding row the R+ matrix is to the left of R−, while a minus denotes that
the R− is to the left of the R+ in the corresponding row. For example, (4+, 3+, 2+, 1+)
would be the new representation of the matrix in equation 11a. In fact, each of the matrices
in equation 11 would get four pluses added to the existing representation. In appendix B
one matrix from each group can be found.

5.3 Calculating the eigenvalues

For each of the 60 cases we will now calculate the eigenvalues. To start, take for example
the matrix in equation 11a, but with a different arrangement of pluses and minuses:

H R− R+ O2

R+ H O2 R−
R− O2 H R+

O2 R+ R− H

 (13)

(4−, 3+, 2−, 1+)

Figure 1: A simulation of four persons standing in a square, as described by
equation 13

This matrix describes four people standing in a square, each having their neighbours
as a friend. They will all move backwards indefinitely, see figure 1. When we calculate
the eigenvalues for this matrix, we find 2 positive eigenvalues, 4 negative eigenvalues and 2
zero eigenvalues. This can also be seen in the final row of table 3. The first four columns of
tables 3 through 8 denote the plus/minus part of the extended vector representation. In the
headers of the following columns, the first sign (+, − or 0) in each of the columns denotes
the sign of the real part, while the second sign (± or 0) denotes the sign of the imaginary
part, where ± denotes complex conjugate pairs. The final column denotes whether the
system is stable. Since there is at least one eigenvalue with positive real part for the
matrix of equation 13 (in the final row of table 3), this system is not stable. There are of
course 24 = 16 possibilities of writing down the pluses and minuses in the first row to create
new systems, however the left-out combinations of pluses and minuses can be reached by
permutation from combinations that are present.
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Table 3: The number of occurrences of signs of the eigenvalues of the matrix in
equation 11a

Extended vector +0 +± −0 −± 00 0± Stable?
+ + + − 6 2 yes
+ + − − 2 4 2 yes
+ − − + 6 2 yes
− + − + 2 4 2 no

We see that out of these four configurations of the matrix in equation 11a, three are
stable and one is not.

Table 4: The number of occurrences of signs of the eigenvalues of the matrix in
equation 11b

Extended vector +0 +± −0 −± 00 0± Stable?
+ + − + 6 2 yes
+ − − + 6 2 yes
+ − − − 2 4 2 yes
− + − − 6 2 yes
− − + − 6 2 yes
− − − − 6 2 yes

We see that out of these six configurations of the matrix in equation 11b, all six are
stable.

Table 5: The number of occurrences of signs of the eigenvalues of the matrix in
equation 11c

Extended vector +0 +± −0 −± 00 0± Stable?
+ + + + 2 4 2 yes
+ + + − 6 2 yes
+ − + + 4 4 yes
+ − − + 6 2 yes
− + + + 2 4 2 yes
− + + − 6 2 yes
− + − − 4 4 yes
− − + − 4 4 yes
− − − + 6 2 yes
− − − − 2 4 2 yes

We see that out of these ten configurations of the matrix in equation 11c, all ten are
stable.

11



Table 6: The number of occurrences of signs of the eigenvalues of the matrix in
equation 11d

Extended vector +0 +± −0 −± 00 0± Stable?
+ + + + 2 4 2 yes
+ + + − 6 2 yes
+ + − + 2 4 2 yes
+ + − − 6 2 yes
+ − + + 2 4 2 no
+ − + − 2 4 2 yes
+ − − + 6 2 yes
+ − − − 2 4 2 yes
− + + + 2 4 2 yes
− + + − 6 2 yes
− + − + 2 4 2 yes
− + − − 2 4 2 no
− − + + 6 2 yes
− − + − 2 4 2 yes
− − − + 6 2 yes
− − − − 2 4 2 yes

We see that out of these sixteen configurations of the matrix in equation 11d, fourteen
are stable and two are not.

Table 7: The number of occurrences of signs of the eigenvalues of the matrix in
equation 11e

Extended vector +0 +± −0 −± 00 0± Stable?
+ + + − 2 4 2 yes
+ + − − 2 4 2 yes
+ − + − 4 4 yes
+ − − + 2 4 2 yes
+ − − − 2 4 2 yes
− + − − 4 4 yes
− − − + 2 4 2 yes
− − − − 2 4 2 yes

We see that out of these eight configurations of the matrix in equation 11e, all eight are
stable. Note that this was expected since this matrix is of the one-by-one form described
in section 4.
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Table 8: The number of occurrences of signs of the eigenvalues of the matrix in
equation 11f

Extended vector +0 +± −0 −± 00 0± Stable?
+ + + + 2 4 2 yes
+ + + − 2 4 2 yes
+ + − + 6 2 yes
+ + − − 6 2 yes
+ − + + 2 4 2 no
+ − + − 6 2 yes
+ − − + 6 2 yes
+ − − − 2 4 2 yes
− + + + 2 4 2 yes
− + + − 6 2 yes
− + − + 6 2 yes
− + − − 2 4 2 no
− − + + 6 2 yes
− − + − 6 2 yes
− − − + 2 4 2 yes
− − − − 2 4 2 yes

We see that out of these sixteen configurations of the matrix in equation 11f, fourteen
are stable and two are not.

This means that in total, out of the sixty distinct configurations with n = 4, there are
fifty-five stable configurations and five non-stable configurations.

6 Conclusion

We have found that matrices with the one-by-one structure always correspond to stable
systems. We have also found that for systems with four persons, there are sixty possible
systems and that fifty-five of them are stable, while the other five are not.

6.1 Recommendations

Further research into this topic could look into the step size h. We could make it a function
of time and then see if there is a specific function that would make all systems stable.

Another thing to be researched further is the proof for the one-by-one case, since the
preconditions may be stricter than what is necessary for the proof. They can likely be
relaxed to starting with any system that is stable instead of starting with the system of
three people. If this is indeed the case then this may lead to more systems easily proven
to be stable.

Finally, using a vector representation that denotes per row in which column the R+ and
R− are can easily be extended to systems with more than four people, since the locations of
the O2 matrices then automatically follow, regardless of how many people are in the system.
However, in order to get the number of stable systems you would also need to rewrite the
program or write a new program used for calculating the different groups of matrices, in
order for that program to understand the new representation. The total number of groups
can then be checked using Burnside’s Lemma, as was done in this article.
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A All vector representations of n = 4 by type

A.1 Equation 11a – (4, 3, 2, 1)

(4, 3, 2, 1) (2, 1, 4, 3) (3, 4, 1, 2)

A.2 Equation 11b – (4, 1, 2, 3)

(4, 1, 2, 3) (2, 3, 4, 1) (2, 4, 1, 3) (4, 3, 1, 2) (3, 4, 2, 1) (3, 1, 4, 2)

A.3 Equation 11c – (2, 4, 4, 2)

(2, 4, 4, 2) (3, 4, 4, 3) (4, 4, 1, 1) (4, 3, 4, 3) (4, 1, 4, 1) (3, 1, 1, 3)
(2, 1, 1, 2) (2, 1, 2, 1) (2, 3, 2, 3) (4, 4, 2, 2) (3, 3, 2, 2) (3, 3, 1, 1)

A.4 Equation 11d – (3, 4, 4, 2)

(3, 4, 4, 2) (3, 4, 2, 2) (2, 4, 4, 3) (4, 1, 2, 1) (2, 1, 4, 1) (2, 3, 4, 3)
(3, 4, 1, 3) (4, 3, 4, 1) (2, 1, 2, 3) (3, 3, 2, 1) (3, 3, 1, 2) (4, 1, 4, 3)
(3, 1, 1, 2) (4, 3, 2, 3) (2, 1, 1, 3) (2, 3, 2, 1) (2, 4, 1, 2) (4, 3, 1, 1)
(3, 1, 4, 3) (2, 1, 4, 2) (4, 4, 2, 1) (3, 4, 1, 1) (4, 3, 2, 2) (4, 4, 1, 2)

A.5 Equation 11e – (4, 4, 4, 3)

(4, 4, 4, 3) (2, 1, 2, 2) (3, 1, 1, 1) (2, 4, 2, 2) (3, 3, 4, 3) (4, 1, 1, 1)
(4, 4, 4, 2) (3, 3, 1, 3) (3, 3, 2, 3) (2, 1, 1, 1) (2, 3, 2, 2) (4, 4, 4, 1)

A.6 Equation 11f – (4, 4, 2, 3)

(4, 4, 2, 3) (4, 1, 1, 2) (2, 3, 1, 1) (3, 3, 4, 2) (3, 1, 2, 1) (3, 1, 4, 1)
(2, 3, 4, 2) (2, 3, 1, 3) (3, 4, 4, 1) (3, 1, 2, 3) (3, 3, 4, 1) (4, 4, 1, 3)
(2, 4, 2, 1) (2, 4, 4, 1) (4, 1, 1, 3) (2, 3, 1, 2) (3, 4, 2, 3) (4, 1, 2, 2)
(4, 1, 4, 2) (3, 1, 2, 2) (4, 3, 4, 2) (2, 4, 2, 3) (2, 4, 1, 1) (4, 3, 1, 3)
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B All distinct extended vector representations of n = 4

B.1 Equation 11a – (4, 3, 2, 1)

(4+, 3+, 2+, 1−) (4+, 3+, 2−, 1−) (4+, 3−, 2−, 1+) (4−, 3+, 2−, 1+)

B.2 Equation 11b – (4, 1, 2, 3)

(4+, 1+, 2−, 3+) (4+, 1−, 2−, 3+) (4+, 1−, 2−, 3−) (4−, 1+, 2−, 3−)
(4−, 1−, 2+, 3−) (4−, 1−, 2−, 3−)

B.3 Equation 11c – (2, 4, 4, 2)

(2+, 4+, 4+, 2+) (2+, 4+, 4+, 2−) (2+, 4−, 4+, 2+) (2+, 4−, 4−, 2+)
(2−, 4+, 4+, 2+) (2−, 4+, 4+, 2−) (2−, 4+, 4−, 2−) (2−, 4−, 4+, 2−)

(2−, 4−, 4−, 2+) (2−, 4−, 4−, 2−)

B.4 Equation 11d – (3, 4, 4, 2)

(3+, 4+, 4+, 2+) (3+, 4+, 4+, 2−) (3+, 4+, 4−, 2+) (3+, 4+, 4−, 2−)
(3+, 4−, 4+, 2+) (3+, 4−, 4+, 2−) (3+, 4−, 4−, 2+) (3+, 4−, 4−, 2−)
(3−, 4+, 4+, 2+) (3−, 4+, 4+, 2−) (3−, 4+, 4−, 2+) (3−, 4+, 4−, 2−)
(3−, 4−, 4+, 2+) (3−, 4−, 4+, 2−) (3−, 4−, 4−, 2+) (3−, 4−, 4−, 2−)

B.5 Equation 11e – (4, 4, 4, 3)

(4+, 4+, 4+, 3−) (4+, 4+, 4−, 3−) (4+, 4−, 4+, 3−) (4+, 4−, 4−, 3+)
(4+, 4−, 4−, 3−) (4−, 4+, 4−, 3−) (4−, 4−, 4−, 3+) (4−, 4−, 4−, 3−)

B.6 Equation 11f – (4, 4, 2, 3)

(4+, 4+, 2+, 3+) (4+, 4+, 2+, 3−) (4+, 4+, 2−, 3+) (4+, 4+, 2−, 3−)
(4+, 4−, 2+, 3+) (4+, 4−, 2+, 3−) (4+, 4−, 2−, 3+) (4+, 4−, 2−, 3−)
(4−, 4+, 2+, 3+) (4−, 4+, 2+, 3−) (4−, 4+, 2−, 3+) (4−, 4+, 2−, 3−)
(4−, 4−, 2+, 3+) (4−, 4−, 2+, 3−) (4−, 4−, 2−, 3+) (4−, 4−, 2−, 3−)
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