
BSc Thesis Applied Mathematics

Structure of and algorithms for
binary staircase matrices

Lisa van Dissel

Supervisor: M. Walter

August, 2022

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Preface

I would like to thank my supervisor Dr. Matthias Walter for providing guidance and
feedback.

Structure of and algorithms for binary staircase matrices

Lisa v. Dissel∗

August, 2022

Abstract

Staircase structures play an important role in many optimization problems involv-
ing linear programs. It has become apparent that systems with this characteristic
structure can be solved in linear time, as opposed to standard linear programs which
are usually less efficient. Recognizing a staircase structure can therefore be of great
importance. This paper focuses specifically on binary matrices containing this char-
acteristic structure. We say that a binary matrix is in staircase form if every 2-by-2
submatrix with 1s in the off-diagonal entries is the all-1s submatrix and the 1s in every
row and column are consecutive. A binary matrix is staircase if its rows and columns
can be permuted such that the resulting matrix is in staircase form. This paper in-
vestigates the structure of these staircase matrices from a graph-theoretic viewpoint
and describes an improved linear-time algorithm that computes the staircase form of
a given matrix or returns that the given matrix is not staircase.

1 Introduction

Staircase structures play an important role in many optimization problems involving linear
programs. There has been a lot of research on solving staircase matrices and systems with
staircase structure (see [1, 3, 4]). From this research, it has become apparent that systems
with this characteristic structure can be solved in linear time, as opposed to standard linear
programs which are usually less efficient. Exploiting the underlying structure of a given
system and recognizing a staircase pattern can therefore be of great importance in solving
these optimization problems more efficiently. The fastest algorithm known to detect a
staircase structure and to compute its staircase form runs in polynomial time [2]. The goal
of this thesis is to further investigate the structure of staircase matrices and to find a more
efficient algorithm that detects staircase matrices.

Section 2 introduces the general notations and definitions that are used throughout
this paper. We then describe two linear-time algorithms in Section 3. The first one is a
known algorithm recognizes whether a given matrix is in staircase form [2]. The second
one is an improved algorithm that decides whether a given matrix is staircase and, in
the affirmative case, computes its staircase form. In Section 4, the minimal non-staircase
matrices are determined. Finally, in Section 5, the conclusions are given and suggestions
for further research are made.

∗Email:l.vandissel@student.utwente.nl

1

2 Notations and definitions

In this paper, the problem of finding a staircase matrix will be tackled from a graph-
theoretic viewpoint. Instead of the binary matrix M one can analyze the bipartite graph
G(M) = (V1 ∪V2, E) that has a node for each row and for each column, where a row node
r is connected to a column node c by an edge if and only if Mr,c = 1. For clarity, let us
give an example.

Example 1. Let M be the binary matrix defined as

M =

1 1 0 0
1 0 1 0
0 1 1 1

 .

Then the graph G(M) = (V1 ∪ V2, E) in Figure 1 is its corresponding bipartite graph.

3

2

1

4′

3′

2′

1′

Figure 1: Bipartite graph G(M) with vertex set V1 ∪V2 and edge set E such that
each edge connects a vertex in V1 to a vertex in V2. We have that V1 = {1, 2, 3}
is the set of nodes corresponding to the rows of M and V2 = {1′, 2′, 3′, 4′} is the
set of nodes corresponding to the columns of M . The edge set E resembles all the
nonzero entries in the matrix M .

We denote the neighbourhood of a vertex u ∈ V of a graph G = (V,E) by NG(u) =
{v ∈ V | {u, v} ∈ E}. If it is clear which graph is referred to, we may simply write N(u).
A graph G is connected if and only if any vertex can be reached from any other vertex by a
path in the graph. We say that a matrix M is connected if and only if G(M) is connected.
Furthermore, we say that the vertices u, v ∈ V of a graph G = (V,E) are identical if
NG(u) = NG(v) for u ̸= v. Note that, if a binary matrix M contains no identical rows or
columns, then G(M) does not have any identical vertices.

The main focus of our research is the staircase structure of a matrix and its bipartite
graph. It is defined as follows.

Definition 2.1 (Staircase form). We say that a binary matrix M is in staircase form
(SCF) if the following two conditions hold:
Condition 1: 1s in every row and column are consecutive:

(
1 ⋆ 1

)
⇒

(
1 1 1

)
∧

1
⋆
1

 ⇒

1
1
1

 . (SCF1)

2

Condition 2: Every 2-by-2 submatrix with 1s in the off-diagonal entries is the all-1s sub-
matrix:(

⋆ 1
1 ⋆

)
⇒

(
1 1
1 1

)
. (SCF2)

Similarly, we say that a bipartite graph is in staircase form if the two conditions illustrated
in Figure 2 hold.

u

v1

v2

v3

(a) SCF1

u1

u2

v1

v2

(b) SCF2

Figure 2: Illustration of the staircase-form conditions in a bipartite graph. If the
solid edges are contained in the graph, then the dashed ones must be contained as
well. For SCF1, the symmetric version also applies.

Example 2. The (7× 6)-matrix M below is in staircase form.

M =

1 1 1 0 0 0
1 1 1 1 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1

.

Definition 2.2 (SC). A binary matrix M is staircase (SC) if its rows and columns can
be permuted such that the resulting matrix is in staircase form. Similarly, we say that a
bipartite graph G is staircase if the ordering of the nodes can be permuted such that the
resulting graph is in staircase form.

We say that a matrix M is minimally non-staircase if M is not staircase, is connected
and has no identical rows or columns, but removing one row or column would make it
staircase. Similarly, a bipartite graph G = (V1 ∪ V2, E) is minimally non-staircase if G
is connected, but not staircase and has no identical nodes, but removing one node would
make it staircase.

The following definition introduces a matrix permutation that will be important when
analyzing the structure of a staircase-form matrix.

Definition 2.3 (Reverse matrix). Let M be an m×n matrix with ordered rows (u1, u2, . . . um)
and ordered columns (v1, v2, . . . , vn). The reverse of the matrix M is defined as the matrix
M∗ which has ordered rows (um, um−1, . . . , u1) and ordered columns (vn, vn−1, . . . v1). It
can be computed as follows:

M∗ = JmMJn,

3

where Jk is the k × k permutation matrix with 1s along the counter-diagonal and zeros
everywhere else.

Remark. The reverse of a staircase-form matrix is also in staircase form.

3 Staircase-form matrices and graphs

In this section, we present two linear-time algorithms that decide whether a matrix is
staircase and if it is in staircase form.

3.1 Recognizing staircase-form graphs

We first prove that it is possible in linear time to verify whether a given matrix and its
corresponding bipartite graph are in staircase form. The recognition of staircase-form
matrices was known before [2], but we state it here again because the result is necessary
for the computation algorithm in Section 3.2. Let us first introduce the following lemma.

Lemma 3.1 (Recognition Algorithm; see [2]). Let M be an m × n matrix with ordered
rows (u1, u2, . . . um) and ordered columns (v1, v2, . . . , vn). We define λ(x) as the number
of zeros in row x before the first 1 and ϕ(x) is the number of zeros in row x after the
last 1. In graph notation, this would be λ(x) = |{vj ∈ V2 | j < i ∀vi ∈ N(x)}| and
ϕ(x) = |{vj ∈ V2 | j > i ∀vi ∈ N(x)}|. Then the following algorithm decides whether
G(M) (and hence M) is in staircase form.

Algorithm 1 SCF recognition on a bipartite graph
Input: A connected bipartite graph G(M) = (V1 ∪ V2, E) where V1 = (u1, u2, . . . , um)

and V2 = (v1, v2, . . . , vn).
Output: Returns whether G(M) is in staircase form

1: if n− ϕ(u1)− λ(u1) > |N(u1)| then
2: return "G(M) violates (SCF1)"
3: end if
4: for i ∈ {2, . . . ,m} do
5: if λ(ui) < λ(ui−1) or ϕ(ui) > ϕ(ui−1) then
6: return "G(M) violates (SCF2)"
7: end if
8: if n− ϕ(ui)− λ(ui) > |N(ui)| then
9: return "G(M) violates (SCF1)"

10: end if
11: end for
12: return "G(M) is SCF"

Remark. For an m× n SCF-matrix, we have that |N(u)| = |n| − λ(u)− ϕ(u) for all rows
u.

Proof. In order to prove that the algorithm is correct, let us distinguish the following cases
for G(M):

Case 1: G(M) is in staircase form.
Let u ∈ V1 and suppose first that there exists a vertex u ∈ V1 such that n− λ(u)−ϕ(u) >

4

|N(u)|. Let k = λ(u), ℓ = ϕ(u). Then by definition of λ(u) and ϕ(u), the first vertex in
the neighbourhood of u is vk+1 and the last vertex in the neighbourhood of u is vn−ℓ. If
n− k− ℓ > |N(u)|, then there exists a j ∈ {k+2, . . . , n− ℓ− 1} such that {u, vj} /∈ E. As
shown in the subgraph in Figure 3a, this violates (SCF1). Hence, n−λ(u)−ϕ(u) ≤ |N(u)|
must hold for all u ∈ V1 and so the checks in line 1 and 8 do not fail.

Now, suppose that there exists some i ∈ {2, ...,m} such that k = λ(ui) < j = λ(ui−1).
Then vk+1 < vj+1. Moreover, we have that {ui, vk+1}, {ui−1, vj+1} ∈ E and {ui−1, vk} /∈ E
by definition of λ(ui−1). However, as can be seen in the subgraph in Figure 3b, this is a
violation of (SCF2). Therefore, λ(ui) ≥ λ(ui−1) must hold for all i ∈ {2, ...,m}. Similarly,
we can conclude that ϕ(ui) ≥ ϕ(ui−1) holds for all i ∈ {2, ...,m}. Hence, Algorithm 1
works correctly if G(M) is in staircase form.

u

vk+1

vj

vn−ℓ

(a) Violation of (SCF1)

ui

ui−1

vj+1

vk+1

(b) Violation of (SCF2)

Figure 3: SCF-violations in case 1

Case 2: G(M) violates (SCF2).
In this case, we can find i, k ∈ {1, 2, ...,m} and j, ℓ ∈ {1, 2, ..., n} with i < k and j < ℓ
such that vertices ui, uk ∈ V1 and vj , vℓ ∈ V2 and edges {ui, vℓ}, {uk, vj} ∈ E such
that either {ui, vj} /∈ E and/or {uk, vℓ} /∈ E holds. Without loss of generality, let us
assume that {uk, vℓ} /∈ E. If there exists a vertex vs ∈ N(uk) such that s > ℓ, then G
violates (SCF1) as can be seen in Figure 4. Therefore, let us assume that vs /∈ N(uk)
for all s ∈ {ℓ, ℓ + 1, . . . , n}. Hence, we have that n − ℓ < ϕ(uk) ≤ n − j. However, this
immediately yields that ϕ(ui) ≤ n− ℓ < ϕ(uk) ≤ n− j, i.e., ϕ(ui) < ϕ(uk), and hence the
check in line 5 fails. Similarly, we find that the check in line 5 fails if {ui, vj} /∈ E holds.

uk

ui

vs

vℓ

vj

Figure 4: Violation of (SCF1) in case 2

Case 3: G(M) violates (SCF1).
Suppose first that we can find vertices u ∈ V1 and vi, vj , vs ∈ V2 such that (SCF1) is
violated. Let λ(u) = k and ϕ(u) = ℓ. Then, by definition of the neighbourhood, we must
have that |N(u)| ≤ n− ℓ− k− 1, so |N(u)| < n− ℓ− k, and hence the check in either line
1 (if u = u1) or in line 8 will fail.

Suppose now that we can find vertices ui, uj , us ∈ V1 and v ∈ V2 such that (SCF1) is
violated. Since G(M) is connected, we have that N(uj) ̸= ∅. Hence, there exists some

5

w ∈ V2 such that {uj , w} ∈ E. If w < v, then the vertices ui, uj , w, v also violate
(SCF2), as can be seen in Figure 5a. Otherwise, the vertices uj , us, v, w violate (SCF2),
as can be seen in Figure 5b. In both cases, we can apply the same arguments used in case 2.

ui

uj

us

w

v

(a) w < v

ui

uj

us

v

w

(b) v < w

Figure 5: Violation of (SCF2) in case 3

In all possible cases, Algorithm 1 correctly recognizes whether a graph is in staircase-
form. This concludes the proof.

Theorem 3.2. It can be checked in time O(|V1|+ |V2|+ |E|) whether a matrix M and its
bipartite graph G(M) = ((V1 ∪ V2), E) is in staircase form.

Proof. It is easy to see that the algorithm in Lemma 3.1 has a running time of O(|V1| +
|V2|+ |E|), since the computation of λ(x), ϕ(x) and N(x) can be done in this amount of
time. This concludes our proof.

3.2 Computing staircase-form matrices

We next introduce an algorithm that computes the staircase form of a given bipartite
graph if possible, and otherwise states that the graph is not staircase. This is equivalent to
finding row and column permutations to turn a matrix into staircase form. This algorithm
is an improvement of the computation algorithm in [2].

Before we state the algorithm, let us introduce important notation. We denote by dri
the length of the shortest path from node r to node i. We denote by Br

i the set of nodes in
the neighborhood of i that have distance dri −1, in notation: Br

i = {u ∈ N(i) | dru = dri −1}.
Similarly, let us define Ar

i to be the set of nodes in the neighborhood of i that have distance
dri + 1, i.e. Ar

i = {u ∈ N(i) | dru = dri + 1}. Algorithm 2 then solves our problem.

6

Algorithm 2 Finding a staircase ordering of a bipartite graph
Input: A connected bipartite graph G = (V1 ∪ V2, E)
Output: Lists L1, L2 of the vertices in V1, V2 representing a staircase ordering on G

or the result that no staircase ordering exists

1: Let r ∈ V1

2: Apply BFS to G starting in r and let Φr
v = (drv,−|Br

v |, |Ar
v|) ∀v ∈ V1 ∪ V2.

3: Let s ∈ V1 ∪ V2 such that Φr
s is lexicographically largest ∀v: Φr

s ≥lex Φr
v ∀v.

4: Apply BFS to G starting in s and let Φs
v = (dsv,−|Bs

v|, |As
v|) ∀v ∈ V1 ∪ V2.

5: Sort vertices v ∈ V1 ∪ V2 in lexicographically increasing order by their Φs
v.

6: L1 = [s], L2 = []
7: for v ∈ V1 ∪ V2 ordered as above do
8: if dsv even then
9: Append v to the list L1

10: else
11: Append v to the list L2

12: end if
13: end for
14: if isSCF(L1 ∪ L2, E) then
15: if s ∈ V1 then
16: return L1, L2

17: else
18: return L2, L1

19: end if
20: else
21: return “G is not SC”
22: end if

In order to find a candidate for the uppermost vertex in the SCF-graph, the algorithm
first applies the Breadth-First Search method to an arbitrary vertex r ∈ V1. Then, in line
3, the vertex with the lexicographically largest sequence Φr

v is chosen as the root. Next,
line 5 constructs an ordering of the nodes. Finally, it is tested by Algorithm 1 whether the
bipartite graph with the newly constructed ordering is in staircase form.

In order to prove the correctness of the algorithm, we will introduce the following
lemmas.

Lemma 3.3. Let M be an m×n SCF-matrix with corresponding bipartite graph G(M) =
((V1 ∪ V2), E) and let r ∈ V1. Then for rows r < j < i exactly one of the following holds:

1. drj < dri

2. drj = dri and Br
j ⊃ Br

i

3. drj = dri and Br
j = Br

i and Ar
j ⊆ Ar

i

Proof. We prove this lemma by contradiction. Let r, j, i ∈ V1 with r < j < i.

Firstly, suppose that drj > dri . The proof of this case is based on the proof of Lemma
3.2 in [2]. Without loss of generality, let us assume that among all matrices M and rows
r < j < i for which drj > dri , we choose one with (drj + dri) minimum. Let Prj = (r, . . . , j)

7

and Pri = (r, . . . , i′, x, i) be the shortest paths from r to j and from r to i, respectively.
Note that, since r, i ∈ V1 and the graph is bipartite, dri is of even length greater than or
equal to 2. We distinguish two cases:

Case i′ < j:
If we have j ∈ N(x), then Prj is no longer the shortest path since we can construct a
shorter one by simply choosing j instead of i as the last vertex in Pri = (r, . . . , i′, x, i).
Hence, j /∈ N(x) must hold. However, Figure 6 illustrates that this violates (SCF1).

i′

j

i

x

Figure 6: Contradiction for i′ < j

Case j < i′:
In this case, we have r < j < i′ < i and drj > dri′ = dri − 2. Therefore, we have that
dri′ + drj < dri + drj . This contradicts the minimality of dri + drj .

Both cases lead to a contradiction, hence either statement 1 holds or both values must be
equal.

Next, suppose that drj = dri and Br
j ̸⊃ Br

i . We define N r
k to be the set of nodes

with shortest path (starting in r) of length k, i.e., N r
k = {v ∈ V1 ∪ V2 | drv = k}. Let

drj = dri = k, so that j, i ∈ N r
k . Hence, we have |N r

k | ≥ 2. This can only happen if k ≥ 1.
Then |N r

k−1| ≥ 1. Since Br
j ̸⊃ Br

i , there exists a node x ∈ Br
i \Br

j , i.e. {x, i} ∈ E but
{x, j} /∈ E. We have drx = dri − 1 = k − 1, and so x ∈ N r

k−1. Since drj = dri , there must
be at least one other node v ∈ N r

k−1 such that {v, j} ∈ E. Hence |N r
k−1| ≥ 2. This can

only happen if k − 1 ≥ 1, so k ≥ 2. Thus, we have that |N r
k−2| ≥ 1. Now, let w ∈ N r

k−2

such that {w, x} ∈ E. As illustrated in Figure 7a, the subgraph N r
k−2∪N r

k−1∪N r
k violates

(SCF1). Hence, either the second case in the lemma must be true or drj = dri and Br
j = Br

i .

Finally, suppose that drj = dri and Br
j = Br

i and Ar
j ⊈ Ar

i . Again, let drj = dri = k,
so that j, i ∈ N r

k and |N r
k | ≥ 2. This can only happen if k ≥ 1. Then |N r

k−1| ≥ 1. Let
w ∈ N r

k−1 such that {w, j} ∈ E and w ∈ Br
j . Since we have that Br

j = Br
i , we also have

w ∈ Br
i , so {w, i} ∈ E. Since Ar

j ⊈ Ar
i , there exists a node x ∈ Ar

j , but x /∈ Ar
i i.e.,

{j, x} ∈ E but {i, x} /∈ E. Then drx = drj + 1 = k + 1, so we have that x ∈ N r
k+1 and

|N r
k+1| ≥ 1. The subgraph N r

k−1 ∪N r
k ∪N r

k+1 in Figure 7b violates (SCF2). Hence we can
conclude that x ∈ Ar

i for all x ∈ Ar
j , thus Ar

j ⊆ Ar
i . This is a contradiction.

w

j

i

x

(a) Contradiction for Br
j ̸⊃ Br

i

wj

i x

(b) Contradiction for Br
j = Br

i , Ar
j ̸⊂ Ar

i

Figure 7: Subcases for drj = dri

8

We obtain a contradiction in all cases which concludes the proof.

Remark. N(i) = Br
i ∪Ar

i .

Remark. If G(M) is in staircase form and we have that dri = drj , B
r
i = Br

j and Ar
i = Ar

j ,
then rows i and j are identical.

Lemma 3.4. Let M be an m×n SCF-matrix with corresponding bipartite graph G(M) =
((V1∪V2), E) and let r ∈ V1. The sequence (dri ,−|Br

i |, |Ar
i |) is lexicographically decreasing

for rows i = 1, . . . , r and increasing for rows i = r, . . . ,m.

Proof. We prove this lemma by only considering the case i ∈ {r, . . . ,m}. The proof for
i ∈ {1, . . . , r} will be similar, considering the fact that the reverse of an SCF-matrix is also
in staircase form. From Lemma 3.3 we know that, for rows r < j < i, either drj < dri or
(drj = dri and Br

j ⊃ Br
i) or (drj = dri and Br

j = Br
i and Ar

j ⊂ Ar
i). Hence, it can be easily

seen that either dri > drj or (dri = drj and |Br
i | < |Br

j |) or (dri = drj and |Br
i | = |Br

j | and
|Ar

i | > |Ar
j |). Hence, we conclude that the sequence (dri ,−|Br

i |, |Ar
i |) is lexicographically

increasing for rows i ∈ {r, . . . ,m}.

Theorem 3.5. Algorithm 2 is correct.

Proof. It is clear that the algorithm will terminate in all cases. If G is not staircase, then in
line 14, Algorithm 1 will show that the constructed ordering of the nodes fails. Otherwise,
we can use Lemmas 3.3 and 3.4 to prove that constructed ordering of the nodes is correct.
From Lemma 3.4, we can see that for any node r in an SCF-graph, the vertex v with
lexicographically largest Φr

v must be the first or last row/column. Hence, the choice of the
uppermost vertex in line 3 is correct. It can then be easily seen by Lemmas 3.3 and 3.4
that the constructed orderings of the nodes is correct.

Theorem 3.6. Algorithm 2 runs in O(|V1|+ |V2|+ |E|) time.

Proof. The algorithm starts with Breadth-first search where it sorts the vertices in order
of increasing distance. This has time-complexity O(|V1|+ |V2|+ |E|). Next, the algorithm
sorts each set of nodes with equal distance by increasing −|Bs

v|. This can be done by
counting sort. The time complexity of the counting sort algorithm is O(n + k), where n
is the number of elements and k is the range of the elements. In our case, each set of
nodes with equal distance dsv = i has |Ni| elements and the range of these elements is
maxv∈Ni |Bs

v|. Hence, the total time complexity for this step is bounded by the estimate

|E|∑
i=1

(|Ni|+max
v∈Ni

|Bs
v|) ≤

|E|∑
i=1

|Ni|+
|E|∑
i=1

max
v∈Ni

|Bs
v| ≤ |V1|+ |V2|+ |E|.

After that, the algorithm sorts each set of nodes with equal distance and equal |Bs
v| by

increasing |As
v|. This can be done in the same way via counting sort and the time complexity

for this step is bounded by the estimate

|E|∑
i=1

(|Ni|+max
v∈Ni

|As
v|) ≤

|E|∑
i=1

|Ni|+
|E|∑
i=1

max
v∈Ni

|As
v| ≤ |V1|+ |V2|+ |E|.

Finally, the new ordering is checked. As stated in Theorem 3.2, this can be done in O(|V1|+
|V2|+|E|) time. Combining all steps yields a total time complexity of O(4(|V1|+|V2|+E|)).
Since we only look at the most crucial term, we can write this as O(|V1|+ |V2|+ |E|). This
completes the proof.

9

4 Minimal non-staircase matrices

In this section, we consider the uniqueness of staircase-form matrices and use this result
to determine the minimal non-staircase matrices.

4.1 Uniqueness of staircase-form matrices

In order to analyse the structure of non-staircase matrices, we first state an important
theorem about the staircase form of a staircase matrix. This result and its proof are based
on the uniqueness theorem in [2].

Theorem 4.1 (Uniqueness; see [2]). Let M be a binary m×n matrix that is connected and
has no identical rows or columns. Then the staircase form of M is unique up to reversal.

Proof. We prove this theorem by contradiction. Suppose that there exist two different
staircase forms M ′ and M ′′ of the matrix M such that M ′ and M ′′ are not each others
reverses, i.e., (M ′)∗ ̸= M ′′ and (M ′′)∗ ̸= M ′. Let us look at the bipartite graphs G(M ′)
and G(M ′′). Since M is connected, G(M) must be connected as well. Then we have that
G(M ′) and G(M ′′) are also connected because turning a graph into staircase form is just
a reordering of the nodes and no edges are removed nor added. Since we do not have any
identical rows or columns, we have that N(u) ̸= N(v) for all vertices u, v. Because of these
two properties, we can find vertices u, v ∈ V1 and x, y ∈ V2 such that {u, x}, {v, y}, {v, x} ∈
E and {u, y} /∈ E, see Figure 8.

u

v

x

y

Figure 8: Subgraph H = ((u, v) ∪ (x, y), E) ⊆ G(M).

The subgraph H in Figure 8 shows the ordering u < v and x < y. If we would reverse
one of these orderings, then the subgraph would violate (SCF2). Hence, the ordering u < v
implies the ordering x < y. We can now assume w.l.o.g. that there exist vertices u, v ∈ V1

such that u < v for both G(M ′) and G(M ′′).
Since G(M ′) ̸= G(M ′′), let us assume w.l.o.g. that there exists a node w ∈ V1 with

{w, y} ∈ E such that u < v < w holds in G(M ′) but not in G(M ′′). Then we must have
that either w < u < v or u < w < v holds in G(M ′′). In Figure 9, we see the subgraphs of
these orderings.

w

u

v

x

y

(a) w < u < v.

u

w

v

x

y

(b) u < w < v.

Figure 9: Possible subgraphs H(M ′′) = ((u, v, w) ∪ (x, y), E) ⊆ G(M ′′).

As one can see in Figure 9a, in order to not violate (SCF1), we must have that {u, y} ∈
E. However, this is a contradiction to our hypothesis. Hence, the ordering w < u < v

10

in G(M ′′) is not possible. Now, if we look at Figure 9b, we see that, in order to not
violate both (SCF1) and (SCF2), we must have that {w, x} ∈ E. But then we have that
NH(v) = NH(w). Since we know that NG(v) ̸= NG(w), there exists some z ∈ V2 such that
z ∈ NG(v), z /∈ NG(w) or z ∈ NG(w), z /∈ NG(v). Without loss of generality, let us assume
that z ∈ NG(w), z /∈ NG(v). Then we must have that either z < x < y or x < y < z holds.
We can assume, without loss of generality that x < y < z holds. Figure 10 illustrates the
subgraphs L(M ′) ⊆ G(M ′) and L(M ′′) ⊆ G(M ′′) with vertex set {u, v, w, x, y, z}.

u

v

w

x

y

z

(a) L(M ′) with u < v < w.

u

w

v

x

y

z

(b) L(M ′′) with u < w < v.

Figure 10: Possible subgraphs of G(M ′) and G(M ′′) with vertex set
{u, v, w, x, y, z}.

In Figure 10a, we see that L(M ′) does not violate the SCF conditions. However, in
Figure 10b, we must have that {v, z} ∈ E or else there would be an (SCF2)-violation. But
this is a contradiction to our hypothesis. From this we can conclude that, for all w ∈ V1

with u < v < w in G(M ′), we must have that u < v < w holds for G(M ′′). The same
holds for any w ∈ V1 with w < u < v or u < w < v in G(M ′). This is a contradiction.

4.2 Forbidden sub-matrices

We will now determine the minimal non-staircase matrices and characterize staircase matri-
ces in terms of these forbidden sub-matrices. Let us first introduce the following definitions
and lemmas.

Definition 4.1. A Wk-matrix is a binary k × k matrix that has two 1’s in each row and
column and zeroes everywhere else such that G(Wk) is connected. After permutation of
rows and columns, a Wk-matrix will look like this:

Wk =

1 0 0 . . . 0 1
1 1 0 . . . 0 0
0 1 1 0 . . . 0

0 0
.

...
...

. 1 1 0
0 . . . 0 0 1 1

Lemma 4.2. For k ≥ 3, a Wk-matrix is not staircase.

Proof. For a Wk-matrix (k ≥ 3), we have that G(Wk) is a cycle graph with 2k nodes. Let
(v1, v2, ..., v2k) be the ordered nodes of G(Wk). Let us run Algorithm 2. Without loss of
generality, assume that vk is the starting node in the algorithm. Then the BFS Algorithm
will result in the graph illustrated in Figure 11.

11

vk

vk−1 vk+1

vk−2 vk+2

Figure 11: Start of the BFS Algorithm for G(Wk). Here, the vertical positioning
of the nodes is based on the distance from vk. We have that Nvk

0 = {vk}, Nvk
1 =

{vk−1, vk+1} and Nvk
2 = {vk−2, vk+2}.

We can see that dvkvk−i
= i and dvkvk+i

= i for all i ∈ {0, . . . , k−1}. Also Figure 11 illustrates
that, for each v ∈ Nvk

i , we have that |Bvk
v | and |Avk

v | are equal, and hence, the re-ordering
does not matter. Looking at the subgraph Nvk

0 ∪ Nvk
1 ∪ Nvk

2 illustrated in Figure 12, we
can see can see that G(Wk) violates both (SCF1) and (SCF2). This completes the proof.

vk

vk−1

vk+1

vk−2

vk+2

Figure 12: Subgraph of a G(Wk) graph

Definition 4.2. We define Q to be the 3× 4-matrix:

Q =

1 1 0
1 1 1
0 1 1
0 1 0

Lemma 4.3. Q is not staircase.

Proof. Let V1 = (u1, u2, u3, u4) and V2 = (v1, v2, v3) be the sets of ordered rows and
columns Q, respectively. It is easy to see that Q is not in staircase form, since ϕ(u4) > ϕ(u3)
and hence by Algorithm 1, Q violates (SCF2). In order to check whether Q is staircase,
let us run Algorithm 2 with input G(Q) = (V1∪V2, E). Without loss of generality, we take
r = u1. The BFS algorithm will then result in the graph in Figure 13.

12

u1

v1 v2

u2 u3 u4

v3

Figure 13: BFS Algorithm for G(Q) starting in u1. The vertical positioning of
the nodes is based on the distance from u1.

From Figure 13, it is clear to see that du1
v3 > du1

v for all v ∈ V1 ∪ V2. Hence, Φu1
v3 is

lexicographically largest and so we run the BFS algorithm again with starting node v3.
This results in the graph in Figure 14.

v3

u2 u3

v1 v2

u1 u4

Figure 14: BFS Algorithm for G(Q) starting in v3. The vertical positioning of
the nodes is based on the distance from v3.

After sorting the nodes v ∈ V1∪V2 by lexicographically increasing Φv3
v , the new ordering

will be: (v3, u3, u2, v2, v1, u1, u4). So, we have that L1 = [v3 v2 v1] and L2 = [u3 u2 u1 u4].
Figure 15 shows that this new ordering of vertices in G(Q) is not SCF.

u3

u2

u1

u4

v3

v2

v1

Figure 15: The graph G(Q) with vertex set (L2∪L1) and edge set E. The dotted
line from node u4 to node v1 shows the (SCF2)-violation.

Hence, we can conclude that the matrix Q is not staircase.

Remark. Any permutation of the Q-matrix is not staircase.

We can now state the theorem about an important property of non-staircase matrices.

Theorem 4.4. Let M be an m × n binary matrix that is not staircase. Then it must
either contain a Wk-submatrix (k ≥ 3) or a Q-matrix in any permuted form.

13

Proof. Without loss of generality, suppose that the matrix M is minimally non-staircase
and that removing row 1 or column n would make it staircase. It follows from minimality
that every row and column of M is nonzero. We define M/{1} to be the (m−1)×n matrix
after removing row 1 and we define M\{n} to be the m × (n − 1) matrix after removing
column n. Also, let M/{1}\{n} be the (m− 1)× (n− 1) matrix after removing both row
1 and column n. Then we have that M/{1}\{n} is also staircase.

Now, without loss of generality, let us assume that matrix M\{n} is in staircase form.
Then we must have that M/{1}\{n} is in staircase form as well. Since M/{1} is stair-
case, there exists a permutation of M/{1} such that the resulting matrix M̄/{1} is in
staircase form. But then also M̄/{1}\{n} is in staircase form. From Theorem 4.1, we
know that the staircase form of a matrix is unique up to reversal. Hence, we must have
that M̄/{1}\{n} = M/{1}\{n}. This is can only be if the permutation on M/{1} is the
insertion of column n at some position k, i.e., the relative order of the columns 1, . . . , n−1
is the same as that of M\{n}. Let us define M ′ to be this permuted matrix M . Then we
have that M ′/{1} is in staircase form and hence M ′/{1}\{n} is in staircase form. Since
the only difference between matrix M ′ and M is the position of column n with respect to
the relative order of the columns 1, . . . n−1, we have that M ′\{n} is also in staircase form.
Hence, no insertion is necessary and we can assume that M ′ = M .

Let us now look at the structure of M . Since M is not staircase and hence also not in
staircase form, there must be an SCF-violation. This SCF-violation must be a sub-matrix
of size 1 × 3, 3 × 1, or 2 × 2 (see Figure 2). Also, it must involve the top-right entry
M1,n since it would otherwise also induce a violation of M/{1} or M\{n}. Each of these
sub-matrices has a 1-entry in its top-right. Hence we can conclude that M1,n = 1. Let us
now distinguish the possible (SCF)-violations;

Case 1: (SCF2)-violation. We can have three different kinds of (SCF2)-violations, see
Figure 16. (

0 1
1 0

)
(a)

(
0 1
1 1

)
(b)

(
1 1
1 0

)
(c)

Figure 16: Different kinds of (SCF2)-violations.

Note that the two kinds of (SCF2)-violations in Figure 16b and 16c are symmetric.
Hence, we will only proof type b. The proof of the violation in Figure 16c will be similar.

Let us first consider the (SCF2)-violation in Figure 16a. If we have that Mm,n = 0, then
we must have that Mi,n = 0 for all rows i ∈ {2, . . .m} because otherwise row m would be a
zero-row, which contradicts our minimality assumption. But then M is staircase because
we can just insert column n in front of the first column, and the permuted matrix is in
staircase form. Hence, we have that Mm,n = 1. Similarly, we must have that M1,1 = 1.

Suppose that Mm,1 = 1. Then the first column is the all-1s column and row m is the
all-1s row because otherwise, M/{1} or M\{n} violates (SCF1) in row m or column 1,
respectively. Note that, in this case, we must have that Mi,n = 0 for all i ∈ {2, . . .m− 1},
because otherwise there would be identical rows. Similarly, we must have that M1,j = 0
for all j ∈ {2, . . . n − 1}. Figure 17 illustrates what matrix M would look like given our
current knowledge of rows 1,m and columns 1, n. We can see M/{1}\{n} must be either

14

1 0 . . . 0 1

1 0
...

...
1 0
1 1 . . . 1 1

Figure 17: Illustration of the matrix M when there exists an (SCF2)-violation
of the type in Figure 16a and Mm,1 = 1. Here, only the first and last rows and
columns are illustrated.

a lower-triangular matrix or the all-1s matrix. If it is the all-1s matrix, then we have
must have that m = 3, or there would be identical rows. Then it is easy to see that M
can be permuted into staircase form. Hence, we must have that M/{1}\{n} is a lower-
triangular matrix. Then we can find rows i, k ∈ {2, . . .m − 1} with i < k and a column
j ∈ {2, . . . n− 1} such that Mi,j = 0 and Mk,j = 1. Let us look at the submatrix H ⊆ M
in Figure 18.

1 j n

1 1 0 1
i 1 0 0
k 1 1 0
m 1 1 1

Figure 18: Submatrix H ⊆ M with rows 1, i, k,m and columns 1, j, n.

From Figure 18, it can be easily checked that H can be permuted into the Q-matrix.
Hence, M contains a permuted Q-matrix.

Suppose now that Mm,1 = 0. Since M is connected, it is easy to see that M contains
a Wk-submatrix.

Next, suppose there exists an (SCF2)-violation of the type in Figure 16b. Then there
exists a row k ∈ {2, . . . ,m} and a column ℓ ∈ {2, . . . , n − 1} such that M1,ℓ = 0, Mk,ℓ =
1, and Mk,n = 1. By the same arguments as before, we must have that M1,1 = 1 and
Mm,n = 1. Since M1,j = 0 and Mk,j = 1 for all j ∈ {ℓ+ 1, n− 1}, We can assume w.l.o.g.
that ℓ = n− 1 and that k is the second nonzero entry of column n.

Suppose that Mm,1 = 1. Then again, we have that Mi,1 = 1 for all rows i ∈ {2,m− 1}
and Mm,j = 1 for all columns j ∈ {2, . . . n− 1}. Then we must have that k = m because
otherwise there will exist identical rows. Then the matrix M would again look like the
matrix in Figure 17 and we can use the same arguments as before to conclude that M
contains a permuted Q-matrix.

Supose now that Mm,1 = 0. If k ̸= 2, then it is easy to see that M contains a Wk-
matrix. On the other hand, if k = 2, then column n consists of only nonzero entries. We
must then have that M/{1} is an upper-triangular matrix. Note that, if m = 3, we can
do some permutations and M would be in staircase form. Hence, we have that m > 3. If
M1,2 = 0 and M2,1 = 0, then again, we can do some row and columns permutations so
that M is in staircase form. Hence, we must have that M1,2 = 1 and/or M2,1 = 1. Then
we can find rows i, s ∈ {2, . . . ,m − 1} with i < s and columns j, t ∈ {1, . . . n − 1} with
j < t that induce the submatrix in Figure 19. It is easy to see that this submatrix is a
permutation of Q.

15

j t n

1 1 0 1
i 1 1 1
s 0 1 1
m 0 0 1

Figure 19: Submatrix H ⊆ M with rows 1, i, s,m and columns j, t, n.

In short, if there exists an (SCF2)-violation of any of the three types in Figure 16, then
M must contain a Wk-submatrix or a permuted Q-matrix.

Case 2: (SCF1)-violation. We can have two types of (SCF1)-violations, see Figure 20.

(
1 0 1

)
(a)

1
0
1

(b)

Figure 20: Different kinds of (SCF1)-violations.

The two kinds of (SCF1)-violations in Figure 20 are symmetric, and hence the proof
of these will be similar. Therefore, we will only give the proof of the (SCF1)-violation in
Figure 20a.

Since the violation must involve the top-right entry M1,n of matrix M , we must have
that the violation in Figure 20a happens in the first row. Hence, we have that M1,n−1 = 0
and M1,ℓ = 1 for some column ℓ ∈ {1, . . . n − 2}. Since column n − 1 may not be a zero
column due to our minimality assumption, there exists some row k ∈ {2, . . .m} such that
Mk,n−1 = 1. If we then look at the submatrix of rows 1, k and columns n− 1, n in Figure
21, we can see that there is also an (SCF2)-violation. Specifically, if Mk,n = 0, there is
an (SCF2)-violation of the type in Figure 16a. Otherwise, if Mk,n = 1, then there is an
(SCF2)-violation of the type in Figure 16b. We have already proven our statement for
these types of SCF-violations. Hence, we can use the same arguments to verify that M
must contain a Wk-submatrix or a Q-matrix.

(n− 1 n

1 0 1
k 1 ⋆

)
Figure 21: Submatrix H ⊂ M with rows 1, k and columns n− 1, n. The ⋆ in the
bottom-right entry indicates that we do not know the value of this entry yet.

In all possible cases, M must contain a Wk-submatrix or a Q-matrix. This concludes
the proof.

16

5 Conclusions

We have found a linear-time algorithm (see Algorithm 2) that detects whether a given
matrix is staircase and find its staircase form (if applicable). Since the fastest known algo-
rithm was a polynomial-time algorithm (see [2]), we can conclude that we have successfully
found a more efficient algorithm. Furthermore, we have found that every non-staircase ma-
trix contains either a Wk-submatrix or a Q-submatrix.

For further research it could be interesting to extend Algorithm 2 as to finding the for-
bidden sub-matrices Wk and Q if the input is not staircase. Also, since staircase structures
can be viewed as special kinds of block-tridiagonal structures, it might be interesting to
investigate if Algorithm 2 can be modified so that it will be applicable to matrices and
systems that have other kinds of block structures.

17

References

[1] Jay E. Aronson, Thomas E. Morton, and Gerald L. Thompson. “A Forward Simplex
Method for Staircase Linear Programs”. In: Management Science 31.6 (1985), pp. 664–
679. issn: 00251909, 15265501. url: http://www.jstor.org/stable/2631443.

[2] Andreas Bärmann et al. “On Recognizing Staircase Compatibility”. In: Optimization
Online (2020), pp. 1–24. url: http://www.optimization-online.org/DB_HTML/
2020/12/8138.html.

[3] Robert Fourer. “Staircase Matrices and Systems”. In: SIAM Review 26.1 (1984), pp. 1–
70. issn: 00361445. url: http://www.jstor.org/stable/2029677.

[4] Robert J. Wittrock. Dual nested decomposition of staircase linear programs. Ed. by
R. W. Cottle. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985, pp. 65–86. isbn:
978-3-642-00919-8. url: https://doi.org/10.1007/BFb0121043.

18

http://www.jstor.org/stable/2631443
http://www.optimization-online.org/DB_HTML/2020/12/8138.html
http://www.optimization-online.org/DB_HTML/2020/12/8138.html
http://www.jstor.org/stable/2029677
https://doi.org/10.1007/BFb0121043

	Introduction
	Notations and definitions
	Staircase-form matrices and graphs
	Recognizing staircase-form graphs
	Computing staircase-form matrices

	Minimal non-staircase matrices
	Uniqueness of staircase-form matrices
	Forbidden sub-matrices

	Conclusions

