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Design Report of a Fast-Acting Grid-Tied
Phase-Locked Loop system, Implemented on an
FPGA Using a Model-Based Design Approach

Niels Wisselink∗

August, 2022

Abstract

In this report a fast-acting grid-tied Phase-locked loop system (PLL), implemented
on a field programmable gate array (FPGA), developed using a model-based ap-
proach in Simulink is discussed. The system is part of an inrush current mitigation
project, which aims to mitigate inrush currents and other transients using a gallium
nitride based inverter. A phase-locked loop is required for synchronization to the
grid and error-calculation. This system was designed, simulations were performed
and hardware tests were conducted. After which was concluded that the system was
operating correctly. The PLL system was integrated with the error controller, after
verification the system was confirmed to operate correctly.
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1 Introduction

With the accelerating adoption of switching power electronics converters (SPECs)
and other non-linear loads, inrush current and transient events are becoming a ma-
jor concern for low-inertia or weak microgrids [11]. Power grids, especially islanded
micro-grids, may suffer from these increasing non-linear loads, as they typically pro-
duce significant short term pulsed currents. These currents can overload a micro-grid
and cause it to go into protection mode or fail and possible damage components. An
example of inrush current induced failure is shown in Fig. 1. This event resulted in
over-current protection mode activation of an inverter with complete power outage.

Figure 1: Example of an inrush-current event[11]

By adding an additional, small footprint and fast-reacting power source, the
high frequency current components can be compensated for. Essentially a low en-
ergy, high power active filter which protects the main power source from disruptive
or damaging loads. Monitoring of grid voltage is essential for this concept to operate.
To obtain the error from the grid signal, a reference signal needs to be constructed,
which is suitable for this error calculation. It thus needs to be both in-phase and
in-frequency to the grid signal. A phase-locked loop (PLL) can achieve this.

A phase-locked loop is a control system which aims to relate the phase of a
generated signal, to the phase of an input signal[12]. This relation could for instance
be made to equalize their phases. Commonly, the output signal phase is controlled
using a variable frequency oscillator. A phase comparator can then be used to
establish the phase difference between the input and output signals. Fig. 2 shows a
high-level generalised block diagram of a PLL. A common application of PLLs are
signal synchronization. An example of this can be seen in Fig. 3.

PLLs are widely used in micro-grid applications, as usually these will contain
energy sources, such as solar panels, which generate DC power. An inverter is uti-
lized to convert the DC power to AC. A PLL can then be used to synchronize the
generated AC voltage to the grid, such that the inverter is able to deliver power
back to the grid.
This is one example of a PLL use case, as they prove useful for all kinds of syn-
chronization tasks, such as FM demodulation or clock multiplication in micropro-
cessors[12].
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Figure 2: Block diagram of a generalized PLL[2]

Figure 3: Example of a PLL synchronizing to another signal

The PLL will be needed for voltage-error calculations, as it will allow synchro-
nization of the grid and reference signal. The need of a fast-reacting system suggests
the use of a hardware implementation. To prototype a digital hardware imple-
mented system, it will be chosen to use a field-programmable programmable gate
array (FPGA).

The complete system consists of sub-modules which all will be integrated in a
Simulink environment. The basic devisions of the sub-modules are: (1) grid voltage
sensing and PLL, (2) control system and error system generation and (3) SVPWM
engine which provides switching commands to the output hardware in order to con-
trol the power output. The PLL and supporting sensing hardware is required to
monitor the grid voltage at a high sample rate, react as quickly as possible to pro-
vide the control system sub-module with information. The project design utilises
Simulink with a Vivado VHDL environment for sysnthesis of FPGA devices. An
FPGA is chosen as the appropriate hardware due to it’s rapid development and fast
processing capabilities.

2 Methodology

To accomplish the goal of creating a grid-following PLL system on an FPGA, it is
necessary to understand the general concept of what a PLL does. A Phase-locked
loop is a controlled loop, which uses phase difference to control an input oscillator in
order to manipulate this phase difference as needed. Fig. 2 shows a generalized block
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diagram of a PLL. In it is clearly visible how the phases of theoscillator signal and
reference signal Vi are compared, generate a control signal for the Voltage-controlled
oscillator (VCO).

The aim of this system is to do exactly what is described above, using a high
sample-rate input, and use the generated high sample-rate synchronized reference
signal as an input for a controller which measures grid voltage error. The following
subsections will elaborate on how the different subsystems of the PLL are designed.

2.1 System Overview

Fig. 4 shows a high-level block diagram of the system. It has a small part in the
analog domain, which is just the input circuit. Most of the processing is performed
by the FPGA.

Figure 4: High-level block diagram of the system

2.2 Scaling and Offsetting of Input

The FPGA board used in this project is the Digilent CMOD A7-35T[3]. The FPGA
on this board contains an ADC which has an input range of 0-1V. The ADC pins
are in turn connected to some on-board circuitry that increases this range to 0-3.3V,
which can be seen in Fig. 5. The grid voltage (in the Netherlands) is an AC signal
with 230 Vrms. It is thus necessary to both scale down and offset the grid voltage
to convert it down from −230

√
2 ≤ x ≤ 230

√
2 V to 0 ≤ x ≤ 3.3 V.

A circuit with an operational amplifier as its basis can be used to both scale down
and offset the voltage. As the circuit will mostly be used for testing purposes and
needs not to be robust, the grid voltage can simply be scaled down using a resistive
voltage divider. An external DC signal of 1.65 V, potentially from the FPGA, can
then be used to add an offset such that the AC signal will have its centre in the
middle of the ADC capture range. Fig. 6 shows a circuit which achieves this result,
as can be seen from the simulation in Fig. 7, with an input voltage of 320

√
2V.

The choice for an op-amp based buffering circuit was made to make sure the ADC
input would not be current limited, regardless of current draw.
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Figure 5: onboard ADC circuitry[3]

Figure 6: Circuit diagram of input circuit

After capture through the ADC, the modified grid signal needs to be restored to
its original scale and the offset needs to be removed. This is achievable to implement
inside of simulink using addition and multiplication functions.

2.3 ADC and Internal FPGA Dataflow Using AXI

To capture samples from the grid, the built-in ADC functionality (called XADC
in Vivado) of the CMOD A7 can be used. It supports 2 board inputs for analog
capture. both of these channels can capture 12 bit samples at a maximum rate of
1 MSPS, in the range of 0-3.3 V. The Artix-7 FPGA on this board actually has an
input range of 0-1 V, but this is altered with some board circuitry. Fig. 5 shows this
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Figure 7: Simulation of input circuit

input board circuitry.

The ADC can be configured with the XADC-wizard block inside the block de-
signer of Xilinx Vivado. For the Simulink system to obtain ADC samples from the
XADC block, the system needs a method of communication, supported by both the
XADC block and Simulink. For this, the AXI4 interface will be chosen, as this is
straightforward to implement, in part due to the documentation MathWorks has
available on it for Simulink[10].

AXI4 is a high speed communication bus protocol used for on-chip communica-
tion. The interface is both high-bandwidth and low latency, without being compli-
cated to implement[1]. Most of the specific details of AXI4 are not relevant to this
project, but important ones are that AXI4 uses an address and data-bus to let a
master communicate with slaves. The master can either request to execute a read
or write operation on a slave. The slave is addressed through the address bus and
each slave has an address range attached to it.

To read the ADC samples from Simulink, the model will need to have an AXI4-
master read interface, as the XADC block only contains a slave interface[14] and
the system only needs to read from that. This interface can modelled in Simulink,
after which it can be synthesized into a valid IP core block[10].

The implementation of an AXI4-master read interface in simulink should be
straightforward and has enough documentation[10]. The interface should have three
connections, a data line, an input bus and an output bus. The input bus should at
minimum contain a ”ready” port, which indicates if the bus is ready for data transfer;
and a ”valid” port, to indicate whether the data on the bus is valid. The output
bus should at minimum contain an ”address” port; a ”length” port, to indicate data
length; and a ”valid” port, to indicate when the read request is valid.
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2.4 Amplitude Detection

Grid voltage can have variations in amplitude, which needs to be taken into account.
An easy way to measure the maximum amplitude of the grid signal is to measure
at peak amplitude. It is hard to detect when the amplitude is maximum from just
the sinusoidal wave, so the derivative can be used, as this is always π

2
radians out of

phase from the original as shown in eq. equation (1), which means that it crosses
through zero when the signal is at peak amplitude.

d

dt
sin(ωt) = ωsin(ωt+

π

2
) = ωcos(ωt) (1)

This method should be quite straightforward to implement, which is the main
reason why it was chosen. The only trouble is the implementation of the derivative.
Due to the use of an FPGA, the derivative can only be approximated using discrete
methods. a common approximation is the difference, which subtracts the last sample
from the current one.

2.5 Phase Difference Detection

It is necessary for the internal oscillator to synchronize with the measured grid
signal in both phase and frequency for error calculation. This synchronization is
traditionally done by looking at the phase difference of both signals and adjusting
the frequency of the controllable signal accordingly. Both frequency and phase
difference information can be retrieved by looking at the observed phase difference
of two signals. This can be shown in equation (2), where (ω∆t+ϕ∆) is what can be
observed and what needs to be compensated for.

f1(t) = sin(ω1t+ ϕ1) (2a)

f2(t) = sin(ω2t+ ϕ2) (2b)

= sin(ω1t+ ϕ1 + (ω∆t+ ϕ∆)) (2c)

A simple method for detecting frequency and phase differences is to use a phase
frequency detector (PFD). there typically are two types and both types can be
constructed with a small amount of logic circuitry[6].This is ideal for implementation
on an FPGA.

The first of the two types of PFD produces a pulse between the falling edge of
both signals[6]. Fig. 8 demonstrates this quite well. The phase difference is either
early or late depending on which falling edge comes first. The second type of PFD
stays produces a pulse when an edge of the first signal comes and stops this pulse
when an edge of the second signal comes.

As the phase detector will be used for sinusoids (the example shown a square
wave) and will be implemented on an FPGA, the PFD concept can be modified a lit-
tle bit to be a little more refined. Instead of producing a single pulse with a variable
length, the detector will count the cycles between both positive and negative zero-
crossings. The FPGA will start a counter when a zero-crossing happens on the first
signal and sample the counter when the same zero-crossing happens on the other
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Figure 8: The first type of PFD[6]

signal. This can produce a time related phase difference. Since there are two dif-
ferent zero-crossings in a signal, the detection can be done twice in one signal period.

Theoretically, if the signal noise is small enough, differentiation can be used to
add a π

2
rad phase shift, so two more detections can be done in a signal period. This

will unfortunatly not be possible in this project, due to the limited resolution of the
ADC. it can represent 12 bits in a range of 0-1V. so the smallest observable value is
2−12. To fit in the range of the ADC the input signal will have expression equation
(3) with its derivative also shown. The amount of change of this signal is 50π. using
these facts it can be calculated that the smallest amount of time it takes for a single
bit to change is 1.55 · 10−6 s or a maximum frequency of 6.44 · 105 Hz as shown in
equation (4). This means that it almost always will take more than one sample for
a value to change, so either the change is 0, or the change is a small value.

f(t) = 0.5sin(100πt+ ϕ) + 0.5 (3a)

f ′(t) = 50πsin(100πt+ ϕ) (3b)

2−12

50π
= 1.55 · 10−6 (4)

The only issue now is that this time related value is always positive, which makes
it unusable for control purposes. The solution to this is to count the amount of cy-
cles for a signal period, and subtract this from the measured phase difference if it
exceeds half of the counted period. The phase detector can now make a distinction
between lagging and leading signals.

The two phase detectors need to be combined into one signal again. There are
two methods for this: by using an average of the two measurements, or by contin-
uously switching to the most recent measurement. If there is a difference between
falling and rising edge measurements, the averaging method will smooth them out,
but the output might differ a bit from the actual phase difference. The switching
method might be noisier, as the averaging also acts as a filter, but always has the

9



most recent measurement.

The main reason why this method will be chosen is that a PFD derived system is
very simple at its core. Actual PFDs can be constructed using only a couple of logic
gates, which means there is almost no resource usage on an FPGA. Some counting
and subtraction needs done to find an actual phase difference, but this should not
complicate the system too much.

2.6 Internal Oscillator

The PLL needs to generate a reference sinusoidal signal. This signal will need to
have a controllable frequency, so it can catch up with the grid signal in phase and
frequency. The requirement of this is that a change in frequency should not lead to
a jump in phase, but rather only to a higher frequency oscillation. The oscillator
should not be modelled as sin(ωt), but rather it should be modelled as equation (5),
with ∆x being the variable element. equation (5b) is thus the input to the sine func-
tion and can be seen as a counter with variable step size, or even a discrete integrator.

f(n) = sin(x(n)) (5a)

x(n) = x(n− 1) + ∆x (5b)

But FPGAs are not good at traditional trigonometric calculations, as this typ-
ically uses a taylor series expansion of these functions. Another way of handling
these trigonometric functions is by using a CORDIC algorithm that is specialized
for implementation in hardware. CORDIC is suited for FPGAs as it requires no
multiplication, rather just bit shift and additional operations[13]. A method of im-
plementation is not relevant to this project, as an implementation of CORDIC is
already built into Simulink and can be synthesized into HDL code.
A restriction of the CORDIC algorithm is that the input has a limited range of
−2π ≤ x ≤ 2π, which will be taken into account by limiting the range of the
variable-step counter from 0 to 2π.

The use of a CORDIC algorithm was obvious. The other solution would have
been to use a look-up table, which either limits the precision, or will need to use
a great amount of memory. CORDIC does add the downside of more delay based
on the requested precision, as it needs to iterate to get more precision. But this is
not an issue in this system, as this introduced delay can be compensated for by the
controller.

2.7 Loop Filter and Controller

The oscillator as described before will likely run at 1 MHz sampling frequency, as
this is the limit of the FPGA ADC[3]. The phase detector however, produces a value
twice (or four times using a differentiator if possible) every signal period, so for a
50 Hz signal this means that it will run at 100 Hz. Because of this, the oscillator
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feedback will have sudden jumps in phase difference. To smooth this out somewhat,
a low-pass filter can be used to reduce these jumps. As the filter should not add
much delay to the signal path, it should not be of low order, as a higher order will
add more delay. The simplest low-pass filter that can be constructed is the RC filter.
A discrete transfer function of this filter can be shown in equation (6) using the Z-
transform, with ωc being the radial cut-off frequency and Ts being the sampling
period of the system.

H(z) =
A

z + (1− A)
(6a)

A = ωcTs (6b)

As stated in equation (2), the grid signal might not only have a difference in
phase, but also in frequency, which can just be seen as time dependent phase. The
original feedback signal will thus be unusable for control purposes, as it is a measure-
ment of phase difference, not frequency difference directly. The frequency compo-
nent in this phase measurement can be retrieved by integrating it. The system will
thus need at least proportional and integral control, to account for both phase and
frequency differences. The controller will sit in the feedback loop, as the reference
input is non-zero (50 Hz), which will otherwise get effected by the controller.

2.8 Integration with Inverter Project

The PLL system in this project is part of a bigger project with a gallium nitride
based inverter. Both the measured grid signal and the generated reference signal
will serve as an input to an error control block that tries to compensate for potential
voltage sags. These two signals will be the main output of this system because of
that.

3 Implementation

The following subsections go into detail on how the different subsystems are im-
plemented and how they are different from the methods proposed in the previous
sections. Fig. 9 shows an overview of the system block diagram in Simulink.

A remark: Simulink does not support the use of floating point numbers when
generating HDL code for an FPGA. All signals that use a decimal point notation
thus need to use a fixed-point type for this. This can limit the range of certain
signals somewhat and sometimes poses a general design challenge.

3.1 Tools Used

To get an idea of the workflow that will be used, some details are given on the
hardware and software used for the project.
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Figure 9: System block diagram as implemented in Simulink

3.1.1 Hardware

The Digilent CMOD A7-35T is used as the FPGA board in this project. It is based
on the Xilinx Artix 7 platform and has built-in 12 bits 1 MSPS ADC support[3].
This FPGA is easily breadboardable, which simplifies prototyping somewhat. For
the input circuitry the RC4558p dual op-amp is used to act as a signal buffer[4]. To
provide power to the negative rail of this op-amp, the TL7660 is used[5]. These chips
were not chosen with any specific reason other than their easy availability at the
time. To generate and observe signals, a Picoscope 4824a is used. It is portable USB
oscilloscope and function generator. This Picoscope was primarily used because it
was available in the lab.

3.1.2 Software

Mostly Mathworks Simulink and Matlab will be used to design and simulate using
HDL coder[8]. HDL verifier will be used to communicate with the deployed system
using an AXI interfacing over JTAG[9]. Simulink was chosen, because it allows
for a model-based design approach, which in turn enables fast turnaround of an
entire system without the need for coding by hand. Furthermore, it allows for easy
integration into the already existing workflow of the bigger inverter project. After
HDL code is generated with HDL coder, Xilinx Vivado is used to deploy the system
to the FPGA, which is a design suite for Xilinx FPGAs. the Picoscope software is
then used in combination with the Picoscope to observe and generate signals from
and to the FPGA. Finally LTspice is used for any analog circuit design.

3.2 Scaling and Offsetting of Input

The implemented input circuit was slightly altered to account for the use of low-
voltage test signals, so tests of the system become easier to perform. Fig. 10 shows

12



this modified input circuit, where the voltage divider at the input was changed
slightly to account for an input signal with a peak voltage of 2 V.

Figure 10: Modified version of the input circuit

The RC4558p dual op-amp was not able to amplify the input signal using only
a positive rail, even though the input signal is purely a positive signal. As stated
before in the methodology the TL7660 was used to generate the negative voltage
rail. 5 V from the USB input was used to drive both the positive and negative rail
of the op-amp, since the input signal is well within range of this voltage.

The signal measured by the ADC is now purely positive and needs to be shifted
back to also have a negative halve. This is done by the subsystem block shown in
Fig. 11. The FPGA sends data in chunks of 32 bits, so the signal coming in from
the ADC is 32 bits wide. The ADC measurement lies on the 16 least significant
bits and the first step of this subsystem is to strip the 4 least significant bits, as
these contain mostly noise. The ADC is rated to be 12 bits in resolution[3], which
explains this stripping of bits. The next step is to convert the datatype to include
a sign bit so 2−11 can be subtracted to recover a pure AC signal again. Finally a
type conversion is done again, this time without keeping the real world value of the
signal, to reduce the width to 12 bits and normalize the signal to have a maximum
amplitude of 1.

Figure 11: Input rescaler subsystem
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3.3 ADC and Internal FPGA Dataflow Using AXI

The ADC of the FPGA was configured to have one channel open and to run at the
maximum sample rate of 1 MSPS. In order for this sample rate to be achieved, the
FPGA clock had to be raised to 104 MHz from 100 MHz.
For the PLL system to communicate with the ADC, an AXI master read port needed
to be introduced. An implementation was created based on [10]. Fig. 12 shows the
implementation, where the ’systemIn’ path is connected to the grid input of Fig. 9.
The ADCCounter has a limit of 103, which when hit, sets the count hit signal high
and a read request is sent to the ADC if the bus is ready for traffic. The rd dvalid
signal is set high when there is valid data on the gridIn line, which is then sampled
by the sample and hold block to avoid possibly reading invalid data. the RT block
transitions the operating frequency from 104 MHz to 1 MHz.

Figure 12: AXI master read interface

3.4 Amplitude Detection

An initial implementation of the amplitude detector was made, but it was eventually
decided that the amplitude data was not crucial for the total inverter system to
work. The initial implementation can be shown in Fig. 13, which works in the way
described in the previous section. As discussed earlier, the differentiator can not be
used at the sample rate of 1 MHz, so the amplitude detector was designed to work
at about 50 KHz, where the differentiator was simulated to work correctly.

3.5 Phase Difference Detection

The chosen implementation of the phase detector only has 2 detections per signal
period. This was done as differentiation is not possible at a sampling rate of 1 MHz.

Fig. 14 shows the top level of the phase detector. It has 2 inputs for both the
internal oscillator and the grid signal. These signals are passed through negative
and positive edge zero-crossing detectors. The big subsystem block is responsible
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Figure 13: Initial amplitude detector

for the phase difference calculations. The 2 outputs of this are averaged. The
bottom subsystem block is responsible for calculating the half wave time, needed for
offsetting the counted phase value to a negative number.

Figure 14: Top level of phase detector

Fig. 15 shows the second level of the phase detector. This contains three sub-
system blocks. The left most block processes the triggers for the internal oscilla-
tor. The other 2 blocks both have identical functionality and serve to calculate the
phase difference between the signals. the only difference is that one has falling-edge
zero-crossing detections as an input, while the other has rising-edge zero-crossing
detections.

Fig. 16 Shows the trigger processor from Fig. 15. This system was implemented
after finding a bug in the oscillator that caused both zero-crossing detectors to trigger
in one zero-crossing. Fig. 17 shows this glitch in the oscillator. It clearly shows how
when the signal crosses zero, it crosses zero twice more. the trigger processor thus
makes sure these extra triggers are not used in the phase difference calculation. It
does this by switching both outputs to a constant low for 10 cycles after the first
trigger was passed.

Fig. 18 shows one of the phase difference calculator blocks. This block counts
the amount of cycles between the initial grid zero-crossing trigger and the internal
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Figure 15: second level of phase detector

Figure 16: trigger processor of phase detector

oscillator trigger. The left side of the block has some trigger processing for the grid
trigger signal. It switches this signal to low a certain amount of time, to make sure
no other triggers are passed that could reset the counter.

If an initial zero-crossing is detected from the grid signal, the counter is reset.
The counter value is then sampled when the trigger from the internal oscillator
comes. The blocks on the right subtract the length of one signal period if the de-
tected phase difference is more than half a signal period.

To figure out what the length of a signal period is, the half wave time detector
shown in Fig. 19 is used. It uses both zero-crossings of the grid signal to determine
the length of half a period. This is done by sampling, then resetting a counter that
is used to count the cycles between each zero-crossing. Again, on the left side, there
is some trigger processing done to make sure no premature triggers pass through.
Furthermore the left side has 2 sample and hold blocks. This is so that the average
of the last two measurements can be used, for noise reduction.
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Figure 17: Glitch in the oscillator

Figure 18: Phase difference calculator

Figure 19: Half wave time detector

3.6 Internal Oscillator

The oscillator as implemented can be shown in Fig. 20. The input N of this sub-
system is the amount of cycles for one oscillator period. Equation (7) shows how N
can be calculated using the oscillator frequency fo and the sampling frequency fs.
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N =
fs
fo

=
106

50
= 2 · 104 (7)

2π is divided by divided by N to get the step-size per cycle of the oscillator
counter. This custom counter implementation consists of a memory element that
works according to equation (5). As the CORDIC implementation of the sine func-
tion only has a range of −2π ≥ x ≥ 2π, the counter is reset to zero before it can
exceed 2π. The counter value is then passed through the sine block, which is config-
ured for 16 bits of precision. This causes some delay on the output, but the control
loop in the PLL compensates for it.

Figure 20: Oscillator implementation

3.7 Loop Filter and Controller

For the loop filter, the cut-off frequency was chosen to be 100 Hz, as the phase
detector runs at this rate, for a grid frequency of 50 Hz. The final loop controller
implemented is a PI controller. Fig. 21 shows the block diagram of this PI controller.
Input ”u” is the filtered phase detector input of the system. this signal splits into
the proportional and integral controller. the proportional controller can be found by
following u horizontally and consists just of a product block, with PGain being an
externally configurable parameter, which can be configured through the AXI4 slave
interface.
The integral controller is somewhat more complicated. The discrete-time integrator
of Simulink could not be used due to algebraic loop errors, so a custom integrator
was implemented. this integrator is highly similar to the oscillator counter shown
in Fig. 20. The input of the oscillator is multiplied by 1

fs
with fs being the system

sampling frequency of 1 MHz. This value is then added to the previous output of the
memory block to create the new value. intReset indicates the absolute reset value
of the integrator, where it resets back to 0. This is done to prevent the integrator
from ”wandering off too far” from zero and causing potentially long recovery times.
The output of the integrator is then multiplied with intGain to produce the control
output. both intGain and intReset are tunable parameters, again usin the AXI slave
interface. The proportional and integral components are then added back together
and limited to make sure the oscillator will either never oscillate too fast or stop
oscillating all together.
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Figure 21: implemented PI controller

The controller was first tuned using simulation. Once stable values for P and I
were found they were tested on the FPGA. Once the controller values were verified to
work on the FPGA, the system was fine-tuned. Final tuning values are: proportional
gain of 5 and integral gain of 20, with an integral limit of 400.

3.8 Integration with Inverter Project

After verifying that the PLL worked on its own, the system needed to be integrated
into the bigger inverter project. The outputs of this system serve as an input for
an error controller. The only modification that was needed to get the systems
connected was data type conversion. the inputs of the error controller are a signed
fixed-point type with a word length of 18 bits and contained 17 fractional bits, while
the oscillator used a word length of 32 bits and the grid 12 bits.

4 Results and Discussion

To demonstrate the system, some test were conducted on both the implemented
hardware and the simulated model. The simulation and the hardware implementa-
tion will be compared and discussed in this section.

4.1 Simulation

To get an initial idea of the system validity before it is implemented on the FPGA,
simulations are run to test the different major components of the system. These
components include the oscillator, the phase detector and the whole PLL with con-
trol enabled.

4.1.1 Oscillator

The oscillator was tested with three different signal frequencies to validate its be-
haviour. The frequencies chosen for this test were 48, 50, and 52 Hz. Apart from 50
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Hz, the other 2 are considered extreme cases, which the actual electricity grid never
reaches[7]. Fig. 22 shows all three cases in one plot. It clearly shows how the 50 Hz
signal is able to finish two periods in the time-span of 40 ms, while the 48 Hz signal
does not finish two periods and the 52 Hz signal leads over the other two. Fig. 23
shows the phases of these three signals, which gives a different visualization of their
frequency differences.

Figure 22: Simulated oscillator ran with different frequencies

Figure 23: Simulated oscillator phase counter ran with different frequencies

4.1.2 Phase Detection

To test the simulated phase detector, different cases must be considered.First of all,
the detector should be able to detect no phase difference if the actual phase differ-
ence is zero. Constant phase differences should also remain constant. And finally,
a frequency difference should result in a linear detected phase wrapping to negative
values if this phase difference exceeds π rad.
The first case of constant phase difference can be shown in the top graph of Fig. 24.
This case was tested with phase differences of 0, π

2
and π rad all with the oscillator

running at 50 Hz. At 50 Hz, a phase difference of π
2
rad corresponds to 5000 samples

and π rad to 10000 samples, which wraps back to become -10000 samples, for control
purposes.
The bottom graph of Fig. 24, shows the phase detector when exposed to different
grid frequencies, and a reference oscillator frequency of 50 Hz. Again, the same
frequencies of 48 Hz, 50 Hz, and 52 Hz were chosen. The plot clearly shows how the
52 Hz signal leads, as the phase difference has an increasing slope, and the 48 Hz
signal lags, shown by the by decreasing slope. Their phase difference are both the
same, which can be seen by the fact that they cross zero at the same points.
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Figure 24: Simulated phase detector with both different different frequency
and phase differences

Something to be noted in these plots is that the phase difference initially only
shows half of the actual value. This is due to averaging of both phase measurements,
as explained in the implementation section. Furthermore, the 48 Hz signal shows
some odd initial measurements, which at the time of writing could not be explained.

4.1.3 Introducing Feedback

To test the simulated controller, the same test was done as for the phase detector
test, but this time with the PI controller enabled. Proportional control was set to
2, integral control to 50, and the integral reset threshold to 400.
Fig. 25 shows the results of these tests, with the top graph again having different
initial phases and the bottom graph having different initial frequencies and an ini-
tial phase difference of pi rad. In the top graph it can be seen that the controller
takes no more than 300 ms to lock the phases of the two signals in all cases. For
the bottom graph, it takes slightly longer to stabilize the oscillator, as there is a
frequency difference in the cases of 48 Hz and 52 Hz. But, a ”lock” is achieved in
400 ms.

To validate that the oscillator correctly responds to the control signal, the oscil-
lator in the 52 Hz case is plotted together with the references signal in Fig. 26. This
shows how the oscillator smoothly changes frequency and almost replicates the grid
signals frequency and phase after only 200 ms.

4.2 Hardware

After validating the simulation, the hardware implementation of the PLL was tested.
Not all of the simulation tests could be replicated. For the ability to capture analog
data, a PWM block in combination with a software low-pass filter at 10 KHz was
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Figure 25: Simulated controller with both different initial frequency and
phase differences

Figure 26: Simulated with controller and 52 Hz input with π phase differ-
ence

used to serve as a DAC. A side effect of using this PWM block was that it could
represent values in a range of 0 ≤ x < 1, which does not include the value 1.
This means that top and bottom of the oscillator measurements have slight clipping
issues. This problem is purely caused by the method of measurement, not by the
oscillator itself.
One last note: the FPGA has a logic level of 3.3 v. This is why the measurements
have a range of 0 ≤ x ≤ 3.3.
All measurements were done using a Picoscope 4824a.

4.2.1 Oscillator

The hardware oscillator was tested using the same method as the simulated oscil-
lator. The results of this test can be seen in Fig. 27. This result looks visually
identical to the one shown in Fig. 22, with the only difference being the different
offset and scale, which are adjusted for in the plot.
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Figure 27: Oscillator ran with different frequencies

4.2.2 Phase Detection

No easy method could be found to get a consistent measurement of the phase detec-
tor. Using AXI communication over JTAG the value could be read out and plotted,
but this could not be done with a known and consistent sample time.

4.2.3 Introducing Feedback

For testing the hardware controller, it was only possible to control the initial fre-
quency difference. The initial response from the system could also not be plotted,
as this required an external trigger when the frequency was changed, which the Pi-
coscope could not provide. The measurements that were taken are of the stabilized
system after achieving ”lock”. This was tested for the different grid frequencies of
48, 50, and 52 Hz. This grid signal was a signal contaminated with ”voltage sag”.
The controller values used for this test are: P = 5, I = 20, Ireset = 400.

The 48 Hz measurement can be seen in Fig. 28, the 50 Hz measurement in Fig. 29,
and the 52 Hz measurement in Fig. 30. All of these figures show the same result; the
internal oscillator is able to closely follow the captured grid signal, even for different
grid frequencies, and contamination.
Not only were these measurements done to test the oscillator and controller, but also
to verify the functionality of the ADC. The ”grid” signal shown in these figures, was
after being captured with the ADC and converted back to analog using the PWM
block.

Figure 28: Controller running with ”contaminated” 48 Hz reference signal
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Figure 29: Controller running with ”contaminated” 50 Hz reference signal

Figure 30: Controller running with ”contaminated” 52 Hz reference signal

4.2.4 Integration with error controller

After integrating the PLL and the error controller systems, it was tested using the
”contaminated” grid signal, which has a simulated voltage sag added. Fig. 31 shows
the results of the tested integrated setup. It again shows how the PLL closely follows
the input grid, but also shows how the error is correctly estimated.

Figure 31: PLL integrated with error controller

4.3 Further discussion

For the phase detection system to operate correctly, there is a block that measures
the grid period. This period could theoretically be used instead of the integral
control in the system, as it also provides the frequency information needed for the
oscillator. This would only leave the need for a proportional controller, which now
only needs to compensate for a constant phase difference.
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It was argued in the methodology that it was not possible to use a differentiator
in the phase detector, since the resolution of the ADC was too little, as found in
equation (4). Instead of using a differentiator, the same result could theoretically
be obtained using an integrator. This also shifts the signal by 90 degrees (albeit, to
the other side). The integrator would not suffer the same problems as a differentia-
tor, due to its different method of operation. The downside of is that an integrator
could introduce an offset to its output, due to different kinds of non-idealities, such
as noise. It was thus chosen not to try this method.

Instead of always using the grid signal as the start of the phase detector count,
both signals could have been used to start the count. This potentially could make
it easier to detect when the internal oscillator is either leading or lagging, without
having to measure the length of a grid period.

By finding a way to create an external trigger when the grid oscillator changes
frequency, the initial response to this frequency change can be observed. Due to
time constraints it was not possible to realize this.

It was not possible to find an reliable way of capturing the phase detector mea-
surements of the FPGA, at least not in time. It could be done by normalizing the
phase measurements and using the PWM block, so the data can be captured, and
finally rescaling the measurements back. But this was not possible due to time
constraints.

5 Conclusion

This section will be divided into two subsections. First, a summary of the imple-
mented system will be given, after which conclusions will be drawn regarding the
functionality of the system.

5.1 System summarized

The system implemented as shown in Fig. 9 is an FPGA based phase-locked
loop. This PLL system contains a frequency controllable oscillator, an input signal
rescaler, a phase difference detector, a loop filter and a controller.

The frequency controllable oscillator, as shown in Fig. 20 works by increasing
a custom variable-step counter, which wraps back to zero after hitting 2π. This
counter value is passed through a CORDIC approximation for the sine function,
which results in an oscillation.

The input rescaler shifts and scales back the signal captured by the ADC. The
ADC has a limited range of 0 ≤ x ≤ 1, which causes the need for the grid signal to
be scaled down and shifted to be purely positive, which is all done by an op-amp
based buffer circuit, which is shown in Fig. 6. The captured input is then shifted

25



and scaled back to have normalized values, by the rescaler shown in Fig. 11.

The phase difference detector, as shown in Fig. 14-19 consists of 2 detectors,
which detect the phase difference between the grid signal and internal oscillator on
both the falling and rising edge zero-crossings. They do this using a system inspired
by the phase-frequency detector. The detectors count the amount of cycles between
the zero-crossing of the grid signal and internal oscillator, after which the detected
phase difference, which is only positive, is processed to allow for a negative phase
shift, or phase lead.

A digital RC filter is used as loop-filter, to smooth out transitions between phase
detections, after which the signal is put through the PI controller, shown in Fig. 21,
which uses proportional and integral control, to obtain both phase and frequency
control.

5.2 conclusion

The oscillator, phase detector, and the controlled system were all tested in simu-
lation, of which the first and the last were also tested on physical hardware. The
oscillator simulations, shown in Fig. 22 and 23, show a functional oscillator with
the ability to run at different frequencies. The phased detector was confirmed to
work in simulation, as shown in Fig. 24, where signals with different phase and
frequency differences were tested. Simulation of the controller, as shown in Fig. 25
and 26, showed promising results, with the system stabilizing within 300 ms when
exposed to a difference in initial phase and stabilizing in about the same time when
exposed to a difference in initial phase and frequency.

On actual hardware, The oscillator performs very similar as shown in Fig. 27.
The controlled system also performs well and is able to ”lock” onto ”contaminated”
grid signals running with different frequencies as shown in Fig. 28-30. The PLL
system was also integrated with the error controller. The result of this can be shown
in Fig. 31.

In conclusion an FPGA based fast-acting grid-tied Phase-locked loop has been
constructed, using a model-based design approach in Simulink. The simulated model
was evaluated and deployed on an FPGA, where it was tested and confirmed to be
operational. The deployed system was able to lock to ”contaminated” reference
signals, with varying frequencies.
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