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Multimodal post-operative complication prediction
for elderly patients with hip fractures

Abstract—Hip fractures are common among the elderly
and they have become a major health care problem for
society. Standard procedure is to have surgery, often caus-
ing complications that can lead to short-term mortality.
With the help of an early warning system, we could
take precautions to mitigate the consequences of these
complications. Machine learning can be used to develop
such a system. In this paper, we develop a multimodal
deep learning model for post-operative complication pre-
diction using both pre-operative and per-operative data
from elderly hip fracture patients. We use ResNet50 to
extract features from image modalities and employ LSTM
units to extract features from per-operative vital signs.
Features from different modalities are combined through
early fusion of the features forming a single multimodal
prediction model. Further, we also investigate the effect
of each modality on the prediction task using SHAP. We
evaluate our approach on an in-house data set with 1669
patients. We find that i) our model can predict short-
term mortality and heart failure reasonably well and ii)
the inclusion of per-operative features does not improve
performance of the multimodal model. We use Shapley
values to provide local and global explanations for our
prediction task. Our findings imply that using pre-operative
static data may be enough to pre-operatively decide about
the treatment option for a patient and selecting patients that
need close monitoring.

I. INTRODUCTION

The absolute number of hip fractures in the older
Dutch population (≥ 65 years) almost doubled between
1981 and 2008 from 7,614 to 16,049 [1]. In 1997 it was
estimated that in 2050 4.5 million people worldwide will
suffer from a hip fracture [2]. Mortality is high during
the early post-operative period with rates reported of up
to 13.3% in the first 30 days after surgery [3].

An accurate risk score computed before surgery using
pre-operative data could provide an objective measure,
which aids treatment selection and also leads to a better
informed patient [4]. On the other hand, a risk score
computed after surgery, which additionally use per-
operative data, could give an early warning for com-
plications, allowing for swift measures to mitigate the
consequences. In recent years, machine learning (ML)

has proven to be promising for clinical practice to aid
doctors in clinical decision making, such that it can
reduce some their workload [5].

ML models can reliably predict risks on certain
complications after surgery [6]. Deep neural networks
(DNN) have been used to predict mortality after surgery
using pre-operative and per-operative data [7], [8], where
AUC scores up to 0.91 were reported for these multi-
modal models. Regarding hip fracture patients, logistic
regression (LR) models have been developed to predict
early mortality (<30 days) after surgery only using pre-
operative static patient data, where reported AUC scores
range from 0.76 to 0.82 [9]–[11]. Yenidogan et al. [12]
also included pre-operative hip and chest images, in
addition to pre-operative static patient data, in their mul-
timodal model. They extracted features from the images
using convolutional neural networks (CNN) and trained
a random forest (RF) to predict early mortality, where
they report an AUC of 0.79. In this paper, we investigate
whether the addition of per-operative data improves the
prediction of early mortality after hip surgery.

Specifically, we present a multimodal prediction
model combining preoperative static and imaging data,
and per-operative medication and time-series data. Fur-
thermore, we do not restrict to mortality as the prediction
target, but also include other common complications,
specifically: heart failure, pneumonia, anaemia and delir-
ium. We assess the added value of per-operative data,
by comparing the performance of our model with those
presented in literature, which only used pre-operative
data. Additionally, we provide local and global explana-
tions for the model’s decisions with the aim to improve
understandability for clinicians.

It is crucial that decisions made by a ML model can
be understood by clinicians [13]. Some model types like
decision trees are explainable simply by design, however
more complex models trade performance at the cost of
explainability [14]. The models we consider in this paper
are not explainable by design, therefore we apply model
agnostic explainability methods to understand i) contri-
bution of each modality and ii) individual features.



Following this introduction we discuss related work in
Section II, then we examine the data set in Section III.
In Section IV we explain our approach and Section V
describes the experimental setup. Section VI contains the
experimental results. The paper ends with a discussion
of the results in Section VII and our conclusions in
Section VIII.

II. RELATED WORK

In this section we discuss literature on three aspects
relevant to this paper, starting with short-term compli-
cation prediction after surgery. Followed by options to
connect multiple input modalities to form a single predic-
tion model and last methods to address the explainability
of ML models.

A. Short-term complication prediction

Table I summarises a sample of studies in literature
featuring short-term complication prediction. It includes
a range of patient populations and prediction targets,
including hip fracture patients and short-term mortality
prediction. The last column specifies which ML model
type(s) the authors used, which shows LR models are
very common. Next, we discuss a few of these papers in
more detail.

Cao et al. [10] developed a model for the prediction
of 30-day mortality of adult patients after surgery using
static data from 134,915 patients. The authors used the
synthetic minority oversampling technique (SMOTE) to
counteract class imbalance, such that the ratio was 1:1
between surviving and deceased patients. They com-
pared the performance of a convolutional neural network
(CNN) with a logistic regression model (LR) and re-
ported a large difference (>0.1) in AUC between the
training and test set. They excluded unimportant features
to successfully prevent overfitting and their final model
scored an AUC of 0.76.

As stated before, this paper follows up on a study
that addressed short-term mortality prediction using a
similar data set [12]. The authors exploited structured
and image data available before surgery and showed
significant improvement compared to their baseline the
Almelo hip fracture score (AHFS) developed by Ni-
jmeijer et al. [9]. They trained two convolutional neural
networks (CNN) to extract features from hip and chest
x-ray images, which were fed to a random forest (RF)
classifier together with the structured data features. Their
multimodal model scored an AUC of 0.786 on the test set
outperforming the AHFS baseline, which scored an AUC
of 0.717. Thus the authors concluded, that the additional

information from multiple modalities is beneficial for
model performance.

B. Multimodal prediction

Clinical models that combine multiple modalities out-
perform models restricted to a single modality [18].
Multimodal models are commonly used for video classi-
fication tasks, where audio and image data is processed
concurrently [19].

It is important to decide at which point and how
information is shared between modalities within a neural
network. Late fusion combines the predictions of the uni-
modal models with no further cross-modal information
flow, while early fusion combines modalities as soon as
possible [19]. In between is mid fusion, where only later
layers are connected.

Early fusion allows for full information flow between
modalities, however has a relatively high computational
cost, due to the high number of neuron connections.
On the other hand, late fusion has low computational
cost, but restricts the model from learning cross-modal
interactions. Bottlenecked fusion is a special kind of mid
fusion, where the number of cross-modal connections is
limited, which forces the model to efficiently compress
cross-modal information.

C. Explainability

In order to gain the trust of clinicians models re-
quire to be explainable, where knowing what features
are most important to the model for its prediction is
crucial [13]. Furthermore, clinicians need to be able
to justify their decision making towards patients and
colleagues. ML models can either be explained locally
or globally [20]. Local explanations in a clinical setting
focus on justifying the prediction for a single patient,
while global explanations provide insight in general
prediction tendencies for a larger population.

Multiple methods are available to compute the feature
importance in deep learning models, where some of the
common ones are: LIME [21], deepLIFT [22], layer-
wise relevance propagation [23] and Shapley values [24].
In this paper, we use Shapley values to estimate the
importance of our input features.

Shapley values are especially suited in case there
is multicollinearity in the data, which is common in
medical data. For example, a patient might take a certain
medicine, have a higher heart rate and elevated blood
pressure, all pointing to the same underlying cardiovas-
cular problem. To understand how Shapley values are



TABLE I
OVERVIEW OF LITERATURE WORK FEATURING SHORT-TERM COMPLICATION PREDICTION

Authors Study population Prediction target(s) Data types ML model(s)

Perng et al. [15] Septic patients Short-term mortality Static patient data CNN, AE, RF, KNN, SVM
Gowd et al. [16] Total shoulder arthroplasty Post-operative complications Pre- and per-operative static data LR, GBT, RF, KNN, DT, NB
Schoenfeld et al. [17] Spinal metastasis surgery Short-term outcomes including mortality Pre-operative static data LR
Lee et al. [7] Any surgery Post-operative mortality Pre- and per-operative data LR, DNN
Fritz et al. [8] Surgery with tracheal intubation Post-operative short-term mortality Pre- and per-operative data FC+LSTM+CNN
Cao et al. [10] Adult1hip fracture patients Post-operative short-term mortality Pre-operative static data LR, CNN
Karres et al. [11] Adult2hip fracture patients Post-operative short-term mortality Pre-operative static data LR
Nijmeijer et al. [9] Elderly3hip fracture patients Post-operative short-term mortality Pre-operative static data LR
Yenidogan et al. [12] Elderly3hip fracture patients Post-operative short-term mortality Pre-operative static and image data LR, XGB, RF, SVM

1 Patients were at least 18 years old 2 Patients were at least 23 years old 3 Patients were at least 71 years old

robust against multicollinearity, we compare them with
permutation importance (PI).

In case of PI, the importance equals the loss in
performance when training a model with and without
a certain feature. If there is multicollinearity in the data,
then the absence of a certain feature is compensated by
other features leading to an incorrect estimation of the
feature importance. Shapley values tackles this problem,
by computing the PI for all possible feature subsets
and then take the weighted average for each feature.
Exact computation of Shapley values is challenging and
time expensive, therefore estimation methods have been
developed and were made publicly available in the SHAP
library [24].

III. DATA SET

The data set contains 1669 anonymized hip fracture
surgery cases from the Hospital Group Twente (ZGT)
between 2013 and 2021, Table II provides an overview.
We included patients older than 70 years at the time of
surgery collected from five modalities, which we divide
in two groups pre-operative and per-operative data.

Pre-operative data encompasses information known
before surgery, specifically: static patient data (Static),
an axial hip x-ray image (HipImg) and an anterior-
posterior chest x-ray image (ChestImg). The static
patient data has 76 features, which we further subdivide
in seven categories: demographics, daily living condition,
nutrition, surgery information, lab results, medication
and comorbidities.

Per-operative data was collected during surgery con-
taining vital signs (Vitals) and medication data (Med).
The vitals signs are heart rate, pulse, oxygen saturation
and blood pressure. We split blood pressure into dystolic,
systolic and mean blood pressure leaving us with a total
of six temporal features. The medication data includes
17 medication groups, which are commonly administered
during hip fracture surgery.

TABLE II
COMPARISON OF OUR DATA SET AND THE PRECEDING PAPER BY

YENIDOGAN ET AL. [12]

Yenidogan et al. Our data set

Input modalities Pre-operative Pre- + per-operative
Outcomes Mortality Mortality + complications
Date range 2008-2020 2013-2021
Total cases 2404 1669
Mortality cases 193 (8.0%) 131 (7.8%)

Table II compares our data set to that of Yenidogan
et al. [12], our data set is slightly smaller for the
following reasons. First, Yenidogan et al. reported low
data quality for cases before 2013, due to a high number
of missing values in the static patient data, therefore we
excluded cases before 2013. Second, we required data
on all modalities to be available, except for per-operative
medication. In case per-operative medication is missing,
we act as if the patient received no medication at all
during surgery.

The goal is to predict complications occurring within
30 days after surgery with mortality being the most im-
portant, where complications are not mutually exclusive.
Table III shows the complications and their prevalence
within the data set. The 30-day mortality rate in our
data set is 7.8% and in 38.3% of the cases at least
one of the considered complications occurred (including
mortality). Furthermore, in 43.5% of the mortality cases
there is at least one other complication, so co-occurrence
of positive labels is common within our data set.

A. Preprocessing

We imputated the pre-operative static patient data
iteratively with a KNeighbors Regressor1 (k = 10). We

1https://scikit-learn.org/stable/modules/generated/sklearn.
neighbors.KNeighborsRegressor.html



TABLE III
30-DAY COMPLICATIONS AND THEIR PREVALENCE WITHIN THE

DATA SET
(N=1669 CASES)

Complication # unique cases %

Mortality 131 7.8
Heart failure 96 5.8
Pneumonia 149 8.9
Anaemia 249 14.9
Delirium 293 17.6

No complication 1030 61.7

processed the vitals data, such that elements are spaced
15 seconds apart, where each element represents a single
time step containing six vital signs. We filled up gaps of
up to 5 minutes (20 elements) using linear interpolation.
Furthermore, given the close similarity of heart rate and
pulse, we interchangeably replaced missing values if
either one is not missing. So, if heart rate was missing
at a certain time step, then we took the pulse at that
time step if available and vice versa for missing pulse
values. We z-normalized the vital signs for each patient
separately, because this makes less assumptions about the
data population [25]. If after interpolation an element
(time step) still contains missing data, then we set all
its values to a masking value. This masking value is
recognized by our model, causing the element to be
skipped during inference. Appendix B shows an example
of the vital signs before and after imputation.

IV. APPROACH

We built the multimodal model, illustrated in Figure 1,
by developing a model for each modality separately first
and afterwards we fused the representations of the single
modalities together. Table IV introduces an abbreviation
for each model that we consider in this paper. We
trained the unimodal models to only predict mortality
and transferred the learned weights to the multimodal
models. The multimodal models have multiple outputs,
so they predict mortality independently from the other
complications, where the complications are grouped to-
gether resulting in a multi-label prediction task. We used
two separate loss functions, one for mortality prediction
and one for the grouped complications, where we took
the weighted sum to compute the total loss during
training. Equation 1 describes how the total loss Ltotal

for patient x was computed using the mortality loss Lm,
complication loss Lc and complication weight wc. This

TABLE IV
MODEL ABBREVIATIONS

Model Input data

Pre-Static Static pre-operative patient data
Pre-HipImg Pre-operative hip image
Pre-ChestImg Pre-operative chest image
Pre-All All pre-operative data
Per-Vitals Per-operative vitals signs
Per-Med Per-operative medication data
Per-All All per-operative data
Pre+Per-All All pre- and per-operative data

gave us another tunable parameter (wc), which we set
such that the addition of complication prediction did not
harm mortality prediction performance.

Ltotal(x) = Lm(x) + wc · Lc(x) (1)

The remainder of this section explains our approach
to each unimodal model and concludes on how we fused
them together.

A. Pre-operative models

We discuss the three pre-operative unimodal models:
the Pre-Static model for the pre-operative static data and
the Pre-HipImg and Pre-ChestImg models for the hip
and chest images.

For our Pre-Static model, the main task was dimen-
sionality reduction, so at a later stage it provided a
similar number of features as the other modalities to the
multimodal prediction model. Therefore, we used a fully
connected hidden layer, from which the output was used
in the multimodal models.

Convolutional neural networks (CNNs) have emerged
as a powerful tool for medical image classification [26],
so we used CNNs for our Pre-HipImg and Pre-ChestImg
models to extract features from the hip and chest images.
A wide range of CNN architectures are available, but
given our small data set size we chose the relatively
small ResNet50 for both image types [27].

These pre-operative unimodal model choices differ
from the reference paper, where the authors used a
random forest model for the pre-operative static data,
a partially trained ResNet152 for the hip images and a
fully trained XCeption model for the chest images [12].
Using fully connected layers instead of a random forest
for the Pre-Static model made it easier to combine with
the other unimodal models, in turn making it possible to
be trained simultaneously. Regarding the image models



Fig. 1. Overview on how the unimodal models are fused together to form the multi-modal models. Dimensions at the input and feature
extraction layers are shown in between brackets, where the sequence length (seq len) for the vitals varies between patients. No feature
extraction was done for the per-operative medication data.

we preferred them to have the same architecture, in order
to reduce the complexity of the multimodal models.

B. Per-operative models

The Per-Vitals model takes multivariate temporal data
as input, where we used bidirectional long short-term
memory (LSTM) units to extract meaningful informa-
tion from the vital signs. Afterwards, we added fully
connected hidden layers between the LSTM output and
the classification layer, such that the output of these
hidden layers could be used in the multimodal model. We
explored three options to increase the performance of the
Per-Vitals model: multi-layer LSTM, target replication
and a parallel fully convolutional network (FCN). The
results of this exploration are discussed in Appendix A.

For the Per-Med model we used binary encoding for
the per-operative medication data2. This data contained
only 17 features, so contrary to the Pre-Static model it
was not necessary to introduce a hidden layer for the
purpose of dimension reduction. This means that the Per-

2In preliminary experiments we investigated ordinal and temporal
encoding for the per-operative medication data, but did not find a
difference

Med model is just an input representation containing 17
features.

C. Multimodal model training

We fused the unimodal models together to form three
multimodal models: Pre-All, Per-All and Pre+Per-All
(see Table IV). These multimodal models have the same
architecture, see Figure 1 and only differ in which
modalities were used. We combined the pre-classification
layer outputs from all unimodal models and fed it to a
classifier. We chose the unimodal model architectures
such, that the combination of features can be easily
achieved with a concatenate layer; Ideally, each modality
should supply the same number of features, such that
the relative contribution can be fairly assessed at a later
stage.

V. EXPERIMENTAL SETUP

A. Data set and evaluation

We split our data set in three parts; a training (50%)
validation (25%) and test set (25%), where we used strat-
ification to ensure a similar number of positive cases in
each set. Models were optimised for maximum validation
AUC, which was computed after every training epoch.



We set the maximum number of epoch to 100 and used
early stopping with a patience of 10, where we halved the
learning rate, if there was no improvement for 5 epochs.
We tuned the initial learning rate, by experimenting with
a range between 10−2 and 10−5. We used the Adam
optimizer and a batch size of 32.

All models had the same classification layer for mor-
tality prediction, which contained a single neuron with
the sigmoid activation function. This function ensured
the output was between 0 and 1, hence it was treated
as a probability. In case of the multimodal models we
also added a classification layer with 4 neurons for
the prediction of the other complications, one for each
complication. This layer also used the sigmoid activation
function, because we required a separate probability
prediction for each complication.

During training our models were tasked with minimiz-
ing the weighted binary cross entropy loss. For compli-
cation prediction loss, which is a multilabel classification
task, we took the average of the individual weighted
binary cross entropy losses. Weights were computed
according to Equation 2, where ci is the weight of class i,
Ntotal is the total number of cases and Nci is the number
of cases with class ci [28].

ci =
Ntotal

2 ·Nci

(2)

Besides AUC, we also computed recall, precision and
F1-score for the mortality prediction to evaluate our
models. We trained each model 5 times with different
initial weights to measure variability between training
runs.

We used the models developed by Yenidogan et
al. [12] as a baseline for evaluating the performance
of our models. We refer to these baseline models with
similar abbreviations as introduced in Table IV: Y-
Static for their Pre-Static model, Y-HipImg for their
Pre-HipImg model, Y-ChestImg for their Pre-ChestImg
model and Y-All for their Pre-All model.

In the subsequent sections we discuss model specifics
and design choices, starting with the unimodal models,
followed by the multimodal models and last explainabil-
ity.

B. Unimodal models

We start with the Pre-Static model, for which we
used one fully connected hidden layer between the
input and output layer3. Initially, we used the regular

3We found no difference in performance compared to deeper
networks during preliminary experiments

rectified linear activation function (ReLu), however per-
formance suffered from the “dying ReLu” problem [29].
To overcome this problem we employed the leaky-ReLu
activation function and for consistency fully connected
layers in all our models, except for the output layers,
used the leaky-ReLu activation function.

We restricted our Pre-HipImg and Pre-ChestImg mod-
els to have the same CNN architecture (see Section IV),
furthermore we preferred smaller networks given our
small data set. Therefore, we chose a fully trained
ResNet50 for the image classification tasks, where we
used the pre-trained weights from ImageNet. Note that
we trained a separate model for both image modalities.

During training we augmented training images with
random shift (0.2), shear (0.2), zoom (0.2) and rotation
(20◦) to mimic a more diverse training set. Also, we used
bicubic interpolation to fit images to the 224x224 shape
required for ResNet50. We added two fully connected
layers with 256 and 16 neurons before the classification
layer. The image models were trained with a relatively
small learning rate of 10−5, because higher values led
to very low precision (<0.01). To prevent overfitting we
added a dropout of 0.3 between fully connected layers
and a L2 regularization factor of 10−3.

Our Per-Vitals model contain one bidirectional LSTM
layer to extract features from the vital signs. During
preliminary experiments we varied the number of units
between 64 and 256 and found that a layer with 2x128
units worked best. Data was passed through a masking
layer before the LSTM layer, which caused time steps
with any missing data to be completely skipped. For the
Per-Vitals model we set the learning rate to 5 · 10−4

and appointed a dropout of 0.5 for the LSTM units. The
LSTM layer is followed by two hidden layers with 128
and 16 neurons, and a dropout rate of 0.3.

C. Multimodal model training

We fused the unimodal models together by concate-
nating the pre-classification layers, where each modality
contributed 16 features, except for the per-operative
medication modality, which contributed 17 features.
Thus, the concatenate layer of the Pre+Per-All model
consists of 81 features, which is followed by one fully
connected layer with 64 neurons. Furthermore, we used
the pre-trained weights of the unimodal models, that
were trained to predict mortality. Last, we added two
classification layers, where the first contains 1 neuron
for mortality prediction and the second layer consists
of 4 neurons to predict the other complications. We
found a complication loss weight (See Section IV) of 0.2



gave a good balance between complication and mortality
prediction performance.

At first, we froze the weights of the pre-trained uni-
modal models, while we experimented with the hidden
layers (after concatenation) of the multimodal models.
At a later stage, we found that unfreezing the weights
of the Pre-Static and Per-Vitals models increased per-
formance, while we found no difference for the image
models. Therefore, we trained our multimodal models
with unfrozen weights for the Pre-Static and Per-Vitals
models, and frozen weights for the Pre-HipImg and Pre-
ChestImg models.

We trained the multimodal models with a learning rate
of 5 · 10−3. We used the same model architecture to
perform the modality ablation tests leading to the Pre-
All and Per-All models.

D. Explainability

We improved global interpretability of the Pre+Per
model by computing the relative importance of each
modality. To achieve this we iterated through all cases
in the validation and test set and computed the Shap-
ley value for each feature [24]. The Shapley values
were calculated, such that for each patient it sums up
to the complementary predicted mortality probability.
Equation 3 describes this summation, where f(x) is the
predicted mortality for patient x, M is the number of
features and ϕi is the Shapley value for feature i. The
null prediction is denoted by ϕ0, which is the average
predicted mortality probability within the training set.

f(x) = ϕ0 +

M∑

i=1

ϕi(x) (3)

Equation 4 describes how we computed the impor-
tance of a single feature Φi across all samples in the test
set with size N .

Φi =
1

N

N∑

x=1

|ϕi(x)| (4)

1) Relative importance: For each modality we
summed up the respective importances of its features
and divided this sum by the total sum of all feature
importances, which yielded us the relative importance
of each modality.

2) Global explanation: We used the computed Shap-
ley values to generate a beeswarm plot for the Pre+Per-
All model on the test set, which shows the top 20 most
important features in descending order. The plot shows
how the value of a feature impacts the model output,
where a positive impact means higher mortality.

3) Single neuron explanation: We found features
from the Pre-Static model to be most important for
prediction, so we further investigated these features. We
repeated the same procedure to compute the Shapey
values, but in this case f(x) (Equation 3) was the output
of a single neuron from the Pre-Static model, which we
explained with all 76 pre-operative static features. This
provided us insight in how specific pre-operative static
features affect the prediction.

4) Local explanation: Last, we computed a local
explanation by generating a waterfall plot for a single
positive case. This plot shows how the model builds up
its prediction from the initial starting point ϕ0.

VI. RESULTS

A. Model performance

Table V presents the mortality prediction performance
for all unimodal and multimodal models, additionally we
included the results of the original paper for comparison.

1) Does the inclusion of per-operative features im-
prove 30-day mortality prediction?: The Per-All model
achieves decent performance on the training set, but
scores poorly on the test set. The same thing holds for the
Per-Vitals model, while the Per-Med model scores poorly
on both data splits. The discrepancy in performance
between the training and test set could indicate over-
fitting, still the decent performance of the Per-All model
on the training set suggests that meaningful features
can be extracted from the per-operative data. However,
direct comparison of all metrics regarding the test set
for the Pre-All and Pre+Per-All models implies that the
inclusion of per-operative data does not improve 30-day
mortality prediction.

2) To what extent can complications be predicted by
the Pre+Per-All model?: Table VI shows how well the
final multimodal model can predict complications, where
30-day mortality is the most severe complication. Only
for heart failure prediction the model achieves reasonable
performance on the test set, while other complications in
the test set remain difficult to predict. We experimented
with a weight for the complication loss ranging from 0 to
1 and observed strong improvement up until 0.1-0.2, but
for higher values the performance stagnated. Yet, higher
complication loss weight was not found to negatively
affect mortality prediction.

3) How do our multimodal models compare to
state-of-the-art?: Our unimodal image models (Pre-
HipImg and Pre-ChestImg) score worse compared to the
image models (Y-HipImg and Y-ChestImg) developed
by Yenidogan et al. [12]. We foresaw some loss in



TABLE V
AVERAGED PERFORMANCE OVER 5 RUNS OF OUR MODELS COMPARED TO PRECEDING RESEARCH.

THRESHOLD FOR RECALL AND PRECISION IS 0.1 FOR MODELS BY YENDIDOGAN ET AL. AND 0.5 FOR OUR MODELS.
N.A.: VALUES NOT REPORTED IN ORIGINAL PAPER

AUC Recall Precision F1-score
Yenidogan et al. Train Test Train Test Train Test Train Test
Y-All n.a. 0.79 n.a. 0.71 n.a. 0.17 n.a. 0.28

Y-Static n.a. 0.73 n.a. n.a. n.a. n.a. n.a. n.a.
Y-HipImg n.a. 0.67 n.a. n.a. n.a. n.a. n.a. n.a.
Y-ChestImg n.a. 0.70 n.a. n.a. n.a. n.a. n.a. n.a.

Our models
Pre-All 0.93 (0.02) 0.75 (0.01) 0.96 (0.04) 0.66 (0.05) 0.22 (0.01) 0.16 (0.01) 0.36 (0.02) 0.25 (0.01)

Pre-Static 0.89 (0.02) 0.76 (0.01) 0.90 (0.03) 0.68 (0.06) 0.21 (0.02) 0.17 (0.01) 0.35 (0.02) 0.27 (0.01)
Pre-HipImg 0.52 (0.05) 0.53 (0.02) 0.32 (0.18) 0.25 (0.14) 0.08 (0.03) 0.12 (0.07) 0.13 (0.05) 0.12 (0.04)
Pre-ChestImg 0.58 (0.02) 0.54 (0.05) 0.34 (0.16) 0.21 (0.13) 0.11 (0.01) 0.08 (0.03) 0.16 (0.03) 0.12 (0.04)

Per-All 0.77 (0.10) 0.56 (0.03) 0.70 (0.16) 0.34 (0.07) 0.18 (0.05) 0.09 (0.01) 0.28 (0.07) 0.15 (0.02)
Per-Vitals 0.67 (0.03) 0.57 (0.05) 0.50 (0.07) 0.38 (0.10) 0.13 (0.01) 0.10 (0.02) 0.20 (0.01) 0.16 (0.03)
Per-Med 0.49 (0.03) 0.53 (0.06) 0.40 (0.05) 0.47 (0.17) 0.07 (0.01) 0.08 (0.02) 0.12 (0.01) 0.14 (0.04)

Pre+Per-All 0.93 (0.01) 0.75 (0.01) 0.96 (0.03) 0.65 (0.13) 0.23 (0.02) 0.15 (0.02) 0.37 (0.03) 0.25 (0.03)

TABLE VI
COMPLICATION PREDICTION PERFORMANCE OF THE

MULTIMODAL MODEL

Complication Training
AUC

Test
AUC

Mortality 0.91 0.75
Heart failure 0.70 0.67
Pneumonia 0.69 0.60
Anaemia 0.67 0.57
Delirium 0.61 0.51

performance due to the smaller data set and smaller CNN
architecture, yet the difference is larger than expected.

On the other hand, our Pre-Static model performs
on par with state-of-the art and slightly outperforms
the Y-Static model [9], [10], [12]. We observe strong
indication for overfitting given the large discrepancy in
performance between the train and test set for the Pre-
Static model. We did take measures (dropout and L2
regularization) to prevent overfitting, however stronger
measures might need to be taken, or redundant features
could be removed.

B. Explainability

Table VII shows the relative importance of each
individual modality as well as the pre-operative and
per-operative groups. The features extracted from the
per-operative modalities barely contribute to mortality
prediction, while features from the static patient data
contributes the most. Especially, the per-operative vital

TABLE VII
RELATIVE IMPORTANCE FOR MORTALITY PREDICTION OF INPUT

MODALITIES

Modality Relative
importance

Pre-operative 87.4%
Static patient data 51.7%
Hip image 20.9%
Chest image 14.8%

Per-operative 12.6%
Vitals 2.4%
Medication 10.2%

signs appear to be of no value to the multimodal model
with a relative importance of only 2.4%, the medication
data are a little more valuable with a relative importance
of 10.2%. For the medication data this is more than
expected, given the very poor performance of the Per-
Med model. Therefore, there might be some predictive
value in the interaction between medication administra-
tion during surgery and pre-operative factors.

Figure 2 shows two beeswarm plots and one waterfall
plot providing more insight in the importance of specific
features. Starting with Figure 2a, which shows how the
top 20 features impact the model decision. Features
extracted from the static patient data dominate with 10
out of 16 features present in the top 20. Furthermore,
the image modalities are also well represented, with 4
features for both. The remaining two features come from



the per-operative medication modality.
These features are vaguely defined and require further

inspection, if we want to extract knowledge that is
understandable from a clinical perspective. Figure 2b
shows the top 10 pre-operative static features contribut-
ing to the Static-2 neuron. Importantly, from Figure 2a
we learn low Static-2 values positively affect mortality
prediction. This means that low values in Figure 2b mean
higher mortality, for example older patients have a higher
predicted mortality.

Last, Figure 2c shows the most important features
contributing towards a prediction for a single patient.
This patient did not survive the first 30-days after
surgery, where the model predicted a value of 0.787.
Positive values (red) indicate the value of that feature
increased the mortality probability prediction, while neg-
ative values (blue) indicate the value of that feature
decreased mortality probability prediction. The values of
the features are shown in gray left to the feature name.
We observe that the Static-2 is most important in this
case with a contribution of 0.09, also features from the
hip and medication modalities are important for this case.
For clinical applicability plots like Figure 2c could be
crucial, especially if the features are less vaguely defined.

VII. DISCUSSION

The addition of per-operative data did not yield a
significant improvement in performance compared to an
earlier study by Yenidogan et al. [12], however our
data set is slightly smaller and still achieves similar
performance. Moreover, due to the combination of class
imbalance and a small data set, the AUC is very depen-
dent on a few randomly selected cases. Specifically, there
are only 33 positive cases in the test and validation set
and chances are that those do not generalise the elderly
hip fracture population well.

We employed the sample normalisation strategy for
the vital signs, yet this does eliminate the ability for
the model to take into account cross case differences in
average vital sign value. Multi-resolution normalisation
has been proposed as a solution to the latter [8]. This
normalisation still uses sample normalisation for the per-
operative vital signs, however the mean and standard
deviation are z-transformed across all cases and added
to the pre-operative static variables.

The models that include static patient data or vital
signs are overfitting the data. The addition of dropout
layers and L2-regularization did not solve this problem,
therefore a different approach is required. It has been
shown that reducing the number of pre-operative static

features based on their importance can prevent overfit-
ting [10]. We could use the Shapley values to iteratively
select the most important feature, up until we reach a
certain subset size. Additionally, if we prevent the strong
overfitting on the pre-operative static data, this could
incentivize the multimodal models to focus more on the
other modalities for information.

Minimizing binary cross entropy loss does not directly
mean that AUC is maximized and this discrepancy could
lead to inferior results [30]. Different loss functions have
been proposed that directly incorporate AUC in the loss
function, consequently improving model training.

Our multimodal model is not robust against missing
data, only the per-operative medication data is allowed to
be missing. In clinical practice this would mean patients
are excluded, if they are missing pre-operative hip and
thorax images or per-operative vitals. We impute the
pre-operative static patient data, so having some missing
values there does not lead to exclusion. Therefore, for
clinical applicability future models should be robust
against missing modalities, in order to avoid patient
exclusion.

Our fusion method could be described as mid fusion,
because we used the pre-classification layer of each
unimodal model, however we did do dimension reduc-
tion before concatenation. This method ensured each
modality contributed the same number of features to the
classification layer, however this might not be optimal
for post-operative complication prediction. Future work
could include a deeper investigation of fusion methods,
like late fusion and bottleneck fusion. Bottleneck fu-
sion restricts cross-modal information flow by using a
very limited amount of neurons for information to pass
through. The idea is that the model is forced to condense
the most important cross-modal features leading to better
performance at negligible computational cost [19].

The aim to immediately predict mortality might have
been overly ambitious and starting with predicting if
any complication occurs within 30-days could improve
assessment of the data set predictive capabilities. Coinci-
dentally, this resolves the class imbalance issue, because
in our data set 49% of the patients experience at least one
complication within 30 days after surgery. Furthermore,
as an intermediate step complications could be grouped
by severity or cases could be scored on a scale from
no complication to mortality. Clinically this could help
determine, whether a patient is at risk after surgery and
requires more attention.
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Fig. 2. (a) Beeswarm plot of the 20 most important values for the full multimodal model, the number behind each modality specifies
a specific neuron. On the horizontal axis is the Shapley value, where positive means the feature value increased mortality prediction and
negative means it lowered mortality prediction. The color refers to the feature value itself: red if high and blue if low. (b) Beeswarm plot
for the Static-2 neuron. (c) Waterfall plot showing how features contribute to the prediction for a specific patient. Here a red color means
the feature value increased mortality prediction and blue means it decreased mortality prediction. The actual feature value is shown in gray
left to the feature name.

VIII. CONCLUSION

We conclude that per-operative data in addition to
pre-operative data does not significantly improve 30-
day mortality prediction, when compared to an earlier
study. However, our data set is relatively small and a
bigger data set should give a more definitive answer,
especially introducing more deceased patients should
improve model performance. The other complications
remain difficult to predict with the exception of heart
failure, for which our model achieves reasonable perfor-
mance. Further investigation confirmed that pre-operative

features are most important for mortality prediction,
while per-operative features contribute little with the
exception of a few per-operative medications. We used
Shapley values to explain model predictions, in order
to make our multimodal model more understandable for
clinical practitioners. Furthermore, we encourage future
work to prevent overfitting, by using these Shapley val-
ues to reduce the number of pre-operative static features.
Alternatively, the prediction task could be altered to
prediction of any complication or complication severity.
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APPENDIX A
PER-VITALS OPTIMIZATION

In order to improve on the single layer Per-Vitals
model we explored three options: A multi-layer LSTM,
target replication [31] and a parallel convolutional net-
work (LSTM-FCN) [25].

A multi-layer LSTM might be able to learn more
intricate transition rules, where each LSTM layer returns
a sequence to be processed by the next LSTM layer,
except for the last LSTM layer. Target replication has
been proposed to help the model pass information over
longer sequences, by generating a prediction at each time
step and compute the complementary loss [31]. Where
the final target replication loss is the weighted sum of
the final prediction loss and the average of all pre-final
prediction losses. The last option is to add a parallel
convolutional network to create a LSTM-FCN, for which
it has been shown to achieve higher performance on a
broad range of datasets [25]. We use the one-layer LSTM
model as a baseline for comparing the performance of
the three mentioned options.

The implementation of the multi-layer LSTM is
straightforward, since we simply insert additional bidi-
rectional LSTM layers containing 2x128 units. For target
replication we introduce a parameter α, which denotes
the weight for the average pre-final prediction loss. Con-
sequently, the weight for the loss of the final prediction
is 1 − α, as we require the weights to sum up to
one, so loss magnitude remains similar. The LSTM-FCN
contains three convolutional layers with a number of
filters (128, 246 and 128) and a kernel size of 8,5 and 3
respectively [32]. These convolutional layers run parallel
to the baseline LSTM and outputs are concatenated
before the classification layer.

Table VIII shows the results for the three options com-
pared to the one-layer LSTM baseline, where we report
the average AUC on the validation set over five runs.
The results indicate that none of the options improve
performance compared to the baseline.

We do note that the target replication for α = 0 is
rather low, while it should be close to the one-layer
LSTM. Essentially there is no difference, because in this
case the loss function only takes the final prediction
into account. Therefore, we can not exclude a possi-
ble implementation problem and we encourage further
research using target replication. Incorporating earlier
predictions in the loss function could help focus the
model on defining time steps within a sequence, which
is promising in a medical context. Specifically, it is fair

TABLE VIII
RESULTS OF DIFFERENT OPTIONS FOR THE PER-V MODEL,

PERFORMANCE IS THE AVERAGE OVER 5 RUNS

Model
Mean validation

AUC

One-layer LSTM 0.754
Multi-layer LSTM

2 layer 0.748
3 layer 0.731

Target replication
α = 0 0.645
α = 0.5 0.649

LSTM-FCN 0.712

to assume patients enter and leave the operation room in
stable condition and events that are critical to outcome
prediction tend to happen in the middle of surgery. We
think target replication could help to divert the attention
of the model to these events during training and correctly
predict post surgery complications

Furthermore, it is curious that the LSTM-FCN per-
forms worse, where we expected it to achieve at least
similar performance to the one-layer LSTM. If the con-
volutional layers are unable to extract meaningful values,
then the model should be able to replicate the baseline
performance, by only considering the features extracted
by the LSTM.

In conclusion, we found that none of the three options
improved 30-mortality prediction performance compared
to the one-layer LSTM. Therefore, we used the one-layer
LSTM for our multimodal experiments in our study,
where we found that features extracted form the per-
operative vitals signs barely contributed to the prediction.
The reason we found none of the three options improved
performance might as well be due to the poor predictive
power of the per-operative vital signs and not due to the
options.

APPENDIX B
VITALS EXAMPLE

Figure 3 and 4 show the per-operative vitals signs
before and after pre-processing, respectively.
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Chapter 1

Dataset analysis

In this chapter we first take a closer look at the dataset in Section 1.1, this includes
all the different modalities. Afterwards, we conduct a statistical analysis in Section 2
to assess the predictive power of the dataset.

1.1 General inclusion criteria

We used the following inclusion criteria to gather the data from a database main-
tained by ZGT:

• Patients were at least 71 years old at the time of surgery

• Patients had surgery for a hip fracture

• Patients were admitted between January 1 2013 and July 21 2021

Figure 1.1 shows an overview of the three main data types accompanied by their
modalities. First, we gathered pre-operative data containing general information
about the patient and x-ray images from the hip and chest. Second, we collected
per-operative data containing information about medication and vitals (e.g. heart
rate) during surgery. Last, we have post-operative data about complications within
30 days with mortality being the most severe. In Sections 1.1.1-1.1.3, we delve
deeper into each of the data modalities, which includes pre-processing steps and a
missing analysis.

1.1.1 Pre-operative data

Using the criteria stated earlier, we selected 1966 unique cases concerning 1911
patients. The plausibility to have multiple hip surgeries within the chosen time span,
explains the disparity between the number of cases and patients. Besides a slightly
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Figure 1.1: Overview of data types

shifted and shorter time span the dataset is mostly the same with respect to previ-
ous research. We shifted the time frame to include recent cases and excluded cases
before 2013, because these had a relatively high amount of missing data. Similarly
to earlier research, we merged the data with another data set, which reduced the
number of missing values. We divide the pre-operative data in 8 categories: de-
mographics, daily living activities, nutrition, surgery information, lab results, medi-
cation, commorbidities, and image data. All available features grouped by category
are shown in Table 1.1 with the exception of image data, which we discuss in Sec-
tion 1.1.1.

We checked all binary and categorical features for class imbalance, because
extreme cases could cause predictions to be unreliable. Additionally, removing re-
dundant variables decreases the complexity of the model. We identified the smallest
class for each binary/categorical feature, as well as the number of unique classes.

For binary features, where the number of classes is two, we required the smallest
class to occur in at least 100 cases, which resulted in the exclusion of ten features.
Only 18 patients took immunosuppressants (L04) and only 45 patients got a positive
result from the IRAI (blood related) lab test. The remaining eight excluded binary
features concerned comorbidities, which were: lymphoma (2), leukemia (5), peptic
ulcer disease (14), liver disease (19), prior myocardial infarction (83). The number
in between brackets corresponds to the size of the smallest class.

For categorical variables exclusion is less trivial, because we could combine sub-
classes to obtain acceptable class sizes. A certain type of fracture, a subtrochanteric
fracture, was recorded for only 41 patients compared to 896 and 744 recordings for
medial column fractures and pertrochanteric fractures, respectively. Also, for 286
patients we have no information about the type of fracture, but due to the limited
importance of this feature in earlier research, no further action was taken. In eleven
cases the type of surgery was documented as “other”, since this provides no infor-
mation, we treat these values as missing. Also, we treated a small class, with only



7 cases concerning the patient’s living situation, as missing.
We explored the data to get more insight in the amount of missing data, but also

to gather some general information. The average age is 84 (±5.4) and there is
an unequal distribution of gender with 1399 (71.2%) women to 567 (28.2%) men.
Specifically for this dataset 7.68% of the patients did not survive the first 30 days
after surgery. We only removed the “Vitamine D” column, because it was missing in
73.5% of the cases.

Image data

Prior to surgery at least two x-ray images should be available, one from the hip
and one from the thorax. Although, cases commonly contain images from different
directions, we selected one direction for each image type. For the hip images we
selected the axial direction and for the thorax images we selected the anterior to
posterior direction (front to back). Currently, 204 cases are missing a hip image and
85 cases are missing a thorax image. It should be possible to retrieve some of these
by specifically looking into them, however it would have costed too much time.

1.1.2 Per-operative data

The per-operative (or intra-operative data) holds information about the patient during
surgery and consists of two modalities. First, we discuss the monitoring data that
contains information about the vital signs of the patient Second, we take a closer
look at the medication a patient received during surgery.

Monitoring data

When a patient is connected to a anesthesia machine vital signs are regularly mea-
sured and stored, not only during surgery, but also before and after. In order to get
the vital signs during surgery, we first gathered all available data from machines
around the day of surgery. Then using the planned start and end times of the
surgery, we specifically select the data measured during surgery.

Before we delve deeper into the data, we first check if there are cases with no
monitoring data at all. The raw monitoring dataset contains 2056 unique cases,
which is more compared to the 1966 cases in the pre-operative data. Only two
cases from the pre-operative data were missing monitoring data, thus leaving us
with 1964 recordings of vital signs.

Next, we assess the quality of the vital signs, more specifically how much data
is missing. Before computing the percentage of missing data, we first enforce a
regular time interval between the start and end times of the surgery. There are



Table 1.1: Available pre-operative features grouped by category

Demographics
Daily living
activities

Nutrition
Surgery
information

Age Help with transfer from bed to chair Malnutrition risk Fracture type
Surgery start/end Help with showering Unintended weight loss Surgery type
Falling risk Help with dressing Drink or tube feeding Fracture laterality
Fall last year Help with going to toilet Decreased appetite ASA score
Pre-fracture mobility Help with eating SNAQ score
Living situation Help with self-care
Prone to delirium Katz ADL score
Memory problems Incontinence material used
Delirium in the past
CCI score

Lab results Medication (reason/effect) Comorbidities

HB Blood thinners Chronic pulmonary disease
HT Vitamin D Congestive heart failure
CRP Polypharmacy Peripheral vascular disease
LEUC A02 (acid related disorders) Cerebrovascular disease
THR A10 (diabetes) Dementia
BLGR B01 (antithrombotic) Renal disease
IRAI B02 (antihemmorrhagics) Rheumatological disease
ALKF B03 (antianemic) Cancer
GGT C01 (cardiac therapy) Cerebrovascular event
ASAT C03 (diuretics) Liver disease
ALAT C07 (beta blockers) Lymphoma
LDH1 C08 (calcium channel blockers) Leukemia
UREU C09 (renin-angiotensin system) Peptic ulcer disease
KREA C10 (lipid modification) Diabetes
GFRM L04 (immunosuppressants) Prior myocardial infarction
NA M01 (anti-inflammatory)
XKA N05 (psycholeptics)
GLUCGLUC R03 (airway obstruction)



Figure 1.2: Shows how enforcing a regular time interval exposes gaps in the data.
Green indicates monitoring data is available and red indicates data is
not available at a certain time during surgery.

multiple reasons to do this, but first and foremost it is important for temporal machine
learning that the data points are evenly spaced. Also, gaps are common in the data,
meaning that for several minutes not a single vital sign was registered. Furthermore,
if we do not enforce a regular time interval, then in some cases it would seem there
is no data missing, because the corresponding time stamps will just jump in time.
Figure 1.2 illustrates how it may seem no data is missing on the left side, however
there is a gap of about five minutes with no data. After enforcing the interval, the
missing data is exposed. We set the interval to 15 seconds, because the health
monitoring machines of ZGT take measurements at this interval.

Another common reason for missing data is, that at the start of surgery it takes
a while for all vitals to be available. Similarly, at the end surgery it takes a while
for all data to become unavailable. The most probable explanation is that it takes
a while to fully connect and disconnect a patient to an anesthesia machine. To
counteract these start and end artifacts we only kept the data in between the first
and last time all vitals were non-missing. Additionally, we linearly interpolate gaps
in the monitoring data of up to five minutes, where we think gaps bigger than five
minutes require further investigation and should not be interpolated.

In summary the pre-processing steps up until now are:
1. Only select data measured during surgery
2. Enforce regular time interval
3. Trim start and end of surgery
4. Interpolate gaps (≤ 5 minutes)
After these pre-processing steps we can assess the quality of the data at a global

as well as an individual scale. For each patient we computed the percentage of
missing values for each vital. Before we judge the quality at a global scale, we first



Table 1.2: Mean percentage of the amount of missing data after pre-processing

Vital Mean % missing

Heart rate 0.00
Pulse 0.00
Saturation 0.27
Dystolic blood pressure 0.14
Systolic blood pressure 0.14
Mean blood pressure 0.12

inspect specific cases that missed a lot of data. This led to several case specific
corrections, where in two cases we shifted the date of surgery by one day, while all
further corrections concerned the start and end of surgery. Big gaps (¿10min) often
occur here, which, with the method of enforcing a regular time interval, results in an
inflated missing percentage. Therefore, we manually altered the start and end time
of surgery to fit the available data for those cases. However, for six cases the gaps
are either too big or right in the middle of surgery, so we remove these cases from
the dataset.

The last step done during pre-processing we combined the heart rate and pulse,
since these values tend to be the same. If for example the heart rate is missing,
but the pulse is available, we set the heart rate equal to the pulse. For the global
assessment of quality we computed the average amount of missing data per vital,
Table 1.2 shows the results. Patient specific corrections were done for all cases
that still had some missing heart rate data after pre-processing, eventually lowering
the mean percentage to zero. We did not perform these time expensive corrections
for the other vitals, if necessary we could do this at a later stage during the study.
Last, Figure 1.3 shows an example of the data after pre-processing for a patient
throughout the whole surgery, this illustrates the input to the deep learning model.

Medication data

We collected all data about what medications a patient received during surgery,
specifically the features are volume, medication group, dose and time of adminis-
tration. Similar medications are already grouped and the raw dataset contains 103
unique medication groups. For training purposes we only select medications that
were used in at least 100 distinct cases, Table 1.3 shows these medications to-
gether with their occurrence count and effect. At a later stage during this research
we might leave out more medication groups, if either they show no contribution to
prediction performance or a clinical expert deems them irrelevant.

Furthermore, there are multiple ways we could feed this data to the model, we
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Figure 1.3: Example of the monitoring data after pre-processing of patient through-
out surgery

Table 1.3: List of medications that were at least administered in 100 unique cases,
also includes the general reason for usage. Percentages are with respect
to a total of 1616 cases for which medication data is available.

Medication # unique cases Effect

Bupivacaine 649 (40.2%) Anesthetic
Cefazolin 692 (42.8%) Antibiotic
Dexemethasone 198 (12.3%) Anti-inflammatory
Efedrine 445 (27.5%) Increase blood pressure
Elektrolytes 468 (29.0%) Minerals
Esketamine 561 (34.7%) Anesthetic
Lidocaine 405 (25.1%) Anesthetic
Metamizole 187 (11.6%) Painkiller
Midazolam 475 (29.4%) Anesthetic
Noradrenaline 887 (54.9%) Increase blood pressure
Ondansetron 282 (17.5%) Counter post-operative nausea
Piritramide 446 (27.6%) Painkiller
Propofol 648 (40.1%) Anesthetic
Rocuronium 260 (16.1%) Muscle relaxant
Sufentanil 746 (46.2%) Painkiller
Sugammadex 112 (6.9%) Reverse muscle relaxant
Tranexamic acid 465 (28.8%) Prevent blood loss



discuss three ways in order of increasing complexity. The least complex manner is
in a binary format, which only indicates if a patient received a certain medication
during surgery. Another way would be to transform the data into a ordinal format
that indicates how often a patient received a certain medication. Finally, we could
use the total amount of each medication given to a patient during surgery, however
currently there is too much information missing to make this feasible. Although, it
is tempting to add the data in the most complex way that is still feasible, it could
also harm prediction performance. Moreover, less complex models are easier to
understand.

1.1.3 Post-operative data

The post-operative data contains the prediction targets for the model with the most
important being 30-day mortality. Also, we collected information about less severe
post-operative complications with the goal to predict these simultaneously with mor-
tality. Furthermore, if the predicted probability for 30-day mortality and a certain
complication are both high, then that complication might be the reason for high
mortality. Ideally, if we know a patient has a high risk for a certain complication
during surgery, then preparations could be made preemptively to reduce the con-
sequences. Figure 1.4 shows the incidence rate of each of the complications as a
percentage of the total amount of cases in the initial dataset. To ensure that there
was sufficient data available to reliably train a model to predict complications, we set
a minimum incidence rate of 5.1% corresponding to 100 unique cases. This left the
following four complications: delirium, anemia, pneumonia and heart failure.
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Chapter 2

Statistical analysis

Incorporating per-operative data to predict mortality is the novelty of our study, con-
sequently little is known about the predictive power of this data. Therefore, we con-
duct statistical analyses, so we can set fair expectations for the performance of our
per-operative models. We conduct all tests in a two-sided fashion, although one-
sided tests provide more information on how the population relate to each other,
they also easily lead to incorrect conclusions and usage is generally discouraged.
This section contains three subsections each examining a part of the novel data,
Section 2.1 is about the effect of complications on mortality, Section 2.2 investigates
the effect of the vitals on complications and Section 2.3 studies the effect of medi-
cation on complications. For each analysis, we justify our method choice and check
its assumptions. Then we discuss a a single example extensively, before showing
the full results.

2.1 Complications

Besides mortality we add some other complications as prediction targets for the
model, therefore it is interesting to know how these complications affect mortality.
This could be helpful for interpreting the model’s decisions at a later stage. For
example, if the model predicts high mortality in conjunction with a certain complica-
tion, then we want to know if there is a causal relationship between them. If this is
the case, then it would be fair to expect treatment of the complication would lower
mortality. If not, then separate treatments might be necessary.

The post-operative complication data contains a binary complication values for
each patient, therefore we elect the two-sided z-test for the difference between two
proportions as the appropriate method. The test will determine, whether the pro-
portion of patients not surviving the first 30 days after surgery is different between
patients who do and do not suffer a certain complication after surgery. The test as-
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sumes patients are independently distributed. Also, the sample size needs to be big
enough, this assumption automatically holds, because we set the minimum occur-
rence frequency to 100. Next the method is applied to the specific case of delirium.

In the specific case of delirium the hypotheses become:

H0 : π1 = π2

H1 : π1 ̸= π2

Where,
π1: The proportion of patients without delirium that did not survive the first 30-days
after surgery.
π2: The proportion of patients with delirium that did not survive the first 30-days after
surgery.

The z-test statistic is defined as follows:

z =
p1 − p2√

p(1− p)( 1
n1

+ 1
n2
)

(2.1)

Where,
p1: The sample proportion of patients without delirium that did not survive the first
30-days after surgery.
p2: The sample proportion of patients with delirium that did not survive the first 30-
days after surgery.
p: The sample proportion of patients that did not survive the first 30-days after
surgery.
n1: Number of patients without delirium.
n2: Number of patient with delirium.

For the whole dataset the values are p1 = 0.072, p2 = 0.109, p = 0.078, n1 = 1376,
n2 = 293. We plug these values into Equation (2.1) and find a test statistic of
z = −2.154 , corresponding to a p-value of 0.0313. Thus, we can not reject the
null hypothesis, because for a two-sided test at a 95% confidence level the p-value
has to be smaller than 0.025, in other words:

There is no significant difference in mortality during the first 30-days after
surgery between patients with delirium and patient who do not experi-
ence delirium.

Table 2.1 shows the results after repeating this statistical test for all complica-
tions. For pneumonia and heart failure the p-value is statistically significant. There-
fore, we expect that the model will pick up signs of these complications to better
predict mortality.



Table 2.1: Resulting p-values after a two-sided z-test for proportions, values in bold
are significant at a 95% confidence level.

Complication p-value

Delirium 0.0361
Anemia 0.1275
Pneumonia <0.0001
Heart failure <0.0001

2.2 Monitoring data

We conduct an extensive statistical analysis regarding the monitoring data to assess
its quality. As discussed in Appendix 1, the data consists of a number of repeatedly
measured vitals during surgery. Our goal is to evaluate the general capability of
the monitoring data to predict post-surgery complications, therefore we only use the
patient mean and standard deviation for each vital. Here we treat mortality as one
of the complications.

We use the student’s t-test to find out whether two populations of sample data
have a significant difference in their means. However, for some complications the dif-
ference in sample size is too big for the student’s t-test. For these complications we
employ the Welch’s t-test instead, because it is robust against differences in sample
sizes. The assumption is that values are independently normally distributed. Hence,
we created histograms for all vitals to see if it would be fair to make that assump-
tion, Figure 2.1 shows two of these histograms. Regarding the heart rate the data
seems normally distributed, although it is a bit right skewed. In contrast, the values
for saturation follow an unusual distribution, due to the fact that throughout surgery
saturation tends to be equal to its upper limit of 100%, therefore we can not assume
normality. For this specific case we choose the Mann-Whitney U test instead, which
does not assume normality. All other distributions, including the standard deviation
of the saturation, are similar to that of the heart rate shown in Figure 2.1, so we
apply the Welch’s t-test to all data except the saturation mean.

First, we apply the test to a single case to clarify how the significance test is
conducted. In this example we investigate, whether there is a significant difference
in the mean heart rate of patients who develop pneumonia compared to those who
do not. The equations below define our hypotheses:

H0 : µ1 = µ2
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Figure 2.1: Distribution of the mean heart rate and saturation within the dataset.
The heart rate seems normally distributed, while saturation is clearly
non-normal.

H1 : µ1 ̸= µ2

Where,
µ1: The mean of the average heart rate for patients that do not develop pneumonia
after surgery
µ2: The mean of the average heart rate for patients that do develop pneumonia after
surgery

The definition of the test statistic:

t =
m1 −m2√

S2
1

n1
+

S2
2

n2

(2.2)

Where,
m1: The sample mean of the average heart rate for patients that do not develop
pneumonia after surgery
m2: The sample mean of the average heart rate for patients that do develop pneu-
monia after surgery
S1: Standard deviation of the average heart rate for patients that do not develop
pneumonia after surgery
S2: Standard deviation of the average heart rate for patients that do develop pneu-



monia after surgery
n1: Number of patients without pneumonia.
n2: Number of patient with pneumonia.

In this particular example m1 = 77.6, m2 = 80.2, S1 = 13.5, S2 = 13.1, n1 = 1520,
n2 = 149. Using Equation (2.2) we get a test statistic of t = −2.501, which matches a
p-value of 0.013. With the same criteria as before the null hypothesis can be rejected
at a 95% confidence level, in other words:

There is sufficient evidence to reject the null hypothesis, that the mean
average heart rate of patients suffering delirium after surgery is equal to
that of patients who do not suffer delirium.

We repeat this test for all but one combination of complication and average vital
sign/standard deviation of vital sign, Figure 2.2 and 2.3 show the results, respec-
tively. As explained earlier, we apply the Mann-Whitney U test to the mean saturation
data, though the Welch’s t-test would yield the same conclusions. Combinations for
which the difference in means is statistically significant are highlighted dark green.

Despite the idea that the standard deviation might be able to capture the level
of fluctuation in vitals, whereas the mean can not, the latter has more significant
combinations. Moreover, all but one cell in Figure 2.3 is also significant in Figure 2.2,
thus vital sign fluctuation might not be important for complication prediction, however
most probably standard deviation is inadequate to capture these fluctuations. Most
importantly, on a general level there seems to be evidence of differences in vital
signs between patients with a certain complication compared to patients without
that complication. Thus, we assume that a machine learning model can learn about
these differences and improve the prediction of post-surgery complications.

2.3 Medication data

We conclude our statistical analysis with tests on the medication data described in
Section 1.1.2. In this case, we add another objective besides general assessment of
predictive power, which is to identify how to add the data to the model. We explore
two possible ways to do this: add as a binary variable or add the number of times
administered as an ordinal variable.

For the first case both the input and output variables are binary, therefore we use
the same test as in Section 2.1: the two-sided z-test for proportions. We apply the
method in exactly the same manner, but with the complications added as outcome
variables and medication groups as input variables. Figure 2.4 shows the resulting
p-values, although the figure can be overwhelming, once again for easier navigation
significant p-values are highlighted in dark green.



Complication Mortality Delerium Anemia Pneumomia Heart failure

Heart rate

Saturation

Min. blood pressure

Max. blood pressure

Mean blood pressure

Pulse

0.093 0.000 0.729 0.414 0.013 0.375

0.012 0.001 0.011 0.160 0.002 0.043

0.010 0.000 0.124 0.745 0.558 0.995

0.017 0.182 0.552 0.003 0.424 0.795

0.000 0.002 0.068 0.020 0.096 0.855

0.223 0.002 0.485 0.314 0.036 0.899

Figure 2.2: Resulting p-values of statistical tests to investigate the effect of the
mean of the vitals on complications. Significant values have been high-
lighted in dark green.

Remarkably, there are not a lot of significant combinations. None of the med-
ications significantly affect mortality or anemia, furthermore only seven out of the
seventeen medication groups significantly affect at least one complication. We ex-
pect the binary medication data to be of limited value to the model, although these
tests do not cover possible interactions with other parts of the data. For example, a
certain medication may not necessarily increase mortality, but in combination with a
high heart rate it does.

Next, we apply a different significance test to the medication data in ordinal for-
mat, whose values indicate how often a patient received a certain medication. We
chose the Mann-Whitney U test to be appropriate, since this test does not require
normally distributed data and can be used for ordinal data. Once again we discuss
a simple example to help understand the results of every combination of medication
and complication. Below we apply the method to the combination of bupivacaine
and pneumonia; starting with the following hypotheses:

H0: The distribution of the number of times bupivacaine is given during
surgery is the same for patients suffering pneumonia afterwards com-
pared to patients who do not.

H1: The distribution of the number of times bupivacaine is given dur-
ing surgery is not the same for patients suffering pneumonia afterwards
compared to patients who do not.



Complication Mortality Delerium Anemia Pneumomia Heart failure

Heart rate

Saturation

Min. blood pressure

Max. blood pressure

Mean blood pressure

Pulse

0.490 0.840 0.758 0.247 0.454 0.255

0.000 0.000 0.000 0.114 0.016 0.099

0.716 0.000 0.421 0.335 0.283 0.533

0.001 0.464 0.006 0.014 0.063 0.145

0.277 0.031 0.129 0.193 0.672 0.483

0.379 0.089 0.135 0.989 0.833 0.290

Figure 2.3: Resulting p-values of statistical tests to investigate the effect of the stan-
dard deviation of the vitals on complications. Significant values have
been highlighted in dark green.

The definition of the test statistic:

U =
n∑

i=1

m∑

j=1

S(Xi, Yj) (2.3)

with,

S(X, Y ) =





1, if X > Y,

1

2
, if X = Y,

0, if X < Y.

Where,
n: sample size from population X
m: sample size from population Y

In this case, n = 1142 and m = 132, where the smaller group developed pneu-
monia after surgery. Using Equation (2.3) yields a U-value of 66698, which after
conversion to a z-statistic corresponds to a p-value of 0.011. Therefore, we reject
the null hypothesis at a 95% confidence level, or more precisely:

There is sufficient evidence to reject the null hypothesis, that the number
of times bupivacaine is given is not equally distributed between patients
who develop pneumonia and patient who do not.



A more complex representation of the medication data does not yield better re-
sults, see Figure 2.5, there is one new significant combination, but another was lost.
Also, the p-values are similar to Figure 2.4, which is in line with expectation after
taking a closer look at the data, Most medications were given only once or twice, so
the ordinal values still acted as if they were binary. Although, we use a weaker signif-
icance test, the variables itself remain very similar, thus resulting in similar p-values.
Therefore, statistically speaking there is no reason to use ordinal values instead of
binary values for the medication data.

Complication Mortality Delerium Anemia Pneunomia Heart failure

Bupivacaine

Cefazoline

Dexamethason

Efedrine

Elektrolyten

Esketamine

Lidocaine

Metamizol

Midazolam

Noradrenaline

Ondansetron

Piritramide

Propofol

Rocuronium

Sufentanil

Sugammadex

Tranexaminezuur

0.088 0.863 0.105 0.714 0.009 0.000

0.075 0.321 0.120 0.529 0.772 0.436

0.004 0.679 0.006 0.316 0.001 0.155

0.051 0.052 0.861 0.903 0.528 0.053

0.704 0.376 0.840 0.923 0.567 0.065

0.483 0.943 0.285 0.486 0.063 0.023

0.062 0.075 0.040 0.322 0.377 0.181

0.007 0.463 0.450 0.146 0.090 0.094

0.467 0.532 0.861 0.152 0.382 0.103

0.089 0.632 0.823 0.031 0.151 0.036

0.000 0.177 0.008 0.900 0.037 0.293

0.002 0.412 0.048 0.667 0.026 0.018

0.080 0.183 0.139 0.410 0.597 0.846

0.445 0.570 0.360 0.772 0.735 0.267

0.038 0.264 0.627 0.083 0.347 0.003

0.525 0.880 0.929 0.541 0.658 0.859

0.193 0.506 0.034 0.137 0.964 0.758

Figure 2.4: Resulting p-values of statistical tests to investigate the effect of med-
ication in binary form on complications. Significant values have been
highlighted in dark green.



Complication Mortality Delerium Anemia Pneunomia Heart failure

Bupivacaine

Cefazoline

Dexamethason

Efedrine

Elektrolyten

Esketamine

Lidocaine

Metamizol

Midazolam

Noradrenaline

Ondansetron

Piritramide

Propofol

Rocuronium

Sufentanil

Sugammadex

Tranexaminezuur

0.068 0.805 0.066 0.794 0.011 0.000

0.063 0.342 0.129 0.690 0.693 0.390

0.004 0.677 0.007 0.318 0.001 0.166

0.039 0.034 0.881 0.982 0.251 0.057

0.823 0.228 0.845 0.812 0.624 0.056

0.658 0.723 0.425 0.419 0.042 0.020

0.062 0.071 0.043 0.312 0.386 0.194

0.007 0.463 0.450 0.146 0.090 0.094

0.533 0.489 0.933 0.142 0.360 0.135

0.030 0.282 0.352 0.210 0.220 0.013

0.000 0.177 0.008 0.895 0.037 0.292

0.002 0.346 0.055 0.573 0.026 0.024

0.170 0.330 0.119 0.386 0.978 0.577

0.470 0.617 0.417 0.783 0.749 0.319

0.065 0.254 0.720 0.124 0.218 0.005

0.514 0.877 0.920 0.519 0.644 0.880

0.212 0.493 0.039 0.130 0.918 0.747

Figure 2.5: Resulting p-values of statistical tests to investigate the effect of medi-
cation in ordinal form on complications. Significant values have been
highlighted in dark green.

2.4 Summary

Returning to our original goal of the statistical analysis, which was to judge whether
there is predictive power within the per-operative dataset. Adding other complica-
tions as prediction targets might not only give a more complete post-surgery prog-
nosis, but might also help explain the accompanying mortality prediction in the case
of pneumonia and heart failure. Furthermore, the addition of monitoring data seems
to be promising based on just the mean and standard deviation, since we design a
model that can also learn patterns in the time series, expectations are high for this
data. Finally, the medication data shows moderate statistical significance, where
there is to be no reason to make it any more complex than a binary variable.
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