
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Active Reconstruction Attacks
on 2D Range Databases

Thomas Sierink
MSc Thesis
August 2022

Supervisors:
dr. ing. F. Hahn
dr. A. Sperotto

C. Van den Bogaard, MSc

Faculty of Electrical Engineering,
Mathematics and Computer Science

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

2

Active Reconstruction Attacks on 2D Range Databases
Thomas Sierink

Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente

t.g.sierink@student.utwente.nl

Abstract—The rise of searchable encryption solutions brings
with it a rise of new security needs. In the context of search-
able encryption, specifically 2D range query databases, passive
reconstruction attacks have been proven to be effective in
various situations. This paper set out to discover what extra
possibilities an active attacker has, and how these might applied to
improve chances of fully reconstructing a database. In this study,
experiments have been performed on a 30x30 database. These
are under the assumption that the scheme has not mitigated
leakage and that there is no forward secrecy. Of these methods
found, replaying queries and injection show to be capable of
query reconstruction. Should the active attacker have access
to the encrypted values, there is no additional advantage for
them to make use of. Targeted record injection in and close
to the databases’ corners show an increased chance of full
reconstruction, especially after post processing. The average
Mean Squared Error per reconstruction is lower for injected
databases, improving the expected accuracy should the adversary
have to pick a random database from the returned reconstruction
set. For a specific injection method, this set is reduced in size by
around 10%. Overall, an active attacker has a clear, additional
advantage over a passive attacker for all injection methods for a
point density of around 50-55 points. This effect is consistent for
other square domain sizes besides 30x30, with different relative
densities.

I. INTRODUCTION

For the past years, the amount of companies and individuals
that make use of cloud storage has been increasing. This
growth will continue, as the market is projected to grow 450%
from 2022 to 2029 [1]. To ensure security of the data stored, it
may be stored encrypted. These remote, encrypted databases
offer a great storage capacity, and even provide functionality
as some basic operations and queries over the stored data.
However, with the need of remote storage increasing, so does
the dependence on its security. To aid in secure querying
of these databases, searchable symmetric encryption (SSE)
[2] classically allows a user to send keyword queries to a
server. After this, other schemes emerged supporting multi-
keyword queries or range queries over numerical data. Ex-
amples of range query schemes are MRQED, a multi-range
query scheme, or the works of Kerschbaum et al. and Boneh
and Waters [3]–[5]. Several (cloud) security providers such as
Ironcore Labs, Crypteron, and Lookout offer applications of
searchable encryption [6]–[8].

An important byproduct of searchable encryption is leakage.
This is the result of the nature of querying databases, where
a query is followed by a reply. From both the query and
a reply, information can be deduced, therefore referred to
as (information) leakage. It may be mitigated, but this is at

a cost of efficiency. In the context of encrypted databases
there is the minimal assumption that an adversary, e.g. an
untrusted server, can indeed observe incoming queries and
outgoing responses, all encrypted. Primarily, leakage is either
search pattern leakage or access pattern leakage. An SSE
scheme leaks the search pattern if an adversary can identify
and thus recognize and differentiate each unique query from
another. The access pattern is leaked when an adversary
observes a query’s respective response, i.e. every data record
corresponding to an unknown query.

Using said leakages, SSE schemes can be attacked in several
ways. Both databases and queries may be reconstructed [9],
[10]. Database reconstruction may be performed over several
dimensions i.e. ‘columns’ of the database. For instance, a
2D database consists of an arbitrary number of records, each
holding two values. Reconstructing such a database means
to produce databases that share the same leakages as the
original database. These reconstructed databases combined
form families of equivalent databases, indistinguishable in
terms of leakage.

Reconstructions can be either Full Database Reconstruc-
tion (FDR) or Approximate Database Reconstruction (ADR).
FDR aims to deliver reconstructions, containing each original
record. This is the goal, however, not the guaranteed result due
to general properties of databases and certain reconstruction
methods. ADR does not aim to return a complete copy,
but allows an attacker to have a given (un)certainty of the
reconstructed databases, and therefore requires less leakage of
the original database. Again, such leakage could be the access
pattern or search pattern, defined earlier. However, derived
information such as the query (frequency) distribution and
database size can also aid in particular reconstruction methods
[9], [11], [12]. The query distribution helps ‘contextualize’
the search and access patterns. If the distribution is uniform,
for instance, the attacker knows that the access pattern is
extracted at a fair distribution. The database size helps in a
similar manner: the amount of possible queries depends on
the database’s domain, for example.

Concerning reconstruction on 2D range query databases,
Markatou, Falzon, and Cash have shown methods for FDR
(FMC20) [13] and ADR [14]. The leakage required can be a
combination of different types and combinations of leakages:
(1) the access pattern and known query distribution, (2)
the search pattern and known query distribution, or (3) the
search pattern and a known database size. These reconstruction
methods on 2D range query databases rely on concise cal-
culations and processes, and can be explained geometrically.

3

This allows it to be visualized clearly too. However, all range
query database reconstruction attacks, including the above,
assume a passive attacker. Therefore, this work studies what
implications the extension of the attacker model to an active
attacker may have. Specifically, this research aims to build
upon the FMC20 attack. As such, this paper set out to
answer the following question: To what extent can an active
attacker deploy techniques that benefit 2D range database
reconstruction?

By assessing four different active techniques (‘Query re-
play’, ‘Database manipulation’, ‘Injection’, and ‘Fingerprint-
ing’), on randomly generated databases of domain [30, 30] with
varying densities, the following insights are achieved.

Insights
• Two targeted injection attacks on databases containing

up to 55 records give the adversary an advantage in
FDR, reconstructing the database without needing any
post-processing. This advantage is higher probability of
successful FDR and decreases as the volume of 55 points
is approached.

• All targeted injection attacks on databases containing
55 points or less followed by post-processing offer
higher probabilities of successful FDR, even compared
to post-processing where an existing point in the original
database is known.

• Targeted injection attacks on any database will reduce the
amount of components to one. This may reduce the size
of the set of equivalent databases returned, depending on
what points are injected.

• The injection of records not only aids in database re-
construction, but also allows query reconstruction and
knowledge to be gained on database alterations.

We first go over related work of attacks and mitigations in
the field of database reconstruction attacks in Section II. The
preliminaries on 2D range database reconstruction attacks are
discussed in Section III, and what possibilities these offer for
an active attacker in Section V. Two of these are assessed,
of which the results are shown in VI. This research is then
discussed in Section VII, and finally the conclusion can be
found in Section VIII

II. RELATED WORK

Grubbs et al. have developed two ‘sacrificial ϵ-ADR’ al-
gorithms for range queries [12]. This method only relies on
the precision ϵ, not on the amount of records R, making it
scale-free. Furthermore, if ϵ = 1

R , the algorithm is capable of
reconstructing the complete database. This approach extends
research by Kellaris et al. [9], who pioneered an FDR in
1D, given access pattern leakage, namely with at least N4

amount of queries, where N is the 1D domain size. And even
better, N2 logN for dense databases. It mainly achieves this
by ordering the entries. By comparing subsets and supersets,
i.e. sets that include or exclude one specific record, that one
record is ought to be the closest to a domain endpoint.

Lacharité et al. have improved this further to only needing
to observe N logN + O(N) queries, given that the database

is dense [15]. This method sorts the dense database with the
use of rank information leakage. The same approach enables
an approximate reconstruction attack. Furthermore, Markatou
et al. [16] contribute with an FDR attack that makes use of
search pattern leakage, independent of query distribution. With
the aid of PQ-trees and similar rank information leakage, the
order is reconstructed. Then, sets of equations related to the
ordering must be solved to fully reconstruct the database with
a high probability.

Many other attacks on searchable encryption have been de-
veloped, specifically on databases supporting keyword queries.
Such attacks can be scale analysis attacks [17], capable of
finding the absence or presence a shared keyword among files,
keyword guessing attacks [18], capturing valid trapdoors and
performs off-line guessing until there is a match. In inference
attacks [19] such as IKK attacks [20], the attacker aims to
intercept queries and indices, and tries to find a sequence of
indices such that these are part of the same query trapdoor.
Moreover, chosen document attacks by an active attacker can
be applied to recover queries or keywords [21]. Apart from
keyword queries, methods for full reconstruction of databases
supporting one-dimensional k-Nearest Neighbor queries have
been found by Kournapoulos, given that the access pattern
contains ordered responses and additional information is avail-
able. This approach uses Voronoi diagrams, aiding in the
analysis of the database, those supporting k-NN specifically
[22]. Later, Kornapoulos presented k-NN reconstruction at-
tacks that are distribution-agnostic and are successful using
a scheme’s search pattern [23]. It improves an earlier attack
with a different Voronoin-based algorithm and employs size
estimators and general optimization.

Several methods have been developed to mitigate or reduce
various leakages. ‘Pancake’ for example, applies so-called fre-
quency smoothing to transform access pattern into a uniform,
encrypted data storage [24]. Another secondary leakage based
on the access pattern is the number of responses given a query:
volume. Patel et al. define definition of volume-hiding leakage
functions [25]. Furthermore, SEAL is a family of devised SSE
schemes with adjustable leakage, to be defined at setup [26].
Besides mitigating leakage, forward secrecy is a mitigation
that prevents file-injection attacks, and can help against the
replaying of queries [27], [28]. After an alteration of the
database, queries created beforehand are no longer compatible
with the database.

III. DATABASE RECONSTRUCTION

In this section, we first discuss the underlying theories and
concepts that aid the FMC20 attack, before diving into the
active attacks that could aid this database reconstruction.

2D databases can be easily visualized as a grid, where each
integer point on the grid represents a valid possible entry in
the database. As such, a database DB can be described as a
2-dimensional domain D with

D = [N0]× [N1], where [Ni] = {1, 2 ... Ni}

If the domain sizes of D are equal, N0 = N1, we say that
D is square. Furthermore, we define a point on the grid w =

4

(w0, w1). The main diagonal of any grid is the line from (0, 0)
to (N0+1, N1+1). Mind that this means that the database does
not span the entire grid: the grid has domain [0, Ni+1] in the i-
th dimension, whereas the database has domain [1, Ni]. This is
visualized in Figure 1, where the database domain is confined
by bold grid lines. We define the database DB over domain
D as a R-tuple of integer points lying on the grid points of
D. These 2D integer points are referred to as records. Each
record has a matching ID j ∈ [R]. Therefore, the record’s
values are DB[j]. Figure 2 shows an example of a 10-by-10
database visualized as such a grid.

Database density, or how ‘filled’ a database is, is a concept
that is hard to grasp in qualitative ways. Generally, literature
speaks of ‘dens(er)’ or ‘spars(er)’ without speaking of exact
density. A general notion of when a database is purely ‘dense’
does exist. A database is dense when every domain value of
each dimension is found in at least one record. For matrices
in mathematics, density equals the ratio between the number
of records in the database divided by total amount of unique
possible points within the database.

An important concept that is part of the FMC20 attack
is dominance and anti-dominance. It shows the positional
relationship between points. A point w ∈ D dominates x ∈ D
if w is to the top right of x. We say w ⪰ x. Anti-dominance
does not mean the exact opposite. Rather, a point w ∈ D anti-
dominates x ∈ D if w is to the top left of x. We say w ⪰α x,
of which an example is shown in Figure 1.

Definition III.1 (Dominance and anti-dominance).

w ⪰ x : w0 ≥ x0 ∧ w1 ≥ x1

w ⪰α x : w0 ≤ x0 ∧ w1 ≥ x1

As previously mentioned, database DB supports range
queries. Examples of queries can be found in Figure 2,
returning all points matching the queries’ domains [2-4]x[3-8]
and [5-10]x[8-10].

Definition III.2 (Range queries).

q = (c, d) ∈ D2 : d ⪰ c

Subsequently, the database responses with all entries match-
ing the query.

Definition III.3 (Response).

Resp(DB, q) = {j ∈ [R] : d ⪰ DB[j] ⪰ c}

The response multiset of DB, RM(DB), is the multiset of
responses to all possible queries qi, meaning the multiset of the
entire access pattern. Since this multiset may contain queries
returning the same records, we also define the response set
RS.

Definition III.4 (Response multiset and response set).

RM(DB) = { {Resp(DB, qi)} }

RS(DB) = set(RM(DB))

Fig. 1. Example of a grid visualization of a database with sizes N0

and N1. w′ is the reflection of w. v dominates w, x anti-dominates
w and v.

Fig. 2. Example of a 10-by-10 database and queries.

Fig. 3. Example of a dominance graph (blue arrows) and an anti-
dominance graph (red arrows). The canonical antichain partition con-
sists of antichains {{w0}, {w1, w2, w3}, {w4}, {w5, w6, w7}, {w8}}

5

Related to dominance are chains and antichains.

Definition III.5 (Chains and graphs). A subset of points S
from grid D form a chain if any point is dominant with
respect to another point. An antichain is a collection of points
where any point is anti-dominant to any other point. A point’s
height is the length of the longest chain where it is ‘most
(anti-)dominant’. The collection of points of the same height
make up a partition in the form of an anti-chains: the canonical
antichain partition. An example of this can be found below in
Figure 3.

Another metric used for database analysis is the query
density of a point x in D. This number represents in how
many unique queries this point is included in the response,
i.e. lies within the query domain.

Definition III.6 (Query density).

ρx = |{(c, d) ∈ D2 : d ⪰ x ⪰ c}|, x ∈ D

This can be geometrically determined by:

ρx = x0x1(N0 + 1− x0)(N1 + 1− x1)

For a pair of points (x, y) where y ⪰ x:

ρx,y = |{(c, d) ∈ D2 : d ⪰ x, y ⪰ c}|, x, y ∈ D

ρx,y = x0x1(N0 + 1− y0)(N1 + 1− y1)

Definition III.7 (Reflection). The reflection (along the main
diagonal) of w, w′ or σ(w) expressing reflection as a function,
is calculated as

reflected point w′ = (w′
0, w

′
1)

w′
0 = w1 ·

N0 + 1

N1 + 1
, w′

1 = w0 ·
N1 + 1

N0 + 1

A database can be divided into components, of which an
example can be seen in Figure 4. Such a component contains
all points in the database that themselves or their reflections
both dominate or are dominated by all other points of the
database that are not in the same component. Any database can
uniquely be divided into components. This does not mean that
there is a one-to-one correspondence, however. Furthermore,
reflecting any number or combination of components will give
an equivalent database.

Definition III.8 (Components).

q ⪰ p, σ(p) ∨ p, σ(p) ⪰ q, ∀p ∈ C, ∀q /∈ C, p, q ∈ DB

With the knowledge gained by the above tools, concepts
and calculations, the result will not be one single reconstructed
database. As will now be explained, after reconstruction, there
exist families of equivalent databases with the same properties.

A reconstructed database is not necessarily an exact copy
of the original database. Several databases can share the
same leakage and are in that regard indistinguishable. These
databases are referred to as equivalent databases, and make up
the set E(DB). Such a set is also returned by a reconstruction
attack.

Fig. 4. Example of components in a database. Each component Ci may be
reflected, resulting in an equivalent database.

Definition III.9 (Equivalence with response to the response
multiset). Two databases DB and DB′ are equivalent if and only
if RM(DB) = RM(DB′). In other words, DB and DB′ are both
within E(DB).

A database rotated or flipped, following the eight rigid
motions of a square remains equivalent to the original database
with response to the multiset. One can imagine that manipulat-
ing the grid in this way keeps all relations between the records
intact. Alternatively, one could also imagine all queries to be
flipped. This would then still result in the same leakage pattern,
since all possible queries are still queried, purely by geometry:
every possible rectangle, line and point on the grid is a valid
query.

Another way to create equivalent databases with respect to
the response multiset is the reflection of points and compo-
nents. It is important to remember that FDR makes use of this
multiset rather than the set. Only equivalencies with respect
to the multiset are indistinguishable by the attack.

IV. ATTACKER MODEL

In cyber security research, it is key to have a clear, concise
attacker model for which all findings are based on. A scheme
or technique is only defined to be secure with respect to the
context it is designed in. On a high, abstract level, an attacker
is either active or passive.

A passive attacker, be it an observer of all traffic or a
malicious server, merely observes, and does not modify, replay,
or send. The opposite is true for an active attacker. An
active attacker may perform several actions, such as spoofing,
replay attacks, or Denial-of-Service attacks. This scenario is
closely related to that of Multi-Party Computation, where
users together interact with a server to perform operations
rather than queries on encrypted data, as described by Oded
Goldreich [29].

Let us now redefine the notions of passive and active in
the context of database attacks. The definition for a passive
attacker can be left untouched: a passive attacker observes
queries by users, replies, and local encrypted values, can store
this data and perform operations on these, such as computing a

6

response multiset. An active attacker can do more. Suppose the
active attacker has direct access to the encrypted database. The
injection of records in the database would fit the description,
just like the chosen document attack by Cash et al. [21], and
so is the act of replaying queries to the database, assuming
the lack of forward secrecy. Forward secrecy would prevent
this, since newly added records are not valid with previously
created queries. Locally, however, nothing would prevent this
adversary to manipulate the database, like deleting, switching
or copying values, or transforming the data in any other way.

To put this attack in context, a common example used
in attacks on 2D range databases is geo-location, where the
records hold longitude and latitude. However, any two integer
properties are valid. Non-integer values can be multiplied by
a factor of 10x, where a higher integer x will offer a higher
precision, since all decimals are removed.

In the next chapter, we will go over how the model and
the shift from passive to active might allow new or improved
techniques aiding FMC20.

V. ATTACKS

A. Query Replay

Given that there is no forward secrecy implemented in the
database, an adversary would be able to record and save
observed query tokens and re-query the (altered) database
with these. In the case of absence, the adversary can gain
information in various ways. First, imagine that the database
is an offline copy: the adversary knows that there will be no
modifications to the database. Injecting a point (a,b) in the
database, followed by a query using a saved token, allows the
adversary to find information on the query’s search range. The
process would be as follows.

1) Query the database using a query as described
in Definition III.2, with query bounds
clower, cupper, dlower, and dupper

2) Record all returned IDs.
3) Inject record (p, q).
4) Query the database with the same token again.
5) Compare the set or returned IDs with the previous set.

a) Are the sets the equal?
p ≤ clower ∨ cupper ≤ p∨ dlower ≤ c∨ d ≤ dupper

b) Are the sets unequal i.e. the injected point is
included, then clower ≤ p ≤ cupper ∧ dlower ≤
q ≤ dupper.

Using this, the attacker can iteratively gain more and more
knowledge on the limits of the query. The determining of a
query’s range is out of this paper’s scope, from a first view.
However, after gaining knowledge on query ranges, there are
implications for database records as well, besides information
about records that lie within the now known range. For
example, should the database be updated with new data, then
recognizing the addition of a new point and its approximate
coordinates is very powerful. For instance, when keeping up
with real-time location data.

The replaying of queries is of use in the injection attacks.
The queries can be recorded before implementing the injection
attack, meaning that the adversary does not need to wait for

the entire new injected access pattern to be observed again.
They could just re-query the entire database themselves.

This query reconstruction attack is different compared to
earlier file-injection attacks, where a file containing keywords
of interest is injected in an encrypted database [30]. This
2D range query method means that injection can be more
approximate, since the injected point can be anywhere within
the query range, opposed to being an exact keyword match.
Moreover, this approach is based on recursively narrowing
down on the query’s exact range, with each injection gaining
information on the query’s range.

B. Database manipulation

Following the goal of easing reconstruction, or to guarantee
correctness of reconstruction, the attacker can pre-process the
database, by manipulating existing records. Essential about
database manipulation is that there is no new information
added. These manipulations are under the assumption that the
adversary has access to the local encrypted values in storage,
for example. From here, there are several ways the adversary
might try to pre-process the data.

Firstly, the x- and y-values can be swapped in this situation.
This will lead to one of the following two cases. If the
database is square, then this will have no practical effect.
As stated in and after definition III.9, all rigid motions of
the square are equivalent in terms of leakage, and flipping
a square diagonally is one of these motions. If the database
is not square, then the symmetry axis is not along the line
x = y, but rather the line from (1,1) to (xmax, ymax). Flipping
values of such a non-square database will then not be an
equivalent database anymore. All reconstructions based on this
database can subsequently no longer be assumed to also be
reconstructions of the original.

Secondly, an adversary could copy one value to the other
column. This would project a point to the line x=y vertically
or horizontally, depending on whether the x-value or y-value
has been copied, respectively. This method will not aid in
reconstruction as this simply removes a dimension, and still
the database might not be correctly reconstructed. The rela-
tionships between all the copied points will have been apparent
in the response multiset in the first place. Note that copying
values to other rows deletes information as well, creating a
whole new point. The original value that has been replaced
cannot be recovered again. A solution to this would be to
create two copies of the database, one containing the x-values,
and the other y-values. However, still no advantage is gained.

C. Injection

As mentioned in Section III, an attacker attempting to
reconstruct the database will retrieve a family of equivalent
databases, E(DB), containing databases that share the same
access pattern as the original database. The attacker will have
no knowledge whether a database amongst these is correct, and
if so, which database this is. The idea of record injection is to
merely increase the attacker’s chances of indeed reconstructing
a database correctly, i.e. the fully reconstructed database is
one of the reconstructions returned. For now we only look

7

at the injection of points and the resulting output of the
reconstruction process. In the following subsection, we look at
increasing chances with an extended injection attack referred
to as ‘fingerprinting’.

As mentioned in the preliminaries, a database consists of
one or more components. These components are parts of the
database that can be individually reflected in any configuration.
These reflections do not alter the response multiset, keeping
the reconstruction valid relative to the original database. Since
the attacker still needs to check every returned database
for correctness, it is wise to reduce the size of E(DB), for
instance by reducing the amount of reflectable components.
To eliminate components, the attacker can attempt alter the
database such that there is only one component left. This is
done by merging all components into one single component,
fixing the amount of possible databases (E(DB)) returned
based on component reflections from 2n to 2, where n is the
amount of components. As can be seen in Figure 5, based on
the original database of Figure 4, instead of 8 (23) reflection
possibilities, all components are merged into one single re-
flectable component C’0 by injecting a point in the top left:
[1, ymax], later referred to as TL1. Alternatively, a combination
of one or multiple points of the following properties will merge
all components. To achieve a single component by injection,
either one point must lie at [1, ymax], or at least one point
must lie on the line from [1, ymax − 1] to [1, ⌈ymax/2⌉], and
one on the line from [2, ymax] to [⌈xmax/2⌉, ymax].

Fig. 5. Injected database with a point in the top left, merging the three original
components indicated by the red, straight squares, into one single component,
the blue dashed square. Alternatively, a set of overlapping components

Furthermore, the injection of random points to the database
could be of help to introduce more information, contributing
to more information between points to be found in the access
pattern. It improves the density of the database, theoretically
improving the accuracy of reconstruction as shown by Marka-
tou et al. [13].

D. Fingerprinting
The reconstruction attack returns various database recon-

structions, and at face value, the attacker has no way to tell
which one is correct. With knowledge of record values, the at-
tacker can check the reconstructions for the appearance of such

a point. However, this does not give guarantees of the database
being an exact match. Recalling the fact that a database is
equivalent through every rigid motion of the square, a different
record might land on the exact point, giving the attacker a
false positive. Realizing that there is no guarantee of knowing
a point already existing within the database, injecting known
points offers a solution here as well. After the injection of
these points, the attacker can then rotate or transform the
reconstruction until all known points that are injected are
matched. Moreover, injecting points in an asymmetric pattern
allows the attacker to eliminate incorrect symmetries of the
database. This method will be tested using the L shaped set
of points [(1, 1), (1, 2), (2, 1), (3, 1)] (BL4) and a reduced set
[(2, 1), (3, 1)] (BL2) and [(1, ymax − 1), (3, ymax)] (TL2). A
set such as [(1, 1), (1, 2), (2, 1)] will be less ideal, since this
triangle shape is symmetric across the diagonal of a square
database and will therefore not be used. In Figure 2, these
injection ‘shapes’ can be found.

VI. RESULTS

In this section, we will look at the experimental results
found for attacks V-C and V-D. I would like to acknowledge
the efforts of Dominique Dittert and Janes Rausch from TU
Darmstad, who wrote an FMC20 extension to the open-source
framework ‘LEAKER’ [31], enabling this research. It assumes
the entire access pattern is known. The code used to obtain
these results is not the same code as performed by Markatou
et al. The LEAKER framework excluding the FMC20 attack
can be found on Github, as well as the code used to obtain the
results. 1 2 All methods have been tested on 100 randomly gen-
erated databases with a [30,30] domain of increasing densities,
5 through 100 points. The domain size was chosen for practical
reasons, as required memory storage increases rapidly with
the domain. Figure 6 shows the memory usage and runtime
for a single database reconstruction attack with minimal and
maximal density, 5 and 100 records respectively. These results
are consistent with other 2D range query reconstruction testing
[32]. Furthermore, the injection methods are compared to
random control methods: the injection of 1 through 4 random
points (RI1, RI2, RI3, RI4), and the knowledge of 1 through
4 randomly known existing points (K1, K2, K3, K4).

Of these methods, several metrics will be presented in
this section. Interesting to look at first is the amount of
successfully reconstructed databases, the reconstruction rate.
It shows whether a set of reconstructions is returned of which
at least one database is a fully correct reconstruction. This
metric divided by 100% gives us a secondary metric of the
success rate.

When we look at the amount of successfully reconstructed
databases in Figure 7, meaning excluding post-processing,
we observe a clear trend. K1-4 and the ‘original’ scores fall
perfectly in line, since these are the exact same databases
and there is no post-processing step making use of the extra
information. Apart from that, we observe that two injection
methods, BL2 and BL4, improve the chances of reconstructing

1https://github.com/encryptogroup/LEAKER
2https://github.com/TSierink/ActiveFMC20/

8

Fig. 6. Runtime and peak memory usage for varying domain sizes and
record numbers for a single reconstruction attack using LEAKER’s FMC20
implementation.

the database given that it is sparser than about 50-55 records.
TL1 and TL2 do not show this behaviour. These perform
consistently worse, to later converge with the general trend
as the database grows denser. The true additional advantage
of injection versus a known point lies within the area between
the injection methods and K1-4. This means that up to 50-55
points in this specific database domain, injection of a record
is more effective than knowledge on an existing record, and
the ‘original’ passive attack.

Fig. 7. Correctly reconstructed databases for each method, for increasing
database density without post-processing.

Should the adversary not be able to apply post-processing,
they would need to handle a brute force approach of picking
a random reconstruction. To assess the expected error of this
randomly chosen database, Figures 8 and 9 show the average
Mean Squared Error (MSE) per reconstruction per database.
These results show that both the location of injection and
the amount of injected points contribute to a reconstruction’s
MSE. The injection methods all show large values for sparser

databases. This was to be expected, as the injection of points
in a sparse database has more impact. Namely, to be inaccurate
on one in five points is more impactful than one in a hundred.
Furthermore, recall that reconstructions could be any rigid
motion of the square. Since the points are injected in a corner,
they are have the greatest distance from the midpoint. Thus,
after a rotation or reflection, they find themselves further
from their original location, explaining BL4’s inaccuracy.
More concretely, for sparsely densed databases with up to
40 records, we see that K1-4 have the lowest average MSE
per database in the returned E(DB). Generally for denser
databases, we find that the average is slightly lower than the
regular reconstructions, with TL1 performing best, and BL2
worst for dense databases.

Fig. 8. Zoomed-out view of the MSE for each method, for increasing database
density.

Fig. 9. Zoomed-in view of the MSE for each method (excluding BL4), for
increasing database density.

Another factor contributing to the ‘brute-forceability’ and
ease of attack is the amount of equivalent reconstructions being

9

returned. As theorized in Section V-C, injecting points in the
top left will reduce the amount of components i.e. the size
of E(DB), from its maximum of 2n, where n denotes the
number of components, to just 2. Take not that there is still
an additional factor of 8 for each rigid motion. The changes
in |E(DB)| can be observed in Figure 10 where on average,
the attack returns around 5 reconstructions after TL2 injection,
consistently lower than the original database’s reconstruction.
This shows behaviour as theorized in attack V-C. It must be
noted, again, that the returned set is not guaranteed to hold a
correct reconstruction. The difference in the results of TL2
and TL1 lies in the fact that a corner point such as TL1
can be rotated and possibly still suit the access pattern. For
example, imagine a database where each corner contains a
point. A similar database with asymmetric ‘figures’ in each
corner will not have the same access pattern when rotated.
Moreover, small scale experiments show that for any pair of
points merging the components, the size of the returned set is
lower than the uninjected database.

BL4 adds reconstructions compared to no injection. For
BL4, this difference of 1 can be traced to the fact that the
figure in itself can form one single component, given there is
no point lying above its entirety.

Fig. 10. Number of total reconstructions per 100 iterations of a random
database for each method, for increasing database density.

As shown in the final results in Figure 11, post-processing
has a clear positive effect on database reconstruction. It can be
seen that there is a distinction between three groups. Firstly,
regular passive reconstruction, which is the same as the curve
in Figure 7, as this control case does not have any known or
injected points post-processing can be applied to. The middle
group contains all the reconstruction rates of the methods
that either have knowledge on 1-4 randomly chosen points,
or that have injected 1-4 random points. The scores of K1,
K2, K3 and K4 coincide. The third group is made up from
the custom methods: TL1, TL2, BL2 and BL4. All these
methods converge at a density of 25-30 points. Gradually,
the ‘regular’ control method drops to a reconstruction rate of
0%, whereas the others approach or equal 100%. The targeted

injected methods get to this 100% fastest. The true additional
advantage of injection versus a known point lies within the
area between the injection methods and K1-4. This means that
up to 50-55 points in this specific database domain, injection
is more effective than knowledge on a record. This limit
of advantage between known points and injected points for
various domain sizes is shown in Figure 12. Here, the square
root of the amount of points, or density is plotted against
domain sizes. This straight line shows the square relationship
between domain size and density, meaning that the limit of
said advantage is linear with the database’s density.

Fig. 11. Correctly reconstructed databases for each method, for increasing
database density with post-processing.

Fig. 12. Linear relationship between the square roots of highest number of
points where injection is more effective than knowledge on points for different
square domain size.

10

VII. DISCUSSION

On several points, remarks are necessary to either nuance
the findings, or sketch a clear context wherein the results
were found. Firstly, the ‘LEAKER’ code used to reconstruct
databases used assumes that every response for every query is
known. This means that the access pattern must be complete,
including the set of empty responses. The latter could be
regarded as unconventional, since the access pattern generally
only contains the responses, not lack thereof. Should there
be mitigations in place that prevent the leakage of the access
pattern, then FMC20 is feasable. Moreover, the active attacks
depend on the absence of forward secrecy. Furthermore, this
library is not an exact copy of what FMC performed in their
own paper, it is an implementation. Runtime and memory
usage could differ, and exact results could differ. However,
both relative effects still hold. Thirdly, targeted injection
attacks in the top left, top right, or bottom right, require some
knowledge of the database’s domain, making this an attack not
solely based on leakage. This could be roughly approximated
by either the size of the search pattern or the size of the access
pattern. Lastly, the variability between several test runs of 100
iterations still show a 5-10% variability in reconstruction rate.
These hiccups can be seen in the results, but would decrease by
volume. Most of all, this proves how much the specific layout
of points on the grid determines the ease of reconstruction, or
for example the amount of components.

VIII. CONCLUSION

An active attacker can deploy several techniques based on
the knowledge and access they have. Firstly, the recording and
repeating of queries discussed in Section V-A could be very
interesting and powerful in both learning about queries and
the addition of points in the database.

As an active attack, database manipulation found in Section
V-B does not provide an advantage to the active attacker. Either
the database is altered in such a way that it is no longer
equivalent, or information is lost and is not retrievable after
reconstruction.

‘Fingerprinting’ as discussed in Section V-D shows to be
an effective strategy to more reliably reconstruct sparsely
densed databases, especially when points can be injected in
the database’s corners. This requires additional information
on the database’s domain, apart when injecting the bottom
left corner. Without the post processing of Section V-C, only
points injected in the bottom left and bottom right corner are
more effective. These points are dominated by, or dominate all
existing points, respectively. This lengthens dominance chains,
and furthermore introduces dominance relations for every
existing points. Future work must show whether these database
concepts do indeed directly improve database reconstruction.
Random point injection has a similar effect to an attacker’s
chances of reconstructing as knowing an existing point within
the database, post and pre processing. The difference is that it
introduces more information on point’s location, meaning that
incorrect reconstructions are more incorrect too, as there are
more points to be mistaken.

In terms of number of reconstructions, the size of set E(DB)
the attacker needs to check for possibly correct reconstruc-
tions, only TL2 and other multi-point injections as described in
subsection V-C reduce the amount of reconstructions returned.

For future work, different domain sizes could be tested.
This allows for experimenting on larger empty spaces within
a database, where an injection might be even more powerful.
Moreover, optimizing would help researching these larger
domains. The memory usage and run-time are all related to
the number of unique queries exist for a database. However,
with knowledge on the presence and absence of points, or
perhaps neglecting points, not all regions would need to
be queried. Furthermore, future work could test more cho-
sen injection configurations, or develop completely different
strategies. Ideas include a contextual approach, using proba-
bilities connected to possible point locations combined with
approximators as seen in ADR, but with known points as
input. Another idea is to inject or use known non-corner
points as new corners of smaller ‘sub-databases’, which result
from splitting the grid up based on these points. Lastly,
interesting future work lies in determining feasibility of these
actives approaches in multidimensional reconstruction attacks,
because the current generic multi-dimensional attack does not
rely on the access pattern.

REFERENCES

[1] Fortune Business Insights, “Cloud storage market size, share &
covid-19 impact analysis,” 2022. [Online]. Available: https://www.
fortunebusinessinsights.com/cloud-storage-market-102773

[2] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proceeding 2000 IEEE Symposium on Security
and Privacy. S P 2000, 2000, pp. 44–55.

[3] E. Shi, J. Bethencourt, T.-H. H. Chan, D. Song, and A. Perrig, “Multi-
dimensional range query over encrypted data,” in 2007 IEEE Symposium
on Security and Privacy (SP ’07), 2007, pp. 350–364.

[4] F. Kerschbaum and A. Tueno, “An efficiently searchable encrypted data
structure for range queries,” CoRR, vol. abs/1709.09314, 2017.

[5] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in Proceedings of the 4th Conference on Theory of
Cryptography, ser. TCC’07. Berlin, Heidelberg: Springer-Verlag, 2007,
p. 535–554.

[6] IronCore Labs, “Encrypted search - ironcore labs,” https://ironcorelabs.
com/docs/data-control-platform/concepts/encrypted-search/, 2021, (Ac-
cessed on 02/28/2022).

[7] Crypteron, “Crypteron introduces secure, searchable
encryption : Crypteron,” https://www.crypteron.com/blog/
practical-searchable-encryption-and-security/, 2020, (Accessed on
02/28/2022).

[8] Lookout, “lookout-casb-platform-overview-wp-us.pdf,”
https://www.lookout.com/documents/whitepapers/us/
lookout-casb-platform-overview-wp-us.pdf, 2021, (Accessed on
02/28/2022).

[9] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic
attacks on secure outsourced databases,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 1329–1340. [Online]. Available:
https://doi.org/10.1145/2976749.2978386

[10] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Inference attack
against encrypted range queries on outsourced databases,” New
York, NY, USA, p. 235–246, 2014. [Online]. Available: https:
//doi-org.ezproxy2.utwente.nl/10.1145/2557547.2557561

[11] P. Grubbs, M.-S. Lacharite, B. Minaud, and K. G. Paterson, “Pump
up the volume: Practical database reconstruction from volume leakage
on range queries,” New York, NY, USA, p. 315–331, 2018. [Online].
Available: https://doi.org/10.1145/3243734.3243864

https://www.fortunebusinessinsights.com/cloud-storage-market-102773
https://www.fortunebusinessinsights.com/cloud-storage-market-102773
https://ironcorelabs.com/docs/data-control-platform/concepts/encrypted-search/
https://ironcorelabs.com/docs/data-control-platform/concepts/encrypted-search/
https://www.crypteron.com/blog/practical-searchable-encryption-and-security/
https://www.crypteron.com/blog/practical-searchable-encryption-and-security/
https://www.lookout.com/documents/whitepapers/us/lookout-casb-platform-overview-wp-us.pdf
https://www.lookout.com/documents/whitepapers/us/lookout-casb-platform-overview-wp-us.pdf
https://doi.org/10.1145/2976749.2978386
https://doi-org.ezproxy2.utwente.nl/10.1145/2557547.2557561
https://doi-org.ezproxy2.utwente.nl/10.1145/2557547.2557561
https://doi.org/10.1145/3243734.3243864

11

[12] P. Grubbs, M.-S. Lacharité, B. Minaud, and K. G. Paterson, “Learning to
reconstruct: Statistical learning theory and encrypted database attacks,”
in 2019 IEEE Symposium on Security and Privacy (SP), 2019, pp. 1067–
1083.

[13] F. Falzon, E. A. Markatou, Akshima, D. Cash, A. Rivkin, J. Stern,
and R. Tamassia, Full Database R+ econstruction in Two Dimensions.
New York, NY, USA: Association for Computing Machinery, 2020, p.
443–460. [Online]. Available: https://doi.org/10.1145/3372297.3417275

[14] E. A. Markatou, F. Falzon, R. Tamassia, and W. Schor, “Reconstructing
with less: Leakage abuse attacks in two dimensions,” in Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 2243–2261. [Online]. Available:
https://doi.org/10.1145/3460120.3484552

[15] M.-S. Lacharité, B. Minaud, and K. G. Paterson, “Improved reconstruc-
tion attacks on encrypted data using range query leakage,” in 2018 IEEE
Symposium on Security and Privacy (SP), 2018, pp. 297–314.

[16] E. A. Markatou and R. Tamassia, “Full database reconstruction
with access and search pattern leakage,” in Information Security
- 22nd International Conference, ISC 2019, New York City, NY,
USA, September 16-18, 2019, Proceedings, ser. Lecture Notes in
Computer Science, Z. Lin, C. Papamanthou, and M. Polychronakis,
Eds., vol. 11723. Springer, 2019, pp. 25–43. [Online]. Available:
https://doi.org/10.1007/978-3-030-30215-3 2

[17] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-
keyword ranked search over encrypted cloud data,” IEEE Transactions
on Parallel and Distributed Systems, vol. 25, no. 1, pp. 222–233, 2014.

[18] J. W. Byun, H. S. Rhee, H.-A. Park, and D. H. Lee, “Off-line
keyword guessing attacks on recent keyword search schemes over
encrypted data,” in Proceedings of the Third VLDB International
Conference on Secure Data Management, ser. SDM’06. Berlin,
Heidelberg: Springer-Verlag, 2006, p. 75–83. [Online]. Available:
https://doi.org/10.1007/11844662 6

[19] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks
on property-preserving encrypted databases,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15. New York, NY, USA: Association for
Computing Machinery, 2015, p. 644–655. [Online]. Available: https:
//doi.org/10.1145/2810103.2813651

[20] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation,” in NDSS,
2012.

[21] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, Oct.
2015. [Online]. Available: https://doi.org/10.1145/2810103.2813700

[22] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia, “Data recovery
on encrypted databases with k-nearest neighbor query leakage,” in 2019
IEEE Symposium on Security and Privacy (SP), 2019, pp. 1033–1050.

[23] ——, “The state of the uniform: Attacks on encrypted databases beyond
the uniform query distribution,” in 2020 IEEE Symposium on Security
and Privacy (SP), 2020, pp. 1223–1240.

[24] P. Grubbs, A. Khandelwal, M.-S. Lacharité, L. Brown, L. Li, R. Agarwal,
and T. Ristenpart, “Pancake: Frequency smoothing for encrypted data
stores,” in 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, Aug. 2020, pp. 2451–2468. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/grubbs

[25] S. Patel, G. Persiano, K. Yeo, and M. Yung, “Mitigating leakage in
secure cloud-hosted data structures: Volume-hiding for multi-maps via
hashing,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 79–93.
[Online]. Available: https://doi.org/10.1145/3319535.3354213

[26] I. Demertzis, D. Papadopoulos, C. Papamanthou, and S. Shintre, “SEAL:
Attack mitigation for encrypted databases via adjustable leakage,” in
29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 2433–2450. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/demertzis

[27] C. Zuo, S.-F. Sun, J. K. Liu, J. Shao, J. Pieprzyk, and L. Xu, “Forward
and backward private dsse for range queries,” IEEE Transactions on
Dependable and Secure Computing, vol. 19, no. 1, pp. 328–338, 2022.

[28] J. Wang and S. S. M. Chow, “Forward and backward-secure range-
searchable symmetric encryption,” in POPETS, 2022, p. 28–48.

[29] O. Goldreich, Foundations of cryptography: Basic applications volume
2. Cambridge University Press, May 2004.

[30] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries
are belong to us: The power of File-Injection attacks on

searchable encryption,” in 25th USENIX Security Symposium (USENIX
Security 16). Austin, TX: USENIX Association, Aug. 2016,
pp. 707–720. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/zhang

[31] S. Kamara, A. Kati, T. Moataz, T. Schneider, A. Treiber, and M. Yonli,
“Sok: Cryptanalysis of encrypted search with leaker &x2013; a frame-
work for leakage attack evaluation on real-world data,” in 2022 IEEE
7th European Symposium on Security and Privacy (EuroS&P), 2022,
pp. 90–108.

[32] F. Falzon, E. A. Markatou, Z. Espiritu, and R. Tamassia, “Attacks on
encrypted range search schemes in multiple dimensions,” Cryptology
ePrint Archive, Paper 2022/090, 2022, https://eprint.iacr.org/2022/090.
[Online]. Available: https://eprint.iacr.org/2022/090

https://doi.org/10.1145/3372297.3417275
https://doi.org/10.1145/3460120.3484552
https://doi.org/10.1007/978-3-030-30215-3_2
https://doi.org/10.1007/11844662_6
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.1145/2810103.2813700
https://www.usenix.org/conference/usenixsecurity20/presentation/grubbs
https://doi.org/10.1145/3319535.3354213
https://www.usenix.org/conference/usenixsecurity20/presentation/demertzis
https://www.usenix.org/conference/usenixsecurity20/presentation/demertzis
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://eprint.iacr.org/2022/090
https://eprint.iacr.org/2022/090

	Introduction
	Related work
	Database Reconstruction
	Attacker Model
	Attacks
	Query Replay
	Database manipulation
	Injection
	Fingerprinting

	Results
	Discussion
	Conclusion
	References

