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Abstract

We present a method to train High-Dimensional Neural Network Potentials on
small (∼ 102 structures) training sets with significantly reduced computation time.
This is achieved using On-The-Fly Machine Learning Force Fields for data set gen-
eration. This method is analysed on diamond, a simple solid well-described by har-
monic lattice dynamics, and lithium nitride, both below and above its superionic
phase transition, exhibiting difficult-to-capture anharmonic lattice dynamics. The
High-Dimensional Neural Network Potential is shown to work well for diamond, but
fails to capture lithium diffusion in lithium nitride well enough to perform molecular
dynamics above the phase transition. We conclude with some promising improve-
ments that might yet lead to a correct description of superionic lithium nitride with
a significantly reduced training set.

Keywords: Molecular dynamics, machine learning, neural network potential, kernel
ridge regression, gaussian overlap potential, superionic conduction

1



Contents

1 Introduction 3

2 Theory 4
2.1 Molecular dynamics and potential energy regression . . . . . . . . . . . . . . 4

2.1.1 Behler-Parrinello Symmetry Functions . . . . . . . . . . . . . . . . . 5
2.2 High-Dimensional Neural Network Potential . . . . . . . . . . . . . . . . . . 6

2.2.1 HDNNP training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 On-The-Fly Gaussian Overlap Potential . . . . . . . . . . . . . . . . . . . . 8
2.4 On-The-Fly training sets and augmentation . . . . . . . . . . . . . . . . . . 9
2.5 Superionic conduction and lithium nitride . . . . . . . . . . . . . . . . . . . 9

3 Computational methods 10
3.1 On-The-Fly method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Training of the HDNNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Molecular dynamics using HDNNP . . . . . . . . . . . . . . . . . . . . . . . 11

4 Results and discussion 12
4.1 Diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.1 On-the-fly method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.2 Training of HDNNP . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Lithium nitride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 On-the-fly method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 Training of HDNNP . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Conclusions 23

6 Outlook 24

2



1 Introduction

Over the course of the last decade, the application of machine learning in molecular dy-
namics has seen a large increase in both efficiency and capability [1–6]. These techniques
allow for very fast atomic structure calculations by training on first-principles-based (FP)
electronic structure calculations.

The field of molecular dynamics (MD) concerns the nanoscopic simulation of classical
motion of atoms or molecules in a material. These trajectories, obtained through numerical
integration of Newtonian equations of motion, can then be used to calculate macroscopic
material properties like diffusivity, heat capacity, or phase transition temperatures. The
challenge is the calculation of atomic forces, which, before the advent of machine learning,
could either be obtained through expensive first-principles-based electron structure calcu-
lations like density-functional theory, or inaccurate (semi-)empirical force fields. Machine
learning has formed a bridge between these two extremes, allowing for both cheap and
accurate first-principles-based force fields.

In particular, the application of artificial neural networks has found much success in the
form of the High-Dimensional Neural Network Potential (HDNNP), originally proposed by
Behler and Parrinello in 2007 [1]. The core of this technique is a simple feedforward neural
network.

The training of the neural network typically requires a significant number of training
structures to sufficiently cover the phase space, regularly ranging in the thousands to
tens-of-thousands [2]. This becomes especially apparent when seeking a neural network
potential applicable to a wide temperature range, where phase transitions may lead to
the exploration of unique and sparsely sampled sections of the phase space. This forces
restrictions on the simulation sizes and temperature ranges that can be covered by the
neural network potential, and will often take days to weeks even with these restrictions in
place.

Not all machine-learned force fields suffer the faith of lengthy training efforts. Kernel
ridge regression methods allow for very fast learning, and combined with error statistics,
can be applied during the generation of the training set, only performing new electronic
structure calculations when predicted errors exceed some limit. Specifically, such an on-
the-fly machine learning method proposed by Bokdam and co-workers [7], a derivative of
the Gaussian Approximation Potential [8], has been shown to successfully remove up to
99% of the computationally expensive electronic structure calculations from the training
process. This allows for rapid exploration of the phase space while keeping training set
size and computation time to a minimum.

We will apply this on-the-fly method in the generation of the training set for an HDNNP.
We seek to analyse its ability to train using only those structures chosen on-the-fly for
electronic structure calculations. Furthermore, we propose a method of augmenting the
training set when the potential energy surface obtained by the HDNNP is not satisfactory.
This would reduce time needed for training set generation by orders of magnitude, allowing
for a much larger part of the phase space to be represented in the HDNNP.

We will start by presenting background material and the basic structure of the HDNNP,
as well as the procedure of data set augmentation in Section 2. The HDNNP will be
trained on on-the-fly runs of two materials, diamond and lithium nitride. The former is a
simple solid well-described by harmonic lattice dynamics [9], while the latter exhibits an
anharmonic superionic phase transition [10]. These materials will show both the potential
and limitations of the on-the-fly training set generation. The exact procedure and settings
followed in this thesis will be outlined briefly in Section 3, followed by a discussion of the
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results for diamond and lithium nitride in Section 4.

2 Theory

2.1 Molecular dynamics and potential energy regression

Molecular dynamics is the simulation of the movement of molecules or, in this case, atoms.
A structure, containing a number of atoms with positions {Ri}, is propagated through
time by numerical integration of the Newtonian equations of motion, usually by means
of the Verlet integrator. Forces can either be obtained directly from the coordinates or,
more common amongst empirical methods, as gradients on the total potential energy of the
structure, where Fi = −∇iU({Rj}). The function U({Ri}) is called the potential energy
surface (PES), and allows for a convenient single-valued quantity to predict the forces.

First-principles-based methods are available to obtain both the total potential energy
and atomic forces in a structure. These electronic structure calculations are expensive but
accurate. We will be using density-functional theory (DFT), which will be used as ground-
truth, but will not be covered in detail (exact settings were provided by the supervisor).
Note, when referring to a "structure" as part of a data set, we will usually be referring
to all quantities of interest for that structure: the atomic coordinates {Ri}, the atomic
species, the atomic force {Fi}, and the total potential energy U .

There are various techniques available for regression of the PES. For a generally appli-
cable technique, we require the PES to admit a variable number of atoms. Other phys-
ically motivated requirements are translational and rotational invariance with respect to
atomic coordinates, as well as invariance to the permutation of chemically equivalent atoms
(which, in this case, means atoms of the same element) [2]. In both methods of interest to
this thesis, this is achieved by taking the potential energy to be the sum of local atomic
contributions Ui, influenced only by atoms less than some cut-off radius rc away,

U =
∑
i

Ui({Rj |rij < rc}), rij = |Ri −Rj |. (1)

Although these contributions have no physical analogue, this assumption partly resolves
permutational invariance and the dependence on the number of atoms. Of course, atoms
may still drift in and out of each other’s cut-off radii during a molecular dynamics simula-
tion, so one additional processing step is required.

We introduce the concept of a descriptor (also atomic fingerprint) for atom i,

Gi({Rj |rij < rc}), (2)

consisting of a number of symmetry functions. These must themselves satisfy translational,
rotational, and permutational invariance and serve as inputs to the regression model Ui(Gi)
instead of the atomic coordinates. This resolves the invariances for the PES. Great care
must be taken in the construction of these descriptors; they are necessarily a lossy encoding
of the atomic coordinates (the number of symmetry functions is fixed, but the number
of atoms inside the cut-off radius is not), but must encode enough information for the
regression model to differentiate between important structures in the PES.

The construction of descriptors is generally an arduous task of trial-and-error, for which
one must simply gain an intuition [2]. Recently, more automated methods of descriptor
selection have been implemented, ranging from statistical analysis of descriptors seen in
the training set [11], to genetic algorithms that refine descriptors based on actual training
performance [12, 13]. These are not implemented in the n2p2 code used here, so will not
be used.
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2.1.1 Behler-Parrinello Symmetry Functions

The Behler-Parrinello Symmetry Functions (BPSF) are a type of symmetry function pro-
posed along with the original Neural Network Potential [1, 14] and still in common use.
They are commonly referred to by their types and are element-specific. That is, each radial
symmetry function must have specified what element the central atom should be, and over
what element it should iterate. This way, each element combination gets its own set of
symmetry functions. For angular symmetry functions, two elements need to be specified,
over which the sum should iterate. The original three BPSFs are the type 2 (radial), type
3 (narrow angular), and type 9 (wide angular):

G2
i =

∑
j ̸=i

e−µ(rij−rs)2fc(rij) (3)

G3
i = 21−ζ

∑
j,k ̸=i
j<k

(1 + λ cos θijk)
ζ e−µ(rij−rs)2e−µ(rik−rs)2e−µ(rjk−rs)2fc(rij)fc(rik)fc(rjk)

(4)

G9
i = 21−ζ

∑
j,k ̸=i
j<k

(1 + λ cos θijk)
ζ e−µ(rij−rs)2e−µ(rik−rs)2fc(rij)fc(rik) (5)

fc(r) =

{
1
2 (1 + cosπx) , r ≤ rc

0, r > rc
. (6)

where rc is the previously discussed cut-off radius and ζ, µ, and rs are parameters to be
tuned by the user. We refer to the n2p2 code documentation [15] for a more complete list
of available cut-off functions.

Later modifications drastically reduce the number of symmetry functions to be spec-
ified, by including an element-specific weight factor in the summation, instead of having
a separate symmetry function to sum over each element [12]. Another modification is the
use of piecewise polynomials instead of exponentials [13], which both speeds up computa-
tion time and completely avoids the use of a cut-off function (these symmetry functions
go to zero outside their compact support on their own). The combination of the two has
been shown to achieve the same accuracy as the classic BPSFs with fewer symmetry func-
tions [13]. The combination gives the type 23 (radial), type 24 (narrow angular), and type
25 (wide angular):

G23
i =

∑
j ̸=i

ZjC
a(rij , rl, rc) (7)

G24
i =

∑
j,k ̸=i
j<k

ZjZkC
a(rij , rl, rc)C

a(rik, rl, rc)C
a(rjk, rl, rc)C(θijk, θl, θr) (8)

G25
i =

∑
j,k ̸=i
j<k

ZjZkC
a(rij , rl, rc)C

a(rik, rl, rc)C(θijk, θl, θr) (9)
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Figure 1: A schematic depiction of the High-Dimensional Neural Network Potential
for a system of lithium and nitrogen.

with

C(x, xl, xc) =


fp(

x−x0
∆x ), x0 ≤ x ≤ x0 +∆x

fp(
x0−x
∆x ), x0 −∆x ≤ x < x0

0, otherwise
(10)

Ca(x, xl, xc) =


fp(2

(
x−x0
∆x

)
−
(
x−x0
∆x

)2
), x0 ≤ x ≤ x0 +∆x

fp(2
(
x0−x
∆x

)
−
(
x0−x
∆x

)2
), x0 −∆x ≤ x < x0

0, otherwise
(11)

fp(x) = x3(x(15− 6x)− 10) + 1, (12)

where x0 = (xc − xl)/2 and ∆x = (xc + xl)/2. Again, these have been provided for com-
pleteness’ sake, but we refer to the n2p2 code documentation [15] for a complete overview
of available symmetry functions and polynomials, along with the original publication of
(weighted) polynomial symmetry functions with compact support [13].

2.2 High-Dimensional Neural Network Potential

The High-Dimensional Neural Network Potential uses several feed-forward neural networks
at its core for the regression of Ui(Gi), one for each element in the system. A schematic
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depiction can be found in Figure 1 in its application to lithium nitride. In this structure,
we have n lithium and k nitrogen atoms, with m symmetry functions for lithium and l
symmetry functions for nitrogen. We will now proceed to provide a brief overview of the
neural network itself.

The structure of the neural network is as follows: there is an input layer, some number
of hidden layers, and an output layer, each consisting of a number of nodes. The input
layer necessarily has m nodes in the lithium network and l nodes in the nitrogen network;
these are the values of the symmetry functions. The output layer has a single node:
the atomic energy U (we have discarded the subscript i for the discussion of the neural
network, for notational clarity). Each layer j, except the input layer, possesses an activation
function f j(x), in this case usually either the hyperbolic tangent [2], f j(x) = tanhx, or the
softplus function [6], f j(x) = log(1 + ex). Although other surjective activation functions
are available, the activation function of the output layer is usually linear, f j(x) = x, to be
able to cover the entire U ∈ (−∞,∞) range. Each node yji is then related by

yji = f j

bji +

Nj−1∑
k=1

wj−1,j
i,k yj−1

k

 , (13)

where weights wj−1,j
i,k and biases bji are free parameters and Nj−1 is the number of nodes

in the previous layer j − 1. In the example of Figure 1,

U((G1, G2, G3, G4)
T ) = b31 +

2∑
i=1

w2,3
i,1 f

2

b2i +
2∑

j=1

w1,2
j,i f

1

(
b1j +

4∑
k

w0,1
k,jGk

) . (14)

.
As mentioned previously, we may obtain the force on atom i by differentiating the

potential energy, such that

Fi = − ∂U

∂Ri
(15)

= −
∑
j

∂Uj

∂Ri
(16)

= −
∑
j

∑
k

∂Uj

∂Gj,k

∂Gj,k

∂Ri
, (17)

where ∂Uj/∂Gj,k is obtained by the standard backpropagation method.

2.2.1 HDNNP training

Gradient descent algorithms like Adam [16] are the standard when training neural networks.
With some slight adjustments, these can be applied here as well. In particular, we obtain
a gradient

∂U

∂w
=
∑
i

∂Ui

∂w
, (18)

for some weight or bias w, where ∂Ui/∂w can be obtained through backpropagation. How-
ever, since our eventual goal is to predict forces, and forces are available from electronic
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structure calculations, we can add first order information to the PES by including these in
the training process. This yields the gradient

∂Fi

∂w
=

∂

∂w

−
∑
j

∑
k

∂Uj

∂Gj,k

∂Gj,k

∂Ri

 (19)

= −
∑
j

∑
k

∂2Uj

∂w∂Gj,k

∂Gj,k

∂Ri
. (20)

To balance the energy and force errors, we minimize the adjusted cost function

Γ =

N∑
s=1

(
Us − U ref

s

)2
+ β2

N∑
s=1

Ns∑
i=1

∣∣Fs,i − Fref
s,i

∣∣2 , (21)

for N structures, with structure s containing Ns atoms. We have also introduced a tunable
hyperparameter β, called the force update parameter. This will be a measure of how
important force errors are compared to energy errors.

It should be noted that training for the n2p2 code, which will be used in this thesis, is
not done using a gradient descent method, but rather using an Extended Kalman Filter,
which introduces a number of additional training parameters (although many of these have
been predetermined to work well for most systems). The filter’s internal state consists of
all weights and biases of the networks, with no dynamics. We refer to [6] for more details
on this implementation and ideal training parameters, where its performance is also shown
to be far superior for the HDNNP compared to gradient descent methods.

2.3 On-The-Fly Gaussian Overlap Potential

Another machine learning method to estimate the PES is the Gaussian Approximation
Potential (GAP) [8]. This will not be covered in depth, but involves kernel ridge regression
of Ui, such that

Ui(Gi) =

NB∑
iB=1

wiBK(Gi,GiB ) (22)

for some kernel function K, a set of NB reference descriptors {GiB}, and weights {wiB}.
An advantage of this method is the fact the weight vector that minimize the error with

respect to the reference structures has a closed-form solution, which means the "learning"
process is much less involved than that of the HDNNP. This is leveraged in the On-The-
Fly Machine-Learning Force Fields method (or simply on-the-fly method) proposed in [7],
which uses a variant of GAP to completely forego the generation of an FP data set.

Training may start without any FP structures. During a training run, for every MD
step, a Bayesian error estimate is used to together with a number of error conditions
to determine whether new FP calculations are necessary. When this is the case, an FP
calculation is performed and the MD simulation is propagated with these forces. The
weights can eventually be recalculated using this new data. When the error conditions
determine the GAP prediction to be good enough, however, those force predictions are
used instead and FP calculations can be skipped. This way, when the training run is
finished, we have produced a large MD simulation with a near-FP accuracy, but very few
actual FP calculations.
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2.4 On-The-Fly training sets and augmentation

In order to reduce the amount of electronic structure calculations necessary for the gen-
eration of a training set, we will use the on-the-fly method. This will generate a large
data set of structures, where most structures use predicted energies and forces, but some
use FP calculations. Using the latter structures to train the HDNNP completely avoids
compounding the energy and force errors generated by the on-the-fly method. The only
precision we require from the on-the-fly method is an identical coverage of the phase space
compared to a run for which FP calculations has been used on every structure.

We may speculate those structures chosen for DFT calculations, those for which the
error criteria have not been fulfilled, are in some way more important to the training
process than others. This will, for example, remove structures closely related in the phase
space. On the other hand, the functional form of the on-the-fly kernel ridge regression
differs greatly from that of the High-Dimensional Neural Network Potential, which means
some section of the PES may be easily describable with only a few data points in one
representation, while the other requires many more. The training set may not contain
enough information for the HDNNP to describe the PES.

When training does not lead to satisfactory results, we may be required to augment the
training set with new samples. There are many ways to obtain these, but since the initial
training set exhausts the available electron structure calculations, new ones will always
have to be performed. Perhaps the most time-efficient method to do select new structures,
is to take them from the remaining MD steps in our initial on-the-fly run, the structures
for which the energy and forces were predicted by the kernel regression. With a good
approximation of the time consumed by previous electronic structure calculations on the
same system, the number of structures to add can be selected quite precisely depending
on the time available.

Since, especially in our initial training, the energy errors produced by the HDNNP are
almost definitely larger than those produced by the kernel regression, we may preferen-
tially select structures that are currently not well represented by the HDNNP, by selecting
structures for which the HDNNP energy is maximally distant from the kernel regression
energy. When the HDNNP errors are of the same order of magnitude as kernel regression
errors, we may switch to selecting structures for which two trained HDNNPs (with different
initialization and possibly with different functional form) produce different energies [17].

For the same reason, we do not always need to set aside any of our expensive training
samples for testing: a testing set can be generated from on-the-fly predictions. With
sufficient memory capacity, this allows for testing sets essentially arbitrarily big compared
to the training set. This, again, is only a possibility when the HDNNP errors are orders
of magnitude larger than those produced by kernel regression.

We may contrast the on-the-fly training set generation to the opposite method of train-
ing size reduction, where an entire run is generated using DFT, and everything but some
small random subset is thrown away [2]. This often has to be performed to reduce compu-
tation time and memory consumption. A slightly more sophisticated approach can involve
a statistical analysis of redundant data [11].

2.5 Superionic conduction and lithium nitride

A superionic conductor is a solid state material exhibiting ionic conductivity on or slightly
below the order of magnitude typically seen in molten salts (σ ≈ 1 Ω−1 cm−1) [18]. The
movement of charge carriers below the melting point in superionic conductors is typically
facilitated by the diffusion of one type of ion through its sublattice, while the remaining
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lattice acts as a stationary cage. These ions, then, can be said to behave more like a
charged liquid than the rest of the material’s solid crystalline structure.

Superionic conductors are a particular interesting class of material, thanks to the an-
harmonic lattice dynamics that drive the superionic phase transition [10]. Combined with
the liquid-like behaviour of the ionic sublattice, this might result both in a more com-
plicated description of the PES and a more exhaustive exploration of it, compared to a
material well-described by harmonic lattice dynamics.

The material of interest to this thesis is lithium nitride (Li3N). In this material, lithium
starts to diffuse around a temperature of 550 K and experiences a large jump in diffusiv-
ity around 650 K. Throughout and above this temperature range, nitrogen acts as the
stationary lattice keeping the material in solid state [10].

3 Computational methods

3.1 On-The-Fly method

All DFT calculations were performed by the Vienna Ab initio Simulation Package (VASP),
together with the On-The-Fly Machine Learning Force Fields method as implemented by
its MLFF feature [7]. Settings for the DFT calculations were provided by the supervisor
and will not be treated in much detail. The INCAR files can be found in the appendix.

A diamond data set was generated using the on-the-fly method, in an NPT molecular
dynamics heating run from 100 K to 3000 K in 300 picoseconds and 150000 time steps. This
contains, for every structure in the MD run, the Cartesian coordinates of every atom, the
force acting on every atom, and the total potential energy of the structure. The (periodic)
bounding box was also included. The training set was constructed from all structures
for which DFT calculations were performed, and a test was constructed from a random
sample of structures for which on-the-fly calculations were performed. The INCAR file can
be found in Appendix A.

A lithium nitride (Li3N) data set was generated using the on-the-fly method in an NPT
heating run from 150 K to 800 K in 450 picoseconds, with 300000 time steps. Again, a
training set was constructed from every structure for which FP calculations were performed,
and a test set was constructed from a random sample of the remaining structures. The
INCAR file can be found in Appendix B.

A complementary lithium nitride data set was generated using the on-the-fly method
in an NPT run at 750 K for 300 picoseconds and 200000 time steps. Other settings were
identical the previous data set, settings can be found in Appendix C.

Subsequent DFT calculations for individual structures (as necessitated by the training
set augmentation scheme) were applied with identical settings, seen in Appendix D.

3.2 Training of the HDNNP

The training of the HDNNP was performed using the n2p2 code [6]. Analysis of results
was done with assistance of the pymatgen [19] and vasppy Python libraries, as well as
pymatgen.analysis.diffusion_analyzer [20, 21].

Diamond For this material, we have no particular interest in finding an optimal set of
symmetry functions and training parameters. Standard training parameters were chosen
from literature [6] and 10+ 3 · 5 type 23 (Equation 7) and type 25 (Equation 9) symmetry
functions (10 radial and 15 angular, where the angular symmetry functions have 3 different
radial components) were chosen to roughly minimize the energy root-mean-squared-error
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(RMSE) over the testing set. The energy and force component RMSE will be the training
performance metric for the remainder of this thesis. The neural network consisted of 2
hidden layers, each containing 10 nodes and a softplus activation function. The input.nn
file can be found in Appendix E.

These symmetry functions were chosen in an equidistant grid from r = 0 to r = rc
described by [13] (both radial symmetry functions and radial parts of angular symmetry
functions), which in turn is adopted from the shifted-peak generation method in [12].
Angular symmetry functions were chosen to cover the entire 0 to π radians range, with
particular attention to the presence of high-derivate functions at the tetrahedral 109.471◦

angle. A cut-off radius of 6 Å was chosen.
Before training, all symmetry functions whose minimum and maximum values over all

atoms in the training set were no more than 10−3 apart, were purged using the nnp-prune
tool in n2p2. This was performed for every HDNNP training procedure from this point.

During training with the nnp-train tool, the weights and biases of the HDNNP in each
epoch are saved. When training is done, we do not necessarily select the parameters in the
last epoch, since the HDNNP is prone to overfitting [2]. Rather, we select the last epoch
for which both the energy and force RMSE on the test set is no larger than 1.5 times the
energy and force RMSE on the training set. This method of selecting the best-performing
epoch will be done after every training run from this point.

Finally, we collect every structure in the on-the-fly data set (from all MD steps, not
just the training and test sets) and predict energies and forces using the nnp-dataset tool.
We may plot the difference between these HDNNP energy and force predictions and those
from the on-the-fly method, against time, as an additional error metric.

Lithium nitride A more thorough investigation into training parameters and symmetry
functions was performed for this material. Several descriptors were chosen, differing in both
size and radial-to-angular symmetry function ratio. These are shown in Appendix K. All
possessed a cut-off radius of 6 Å, mostly determined by the size of the simulation box
of the on-the-fly method. To account for the larger descriptor sizes, the neural network
consisted by 20 nodes in the first layer, and 10 nodes in the second layer, again with a
softplus activation function.

The 20 + 4 · 10 descriptor was chosen to perform a training run of 20 epochs for force
update parameters β = 5, β = 10, and β = 20 (a range recommended by [6]). We continue
with the force update parameter with the lowest energy RMSE on the test set. Training
runs of 10 epochs were performed for all descriptors. Again, we continue with the descriptor
with the lowest energy RMSE on the test set, and plot the energy and force errors over
time relative to the on-the-fly prediction.

Using these same parameters and descriptor, we train the HDNNP on the first aug-
mented data set (the constant-temperature lithium nitride run) and a second augmented
data set. For both the same energy and force error plot was made.

The second augmented data set was generated by selecting a number of structures
from the original on-the-fly heating run, those for which the energy error relative to the
on-the-fly prediction is largest, and perform individual DFT calculations.

3.3 Molecular dynamics using HDNNP

Molecular dynamics for the trained HDNNPs was performed using LAMMPS [22] and the
n2p2 HDNNP pair-style interface.
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Figure 2: On-the-fly diamond heating run, density of DFT calculations. Tempera-
ture is that set by the thermostat.

Diamond An NPT heating run was performed at 0 Pa from 100 K to 3000 K in 15
picoseconds and 15000 time steps, to replicate the original on-the-fly heating run. This
uses a Nose-Hoover thermo- and barostat with characteristic relaxation times of 100 fem-
toseconds and 1000 femtoseconds, respectively. The settings can be found in the in.lmp
file in Appendix G.

Lithium nitride As will be discussed in further sections, not all trained HDNNPs were
stable enough to perform molecular dynamics. For the original data set, we performed an
NPT heating run at 0 Pa from 150 K to 400 K in 100 picoseconds and 100000 time steps,
to replicate the first half of the original on-the-fly heating run. For the HDNNP trained
on the first augmented data set, we performed a similar NPT heating run from 400 K to
800 K in 50 picoseconds and 50000 time steps. Again, settings in the in.lmp file can be
found in Appendix H and I, respectively.

4 Results and discussion

We will first investigate what should be a relatively simple material: diamond. As will
be shown, this material does not need any extension of the initial training set delivered
by the on-the-fly method. For the verification of the HDNNP, we will compare the radial
distribution functions. The second material is lithium nitride, a superionic conductor in
a part of the simulated heating run. Here, we show the effects of several training set
extensions.

4.1 Diamond

4.1.1 On-the-fly method

In the diamond on-the-fly heating run, out of 150000 time steps, we obtain 618 structures
for which FP calculations were done to obtain energies and forces, forming the initial
training set. A test set was constructed from a random sample of 182 structures (for a
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Figure 3: RMSE during training of the diamond HDNNP.

total of 800 structures, we aim for a minimum test structure count of 10% of the training
structure count, but more is always better) for which on-the-fly calculations were done.
We inspect the density of FP calculation in Figure 2, where it appears FP calculations are
evenly spread over the heating run, apart from a major spike at the start of the simulation.
Indeed, no phase transitions exist in the temperature range from 100 K to 3000 K in a
vacuum, so at no point does the material explore a significantly different part of the phase
space.

4.1.2 Training of HDNNP

The energy and force RMSE during training can be seen in Figure 3. It is interesting to
note the test error is consistently slightly below the training error. This might be caused
by a number of particularly "difficult" structures, in the sense that their descriptors are
similar to others but differ in atomic energy (also called contradictory data [2]). These can
be explored during a transient jump in the phase space, triggering the on-the-fly method
to perform FP calculations and thus excluding them from our test set. In principle, this is
not bad, because we have included these difficult structures in training. However, it may
be possible for the increased training set errors to hide over-fitting, which is why measures
should be taken to reduce contradictory data (e.g., by providing more distinct descriptors).

The RMSE over the training and test set are not significantly different, indicating
the HDNNP has not started overfitting yet. Combined with the fact the descriptor and
training parameters were chosen somewhat arbitrarily, it is quite possible a much better
fit is achievable. Nevertheless, this fit will be sufficient for the purpose of demonstration
on this simple material, as well be showed shortly in an MD run.

Let us analyse where the error is coming from in Figure 4a, where the error in the pre-
dicted potential energy (by the trained HDNNP) is plotted, compared to that predicted
by the on-the-fly method, against time. Note, this is the total potential energy of the
structures, not the average atomic energy. There is a clear upwards trend as temperature
rises. This is most likely the result of the system exploring an increasingly large, and
increasingly sparsely sampled, phase space as vibration become more pronounced. A sim-
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(b) A random sample of HDNNP force component predictions against on-the-fly predictions.

Figure 4: Trained HDNNP for diamond. Energy and force component errors over
entire on-the-fly MD run, with respect to on-the-fly predictions.

14



1 2 3 4 5 6 7 8 9
r (Å)

0.0

0.5

1.0

1.5

2.0

2.5

g s
(r)

Diamond, NPT from 100K to 3000K

On-the-fly (C-C)
HDNNP (C-C)
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ilar plot is made in Figure 4b with a random sample of forces instead of total potential
energies. Since the forces are relatively accurate (that is, most forces lie on the diagonal
Fnnp = Fref ), the trend is less obvious, but forces particularly far from the diagonal are
mostly those in later time steps.

4.1.3 Verification

Finally, to verify our result for diamond, we perform a molecular dynamics run with the
trained HDNNP and compare the radial distribution function of carbon to the on-the-fly
method in Figure 5. The two agree almost perfectly, and the HDNNP seems to have fully
captured the dynamics of carbon atoms using only the 618 structures provided by the
on-the-fly method.

4.2 Lithium nitride

4.2.1 On-the-fly method

The lithium nitride on-the-fly heating run, ran for 300000 time steps. Of those, FP calcula-
tions were performed for 461 structures, forming the initial training set. Again, we observe
where the electronic structure calculations are done for this heating run in Figure 6. The
phase transition is immediately apparent: around time step 200000 (where the thermostat
is set to about 600 K), there is a massive increase in calculations. Later at 250000 (where
the thermostat is set to about 700 K), we see a similar spike. Lithium diffusion starts to
occur above a temperature of 500 K, and is greatly increased above 600 K [10].

Another on-the-fly lithium nitride run was done at a temperature of 750 K. This was
done on top of the previous run and yielded an additional 193 structures for which FP
calculations were performed. These will be added later to form the first augmented data
set.
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Figure 6: on-the-fly lithium nitride heating run, density of DFT calculations. Tem-
perature is that set by the thermostat.

4.2.2 Training of HDNNP

Initial training set A test set was formed from 139 structures randomly selected from
the remaining on-the-fly calculations. This brings to total to 600 structures, 461 for training
and 139 for testing.

As discussed, one of the most important parameter for training is the force update
parameter. Using the advised range of values in [6], several runs using the 20 + 4 · 10
descriptor relieved β = 20 to yield satisfactory energy RMSE while keeping over-fitting to
a minimum. The descriptor was further analysed by using the obtained parameters with
7 different descriptors. Test errors per epoch can be seen in Figure 7.

It is obvious the descriptor does not have great effect on the training process at these
sizes. This indicates a more systematic problem in predicting the PES than the descriptor’s
ability to uniquely represent all available structures. It might originate from the relatively
small training set size of 461 structures, which can be uniquely represented by a few well-
chosen symmetry functions. As a result, choosing the absolute smallest descriptor we
can afford might not be the best option if we intend to augment the training set size
later. Even though choosing a larger-than-necessary descriptor may be detrimental to
performance, it can avoid contradictory data in new structures. Alternatively, we may
expand the descriptor upon introducing new data [2], though we have not done that here.
Combining the concept of a gradually expanding descriptor with a more sophisticated and
automated method of finding descriptors would be an interesting prospect to automate the
entire training and data set augmentation cycle.

We find a good compromise between descriptor size and performance at 60 symmetry
functions per descriptor. A radial-to-angular symmetry function ratio of 1 : 1 has previ-
ously been found to work well across data sets [12] (indeed descriptors with many angular
symmetry functions seem to perform slightly worse in Figure 7), so we will be continuing
with the 30 + 3 · 10 descriptor and taking parameters from epoch 9, given that epoch 10
seems to have slightly over-fitted.

Before expanding the data set, let us do the same analysis of energy error as done for
diamond. In Figure 8a, the HDNNP energy error with respect to the on-the-fly prediction
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(a) Total potential energy difference between HDNNP and on-the-fly prediction. Temperature is
that set by the thermostat.
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(b) A random sample of HDNNP force component predictions against on-the-fly predictions.

Figure 8: Trained HDNNP for lithium nitride, using original on-the-fly training set.
Energy and force component errors over entire on-the-fly MD run, with respect to
on-the-fly predictions.
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(a) Total potential energy difference between HDNNP and on-the-fly prediction. Temperature is
that set by the thermostat.

−3 −2 −1 0 1 2
Fref (a.u.)

−3

−2

−1

0

1

2

F n
np

 (a
.u

.)

0

50000

100000

150000

200000

250000

300000

Ti
m

e 
St

ep

(b) A random sample of HDNNP force component predictions against on-the-fly predictions.

Figure 9: Trained HDNNP for lithium nitride, using original on-the-fly training set
augmented by on-the-fly 750 K training set. Energy and force component errors
over entire on-the-fly MD run, with respect to on-the-fly predictions.
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(a) Total potential energy difference between HDNNP and on-the-fly prediction. Temperature is
that set by the thermostat.
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(b) A random sample of HDNNP force component predictions against on-the-fly predictions.

Figure 10: Trained HDNNP for lithium nitride, using original on-the-fly training
set augmented by high-energy-error structures. Energy and force component errors
over entire on-the-fly MD run, with respect to on-the-fly predictions.
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is plotted against time. While the region under the phase transition exhibits the same
behaviour as diamond, with a linear increase in error as temperature rises, a substantial
increase in error is seen around and above the phase transition. The same can be seen
in Figure 8b for the forces, where outliers are even more apparent due to the lack of
smoothing. This suggests it is specifically the dynamics of lithium diffusion which the
HDNNP is unable to capture using the initial data set.

First augmented training set As previously mentioned, there are several options avail-
able for expanding the training set. Since the initial training set shows relatively large
errors above the phase transition, we will first consider adding training structures from
another on-the-fly run done in this troubling region. For this, a temperature of 750 K was
chosen, a superionic conducting-temperature still well below the melting point of about
814 K. Note, as discussed in Section 4.2.1, this resulted in 193 additional structures. A
test set of 155 structures was randomly selected from the remaining on-the-fly predictions,
making for 800 structures, 645 for training and 155 for testing. We train with the exact
same parameters as the original training set, for ten epochs. The trained HDNNP was
then tested on the entire on-the-fly data set again, as shown in Figure 10.

Below the phase transition, energy errors do not seem much improved, although we now
rise from 0.05 eV to 0.15 eV, instead of the 0.10 eV to 0.15 eV observed previously. Indeed,
we do not expect this region to see much improvement; the additional high-temperature
structures were disturbed from their low-temperature states, such that they cover differ-
ent portions of the phase space. The improvement in error for the very-low-temperature
states may for the most part originate from run-to-run variances caused by initialization,
although, of course, a better fit for high-temperature structures is not completely uncor-
related from a better fit for low-temperature structures.

More notably, the peak in energy error as the structures enter the superionic phase
transition is still present, but much less notable. And the far outliers in the force component
errors previously seen in Figure 8b have been removed altogether. It remains to be analysed
whether this reduction is sufficient to properly simulate the material in its superionic
conducting phase.

Second augmented training set We will now use the maxima in energy error as shown
in Figure 8a to select new structures to be added to the training set. We have decided
to double our original training set with 461 new structures. We also forced to reduce the
number of test structures to 98, to minimize performance and memory impact. This makes
for a total of 1020 structures, 922 for training and 98 for testing.

We see the resulting error on the entire heating run in Figure 10. The error does rise
above levels seen in Figure 9, but now exhibits the same behaviour as would be expected
from a simple rise in temperature; the energy error rises linearly. Forces have also regained
some outliers. The change in slope at the phase transition temperature might be due to
new dynamics becoming available to the lithium atoms, besides the harmonic vibration
modes that is has in its solid crystalline structure. Perhaps the most significant aspect is
the fact the HDNNP does not experience a jump in energy error as it did before. This
means, at the very least, the energies during low-temperature lithium diffusion are being
estimated with an accuracy not much less than that below the phase transition.

4.2.3 Verification

Initial training set To verify the performance of the HDNNP, a variety of MD runs
were done with each trained potential. Since the energy error has remained quite similar
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Figure 11: Lithium nitride radial distribution function for the 150 K to 400 K
temperature range, as predicted by on-the-fly method and as predicted by the
trained HDNNP.

between the different training sets below the phase transition, we might be interested
whether this region is already correctly modelled in the initial training set. Figure 11
shows the radial distribution function between a temperature of 150 K and 400 K, as
predicted by the HDNNP in an MD run.

Performing MD runs above the phase transition is difficult, because the system quickly
becomes unstable, with most runs breaking in the 400 K to 600 K range during a heating
run. In most cases, a lithium atoms can be seen drifting too close to others before shooting
off and disturbing the rest of the system. Although we have correctly captured the existence
of a phase transition, the HDNNP does not appear to be close to capturing its temperature,
let alone the diffusion behaviour above the phase transition.

First augmented training set This dataset performed much better in the 400 K to 800
K temperature range. The system is still very unstable, the molecular dynamics run from
400 K to 800 K stopped around 640 K, switch seems to be around the usual temperature
before breaking. The mean squared displacement has been plotted in Figure 12. There
is definitely a semblance of diffusive behaviour over time, but it is intermittent, at some
points linearly rising as would be expected from diffusion, and at some points jumping
up, indicating a transient restructuring of the system. The mean squared displacement of
nitrogen is barely increasing, as expected. It has also correctly simulated a stronger in-
plane lithium diffusion (x- and y-directions) than out-of-plane diffusion (z-direction) [10].

There are a number of possible causes for the jumping behaviour. The heating run
might be too short, meaning the restructuring of the system is caused by the thermostat
kicking an atom out of its normal range for that temperature. This might be kept in check
in future runs with a longer characteristic relaxation time, or by simply increasing the
relatively small number of time steps (currently 30000). Of course, it is also likely the
diffusion is simply not captured very well by the HDNNP.
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Figure 12: Lithium nitride mean-squared-displacement over NPT heating run using
trained HDNNP. Temperature is that set by the thermostat.

Second augmented training set Although the energy error graph seemed promising,
high-temperature runs with this training set again become too unstable in the superionic
phase to run molecular dynamics for any reasonable amount of time steps. This might be
related to the force outliers seen returning in Figure 10b.

5 Conclusions

The method presented in this report seems promising. For the simple case of diamond,
the HDNNP had no problem achieving a good fit on the PES, even with what is almost
certainly a suboptimal selection of descriptor, network topology, and training parameters.
This is the case throughout the simulated temperature range of 100 K to 3000 K. Because of
the on-the-fly training set generation, electron structure calculations were only performed
461 times, out of 150000 time steps, which is a 325-fold reduction in computation time.

Lithium nitride, however, is much more difficult to model with an HDNNP in its supe-
rionic phase, using the on-the-fly training set. The initial training set produces reasonable
predictions below the superionic phase transition, but the HDNNP is complete unusable
above it. Augmenting the training set to about one-and-a-half times its original size shows
a promising reduction in energy errors, and begins to qualitatively approximate expected
diffusive behaviour in the material during molecular dynamics. Going beyond this, to about
twice the original training set size, the energy error ceases to show significant jumps as
the material enters the superionic phase transition. However, inaccurate force predictions
again make the HDNNP too unstable to perform molecular dynamics.

We were unable to train the HDNNP to simulate lithium nitride and produce diffusivity
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measurements that can be compared against empirical measurements. But the proposed
technique shows promising limiting behaviour and, with proper attention to descriptor
selection and training parameters, seems to be exceedingly close to correctly capturing
superionic conduction.

6 Outlook

There are a number of improvements to the analysis done in this thesis that would sig-
nificantly improve the applicability of the results. We will finish by listing some areas
requiring further investigation.

First and foremost, due to time constraints, further analysis of data set expansion
was not possible. The largest data set, the second augmented data set, was also running
against the hardware limitations of the machine running these training runs. Memory
consumption is large, and although there have been many efforts to mitigate this [6], going
beyond these sizes simply requires the use of High Performance Computing. This means
the precise amount of additional structures required to perform MD runs of the quality as
the on-the-fly method remains elusive. And while this work suggests the existence of such
a limit, future work is required to achieve it.

Comparing the diamond energy error in Figure 4a with any of the three lithium nitride
energy errors in Figure 8a, Figure 9a, or Figure 10a, it is interesting to note energy errors
are nearly identical, and often lower in the lithium nitride HDNNPs. This despite lithium
nitride having significantly worse force predictions. This might indicate energy errors have
been prioritized too much during training, which can be caused either by the force update
parameter β being too low, or the force-to-energy-update fraction in the training process
being too low, in turn not providing the training process with enough force updates to
achieve satisfactory errors, even with a correctly tuned force update parameter. A more
in depth investigation into training parameters is warranted for lithium nitride.

There is also a possible problem arising from the training set augmentation scheme,
where the HDNNP-to-on-the-fly error is used to select new structures. Note Figure 8a
is smoothed with a moving average, which reveals the trend in error. While the general
trend in the figure can be used to identify regions where the descriptors and training
parameters are systematically not sufficient and do not hold enough information to capture
the dynamics of the structures in that region, the specific indices of maximum peaks in the
figure are most likely highly dependent on the initialization of the HDNNP, and correspond
only to structures that are coincidentally badly fitted. In the case of lithium nitride, for
example, it is not particularly worrying when such a peak lies in the region above the
phase transition, but it could cause peaks below the transition, which do not actually
appear to be of much interest. Mitigation methods worth investigation could involve first
smoothing the energy error, or averaging the error over multiple training runs with differing
initializations. The latter, particularly, could result in much more consistent energy error
graphs.

Another notable problem is the fact the augmented training sets were generated both in
different amounts and with different methods; one systematically selected new structures
from the original MD run, and the other starting new MD runs in an ad hoc manner.
Especially the latter ad hoc method may cause the user to introduce a bias in the data set
towards temperature ranges of interest to them, decreasing the HDNNP’s ability to train
on other regions. It would be interesting to see both of these methods expanded to larger
training set sizes, especially with regard to the performance across temperature ranges.
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A Diamond INCAR

################################
### Parameters f o r VASP ###
################################
SYSTEM = Diamond
SIGMA = 0.01 ; ISMEAR = 0
ENCUT = 400
NCORE = 4 ; KPAR = 8
EDIFF = 1E−4 ; NELMIN = 6
ISYM = 0
LREAL = A
IBRION = 0
ISIF = 3
MDALGO=3 # use Langevin thermostat
LANGEVIN_GAMMA = 1.0 # f r i c t i o n coe f . f o r atomic DoFs f o r each s p e c i e s
LANGEVIN_GAMMA_L=3.0 # f r i c t i o n coe f . f o r the l a t t i c e DoFs
PMASS=100 # mass f o r l a t t i c e DoFs
LATTICE_CONSTRAINTS = T T T # f i x x&y , r e l e a s e z l a t t i c e dynamics
PSTRESS=0.001 # P i s s e t at 0 .001 KB.
IBRION = 0
SMASS = 0
POTIM = 2.00
TEBEG = 100.00D0
TEEND = 3000.00D0
NSW = 150000
NBLOCK = 1
NWRITE = 1
NELM = 100
ISPIN = 1
INIWAV = 1
IWAVPR = 1
ISTART = 0
LWAVE = .FALSE.
LCHARG = .FALSE.
################################
### MACHINE−LEARNING ###
################################
### General parameters ###
ML_LMLFF = .TRUE. # Set as LMLFF_FF = .TRUE. , when some machine−l e a rn i ng f o r c e f i e l d

c a l c u l a t i o n s are executed . Defau l t i s .FALSE.
ML_ISTART = 0 # Parameter to con t r o l r e s t a r t i n g c a l c u l a t i o n s . Set 0 , 1 or 2 .

# When you execute the t r a i n i n g from the scratch , t h i s needs to be s e t to
0 .

# When you r e s t a r t the t r a i n i n g read ing the prev ious ab i n i t i o data (ABCAR
f i l e ) , t h i s needs to be s e t to 1 .

ML_RCUT1 = 6.0 # Cutof f rad ius used f o r c a l c u l a t i n g the r a d i a l d e s c r i p t o r . Defaul t i s
RCUT2_FFM.

ML_RCUT2 = 5.0 # Cutof f rad ius used f o r c a l c u l a t i n g the angular d e s c r i p t o r . Defaul t i s 5 .0
( Angst ) .

#ML_NHYP1 = 1 # Hyper parameter used f o r c a l c u l a t i n g the r a d i a l d e s c r i p t o r . Defau l t i s
1 .

#ML_NHYP2 = 4 # Hyper parameter used f o r c a l c u l a t i n g the angular d e s c r i p t o r . Defaul t i s
4 .

ML_MB=2000
ML_MCONF= 1600

27



B Lithium nitride (heating) INCAR

SYSTEM =Li3N
PREC = FAST
ALGO = Fast
SIGMA = 0.01 ; ISMEAR = 0
ENCUT = 350
NCORE = 4 ; KPAR =8
EDIFF = 1E−4 ; NELMIN = 6
ISYM = 0
LREAL = A
ISIF = 3
MDALGO=3 # use Langevin thermostat
LANGEVIN_GAMMA = 1.0 1 .0 # f r i c t i o n coe f . f o r atomic DoFs f o r each s p e c i e s
LANGEVIN_GAMMA_L=3.0 # f r i c t i o n coe f . f o r the l a t t i c e DoFs
PMASS=100 # mass f o r l a t t i c e DoFs
LATTICE_CONSTRAINTS = T T T # f i x x&y , r e l e a s e z l a t t i c e dynamics
PSTRESS=0.001 # P i s s e t at 0 .001 KB.
POTIM = 1.5 #2.50
IBRION = 0
SMASS = 0
TEBEG = 150.00D0
TEEND = 800.00D0
NSW = 300000 #xx K/ps
NBLOCK = 1
NWRITE = 1
NELM = 100
ISPIN = 1
INIWAV = 1
IWAVPR = 1
ISTART = 0
LWAVE = .FALSE.
LCHARG = .FALSE.
################################
### MACHINE−LEARNING ###
################################
### General parameters ###
ML_LMLFF = .TRUE. # Set as LMLFF_FF = .TRUE. , when some machine−l e a rn i ng f o r c e f i e l d

c a l c u l a t i o n s are executed . Defau l t i s .FALSE.
ML_ISTART = 0 # Parameter to con t r o l r e s t a r t i n g c a l c u l a t i o n s . Set 0 , 1 or 2 .

# When you execute the t r a i n i n g from the scratch , t h i s needs to be s e t to
0 .

# When you r e s t a r t the t r a i n i n g read ing the prev ious ab i n i t i o data (ABCAR
f i l e ) , t h i s needs to be s e t to 1 .

ML_RCUT1 = 6.0 # Cutof f rad ius used f o r c a l c u l a t i n g the r a d i a l d e s c r i p t o r . Defaul t i s
RCUT2_FFM.

ML_RCUT2 = 5.0 # Cutof f rad ius used f o r c a l c u l a t i n g the angular d e s c r i p t o r . Defaul t i s 5 .0
( Angst ) .

#ML_NHYP1 = 1 # Hyper parameter used f o r c a l c u l a t i n g the r a d i a l d e s c r i p t o r . Defau l t i s
1 .

#ML_NHYP2 = 4 # Hyper parameter used f o r c a l c u l a t i n g the angular d e s c r i p t o r . Defaul t i s
4 .

ML_MB=2000
ML_MCONF= 1600
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C Lithium nitride (750K) INCAR

SYSTEM =Li3N
PREC = FAST
ALGO = Fast
SIGMA = 0.01 ; ISMEAR = 0
ENCUT = 350
NCORE = 4 ; KPAR =8
EDIFF = 1E−4 ; NELMIN = 6
ISYM = 0
LREAL = A
ISIF = 3
MDALGO=3 # use Langevin thermostat
LANGEVIN_GAMMA = 1.0 1 .0 # f r i c t i o n coe f . f o r atomic DoFs f o r each s p e c i e s
LANGEVIN_GAMMA_L=3.0 # f r i c t i o n coe f . f o r the l a t t i c e DoFs
PMASS=100 # mass f o r l a t t i c e DoFs
LATTICE_CONSTRAINTS = T T T # f i x x&y , r e l e a s e z l a t t i c e dynamics
PSTRESS=0.001 # P i s s e t at 0 .001 KB.
POTIM = 1.5 #2.50
IBRION = 0
SMASS = 0
TEBEG = 750.00D0
TEEND = 750.00D0
NSW = 200000 #xx K/ps
NBLOCK = 1
NWRITE = 1
NELM = 100
ISPIN = 1
INIWAV = 1
IWAVPR = 1
ISTART = 0
LWAVE = .FALSE.
LCHARG = .FALSE.
################################
### MACHINE−LEARNING ###
################################
### General parameters ###
ML_LMLFF = .TRUE. # Set as LMLFF_FF = .TRUE. , when some machine−l e a rn i ng f o r c e f i e l d

c a l c u l a t i o n s are executed . Defau l t i s .FALSE.
ML_ISTART = 1 # Parameter to con t r o l r e s t a r t i n g c a l c u l a t i o n s . Set 0 , 1 or 2 .

# When you execute the t r a i n i n g from the scratch , t h i s needs to be s e t to
0 .

# When you r e s t a r t the t r a i n i n g read ing the prev ious ab i n i t i o data (ABCAR
f i l e ) , t h i s needs to be s e t to 1 .

ML_RCUT1 = 6.0 # Cutof f rad ius used f o r c a l c u l a t i n g the r a d i a l d e s c r i p t o r . Defaul t i s
RCUT2_FFM.

ML_RCUT2 = 5.0 # Cutof f rad ius used f o r c a l c u l a t i n g the angular d e s c r i p t o r . Defaul t i s 5 .0
( Angst ) .

#ML_NHYP1 = 1 # Hyper parameter used f o r c a l c u l a t i n g the r a d i a l d e s c r i p t o r . Defau l t i s
1 .

#ML_NHYP2 = 4 # Hyper parameter used f o r c a l c u l a t i n g the angular d e s c r i p t o r . Defaul t i s
4 .

ML_MB=2000
ML_MCONF= 1600
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D Lithium nitride (individual) INCAR

SYSTEM =Li3N
PREC = FAST
ALGO = Fast
SIGMA = 0.01 ; ISMEAR = 0
ENCUT = 350
NCORE = 4 ; KPAR =8
EDIFF = 1E−4 ; NELMIN = 6
ISYM = 0
LREAL = A
ISIF = 3
MDALGO=3 # use Langevin thermostat
LANGEVIN_GAMMA = 1.0 1 .0 # f r i c t i o n coe f . f o r atomic DoFs f o r each s p e c i e s
LANGEVIN_GAMMA_L=3.0 # f r i c t i o n coe f . f o r the l a t t i c e DoFs
PMASS=100 # mass f o r l a t t i c e DoFs
LATTICE_CONSTRAINTS = T T T # f i x x&y , r e l e a s e z l a t t i c e dynamics
PSTRESS=0.001 # P i s s e t at 0 .001 KB.
POTIM = 1.5 #2.50
IBRION = 0
SMASS = 0
TEBEG = 0.00 # 750.00D0
TEEND = 0.00 #750.00D0
NSW = 1 #200000 #xx K/ps
NBLOCK = 1
NWRITE = 1
NELM = 100
ISPIN = 1
INIWAV = 1
IWAVPR = 1
ISTART = 0
LWAVE = .FALSE.
LCHARG = .FALSE.
################################
### MACHINE−LEARNING ###
################################
### General parameters ###
ML_LMLFF = .TRUE. # Set as LMLFF_FF = .TRUE. , when some machine−l e a rn i ng f o r c e f i e l d

c a l c u l a t i o n s are executed . Defau l t i s .FALSE.
ML_ISTART = 1 # Parameter to con t r o l r e s t a r t i n g c a l c u l a t i o n s . Set 0 , 1 or 2 .

# When you execute the t r a i n i n g from the scratch , t h i s needs to be s e t to
0 .

# When you r e s t a r t the t r a i n i n g read ing the prev ious ab i n i t i o data (ABCAR
f i l e ) , t h i s needs to be s e t to 1 .

ML_RCUT1 = 6.0 # Cutof f rad ius used f o r c a l c u l a t i n g the r a d i a l d e s c r i p t o r . Defaul t i s
RCUT2_FFM.

ML_RCUT2 = 5.0 # Cutof f rad ius used f o r c a l c u l a t i n g the angular d e s c r i p t o r . Defaul t i s 5 .0
( Angst ) .

#ML_NHYP1 = 1 # Hyper parameter used f o r c a l c u l a t i n g the r a d i a l d e s c r i p t o r . Defau l t i s
1 .

#ML_NHYP2 = 4 # Hyper parameter used f o r c a l c u l a t i n g the angular d e s c r i p t o r . Defaul t i s
4 .

ML_MB=4000
ML_MCONF= 1200
ML_SCLC_CTIFOR = 0.0000001
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E Diamond (truncated) input.nn

###############################################################################
# GENERAL NNP SETTINGS
###############################################################################
number_of_elements 1 # Number o f e lements .
e lements C # Sp e c i f i c a t i o n o f e lements .
cutof f_type 1 0 .0 # Cutof f type ( op t i ona l argument : s h i f t parameter alpha ) .
scale_symmetry_functions_sigma # Sca le a l l symmetry func t i on s with sigma .
scale_min_short 0 .0 # Minimum value f o r s c a l i n g .
scale_max_short 1 .0 # Maximum value f o r s c a l i n g .
global_hidden_layers_short 2 # Number o f hidden l a y e r s .
global_nodes_short 10 10 # Number o f nodes in each hidden l ay e r .
g loba l_act ivat ion_short p p l # Act ivat ion func t i on f o r each hidden l ay e r and output l ay e r .

###############################################################################
# ADDITIONAL SETTINGS FOR DATASET TOOLS
###############################################################################
use_short_forces # Use f o r c e s .
random_seed 1235813 # Random number generator seed .

###############################################################################
# ADDITIONAL SETTINGS FOR TRAINING
###############################################################################
epochs 10 # Number o f t r a i n i n g epochs .
normalize_data_set f o r c e # Normalize data s e t p r i o r to t r a i n i n g ( r e f = via r e f . data , f o r c e = via f o r c e pred i c t i on , s ta t s −only = use e x i s t i n g ) .
updater_type 1 # Weight update method (0 = Gradient Descent , 1 = Kalman f i l t e r ) .
paral le l_mode 0 # Training p a r a l l e l i z a t i o n used (0 = Pa r a l l e l ( rank 0 update ) , 1 = Pa r a l l e l ( a l l update ) ) .
jacobian_mode 1 # Jacobian computation mode (0 = Summation to s i n g l e gradient , 1 = Per−task summed gradient , 2 = Ful l Jacobian ) .
update_strategy 0 # Update s t r a t egy (0 = Combined , 1 = Per−element ) .
selection_mode 2 # Update candidate s e l e c t i o n mode (0 = Random , 1 = Sort , 2 = Threshold ) .
task_batch_size_energy 1 # Number o f energy update cand idates prepared per task f o r each update (0 = Ent i re t r a i n i n g s e t ) .
task_batch_size_force 1 # Number o f f o r c e update cand idates prepared per task f o r each update (0 = Ent i re t r a i n i n g s e t ) .
memorize_symfunc_results # Keep symmetry func t i on r e s u l t s in memory .
t e s t_ f r a c t i on 0 .05 # Fract ion o f s t r u c t u r e s kept f o r t e s t i n g .
force_weight 100 .0 # Weight o f f o r c e updates r e l a t i v e to energy updates .
short_energy_fract ion 1 .000 # Fract ion o f energy updates per epoch .
force_energy_rat io 3 .0 # Sp e c i f i e s r a t i o between f o r c e and energy updates ( r a t i o = updates_force / updates_energy ) .
short_energy_error_threshold 0 .00 # RMSE thre sho ld f o r energy update cand idates .
short_force_error_thresho ld 1 .00 # RMSE thre sho ld f o r f o r c e update cand idates .
rmse_thresho ld_tr ia l s 3 # Maximum number o f RMSE thre sho ld t r i a l s .
weights_min −1.0 # Minimum value f o r i n i t i a l random weights .
weights_max 1 .0 # Maximum value f o r i n i t i a l random weights .
main_error_metric RMSEpa # Main e r r o r metr ic f o r s c r een output (RMSEpa/RMSE/MAEpa/MAE) .
wr i t e_tra inpo in t s 1 # Write energy comparison every t h i s many epochs .
w r i t e_t r a i n f o r c e s 1 # Write f o r c e comparison every t h i s many epochs .
write_weights_epoch 1 # Write weights every t h i s many epochs .
wr i te_neuronstats 1 # Write neuron s t a t i s t i c s every t h i s many epochs .
wr i t e_tra in l og # Write t r a i n i n g log f i l e .

############################
# KALMAN FILTER (STANDARD) #
############################
kalman_type 0 # Kalman f i l t e r type (0 = Standard , 1 = Fading memory ) .
kalman_epsilon 1 .0E−2 # General Kalman f i l t e r parameter ep s i l o n ( s igmoida l : 0 . 01 , l i n e a r : 0 . 0 0 1 ) .
kalman_q0 0 .01 # General Kalman f i l t e r parameter q0 (" l a r g e " ) .
kalman_qtau 2.302 # General Kalman f i l t e r parameter qtau (2 .302 => 1 order o f magnitude per epoch ) .
kalman_qmin 1 .0E−6 # General Kalman f i l t e r parameter qmin ( typ . 1 .0E−6).
kalman_eta 0 .01 # Standard Kalman f i l t e r parameter eta (0 .001 −1 .0 ) .
kalman_etatau 2.302 # Standard Kalman f i l t e r parameter etatau (2 .302 => 1 order o f magnitude per epoch ) .
kalman_etamax 1 .0 # Standard Kalman f i l t e r parameter etamax (1 . 0+) .
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F Lithium nitride (truncated) input.nn

###############################################################################
# GENERAL NNP SETTINGS
###############################################################################
number_of_elements 2 # Number o f e lements .
e lements Li N # Sp e c i f i c a t i o n o f e lements .
cutof f_type 1 0 .0 # Cutof f type ( op t i ona l argument : s h i f t parameter alpha ) .
scale_symmetry_functions_sigma # Sca le a l l symmetry func t i on s with sigma .
scale_min_short 0 .0 # Minimum value f o r s c a l i n g .
scale_max_short 1 .0 # Maximum value f o r s c a l i n g .
global_hidden_layers_short 2 # Number o f hidden l a y e r s .
global_nodes_short 40 20 # Number o f nodes in each hidden l ay e r .
g loba l_act ivat ion_short p p l # Act ivat ion func t i on f o r each hidden l ay e r and output l ay e r .

###############################################################################
# ADDITIONAL SETTINGS FOR DATASET TOOLS
###############################################################################
use_short_forces # Use f o r c e s .
random_seed 1235813 # Random number generator seed .

###############################################################################
# ADDITIONAL SETTINGS FOR TRAINING
###############################################################################
epochs 10 # Number o f t r a i n i n g epochs .
normalize_data_set f o r c e # Normalize data s e t p r i o r to t r a i n i n g ( r e f = via r e f . data , f o r c e = via f o r c e pred i c t i on , s ta t s −only = use e x i s t i n g ) .
updater_type 1 # Weight update method (0 = Gradient Descent , 1 = Kalman f i l t e r ) .
paral le l_mode 0 # Training p a r a l l e l i z a t i o n used (0 = Pa r a l l e l ( rank 0 update ) , 1 = Pa r a l l e l ( a l l update ) ) .
jacobian_mode 1 # Jacobian computation mode (0 = Summation to s i n g l e gradient , 1 = Per−task summed gradient , 2 = Ful l Jacobian ) .
update_strategy 0 # Update s t r a t egy (0 = Combined , 1 = Per−element ) .
selection_mode 2 # Update candidate s e l e c t i o n mode (0 = Random , 1 = Sort , 2 = Threshold ) .
task_batch_size_energy 1 # Number o f energy update cand idates prepared per task f o r each update (0 = Ent i re t r a i n i n g s e t ) .
task_batch_size_force 1 # Number o f f o r c e update cand idates prepared per task f o r each update (0 = Ent i re t r a i n i n g s e t ) .
memorize_symfunc_results # Keep symmetry func t i on r e s u l t s in memory .
t e s t_ f r a c t i on 0 .05 # Fract ion o f s t r u c t u r e s kept f o r t e s t i n g .
force_weight 20 .0 # Weight o f f o r c e updates r e l a t i v e to energy updates .
short_energy_fract ion 1 .000 # Fract ion o f energy updates per epoch .
force_energy_rat io 3 .0 # Sp e c i f i e s r a t i o between f o r c e and energy updates ( r a t i o = updates_force / updates_energy ) .
short_energy_error_threshold 0 .00 # RMSE thre sho ld f o r energy update cand idates .
short_force_error_thresho ld 1 .00 # RMSE thre sho ld f o r f o r c e update cand idates .
rmse_thresho ld_tr ia l s 3 # Maximum number o f RMSE thre sho ld t r i a l s .
weights_min −1.0 # Minimum value f o r i n i t i a l random weights .
weights_max 1 .0 # Maximum value f o r i n i t i a l random weights .
main_error_metric RMSEpa # Main e r r o r metr ic f o r s c r een output (RMSEpa/RMSE/MAEpa/MAE) .
wr i t e_tra inpo in t s 1 # Write energy comparison every t h i s many epochs .
w r i t e_t r a i n f o r c e s 1 # Write f o r c e comparison every t h i s many epochs .
write_weights_epoch 1 # Write weights every t h i s many epochs .
wr i te_neuronstats 1 # Write neuron s t a t i s t i c s every t h i s many epochs .
wr i t e_tra in l og # Write t r a i n i n g log f i l e .

############################
# KALMAN FILTER (STANDARD) #
############################
kalman_type 0 # Kalman f i l t e r type (0 = Standard , 1 = Fading memory ) .
kalman_epsilon 1 .0E−2 # General Kalman f i l t e r parameter ep s i l o n ( s igmoida l : 0 . 01 , l i n e a r : 0 . 0 0 1 ) .
kalman_q0 0 .01 # General Kalman f i l t e r parameter q0 (" l a r g e " ) .
kalman_qtau 2.302 # General Kalman f i l t e r parameter qtau (2 .302 => 1 order o f magnitude per epoch ) .
kalman_qmin 1 .0E−6 # General Kalman f i l t e r parameter qmin ( typ . 1 .0E−6).
kalman_eta 0 .01 # Standard Kalman f i l t e r parameter eta (0 .001 −1 .0 ) .
kalman_etatau 2.302 # Standard Kalman f i l t e r parameter etatau (2 .302 => 1 order o f magnitude per epoch ) .
kalman_etamax 1 .0 # Standard Kalman f i l t e r parameter etamax (1 . 0+) .
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G Diamond in.lmp

######## Var iab l e s ########
c l e a r
va r i ab l e dt equal 0 .001
va r i ab l e num_steps equal 15000
va r i ab l e start_temp equal 100
va r i ab l e end_temp equal 3000
va r i ab l e s ta r t_pre s sure equal 0
va r i ab l e end_pressure equal 0

#va r i ab l e la t t i ce_parameter equa l s 3 .567
va r i ab l e input_structure s t r i n g " in . data"
va r i ab l e input_nnp s t r i n g " . . / . . / t r a i n i n g /diamond"

va r i ab l e thermostat_seed equal 223471
va r i ab l e temperature_seed equal 987428

va r i ab l e run_time equal "v_dt ∗ v_num_steps"

######## Setup ########
uni t s metal
dimension 3
boundary p p p
atom_style atomic

# cr ea t e box
#l a t t i c e f c c ${ lat t i ce_parameter }
#reg ion ent i r e_reg ion block 0 10 0 10 0 10
#create_box 1 ent i r e_reg ion

# cr ea t e atoms
#l a t t i c e f c c ${ lat t i ce_parameter } o r i e n t x 1 0 0 y 0 1 0 z 0 0 1
#create_atoms 1 reg ion ent i r e_reg ion
read_data ${ input_structure }
mass 1 12.0107

r e p l i c a t e 1 1 1

######## Poten t i a l ########
neigh_modify one 4000

# c f l e ng th 1.8897261328 c f ene rgy 0.0367493254
pa i r_sty l e nnp d i r ${input_nnp} showew no showewsum 100 maxew 100000 resetew yes
pa i r_coe f f ∗ ∗ 6 .01

# computes
#compute peperatom a l l pe/atom

######## Sim ########
reset_t imestep 0
t imestep ${dt}

# i n i t temp
va r i ab l e twice_start_temp equal "2 .0 ∗ v_start_temp"
v e l o c i t y a l l c r e a t e ${ twice_start_temp} ${ temperature_seed}

# f i x e s
f i x 1 a l l npt temp ${start_temp} ${end_temp} $ (100 .0∗ dt ) an i so ${ s ta r t_pre s sure } ${ end_pressure } $ (1000 .0∗ dt ) drag 1
#f i x 1 a l l nve
#f i x 2 a l l l angev in ${ start_temp} ${end_temp} 0 .5 ${ thermostat_seed} zero yes
#f i x 1 a l l nvt temp ${start_temp} ${end_temp} $ (100 .0∗ dt )

# output
thermo 100
thermo_style custom step temp pe lx ly l z

dump 1 a l l custom 5 dump/dump.∗ id element x y z fx fy f z
dump_modify 1 element C

pr in t "Running f o r ${run_time}ps"
run ${num_steps}
p r in t "Done"
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H Lithium nitride (150 K to 400 K) in.lmp

######## Var iab l e s ########
c l e a r
va r i ab l e dt equal 0 .001
va r i ab l e num_steps equal 100000
va r i ab l e start_temp equal 150
va r i ab l e end_temp equal 400
va r i ab l e s ta r t_pre s sure equal 0
va r i ab l e end_pressure equal 0

va r i ab l e input_structure s t r i n g " in . data"
va r i ab l e input_nnp s t r i n g " . . / . . / t r a i n i n g /Li3N− f u l l "

va r i ab l e thermostat_seed equal 926542
va r i ab l e temperature_seed equal 432198

va r i ab l e run_time equal "v_dt ∗ v_num_steps"

######## Setup ########
uni t s metal
dimension 3
boundary p p p
atom_style atomic

# cr ea t e atoms
read_data ${ input_structure }
mass 1 6 .941
mass 2 14.0067

r e p l i c a t e 1 1 1

######## Poten t i a l ########
neigh_modify one 4000

pa i r_sty l e nnp d i r ${input_nnp} showew no showewsum 100 maxew 100000 resetew yes
pa i r_coe f f ∗ ∗ 6 .01

# computes
group element_1 type 1
group element_2 type 2
compute msd_1 element_1 msd
compute msd_2 element_2 msd

######## Sim ########
reset_t imestep 0
t imestep ${dt}

# i n i t temp
va r i ab l e twice_start_temp equal "2 .0 ∗ v_start_temp"
v e l o c i t y a l l c r e a t e ${ twice_start_temp} ${ temperature_seed}

# f i x e s
f i x 1 a l l npt temp ${start_temp} ${end_temp} $ (100 .0∗ dt ) an i so ${ s ta r t_pre s sure } ${ end_pressure } $ (1000 .0∗ dt ) drag 1
#f i x 1 a l l nve
#f i x 2 a l l l angev in ${ start_temp} ${end_temp} 0 .5 ${ thermostat_seed} zero yes
#f i x 1 a l l nvt temp ${start_temp} ${end_temp} $ (100 .0∗ dt )

# output
thermo 10
thermo_style custom step temp pe lx ly l z c_msd_1 [ 1 ] c_msd_1 [ 2 ] c_msd_1 [ 3 ] c_msd_1 [ 4 ] c_msd_2 [ 1 ] c_msd_2 [ 2 ] c_msd_2 [ 3 ] c_msd_2 [ 4 ]

dump 1 a l l custom 100 dump/dump.∗ id element x y z fx fy f z
dump_modify 1 element Li N

pr in t "Running f o r ${run_time}ps"
run ${num_steps}
p r in t "Done"
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I Lithium nitride (400 K to 800 K) in.lmp

######## Var iab l e s ########
c l e a r
va r i ab l e dt equal 0 .001
va r i ab l e num_steps equal 50000
va r i ab l e start_temp equal 400
va r i ab l e end_temp equal 800
va r i ab l e s ta r t_pre s sure equal 0
va r i ab l e end_pressure equal 0

va r i ab l e input_structure s t r i n g " in . data"
va r i ab l e input_nnp s t r i n g " . . / . . / t r a i n i n g /Li3N−750K− f u l l "

va r i ab l e thermostat_seed equal 926542
va r i ab l e temperature_seed equal 432198

va r i ab l e run_time equal "v_dt ∗ v_num_steps"

######## Setup ########
uni t s metal
dimension 3
boundary p p p
atom_style atomic

# cr ea t e atoms
read_data ${ input_structure }
mass 1 6 .941
mass 2 14.0067

r e p l i c a t e 1 1 1

######## Poten t i a l ########
neigh_modify one 4000

pa i r_sty l e nnp d i r ${input_nnp} showew no showewsum 100 maxew 100000 resetew yes
pa i r_coe f f ∗ ∗ 6 .01

# computes
group element_1 type 1
group element_2 type 2
compute msd_1 element_1 msd
compute msd_2 element_2 msd

######## Sim ########
reset_t imestep 0
t imestep ${dt}

# i n i t temp
va r i ab l e twice_start_temp equal "2 .0 ∗ v_start_temp"
v e l o c i t y a l l c r e a t e ${ twice_start_temp} ${ temperature_seed}

# f i x e s
f i x 1 a l l npt temp ${start_temp} ${end_temp} $ (100 .0∗ dt ) an i so ${ s ta r t_pre s sure } ${ end_pressure } $ (1000 .0∗ dt ) drag 1
#f i x 1 a l l nve
#f i x 2 a l l l angev in ${ start_temp} ${end_temp} 0 .5 ${ thermostat_seed} zero yes
#f i x 1 a l l nvt temp ${start_temp} ${end_temp} $ (100 .0∗ dt )

# output
thermo 10
thermo_style custom step temp pe lx ly l z c_msd_1 [ 1 ] c_msd_1 [ 2 ] c_msd_1 [ 3 ] c_msd_1 [ 4 ] c_msd_2 [ 1 ] c_msd_2 [ 2 ] c_msd_2 [ 3 ] c_msd_2 [ 4 ]

dump 1 a l l custom 100 dump/dump.∗ id element x y z fx fy f z
dump_modify 1 element Li N

pr in t "Running f o r ${run_time}ps"
run ${num_steps}
p r in t "Done"
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J Diamond symmetry functions

Type rl rc θl θc
23 -1.0 1.0
23 -0.5 1.6
23 0.0 2.1
23 0.5 2.7
23 1.0 3.2
23 1.6 3.8
23 2.1 4.3
23 2.7 4.9
23 3.2 5.4
23 3.8 5.9
25 -3.0 3.0
25 -1.5 4.5
25 0.0 6.0
25 135 225
25 -45 45
25 45 135
25 0 90
25 90 180

36



K Lithium nitride symmetry functions

Type rl rc θl θc
23 -1.0 1.0
23 -0.5 1.6
23 0.0 2.1
23 0.5 2.7
23 1.0 3.2
23 1.6 3.8
23 2.1 4.3
23 2.7 4.9
23 3.2 5.4
23 3.8 5.9
25 -4.0 4.0
25 -2.0 6.0
25 -20 2
25 0 4
25 2 60
25 4 80
25 6 100
25 8 120
25 1 140
25 1 160
25 1 180
25 1 200

(a) 10 + 2 · 10

Type rl rc θl θc
23 -0.5 0.5
23 -0.2 0.8
23 0.0 1.1
23 0.2 1.4
23 0.5 1.7
23 0.8 1.9
23 1.1 2.2
23 1.4 2.5
23 1.7 2.8
23 1.9 3.1
23 2.2 3.4
23 2.5 3.7
23 2.8 4.0
23 3.1 4.2
23 3.4 4.5
23 3.7 4.8
23 4.0 5.1
23 4.2 5.4
23 4.5 5.7
23 4.8 5.9
25 -4.0 4.0
25 -2.0 6.0
25 -45 45
25 0 90
25 45 136
25 90 180
25 135 225

(b) 20 + 2 · 5
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Type rl rc θl θc
23 -0.5 0.5
23 -0.2 0.8
23 0.0 1.1
23 0.2 1.4
23 0.5 1.7
23 0.8 1.9
23 1.1 2.2
23 1.4 2.5
23 1.7 2.8
23 1.9 3.1
23 2.2 3.4
23 2.5 3.7
23 2.8 4.0
23 3.1 4.2
23 3.4 4.5
23 3.7 4.8
23 4.0 5.1
23 4.2 5.4
23 4.5 5.7
23 4.8 5.9
25 -2.4 2.4
25 -1.2 3.5
25 0.0 4.8
25 1.1 6.0
25 -20 20
25 0 40
25 20 60
25 40 80
25 60 100
25 80 120
25 100 140
25 120 160
25 140 180
25 160 200

(a) 20 + 4 · 10

Type rl rc θl θc
23 -0.3 0.3
23 -0.1 0.5
23 0.0 0.7
23 0.1 0.9
23 0.3 1.1
23 0.5 1.3
23 0.7 1.5
23 0.9 1.7
23 1.1 1.9
23 1.3 2.1
23 1.5 2.3
23 1.7 2.5
23 1.9 2.7
23 2.1 2.9
23 2.3 3.0
23 2.5 3.2
23 2.7 3.4
23 2.9 3.6
23 3.0 3.8
23 3.2 4.0
23 3.4 4.2
23 3.6 4.4
23 3.8 4.6
23 4.0 4.8
23 4.2 5.0
23 4.4 5.2
23 4.6 5.4
23 4.8 5.6
23 5.0 5.8
23 5.2 5.9
25 -3.0 3.0
25 -1.5 4.5
25 0.0 6.0
25 -20 20
25 0 40
25 20 60
25 40 80
25 60 100
25 80 120
25 100 140
25 120 160
25 140 180
25 160 200

(b) 30 + 3 · 10

38



Type rl rc θl θc
23 -0.2 0.2
23 -0.1 0.4
23 0.0 0.5
23 0.1 0.7
23 0.2 0.8
23 0.4 1.0
23 0.5 1.1
23 0.7 1.3
23 0.8 1.4
23 1.0 1.6
23 1.1 1.7
23 1.3 1.9
23 1.4 2.0
23 1.6 2.1
23 1.7 2.3
23 1.9 2.4
23 2.0 2.6
23 2.1 2.7
23 2.3 2.9
23 2.4 3.0
23 2.6 3.2
23 2.7 3.3
23 2.9 3.5
23 3.0 3.6
23 3.2 3.8
23 3.3 3.9
23 3.5 4.0
23 3.6 4.2
23 3.8 4.3
23 3.9 4.5
23 4.0 4.6
23 4.2 4.8
23 4.3 4.9
23 4.5 5.1
23 4.6 5.2
23 4.8 5.4
23 4.9 5.5
23 5.1 5.7
23 5.2 5.8
23 5.4 6.0
25 -2.4 2.4
25 -1.2 3.5
25 0.0 4.8
25 1.1 6.0
25 -45 45
25 0 90
25 45 136
25 90 180
25 135 225

(a) 40 + 4 · 5

Type rl rc θl θc
23 -0.3 0.3
23 -0.1 0.5
23 0.0 0.7
23 0.1 0.9
23 0.3 1.1
23 0.5 1.3
23 0.7 1.5
23 0.9 1.7
23 1.1 1.9
23 1.3 2.1
23 1.5 2.3
23 1.7 2.5
23 1.9 2.7
23 2.1 2.9
23 2.3 3.0
23 2.5 3.2
23 2.7 3.4
23 2.9 3.6
23 3.0 3.8
23 3.2 4.0
23 3.4 4.2
23 3.6 4.4
23 3.8 4.6
23 4.0 4.8
23 4.2 5.0
23 4.4 5.2
23 4.6 5.4
23 4.8 5.6
23 5.0 5.8
23 5.2 5.9
25 -2.4 2.4
25 -1.2 3.5
25 0.0 4.8
25 1.1 6.0
25 -20 20
25 0 40
25 20 60
25 40 80
25 60 100
25 80 120
25 100 140
25 120 160
25 140 180
25 160 200
25 -90 90
25 90 270
25 0 180
25 0 90
25 90 180

(b) 30 + 4 · 15
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Type rl rc θl θc
23 -0.2 0.2
23 -0.1 0.3
23 0.0 0.4
23 0.1 0.5
23 0.2 0.7
23 0.3 0.8
23 0.4 0.9
23 0.5 1.0
23 0.7 1.1
23 0.8 1.2
23 0.9 1.4
23 1.0 1.5
23 1.1 1.6
23 1.2 1.7
23 1.4 1.8
23 1.5 2.0
23 1.6 2.1
23 1.7 2.2
23 1.8 2.3
23 2.0 2.4
23 2.1 2.5
23 2.2 2.7
23 2.3 2.8
23 2.4 2.9
23 2.5 3.0
23 2.7 3.1
23 2.8 3.2
23 2.9 3.4
23 3.0 3.5
23 3.1 3.6
23 3.2 3.7
23 3.4 3.8
23 3.5 4.0
23 3.6 4.1

(a) 50 + 4 · 10

23 3.7 4.2
23 3.8 4.3
23 4.0 4.4
23 4.1 4.5
23 4.2 4.7
23 4.3 4.8
23 4.4 4.9
23 4.5 5.0
23 4.7 5.1
23 4.8 5.2
23 4.9 5.4
23 5.0 5.5
23 5.1 5.6
23 5.2 5.7
23 5.4 5.8
23 5.5 6.0
25 -2.4 2.4
25 -1.2 3.5
25 0.0 4.8
25 1.1 6.0
25 -20 20
25 0 40
25 20 60
25 40 80
25 60 100
25 80 120
25 100 140
25 120 160
25 140 180
25 160 200
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