
Technische Universität Berlin
Faculty IV – Electrical Engineering and Computer Science
Institute for Software Technology and Theoretical Computer Science

Master Thesis

Machine learning techniques for the analysis
of a�ective components of sign language

Neha Pravin Deshpande
Master of Science

Matriculation-Nr. 0453026

Berlin, 10.12.2021

Supervised by Examiners: Prof. Dr.-Ing. Sebastian Möller (TU Berlin), Prof. Dr. Gesche
Joost (UdK Berlin). Advisors: Dr. phil. Eleftherios Avramidis, Dr. Fabrizio Nunnari (DFKI

GmbH)

Acknowledgements

This thesis was supported by the SocialWear project of Deutsches Forschungszentrum für Künstliche
Intelligenz (DFKI), and funded by the German Ministry of Education and Research (BMBF).

Foremost, I would like to thank my thesis advisors, Dr. Phil. Eleftherios Avramidis and Dr. Fabrizio
Nunnari (DFKI). Without their assistance and involvement in every step throughout the process, this thesis
would have never been accomplished. I would also like to show gratitude to my examiners, Prof. Dr.-Ing.
Sebastian Möller (TU Berlin) and Prof. Dr.Gesche Joost (UdK Berlin). I would also like to thank Ms. Yasmin
Hillebrenner for the administrative help she provided throughout this thesis. Last but not least, I am grateful
to my family and friends for providing the cooperation and encouragement needed throughout this process.

Eidessta�liche Erklärung

Ich erkläre hiermit, dass ich diese Diplomarbeit/Dissertation selbstständig ohne Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Quellen und Hilfsmittel verfasst habe. Alle den benutzten Quellen
wörtlich oder sinngemäß entnommenen Stellen sind als solche einzeln kenntlich gemacht.

Diese Arbeit ist bislang keiner anderen Prüfungsbehörde vorgelegt worden und auch nicht verö�entlicht
worden.

Ich bin mir bewusst, dass eine falsche Erklärung rechtliche Folgen haben wird.

Ort, Datum, Unterschrift

Zusammenfassung

In dieser Arbeit wurden verschiedene Techniken des maschinellen Lernens untersucht, um eine bessere
Genauigkeit für ein Modell zur Erkennung von Gesichtsausdrücken zu erreichen, das anhand von Gebärden-
sprachdaten trainiert wurde. Verschiedene Techniken des maschinellen Lernens wie Feinabstimmung, Daten-
erweiterung, Klassenausgleich sowie Bildvorverarbeitung wurden eingesetzt, um eine bessere Genauigkeit
bei der Erkennung der sechs grundlegenden Ekman-Emotionen ’fear’, ’disgust’, ’surprise’, ’sadness’, ’happi-
ness’, ’anger’ und der neutralen Klasse zu erreichen. Die Modelle wurden mittels K-facher Kreuzvalidierung
evaluiert, um genauere Aussagen zu erhalten. In dieser Arbeit wird auch ein Vergleich der oben genannten
Techniken auf der Grundlage von zwei verschiedenen Architekturen, nämlich MobileNet und E�cientNet,
vorgestellt. Es wird experimentell gezeigt, dass die Feinabstimmung eines vortrainierten Modells zusammen
mit der Datenerweiterung durch horizontales Spiegeln von Bildern und der Anwendung von Bildnormal-
isierung dazu beiträgt, die beste Genauigkeit für den Gebärdensprachdatensatz sowohl für MobileNet- als
auch für E�cientNet-Architekturen zu erzielen.

Abstract

In this thesis, several machine learning techniques were studied to reach a better accuracy for a facial
expression recognition model trained on a sign language dataset. Various machine learning techniques such
as �ne-tuning, data augmentation, class balancing, as well as image preprocessing were used to reach a better
accuracy for recognizing the 6 basic Ekman emotions of ’fear’, ’disgust’, ’surprise’, ’sadness’, ’happiness’,
’anger’ along with the ’neutral’ class. The models were evaluated using K-fold cross-validation to get a
more accurate conclusion. This thesis also presents a comparison of the above-mentioned techniques based
on two di�erent architectures, namely MobileNet and E�cientNet. It is experimentally demonstrated that
�ne-tuning a pre-trained model along with data augmentation by horizontally �ipping images, and applying
image normalization, helps in providing the best accuracy on the sign language dataset for both MobileNet
and E�cientNet architectures.

Contents

1 Introduction 2

2 Related Work 3
2.1 Summary of existing Deep-Learning-based models . 3
2.2 Techniques to improve performance of a CNN . 4

3 Methods 5
3.1 Image preprocessing . 5
3.2 Convolutional Neural Network (CNN) Architectures . 6
3.3 Training . 8

4 Experimental Setup 12
4.1 The sign language dataset . 12
4.2 Data preprocessing . 12
4.3 Pre-trained models for Facial Expression Recognition (FER) 13
4.4 Experiments with the MobileNet architecture . 14
4.5 Experiments with the E�cientNet architecture . 15
4.6 5-Fold Cross-Validation . 17

5 Results 19
5.1 Results with MobileNet-v1 . 19
5.2 Results with E�cientNet-B0 . 19
5.3 Cross-validation results . 21

6 Conclusion 23

List of Figures 27

List of Tables 28

1

1 Introduction

Sign language is a visual language that relies on movements of hands, body, as well as facial muscles to
convey information. Most work on sign language recognition focuses on the movement of hands, which
is considered a manual feature that conveys most of the information. There are also some non-manual
features such as facial expressions, head and body position, and movement, which are also known to convey
substantial information. Mukushev et al. (2020) in their research on non-manual features that di�erentiate
similar signs in the Kazakh-Russian Sign Language, obtained a higher model accuracy overall when manual
features were combined with non-manual features proving that the non-manual component of the sign
language helps in improving a sign’s recognition accuracy.

Facial expressions in sign language convey various types of meanings on linguistic and emotional
information. These facial expressions are used in combination with other meaningful movements (those
of hands, head, etc). According to Elliott et al. (2013) some facial expressions convey the inner emotional
states. On the other hand, Fridlund (1997) claims that inner emotional states cannot be exactly read out
from facial expressions. Facial expressions also have culture-speci�c meanings in sign language and hence
other markers are needed to convey the real meaning behind a sign or a facial expression. Hence facial
expression recognition is widely studied with di�erent techniques used to improve the performance of
models based on deep convolutional neural networks (CNN). Training a CNN requires a large amount of
data and a limited amount of facial expressions data is available speci�cally for the German sign language,
making it di�cult to train a facial expression recognition model from scratch. Therefore, this thesis uses
�ne-tuning of pre-trained models that have provided a state-of-the-art accuracy on the A�ectNet dataset
(Savchenko 2021). The pre-trained models used during the experiments follow a lightweight architecture
which makes it easier to �ne-tune and still provides high accuracy.

For this study, it was hypothesized that �ne-tuning a pre-trained facial expression recognition model
(trained on a very large image dataset) helps improve the prediction rate on a sign language dataset. The
sign language dataset used was the FePh (Facial Expression Phoenix) dataset which consists of 3000 facial
images extracted from the daily news and weather forecast of the public TV station PHOENIX (Alaghband
et al. 2020). This dataset is annotated with six basic emotions of ’sad’, ’surprise’, ’fear’, ’angry’, ’disgust’,
and ’happy’ along with the ’neutral’ and ’none’ labels. The chosen approach for this thesis includes using
�ne-tuning �rst to test the performance of the model on the sign language dataset. This was followed by
using various machine learning techniques such as data augmentation, image normalization, and class
balancing to improve the performance of the �ne-tuned model. As a �nal step, to evaluate the performance of
the best models obtained with the techniques mentioned above, k-fold cross-validation was also performed.

The rest part of the thesis is organized as follows. A brief survey of related literature is given in Section 2.
Section 3 includes a detailed description of the methods used during the thesis. Section 4 contains details
about the experiments conducted for facial expression recognition. Section 5 presents the results of these
experiments followed by Section 6 which concludes the thesis.

2

2 Related Work

As discussed in the previous section, to tackle the complexity of Facial Expression Recognition (FER),
several machine learning techniques have been used. Ko (2018) has provided a brief review of the research
done concerning FER in the past few years. This includes both conventional FER approaches as well as
deep-learning-based approaches and a comparison of all the techniques based on certain evaluation metrics.
The conventional approaches described by the researchers involve the extraction of geometric features
of the face and then calculating the distance and angles between the facial landmarks to form a feature
vector that can be used to train a machine learning model. Conventional machine learning algorithms
such as Support Vector Machines (SVM), AdaBoost, or Random Forest classi�ers, are then employed to
perform the classi�cation of the extracted landmarks. On the other hand, deep-learning-based approaches
such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) can perform feature
extraction, classi�cation as well as recognition tasks. Visualization techniques can be used to see how these
models learned with the given FER datasets. The paper also describes the use of video datasets, for which
CNN can be combined with long Short-Term Memory (LSTM), where LSTMs can be used for temporal
features and CNN for spatial features in an individual frame. The authors also provide a comparison of all
the techniques mentioned above based on their accuracies, wherein the deep-learning-based techniques
scored a higher average accuracy compared to the conventional techniques. This comparison shows that
using deep-learning-based techniques with some �ne-tuning can provide a better accuracy however, they
still have several limitations, including the need for large-scale datasets, massive computing power, and
large amounts of memory, and are time-consuming for both the training and testing phases as highlighted
by the authors.

While describing the di�erences between traditional computer vision and deep learning techniques,
O’Mahony et al. (2019) provided a similar review emphasizing that deep learning cannot solve all computer
vision problems and hence a hybrid approach has also been in use lately. In addition to the review presented
above, this paper also suggests that to tackle the issue of the requirement of massive data for deep learning,
data augmentation techniques can be used as a preprocessing task to increase training data. Similarly, to
reduce the training time taken by neural networks, transfer learning can be used (Akhand et al. 2021).
Hence, focusing more on the state-of-the-art deep-learning-based techniques can be extended to recognize
facial expressions in sign-language users.

Research suggests that some emotions are di�cult to recognize for humans from just facial expressions.
Dodich et al. (2014) proved that among negative emotions, fear is the most di�cult to recognize while anger
was recognized by most participants in the study. Facial expressions are culture-speci�c and �ndings by
Sauter et al. (2010) indicate that several primarily negative emotions can be recognized across cultures,
while most positive emotions are communicated with culture-speci�c signals.

2.1 Summary of existing Deep-Learning-based models
Some state-of-the-art techniques involving deep-learning-based approaches that can be used for facial
expression recognition are presented below.

A multi-task training of lightweight convolutional neural networks for classi�cation and identi�cation
of facial attributes has been presented by Savchenko (2021). They present a simple training pipeline that
also provides a state-of-the-art accuracy of lightweight neural networks in FER trained on images as well

3

2 Related Work

as videos. Speci�cally, the emotion recognition network in the model is trained on the A�ectNet dataset,
providing a state-of-the-art accuracy. The high performance of this model is the result of pre-training of
facial feature extractor for face identi�cation, which was done by a very large VGGFace2 (Gennaro et al.
2019) data-set. The model also provides an excellent speed and model size, and hence can have several other
applications as well. The features extracted by this network can be used with more complex classi�ers, and
therefore can be explored for FER in the case of sign language.

Another framework as proposed by Meng et al. (2019) involves the Frame Attention Networks (FAN) for
video-based facial expression recognition. FAN takes a facial video consisting of frames of facial images as
its input and produces a �xed-dimension feature representation which can be then used for facial expression
recognition. With extensive experiments on CK+ and AFEW 8.0 data-sets (both including seven emotion
labels (Ekman 1999)), the authors demonstrate that the framework with only self-attention improves the
performance signi�cantly, and adding relation-attention improves the performance further. FAN can be
further �ne-tuned to �t the sign-language dataset, due to its high accuracy.

Along with deep-learning-based models, there are also many pre-trained models involving Support Vector
Machine (SVM) as well as Local Binary Patterns (LBP) (Ravi et al. 2020). LBP is a method for extracting
features and the SVM classi�er is used for classifying the features extracted from LBP. This paper also
provides a comparison between LBP and CNN and proves that CNN does provide higher accuracy with
some datasets (CK+ and JAFFE datasets) than SVM.

2.2 Techniques to improve performance of a CNN
To improve the performance of a Convolutional Neural Network (CNN) model, Savchenko (2021) employed
data augmentation techniques which include geometric transformations such as �ipping the training images
horizontally, as well as cropping them randomly to increase the training data. Shorten et al. (2019) presents
a more detailed review on the use of data augmentation techniques to expand limited datasets to take
advantage of the capabilities of big data. In most computer vision tasks involving image classi�cation,
�ipping the images horizontally before training is su�cient and helps in improving the overall performance
of the CNN (Savchenko 2021; Zheng et al. 2020). Apart from data augmentation, research has also shown
that using the right data preprocessing techniques such as resizing, face detection, cropping, adding noise,
data normalization, histogram equalization, etc. also helps in boosting the performance of a CNN trained
for recognizing emotions from facial images (Pitaloka et al. 2017).

Research done on di�erent CNN architectures proves that architectures such as E�cientNet (B0 to
B7), MobileNet, ResNet, etc. help in reducing the calculations required making them more lightweight
and faster in performance (Tan et al. 2019, 2021). Along with the architecture, using several optimizers
instead of just one also improves the overall performance and generalization of a CNN model (Savchenko
2021; Taqi et al. 2018). Taqi et al. (2018) used four di�erent optimizers for a TensorFlow-CNN: Adagrad,
ProximalAdagrad, Adam, and RMSProp to achieve accurate classi�cation. While Adam is a commonly used
optimizer giving a high classi�cation accuracy on its own, using other optimizers that generalize better
than Adam, can help improve the performance of the Adam optimizer further. The author also mentions
the use of RMSProp optimizer which gave an accuracy of 100% while Adam optimizer ended up giving 96%
accuracy. Savchenko (2021) used the Sharpness Aware Minimization (SAM) and Stochastic Gradient Descent
(SGD) optimizers for the last few epochs as they converge better, boosting the overall performance. Other
important parameters that could help boost the performance of a CNN are: using appropriate learning rates,
choice of the activation function, balancing the imbalanced classes, etc (Kandel et al. 2020).

4

3 Methods

This section describes the various methods used in the experiments.

3.1 Image preprocessing
Image preprocessing plays a vital role in achieving state-of-the-art results in a Convolutional Neural Network
(CNN), as the raw data does not always produce good accuracy. There are several image preprocessing
techniques, such as image normalization, standardization, and Zero Component Analysis (ZCA) (Pal et al.
2016). The improvement in accuracy of a CNN is dependent on the image preprocessing technique being
used along with its network architecture. This thesis uses two image preprocessing techniques, namely,
face cropping and image normalization, which are discussed in the next subsection.

3.1.1 Face crop
Cropping is a technique used in computer vision to extract the area of the image which is required for image
recognition or classi�cation tasks. In the case of Facial Expression Recognition (FER), faces are cropped
from the image dataset to remove the unnecessary information from the images, and only keep the pixels
that constitute the facial information. To crop faces from an image, Savchenko (2021) has proposed the
use of a Multi-task Cascaded Convolutional Network (MTCNN), a framework used for face detection and
alignment. MTCNN performs three tasks: face classi�cation, bounding box regression, and facial landmark
localization (Xiang et al. 2017).

From the computer vision algorithms available to detect, recognize or crop faces such as Dlib and OpenCV
libraries, the OpenCV library is more productive and has better performance for face detection (Boyko et al.
2018). OpenCV helps to crop the face from an image in the following steps: converting BGR images to RGB,
detecting and extracting the face mesh from images, extracting the face bounds, and then �nally cropping
the images (Emami et al. 2012). OpenCV uses the Haar Cascade, which is an object detection method used
to locate an object of interest in images. A Haar-like feature considers neighboring rectangular regions,
sums up the pixel intensities in each region, and calculates the di�erence between these sums, which helps
to categorize the image into subsections (Soo 2014).

3.1.2 Image normalization
As mentioned earlier, providing raw data to a CNN does not always help in providing good accuracy. Studies
have shown that for image classi�cation as well as recognition tasks such as predicting disease using X-rays,
facial expression recognition, etc., image normalization has helped in enhancing the performance of the
CNN (Heidari et al. 2020; Koo et al. 2017; Savchenko 2021).

Image normalization is a technique where the mean along each of the features (dimensions of images)
from the training sample is calculated and is subtracted from each of the images. This results in normalizing
the brightness of the whole training set concerning each dimension as shown in the equation below (Pal
et al. 2016):

X ′ = X − � (3.1)

5

3 Methods

Fig. 3.1: MobileNet v1 baseline model (Sinha et al. 2019)

where X’ is the normalized data, X represents the original data, and �is the mean vector across all features
of X.

3.2 Convolutional Neural Network (CNN) Architectures
CNN’s are deep learning models that play a signi�cant role in Natural Language Processing (NLP), computer
vision tasks such as image detection, recognition, etc (Albawi et al. 2017). Several CNN architectures have
been developed to solve real-world problems including ResNet, MobileNet, DenseNet, E�cientNet, etc
(Io�e et al. 2015; Savchenko 2021; Sinha et al. 2019). As proposed by Savchenko (2021), for a �ne-tuned
facial expression recognition model, the E�cientNet architecture gave the highest accuracy compared to
MobileNet. On the other hand, the MobileNet architecture is more lightweight and it works e�ciently for a
small number of parameters. The MobileNet and E�cientNet architectures are explained in the sections
below.

3.2.1 The MobileNet architecture - MobileNet-v1
The MobileNet architecture (�gure 3.1) uses depthwise separable convolutions followed by pointwise
convolutions where each input channel is �ltered separately as shown in �gure 3.2. This results in a drastic
reduction in model size and cost compared to standard convolutions. In comparison to other more e�cient
architectures, the accuracy obtained with MobileNet reduces as the number of parameters is increased in
the model.

The MobileNet v1 architecture has 28 layers wherein each layer is followed by the batch normalization
and Recti�er Linear Unit (ReLU) (Io�e et al. 2015). The MobileNet v1 architecture starts with a regular 3×3
convolution, followed by 13 depthwise separable convolutional blocks and pointwise convolutions (Michele
et al. 2019). The depthwise convolution in MobileNet is the channel-wise spatial convolution (Howard et al.
2017). Whereas the pointwise convolution is the 1×1 convolution which is used to change the dimension.
This has been illustrated in the �gure 3.2. These depthwise and pointwise convolutions result in a reduction
in model size and computation cost by about 8 to 9 times as compared to the usage of standard convolutions
(Sinha et al. 2019).

The MobileNet v1 architecture has been used for a variety of object detection and image recognition
applications such as palm print recognition (Michele et al. 2019), handwriting character recognition (Ghosh
et al. 2020), facial expression recognition (Savchenko 2021), etc.

6

3 Methods

Fig. 3.2: Depthwise separable convolution operation followed by pointwise convolution (Howard et al. 2017)

Fig. 3.3: Schematic representation of E�cientNet-B0 (Atila et al. 2021)

3.2.2 The E�icientNet architecture - E�icientNet-B0
The E�cientNet is another type of neural network architecture that consists of 8 models from E�cientNet-
B0 to B7. The accuracy and the number of model parameters increase considerably with the model number.
E�cientNet uses an activation function called Swish instead of Recti�er Linear Unit (ReLU) like the
MobileNet architecture (Tan et al. 2019). The main building block for E�cientNet is the inverted bottleneck
MBConv, which consists of a layer that �rst expands and then compresses the channel. (Sandler et al. 2018;
Tan et al. 2019). This architecture has in-depth separable convolutions that reduce the calculation by almost
k2 factor compared to traditional layers, where k is the kernel size which denotes the width and height
of the 2D convolution window (Sandler et al. 2018). A schematic representation of the E�cientNet-B0 is
shown in �gure 3.3. The E�cientNet architecture has been recently used for several applications such as
plant leaf disease classi�cation (Atila et al. 2021), automated diagnosis of COVID-19 (Marques et al. 2020),
and other image classi�cation tasks (Savchenko 2021; Tan et al. 2019), etc.

The E�cientNet architecture is more e�cient than MobileNet and has provided state-of-the-art accuracy
on several transfer learning datasets as it is easily scalable (Tan et al. 2019). Although when used for image
classi�cation problems, the E�cientNet architecture scaled up the image size leading to large memory
consumption and slower training compared to MobileNet (Tan et al. 2019).

7

3 Methods

3.3 Training

3.3.1 Fine-tuning
Training a Convolutional Neural Network (CNN) from scratch requires a large amount of data. Instead,
models pre-trained on bigger datasets can be �ne-tuned to �t a low resource dataset. Fine-tuning is the
process of initializing a pre-trained classi�cation network and then training it further for a di�erent task
(Radenović et al. 2018). Particularly in the domain of Facial Expression Recognition (FER), �ne-tuning has
proved to have increased the classi�cation accuracy (Akhand et al. 2021; Ngo et al. 2020). Fine-tuning helps
in FER-related tasks, due to an imbalance in the facial emotion datasets available and the lack of training
data, which can lead to over�tting and a less generalized model (Ngo et al. 2020).

As highlighted by Akhand et al. (2021), one of the motivations for using �ne-tuning instead of fully
training a model from scratch, is that the low-level basic features are common for most images and hence
an already trained (pre-trained) model can be useful for classi�cation by just �ne-tuning the high-level
features. Ngo et al. (2020) shows a comparison of several Facial Expression Recognition (FER) approaches
including conventional techniques such as Gabor wavelets coe�cients, Local binary pattern (LBP), Haar
features, etc and Deep-learning based approaches such as CNN and transfer-learning based CNN. Out
of these techniques, transfer learning-based CNN not only gives a highly accurate performance but also
requires lesser human labor. The proposed FER technique as per (Akhand et al. 2021; Ngo et al. 2020;
Savchenko 2021), is a pre-trained CNN modeled for image classi�cation and �ne-tuned by replacing the
upper layers with the dense layer(s) to make it compatible with the �ne-tuning dataset. Then the new dense
layers are �rst tuned to the �ne-tuning data, followed by training the whole CNN with this same data.
After testing on several datasets such as A�ectNet, KDEF, and JAFFE, �ne-tuned CNN models provide a
state-of-the-art accuracy (Savchenko 2021).

Akhand et al. (2021) has also mentioned the pipeline training strategy, which involves gradual �ne-tuning
of the model up layer-by-layer to achieve a high recognition accuracy. To implement a strategy like this
one, the similarity of the pre-trained model and the target model should be considered.

3.3.2 Optimization in Neural Networks
The aim of a Convolution Neural Network is to learn from the given data by minimizing the loss. The loss
function is reduced with the help of an optimization algorithm which is a numerical function performed on
the model’s parameters (Vani et al. 2019). An optimizer works towards reducing the loss incurred during
the Neural Network’s training process. Di�erent optimizers are compared and analyzed by Vani et al. (2019)
and Bera et al. (2020) in the context of deep learning and image classi�cation.

As explained by Bera et al. (2020), the gradient descent algorithm is commonly used in neural networks
for optimization as it minimizes the objective function by updating the parameters in the reverse direction
of the gradient of the objective function. The cross-entropy value is a popular loss function that is equal to
zero when the desired output and the predicted output are the same.

The following subsections explain the three optimizers used in this thesis for facial expression recognition
including the Adam optimizer, Stochastic Gradient Descent (SGD), and the Sharpness Aware Minimization
(SAM).

Adam optimizer

Adaptive Moment Estimation (Adam) is a method that computes discrete versatile learning rates for each
parameter from the evaluation of the �rst and second moments of the gradients (Vani et al. 2019). It stores
an exponentially decaying average of the past gradient (�t) which represents the �rst moment (mean) and

8

3 Methods

past squared gradient (t) which represents the second moment (variance) (Bera et al. 2020). They are
calculated as follows (Poojary et al. 2019):

{
�t ← �1�t−1 + (1 − �1) gt
t ← �2t−1 + (1 − �2) g2t

(1)

As it only requires �rst-order gradients, it works with little memory requirement. Adam is also known to
be robust and well-suited for a variety of machine learning problems (Ruder 2016, Kingma et al. 2014)

Stochastic Gradient Descent (SGD)

SGD uses a gradient descent algorithm but it takes data in samples while optimizing the CNN instead of
considering the entire dataset at once (Poojary et al. 2019). Hence, reducing the number of factors and terms
to be computed at each step. The SGD weight update rule is given in the equation below (Bera et al. 2020):

�t+1 = �t − �dt (2)

where dt represents the gradient of the objective function based on � at time step t with � as the learning
rate.

SGD is an optimizer that updates the model sequentially upon receiving new data and hence is suitable
for big data analysis (Lei et al. 2020). Recently, there has been a signi�cant amount of research pointing
towards the algorithmic stability provided by SGD and has been proved to outperform other optimizers for
�ne-tuned CNN models (Lei et al. 2020, Li et al. 2018).

Sharpness Aware Minimization (SAM)

It is important for the neural network models to not only learn well on the given data but also generalize
beyond the training data, which is done by reducing the training loss. Although a cross-entropy loss function
is not su�cient to achieve generalization and hence choosing the right optimizer becomes essential (Foret
et al. 2020). The author explains that sharpness Aware Minimization (SAM) is an optimization technique
that seeks parameters that lie in neighborhoods having uniformly low loss leading to sub-optimal model
quality. The authors also present empirical results showing that SAM improves the generalizability of the
model across several datasets. SAM also provides robustness to noisy labels. SAM also helped achieve a
better performance when applied on �ne-tuned E�cientNet models pre-trained on ImageNet (Foret et al.
2020). Using SAM for optimizing the categorical cross-entropy loss for the last two epochs also provided a
state-of-the-art accuracy on �ne-tuned E�cientNet models pre-trained on ImageNet (Savchenko 2021).

From the experiments performed by Foret et al. (2020), SAM seeks out model parameters that are robust to
perturbations suggesting SAM’s potential to provide robustness to noise in the training set. Upon assessing
the degree of robustness against label noise, SAM provided a high degree of robustness on par with the
state-of-the-art procedures that speci�cally deal with noisy labels.

Foret et al. (2020) has also derived an algorithm for SAM using the Stochastic Gradient Descent (SGD) as
the base optimizer, as it was seen to beat the performance of SGD on the CIFAR-10 dataset.

3.3.3 Data Augmentation
Data augmentation is another technique that helps compensate for the requirement of a large amount of
data that is needed to train a deep learning model. Data augmentation relies on geometric transformations
to increase the training data. Shorten et al. (2019) has explained several data augmentation techniques such
as geometric transformations, color space augmentations, kernel �lters, mixing images, random erasing,

9

3 Methods

feature space augmentation, adversarial training, Generative Adversarial Networks (GAN), neural style
transfer, and meta-learning. Additionally, Porcu et al. (2020) also proposed a Facial Expression Recognition
(FER) system using data augmentation techniques such as random rotation, horizontal and vertical �ip,
cropping, translation, and GAN. They recommend �ipping the training images horizontally along with
GAN as these techniques provide the most accurate improvement for FER.

A full-stage universal data augmentation framework is proposed by Zheng et al. (2020) as they explain
that �ipping data horizontally before feeding it to the CNN is not only safe but also one of the most common
and e�ective data augmentation techniques. A horizontal �ip of an image from the FePh dataset is shown in
�gure 3.5. The use of rotation and noise disturbance as data augmentation could have a large impact on the
image structure if the images are small in size resulting in poor performance Zheng et al. 2020. TensorFlow
allows �ipping images horizontally with the help of Keras’ preprocessing layers for data augmentation
(Chollet 2016). A similar image transformation function is also available in PyTorch that enables easy image
augmentation (Savchenko 2021).

Fig. 3.4: Original image from the FePh dataset Fig. 3.5: Image �ipped horizontally

3.3.4 Class Weights
The datasets available for facial expression recognition do not always consist of balanced classes as they have
a di�erent number of samples in each class. This can result in incorrect evaluation and a need for balancing
these classes to achieve uniform results across classes. Johnson et al. (2019) has divided the techniques
available to take care of the imbalance in classes into three categories: data-level methods, algorithm-level
methods, and hybrid approaches. The data-level techniques involve under-sampling (wherein random
samples from the majority class are discarded) and over-sampling (samples are duplicated in the minority
class). On the other hand, the algorithm-based methods do not alter the training data, instead, the learning
process is adjusted to compensate for the imbalance in the training data.

An algorithm-based technique used to balance the classes is called class weighting where di�erent weights
are used for every class depending on the number of training samples present in a class. The improvement
in accuracy by using di�erent class weights is demonstrated by Zhu et al. (2018) and Cardie et al. (1997)
in case of medical applications. They proved that adding individual weights for each class instead of a
single weight improved the recognition performance for minority classes while maintaining the same for
the majority class. As explained by Johnson et al. (2019), class weights for each class can be calculated as
follows:

cw = maxi |Ci|mini |Ci|
Here, cw is the class weight for a minority class. Consider that the largest class in the dataset has 100
samples and the smallest class has 10 samples. If the class weight for the majority class is set to 1 then that
for the minority class will be set to 10.

10

3 Methods

3.3.5 K-fold cross-validation
Cross-validation is a technique used to validate the generalizability of a model on a given dataset and is
ideal to use cross-validation while working on small datasets (Yadav et al. 2016). cross-validation techniques
such as k-fold cross-validation and hold-out can be used to train several models on di�erent instances from
the same dataset. Out of these two techniques, 0.1-3% more accurate results are obtained with the k-fold
cross-validation technique (Yadav et al. 2016).

In K-fold cross-validation, the entire dataset is divided into k equal parts. Out of these k parts, 1 part is
used as a test set, and the remaining k − 1 folds or parts are iteratively used for training models. Since the
data being held out for testing is di�erent in every iteration, the accuracy obtained with each model is also
di�erent. For example, for 5-fold cross-validation, the entire dataset is split into 5 folds, where 80% of the
data is used for training while 20% is used for testing. Ultimately, 5 models are trained where each fold is
used as a testing set once. After training and testing, the mean accuracy is considered as the �nal accuracy
of the model (Yadav et al. 2016). The sklearn library of Python provides a Group K fold iterator that creates
k-folds with non-overlapping groups (Bisong 2019).

According to Wong (2015) four factors a�ect the accuracy estimation while performing k-fold cross-
validation namely: number of folds, number of instances in each fold, level of averaging, and repetition of
k-fold cross-validation. A large value of k means there would not be enough instances of a class in each
fold, although this will not be a problem in the case of large datasets. On the other hand, with a higher
value of k, the computational cost increases (Fushiki 2011).

11

4 Experimental Setup

This chapter explains the experiments conducted to reach the best accuracy. As a starting point, the model
by Savchenko, (2021) was used as it provided a state-of-the-art accuracy with the MobileNet and E�cientNet
architectures. This model was considered as the baseline for predicting on the sign language dataset (FePh).
This model was trained on a large A�ectNet dataset (Mollahosseini et al. 2017) which contains more than
1,000,000 facial images from the internet. The model is �rst �ne-tuned to the sign language dataset and
then di�erent machine learning techniques such as data augmentation, image preprocessing as well as class
weight balancing, were used one after the other, to see which machine learning con�guration gives the
best accuracy on the sign language data. The above-mentioned machine learning techniques were used
as they provided a state-of-the-art accuracy for the models presented in (Savchenko 2021). The following
experiments were conducted one by one with each machine learning technique.
To train models with di�erent con�gurations, it was necessary to use the same training and test sets
throughout the experiments. Sections 4.1 to 4.3 explain the dataset used, preprocessing techniques used, as
well as choosing the right pre-trained models to be used for further �ne-tuning with the chosen dataset,
respectively.

4.1 The sign language dataset
The dataset chosen for conducting the experiments was the Facial Expression Phoenix (FePh) dataset as
introduced by Alaghband et al. (2020), which is an annotated sequenced facial expression dataset in the
context of sign language, comprising over 3000 facial images extracted from the daily news and weather
forecast of the public TV-station PHOENIX. The data was being annotated by the primary, secondary, and
tertiary dyads of the six basic emotions of ’anger’, ’disgust’, ’fear’, ’sad’, ’happy’, and ’surprise’ along with
the ’neutral’ class. The ’none of the above class was also considered for images where no label could be
assigned.

4.2 Data preprocessing

4.2.1 Removing the unknown data
As mentioned above, the FePh dataset was annotated with 7 labels, although the images that were not
correctly recognized, were labeled as ’none of the above’. As this label did not fall under one of the 7
labels the pre-trained model was trained on, these images were removed from the dataset and were not
used for further experiments. Along with this, the dataset also included many images with instances of
multi-labeling where an image was labeled with more than one emotion. As this would result in a case of
multi-label classi�cation problem (Huang et al. 2019, Durand et al. 2019), such images were also removed
from the �nal dataset.
After the removal of these images, the result obtained was a sequenced facial expression dataset with 2531
facial images annotated with 7 labels (6 emotions and the ’neutral’ class).

12

4 Experimental Setup

Emotion Data distribution
Anger 18.30%

Disgust 7.72%
Fear 12.43%

Happy 7.92%
Neutral 7.58%

Sad 14.36%
Surprise 31.85%

Tab. 4.1: Distribution of data across di�erent emotion classes.

4.2.2 Face cropping
Another important technique for preprocessing images before feeding them to the CNN is cropping the
face from the images to conform the FePh data to the dataset that the pre-trained models were trained on
(A�ectNet dataset). The images in the FePh dataset are not adequately cropped as they also include some
parts of the upper body.

4.2.3 Spli�ing the train-test sets
The FePh dataset was �rst split into a training and test set with a split of 80% and 20% respectively. The
images were split in such a way that the images belonging to the same video sequence were always kept
together.

After this stage, the 80% split from the FePh dataset was further used to �ne-tune the pre-trained models,
and hence will be addressed as the �ne-tuning dataset in the experiments explained below. The data
distribution across the di�erent emotion classes in the training set is as shown in table 4.1.

4.3 Pre-trained models for Facial Expression Recognition (FER)
There are many pre-trained models available for Facial Expression Recognition (FER), with almost all
of them aiming to recognize the seven basic Ekman emotions. To get the state-of-the-art results, the
technique presented in (Savchenko 2021) which provides a lightweight convolutional neural network for
the recognition of facial emotions based on di�erent architectures was chosen. With the models presented
by the author, state-of-the-art accuracy was achieved on the A�ectNet dataset (Mollahosseini et al. 2017),
which includes almost 440k annotated images.

The pre-trained models further used for the experiments in this thesis were trained on the A�ectNet
dataset which in turn uses another pre-trained model trained on the very large VGGFace2 dataset (Gennaro
et al. 2019). The two models that were further used in the experiments include: (1) a model based on the
MobileNet architecture and (2) a model based on the E�cientNet architecture (Savchenko 2021). Both these
models used techniques such as class balancing using class weights, data augmentation as well as image
normalization.
The experiments conducted with both MobileNet and E�cientNet architectures are discussed in sections
4.4 to 4.6.

13

4 Experimental Setup

4.4 Experiments with the MobileNet architecture
For every experiment explained below, the model obtained after changing the hyperparameters was
evaluated using the test set (20% FePh data split). The accuracy and sensitivity per class were measured for
each experiment. To evaluate adequately on the test set, the same treatment was given to the test set as the
�ne-tuning set for a given experiment.

4.4.1 No-FT: Testing the pre-trained model on the FePh test set
The pre-trained model was presented by Savchenko (2021) and it was trained on the big A�ectNet dataset
with 440k annotated images with 7 basic Ekman emotions. This pre-trained model uses image normalization
and horizontal �ip as the data augmentation technique during the training process. To match the training
set, the FePh test set was also treated with the same image normalization technique as explained before in
Section 3.1.2. This experiment was performed to check how the existing pre-trained model performs on the
sign language data set as the baseline for further experiments. From this experiment, the overall accuracy,
as well as sensitivity per class, were recorded to compare with the results from the rest of the experiments.

4.4.2 FT: Simple Fine-tuning
After recording the results from Part A, the next approach was to check whether �ne-tuning the pre-trained
model with the FePh �ne-tuning set helps in improving the accuracy and the sensitivity of the model on
the test set. Fine-tuning was performed on the base model by Savchenko (2021).

Initially, a simple �ne-tuning approach was used for the MobileNet architecture. In a Convolutional
Neural Network (CNN), the last layer learns the high-level features, and hence the last few layers are
su�cient for transfer learning (Tajbakhsh et al. 2016). The last layer of the pre-trained model was �rst
removed and a new dense layer was added to the CNN and all the previous layers of the base net were
frozen to train just the last layer. This last layer was then trained on the new dataset including images from
the sign language (FePh) dataset for 3 epochs. Finally, all the previous frozen layers were unfrozen and
the entire CNN was trained on the FePh data for 7 more epochs. The categorical cross-entropy loss was
optimized by the Adam optimizer with a learning rate equal to 0.001.

4.4.3 FT-SGD: Fine-tuning with Stochastic Gradient Descent (SGD)
In this experiment, the approach proposed by Savchenko (2021) was followed wherein �rst the model was
�ne-tuned with Adam optimizer for 5 epochs and Stochastic Gradient Descent (SGD) was used for the last
two epochs with the learning rate of 0.0001.

4.4.4 FT-SGD + CW: Class Weights for an imbalanced fine-tuning set
One of the reasons why, a CNN performs poorly, maybe the data distribution in the �ne-tuning data. To
tackle this imbalance across classes, the class weights for each class can be set separately (Zhu et al. 2018).
Instead of assigning the same weight to every class, each class was assigned a di�erent weight based
on the data distribution in the �ne-tuning dataset. This helps the minority classes that are insu�ciently
represented in the dataset. The data distribution across classes in the FePh �ne-tuning dataset is shown in
the table 4.1. The class weight parameter was used alone with �ne-tuning to study the e�ects of balancing
the class weights for each class in the FePh �ne-tuning set.

14

4 Experimental Setup

Experiments Con�gurations

No-FT Base model tested on 20% FePh dataset
FT Simple �ne-tuning of base model with Adam optimizer

FT-SGD Fine-tuning of base model with Adam and SGD optimizers
FT-SGD + CW FT-SGD + Classes balanced with class weights
FT-SGD + HF FT-SGD + Training dataset augmented with images �ipped horizontally
FT-SGD + IP FT-SGD + Images normalized before training

FT-SGD + IP + HF + CW FT-SGD + Image normalization, horizontal �ip and class weights
FT-SGD + IP + HF FT-SGD + image normalization and horizontal �ip

Tab. 4.2: Con�gurations used for the experiments involving the MobileNet architecture

4.4.5 FT-SGD + HF: Fine-tuning with Data Augmentation
For image recognition problems, the most popular data augmentation technique is to horizontally �ip
images before feeding them to the CNN. This technique was used during the training process to increase
the �ne-tuning data. This experiment used horizontal �ip along with �ne-tuning to study the e�ects of
horizontal �ip alone on the performance of the resulting model on the FePh test set.

4.4.6 FT-SGD + IP: Fine-tuning with Image Preprocessing
Image preprocessing was used along with �ne-tuning where the �ne-tuning data was normalized using the
preprocessing function in Keras, which converts the images from RGB to BGR, then each color channel is
zero-centered with respect to the ImageNet dataset (Ketkar 2017). This technique was also employed by
Savchenko (2021), and hence was used independently with �ne-tuning as in part B, to see the direct e�ects
of horizontally �ipping each image while training on the performance of the model.

4.4.7 Part G: Fine-tuning with combined methods
• FT-SGD + IP + HF + CW: This experiment was a direct replication of the one performed by Savchenko

(2021), but by �ne-tuning the pre-trained model with the FePh �ne-tuning dataset. Since it had
provided a state-of-the-art accuracy, this model was used to see if the combined e�ects of �ne-tuning
with data augmentation, image preprocessing, and class weights would improve the accuracy also
with the FePh dataset compared to the previous experiments.

• FT-SGD + IP + HF: Fine-tuning with data augmentation and image preprocessing: The results obtained
from the previous experiments proved that the two best approaches to include are data augmentation
and image preprocessing as they provide better accuracy on the test set. Hence it was decided to train
the model with this con�guration.

All the experiments based on the MobileNet architecture are summarized in table 4.2 .

4.5 Experiments with the E�icientNet architecture
As discussed in Chapter 3, the E�cientNet architecture provides better accuracy on ImageNet and is consid-
ered a powerful tool in computer vision (Wang et al. 2021), (Savchenko 2021). Hence, those experiments
that provided a higher accuracy from part A to part H were replicated for E�cientNet as well. Speci�cally,
the E�cientNet-B0 architecture was used as the default input image size for the same is 224x224, which is

15

4 Experimental Setup

Experiments Con�gurations

No-FT Base model tested on 20% FePh dataset
FT + SAM + HF + CW Base model �ne-tuned with SAM optimizer + horizontal �ip and class weights

FT + SAM + HF Base model �ne-tuned with SAM optimizer + horizontal �ip
FT-SGD + SAM + HF Base model �ne-tuned with SAM and SGD optimizers + horizontal �ip

Tab. 4.3: Con�gurations used for the experiments involving the E�cientNet architecture

the same as the size of the images in the dataset. The technique suggested by (Savchenko 2021) was used
for recognizing facial emotions. The experiments performed with E�cientNet are listed below.

4.5.1 No-FT: Testing the pre-trained model on the FePh test set
This experiment is the same as explained in part A but was performed with the pre-trained model based on
E�cientNet as proposed by (Savchenko 2021).

4.5.2 FT + SAM + HF + CW: Fine-tuning with Sharpness Aware Minimization,
data augmentation as well as class weights

This experiment uses the replica of the pre-trained model provided by (Savchenko 2021), but with additional
�ne-tuning done using the FePh dataset. The procedure followed for �ne-tuning is the same as explained in
the Part B section of this chapter. However, this experiment uses the Sharpness Aware Minimization (SAM)
as the optimizer, and initially, only the last layer is trained on the FePh �ne-tuning dataset with a learning
rate of 0.001 while freezing all layers in the base net. This last layer is trained for 3 epochs. Finally, all the
layers are trained with the SAM optimizer with a learning rate of 0.0001 for 6 epochs as was proposed by
Savchenko, (2021).
This experiment has also used horizontal �ip as the data augmentation technique for increasing data while
training.
As explained in the Part D section of this chapter, separate class weights can be set for each class due to a
di�erent data distribution in the training dataset. This technique is also implemented in this experiment as
it helped achieve high accuracy for the model presented by (Savchenko 2021), which was trained on the
A�ectNet data.

4.5.3 FT + SAM + HF: Fine-tuning with SAM and data augmentation
To save time, the techniques that did not improve the accuracy in the case of the MobileNet architecture
were dropped for E�cientNet as well. Hence, �ne-tuning with Sharpness Aware Minimization (SAM) along
with horizontal �ip as the data augmentation technique was retained while the classes were left imbalanced
as class weighting was removed from the model. The accuracy and the sensitivity per class were then
recorded to compare the results with the experiment done in the previous subsection.

4.5.4 FT-SGD + SAM + HF: Fine-tuning with SAM and data augmentation and
SGD

It was found that the best accuracy in the case of E�cientNet was obtained in the experiment conducted in
part K. But the best model for the MobileNet architecture used Stochastic Gradient Descent as the optimizer
while �ne-tuning, and hence SGD was also tested in the case of E�cientNet.

16

4 Experimental Setup

4.6 5-Fold Cross-Validation
5-fold cross-validation was conducted by creating 5 sets of training and test sets from the FePh dataset by
splitting the data by 80%-20% into training and test sets, respectively, 5 times. Each model was trained and
evaluated on the FePh dataset. The accuracy and sensitivity per class were recorded for each model and the
average accuracies and sensitivities along with the standard deviation for each class were calculated. cross-
validation was performed for both MobileNet and E�cientNet architectures. Following are the experiments
conducted with the MobileNet architecture:

• No-FT:
As a starting point, the pre-trained model presented by (Savchenko 2021) was evaluated on the 5 test
sets obtained after splitting the FePh data into 5 folds. The accuracy and sensitivity per class were
calculated and then the average and standard deviation was calculated.

• cross-validation with con�guration: FT-SGD + IP + HF + CW :
This con�guration as proposed by Savchenko, (2021) was initially used for cross-validation, since it
provided a state-of-the-art accuracy with the A�ectNet dataset.

• cross-validation with con�guration FT-SGD + IP + HF :
This con�guration gave the highest accuracy on the FePh dataset and hence was chosen for cross-
validation.
cross-validation was also performed on models based on the E�cientNet architecture in the same
way as mentioned above. The chosen con�gurations for cross-validation with E�cientNet were
di�erent and the ones which gave the best accuracies were chosen. The following points explain the
experiments conducted with E�cientNet:

• No-FT:
Similar to MobileNet, the pre-trained model or the base model presented by Savchenko, (2021), was
considered as the starting point and was evaluated on the 5 test sets obtained after splitting the FePh
data into 5 folds.

• cross-validation with con�guration FT + SAM + HF + CW :
This con�guration was also chosen based on the one proposed by Savchenko, (2021) as it provided a
high accuracy on the A�ectNet dataset and the cross-validation was performed in the same way as
explained above.

• cross-validation with con�guration FT + SAM + HF:
This con�guration due to its high accuracy on the FePh dataset.

Table 4.4summarizes the con�gurations used during cross-validation.

The results of the experiments discussed above are presented in the next chapter. The experiments are
denoted by the con�guration name here.

17

4 Experimental Setup

Architecture Con�guration
MobileNet No-FT
MobileNet FT-SGD + IP + HF + CW
MobileNet FT-SGD + IP + HF

E�cientNet No-FT
E�cientNet FT + SAM + HF + CW
E�cientNet FT + SAM + HF

Tab. 4.4: Summary of the con�gurations used in 5-fold cross-validation experiments

18

5 Results

This section showcases the results obtained from experiments conducted with the MobileNet-v1, E�cientNet-
B0 architecture, with both a single test set and 5-fold cross-validation. As evaluation metrics the model
accuracy, sensitivity per class, and the average sensitivity was considered for every model. The result
obtained from the experiment conducted without any �ne-tuning involved is considered as the baseline
result, and the results from the rest of the experiments are compared against this baseline. Finally, the
cross-validation results were considered as the �nal results as it allows to compute mean and variance of
the metrics across 5 folds, indicating the in�uence of random factors in the results. 5-fold cross-validation
also helped in providing the average accuracies and sensitivity scores across �ve di�erent models.

The following abbreviations are used for the techniques used during the experiments: FT: Fine-tuning, FT-
SGD: Fine-tuning with the Stochastic Gradient Descent optimizer, IP: Image preprocessing, HF: Horizontal
�ip, CW: Class weights, SAM: Sharpness Aware Minimization.

5.1 Results with MobileNet-v1
From the results shown in table 5.1, �ne-tuning improved the accuracy when the model was optimized with
the Adam optimizer for the �rst few epochs and with the Stochastic Gradient Descent (SGD) optimizer for
the last 3 epochs. It can be also seen that adding class weights to take care of the imbalanced classes reduced
the overall accuracy, although when class weights were combined with image preprocessing and horizontal
�ip, it provided a better average sensitivity of 63.3%. The data augmentation technique of horizontally
�ipping the data alone did not provide any improvement in the accuracy of the �ne-tuned model. Similarly,
the use of image normalization as an image preprocessing technique did not help improve the accuracy.
However, when data augmentation was combined with image normalization, the accuracy was increased to
67% providing the best accuracy across all the models trained.

5.2 Results with E�icientNet-B0
Table 5.2 shows that the best accuracy was provided by the con�guration FT + SAM + HF. Similar to the
MobileNet-v1 architecture, after removing class weighting from the base model as given by Savchenko
(2021), the accuracy improved by 2.6%. The E�cientNet-B0 models took a long time to train (approximately
one hour) due to the use of Sharpness Aware Minimization (SAM) (Foret et al. 2020) as the main optimizer
compared to the MobileNet-v1 models which use the Adam optimizer for the most epochs and Stochastic
Gradient Descent (SGD) for the last two epochs.

19

5
Results

Con�guration Accuracy
(%)

Sensitivity per class (%) Average
sensitivity (%)anger disgust fear happy neutral sadness surprise

No-FT 52.0 54.5 74.2 26.3 15.8 26.2 11.9 79.6 41.0
FT 65.4 81.1 38.7 45.6 63.1 35.7 50.8 77.8 56.1

FT-SGD 65.7 82.6 58.0 47.4 73.7 33.3 57.6 70.0 60.4
FT-SGD + CW 54.0 65.2 71.0 56.1 78.9 28.6 61.0 42.5 57.7
FT-SGD + HF 64.7 77.3 51.6 50.9 63.2 28.6 55.9 74.3 57.4
FT-SGD + IP 65.3 82.6 35.5 43.9 68.4 28.6 45.8 80.2 55.0

FT-SGD + IP + HF + CW 63.7 75.0 74.2 56.1 84.2 38.1 52.5 63.5 63.3
FT-SGD + IP + HF 67.0 81.8 61.3 40.4 68.4 33.3 50.8 79.6 59.3

Tab. 5.1: Accuracy, sensitivity per class and average sensitivity obtained for all the MobileNet-v1 con�gurations

Con�guration Accuracy
(%)

Sensitivity per class (%) Average
sensitivity (%)anger disgust fear happy neutral sadness surprise

No-FT 53.5 50.8 67.7 36.8 47.4 47.6 18.6 73.1 49.0
FT + SAM + HF + CW 63.9 62.9 67.7 36.8 84.2 76.2 66.1 67.1 65.9

FT + SAM + HF 66.5 68.2 67.7 31.6 84.2 69.0 67.8 73.7 66.1
FT-SGD + SAM + HF 63.9 65.2 71.0 33.3 89.5 59.5 59.3 71.9 64.1

Tab. 5.2: Accuracy, sensitivity per class and average sensitivity obtained for all the E�cientNet-B0 con�gurations

20

5 Results

5.3 Cross-validation results
Table 5.3 shows the results obtained after averaging the accuracies across 5 models trained while performing
5-fold cross-validation. The average accuracies and sensitivity for every class were recorded and it was
found that the con�gurations that gave the best accuracies were FT-SGD + IP + HF for MobileNet-v1 with
62.4% accuracy on the 20% FePh test sets and FT + SAM + IP + HF for E�cientNet-B0 with an accuracy
of 62.8% on the test sets. Since these accuracies are averaged over 5 models trained on di�erent folds of
training sets from the FePh dataset, these results can be considered more reliable (Yadav et al. 2016). Similar
to the average, the standard deviation of accuracies and sensitivities of every class was also computed
across the 5 models trained during cross-validation. The results for both MobileNet-v1 and E�cientNet-B0
architectures are displayed in the same table.

From table 5.3, it can be observed that �ne-tuning with the full model outperforms the model with no
�ne-tuning. This con�rms the hypothesis that �ne-tuning the model on the FePh dataset helps to improve
the performance of the model. It can be also seen that there is no signi�cant di�erence between the best
model trained with the MobileNet-v1 architecture and the E�cientNet-B0 architecture. No conclusion
can be drawn regarding the comparison of the two architectures. From the best models obtained for both
E�cientNet-B0 and MobileNet-v1, it can be concluded that class weighting hampered the performance of
the models as it harms the accuracy obtained for particular classes. Nevertheless, the class weights did
not have such a negative e�ect on the average accuracy of E�cientNet-B0, compared to their e�ect on
MobileNet-v1. The best models obtained from 5-fold cross-validation in the case of both MobileNet-v1
(FT-SGD + IP + HF) and E�cientNet-B0 (FT + SAM + HF), also suggest that fear has the lowest recognition
rate compared to all other classes (Table 5.3).

21

5
Results

Architecture Con�guration Average
accuracy (std)

Average sensitivity per class (std) Average
sensitivity (std)anger disgust fear happy neutral sadness surprise

MobileNet-v1
No-FT 44.1 (4.7) 44.4 (10.3) 58.4 (2.4) 25.8 (12.4) 47.3 (19.3) 20.8 (5.7) 17.2 (9.1) 63.8 (6.7) 39.7 (9.4)

FT-SGD + IP + HF + CW 51.7 (7.4) 51.3 (21.4) 37.3 (13.8) 11.6 (5.5) 56.6 (16.4) 75.3 (16.7) 60.4 (23.5) 58.2 (12.0) 50.0 (15.6)
FT-SGD + IP + HF 62.4 (3.2) 73.7 (5.9) 41.9 (14.1) 23.6 (9.6) 53.7 (12.2) 50.2 (22.3) 57.2 (16.1) 82.1 (6.7) 54.6 (12.4)

E�cientNet-B0
No-FT 45.7 (4.7) 42.3 (7.7) 55.6 (3.9) 30.1 (14.4) 53.3 (12.7) 54.6 (16.8) 19.5 (11.3) 59.7 (12.1) 45.0 (11.3)

FT + SAM + HF + CW 62.2 (2.4) 65.3 (9.3) 57.5 (12.6) 35.8 (13.3) 72.3 (9.8) 66.1 (10.0) 59.1 (16.8) 68.5 (6.4) 60.7 (11.2)
FT + SAM + HF 62.8 (4.7) 62.3 (8.6) 45.4 (18.8) 29.2 (16.6) 82.7 (11.7) 59 (17.6) 52.7 (22.2) 79.2 (8.5) 58.6 (14.9)

Tab. 5.3: The average accuracy, sensitivity per class, and average sensitivity (in %) with the standard deviation (std) obtained for all the MobileNet-v1 and
E�cientNet-B0 con�gurations calculated after performing 5-fold cross-validation

22

6 Conclusion

From the experiments conducted, the hypothesis that �ne-tuning with the full model improves the model
performance compared to the one with no �ne-tuning is con�rmed. Although no signi�cant di�erence
was observed between the best con�guration of MobileNet-v1 and E�cientNet-B0 models, the model
based on the E�cientNet-B0 architecture still outperformed MobileNet-v1 by only 0.4% as seen from the
cross-validation results. The training time for the E�cientNet models was higher than that of MobileNet
models. The best con�gurations obtained with MobileNet took 45 minutes to train while the one obtained
with E�cientNet took 1 hour due to the in�uence of Sharpness Aware Minimization (SAM) optimizer.
From the cross-validation results, which are considered more reliable, it can be seen that the best models
obtained with both MobileNet and E�cientNet, the ’fear’ class has the lowest recognition rate out of the
seven classes.

Every class seems to be pro�ting from di�erent machine learning methods used during the experiments.
The overall accuracy improved when image normalization was used in combination with augmenting
training data with horizontally �ipped images. Balancing classes with the help of class weights did not
provide any signi�cant improvement in the accuracy, despite the obvious lack of balance between the
classes in the dataset.

Finally, the best models obtained from the experiments conducted were; for MobileNet v1 architecture:
Fine-tuning with Stochastic Gradient Descent with training data normalized and augmented with horizon-
tally �ipped images, and for E�cientNet-B0 architecture: Fine-tuning with Sharpness Aware Minimization
with training data augmented with horizontally �ipped images.

23

Bibliography

Akhand, MAH, Shuvendu Roy, Nazmul Siddique, Md Abdus Samad Kamal, and Tetsuya Shimamura (2021):
“Facial Emotion Recognition Using Transfer Learning in the Deep CNN”. In: Electronics 10.9, p. 1036.

Alaghband, Marie, Niloofar Youse�, and Ivan Garibay (2020): “Facial Expression Phoenix (FePh): An An-
notated Sequenced Dataset for Facial and Emotion-Speci�ed Expressions in Sign Language”. In: arXiv
preprint arXiv:2003.08759.

Albawi, Saad, Tareq Abed Mohammed, and Saad Al-Zawi (2017): “Understanding of a convolutional neural
network”. In: 2017 International Conference on Engineering and Technology (ICET). Ieee, pp. 1–6.

Atila, Ümit, Murat Uçar, Kemal Akyol, and Emine Uçar (2021): “Plant leaf disease classi�cation using
E�cientNet deep learning model”. In: Ecological Informatics 61, p. 101182.

Bera, Somenath and Vimal K Shrivastava (2020): “Analysis of various optimizers on deep convolutional
neural network model in the application of hyperspectral remote sensing image classi�cation”. In:
International Journal of Remote Sensing 41.7, pp. 2664–2683.

Bisong, Ekaba (2019): “More supervised machine learning techniques with scikit-learn”. In: Building Machine
Learning and Deep Learning Models on Google Cloud Platform. Springer, pp. 287–308.

Boyko, Nataliya, Oleg Basystiuk, and Nataliya Shakhovska (2018): “Performance evaluation and comparison
of software for face recognition, based on dlib and opencv library”. In: 2018 IEEE Second International
Conference on Data Stream Mining & Processing (DSMP). IEEE, pp. 478–482.

Cardie, Claire and Nicholas Howe (1997): “Improving minority class prediction using case-speci�c feature
weights”. In:

Chollet, Francois (2016): “Building powerful image classi�cation models using very little data”. In: Keras
Blog 5.

Dodich, Alessandra, Chiara Cerami, Nicola Canessa, Chiara Crespi, Alessandra Marcone, Marta Arpone,
Sabrina Realmuto, and Stefano F Cappa (2014): “Emotion recognition from facial expressions: a normative
study of the Ekman 60-Faces Test in the Italian population”. In: Neurological Sciences 35.7, pp. 1015–1021.

Durand, Thibaut, Nazanin Mehrasa, and Greg Mori (2019): “Learning a deep convnet for multi-label classi�-
cation with partial labels”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 647–657.

Ekman, Paul (1999): “Basic emotions”. In: Handbook of cognition and emotion 98.45-60, p. 16.
Elliott, Eeva Anita and Arthur M Jacobs (2013): “Facial expressions, emotions, and sign languages”. In:
Frontiers in psychology 4, p. 115.

Emami, Shervin and Valentin Petrut Suciu (2012): “Facial recognition using OpenCV”. In: Journal of Mobile,
Embedded and Distributed Systems 4.1, pp. 38–43.

Foret, Pierre, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur (2020): “Sharpness-aware minimization
for e�ciently improving generalization”. In: arXiv preprint arXiv:2010.01412.

Fridlund, Alan J (1997): “The new ethology of human facial expressions.” In:
Fushiki, Tadayoshi (2011): “Estimation of prediction error by using K-fold cross-validation”. In: Statistics
and Computing 21.2, pp. 137–146.

Gennaro, Claudio and Claudio Vairo (2019): “Improving Multi-scale Face Recognition Using VGGFace2”. In:
New Trends in Image Analysis and Processing–ICIAP 2019: ICIAP International Workshops, BioFor, PatReCH,
e-BADLE, DeepRetail, and Industrial Session, Trento, Italy, September 9–10, 2019, Revised Selected Papers.
Vol. 11808. Springer Nature, p. 21.

24

Bibliography

Ghosh, Tapotosh, Md Min-Ha-Zul Abedin, Shayer Mahmud Chowdhury, Zarin Tasnim, Tajbia Karim, SM
Salim Reza, Sabrina Saika, and Mohammad Abu Yousuf (2020): “Bangla handwritten character recognition
using MobileNet V1 architecture”. In: Bulletin of Electrical Engineering and Informatics 9.6, pp. 2547–2554.

Heidari, Morteza, Seyedehna�seh Mirniaharikandehei, Abolfazl Zargari Khuzani, Gopichandh Danala,
Yuchen Qiu, and Bin Zheng (2020): “Improving the performance of CNN to predict the likelihood of
COVID-19 using chest X-ray images with preprocessing algorithms”. In: International journal of medical
informatics 144, p. 104284.

Howard, Andrew G, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam (2017): “Mobilenets: E�cient convolutional neural networks for mobile
vision applications”. In: arXiv preprint arXiv:1704.04861.

Huang, Jun, Feng Qin, Xiao Zheng, Zekai Cheng, Zhixiang Yuan, Weigang Zhang, and Qingming Huang
(2019): “Improving multi-label classi�cation with missing labels by learning label-speci�c features”. In:
Information Sciences 492, pp. 124–146.

Io�e, Sergey and Christian Szegedy (2015): “Batch normalization: Accelerating deep network training by
reducing internal covariate shift”. In: International conference on machine learning. PMLR, pp. 448–456.

Johnson, Justin M and Taghi M Khoshgoftaar (2019): “Survey on deep learning with class imbalance”. In:
Journal of Big Data 6.1, pp. 1–54.

Kandel, Ibrahem and Mauro Castelli (2020): “The e�ect of batch size on the generalizability of the convolu-
tional neural networks on a histopathology dataset”. In: ICT express 6.4, pp. 312–315.

Ketkar, Nikhil (2017): “Introduction to keras”. In: Deep learning with Python. Springer, pp. 97–111.
Kingma, Diederik P and Jimmy Ba (2014): “Adam: A method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980.

Ko, Byoung Chul (2018): “A brief review of facial emotion recognition based on visual information”. In:
sensors 18.2, p. 401.

Koo, Kyung-Mo and Eui-Young Cha (2017): “Image recognition performance enhancements using image
normalization”. In: Human-centric Computing and Information Sciences 7.1, pp. 1–11.

Lei, Yunwen and Yiming Ying (2020): “Fine-grained analysis of stability and generalization for stochastic
gradient descent”. In: International Conference on Machine Learning. PMLR, pp. 5809–5819.

Li, Yuanzhi and Yingyu Liang (2018): “Learning overparameterized neural networks via stochastic gradient
descent on structured data”. In: arXiv preprint arXiv:1808.01204.

Marques, Gonçalo, Deevyankar Agarwal, and Isabel de la Torre Dıez (2020): “Automated medical diagnosis
of COVID-19 through E�cientNet convolutional neural network”. In: Applied soft computing 96, p. 106691.

Meng, Debin, Xiaojiang Peng, Kai Wang, and Yu Qiao (2019): “Frame attention networks for facial expression
recognition in videos”. In: 2019 IEEE International Conference on Image Processing (ICIP). IEEE, pp. 3866–
3870.

Michele, Aurelia, Vincent Colin, and Diaz D Santika (2019): “Mobilenet convolutional neural networks and
support vector machines for palmprint recognition”. In: Procedia Computer Science 157, pp. 110–117.

Mollahosseini, Ali, Behzad Hasani, and Mohammad H Mahoor (2017): “A�ectnet: A database for facial
expression, valence, and arousal computing in the wild”. In: IEEE Transactions on A�ective Computing
10.1, pp. 18–31.

Mukushev, Medet, Arman Sabyrov, Alfarabi Imashev, Kenessary Koishybay, Vadim Kimmelman, and Anara
Sandygulova (2020): “Evaluation of Manual and Non-manual Components for Sign Language Recognition”.
In: Proceedings of The 12th Language Resources and Evaluation Conference, pp. 6073–6078.

Ngo, Quan T and Seokhoon Yoon (2020): “Facial Expression Recognition Based on Weighted-Cluster Loss
and Deep Transfer Learning Using a Highly Imbalanced Dataset”. In: Sensors 20.9, p. 2639.

O’Mahony, Niall, Sean Campbell, Anderson Carvalho, Suman Harapanahalli, Gustavo Velasco Hernandez,
Lenka Krpalkova, Daniel Riordan, and Joseph Walsh (2019): “Deep learning vs. traditional computer
vision”. In: Science and Information Conference. Springer, pp. 128–144.

25

Bibliography

Pal, Kuntal Kumar and KS Sudeep (2016): “Preprocessing for image classi�cation by convolutional neural
networks”. In: 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communi-
cation Technology (RTEICT). IEEE, pp. 1778–1781.

Pitaloka, Diah Anggraeni, Ajeng Wulandari, T Basaruddin, and Dewi Yanti Liliana (2017): “Enhancing
CNN with preprocessing stage in automatic emotion recognition”. In: Procedia computer science 116,
pp. 523–529.

Poojary, Ramaprasad and Akul Pai (2019): “Comparative Study of Model Optimization Techniques in Fine-
Tuned CNN Models”. In: 2019 International Conference on Electrical and Computing Technologies and
Applications (ICECTA). IEEE, pp. 1–4.

Porcu, Simone, Alessandro Floris, and Luigi Atzori (2020): “Evaluation of Data Augmentation Techniques
for Facial Expression Recognition Systems”. In: Electronics 9.11, p. 1892.

Radenović, Filip, Giorgos Tolias, and Ondřej Chum (2018): “Fine-tuning CNN image retrieval with no human
annotation”. In: IEEE transactions on pattern analysis and machine intelligence 41.7, pp. 1655–1668.

Ravi, Rahul, SV Yadhukrishna, et al. (2020): “A face expression recognition using CNN & LBP”. In: 2020 Fourth
International Conference on Computing Methodologies and Communication (ICCMC). IEEE, pp. 684–689.

Ruder, Sebastian (2016): “An overview of gradient descent optimization algorithms”. In: arXiv preprint
arXiv:1609.04747.

Sandler, Mark, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen (2018): “Mo-
bilenetv2: Inverted residuals and linear bottlenecks”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 4510–4520.

Sauter, Disa A, Frank Eisner, Paul Ekman, and Sophie K Scott (2010): “Cross-cultural recognition of basic
emotions through nonverbal emotional vocalizations”. In: Proceedings of the National Academy of Sciences
107.6, pp. 2408–2412.

Savchenko, Andrey V (2021): “Facial expression and attributes recognition based on multi-task learning of
lightweight neural networks”. In: arXiv preprint arXiv:2103.17107.

Shorten, Connor and Taghi M Khoshgoftaar (2019): “A survey on image data augmentation for deep learning”.
In: Journal of Big Data 6.1, pp. 1–48.

Sinha, Debjyoti and Mohamed El-Sharkawy (2019): “Thin mobilenet: An enhanced mobilenet architec-
ture”. In: 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference
(UEMCON). IEEE, pp. 0280–0285.

Soo, Sander (2014): “Object detection using Haar-cascade Classi�er”. In: Institute of Computer Science,
University of Tartu 2.3, pp. 1–12.

Tajbakhsh, Nima, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B Kendall, Michael B Gotway,
and Jianming Liang (2016): “Convolutional neural networks for medical image analysis: Full training or
�ne tuning?” In: IEEE transactions on medical imaging 35.5, pp. 1299–1312.

Tan, Mingxing and Quoc Le (2019): “E�cientnet: Rethinking model scaling for convolutional neural net-
works”. In: International Conference on Machine Learning. PMLR, pp. 6105–6114.

Tan, Mingxing and Quoc V Le (2021): “E�cientnetv2: Smaller models and faster training”. In: arXiv preprint
arXiv:2104.00298.

Taqi, Arwa Mohammed, Ahmed Awad, Fadwa Al-Azzo, and Mariofanna Milanova (2018): “The impact of
multi-optimizers and data augmentation on TensorFlow convolutional neural network performance”. In:
2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE, pp. 140–145.

Vani, S and TV Madhusudhana Rao (2019): “An experimental approach towards the performance assessment
of various optimizers on convolutional neural network”. In: 2019 3rd International Conference on Trends in
Electronics and Informatics (ICOEI). IEEE, pp. 331–336.

Wang, Kangrui and Xiaobing Yu (2021): “MobileNet and E�cientNet Demonstration on Google Landmark
Recognition Dataset”. In: International Core Journal of Engineering 7.3, pp. 313–319.

26

Bibliography

Wong, Tzu-Tsung (2015): “Performance evaluation of classi�cation algorithms by k-fold and leave-one-out
cross validation”. In: Pattern Recognition 48.9, pp. 2839–2846.

Xiang, Jia and Gengming Zhu (2017): “Joint face detection and facial expression recognition with MTCNN”.
In: 2017 4th international conference on information science and control engineering (ICISCE). IEEE, pp. 424–
427.

Yadav, Sanjay and Sanyam Shukla (2016): “Analysis of k-fold cross-validation over hold-out validation
on colossal datasets for quality classi�cation”. In: 2016 IEEE 6th International conference on advanced
computing (IACC). IEEE, pp. 78–83.

Zheng, Qinghe, Mingqiang Yang, Xinyu Tian, Nan Jiang, and Deqiang Wang (2020): “A full stage data
augmentation method in deep convolutional neural network for natural image classi�cation”. In: Discrete
Dynamics in Nature and Society 2020.

Zhu, Min, Jing Xia, Xiaoqing Jin, Molei Yan, Guolong Cai, Jing Yan, and Gangmin Ning (2018): “Class weights
random forest algorithm for processing class imbalanced medical data”. In: IEEE Access 6, pp. 4641–4652.

27

List of Figures

3.1 MobileNet v1 baseline model (Sinha et al. 2019) . 6
3.2 Depthwise separable convolution operation followed by pointwise convolution (Howard

et al. 2017) . 7
3.3 Schematic representation of E�cientNet-B0 (Atila et al. 2021) 7
3.4 Original image from the FePh dataset . 10
3.5 Image �ipped horizontally . 10

28

List of Tables

4.1 Distribution of data across di�erent emotion classes. 13
4.2 Con�gurations used for the experiments involving the MobileNet architecture 15
4.3 Con�gurations used for the experiments involving the E�cientNet architecture 16
4.4 Summary of the con�gurations used in 5-fold cross-validation experiments 18

5.1 Accuracy, sensitivity per class and average sensitivity obtained for all the MobileNet-v1
con�gurations . 20

5.2 Accuracy, sensitivity per class and average sensitivity obtained for all the E�cientNet-B0
con�gurations . 20

5.3 The average accuracy, sensitivity per class, and average sensitivity (in %) with the stan-
dard deviation (std) obtained for all the MobileNet-v1 and E�cientNet-B0 con�gurations
calculated after performing 5-fold cross-validation . 22

29

	Introduction
	Related Work
	Summary of existing Deep-Learning-based models
	Techniques to improve performance of a CNN

	Methods
	Image preprocessing
	Convolutional Neural Network (CNN) Architectures
	Training

	Experimental Setup
	The sign language dataset
	Data preprocessing
	Pre-trained models for Facial Expression Recognition (FER)
	Experiments with the MobileNet architecture
	Experiments with the EfficientNet architecture
	5-Fold Cross-Validation

	Results
	Results with MobileNet-v1
	Results with EfficientNet-B0
	Cross-validation results

	Conclusion
	List of Figures
	List of Tables

