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ABSTRACT 

Canopy height measurement is important to understand the forest's vertical structure and biomass 

quantification. In comparison to aerial-based, satellite-based canopy height estimation is useful in terms of 

covering large area and frequent measurements.  TanDEM-X, a spaceborne active remote sensing, has been 

recently used to estimate canopy height. A simplified RVoG model was suggested to compute canopy height 

from TDX interferometric coherence. The model showed encouraging results in a well studied boreal forests 

and some temperate forests. Hence, the aim of this study is to further understand the simplified RVoG 

model (linear and sinc) on canopy height estimation of temperate forests considering forest type, slope class 

and canopy cover percentage. A single polarized TDX coherence data from five acquisitions with different 

height of ambiguity (HoA) was tested for the canopy height estimation. Two of the acquisitions were from 

October (with HoA of 35.2 m and 44.7 m) and three of acquisition were from January (with HoA of 41.3 

m, 68.3 m, and 91.5 m). LiDAR point clouds were used to generate LiDAR canopy height and used it as 

reference. Root mean square error (RMSE), relative RMSE (RMSEr), coefficient of determination (R2), 

absolute error (AE), and relative AE (AEr) were used to assess the accuracies. Mann Witney-U test and 

Kruskal-Wallis test were used to test difference between forest types and among slope classes, respectively. 

Linear regression was used to assess the impact of canopy cover percentage. A regression test was also held 

for one selected acquisition to analyse the impact of slope, and canopy cover estimation error. The results 

showed the RMSE and R2 were different among acquisitions depending on the HoA and season of 

acquisition (leaf condition, precipitation, temperature). The RMSE ranged from 4.3 m to 5.7 m for the linear 

model and from 5.2 m to 16 m for the sinc model. The R2 for both models were similar ranged from 0.14 

to 0.48. The RMSEr and R2 showed that coniferous forests had better estimation accuracies than 

broadleaved forests during the two October acquisitions, and one January acquisition that had high 

precipitation and temperature. In addition, for all acquisitions, the AEr showed that coniferous forest had 

significantly lower AEr than broadleaved forests. The RMSE and R2 did not show a trend across slope 

classes, for all acquisitions. Whereas the AEr showed that, gentle slope had significantly lower AEr than 

steep slope for the two acquisitions with highest HoA. For similar acquisitions, the AEr significantly 

decreases with increasing canopy cover. The regression analysis showed that slope (coefficient = 0.24) and 

canopy cover percentage (coefficient = -0.54) significantly (p<0.01) explained 3% of the variation in 

absolute error for broad leaved forest. However, for the coniferous forests, only canopy cover percentage 

had significant (p<0.05) influence on absolute error, with an R2 nearly to zero.  Overall, canopy height 

estimation from single polarized TDX coherence gives moderate accuracy (RMSEr < 27%) across different 

biophysical characteristics of temperate forests. To obtain better accuracy for broadleaved forests, leaf 

season and weather conditions should be taken into consideration. 
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1. INTRODUCTION  

Forests, which cover 31% of the earth's surface, are one of the main pools that dominates the dynamics of 

terrestrial carbon cycle and have an important share in the global carbon budget (FAO, 2020). Forests are a 

dominant carbon reservoir, constituting around 85% of the global above ground carbon (Schimel et al., 

2001). Several studies have been conducted to study the benefit of forest to serve as a carbon sink and 

contributing to the global mitigation effort (Canadell and Raupach, 2008; Hoberg et al., 2016; Sedjo and 

Toman, 2001). These studies clarified the importance of measuring, quantifying, monitoring, and managing 

forests, as part of the global climate change mitigation. Besides, forest growth is dynamic and forest coverage 

can be decreased or increased over time due to natural and anthropogenic factors and this has implication 

on the total forest biomass. For example, temperate forests of Europe have shown an increment in forest 

growing stock of about 11.5% over the last 30 years, consequently increasing the amount of sequestered 

carbon (FAO, 2020). Such changes need to be monitored to understand the global carbon cycle and climate 

change.   

Quantification of forest carbon can be done in destructive and un-destructive way. The destructive method 

requires cutting of trees, measuring the biomass in laboratory, and quantifying the carbon content as ca. 50% 

of the dry biomass (Liski et al., 2003). Though this method is accurate, it is environmental unfriendly and 

has limited practical applicability (Gibbs et al., 2007). Under the un-destructive methods, allometric 

equations are a well-known and widely used method to estimate biomass. It involves direct measurement of 

tree parameters such as tree height and diameter at breast height, subsequently, developing a regression 

equation for the forest biomass estimation (Chave et al., 2014). Besides to the biomass estimation, the 

measurement of tree height helps to understand the vertical structure of a forest which is essential for 

management, monitoring, and conservation purposes. Nevertheless, the in-situ measurement of the tree 

height is time consuming and labor intensive, especially when the forest covers a very large area (DeFries et 

al., 2007). In contrast, remote sensing measurements can estimate forest height which is advantageous in 

terms of time, labor, and areal coverage.  

Remote sensors can be classified as passive and active sensors. Passive sensors have limited capability of 

retrieving vertical information, while data derived from active sensors allows to estimate vegetation structure 

(Zhang et al., 2017). Remotely sensed data to estimate canopy height accurately can be acquired from 

airborne platforms using Light Detection and Ranging (LiDAR). LiDAR is an active remote sensing 

technique which operates by sending laser beams from the sensor to gather ground and surface information 

as point clouds (Ferraz et al., 2016). The last and the first pulse returns in a certain grid cell forms digital 

terrain model (DTM) and digital surface model (DSM), respectively. A subtraction of DTM from DSM 

gives the canopy height model (CHM). In this sense, canopy height is the height of the highest point from 

ground in each specified grid. Forest height, as compared to tree height, is a little bit different concept, as it 

statistically describes tree heights over a certain area (Aulinger et al., 2005). It is the measurement of the 

trees forming the canopy height, which is an important concept from remote sensing point of view (Hajnsek 

et al., 2009). This way an accurate vertical information of forests can be retrieved. However, frequent 

measurements are not possible due to its high acquisition costs (Pirotti, 2011) and limited global availability 

(Lu et al., 2016). Canopy height can also be retrieved from images acquired from an Unmanned Aerial 

System (UAS) with high accuracy and low cost, whereas it is less applicable for large scale mapping 

(Kachamba et al., 2016).  
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Satellite sensors are widely used for large area mapping of forest vertical structures, like canopy height. Radar 

remote sensing, an active technique, is one of the alternatives for estimating and mapping canopy height. 

Radar sensors operate in the microwave spectrum where the wavelength ranged from 1 mm to 1 m, and 

they are widely known of their weather independence (ability to penetrate cloud) (Henderson et al., 1998).  

Synthetic Aperture Radar (SAR) sends and receives microwaves as backscatter which consists of amplitude 

and phase value of each resolution cell of an acquired image (Bamler and Hartl, 1998). In general, SAR data 

are mainly used for polarimetric and interferometric purposes. Polarimetric SAR (PolSAR) deals with the 

exploitation of the polarizations of the backscatter, where different combinations of transmission and 

receiving of horizontal (H) and vertical (V) waves are possible (horizontal transmission and horizontal 

receiving=HH, VV, HV, VH) (Cloude, 1998). It helps to understand the nature of the target object by 

retrieving its scattering properties (Cloude and Pettier, 1996). Interferometric SAR (InSAR) deals with the 

phase information of two SAR images to form interferometric coherence and acquire vertical information. 

Several studies have used PolInSAR, the combination of both PolSAR and InSAR, for accurate canopy 

height estimation (Fu et al., 2016; Kugler et al., 2014; Xie et al., 2017). PolInSAR acquisitions from airborne 

systems were used to acquire 3D information of forests (Hajnsek et al., 2009).  A repeat pass acquisition like 

the L-band (ALOS-PalSAR) potentially provide the opportunity to retrieve the vertical information of a 

forest as it can fully or partially penetrate through the canopy (Ni et al., 2014). However, repeat-pass systems 

have the problem of temporal decorrelation associated with a time gap between the two acquisitions (Kugler 

et al., 2014). Temporal decorrelation happens when the scattering properties of an object is changed, in 

between two acquisitions, induced by different factors such as wind (Bamler and Hartl, 1998). The change 

in scattering properties of an object degrades the quality of interferometric coherence which is usually 

formed as the phase function of the two acquisitions. Consequently, the decrease in coherence highly affects 

the height estimation accuracy. The problems associated with temporal decorrelation can be significantly 

minimized by a single-pass acquisition of two spatially separated antennas, in which one example of an 

operational spaceborne system is known as the TanDEM-X (hereafter referred as TDX) mission (Martone 

et al., 2012). 

A commonly used method to estimate height from TDX is an inversion of Random Volume over Ground 

(RVoG) model (Kugler et al., 2014). To obtain canopy height from this model inversion, it requires the 

interferometric coherence, ground topography, ground-to-volume ratio and wave extinction in the volume 

scattering (Kugler et al., 2015). The inversion of RVoG model is normally possible in the presence of full 

polarimetric data (Khati et al., 2017). However, the TDX mission is mainly available in single polarization 

(HH) in its standard acquisition mode (Gomez et al., 2021). Having the single polarized data, the RVoG 

inversion can be used if the ground topography information is obtained from external data sources (Chen 

et al., 2019). It can also be used to directly subtract the LiDAR Digital Terrain Model (DTM) from the TDX 

height (phase center height) (Sadeghi et al., 2016, 2014). However, the global availability of LiDAR data is 

limited. Recently some studies suggested to use The Global Ecosystem Dynamics Investigation (GEDI) 

LiDAR data to obtain ground information (Chen et al., 2021; Qi et al., 2019; Qi and Dubayah, 2017). 

However, the GEDI data is limited to the range between 51.6 N and 51.6 S latitudes, and the data are 

sampled footprints and not available as a wall-to-wall data ("Home Page - GEDI," n.d.). Hence, a canopy 

height estimation without the support of external DTM would have wider applicability and can also be used 

at large scale. 

With single polarized mode and no external ground topographic information, simplification of the RVoG 

model is proposed to make the model invertible (Kugler et al., 2014). Canopy height has been estimated 

using this simplified model in temperate forest (Schlund et al., 2019), Mediterranean forest (Gomez et al., 

2021) and boreal forest (Olesk et al., 2016). The performance of TDX to estimate canopy height depends 

on different factors attributed to TDX acquisition parameters (Sadeghi et al., 2017) and biophysical 

characteristics of the forest (Kugler et al., 2014). TDX acquisition parameters like effective baseline (distance 
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between the two satellites), incidence angle and height of ambiguity affects the accuracy of the height 

estimation (Gomez et al., 2021; Sadeghi et al., 2017). Canopy cover density (Olesk et al., 2015b), forest type 

(Chen et al., 2019; Gomez et al., 2021; Olesk et al., 2015b), forest vertical structure (Erasmi et al., 2019; 

Olesk et al., 2015b), phenology (leaf-on or leaf-off) (Olesk et al., 2015b; Sadeghi et al., 2017; Schlund et al., 

2019) and slope of the underlying topography (Gomez et al., 2021; Schlund et al., 2019), are among the 

biophysical factors affecting the accuracy of TDX height estimation. Studies conducted in Canadian boreal 

forest and Estonian hemi-boreal forest revealed that TDX height estimation has higher accuracy in 

coniferous forests than in broadleaved forest during leaf-on season (Chen et al., 2019; Olesk et al., 2015b). 

This is justified as the broadleaved trees hinder the X-band penetration during the leaf-on season, resulting 

in a lack of volume scattering information from the lower canopy. This results in poor estimation compared 

to the leaf-off season (Kugler et al., 2014; Olesk et al., 2015b).  The other reason might be due the fact that 

X-band has a different penetration capability in different forest types (Kugler et al., 2014; Olesk et al., 

2015b). The canopy cover density also affects potentially the X-band penetration, determining the accuracy 

of TDX height estimation which is studied in boreal/hemi-boreal forests (Olesk et al., 2015b; Persson and 

Fransson, 2016; Sadeghi et al., 2017) and Mediterranean forest (Gomez et al., 2021). However, the effect of 

forest types and canopy cover density on accuracy of single polarized TDX height estimation is not well 

studied in temperate forests. Hence the aim of this study is to estimate the canopy height using single 

polarized TDX in temperate forest and assessing its accuracy considering different stratification of forest 

type, canopy cover density and slope.   
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2. OBJECTIVES AND RESEARCH QUESTIONS 

2.1. General objective 

- The general objective of this study was to estimate canopy height using TDX coherence in 

broadleaved and coniferous forest of temperate forests 

2.2. Specific objectives 

- To estimate canopy height using TDX with linear and sinc models 

- To compare the accuracy of TDX canopy height estimation between broadleaved and coniferous 

forests 

- To compare the accuracy of TDX canopy height estimation across different slope classes (Flat, 

gentle, and steep slopes) 

- To analyze the impact of canopy cover percentage on TDX canopy height estimation accuracy  

2.3. Research questions 

- What is the accuracy of linear and sinc models in TDX canopy height estimation? 

- Is the accuracy of TDX canopy height estimation similar between broadleaved and coniferous 

forests?  

- How does the accuracy of TDX canopy height estimation vary across different slope classes?  

- Does the variation in canopy cover percentage significantly affect the accuracy of TDX canopy 

height estimation? 
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3. STUDY AREA AND DATASETS 

3.1. Study area 

The study area was in the Gelderland province, the Netherlands, which covered parts of the Hoge veluwe 

and Veluwezoom national parks. The study area is geographically located between 5°49'10''E to 6°1'47" N 

and 51°59'1" N to 52°8'28" N and it has an area of 216 km2 (Figure 1). A weather station is located in 

Deelen, Gelderland, inside the study area, where the long-term average annual precipitation (1991 to 2021) 

is 871 mm. January is the coldest month with a mean temperature of 2.9°C and May is the warmest month 

having a mean temperature of 18.1°C (KNMI - Daily Values Precipitation Stations, n.d.). The area is mostly 

dominated by coniferous species of Pinus sylvestris, Larix decidua, Pseudotsuga menziesii and broadleaved trees 

of Sorbus aucuparia, Quercus robur and Quercus petraea (Hein, 2011; Kuiters et al., 2006, 2005). In the Hoge 

veluwe national park, Pinus sylvestris dominated coniferous trees cover 27% and broadleaved trees cover 10% 

of the park. In the Veluwezoom national park Pinus sylvestris is dominant covering 42% of the park and 

broadleaved trees cover 23% of the park (Te Linde et al., 2012).  

 

Figure 1 Map of the study are and the forest types 
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3.2. Datasets 

3.2.1. TDX data 

Single-pass interferometric data was acquired from twin satellites of the TDX mission flying in close 

formation, where they acquire X-band data with high-resolution and potentially multi-polarized. These two 

almost identical satellites perform a simultaneous single-pass acquisition, which avoids the effect of temporal 

decorrelation (Abdullahi et al., 2016). The data are acquired in the bistatic mode, in which one of the sensors 

transmit waves and both receive the backscattered wave. The available TDX data contains five images from 

the years of 2011 and 2012 (Table 1) (The order of acquisitions in figure 1 are the same order as in Table 

1). All the images have single polarization of Horizontal-Horizontal mode (HH) and were acquired in 

ascending orbit. The spatial coverage of all the images did not fully overlap. Hence, a common area 

corresponding to the five images was selected as study area for the ease of comparison (Figure 1). The 

acquisitions have different incidence angles, effective baselines, and heights of ambiguity (HoA) and were 

acquired during the months of October and January. Effective baseline is the distance between two satellites 

and incidence angle is the angle between the line of sight and the incident radiation from the illuminated 

object (Richards, 2009) in which both determine the HoA (Zink et al., 2014). HoA is "the vertical distance 

between two points that yield the same interferometric phase value" (Krieger et al., 2010). For each TDX acquisition, 

the mean temperature and sum precipitation data for the date of acquisition and one day before were 

obtained from KNMI website. 

Table 1 Summary of the TDX dataset 

Date 
Incidence 

angle ( ̊) 

Effective 

baseline (m) 

|HoA| 

(m) 

Kz 

(rad/m) 

Pixel resolution (m) 

(Range ˟ Azimuth) 

Pixel spacing (m) 

(Range ˟ 

Azimuth) 

October-31-2012 37.05 170.92 35.2 0.18 2.9 ˟ 3.3 1.36 ˟ 2.06 

January-04-2011 46.25 199.14 41.3 0.15 2.4 ˟ 3.3 1.36 ˟ 2.17 

October-12-2011 36.18 129.77 44.7 0.14 3 ˟ 3.3 1.36 ˟ 2.03 

January-19-2012 36.18 85.56 68.3 0.09 3 ˟ 3.3 1.36 ˟ 1.91 

January-24-2012 34.59 89.84 91.5 0.07 2.4 ˟ 3.3 1.36 ˟ 2.17 

3.2.2. LiDAR data 

LiDAR technique is well known and widely used in vegetation studies for its high performance in terms of 

geolocation precision and height measurement accuracy (Popescu and Wynne, 2004). As a result, a LiDAR 

system was frequently used as a reference for satellite-based canopy height estimations (Guliaev et al., 2021; 

Olesk et al., 2015b; Persson et al., 2017; Schlund et al., 2019). A LiDAR system produces point cloud in 

which the points stored 3D information of a target area (Douillard et al., 2011). The height file for 

Netherlands (AHN2) was acquired from 2007 to 2012, between the months of December and March every 

year ("Kwaliteitsbeschrijving | AHN," n.d.). The LiDAR measurement year varies depending on the area. 

For the study area, AHN2 was collected in 2010. The acquisition season was more or less similar with the 

TDX acquisition season which was acquired in January and October. The acquisition year of AHN2 had 

one to two year difference with the acquisition year of all TDX data. The files are available in https://esrinl-

content.maps.arcgis.com/apps/Embed/index.html?appid=a3dfa5a818174aa787392e461c80f781 in the 

form of point clouds and grids. The point cloud data, with X, Y, Z coordinates, contained two separate files 

of filtered ground and non-ground level returns. The data had a density of 6 to 10 points/m2 with a height 

accuracy of ≤ 20 cm and planimetric accuracy of ≤ 23 cm (“Kwaliteitsbeschrijving | AHN,” n.d.). 

https://esrinl-content.maps.arcgis.com/apps/Embed/index.html?appid=a3dfa5a818174aa787392e461c80f781
https://esrinl-content.maps.arcgis.com/apps/Embed/index.html?appid=a3dfa5a818174aa787392e461c80f781
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3.2.3. Forest map data 

A map of forest types for the year 2012 was downloaded from Copernicus website 

(https://land.copernicus.eu/pan-european/high-resolution-layers/forests/dominant-leaf-type/status-

maps/2012). The map consisted of forest types (in the source described as 'dominant leaf type') namely 

coniferous and broadleaved forests for whole Europe extracted from multitemporal satellite data and 

classified using Support Vector Machine (European Environment Agency, 2021). Forest type map of the 

study area is shown in figure 1. This map was chosen considering its high spatial resolution (20 meter), high 

overall thematic accuracy (>90%) and its data availability for the required year (2012) to be consistent with 

the TDX and LiDAR acquisitions ("Copernicus Land Monitoring Service User Manual Consortium 

Partners," n.d.). The map was clipped to the extent of the study area. Coniferous trees cover 80.3 km2 and 

broadleaved trees covers 49.6 m2 constituting 37% and 23% of the study area, respectively.  

3.3. Methodology  

3.3.1. Methodological Flow chart  

The general methodology followed in this study is illustrated in Figure 2. The acquisition parameters 

mentioned in the chart refers to baseline, incidence angle, range distance and HoA. 

 

Figure 2 A flow chart showing the overall methodology  

https://land.copernicus.eu/pan-european/high-resolution-layers/forests/dominant-leaf-type/status-maps/2012
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/dominant-leaf-type/status-maps/2012
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3.3.2. Estimation of LiDAR canopy height and canopy cover 

The FUSION software was used to generate canopy height model (CHM) from the filtered ground and non 

ground point clouds. The ground point clouds were grided to 20 m resolution to form the ground level 

DTM. From the ground level points, the highest return within each 20 m cell was taken to produce the 

CHM as used by (Chen et al., 2015; Coops et al., 2007; Lovell et al., 2003) to represent h100. h100 is a standard 

forest height parameter which takes the average of 100 tall trees per hectare to represent forest height of an 

area (Hajnsek et al., 2009). For lidar canopy height, the approximate h100 can be obtained by considering the 

maximum point in a 10 by 10 meter cell (Kugler et al., 2014; Aulinger et al., 2005; Hajnsek eta al., 2009). 

The CHM used in this study was not the exact mimic of the h100 due to its low spatial resolution (20 m) used 

as compared to other studies (10 m).  

In addition to the CHM, the LiDAR points were used to map the slope and canopy cover density of the 

study area. The slope percentage was derived from the LiDAR DTM. Canopy cover is one of the forestry 

metrics used to describe forests' vertical and horizontal structure (Zhang et al., 2017). The canopy cover is 

a numerical value which is expressed in terms of percentage. Canopy cover percentage was computed as 

ratio between points above 5 meter and all LiDAR returns in a 20 by 20-meter grid cell.  

3.3.3. Estimation of TDX canopy height  

Simplified RVoG model 

The Random volume over ground (RVoG) model is a two-layer scattering model that enables canopy height 

inversion from the InSAR coherence under certain assumptions (Kugler et al., 2014). It assumes a uniform 

forest canopy layer (volume scattering) over an impenetrable ground layer (Olesk et al., 2016).  RVoG model 

inversion needs independent measurements of polarization dependent ground phase, ground-to-volume 

ratio and volume coherence. This requires a polarimetric data and the equation for volume coherence can 

be described as 

γ𝑣𝑜𝑙 = exp(𝑖𝑘𝑧𝑧0)
γv+m

1+m
        (1) 

where γ𝑣𝑜𝑙 means interferometric coherence, kz means vertical wave number, Zo means reference 

(ground) height, γv means volume only decorrelation and m means ground-to-volume ratio. 

γ𝑣  can be calculated as  

γ𝑣 = exp(𝑖𝑘𝑧𝑧0)
∫ exp(2𝜎𝑧/ cos𝜃)exp(𝑖𝑘𝑧𝑧0)𝑑𝑧
ℎ𝑐

0

∫ exp(2𝜎𝑧/cos𝜃)𝑑𝑧
ℎ𝑐

0

     (2) 

Where hc is the canopy height and 𝜎 extinction coefficient  

kz can be calculated using Baseline (Bn), wavelength (λ), incidence angel (θ) and Range distance (R).  

𝑘𝑧 =
4πBn

λRsinθ
         (3) 

In a single polarized acquisition, the number of observable parameters is less than that of unknown 

parameters, making the model inversion in (1) impossible. The unknown parameters here are m, σ and Zo. 

To make the inversion possible certain assumptions needed to be applied (Olesk et al., 2016). One of the 

assumptions is to consider the ground has no contribution in the coherence (assuming the X-band does not 

reach the ground). Hence, the volume-to-ground ratio were assumed to be zero (Hajnsek et al., 2009). The 

other assumption was to keep extinction coefficient constant over the forest as zero (Kugler et al., 2014). 

By doing this, the model remained with two known (coherence and vertical wave number) and one unknown 

variable (canopy height). The HoA can be computed from the vertical wave number (kz) as (Olesk et al., 

2016).  
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HoA =
2π

Kz
         (4) 

Finally, the RVoG model could be simplified to a sinc model as 

|𝛾𝑣𝑜𝑙sinc| = sinc(π ∗
ℎ𝑐

HoA
)      (5) 

Where 𝛾𝑣𝑜𝑙 means the interferometric coherence, hc means the canopy height, and HoA means height of 

ambiguity 

Inversion of sinc function in (5) requires a look up table. Hence, for the ease of calculation, an 

approximation to (5) can be calculated using (6) (Chen et al., 2016). A linear model (7) was also used to 

compute canopy height where the simplified RVoG model is assumed to work best when the maximum 

canopy height does not exceed the HoA (Olesk et al., 2016; Schlund et al., 2019). 

ℎ𝑐 = HoA˟|1 −
2

π
˟sin−1(𝛾𝑣𝑜𝑙

0.8)|     (6) 

ℎ𝑐 = HoA˟|1 − 𝛾𝑣𝑜𝑙|        (7) 

Where 𝛾𝑣𝑜𝑙 means the interferometric coherence and hc means the canopy height  

The coherence was estimated using the master and slave images. This was followed by multilooking of 20 

m spatial resolution to align with the resolution of available forest type map. Georeferencing and terrain 

correction was done, and an elliptical incidence angle image was produced besides the coherence image.  

Both coherence and elliptical incidence angle images were used for further processing.  

Range time for each corner and center of the image was extracted from the xml file of TDX data. Range 

distance was then calculated as in (8). From this five data points (four center and one corner) a raster layer 

of range distance was created by interpolation. Baseline information for each acquisition was also obtained 

from the xml file. The Kz and HoA were computed using (3) and (4), respectively. Finally, the TDX canopy 

height (hc) was estimated using a sinc and linear model as seen in (6) and (7), respectively. 

Rangedistance = 
Rangetime∗speedoflight

2
    (8) 

3.4. Comparison of accuracies 

For the comparison, around 10% of the pixels (Schlund et al., 2019) were extracted in a stratified random 

sampling method assuring representative pixels are accounted across the forest type, canopy cover and all 

slope classes. All areas with canopy height less than 5 meter were excluded from the analysis as they are 

considered as non forest area, according to FAO definition. The accuracy assessment was done using three 

accuracy metrics namely; root mean square error (RMSE), coefficient of determination (R2), and absolute 

error (AE). The RMSE and R2 were used to compare the estimation accuracies between models, acquisitions, 

forest types, slope classes, and canopy cover. Whereas the AE was used to test significance difference 

between different classes of forest and slope. To ensure comparability of accuracies across different canopy 

height values, the relative RMSE (RMSEr (%)) and relative AE (AEr (%)) were used. The RMSE, AE and 

their relative terms were computed as seen in (9) to (12).  

𝑅𝑀𝑆𝐸 = 
√∑ (𝐶𝐻𝑀𝑖−ℎ𝑐𝑖)

2𝑛
𝑖=1

𝑛
      (9) 

Where i is individual observation,  𝐶𝐻𝑀𝑖 is the LiDAR canopy height, hci is the TDX canopy height and n 

is the number of observations 
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RMSErc(%) =
𝑅𝑀𝑆𝐸𝑐

𝐶𝐻𝑀̅̅ ̅̅ ̅̅ ̅𝑐𝑐
˟100       (10) 

Where c refers to one class of forest type or slope class, RMSErc (%) is the relative RMSE of group c, 

RMSEc is the RMSE of group c, and 𝐶𝐻𝑀̅̅ ̅̅ ̅̅ ̅
𝑐 is the mean CHM of group c 

𝐴𝐸𝑖 =  |𝐶𝐻𝑀𝑖 −ℎ𝑐𝑖|        (11) 

𝐴𝐸𝑟𝑖(%) =
𝐴𝐸𝑖

𝐶𝐻𝑀i
˟100        (12) 

Where i is individual observation representing each sample point,  𝐴𝐸𝑖is the absolute error of ith observation, 

𝐴𝐸𝑟𝑖(%)is the relative absolute error of ith observation, ℎ𝑐𝑖 is the TDX canopy height of ith observation 

and,𝐶𝐻𝑀i is the CHM of ith observation 

3.4.1. Comparison of height estimations across forest types 

To compare the variation in accuracy of TDX height estimation over the two forest types, the estimation 

was divided in to broadleaved and coniferous. As the coniferous forest covered large area, the number of 

sample pixels was higher (12809 pixels) than broadleaved forest (7179 pixels). Hence, the number of samples 

for coniferous was kept to 7179 in a random selection to make a balanced sample. Thereafter, the absolute 

error (11) was computed for each observation. Normality distribution of the errors was checked to select 

appropriate significance test. For both forest types, the errors were not normally distributed. As a result, a 

non-parametric test for two groups (Mann-Whitney U test) was used to test the group difference at p-value 

of 0.05. The test was made on the relative absolute error (12), to mitigate any impacts that may arose from 

the height variation between the two forest types. 

3.4.2. Comparison of height estimations across slope classes 

A Food and Agricultural Organization (FAO) slope classification scheme were used to classify the study 

area into different slope classes (Table 2) (Iaaich et al., 2016). This enabled to make a comparison of the 

height estimations across different slope classes. The study area was dominated with a flat to moderate slope 

(Table 2). To some extent there were also steep slopes. The number of samples for each slope class were 

heavily unbalanced. The samples in each class were balanced to 1621 pixels. The absolute errors for each 

class were not normally distributed. Other processes were similar to section (3.4.1) except the Kruskal Walis 

test held which is relevant for more than two groups.  

Table 2 Slope classes of the study areas (FAO)  

 Area coverage in km2 (The % in bracket are column-wise) 

Slope class (%) Coniferous Broadleaved Non-forest Total 

0-3 31.3 (39%) 18.8 (38%) 47.8 (55.7%) 97.9 

3-12 42.2 (52.6%) 23.9 (48.2%) 33.0 (38.5%) 99.1 

12-20 4.8 (6%) 4.5 (9.1%) 3.3 (3.8%) 12.6 

>20 1.9 (2.4%) 2.4 (4.8%) 1.7 (2%) 6.0 

Total 80.3 (100%) 49.6 (100%) 85.8 (100%) 215.7 
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3.4.3. Effect of canopy cover on height estimation 

Forest structure is the vertical and horizontal arrangement of forest structural parameters (McElhinny et al., 

2005) which can be explained in different metrics such as height based, canopy density based and canopy 

volume metrics (Zhang et al., 2017).  In this study, the parameter considered for forest structure was the 

canopy cover percentage. A regression model was used to investigate how the variation in canopy cover 

affects the TDX height estimation accuracy. The canopy cover was used as independent variable and the 

absolute estimation error, as dependent variable. In addition, the regression was again done after the canopy 

cover percentage was grouped into every 5% interval.  

Furthermore, it is important to assess the contribution of the slope and canopy cover to the height 

estimation error. Since the independent variables had different range of values, they were standardized to 

make their effects comparable. This was done by subtracting a mean from each value and dividing by the 

standard deviation (Miuigan et al., 1988). Then after, a regression was developed between the estimation 

error (dependent variable) and the slope and canopy cover percentage separately for both forest types. The 

significance of the independent variable coefficients was determined with their respective p-values.  
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4. RESULTS  

4.1. Canopy height estimation  

4.1.1. LiDAR canopy height model 

The forest canopy height of the study area ranged from 5.0 m to 43.6 m (Figure 3). The average canopy 

height of the study area was 21.1 m with a standard deviation of 5.2 m. About 72% of the forest had a 

canopy height between 15.0 m to 25.0 m and 18% of the forest had a canopy height above 25.0 m. The rest 

falls between 5.0 m to 10.0 m canopy height. The broadleaved and coniferous forests had a mean canopy 

height of 22.0 m and 21.6 m. The mean canopy height in the flat, gentle, and steep slope was 19.8 m, 21.1 

and 22.3 m, respectively.  

Figure 3 LiDAR canopy height map of the study area 
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4.1.2. Coherence estimation of TDX  

The coherence descriptive statistics of all the acquisition which are ordered in ascending order of the HoA 

are summarized in Table 3.  The coherence of the five datasets was different based on their respective HoA 

and other factors (Table 3). The January 24 acquisition with highest HoA (91.5 m) had a high average 

coherence and low standard deviation. It also had high kurtosis and high negative skewness showing that a 

large amount of data concentrated in a small range of high coherence values. This was somehow similar to 

January 19 acquisition of the other high HoA (68.3 m). In comparison to the above two acquisitions, the 

other three acquisitions had lower mean coherence (<0.58), higher standard deviation (>0.10), lower 

kurtosis (<0.18), and lower skewness (Table 3).  

Table 3 Descriptive statistics of coherence 

 

In all acquisitions, the estimated coherence had negative relationship with the CHM normalized by HoA 

(Fig 3). In other words, the coherence decreased as the ratio of canopy height to HoA increased. In the first 

three acquisitions (October 31, January 04 and, October 12), when the CHM/HoA was above 0.6 there was 

no a clear trend. In the last two acquisitions (January 19 and January 24), the CHM/HoA was less than 0.6 

and the coherence increased as the ratio decreased.  In the first three acquisitions (October 31, January 04 

and, October 12), most of the data points were extended from the linear to sinc lines (Figure 4). In the last 

two acquisitions (January 19 and January 24) where the HoA was high, the observations were far below the 

sinc model whereas well fitted with the linear model.  

Acquisition date 
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October-31-2012 October 31 35.2 m 7.05 1.4 0.09 0.82 0.41 0.11 0.20 -0.41 

January-04-2011 January 04 41.3 m -0.75 0 0.14 0.90 0.51 0.12 -0.03 -0.39 

October-12-2011 October 12 44.7 m 12.6 27.6 0.11 0.89 0.58 0.11 -0.51 0.18 

January-19-2012 January 19 68.3 m 3.6 14.7 0.14 0.93 0.65 0.09 -1.05 1.83 

January-24-2012 January 24 91.5 m 2.85 1.7 0.38 0.95 0.76 0.06 -1.18 2.53 
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Figure 4 Color density scatter plot of CHM/HoA versus estimated coherence of different acquisitions (the red and 

green line showed the linear and sinc models, respectively) 

4.1.3. Canopy height estimation with TDX 

For the linear model, the estimated canopy height ranged from 4.1 m (January 04) to 56.8 m (January 19). 

The October 12 and January 19 acquisitions had the lowest (18.6 m) and highest average canopy height 

(23.6 m), respectively (Table 4). For the first three acquisitions with lower HoA (October 31, October 12, 

and January 04), the average canopy height was less than the average CHM. The average canopy height of 

the other two acquisitions with high HoA (January 19 and January 24) were above the average CHM (Table 

4). In comparison with the CHM, the RMSE for all acquisitions ranged from 4.3 m (January 24) to 5.7 m 

(October 12) and R2 ranged from 0.14 (October 31) to 0.47 (January 19) (Table 4). In general, the two 

October acquisitions had higher RMSE (>5.3 m) and lower R2 (<0.25) in comparison with the RMSE (<5.2 

m) and R2 (>0.38) of January acquisitions.  
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Table 4 Summary of descriptive statistics and accuracy metrics (linear and sinc models) 

   Height (m)    

 Acq. id HoA Min Max Mean Standard deviation RMSE R2 

CHM  
 5.0 43.6 21.1 5.2   

 October 31 35.2 6.2 30.0 20.0 3.8 5.3 0.14 

 January 04 41.3 4.1 35.6 20.2 4.8 4.5 0.38 

Linear October 12 44.7 4.9 38.8 18.6 4.9 5.7 0.25 

 January 19 68.3 4.6 56.8 23.6 6.1 5.2 0.47 

 January 24 91.5 4.3 56.5 21.5 5.3 4.3 0.44 

 October 31 35.2 12.0 29.9 22.8 2.7 5.2 0.14 

 January 04 41.3 10.5 35.9 24.7 3.5 5.5 0.38 

Sinc October 12 44.7 12.0 38.8 24.4 3.7 5.7 0.25 

 January 19 68.3 14.2 57.4 33.4 4.7 12.9 0.48 

 January 24 91.5 15.9 63.2 36.5 4.7 16 0.44 

For the sinc model, the estimated canopy height ranged from the minimum of 10.5 m (January 04 

acquisition) to the maximum of 63.2 m (January 24 acquisition). The lowest and highest average canopy 

height was observed for the acquisitions of October 31 (22.8 m) and January 24 (36.5 m), respectively (Table 

4). The lowest RMSE was observed for October 31 acquisition (4.3 m) and the highest was for January 24 

acquisition (16 m).  For all the acquisitions, the average canopy height was higher than the average CHM. 

For the sinc model of January 24 acquisition, as seen in Figure 5, the higher density points were below the 

1:1 graph indicating the overestimation of the sinc model. The overestimation of sinc model was observed 

in other acquisitions as well (Appendix 3). The RMSE of the linear and sinc models were similar for the 

October 31, October 12, and January 04 acquisitions. However, for the January 19 and January 24 

acquisitions the RMSE of the sinc model was higher than that of the linear model (Table 4). The R2 for all 

acquisitions was similar with the linear model. As the linear model performed better than the sinc model, 

further analyses were focused on the linear models.  

 

Figure 5 Scatterplot of CHM and TDX estimated height for linear and sinc models of January 24 acquisition with the 

red line indicating 1:1 relation (scatterplots for all acquisitions are in Appendix 2 and 3). 
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Overall, better performance was observed for the linear model of January 24 acquisition (the highest HoA) 

with lowest RMSE of 4.3 m and second highest R2 of 0.44. The absolute error map of the January 24 

acquisition revealed that most of the forest areas had absolute estimation errors less than 6 m (Figure 6).  

The absolute error map for other acquisitions is shown in Appendix 1. 

Figure 6 Absolute difference between CHM and linear TDX height of January 24 acquisition 

4.2. TDX canopy height estimation of Broadleaved and coniferous forests 

For the broadleaved forest, the R2 generally improved with increasing HoA (Table 5). Apart from the HoA, 

the season had an impact in the R2. For the two acquisitions in October, the R2 tended to be low (0.09 and 

0.16) (Table 5). For the three acquisitions made in January, the R2 was relatively high (> 0.40) as compared 

to the October acquisitions. The RMSE in broadleaved forest ranged from 4.8 m to 6.8 m where the highest 

RMSE was recorded for the October acquisitions with RMSE of 6.3 m and 6.8 m (Table 5). For the January 

acquisitions the RMSE was less than 6.1 m. The HoA did not clearly show an impact on the RMSE.  

Table 5 Comparison of accuracy metrics of different acquisition across forest types 
  

Broadleaved Coniferous 

Acq. id HoA (m) RMSE (m) RMSEr (%) R2 RMSE (m) RMSEr (%) R2 

October 31 35.2 6.3 28.7 0.09 4.7 22.8 0.18 

January 04 41.3 4.8 21.9 0.40 4.4 21.4 0.35 

October 12 44.7 6.8 31.0 0.16 4.9 23.8 0.32 

January 19 68.3 6.1 27.8 0.50 4.6 22.3 0.44 

January 24 91.5 4.8 21.9 0.47 4.0 19.4 0.40 
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The RMSE for all acquisitions of coniferous forests ranged from 4.0 m to 4.9 m. Though the RMSE values 

were similar, there was a general decreasing trend with increasing the HoA. Moreover, the R2 showed 

increasing trend with increasing HoA. The season of acquisition did not have an impact on the R2. For 

instance, the acquisitions on January 04 and October 12 were from different seasons but had similar HoA 

(41.3 m and 44.7 m), they showed similar R2 (0.35 and 0.32) and RMSE (4.4 m and 4.9 m) (Table 4). 

Comparing the RMSEr of both forest types, the impact of season of acquisition on the RMSE was observed 

for the broadleaved forests. The RMSEr difference between the broadleaved and coniferous forest for the 

October 31 and October 12 was 5.9% and 7.2% respectively, which was higher than that of the RMSEr 

difference in the January 04 (0.5%) and January 24 (2.5%). There was an exception for the January 19 

acquisition where the RMSEr difference of between the broadleaved and coniferous was 5.5 %. Apart from 

the RMSE, the relative mean of absolute errors (MAEr) for coniferous forest was significantly lower than 

that of the broadleaved forest for all acquisitions (Table 6).  

Table 6 A Mann-Whitney U test of group difference between broadleaved and coniferous forests 

Acq. id Forest type MAEr (%)  Standard deviation P-value 

 

October 31 

Broadleaved 21.9 22.6 

<0.0001 Coniferous 17.0 15.6 

 

January 04 

Broadleaved 17.2 18.4 

<0.001 Coniferous 15.5 13.8 

 

October 12 

Broadleaved 24.0 23.2 

<0.0001 Coniferous 18.6 15.0 

 

January 19 

Broadleaved 24.0 29.3 

<0.0001 Coniferous 18.5 18.9 

 

January 24 

Broadleaved 18.6 27.1 

<0.001 Coniferous 15.3 17.3 

Number of samples for each forest type is 7179 

4.3. TDX height estimation across slope classes 

There was a slight difference in the RMSEr across slope classes for all acquisitions. The minimum RMSEr 

was 16.7% for the October 12 acquisition in gentle slopes and the maximum was 25.7% for January 19 

acquisition in steep slopes (Table 7). The highest RMSEr difference of 3.9% was observed between gentle 

and steep slope in the acquisition of January 19 (Table 7). Regarding R2, there was no substantial difference 

across slope classes for all acquisitions. The largest difference was for October 12 acquisition where the R2 

increased by 0.06 from gentle slope to steep slope.  

Table 7 Summary of accuracy metrics across slope classes 

  Flat slope Gentle slope Steep slope 

Acq. id HoA (m) RMSEr (%) R2 RMSEr (%) R2 RMSEr (%) R2 

October 31 35.2 18.0 0.16 16.7 0.17 17.1 0.12 

January 04 41.3 17.5 0.32 17.2 0.32 17.1 0.28 

October 12 44.7 22.2 0.15 21.1 0.18 22.1 0.12 

January 19 68.3 22.0 0.22 21.8 0.22 25.7 0.25 

January 24 91.5 18.0 0.19 17.5 0.20 19.9 0.19 

Number of samples for each slope class was 1621 
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The MAEr was not significantly different between slope classes for the acquisitions of October 31, January 

04, and October 12 where the HoA was small (Table 8). For the acquisition of January 19, the MAEr of 

steep slope was significantly higher compared to the two other classes and there was no significant difference 

between the flat and gentle slope. For the acquisition January 24 a significant variation was observed between 

gentle and steep slope (Table 8). 

Table 8 Kruskal-Wallis significance test of MAEr across slope classes 

Acq. id HoA (m) Slope class MAEr (%) Standard deviation Sig 

October 31 35.2 

 

Flat 14.6 11.4 0.208 

Gentle 13.6 10.5  
Steep 13.9 10.7  

January 04 

 Flat 13.8 10.9 0.657 

41.3 Gentle 13.9 10.6  
 Steep 13.8 10.9 

 

October 12 

 Flat 17.9 12.7 0.185 

44.7 Gentle 17.2 12.4  
 Steep 17.9 12.7  

January 19 

 Flat 17.4a 14.7 <0.001 

68.3 Gentle 17.1a 14.6  
 Steep 19.6b 17.0  

January 24 

 Flat 13.5ab 12.5 <0.05 

91.5 Gentle 13.0a 12.3  
 Steep 14.4b 14.7  

Number of samples for each slope class was 1621.       *Means with different letter show sig. variation  

4.4. Impact of canopy cover on TDX height estimation  

The canopy cover of the study area ranged from 0 to 99.9 % (Appendix 6). Most parts of the study area had 

a canopy cover between 25% and 75%, which accounts for 91%. 7% of the area had a canopy cover less 

than 25% and the rest 2% had canopy cover above 75%. For all acquisitions, there was a relationship 

between the height estimation accuracy and the canopy cover. As the canopy cover increased, the estimation 

accuracy decreased for all acquisitions but with very small R2 (R2<=0.05). However, when the canopy cover 

was grouped in every 5% interval (<5%, 5%-10%, 10%-15% and so on), a significant relationship was found 

with high R2 values, for the two acquisitions having high HoA. The MAEr significantly decreased with 

increasing canopy cover having an R2 of 0.72 and 0.46 for January 19 and January 24 acquisitions, 

respectively (Figure 7). For the acquisitions with HoA less than 45 m, the MAEr did not show an increasing 

or decreasing trend with increasing canopy cover.  
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Figure 7 Relationship between MAEr and grouped canopy cover (%) for acquisitions of January 19 and January 24  

4.5. Contribution of canopy cover and slope to estimation error 

The slope and canopy cover were brought together in an attempt to make a regression against the absolute 

estimation error separately for broadleaved and coniferous forest. This was solely done to the January 24 

acquisition. Both, slopes and canopy cover, significantly (P-value <0.01) explained only 3% of the variation 

in absolute error for broadleaved forests (Table 9). The sign of the coefficients indicated that with increasing 

slope and decreasing canopy cover, the absolute error increased for broadleaved forests. For this forest type, 

the coefficient was higher for canopy cover than the slope.   

For coniferous forests, the R2 was very low but the influence of canopy cover on absolute error was 

observed. However, slope did not explain the variation in absolute error for coniferous forests.  The 

coefficients of canopy cover suggested that the impact of canopy cover was less for coniferous forests as 

compared to broadleaved forests 

Table 9 Regression table of dependent (absolute error) with standardized slope and canopy cover 

 Broadleaved (R2 = 0.031) Coniferous (R2 = 0.001) 

 Coefficient p value Coefficient p value 

Intercept 3.20 <.001 2.90 <0.001 

Standardized slope 0.24 <.001 0.01 =0.668 

Standardized canopy cover -0.54 <.001 -0.069 <0.05 
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5. DISCUSSIONS 

5.1. TDX canopy height estimation 

This study attempted to understand a linear and sinc models in estimating canopy height from TDX 

coherence values under different biophysical characteristics like forest type, slope, and canopy cover. The 

sinc model in all acquisitions overestimated the canopy height compared to the linear model. The 

overestimation was especially higher (>12 m) for the acquisitions with higher HoA (January 19 and January 

24 acquisitions). Conceptually, Chen et al. (2016), elucidated that a sinc model should always underestimate 

the height; however, their test in Canadian boreal forest showed otherwise. This might be related to some 

problems of coherence correction procedures (Chen et al., 2016), which was not applied in this study. A 

study in temperate forests also found a sinc model to generally overestimate the height; especially when the 

HoA is above 60 m, the RMSE goes above 12 m (Schlund et al., 2019). For the current study, as the linear 

model had better accuracies than sinc, further discussions were made based on the results of linear model. 

The RMSE and R2 ranged from 4.3 m to 5.7 m and from 0.16 to 0.47 for all acquisitions. Similar study in 

temperate forest found comparable results with RMSE of 6.2 m to 13.5 m and R2 of 0.08 to 0.62 (Schlund 

et al., 2019) even for higher spatial resolution (12 m) as compared to this study. TDX canopy height 

estimation accuracy varied with the HoA, the acquisition season, temperature, precipitation, and other 

factors. All the January acquisitions had lower RMSE and higher R2 than the October acquisitions. The 

highest RMSE difference was between January 24 and October 12 which was 1.4 m. The fact that both 

acquisitions had different HoA and season of acquisition (attributed to leaf and weather conditions) might 

have contributed to the difference in the RMSE. The impact of season of acquisition can be seen by 

comparing October 12 (HoA = 41.3 m) and January 04 (HoA = 44.7 m) acquisitions. Despite having 

comparable HoA, the January 04 acquisitions performed better in terms of RMSE and R2 (Table 4). The 

January 04 acquisition was a leaf-off season with lower temperature and precipitation than the October 12 

acquisition (Table 1), which could be the possible reason for the variation in the RMSE. Previous studies 

also observed that season of acquisition affected accuracy of TDX canopy height estimation (Olesk et al., 

2015b; Schlund et al., 2019).  

The HoA did not have linear relationship with canopy height estimation error. This might be due to the 

variation in weather variables (temperature and precipitation), which potentially decreased the impact of 

HoA. For example, considering the January acquisitions (HoA of 41.3 m, 68.3 m and 91.5 m), the ones with 

lowest and highest HoA had lower temperature and precipitation than the middle one (Table 1), which 

possibly could undermine the impact of HoA. Similar results were found in temperate and boreal forests 

where cold and dry weather was associated with better estimation accuracy (Schlund et al., 2019). Variations 

in weather variables change the vegetation's dielectric properties, which affects its scattering behaviors. High 

precipitation and temperature increase the dielectric constant of the vegetation, leading to increased 

attenuation of microwaves by the canopy, which may result in height overestimation (Solberg et al., 2015). 

During wet conditions, coherence is influenced by the water in vegetation in addition to other characteristics 

of the forest (canopy height, cover, structure and so on) (Olesk et al., 2015b). The presence of precipitation 

increases volume decorrelation and decreases coherence, subsequently high estimation errors (Olesk et al., 

2015b; Sadeghi et al., 2017). Figure 8 also illustrated that RMSE increased with increasing of temperature 

and precipitation. While it is quite understandable why the RMSE for January 19 acquisition (HoA=68.3 m) 

was high, it remained challenging to explain why it had highest R2.  
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Figure 8 Relationship of RMSE with temperature, precipitation and HoA 

Comparing January 04 and January 24 acquisitions which had contrasting HoA but similar temperature and 

precipitation, the RMSE was lower for the large HoA than the small HoA. This indicated that HoA had an 

impact on accuracy, but it also depends on the condition on the ground. Moreover, our study observed that 

the relationship between HoA and estimation accuracy depended on the canopy height (Appendix 7). The 

two acquisitions with highest HoA (68.3 m and 91.5 m) had the smaller RMSE than others when the canopy 

height was above 30 m. For the same acquisitions, the RMSE was higher (RMSE >=10 m) when the canopy 

height was less than 10 m. This is because of the high difference between the canopy height and HoA. The 

interferometric system becomes less sensitive as the canopy height gets much lower than the HoA, 

consequently, the estimation accuracy reduces (Gomez, 2021).  Chen et al. (2016) suggested small HoA for 

better canopy height estimation of small canopies. Similarly in this study, one of the acquisitions with small 

HoA (41.3 m) had better RMSE (6.3 m) than other acquisitions when the canopy height is less than 10 m 

(Appendix 7). In addition, the acquisition with lowest HoA (35.2 m) had the highest RMSE (13.1 m) when 

the canopy height was above 30 m. This is in line with the study of Khati et al. (2017), which found the 

estimation error increases with increasing canopy height for small HoA and vice versa for large HoA. Olesk 

et al. (2016) also explained that the linear model does not work well when the canopy height is closer to the 

HoA. Another study by Chen et al. (2016) proposed a HoA of two to four times of the canopy height for 

better estimation accuracy. In other words, this is a canopy height ranging from 25% to 50% of the HoA. 

Also, for this study, depending on the HoA, better accuracy (RMSE <4.5 m) was found within the canopy 

height ranged from 20% to 65% of the HoA. In this study it is understood that different acquisitions had 

their best accuracy over different canopy height classes (Appendix 7). As a result, a combination of 
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acquisitions with different HoA (multi-baseline) has been recommended when possible (Chen et al., 2016; 

Kugler et al., 2015; Lee et al, 2011). 

5.2. Impact of forest type 

The forest type is one of the factors expected to affect the accuracy of canopy height inversion from TDX 

coherence. This study observed that the performance of TDX height estimation was different for 

broadleaved and coniferous forests. The RMSE and R2 revealed that, the accuracy for broadleaved forests 

were unstable across seasons, compared to coniferous forests. The average RMSEr (%) for broadleaved 

forests decreased from 29.9% of October acquisitions to 23.9% of January acquisitions. Whereas for 

coniferous forests the average RMSEr (%) remained stable for October (23.3%) and January acquisitions 

(21.0%). The same is true for the R2. The average R2 for October and January acquisitions were 0.13 and 

0.46 (broadleaved) and 0.25 and 0.40 (coniferous forests), respectively. It can also be seen that the RMSE 

and R2 of both forest types had a low difference for January acquisitions compared to October acquisitions. 

The difference in RMSE and R2 between forest types in October acquisitions is mainly expected to be linked 

with leaf conditions. During leaf-on season, broadleaved forests have heterogenous canopy structure 

causing in loose of coherence, as compared to leaf-off season which are homogenous in their structure 

without leaves (Olesk et al., 2015a). In addition, in leaf-on condition of broadleaved forest, X-band has 

limited capability of penetration resulting in substantial estimation accuracy difference with coniferous 

forests, as compared to leaf-off season. In temperate forests, during leaf-off season, the penetration depth 

is high, and the volumetric information can be acquired, leading to better estimation accuracy (Erasmi et al., 

2019; Kugler et al., 2014; Olesk et al., 2015b; Schlund et al., 2019). On the contrary, studies in boreal (Solberg 

et al., 2015) and tropical forests (Khati et al., 2917), stated that deep penetration of X-band during leaf-off 

season underestimates the height resulting in estimation error. However, it should be noted that the forest 

ecosystems are different which can not be compared to the current study. Moreover, Kugler et al. (2014) 

found different results for those forest ecosystems in relation to X band penetration and estimation error.  

Another accuracy metrics (MAEr), which compared pixel by pixel, showed that for all acquisitions, the 

coniferous forests had significantly lower estimation error than broadleaved forests. While the significant 

variation in the October acquisitions is expected due to the leaf condition, the significant variation in January 

acquisitions showed that forest type could also influence estimation accuracy. This indicates that apart from 

leaf condition, there were other factors causing different estimation accuracy between the two forest types. 

One of the reasons could be the weather condition during the acquisitions. Both forest types may respond 

differently to the existed precipitation/temperature in relation to X-band backscatter. The presences of 

precipitation during and one day before the acquisition date might have affect both forest types differently. 

One indication for this could be that the January 19 acquisition had highest precipitation which also yielded 

highest MAEr difference between the two forest types. In addition, the difference in morphological 

characteristics of broadleaved and coniferous forests might contribute. Deciduous trees have strong ability 

of attenuating X-band waves than coniferous trees (Hoekman, 1987). X-band backscatter is assumed to be 

responsive to variations in leaf characteristics such as leaf area index, leaf moisture content and leaf 

curvature, trunk size, branch distribution and so on (McDonald et al., 1991). Given that coniferous and 

broadleaved forests have different morphological characteristics, the variation in height estimation accuracy 

of the two forest types is expected. Olesk et al. (2016) revealed that coniferous and broadleaved forests 

exhibited different X-band extinction properties, which possibly could be a source of variation for the 

estimation accuracy between the two forest types.  In general, it is observed that coniferous forests are less 

affected by seasonal changes and unsuitable weather condition than broadleaved forests. In line with this 

study, Olesk et al. (2015b) and Schlund et al. (2019) also found that coniferous forests are least affected by 

seasonal variation and had better estimation accuracy than broadleaved forests. Hence, when canopy height 
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estimation with the linear model is applied to broadleaved temperate forests, selecting acquisitions from 

leaf-off season and suitable weather conditions (cold and dry) is recommended.  

5.3.  Impact of slope and canopy cover 

Slope is one of the factors that affects the TDX height estimation accuracy (Chen et al., 2018; Gomez et al., 

2021; Kugler et al., 2015; Schlund et al., 2019). Especially slopes in the range direction alter the local 

incidence angle (Kugler et al., 2015). This modification of the incidence angle affects the coherence which 

may lead to biased height estimation (Kugler et al., 2015). In this study, the effect of slope on the estimation 

accuracy was mainly dependent on the HoA. The model had similar performance across slope classes for 

acquisition with HoA less than 45 m. Whereas for the acquisitions with high HoA the model did not work 

well in the steep slope. Contrary to this study, a study in temperate forest showed that estimation error was 

stable up to a slope of 200 (around 36%) regardless of the HoA (Schlund et al., 2019). However, this could 

depend on the composition of forest type, height class distribution and other factors across the slope classes. 

Nevertheless, Chen et al., 2018, recommended that for steep terrain, better estimation could be obtained 

when the ratio of HoA to canopy height ranged from 1 to 3.  Similarly in this study, the two acquisitions 

where most of the pixels had the ratio of HoA to canopy height above 3, produced a significantly higher 

error in the steep slope class than the gentle and flat slope classes. Hence, to study the relationship of slope 

and TDX height estimation accuracy, appropriate selection of HoA with regard to the forest canopy height 

should be considered. In addition, impact of slopes should be further studied with stratification of forest 

type and under suitable weather conditions to reduce the complex interaction among different sources of 

errors.  

Similar to the slope the impact of canopy cover was pronounced in acquisitions of January 19 and January 

24 which have high HoA. The impact of canopy cover was not seen in the other three acquisitions which 

possibly is related to small HoA. The dense forests in the study area were mostly characterized with high 

canopy height which were poorly estimated with the small HoA. Appendix 8 showed that a linear increment 

of canopy height with increasing canopy cover percentage. Hence, for the study area with the given canopy 

height distribution across different canopy cover, it might be difficult to see impact of canopy cover when 

the HoA small. For the two acquisitions with high HoA, the MAEr showed substantial decrement as the 

canopy cover increases. Martone et al. (2012) explained for a dense canopy, high HoA are required to 

minimize the volume decorrelation effects. In fact, volume decorrelation is high in closed canopy as 

compared to open canopy which may lead to low coherence (Schlund et al., 2014, 2013) and then to high 

estimation error. When there is low canopy cover there is high possibility of microwaves interacting with 

the branches of trees which results in several direct returns, hence reduced decorrelation as compared to 

volume scattering of dense canopy from the leaves (Schlund et al., 2013). However, this is dependent on 

HoA and canopy height. The fact that January 19 and January 24 acquisition had high HoA (which improves 

the coherence), and the denser areas had high canopy height led to less estimation error in the high canopy 

cover areas. Note that these two acquisitions had better accuracy at the high canopy height levels (Appendix 

7). 

In general, the continuous values of slope and canopy cover were able to explain the variation in mean error 

with a very poor R2 in broadleaved forest. In fact, these two factors could not strongly explain the variation 

in the coherence. They both contribute to 11% and 6% variations in coherence in broadleaved and 

coniferous forests, respectively. The coefficients indicated that the canopy cover had more impact than the 

slope. The reason that the impact of slope was not pronounced might be related to the fact that the study 

was limited to slope less than 20%, in which most of the slope lay in gentle slope. Studies suggested that the 

impact of slope is well visible when slope goes above 200 (around 36%) (Kugler et al., 2015; Leonardo et al., 

2020; Schlund et al., 2019). In addition, the direction of the slopes in relation to the satellites were not 
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accounted in this study which might have an impact in the relationship between slope and estimation 

accuracy. Kugler et al. (2015) elaborated that slope in range direction has higher impact than in the azimuth 

direction in modifying the incidence angle consequently affecting the coherence and estimation accuracy. 

Also, slopes facing towards and away from the satellite overestimate and underestimate the estimation, 

respectively (Kugler et al., 2015). One of the major limitations of the current study is treating all these slopes 

similarly.  Also, the canopy gap volume was not investigated in this study. The combination of these 

limitations might have induced some influences when attempting to examine the contribution of slope and 

canopy cover in explaining the variation in the estimation error. Other factors like forest composition, 

vertical and horizontal structure, vegetation water content, temperature and other vegetation morphological 

characteristics which were not accounted in this study are expected to influence the coherence and 

consequently the estimation error (Demirpolat, 2012; Erasmi et al., 2019).  
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6. CONCLUSIONS  

The result of this study suggested that single polarized TDX coherence can estimate a canopy height with 

reasonable accuracy of less than 6 m using linear model. With small HoA, sinc model also exhibited similar 

accuracy, despite its overestimation when using high HoA (RMSE>12 m). Season of acquisition and HoA 

influenced the canopy height estimation from TDX coherence. In general, it has been observed that 

acquisitions with high HoA yielded better accuracies. However, each acquisition produced different 

accuracies across different canopy heights. Additionally, the season of acquisition, which can be explained 

in terms of leaf and weather condition influenced the estimation accuracy. The accuracy in broadleaved 

forest was affected by season change, compared to coniferous forests. When it is leaf-on season, and the 

temperature and precipitation is low, the accuracy differences between the two forest types tended to be 

low. The study observed that similar weather conditions (wet and hot weather) affect the estimation accuracy 

of both forest types differently.    

Furthermore, slope and canopy cover had influenced the estimation accuracy, but this was limited only to 

the acquisitions with high HoA. The impact of slope was minimal as compared to the impact of canopy 

cover. This can be due to the study area was dominated by gentle slope class; hence, it might not be a suitable 

area to show the impact of slope. The combination of slope and canopy cover poorly explained the variation 

in absolute estimation error for both forest types. This apparently indicated that, there are other factors, not 

accounted in this study, that determine the absolute estimation error. This could be an interesting research 

topic for future studies.   

In general, TDX is a good option in temperate forests to estimate canopy height, thereby biomass, when it 

is required to cover large area and frequent measurement. However, attentions should be given to acquisition 

parameters, like HoA, climatic variables such as temperature and precipitation, and characteristics of the 

target scatterer (forest) such as canopy cover, canopy height and slope. More importantly, an interaction 

between the aforementioned variables should get a special attention. Especially, broadleaved forests required 

careful selection of acquisitions in relation to leaf and weather conditions so as to acquire moderate accuracy. 

In spite of the limitations, this study investigated that single polarized TDX coherence data can give 

encouraging accuracies without using external data which is very useful for large area mapping and biomass 

quantification. Future studies should focus on examining factors affecting the estimation error in forested 

areas at pixel level when estimating TDX canopy height using linear/sinc models.  
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APPENDICES  

Appendix 1. Absolute error map of different acquisitions  
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Appendix 2. Comparison of CHM and TDX estimated height for linear models of different acquisitions 
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Appendix 3. Comparison of CHM and TDX estimated height for sinc models of different acquisitions 
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Appendix 4. Comparison of CHM and TDX estimated height (Linear) of different acquisitions in broadleaved 
forests 
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Appendix 5. Comparison of CHM and TDX estimated height (Linear) of different acquisitions in coniferous forests 
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Appendix 6. Canopy cover percentage of the study area 
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Appendix 7. Color scaled table showing RMSE (m) across different canopy height classes for all acquisitions (The 
value increase from green to red) 

   Height class (m) 

 Acq. id HoA 5 to 10 10 to 15 15 to 20 20 to 25 25 to 30 >30 

RMSE (m) 

October 31 35.2 8.3 4.5 3.5 3.4 6.7 13.1 

January 4 41.3 6.3 3.3 3.3 3.6 5.3 10.2 

October 12 44.7 7.8 3.8 3.9 4.8 7.6 11.8 

January 19 68.3 10.6 5.8 4.5 4.6 6.2 6.9 

January 24 91.5 9.9 5 3.6 3.6 5 6.8 

 

 

Appendix 8. Color scaled table showing relationships between grouped canopy cover and MAEr for all acquisitions 
(The value increase from green to red) 

 

 MAEr (%) 

Canopy cover 

(%) 

Mean canopy 

height (m) October 31 January 04 October 12 January 19 January 24 

0 to 5 15.4 41.3 31.4 39.1 54.8 61.3 

5 to 10 15.9 32.8 25.7 32.1 42 45.2 

10 to 15 16.6 31.6 24.5 26.7 37.7 36.7 

15 to 20 17.2 27.3 22.6 26.7 33.7 32.8 

20 to 25 17.7 25 19.3 22.9 29.4 24.8 

25 to 30 18.5 22.2 18.4 21.5 25.4 20.5 

30 to 35 19.7 18.6 15.3 18.4 20.9 17.1 

35 to 40 20.3 17 14.7 17.9 20.3 15.8 

40 to 45 21.1 16.6 14.2 18.1 19.8 14.3 

45 to 50 22.1 16.7 13.9 19.2 19.3 13.5 

50 to 55 22.4 17.3 14.1 20 18.5 13.5 

55 to 60 21.5 16.4 14.7 20.1 17.3 13.8 

60 to 65 20.8 17 15.8 20.9 17.2 13.5 

65 to 70 21.1 18.2 19.3 22.2 17.8 14.8 

70 to 75 23.1 21.8 24.8 24.8 16.8 16.7 

75 to 80 26.8 27.7 28.3 25.2 15.9 18.7 

80 to 85 27.8 29.6 30.4 26.9 14.9 19.4 

85 to 100 27.9 30.8 34 31.6 17 21.5 


