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Abstract

Vegetation is an important component in an urbawirenment. In recent years, technological
advancement has offered opportunity for virtualy aibodelling. Incorporation of environmental
components in the model enables better planningdactsion making. In this context, integration of
3D tree models adds a more complete and realigiew ¥n virtual city modelling. Mobile laser
scanning (MLS), is an active technique to captugélin dense 3D point cloud of larger urban areas in
a rapid and cost effective way(Norbert et al., 2008e acquired point cloud is highly suitable fioe
extraction of 3D cadastre information, urban olgaetventory and 3D city modelling.

Urban environments are a mixture of heterogenedjscts like poles, traffic signs, buildings and
trees. Thus, the tree delineation technique deeeldpr forestry applications using airborne laser
scanning (ALS) is not directly applicable. Attemmpisde so far using highly dense point cloud to
model the tree are however, comparatively unréalistbour-intensive and time consuming.

In this research, a fully automated workflow fongle tree modelling using MLS point clouds is
proposed. The workflow starts with pre-processiatgdtion of tree point cloud from a dense mixture
of urban objects. After this, the structure of tpaint cloud is simplified by applying a 3D alphHzape
algorithm. In the remaining point cloud, connectgdups of trees are separated and detected by
analysing the structure of the canopy and the appea of tree stems if they are visible. After
labelling laser echoes belonging to a single titee tree model parameters are derived. The minimum
required model parameters, which are derived froengeparated alpha shape point clouds, are tree
height, base height, stem diameter, crown lengitithvand crown shape. The obtained parameters are
used to generate the approximate model of the 8Befile format of the model is developed and
finally exported to appropriate 3D environment. Thelity of the tree models is tested as a function
of data reduction and shape simplification by ajpi\different alpha values. Furthermore the realist
appearance of the models is checked against adqulictographs.

Performance of the workflow is evaluated in ternfistree detection and data reduction rate. The
overall quality of tree detection is achieved mdran 80%. The result shows that the developed
modular structure of workflow reduces more than §@Sitits during the pre-processing and more than
90% points during the 3D alpha shape generatiohowit loosing the important information. This
result concludes that the presented workflow idiegiple for large data set of varying point density
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1. Introduction

1.1. Motivation and problem statement

Vegetation is an important component in urban emvirents. The integration of 3D tree model offers
a more complete and realistic view in virtual aitpdelling and city planning (Slob and Hack, 2004).
3D cadastre of tree is needed by planners and eamgntalists for planning, modelling and

ecological assessments of the city (Ross et @09;20o0sselman, 2003).

Traditionally airborne and satellite means of cgltionages have been extensively used for tree
identification, 3D modelling, texturing and visuadtion (Shlyakhter et al., 2001; Tan et al., 2007;
Teng and Chen, 2009). One of the advantages df thethods, the data collection for a large area can
be performed in a single attempt. The disadvantafiésese methods include comparatively coarse
resolutions and some shadow effect on all the aptinages. So, it is complicated to identify the
single tree pixel for 3D reconstruction. In somedsts, the tree outline detection, tree specificati
shape analysis and texture assignment has beenntiomeally. The manual method is less accurate
due to human errors, expensive and time consurihlygkhter et al., 2001).

Several researches have attempted for the estimafidree geometry parameters such as canopy
height, crown width and foliage for the forest nmoring applications and modelling of 3D tree using
airborne laser scanning (ALS) data (Kato et alQ2®&och et al., 2006; Kwak et al., 2007) as wsll a
terrestrial laser scanning (TLS) data (Buckschlandenbergh, 2008; Mallet and Bretar, 2009; Rosell
et al., 2009; Slob and Hack, 2004; Vauhkonen eR@D9). As the ALS is done from top of the tree, i
is difficult to receive the appropriate amountadér echoes from lower part of the tree. Acquitirgy
larger area data is still matter of challenge usimgventional means of TLS data.

The multi-sensory data, i.e., the combination ofSAtlata and optical image has been used for the
generation of 3D tree model by Chen et al. (2068)wever, in their approach a fully automatic
technique for fusion of spectral images and tremupaters from point cloud and optical images is
lacking. This requires more manual interactiomiréase the accuracy of individual tree model.

Mobile laser scanning (MLS), an advancement of gdsbiased kinematics means of TLS, is an active
technique to capture highly dense 3D point cloudagjer urban areas in a rapid and cost effective
way (Norbert et al., 2008). The obtained point dieicomplete geo-referenced, accurate, and seitabl
for 3D modelling (Ussyshkin, 2009). The acquirednpalensity of the objects such tree depends on
the speed of the vehicles, sensor configuration seabon of the acquisition (leaf-on and leaf-off
season). Since, the MLS is a rather new operatidegtlopment in the field of LS, no significant
contribution has been done to process the larger deaita in an efficient manner.

In this context, taking account of the problems andgestions given by previous researches and
taking the advantages of MLS data as mentioned&gfos study will focus on how to detect the tree
in a dense urban area, simplify tree geometry arnthdrmore to develop a new method for realistic
3D modelling for integration in 3D city model.

[+ ]




3D TREE MODELLING USING MOBILE LASER SCANNING DATA

1.2. Research identifications

As discussed in the problem statement, till datétéid research has been done in the domain of 3D
tree modelling, texturing and visualisation. As attempt to carryout modelling of tree stems from
high dense point clouds, Pfeifer et al. (2004) uBefl data and developed a method where necessary
parameters are derived by fitting free form cylintte the stems. Later, Bucksch and Lindenbergh
(2008) developed a skeletonisation approach foividgr branch topology from a tree. Lately, a
method has been developed for deriving single d&leeation parameters for forestry application
using Airborne Laser Scanning (ALS) data (Rahmamlet2009; Reitberger et al., 2009). These
methods are not suitable for urban application. Maén reason is that these methods cannot separate
tree objects from other urban objects with simtharacteristics such as poles, traffic signs, and
electric masts. With the advancement in the sexftairtual city modelling, complete 3D modelling of

a tree is highly demanded in recent years, andefibie, a research in this sector may deservela hig
importance. In this context, this research has h@eposed. From the research, it is intended to
develop a fully automated method applicable foe tdetection to single tree modelling using MLS
point clouds.

1.2.1. Research objective

The main objective of this research is to develogw method for 3D tree modelling using MLS data.
The main objective can be achieved by the follovanly objectives:

¢ To extract and simplify the 3D tree geometry par@nsefrom MLS data

e To develop an improved 3D tree model from extractesst geometry

« To develop a model, that can be exported in se@&dlle format standards

e To evaluate performance and quality of the develaggorithm

1.2.2. Research questions

Scope of the research is defined by outlining soesearch questions. These research questions are
formulated based on the objectives outlined in iBectl.2.1. The following research questions
corresponding to each objective are presented.

To simplify the 3D tree geometry parameters fromSvtlata

1. How to extract the tree point from dense mixturewfan objects?

2. How to simplify the tree geometry of point clouds?

3. Which method can be used for separation of theexied tree crown?
To develop an improved 3D tree model from extrattee geometry

1. How to extract the tree geometry parameters?

2. How to develop a 3D model from extracted tree gapmparameters?




To develop the model, that can be exported in s¢@& file format standards
1. What are the different 3D file formats?
2. How to export the model in to widely used open dtad?
To evaluate the performance and quality of develggorithm
1. What is the performance of the algorithm?
2. How to evaluate quality of the model?
1.2.3. Innovation
The innovations intended in this study are:

* New approach for tree geometry simplifications frealpha shape which has not been used
thoroughly in previous methods using MLS data.

« Development of automatic algorithm from MLS poitdwds to realistic 3D tree model.
1.3.  Thesis structure

Chapter 1 Introduction: This Chapter covers motivation and problem statgpubjective, research
guestions and innovation aims to achieve duringriasearch.

Chapter 2 Literaturereview: This Chapter reviews the literature regardingprerious work related
to this research. This Section covers principlasér scanning, review of segmentation and filgerin
techniques, data reduction techniques and 3D toseling.

Chapter 3 Resear ch methodology: This Chapter is all about the development of algor for 3D
tree modelling.

Chapter 4 Implementation and results: This Chapter presents the information about thedata set
and presents the results.

Chapter 5 Performance evaluation: This Chapter includes three different aspectseofgpmance
evaluation namely tree detection rate, data reduoictite in hierarchical structure and visual anslys
of developed model.

Chapter 6 Discussion: This Chapter presents the discussion on the relstdined during research.

Chapter 7 Conclusions and recommendations: This Chapter provides final conclusions and
recommendations for future works.
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2. Literature review

The aim of this Chapter is to provide theoreticalirfdation on the content of the research. The
Chapter begins with the explanation on the primcgfl laser scanning (Section 2.1). The next Section
2.2 reviews different techniques of segmentatiodh fitering for identifying tree and non-tree urban
objects. The Section 2.3 describes different datction methods for efficient processing of data.
Then, different techniques of single tree delir@atand modelling are described in the Section 2.4.
Finally, the Section 2.5 concludes the Chapter.

2.1. Principle of laser scanning

Laser scanning is an active remote sensing tecgypolotransmits the high energy short wavelength
pulse, thus it is used in collecting the accuraterdinate of the object within its range (Fujii,0H).

The main working principal in this scanning is ramgeasurement. There are two basic approaches in
measuring distance with lasers range-finding: tofilight and triangulation In time of flight
measurement, time elapsed between the emitted jagise and reflected pulse back to the
photosensitive sensor is measured. If t is the amoltime taken by laser pulse to travel and retur
back to sensor, c is the speed of light and ddsdiktance of object which is approximately ha# th
distance travelled by the laser pulse. Followingh®aanatical formula can be used to calculate the d:

d=c*t/2 (2-1)

Precision in distance measurement is improved Ipyya@ phase shift measurement. The following
mathematical formula is used for the calculationpbfse shift between transmitted and received
signal.

r=A® /(2[1) * y/2 +y/2 *n (2-2)

WhereA® is the phase difference measured in radjais, the wave length measured in meter and n is
number of full waveform between the sensor andattgarface. To obtain the higher precision with
laser scanning, range is determined via angle me@snt instead of direct measurement. In
triangulation, two laser beams produced by eitleparate laser or formed by splitting of the single
laser beam is used. Based on the source posttiergrigle of intersection between two laser beams is
measured and finally the distance to target oliedalculated. Collected data of laser scanning is
called point cloud. Each point cloud contains thdeeensional information (X, Y, Z) and reflection
intensity value.

The first airborne platforms for terrain measuremesing laser scanning had been done in the early
1965 (Miller, 1965). Airborne laser scanning conibinwith GPS and inertial navigation system were

started in 1988 (Lindenberger, 1989). As the adearant in the development of sensors in the recent
years, collection of multiple echo and full wavefoof reflected rays is easier and accurate. The
accuracy of ALS increases up to a few centimetiallét and Bretar, 2009). Terrestrial laser

scanning (TLS) was started in late 1990’s. It isafarnative way of laser scanning which is used to
captures the 3D information of complex surfacekigh speed and often in accessible environment.
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Based on the sensor movement, there are two tyfpesrestrial laser scanning techniques namely
static and mobile laser scanning.

2.1.1. Static terrestrial laser scanning

These types of laser scanning are usually donth@®measurement of buildings, bridges and tunnel
facilities and energy infrastructures developmertie scanners used in this type of laser scanmig a

fully integrated with high quality digital camera3btained point clouds are highly dense and aceurat

Scanning is independent with weather conditions.

2.1.2. Mobile laser scanning

Mobile laser scanning (MLS) is a dynamic meanseafesstrial laser scanning. It is used to acquiee th

point cloud by means of one or several scannersnteduon a mobile platform. These mobile

platforms might be car, train or vessel. Shan aath T2008) published a comprehensive study on
current devices and specification of mobile platfoDuring the scanning, the laser beam is deflected
by a rotating mirror (scanner) across the drivingaion and the swath terrain along the driven

direction is recorded. Runtime measurement is cotediufor the calculation of distance to the surface

Figure 2-1 shows the field of view of MLS sensorbe recorded point cloud is highly dense and
complete geo referenced which has high potentidghéncorridor mapping (Barber et al., 2008), 3D

modelling of urban environment like tree, buildiagd poles (Haala et al., 2008; Ussyshkin, 2009).
The vehicle based MLS used for the data acquisitighis research is shown in Figure 2-1. The main
elements of mobile laser scanning are Differer@&S, Inertial measurement unit (IMU), Distance

measurement instrument (DMI) as Odometer, Softveauek hardware for registering and processing
data, Laser scanner(s) and/or Digital camera(spamideo camera(s).

Figure 2-1. Vehicle based mobile laser scanning (Optech, 2008)
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2.2. Review of segmentation and filtering techniques

Extraction of tree points from a dense point clau@n urban environment is still a challenging task
Efficient segmentation and filtering techniques @ssential to extract these features from high atou
of data set. In this Chapter different segmentatod filtering methods are reviewed. First, the
surface growing segmentation is introduced in ®acf.2.1. Different techniques for filtering the
ground points are described in Section 2.2.2 aad #fter filtering the urban objects for extractmn
tree point cloud are reviewed under Section 2.2.3

2.2.1. Surface growing segmentation

A comprehensive review of various segmentation riggles is done by Vosselman et al. (2004).
Among them the relevant surface growing segmemtaitio point cloud data is discussed in this
Section. Surface growing segmentation in point @oworks similarly to the region growing
segmentation in image. It is mainly the culturirfgtte surface points having similar properties. The
process is carried out in two steps. First stejudes the identification of seed surface and sei®nd
the growing of seed surface.

I dentification of seed surface

Selection of seed surface is performed by fittihg plane to the group of points and analysing the
residual values of each of them. The point belopgm a plane having residuals less than some
threshold is considered as seed surface. In thezipce of outlier, more robust methods like thetleas
square or the Hough transformation methods are tasktthe plane.

Growing of seed surface
Once the seed surface is identified, the growinthefseed surface towards the neighbourhood points
is done based on the proximity, global planaritg amooth normal vector field.

Proximity of points: The points which are within a certain distancerfrine selected seed surface are
added to the surface. 2.5 D and TIN data structaresised to identify the points on the surface.

Locally planar: For this, first the equation of enclosed planeuigh all the surface points within the
radius is determined. A candidate point is selefrtmt surface points. The selection criterion isdzh
on the orthogonal distance of a point to the plame Point within this distance is selected ifta#
neighbouring points in a plane are below some tolesvalue.

Smooth normal vector field: To implement these criteria, local surface norfoaleach point in the
point cloud is calculated. A candidate point is s#w if the angle between the normal of growing
surface and local normal of point is below someghold value.

Rabbani et al. (2006) presents the smoothnessraonsio segment the unstructured point cloud of
industrials scene. The method is based on two ,stepal surface estimation and surface growing.
Local surface normal is estimated by fitting thana@ to neighbourhood points based on the k-nearest
neighbourhood (KNN) or the fixed distance neighthmad (FDN). KNN uses K-D tree data structure
to create adjacency information of points by mamitg a list of indices for each neighbourhood
points. FDN considers a given fixed Area of Inte@gl), and selection is done within the area for
each query point. The surface growing of segmepéiformed based on the calculated norms and its
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residuals. In this phase, additional points areeddtb the segment based on the proximity and
smoothness criteria of the surface.

2.2.2. Filtering ground points

Different approaches for identification and filgi ground and no ground points in ALS datasets are
proposed in different literatures. Vosselman (200@posed a slope based filtering method for the
identification of ground points by comparing slofgesween the laser point and its neighbours. The
working principal of this algorithm is closely rédal to the erosion operator used in mathematical
morphology. A point is classified as a ground & ttalculated slopes value between a points and its
neighbourhood point is less than a predefined timles The critical step in this method is settirfg o
slope threshold, by using prior knowledge of theraie which is somewhat subjective. The
improvement is done by using progressive morphobddiilter (Zhang et al., 2003). The method
utilizes different windows size for the identifi@at of ground and no ground surface from laser
scanning data. The filtering results are satisfgcin both the urban and mountainous areas however
selection of windows size is a difficult task.

Several attempts have been made for the improveroénslope-based filter. Slope adaptive
neighbourhood method was proposed as a modificafitime slope-based filter to correct the problem
regarding the steep sloped terrain (Filin and Bfei2006). Cluster-based segmentation approach is
used for computing the features like normal veand the classification of surface based on the
similar orientation. It has improvement over thatige quality so the segment tends to be greatér wi
respect to triangulation based segmentation. Apesbased planar-fitting filtering algorithm for
data filtering and feature extraction in urbarea is presented by (Qihong, 2008). Their nutho
analyse the spatial distribution of laser poinudoThis study uses a plane fitting algorithmitg the
horizontal planes for filtering the ground pointglavertical planes for the building walls in théoan
areas. Meng, Wang et al. (2009) explore the Miifectional ground filtering (MGF) algorithm
which is sensitive to detect steep slopes agégmates the advantages of neighbourhood based and
directional scanning approaches. The major lindtatof these algorithms is on the assumption of
slope difference. Most of these slope based algaritssume that the slope difference between the
ground points to another neighbouring points aedgal. However these are abrupt in reality. The
scan line directly produces an elevation or slopefilp for each scan line. An adaptive filtering
technique for identification of ground points byliming the slope threshold of a profiler has been
proposed in Sithole and Vosselman (2001). The Boartechnique produce a slope profile for each
scan line which is useful for the identification§ ground points along the profiles. Elevation
differences along scan lines are used by (Sithude\@sselman, 2005) for the identification of grdun
and non-ground point along the scan lines. The nilgovback of these approaches is that the result i
highly influenced by the choice of filtering diremrt.

2.2.3. Urban tree point cloud detection

An urban area is a heterogeneous composition dadctbjlike tree, building, poles, vehicles etc.
Several researches have been done for the deteatibfiltering of these objects. Haala and Brenner
(1999) proposed an integrated classification apgrofom the multi spectral images and laser
altimetry data for the extraction of urban objelike building, tree and grass covered area. The
algorithm requires normalised DSM derived from tadata to get the height information of each
image pixel. The morphological filtering operatitm detect and filter urban objects was used by
(Chen et al., 2007). Their method performed weblrein many complicated objects such as large
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buildings, steep slopes, bridges, ramps, and viégetan steep slopes. However, the main limitation
of this method is every data sets, parameters ghmubkpecified on trial and error basis which Ilgads
more manual iteration.

Normalized difference vegetation index (NDVI) is@americal indicator, used by researchers to detect
the vegetation in urban environment. Lovan et 2007) detect the urban vegetation by combining
NDVI and saturation index (SI) from a high redmn aerial image and a DSM with 20 cm
resolution in an automatic way. Tao and Yasuok®Z2@sed high resolution satellite imagery and
ALS data for the detection of urban tree. The mathose digital elevation model (DEM) derived
from ALS data. There is a limitation in the caldida of NDVI value due to a number of perturbing
factors including spectral effects, atmospherie@f, clouds, soil effects etc.

Derivative approach was used to separate builditgtieee in (Morgan and Tempfli, 2000). The main
concept behind this algorithm was canopy structifréree was irregular whereas roof surface of
buildings were considered as planner. The first sgwbnd derivatives of an irregular surface should
be variable whereas the first derivatives plandgiases were either zero in flat roof case or consta
sloped roof case, and the second derivatives tfped planar surface were zero. These methods are
not free from limitations because of the small dees such as chimneys or water tanks introduce the
discontinuity in the measurement and finally leactnormal derivatives value.

Laser scanning systems have the capability to deit multiple reflections caused by the objects on
the earth’s surface. Alharthy and Bethel (2002dube difference between the first and last echo to
separate building and tree. Tovari and Vogtle (208 implemented a fuzzy logic approach based
on first and last echo differences to classify vatien. The difference is generally larger for tesel
close to zero for building measurements. HoweVegir tmethod does not work well for dense trees
area where laser pulses cannot penetrate.

Object-based point cloud analysis (OBPA) was used tiie detection of urban vegetation in
(Rutzinger et al., 2007). The presented algoritisedusurface roughness, the ratio between 3D and 2D
point density and the statistics on first and &gto occurrence within the segments for the extract

of objects. The main advantage of this method & ihdoes not require DTM calculation. Their
algorithm has limitations over heterogeneous distion of point cloud.

2.3. Data reduction methods

Operational 3D information extraction and modelliingm massive point clouds is still a matter of
research. Efficient data reduction techniques arpiired for processing the data without loosing
important information. In this Section, the relevdata reduction techniques such as thinning and 3D
alpha shape are reviewed.

2.3.1. Thinning

The idea of thinning based on triangulation is dl wstablished concept, and is more commonly
referred in the literature. This process filtersigmificant points based on the linear interpolativer

the Delaunay triangulation. Heckbert and Garlan@®{) reviewed and evaluated the strength and
weakness of simplification methods both for ternaiadels (triangulated scattered data in the plane)
and free form models (manifold surfaces represebie®D triangle meshes). They found that the

triangulated meshes had some drawbacks. These asefiroduced a significant amount of error
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during removal of points and required high compatet! cost in the order of O (N2) to O (N logN).

Later, adoptive thinning algorithm was proposed@yn et al., 2002). The implementation of the
algorithm produced fast and accurate result condp@metriangulated mesh. Mesh free thinning
algorithm which is solely based upon the geometrihe input 3D point clouds was developed by
Dyn et al (2008). The main advantage of the methasl that the topological information such as point
connectivity was not required during the thinninggess. Application of sequential 3D thinning

algorithm for medical image analysis was done ialdgyi et al., 2001). Many improvements have
been done in the thinning process. However nortbethinned datasets were free from topological
consistency and exact shape perseverance.

2.3.2. 3D alphashape

Alpha shape is a geometric concept for the shapenstruction from a dense unorganised set of
points. A linear approximation of the original sedpom an alpha shape is demarcated in (Bernardini
and Bajaj, 1997). An extension to three dimensgmailtaneously with an implementation is reported
in (Edelsbrunner and Mucke, 1992). Mathematicallye alpha shape is well defined as a
generalisation of the convex hull and sub grapBeifiunay triangulation (Cholewo and Love, 1999).
The set of finite points S and a real parametealpiia directly illustrate the alpha shape. The real
parameter alpha controls the complexity of the lolauy and leads to the family of shapes capturing
the intuitive notion of "crude" versus "fine" shapaf a point set. For sufficiently large value girea
(0—0), the alpha shape looks identical to the convdk Gu the other hand, when the alpha value is
very small ¢—0), every point might represent as the boundarptpdn alpha shape. As the value
decreases the shape shrinks and gradually formity.cker evenly distributed point-set S and an
optimal value of alpha, the-shape can extract the inner and outer @glof the polygon at the
same time, as shown in Figure 2-2.

Figure 2-2. Alpha Shapes algorithm extracting principle (CGAL, 2009)

Later on, alpha shape is broadly classified in bategories namely basic alpha shape and weighted
alpha shape. Basic alpha shape is derived fromubalatriangulation whereas weighted alpha shape
is derived from regular triangulation (Facello, 5329 In the basic alpha shape, the input pointsate

of points. For a particular value of alpha, thehalwomplex is computed as a sub complex of the
Delaunay triangulation from the set of points. Bagiven particular value of alpha, the alpha comple
contains all the surplices in the Delaunay triantah. The collection of alpha complex domain
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produces the alpha shape. The alpha shape congouabtcess is analogous to basic alpha shape in
the case of weighted alpha shapes. Here, the pwpnts are a set of weighted points. For a pdgicu
value of alpha, the weighted alpha complex is @etigs a sub complex of the regular triangulation
from the set of points.

2.4. 3D tree modelling

The extraction and separation of single tree atideigion algorithm is reviewed in Section 2.4.D, 3
modelling techniques in Section 2.4.2, texturingSeection 2.4.3 and 3D environment data structure
formats in Section 2.4.4.

2.4.1. Single tree and crown delineation algorithm

Most commonly, single tree detection and crownrggltion are based on the local maxima of the
canopy height model (CHM) (Hyyppa et al., 2001k&iten et al., 2004; Pyysalo and Hyyppa, 2002;
Solberg et al., 2006). Hyyppa et al. (2001) utdigke highest laser reflections to interpolate @llo
CHM. Watershed segmentation algorithm was usedHyydalo and Hyyppa, 2002) to extract the
single tree crown information. Adaptive method iimdividual tree detection based on CHM derived
from airborne laser scanning data was developd®itkédnen et al., 2004). In this method, Gaussian
filter was used to smooth the CHM and the heighthaef pixels was assigned as the degree of
smoothness. Later, Solberg et al.(2006) improvedGRHM with a grid method. However, the CHM
method had several drawbacks. CHM is reconstruobed the laser points by an interpolation process
that smoothes the data to some extent. The dedremanthing is directly related to tree detection
success rate in terms of false negative and pesitiurthermore, success rate of CHM will be limited
by heterogeneous situation where trees are clossmah other and smaller trees below the canopy do
not appear in the CHM.

The density of high points (DHP) from the Ad&ta to detect individual tree locations wasdus
by (Rahman and Gorte, 2008a). The DHP approactbesexd on the fact that the receiving laser echo
above a certain height has high density, whichefsrred as the tree crown centre and the density
gradually decreases toward the edge of the crowis. Method was tested in four data sets and result
showed that more than 70% of the trees were detexdgectly under different tree conditions. A
method for individual tree crown delineation andaration of undergrowth vegetation from dominant
trees is proposed in (Rahman et al., 2009). Theithod applied the DHP concept to identify the
individual tree crown. Furthermore, undergrowth etagon is filtered on the basis of tree diameter a
breast height (DBH). However, this algorithm doeswork for the invisible tree stem and significant
amount of post prospecting is required for the mmpment of over all accuracy of tree crown
delineation.

The advancement in sensor technology had madebfmssirecord full waveform of reflected laser
beams. Calibration issues of full waveform datdissussed in Wagner et al.(2006). Furthermore, they
used cross Section calculation of the waveformeteat the different type of vegetation like treed a
bushes. Reitberger et al.(2008) classified the spEries by using full waveform property of laser
data. Reitberger et al. (2009) has presented nematised cut segmentation derived from watershed
segmentation methods in full waveform data. Figi#®shows the visual representation of CHM with
local maxima of each tree. The implementation ef akgorithm has significant improvement in tree
detection. However, the total amount of full waveiodata required for the tree inventory purpose
needs to be resolved.
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Figure 2-3.CHM with local maxima and reference tree asblack lines (Reitberger et al., 2009)

2.4.2. 3D tree modelling techniques

Several research works carried out in the pasitagly inspired by the promising nature of LS data
for 3D tree modelling. Weber and Penn (1995) dgxadoa model based on plant structure. This
model accounts for two primitives namely stem agalf.| Stem were used for branching. The most
powerful aspect of this model is that parameteopabf the model is flexible and accounts for the
wide variety of the tree structures. These parametee responsible for almost every possible shape,
size, curve, number of splits, split angle, taped orientation of each primitive. Figure 2-4 shdhes
tree parameters of Weber and Penn model. Howelvermeasurement of such parameterisation is
mostly dependent on direct physical observations.

The 3D modelling of tree using different instrumanoptical image has been carried out by
Shlyakhter et al. (2001). The developed model adisgc however the process required more manual
interaction. The reconstruction of 3D tree modellirsing ALS and optical images has been proposed
by Chen et al. (2006). The modelling was completad the following intermediate steps:
prepossessing, vegetation detection and tree niugle@oarse to fine resolution strategy were used t
detect the vegetation and morphological filter waed to find the tree boundary in the digital stefa
model (DSM) produced from the ALS data. The meth@isen et al., 2006) have 80% accuracy in
tree detection and 1 m accuracy in extracted teeghh However, the fully automatic technique is
lacking for the fusion of spectral images and tpeeameters from point cloud and optical images.
More manual interaction is needed to increase ¢beracy of individual tree model.

Prior knowledge and heuristic-based approach wad @& reconstruction of realistic looking tree
in(Xu et al., 2007). Their method utilised a grapased technique to find the rough branching
structure. Furthermore, fake branches are addtwkifinal model of tree to give more realistic lamfk
the tree. Fully automatic modelling of single trigem terrestrial laser scanning data has been
implemented by Pfeifer et al.(2004). A cylindricabdelling approach was used for modelling the
branch of the tree. The accuracy of result in milire was achieved for denser part of the pointctlo

Collapsing and merging procedures in octree-grap@AMPINO) method, for point cloud
skeletonisation was proposed by Bucksch and Linelgihb (2008). Tree skeleton was derived by
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implementing octree based space division methoeirTiethod has linearity in processing of the
huge point cloud and sensitive to detect the minh#ges in object boundaries. Their method has the
limitations over a leafy tree and produces topaally inconsistent result.
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Figure 2-4. Example of multi-label sets of primitives (Weber and Penn, 1995)

Reconstruction of the tree crown using 3D alphgshaas implemented in (Xu and Harada, 2003).

Their method was the generalisation of convex hatl sub graph of Delaney triangulation. The

Construction of crown surface mesh was done by sihgahe boundary triangles based on the alpha
value. A graphical approach for modelling and eation of the tree parameter from aerial laser

scanning data was applied by Kato et al. (2009¢irTdlgorithm constructs a wrapped surface around
the crown surface of the tree and utilises radasdid functions (RBF) and iso-surfaces generation
methods for extraction of tree parameters like tiemght and crown width. Though the method is

relatively accurate and species independent, timagson of tree geometry parameter from wrapped
surface is computationally expensive.

2.4.3. Texturing

Texturing assigns the appropriate colour and detailthe model. Various contributions have been
made in the field of proper texture assigning pplec An efficient pyramid based texturing algonith
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was proposed by Heeger and Bergen (1995). Thigitdgois simple and required target image as
input texture. However, the algorithm has somethtions. The produced texture was bulky and far
from the realistic look. Volumetric approach of @astruction and rendering the tree was proposed in
(Reche-Martinez et al., 2004). Their method utdigecursive grid techniques for assigning the
texture. The entire process was efficient, andsfatiory results were obtained for sparse foliage.t
However, their method needs improvement regardedute generation techniques and opacity
estimation. Multi layered 3D tree texturing techreghas been implemented by Garcia et al. (2007).
The technique was indirect and implements realigfitning and global illumination computation, for
rendering the realistic tree.

2.4.4. 3D environment data structure formats

There are different 3D environment for the effeetiisualisation such as Google earth and 3D city
models. These different environments have diffeetgortation format. Google earth supports the
keyhole mark-up language (KML) exportation form&opgle, 2010). This KML is based on
extensible mark-up language (XML) schema and isird@rnational standard of open geospatial
consortium (OGC). The VRML is a standard file fotrexre supported by many 3D web browsers. In
this research, the model is developed in both KMdl ¥RML exportation file formats.

2.5. Conclussion

This chapter reviews the state-of-the-art prinadpénd processing of laser scanning point cloud.
Mobile laser scanning collects larger amount ofaarbata in an efficient manner. However, efficient
processing of these data is still a challenge. Thapter explores different segmentation and ifiiger
techniques available to overcome this issue. Onth@fmost common segmentation techniques is
Surface growing segmentation technique. The tecienioelps to structure the point cloud before
processing. It has two steps. First step identifiesseed surface by fitting the plane to the group
points whereas the second step performs growingeetl surface based on the proximity, global
planarity and smooth normal vectors. Regardingfiltering techniques, this chapter describes two
techniques; Slope based filtering technique ané tletection in urban environment. The first
technique is useful for determining ground and raugd points by comparing the slope between the
laser points and its neighbours. The second teakrdgtects the trees in urban environment.

The data acquired from segmentation and filteriegds to be reduced in an applicable size. For this
purpose two techniques are commonly available,nthgh and 3D alpha shapes. Thinning filters
insignificant points based on the linear interdolatver the Delaunay triangulation but the obtdine
results lack topological consistency and shapeeperance. 3D alpha shape also filters insignificant
points based on triangulation method with bettsults than the thinning. Furthermore, it produces
varieties of shapes, crude versus fine, by varthegalpha value.

This chapter further describes the 3D tree modgtithniques. Different algorithm of single tree an
crown delineation such as CHM height model, DHRyhiemodel and web form analysis of reflected
laser beams are reviewed. Furthermore, differentiatfing techniques such as Weber and Penn
model, image based model, and combination of imag® ALS data, free form cylinder model,
CAMPINO method, etc are available for the modellofg3D tree. However, the Weber and Penn
model gives better model among them. This modebkas selected for the purpose of this research.
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3. Research methodology

This Chapter provides stepwise explanation of thods applied in this research. The details of
each step of the used methodology are describtéekifollowing sub-Sections. Section 3.1 deals with
the pre-processing steps in which point cloud bgifggnto trees is extracted. Section 3.2 presemts th
tree geometry simplification and separation alponit Section 3.3 describes the tree geometry
parameter extraction. Section 3.4 explains modglliexturing and visualization process. Section 3.5
describes the performance evaluation of the algorifThe Chapter ends with a conclusion in Section
3.6. The overall approach is shown in the followfifigure 3-1.

Pre-processing Tree geometry simplification
MLS point Approximate 3D outer surface generation
cloud tree positions i (3D alpha shape)
| | J,
¥ Separation of connected tree
Selection of tree point cloud crown
(segmentation and filtering) (Local maxima & minima)
v
Tree geometry parameter
extraction
(2D enclosing Circle )
v
Performance evaluation 3D modelling
3D tree modelling
Tree detection quality (Webber and Penn
model)
Date reduction rate < Texturing
Visual i cti Development of 3D
isualThapection exportation format
(VRML,KML)

Figure 3-1. Overall methodology
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3.1. Pre-processing

Urban environments are a mixture of heterogenebjexts like poles, traffic signs, electric masks,
buildings and trees. Pre-processing is necessatgtext the tree point cloud from dense mixture of
urban objects. A flow chart describing the pre-ps®ing is shown in Figure 3-2 .

MLS point
cloud

!

Surface growing
segmentation

Y

Removal of larger
planner area

l I

No ground Ground
points points
3
Approximate
Connected co.mponent tree positions /
analysis

h 4

Selection of tree component
(Surface roughness & Point density ratio)

.

Tree point cloud

Figure 3-2. Pre-processing steps
3.2.  Input

Laser scanning point cloud and approximate treetipns were used as input data set for pre-
processing. From the laser data, 3D information(Xe Y, Z) coordinate was utilised for the further
processing. Approximate tree positions were obthimg manual digitization. It was utilised for the
identification of tree segments.

3.2.1. Surface growing segmentation

Surface growing segmentation was performed on Mbtpcloud data. The theoretical concept of
surface growing algorithm is reviewed in Chaptet.2. Implementation of this algorithm was done
using point cloud mapper (PCM) software. PCM usks$r&e, Delaunay triangulation and Octree data
structure techniques to establish relations to#ighbourhood points. In this research, 3D kd-tvas

used as neighbourhood definition. The seed surfaees generated using 3D Hough transformation.
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The extension of the seed to the neighbourhoodt peéis guided by user defined surface growing
parameters such as surface growing radius, maxidistance to the surface and the minimum
distance to the recomputed local plane. The deeelgtgorithm in PCM utilises smooth and planner
surface model to generate the surface. The plauriace model was used for segmentation.

3.2.2. Removal of larger planner area

Identical to the plane fitting algorithm proposed (Qihong, 2008) , the horizontal plane fitting
algorithm was used to remove the larger plannea. aree method for removing larger planner area
starts after the surface growing segmentation. 8\il@moving larger planner area each segment was
considered as plane. Surface normal vector of pkie was calculated. The ideal horizontal plane
was enclosed to each segmefit.is the angle between normal vector of segment tarizontal
surface was calculated as follow:

6= cos™*(71; * By ) (3-1)

Where:
71, = Normal vector

—s
Ry = Normal vector of ideal horizontal plane

Based on the appropriate threshold angle, grouddarground segment were separated.

3.2.3. Connected component analysis

The aim of connected component analysis was to emntihe near by points and to assign the
appropriate segment number. Method starts withstlection of seed point. The point which falls
inside the object is selected as seed points. @hefpoints connected to this seed point witheshise
smaller than some threshold were labelled as coedeone. This analysis comprises better
implementation for simple cases where the objesgaatively dense and well-separated from other
one. It is implemented as a simplified version loktering algorithm (Barbakh et al., 2009). However
this algorithm has two major problems. It is ratt#ficult to establish a global threshold whichnke
well in wide range of objects and in different padensities. Hence, an appropriate choice of digtan
threshold is crucial otherwise it might produceaasonable large connected components. PCM was
used for the connected component analysis. Theltbhe distance for connecting the component and
a horizontal cut-off radius for the point was ussdhe input parameters for the analysis.

3.2.4. Removal of near by tree objects
Approximate tree positions were used to selectcttiraponent which belongs to a tree. Still, there
might be some chances of small objects near bylitegoles and pedestrians. These objects were
filtered based on surface roughness and point tyeratio. In this research, Point density ratio was
calculated using the following formula:

DE = ;1\:;rc.:ga".;1'n:u~h (3'2)

Where:
LR = Point density ratio

Nts:; = Total number of points

N = Number of points present in certain height thré&sho




Point density ratio shows a promising factor ofasagion between trees and other object. Height
threshold of 0.5 m was considered. However, thidcad walls nearby tree have similar point density
as trees. This problem was solved by using themoesgs features. There are different methods for
calculation of surface roughness like standardat®n (SD) of height (Z coordinate) value, curvatur
value which shows the irregularity of the surfacéee SD of Z values and SD of plane fitting
residuals as a surface roughness was used to rahmvertical walls near to tree (Hofle et al., 2P0

3.3. Tree geometry simplification and seperation

3.3.1. Tree geometry simplification using 3D alpha shape

As mentioned in Section 2.4.2, alpha shape is tsatkrive a simplified shape from dense points.

There are basically two methods for alpha shapergéon (CGAL, 2009). One is basic alpha shape
generation from Delaunay triangulation and the oihigveighted alpha shape generation from regular
triangulation. Delaunay triangulations are basedhemon weighted point which has an empty sphere
property. On the other hand, Regular triangulai®hased on the weighted point which is sphere in
nature. Thus, regular triangulation is also reférte as weighted Delaunay triangulation. In this

research, basic alpha shape was used to simpdifiréle geometry parameters. The algorithmic details
of the steps taken to simplify tree geometry patamsere depicted in Figure 3-3.

This algorithm begins with tree point cloud as ithygut data set. The Delaunay triangulation over the
set of point was computed (Fischer, 1988). Thealpimplexes of these points are identified as the
sub complex of Delaunay triangulation. For a patéic value ofa, all simplices of Delaunay
triangulation having an empty circum-sphere witbeagd radius equal to or smaller thais included

in alpha complex. The word “empty” represents asropphere. Based on the triangulation, CGAL
provides two versions for the alpha shape geneaglenand regular mode. In general mode, alpha
complex contains the singular face of Delaunayngiidation whereas in regular mode alpha shape
removes the singular face from regular trianguratieor the range 8 k < d-1, k simplex of the alpha
complex is singular only when it is not a faceadk+1) simplex of the alpha complex (CGAL, 2009).

In this research, general mode was used for tHeapape computation because the entire points are
non weighted points. The real value of alpbh& Was assumed for the initialization and then the
computation of alpha shapes was done among thglsa ebmplexes. The varying of alpha values was
used for thinning the faces of Delaunay triangofatiAs the alpha varies from large value<{x) to
small value ¢—0), the alpha shape also varies from coarse tdl.det the geometric information
extraction, the detail shape was required. Thusingeof alpha value was done iteratively until it
produces desirable detailed shape of tree. Thesfirtlal output represents the simplified 3D alpha
shape of the tree.
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Figure 3-3. 3D alpha shape generation

3.3.2. Separation of connected tree crown

Theoretical concept behind the separation of caedeitees was reviewed earlier in Section 2.4.1. A
method based on the local maxima and local minifrreeight value was developed for the separation
of connected trees. Most of the related work feetseparation used raster based analysis for gndin
local maxima and minima. In this research, a prdgsolution for finding the local maxima and
minima directly from the point cloud is proposedhisTalgorithm starts with the connected tree crown
and approximate tree positions as input paramefeB® alpha shape of connected tree is used as an
input to improve the processing performance. Fiduuferepresents one example of the connected tree
alignment. In Figure 3-4 shows that three treesatamy, B and C are connected to each other.
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Y-axis

X-axis

Figure 3-4. Connected tree alignment

The rotation of all the connected tree points althvegx axis at certain anghewas performed using the
following formula:

cosd —sind 0O
sind cosd 0
0 0 1

R, (9) =

(3-3)

After the rotation, the Euclidian distance betwélee tree positions along the axis was calculated.
Figure 3-5 illustrates the trees after rotationtrales in x-axis. A, B and C are approximate tree
positions having coordinate values,(, z), (X, Y2, ) and (%, Vs, Z). Euclidian distance between
the trees positions A, B and B, C is representedilasnd d2 respectively along the x-axis. The
mathematical formula for the calculation Euclid@istance is follows:

o R _ 34
dy =N (XK= X))+ (V2 - 1)* (22 —Z4)° o
dX" ‘ |
" &— df — ®.
. 1 IBI |

Figure 3-5. Tree separation

“dx” be the bin size distance. Then the selectiorheflaser points was done in a small incremental
manner. The height range of each selected Sectsncalculated and stored in a memory. From the
stored height, the highest height value near toagiroximate tree positions were considered as the
local maxima and the lowest height value betweentito tree positions were considered as local
minima. The local minima value was used as thers¢ipa between the connected trees. After the
separation of connected tree, back rotation wasmeed using € to align the tree in original
position.
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3.4. Tree geometry parameters extraction

Tree geometric parameters consist of tree heigisedheight, stem diameter, crown length and width.
Figure 3-6 shows a pictorial representation of éhparameters. Several methods for extraction of
these parameters are reviewed in Chapter 2.4. Artieerg, 2D circle fitting approach in a different
height is an efficient and is used widely to estanthe tree parameters. Because of its promising
nature, we used this approach for finding the ¢r@@metry parameters. The detail of the 2D enclosing
circle approach is explained in Section 3.4.1.

| Crown Diameter ‘

>

Crown Height

| Base Height |

Figure 3-6. Tree geometry parameters

Stemn Diameter ‘

3.4.1. 2D enclosing circle algorithm

The main aim of 2D enclosing circle is to find thest enclosed circle through points. Initially,sthi
algorithm takes all the possible combination o&thpoints to make a circle. After that, it seldhts
smallest circle that contains all points. If thelits of selected circle is larger than the maximum
distance between two points, the algorithm generateircle with a centre as the midpoint between
these two points with the largest distance. Cilislecalled the best enclosed circle if it has the
minimum radius and contains the maximum numbeoaftp.

In this research, 2D enclosing circle at regulaerivel of height was enclosed thought out the tree.
Figure 3-7 shows the 2D enclosing circle enclogecegular height interval of 0.5 m. From Figure
3-7, itis clear that the radius of the enclosedl€iat steam is smaller as compared to the raditise
crown.
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Figure 3-7. 2D enclosing circle enclosed in 3D alpha shape of tree

Thus, analysing the radius of the 2D enclosedeciacld enclosed height value from bottom to top, the
required tree geometric parameters were calculafede height was calculated by subtracting

maximum and minimum height of the tree. Demarcalietween stem and crown was done based on
the high jump in radius of circle analysing fromttbm. Average diameter of enclosed circle at stem
was considered as steam diameter. Similarly, anageediameter of the enclosed circle along the
crown part was used as crown diameter.

3.4.2. Crown shape determination

Shape of the tree is represented by crown. Howdvercrown is highly irregular in nature and shape
is highly influenced by surrounding obstacles. Thasingle geometry shape can not be applied for
the representation of different type of tree crowhus, an appropriate determination of crown shape
is crucial for realistic tree modelling. There a@iferent predefined solid geometries which can be
used for the representation of (Coder, 2005). @48 shows the different solid geometry shape of
tree crown.

‘ ELONGATED
CYLINDER SPHEROID
S1 . S3

NEILOID xﬁm
S10

Figure 3-8. Two-dimensional side view of crown shape (Coder, 2005)
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For the simplification of the model, four typesabwn shapes namely conical, cylindrical, spherical
and inverse conical were considered in this rebeanrk. Classification to these shapes was done by
comparing the diameter of enclosed circle at diffétabel of crown part. Suppose ‘a’, ‘b’ and ‘céa
the diameter of the crown at different label thenown type can be determined based on the criteria
which are expressed in Table 3-1. Conical shagheotrown has larger diameter towards the bottom
part, inverse conical shape has larger diameteartbwop part of the crown, cylindrical has nearly
constant (£10%) diameters through out the crown sgpioerical shape has larger diameter at the
middle portion of the crown as compared to othetipo of the crown.

Criteria Visual representation Shape name

a<b<c b —» Conical

a>b>c b —> Inverse conica

a=b=c b ——» Cylindrical

a<b And b>c Spherical

Table 3-1 Crown type classification
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3.5. 3D tree modeling

Different approaches regarding the modelling o taee reviewed in Chapter 2.5.2. Weber and Penn
model (1995) available in plantGL (Pradal et 2009) was used for modelling purpose because this
model depends on geometric parameters which argistent and accounts for wide variety of tree
structures. Modelling parameters can be dividedointwo groups namely tree stems and their
branching structures including trunk and leaves Thnk of the tree is used as the base strucfure o
the tree and all the branches are generated frasnbtise. Figure 3-9 shows the multi-label of
primitives and branching angle used for modelling tree.

Label(

Label 1
o
yéi

Label 2
e

Label 3

L

Figure 3-9. Example of multi-label setsof primitivesadopted from (Weber and Penn, 1995)

Construction of the trunk and branches are dormesequential order, i.e. on the label basis. Tuvektr
represents label 0, major branches are labellendd1splitting from the branches adds the additional
levels and leaves are on the final level. WeberRewh (1995) claim that most of the real life ttaa

be shaped using three to four levels at the masting leaves at the last level. This model uses
standard computer graphics techniques of objeaespatations. The strength of this model is that it
requires relatively less modelling parameters &iede¢ parameters are accountable for forming almost
all possible shape, size, and number of splitf spigle, curve of stem, taper and orientation ef th
primitives. These parameters are generally obtafrmd direct physical observation of tree. Thus,
using these parameters to model produces the diesgtaape of the tree.

In this research, the geometric parameters (tréghtiebase height, stem diameter, crown length,
width and shape) extracted from 3D alpha shapet ptond was used as input values (Section 3.4).
As the number of branches, sub branches and branelnigle are crucial elements for modelling but

these parameters could not be automatically extlacseveral research were conducted in past to
calculate these parameters in forestry (Honda, ;1Kifilg and Loucks, 1978). However, none of the

relations are generic because these branchingtstescvary from tree species to tree species and
depend highly on the age of the tree as well agxternal environment. Thus, field knowledge was

used for generation of branch on the model. Totehimer of branches is one of the major missing

information for the realistic look of the tree. $hiumber was calculated using following formula:

| 2 |
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Ngranen = CD/DB (3-9)

Where:
Ngrancn = Total number of branch

CD = Crown diameter
LE = Distance between consecutive branches

Figure 3-9 shows the primary, secondary and tgrimanching angler, f andy respectively in a
clockwise direction. Table 3-2 shows the assumptibthe branching angles with respect to crown
shape of the tree. Primary branch length was guigectown shape. The sub label branch length and
its number were derived using the relationship esped in Table 3-3. Secondary branch was
generated on the primary branches whereas testiarg generated on the secondary one. Length of
secondary and tertiary branch was calculated as db4ts parental branch and number of these
branches was calculated as 75%.

Table 3-2. Crown shape and alpha

Crown shape Value ofa, B andy
Conical 45°

Spherical 80°

Cylindrical 70°

Inverse conical 135°

Table 3-3. Sub label branch parameters calculation methods

Secondary branch length 45% of primary branch fengt
Number of secondary branch  75% of total numberriofigry
number of tertiary 75 % of total number secondagnch
Tertiary branch length 45% of secondary branch

3.5.1. Texturing

Texturing of the model is crucial for the realistepresentations of 3D scenes. Different methods of
texturing and their limitations are reviewed in @&t 2.5.3. In this research, data acquisitionreés
was carried out in leaf off seasons so acquirimgattual texture from the tree was not possible. To
overcome these issues, appropriate humber of leaees generated for texturing the trees from
plantGL library (Pradal et al., 2009). While assignthe texture to the model, appropriate lightisgt
and shadow effects were taken under consideration.

3.5.2. Exporting the model in different 3D environment

Integration and exportation of the model to the elydused open standard is essential for proper
exploitation of the model. Different 3D environmaarid their exportation formats are discussed in
Section 2.5.4. To meet this requirement, virtualitg modelling language (VRML) and keyhole mark
up language (KML) formats was developed. VRML fotsnaas developed using plantGL (Pradal et
al., 2009). The model was exported and visualiseough 3D web browser. Google earth is another
popular means of 3D visualisation. However, thigimmment supports KML formats of the model.
This format was developed with the help of Goodletch up (Google, 2009).
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3.6. Conclussion

In this Chapter, an automated workflow for the niliig of tree is presented. The workflow is
modular in nature. It starts with pre-processingdétect tree point cloud from the heterogeneous
mixture of urban objects. For this purpose, firsh rvegetation areas, which are large planar regions
are removed. The remaining laser point cloud arthéun refined by checking significant point featire
such as surface roughness and density ratio pagesrieta certain 3D neighbourhood. After this, tree
point clouds are simplified by applying a 3D alptteape algorithm. Connected group of trees are
separated based on local maxima and minima of healhe. Separation of connected group of trees
is followed by the derivation of tree modelling pareters of single tree. Based on the extracted tree
geometric parameters, appropriate model of treee wenerated. For the proper integration of the
model to other 3D environment, the model was deesldan different exportation formats like VRML
and KML.

| 2 |
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4. Implementaion and results

An algorithm for 3D tree modelling has been projplosethe previous Chapter 3. This Chapter aims at
implementing of the algorithm in different casesct®n 4.1 gives a brief description of the datia se

used for the test of the methods. Section 4.2 descthe methodology applied for the extraction of

tree points from the dense mixture of the data®etn, the methodology adopted for tree geometry
simplification and separation of connected treeworcare described in Section 4.3. Section 4.4

presents the tree model developed using the tremeiey parameters extracted from alpha shapes.
The Chapter ends with concluding remarks in Seetién

4.1. Datasets and test site

Two data sets, each having different point densitg, used for the implementation of the developed
algorithm. Most of part in data set contains degigtispecies of tree. In some parts, few coniferous
species of trees are also present. More than #@8 twvere processed. The details of both datargets a
as follows:

4.1.1. Data set and test site: |

The first data set was acquired by surveying eiglimetre long track city of Enschede, The

Netherlands in 2008. The scanning was done by @ptec LYNX system (Optech, 2008) which has

two 360 rotating laser sensors mounted at the back sidbeof/ehicle orientated diagonal to each
other. The sensor setup contains minimal shadowcwsff Table 4-1 shows the manufactory
information of the sensor. Field study was alsariedrout to acquire the recent photographs of
respective trees and to derive the imperial refatiqp regarding the branch structure of the tree.
Furthermore, the acquired photographs were usethéovisual analysis of the model. Strip overview
of Enschede is shown in Figure 4-1.

Table 4-1. Manufacturer specifications of LYNX system (Optech, 2008)

Maximum range 100 m (at 20% reflectivity target)
Range precision 0.7 cm (1 sigma)

Absolute accuracy (GPY) 5.0 cm (at 100 km/h)

Scan angle 360 degree

Scan rate 150 Hz (9000 rpm)
Measurement rate 100,000 pulses/sec per sensor
Echo per pulse 4 echoes
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Figure4-1. Strip overview of Enschede (T opScan, 2007)

4.1.2. Data set and test site: Il

The second data set was obtained from EuroSDR &wtkal., 2007). The test site Espoonlahti is
located in Espoo, about 15 km west of Helsinkil&id. Mobile laser scanning data was acquired on
June 10th using the ROAMER-system along the 1W00f road environment. The scanner used
frequency of 48 Hz on both directions of streeb¢kl wise and counter clockwise) and 30 Hz on
counter clock wise for laser profiling. Details albgcanning are summarised in

Table 4-2.
Table 4-2ROAMER data of Espoonlahti (Kukko et al., 2007)
Date June 10, 2009
Laser scanner Faro Photon™ 80
Laser point measuring frequency 120 kHz
IMU frequency 100 kHz
GPS frequency 1Hz
Driving speed 30 km/h
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Profile measuring frequency 30 Hz and 48 Hz

W
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Figure 4-2. Espoonlahti test site. Left: city map of Espoo. Right: Mobile mapping data.(K ukko et al., 2007)

4.2. Pre-processing

Pre-processing algorithm was implemented using RON C++ as a programming language. Figure
4-3 shows the set of sequential process implemehigdg pre-processing. Figure 4-3 (a) is the raw
input point cloud from Enschede data set which @iosttrees along with poles, buildings, peoples and
vehicles. First, a surface growing segmentation paformed in this input dataset using PCM. These
parameters were obtained by trail and error basibtain larger planner ground segment area. Table
4-3 shows the parameters for surface growing setatien.

Table 4-3. Surface growing segmentation parametersused in point cloud mapper

Surface growing parameters Value

Surface model Planner
Surface Growing neighbourhood definition Directgiddours
Surface growing radius 0.6m
Maximum distance to surface 0.3m
Minimum distance to recomputed the location 0.15m

Figure 4-3 (b) shows the result after implementatib surface growing segmentation. It can be seen
that the larger segmented area is a planner regiter. the surface growing segmentation, the ground
and no ground points was identified by fitting tiarizontal plane to each segment. Angle threshbld o
10° and area threshold 100 m2 was used to fit theeplan

Figure 4-3 (c) represents the dataset after rergavie ground points. Connected component analysis
was done in no ground points through PCM. The patara used for this analysis through PCM are
presented in Table 4-4.

Table 4-4. Parameter sfor connected component using in point cloud
Connected component parameters Value
Maximum distance between the points 15m
Minimum number of points 10
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Figure 4.3 (d) shows the result after applicatidnconnected component analysis. Each unique
connected segment is visualized in a unique col®be approximate tree position was used as
additional input information to select the tree gmment. Further removal of the tree nearby objects
was done using surface roughness and point clonditgeatio value. Surface roughness of greater
than 0.85 and point density ratio larger than 2 uwsesd to select the vegetations. Figure 4-3 @ysh
the final output of this pre-processing. From tigeiffes, it is clear that the final out contains guoént
cloud belonging to tree.

(e)

Figure 4-3. Pre processing in data set 1,(a) I nput data set, (b) surface growing segmented data set, (c) data
set without ground, (d) connected component analysed, (€) final output of pre-processing

4.3. Tree geometry simplifications and seperation

4.3.1. Tree geometry simplifications using 3D alpha shape

Tree geometry simplification was carried out usBiy alpha shape of the tree. The algorithm for
development of alpha shape using Delaunay triatignlais explained in Chapter 3.2.1.
Implementation of this algorithm was done in C+#ngsCGAL library (CGAL, 2009). Results
obtained after executing the implementation of #igorithm are shown in Figure 4-4 and Figure 4-6
respectively.
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Max alpha value

Optimal alpha value

(C)

Figure 4-4. 3D alpha shape of tree, (a) Input tree, (b) 3D alpha shape of tree with maximum alpha value,
(c) 3D alpha shape of tree with optimal alpha value

Figure 4-4(a) is the input tree point clouds fag 8D alpha shape algorithm. It contains 23,895tpoin
Graph depicting the number of output point in 3phal shape verses alpha value is plotted in Figure
4-5. This graph shows that for the higher valualpha the number of output points is low. On the
other hand for the lower value of alpha the nundfeyutput point is high. The maximum alpha value
that can represent the basic shape of the inpaitisré.7*10'°. Figure 4-4(b) shows the result of the

shape of tree having maximum alpha value. Totalbemof point in Figure 4-4(b) is 111. As the
alpha value decreases, the number of output puinéases which leads gradually to the fine shape of
the tree. The minimum alpha value that can prodheedetail shape of the tree is considered as
optimal alpha value. Figure 4-4(c) shows the dé&filalpha shape of tree, having alpha value 0.4 and
number of output points are 2,524. Figure 4-6,af@) (c) shows input data set of connected trees.
While Figure 4-6 (b) and (d) are results after agplon of optimal alpha value in 3D alpha shape of
connected trees. Table 4sBows the number of input point, optimal alpha gand the output point

of the Figure 4-6.
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Number of output points and alpha value
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Figure 4-5. Number of output pointsVsalphavalue

Figure 4-6. 3D alpha shape of connected tree, (a) input connected tree from data set 1, (b) 3D alpha shape
of Figure4-6(a), (c) input connected treein data set 2, (d) 3D alpha shape of Figure 4-6 (c)

Table 4-5. Alpha shape parametersfor connected trees

Number of input point Optimal alpha value Number of output point

57687 0.5 1800

39663 0.9 2123
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4.3.2. Separation of connected tree

In urban areas there are some trees which are cthim nature. The separation of these connected
trees was performed on the basis of local maxintbnainima of height value as described in Section
3.3.2. The algorithm was tested in two scenariost with the two connected trees as shown in FEgur
4-6 (a) and second is the group of connected aeashown in Figure 4-6(c). 3D alpha shape of Figure
4-6 (a) which is shown in Figure 4-6 (b) was pasagdnput for the tree separation. Firstly, all the
connected points of tree were rotated toward th&is with an appropriate angle such a$. 3Bfter

that, the height range was calculated along th&ectibn in the interval of 0.5 m. Local maxima of
tree was determined by using the approximate tos#ipn. Local minima were determined between
the two local maxima. In Figure 4-7, red bar intésathe local maxima and the dark blue bar indgcate
the local minima.
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Figure 4-7. Local maxima and minima for height value
The separation was done based on the local minirhaight value. The separated points were rotated
back with an angle -30to preserve the co-ordinate value. The resultepfamated tree is shown in
Figure 4-8.

(a) (b)

Figure 4-8. Separ ated tree (a) right tree of input data (b) left treeinput data
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In a similar manner, the algorithm was tested fgr@up of connected tree shown in Figure 4-6 (c).
This group of connected tree was simplified usibgadpha shape algorithm and the output is shown
in Figure 4-6 (d). Separation was done based orotted maxima and minima of height value. In
Figure 4-9 , red bar indicates local maxima anct tdar indicates minima of the group of connected
tree. Result of separated trees is shown in figet8.
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Figure 4-9. L ocal maxima and minima of group of connected trees
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4.4, 3D tree modelling

Modelling of tree was performed by using plant detor based on Weber and Penn method available
in plantGL (Pradal et al., 2009). Modelling processrts after labelling each single tree point dlou
More than 30 trees of different age group and gsetyipes were modelled. One complete example of
3D tree modelling process is shown in Figure 4Higjure 4-11(a) shows the acquired input point
cloud of tree. This tree contains 67,696 numbengaifits. Geometric simplification of this tree was
done by producing 3D alpha shape of the tree. Algilae 0.8 produces the detail shape of the tree
having 1826 number of points. Figure 4-11 (b) isabpha shape of the input tree. 2D enclosed circle
was used to extract tree geometric parameters 3Dralpha shape of the tree. 2D circle was enclosed
at a regular sequence of tree height. Figure 4elBHows a graph of circle radius verses enclosed
height. These graphs give the visual impressioardkgg the shape of the tree.

Table 4-6 shows the extracted parameters sucheashgight, base height, stem diameter, crown
height, crown diameter and crown type of the irtpest. Here the input tree has conical type of crown
Branch information was derived based on the expeeiend field observations. Table 4-7 shows the
extracted branch information of input tree. Thiathdls of branch were assigned to model. Primary
branches were generated from tree stem. Lengtheoptimary branch was controlled by tree crown
shape. The obtained parameters were used as mpigbher and Penn model.

Table 4-6. Tree geometric parameters

Tree height 15.75m
Base height 0.75m
Crown height 15m
Stem diameter 147 m
Crown diameter 3.47m
Crown type Conical

Table4-7. Tree branch information

Total number of primary branch 20

Primary branching angle 45°

Secondary branch length 45% of primary branch femngt
Secondary Branch angle 45°

Number of secondary branch 15

Number of tertiary 15

Tertiary branch length 45% of secondary branch

First, stem of the tree was created by using tagesylinder of base diameter equal to the tree stem
diameter. Primary branches were created in the rcrarea originated from stem. Length of the

primary branch was controlled by the crown shame.dxample, given input tree has conical shape.
Thus, length of primary branch is decreasing towhadtop of the crown. Secondary branches were
created based on the primary branch and tertiarthersecondary branch. Figure 4-11(d) shows the
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developed model of the tree. Available texturedilgrin plantGL (Pradal et al., 2009) was used for
texturing purpose. Texturing of the model was dbyp@ssigning appropriate number of leaves on the
tree. Figure 4-11 (e) represents the trees afteuriag. Two different 3D file formats of the model
VRML and KML were developed. Figure 4-12 depidie teveloped 3D model exported in Google
earth.

]

Wy 311

(@)

Tree Width

(c)

(e) {d)
Figure 4-11. 3D tree modelling (a) I nput tree (b) 3D alpha shape of input tree (c) Graph of tree width
versestree height (d) Developed model (e) Textured model

Figure 4-12. 3D tree models exported in Google earth
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4.5, Conclusion

In this Chapter, the algorithm explained in Chafewas implemented on both data sets acquired
from LYNX system And ROAMER-system. First the implentation of processing algorithm was
done and the trees were detected from dense urbiauh goud. 3D alpha shape algorithm was
implemented in detected tree point cloud and gegnudttree was simplified. To preserve the detail
shape of the tree, the minimum value of alpha imdébto be the best choice. After the simplification
of tree, group of connected trees was separated lstal maxima and minima of height value. Tree
geometric parameters were extracted from singeedhgha shape by fitting the 2D enclosing circle in
a sequence of height value. Field knowledge wdisedi to derive branch information. Geometric
parameters and branch information were furtheisetll as the input parameters for Weber and Penn
model available in plantGL to model the tree. Agrate texture available in plantGL library was
used for texturing the model. The models were dgea in different 3D exportation file format such
as VRML, KML. The successful implementation of tlakgorithm in different stages validates the
usability of the developed algorithm in real cases.
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5. Performance evaluation

After processing the data set with the best sepriafitives, it is important to assess the perforosaof

the developed algorithm. This Chapter includesdtttiéferent aspects of performance evaluation. The
evaluation of tree detection rate is presented dnti® 5.1. Data reduction rate are described in
Section 5.2 and visual inspection of the modelHews1 in Section 5.3 and finally the chapter
concludes in Section 5.4.

5.1. Completeness, Correctness Assesment

To evaluate the tree detection results numericallypgeteness and correctness was ubed.this
purpose, 10 different samples from both data set® welected and number of tree in each data set
was estimated manually. The counted number ofvieeused as a reference data set. The developed
pre- processing algorithm was applied in sampla dat. Based on the result different variable like
true positive (TP), true negative (TN), false pw@sit(FP) were identified. TP is the tree which is
present in both, the extracted and the referente skt. TN is the tree which was not present in
reference data set but was extracted. FP is teeninéch is present in the reference data set binno
the extracted data set i.e. the tree which is rdigsextracted data set. False Negative (FN) idrém
which is present in the extracted data set buimthte reference data set, i.e. the tree whichrisgly
extracted as tree. Completeness (Comp) was refagetbtection rate of the tree. Correctness (Corr)
was related to how well the detected trees matth the reference data set. Mathematically it can be
derived as (Agouris et al., 2004).

Corr = TP/(TP + FP) (51
Comp = TP/ (TP + FN) (52)

Quality of the results balances the completeness @nrrectness and provides a compound
performance metric (Agouris et al., 2004):

Quality % = TP+ 100/(TP + FP 4+ FN) (53

Analysis was performed on both data sets separatety overall summary for both datasets is
presented in table.

Table5-1. Tree detection accuracy

Data set No. tree Correctness Completeness | Quality
detected (%) (%) (%)
EuroSDR 66 90 86 78

Enschede 40 93 89 85
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The completeness, correctness, quality of treectietein EuroSDR data set is 90%, 86% and 78 %
whereas 93%, 89% and 85% respectively in Enschatdéesgt. The over all quality of the algorithm is

81.5%. These results prove that the developed iligphave higher potential to detect the trees in
varying point density data set.

5.2. Data reduction rate

The goal of the developed algorithm in this redeascto follow hierarchical i.e. modular processing
steps in order to reduce the amount of points ieffity. The amount of data reduction in pre
processing and 3D alpha shape is calculated usenfptiowing formula:

DRR = (N,,, — N,y )/Nin (5-4)
Where:
DR R = Data reduction rate

N.,, = Number of input points

N, = Number of out points

Data reduction rate in pre-processing phase andlba shape was calculated using equation (5-4).
The result shows the developed algorithm reduces than 80% points during the pre pro processing
and more than 90% points during the 3D alpha shggeeration without loosing the important
information. These results speed up the furthecgssing exponentially. Figure 5-1 shows the input
and output points of pre-processing. Similarly, Bigure 5-2 shows the input point and output points
in 3D alpha shape. Both figure shows that the gaané reduced significantly.

Data reduction in pre-processing
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Figure 5-1. (Left) Datareduction in pre processing

Data reduction in 3D alpha shape
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Figure 5-2. (Right) Data reduction rate in 3D alpha shape
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5.3.  Visual inspection

This research focused on effective visual repregiems of 3D tree models from a point cloud data
set. This analysis considers the perceptual isbabd the visual interpretation of 3D tree models
and integration of the model in different 3D enwiment. The data set contain both young and old
trees having deciduous and coniferous speciesthisnSection, different typical types of modelled
trees and their series of intermediate steps wistelly compared with each other. For Enschede data
set, photographs of the respective trees were @juand used during compression, whereas,
photographs were not available in the case of HDRo8ata set.

Ideal tree has been considered as straight treg st®wn shape in fixed slid geometric shape and
regular branch structure. The developed modelliggradhm shows the potentiality to model such
type of trees. The Figure 5-3 shows the differeaodletling stage of ideal tree for visual analysis.

(d) (e)
Figure 5-3. 3D tree model (a) Photo graph of tree, (b) mobilelaser scan point cloud of tree (c) 3D alpha
shape of tree (d) 3D model of the tree (e) Textured 3D tree model
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Figure 5-3(a) is the recent photograph of a trkertan January 2010. Figure 5-3(b) is the MLS point
cloud of the tree which was acquired in Decemb@&82Qt can be noted that there is more than a year
gap between the point clouds data set and photogiap, the crown shape of photograph Figure
5-3(a) is slightly different than acquired poinvatls Figure 5-3(b) and some of the lower branches a
missing in photographs whereas it is present in Ma&. Figure 5-3(c) is the 3D alpha shape of the
input MLS data of Figure 5-3(a). In alpha shapelaied points are removed and point density is
reduced up to 90%. However, the developed modékladentical to the input point cloud. Modelling
parameters were derived from the alpha shape. Bas#ue derived modelling parameters and crown
shape, developed 3D tree model is shown in FigeB&dh An appropriate texture is assigned to the
model which is shown in Figure 5-3(e). Developed t8& model and textured model looks almost
symmetrical in shape and visually impressive wilpect to the input point clouds and 3D alpha
shape. Comparing with the photographs, the crovapesltis almost similar. The developed modelling
algorithm performs satisfactory to model these sypétrees since the relationship between steam,
branches and sub branches are in a proper ordethanel are no irregular branching structures
present.

e _ 5
Figure5-4. 3D tree model (a) Photo graph of tree, (b) mobile laser scan point cloud of tree(c) 3D alpha
shape of tree (d) 3D model of thetree (€) Textured 3D tree model
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Modelling steps and their step wise visual analg§ianother typical tree is shown in Figure 5-4eTh
photograph of the tree is shown in Figure 5-4K&gure 5-4(b) is the acquired MLS point cloud af th
tree. Comparing with the photograph and acquiradtpdoud, the point cloud represents almost all
the major structures however there is some datangdge acquired point cloud. It might be because o
the thinner branches. Figure 5-4(c) is the alplzgostof the tree. 3D alpha shape is the simplificati

of input tree geometry. Input point cloud and 3phal shape look symmetric in shape. Figure 5-4(d)
is the developed model of the tree. The developedetnis based on the modelling parameters and
crown shape extracted from alpha shape of the $tegpe of crown is derived from alpha shape. Thus,
the model looks identical to alpha shape and icjatst set. Figure 5-4(d) is the developed model and
Figure 5-4(e) is the textured model. Compared ¢oréal photographs, developed models preserve the
crown shape. However, the developed branch strestpartially match with photograph because the
model uses the set of general rule for generatirgkranch based on crown shape. Visually in
photograph, there are three dominant primary bresmiohiginated from stem and all the secondary and
tertiary branches belong to these main branchesieMer the developed model is a mathematical
surface and branch generations were guided by timeglelile and crown shape. Number of branch is
derived based on the length of crown shape. P&atlguin this model 15 primary branches are
present and all the secondary and tertiary brarioblesiged to these primary branches.

(c} (d)

Figure 5-5. 3Dtree model (a) mobile laser scan point cloud of tree (b) 3D alpha shape of tree(c) 3D model
of thetree (d) Textured 3D tree model
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Figure 5-5 shows the modelling steps of the Euro$IaR set. Figure 5-5(a) is the input MLS point
cloud. Figure 5-5(b) is the 3D alpha shape of tipaii point cloud. In this case also, the develdgiad
alpha shape is symmetric with the input data sgurg 5-5 (c) is the developed model of the tree.
Figure 5-5(d) is the visualization of the modekafassigning the texture. Comparing the models with
the input point cloud and 3D alpha shape, the crelape is identical whereas there is a difference i
tree stem. It is inclined in the input however st straight in the model. So, in those cases, the
developed modelling algorithm partially matcheshwilhe reality because the developed modelling
algorithm uses the assumption of straight stearargdion.

Modelling steps of comparatively old age trees sirewn in Figure 5-6. Figure 5-6 (a) is the input
point clods of the tree. Figure 5-6 (b) is the 3pha shape of the input tree. Similar to previoases;
here also the alpha shape preserves outer poindhoushape of the input tree point clouds.

(c) (d)
Figure 5-6. 3D tree modelling (a) mobile laser scan point cloud of tree (b) 3D alpha shape of tree (c) 3D
model of thetree (d) Textured 3D tree model

Figure 5-6 (c) and Figure 5-6 (d) is the developextlel and textured model of the tree. In this case,
the crown shape of the developed model matchemlawith the input point clouds and 3D alpha
shape. The developed modelling algorithm consider ftype of crown shape namely conical,
cylindrical and inverse conical and spherical hogvethe input tree has the bell shape crown shape.
During the modelling, these bell shape consideredsgherical so the developed model have the
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spherical crown shape which looks different thaalitye Branch structure of the models and the input
trees are different. The model has longer branch#se middle whereas the input tree has the longer
branches at the bottom. The reason for that isgherical crown has larger radius at the centre.

5.4, Conclussion

In this Chapter, tree detection, data reductioa eeid visual inspections were carried out to evalua
the performance of the developed algorithm. AcauiEctree detection was examined by calculating
the completeness, correctness and overall qualiyweas obtained 93%, 89% and 85% for Enschede
data set and 90%, 86% and 78 % for EuroSDR dataespectively. The over all quality of the
algorithm was 81.5%. These results prove that éveldped algorithm have higher potential to detect
the trees in varying point density data set. Dat@uction rate of the pre-processing and 3D alpha
shape was calculated. The result shows the dewkBigerithm reduces more than 80% points during
the pre pro processing and more than 90% pointsiglihe 3D alpha shape generation without
loosing the important information. The visual arséyof the model shows that the model matches
almost perfectly with ideal tree having straigletetistem, crown shape in fixed solid geometric shape
and regular branch structure. For the irregulasréhe developed model matches partially.
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6. Discussion

This Chapter presents the discussion on the resahined during research. The discussion is
presented in relation to input data set, appliggbrthms and obtained results. Discussion of tree
detection in an urban environment is presenteceiti@ 6.1, the tree geometric simplification using
3D alpha shape in Section 6.2, separation of cdaaddcees in Section 6.3, tree geometric parameter
extraction in Section 6.4 and 3D tree modelling .ib.

6.1. Tree detection

A modular pre-processing approach was applied teaeixthe tree points from the heterogeneous

urban objects. The modular approach was able taceethe points in further analysis. The advantage
of modular approach was step wise point reductidichvleads in faster processing of points. The

angle and area threshold of the fitted horizontah@ segment was identified as ground points. The
angle between the normal vector of segment and alavfifitted plane, and segment area was used as
the decision parameters to fit the plane. The angie used due to the sensitivity and importance in
differentiating surfaces. The area on the otherdhaated as constraint to reduce the number of
iteration because the planner segment has larger &urface roughness and density ratio of points
were used to differentiate between the trees andinee objects. The trees has highly scattered poin

orientation thus leading to higher surface roughres compared to non tree points. As such, the
surface roughness in Z direction provided with dgad deviation which was used to remove the wall

and other objects near the tree. The accuracyeefdetection was satisfactory in an over all urban

areas however it dropped down in cases with businelssmall trees because of similar surface

roughness and point density ratio.

6.2. Tree geometry simplification

Tree geometry simplification was obtained throubk tpplication of 3D alpha shape algorithm
described in Chapter 3.2.1. This algorithm is dblereserve the outer shape of high vegetation even
in leaf on condition. This is an advantage compaoeskeletonising and direct branch reconstructing
approaches which need a clear representation obridwech structures (Bucksch and Lindenbergh,
2008). Here, the proposed method is independeinterhal tree structure. Data reduction rate ofaip
90% is achieved which makes more efficient furghrexcessing of 3D models.

6.3. Separation of connected trees

Method based on local maxima and minima of heighluer from MLS data was developed for
separation of the urban connected trees as deddnilfghapter 3.2.2. The other methods however, use
raster based analysis that involves lots of elemathodels such as DSM, nDSM , CHM for finding
local minima and maxima (Hyyppa et al., 2001; Sagjbet al., 2006). Here, proposed method
pragmatically finds the local maxima and minimanfréhe point cloud. Where a local minima of
height value is the region of separation for cotetrees. The method produces satisfactory rasult
cases with single minimum value, and produces pesult where dense trees with many minimum
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values are present. The method is robust in urlbaasawhere trees are planted in sequences as
compared to forest where trees occurrence is random

6.4. Tree parameters extraction

The method for tree parameter extraction such e leight, base height, stem diameter, crown
length, width and crown shape was described in @n&3.1. The extraction of parameter was based
2D enclosed circle algorithm. 3D alpha shape wasl Uer determining the best circle instead of
original tree point clouds. 3D alpha shape is ap#fiad geometry of original tree and have
comparatively 90% reduced points representing thentary, whereby it reduces the number of
iteration significantly and improves the accuraéyree width. Based on the height, radius, and tota
number of enclosed circle the tree geometry pammsieand shape of crown were estimated
automatically. This method is simple and helpfuletdract tree geometry in an automatic manner.
However, Irregular branching structure and curviesnsof the tree influenced the estimation of 2D
enclosed circle which might as a result affectabeuracy of tree geometry parameters.

6.5. 3D tree modelling

The automated approach in modelling, rendering devklopment of different 3D compatible file
format forms the foundation of the method. Thisvides the transferability of the model to different
3D environments. The visual analysis of the modews that the model matches almost perfectly
with the tree in reality having straight tree stéixed solid geometric crown shape and regular ¢han
structure. However, the model matches partiallyiri@gular trees because of the assumptions such as
straight tree stem, dichotomous branching systesircemwn shape branch generation techniques.
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7. Conclusion and recommendation

7.1. Conclusions

The main objective of this research is to developadistic 3D tree model from MLS data in an
automatic manner. Based on the obtained resultsliandssions, following conclusions are drawn:

* The study revealed that the proposed workflow i @b detect the tree in a dense urban
environment. Surface roughness and point dendity isaa significant feature to separate the
tree and non tree objects.

« 3D alpha shape algorithm is useful to simplify treee geometry. This method is independent
to internal tree structure and is able to derivdaitleouter shape of high vegetation.
Furthermore, data reduction rate is significant thakes efficient further processing of 3D
modelling.

e Separation of connected tree crown was achieved foral minima of height value. The
method is operable in point cloud and there is eednto derive raster models like DSM,
nDSM, and CHM. The performance of the separatigoréghm works well when there is a
single minima height value.

+ 2D enclosed circle algorithm is useful to derive tree parameters such as tree height, base
height, stem diameter, crown length, width and erelape. Input of 3D alpha shape reduces
the number of iteration significantly to find thedt enclosed circle and improves the accuracy
of tree width because points represent the outendery of tree.

* Weber and Penn method is useful to model realistie through extracted tree geometric
parameters. Texturing the model gives the realigtoal impression. Accuracy of the model
depends on the input tree geometric parameters.

¢ Exportation of the model in 3D file format such\&BML and KML is achieved. These file
formats add efficient scalability of the model iffetent 3D environments.

» Performance of the workflow is evaluated in termdree detection and data reduction rate.
The overall quality of tree detection is more t180%. The result shows that the developed
modular structure of workflow reduces more than §¥8ints during the pre-processing and
more than 90% points during the 3D alpha shaperggoe without loosing the important
information. This study concludes that the presemterkflow is applicable for large data set
of varying point density.
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7.2.

Recommendations

The following are the recommendations drawn fottferr research:

Separation of bushes and trees in dense urbansame&investigated yet. As the both objects
have same point features such as surface roughndssoint density ratio. Further advanced
separation techniques should be explored to septrase objects.

Separation of connected trees through local maxanmdh minima of height value produces
poor result when there are tree having same haighno clear minima value present. Further
improvement is required for better results.

In this research four crown types are consideredriodelling. However these types are not
sufficient to represent all kinds of tree. Furtbensideration of crown shape is recommended
for wide range of coverage.

Weber and Penn method produces the model of tréeghatraight tree stem, crown shape in
fixed slid geometric shape and regular branch &irac However, this method has limitation

over the curved stem and irregular branch strustufFeirther research is recommended to
model irregular shape tree.

Visually attractive models and portable file sizeeissential for efficient integration of the
model to other 3D environment. To address thesesésproperly, further exploration towards
improved approach of texturing and compressionrtiegle are recommended.
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