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Abstract 

 
Increasing availability of large mixed archives of remotely sensed data have motivated their use in 
time series analysis in geographic phenomena. However, this increase requires appropriate image 
mining method as well as algorithms in which uncertainty inherent in these datasets is explicitly 
stated. In this study object oriented image analysis with subsequent fuzzy-rule based classification 
have been used to extract meaningful information about uncertain lake extent from a series of images 
acquired at irregular time interval by ASTER and ETM+ sensors between 1999 and 2009. The method 
involves transforming a discrete image into homogeneous regions that correspond to (part of) real 
world phenomenon through the process of segmentation. The multiresolution segmentation algorithm 
was used to generate a network of segments technically known as image objects. The algorithm 
applies optimization procedure that locally minimizes average heterogeneity of resulting image 
objects for a given resolution. 
 
Fuzzy object-based classification was used in this study in which membership function values were 
determined based on various features of image objects. Each classified object was attributed with a 
membership function value expressing its uncertainty. Since the lake extent was determined by the 
total number individual objects, the weighted average membership was determined to express 
uncertainty in lake extent at a moment in time. Accuracy assessment of the resulting classes was 
evaluated by determining the class stability in which the least and best classified image object of that 
class was retrieved. 
 
Lake extent time series was performed using linear regression modelling. Least squares method was 
used to estimate the best fit line representing the trend in lake extent. A combination of observations 
from the two sensors was perfomed after evaluating how strongly they are linearly related. The 
correlation coefficient of 0.71 was obtained revealing that the two sensors can be combined to obtain 
required number of observations for time series analysis in uncertain lake extent.  
 
While analysing time series in lake extent, 97% of variation in the observations was well modelled by 
the prediction line during rainy season, 90% during dry season and 91% in all seasons. However, 
trend analysis in lake extent is complex because of wetlands with dominant vegetation whose size also 
varies with seasons. It is also difficulty due to natural and unpredictable water level fluctuations. With 
these preliminary results of time series analysis using remotely sensed data from mixed archives at 
irregular time interval, it is possible to study various geographic phenomena whose speed of change 
requires large number of observations for their detection.   
 
Key words: Lake extent, uncertainty, object-oriented image analysis, multiresolution segmentation, 
fuzzy object-based classification, time series analysis 
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1. Introduction 

1.1. Introduction 

Sustainable use of available natural or artificial resources in a country is an important aspect towards 
restoring these resources. However, the sustainability of the resources requires detailed geo-
information for proper planning and management. For centuries, ground surveys and aerial 
photographs have been used to collect detailed geo-information to characterise selected resources. 
Nevertheless, these methods are time- consuming and expensive since they require some investment 
and resources. In addition, these traditional survey methods were limited both in space and time thus 
limiting the monitoring activities. In space, the methods are limited by inaccessibility of some areas 
which results into improper sampling strategy when taking measurements while in time domain they 
are constrained by lack of enough capital (mostly less developed countries) to collect data that can be 
used to analyse trend of changing of resources of interest. Despite the limitations in these methods of 
surveying, they are considered crucial in providing geo-information that supports local resource 
management [11].  
 
For the past few decades, earth observation (EO) technologies provide synoptic data at low or no cost, 
at refined spatial, spectral and temporal scales [6]. This advance in surveying technology has greatly 
mitigated constraints that hinder the performance of traditional surveys in a number of ways: 
provision of synoptic data at a point in time and over time regardless of intervisibility and 
accessibility, use of various visual characteristics of geographic objects such as colour, texture, shape 
and contextual information. Thus, this technology has been widely used in landcover/use 
inventorying, assessing and managing at national, regional and global levels [28]. However, the 
problem is how to extract meaningful information from these increasingly expanding mixed archives 
of remotely sensed data while quantifying inherent uncertainty in geographic phenomena. In addition 
to this problem, some of geographic phenomena require large number of observations for their 
detection due to the high speed of change in space and time which again limits the use of single 
sensor/platform combination observations. This again may require combining different 
sensor/platforms as a means of increasing the number of required observations necessary for change 
detection. 

1.2. Background and problem statement 

Increasing availability of remotely sensed data at low or no cost, at finer spatial, spectral and temporal 
resolutions has greatly raised many questions about applications of these data such as monitoring 
forest fires [49], flooding lakes [42] and dynamics in coastal landscape units [44]. However, many 
environmental processes occur at high speed which again requires an increased number of 
observations so as to track temporal patterns within geographic phenomena. In this context we may 
think of combining different measurements from different sources in the same time span. This will 
reduce uncertainty when modelling geographic phenomena of interest over time.  
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The aim of this study is to model the change in lake extent and its uncertainty from multiple sensors. 
The approach is to start from the definition of lake extent to identify what causes uncertainty in lake 
extent. Based on the lake definition as a large inland waterbody occupying a basin with no continuity 
to the sea or ocean [35], it is evident that the spatial extent of the lake is defined by the boundary 
points at which water interacts with land. Therefore, the lake extent is determined by the presence of 
water at the boundary of the lake. In most cases the lake boundary points are uncertain due to various 
environmental factors such as wind and water currents causing horizontal in- and outflow of water 
and other factors such as climate change or human influence. Therefore, what is observed at one time 
cannot be observed at another time thus causing uncertainty in identifying these points. 
 
Depending on the history of formation of the lakes which determines the geology of the lake 
boundary, some of the areas fringing lakes turn into bogs, marshes and swamps related growth of 
vegetation. With time these areas no longer appear as part of lake, as vegetation become dominant and 
changes their characteristics. Since 1971 some of these areas have been recognised as wetlands of 
international importance by the international treaty for wise use of wetlands of international 
importance (RAMSAR) [29]. These areas again change with time particularly during rainy season 
when they are submerged. Thus, when observed at that time, they can be classified as part of lake 
therefore complicating the definition of the lake extent. 
 
It is possible to argue that lake extent is larger in the rainy season than in the dry season. This is 
obvious since during rainy season fringing shoreline vegetation is submerged although it will depend 
on the type of vegetation and amount of rainfall. In contrast, the size of the lake will be small during 
dry season as water retreats towards the centre of the lake. Therefore, seasonality in mapping and 
monitoring of these important landscape features is of great importance for identifying underlying 
trend over time. 
 
Remote sensing technology has been a major source of geo-information for many applications. The 
full usage of information contained in remotely sensed data requires appropriate tools that handle 
spatial relationships of patterns discernable on an image [30]. However, many applications rely on 
classification algorithms that were developed in the 1970’s  where a single pixel is class labelled in a 
multi-dimensional feature space [7]. These algorithms were developed based on signal processing 
concepts which cannot model the complex nature of real world objects. The development trend in 
classification algorithms shows that soft classifiers are developed to account for uncertainty inherent 
in remotely sensed data by incorporating fuzzy logic concepts [5, 51] developed in 1980’s [52]. 
Despite this development real world objects relations are not modelled as these algorithms apply on 
pixel basis. 
 
Recently, data mining methods for extracting meaningful information from large sets of observations 
with emphasis on uncertain objects are proposed [6, 41-42]. However, as a rule of thumb, proper 
selection of classification algorithm depends on understanding of the process to be modelled [41]. The 
knowledge about the phenomena to be modelled and monitored will lead to proper selection of a 
suitable dataset for that application as each dataset is collected for a particular application and has its 
own inherent uncertainty. In this study remotely sensed data from two sensors were used to analyze 
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trend in lake extent between 1999 and 2009. The datasets were selected on the basis of their similar 
characteristics. 
 
In remote sensing, at a single point in time of observation, uncertainty depends on spatial resolution, 
spectral resolution and the definition of the geographic phenomenon under study [18, 41, 43]. 
Looking at the spatial resolution, the pixel itself contains uncertainty in location.  The same object can 
appear different in size and shape, in consecutive images, if the pixels of both images are not recorded 
over the same areas of the Earth’s surface. This problem has been addressed by Openshaw as a 
Modifiable Area Unit Problem (MAUP) [36]. In addition, the digital number recorded in a pixel 
contains uncertainty originating from ambiguity due to point spread function (PSF) of a sensor [17] 
and from distortions between object and the sensor or between source of illumination, object and 
sensor [6, 43]. However, there is also uncertainty in the geographic phenomenon to be modelled. 
Because of spatial resolution problem, objects may have crisp boundaries in reality but in images they 
are represented as vague objects and vice versa; this depends on the relative position of the object 
with respect to the sensor. Furthermore, there exists uncertainty due to sampling scheme when 
classifying images, since the grouping of pixels belonging to the same object involves subjective 
decision due to lack of spatial support to describe real world objects.  
 
Since large sets of images are analysed together in image mining studies, uncertainty may arise from 
co-registration of the images, from uncontrollable differences in atmospheric parameters and 
illumination and from the temporal resolution of the observations, compared to the speed of the 
process [6]. Thus, conceptual understanding of different types and possible sources of uncertainty in 
image mining methods enables proper selection of remotely sensed data and classification algorithms 
incorporating models of uncertainty. 

1.3. Research objectives  

The overall objective of this research is to model the change and uncertainty in lake extent on series 
of remotely sensed images from multiple sensors. To achieve this broader objective, the following 
specific objectives should be achieved: 

1. To estimate  lake extent and its uncertainty at a point in time 

2. To estimate lake extent and its uncertainty over time 

3. To explore the impact of three sources of uncertainty in lake extent (object definition, data 
and model) 
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1.3.1. Research questions 

Table 1.1 shows questions to be answered in order to achieve the aforementioned specific objectives 
 
Table 1.1 Research objectives and questions 

Research objective  Research questions 
To estimate lake extent and its uncertainty at a point in 
time  

1. How is the lake defined? 
2. How should “lake extent” be 

defined 
3. What is uncertainty in lake extent? 

To estimate lake extent and its uncertainty over time 4. How does the lake extent change 
over time? 

5. What is uncertainty in lake extent 
over time? 

6. Are there time series patterns in 
lake extent? 

To explore the impact of three sources of uncertainty in 
lake extent (object definition, data and classification) 

7. Which temporal resolution is 
appropriate for studying temporal 
patterns in lake extent? 

8. What are the key data issues 
(MAUP, temporal resolution and 
spectral resolution) influencing the 
monitoring of change in lake 
extent? 

1.4. Inovation of this research  

The novelty of this research is to model changes in lake extent and its uncertainty from a series of 
remotely sensed data from multiple sensors. 

1.5. Thesis structure 

This report comprises seven chapters. Chapter 1 introduces the problem to be solved through 
answering the posed research questions. Chapter 2 reviews the definition of the lake and the concept 
of lake extent is introduced. In addition, different sources of uncertainty in lake extent are identified 
in this chapter. Different approaches of handling uncertainty in geographic phenomena are also 
reviewed. Chapter 3 describes the case study area and datasets used in this study. It further describes 
the methods used to perform geometric correction of images. Chapter 4 explains the procedures 
followed in image analysis with subsequent classification. Chapter 5 presents the results of object-
oriented image analysis and accuracy assessment methods used to test the reliability of image objects 
classified as water summing up to a total size of the lake. Chapter 6 explains procedures followed to 
perform lake extent time series analysis. Chapter 7 presents the discussion and conclusion based on 
the results. It ends up with some recommendations for further research based on the methods used in 
this research.  
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1.6. Research approach 

 
Figure 1.1 Research methodology flow chart 
 
Figure 1.1 summarises procedures followed in this research. The first consideration was to review the 
definition of the lake in order to understand the lake extent while identifying sources of uncertainty in 
lake extent. The methods part briefly shows datasets and methods adopted to analyze images and 
quantification of uncertainty inherent in datasets. Lake extent time series part comprises methods used 
to estimate trend in lake extent using observations from two sensors. 
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2. Literature review 

2.1. Introduction 

This chapter reviews important concepts related to sources of uncertainty in geographical phenomena 
in general and sources of uncertainty in lake extent in particular.  

2.2. Uncertainty in geo-spatial objects 

Many monitoring activities of the environmental processes deal with phenomena that are uncertain. 
Their spatial extents are difficult to identify and their delineation depends on their thematic certainty 
[32]. For clearly defined objects, monitoring is not difficult as their geometric boundary points can 
easily be tracked over time. An object is considered vague and fuzzy if it cannot be precisely defined 
thematically and has transition zones at the boundary [42]. Mapping these objects requires a 
communicative capability that reflects the imprecise nature of a given geographical phenomenon. 
Traditionally, the mapping has been done using land surveying techniques and photogrammetry. 
However, these methods are limited in space and time to allow monitoring of changes that take place 
in these objects. This research proposes a new approach for handling uncertainty within the lake 
extent trends. 

2.3. Uncertainty in lake extent 

Definition of lake extent depends largely on the definition of the lake itself. However, I can define the 
lake extent as boundary points to which lake water can occupy. Table 2.1 summarises some of the 
concepts about the lake based on criteria as indicated in column 3 of the table. In this study the 
wetland understanding was of great importance as it occupies position between water and land [12]. 
At times this area can be classified as part of the lake while at another time as land thus complicating 
the definition of the lake extent especially when its monitoring for change detection is required. The 
classification as lake or water will again depend on the seasons when the observation was done. Apart 
from seasons, there are other explanatory variables of the extent of the lake such as wind that causes 
both vertical and horizontal water movement and other geomorphologic processes.  
 
Many lakes are fringed by wetlands colonised by sub merged, deep-rooted and floating vegetation. 
Thus, the availability of these wetlands with variety of ecological units leads to vague definition of 
spatial extent of water (lake) at one moment in time. In addition, the problem becomes worse when 
monitoring activities to track changes in lake extent are required. 
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Table 2.1 Various definitions of a lake and wetland 
Definition  Author Criteria 
A lake is a body of standing water 
occupying a basin and lacking 
continuity with the sea. 

Forel [20] in 
O’Sullivan and 
Reynolds [35] 

§ Standing water in a basin 
§ No water outlet 

A typical lake is deep enough for most 
of the bottom to be free of the rooted 
vegetation and is permanent  

Bayly and Williams 
[3] 

§ Deep and permanent water 
§ Free of deep rooted 

vegetation 
 

A wetland is  an area of marsh, fen, 
peatland or water, whether natural or 
artificial, permanent or temporary, 
with water that is static or flowing, 
fresh, brackish or salt, including areas 
of marine water the depth of which at 
low tide does not exceed six metres.” 

Matthews [29] § Permanent or temporary 
waterlogged areas 

§ Water depth < 6 meters 
 
 

The term ‘wetlands’ groups together a 
wide range of inland, coastal and 
marine habitats which share a number 
of common features.  

Dugan [15] § Inland ecological habitats  
§ Coastal and marine habitats 

The term ‘wetland’ is defined as 
temporarily or permanently wet 
ecosystems dominated by emergent 
vegetation 

Harper D. M., et al 
[23] 

§ Temporary or permanent wet 
ecosystems 

§ Dorminant emergent 
vegetation 

 
 

 

2.3.1. Wetlands 

Wetlands are areas where there is either permanent or seasonal water associated with life of animals 
and plants and they  occupy transition zones between land and water [12]. These areas exhibit both 
acquatic and terrestrial characteristics depending on seasons and other external influences such as 
wind and water currents. During rainy season, high water mark can be reached while water level is 
also possible to fall even below the low water mark. Therefore, water level observed at one moment in 
time can be different if observed at another time depending on the speed of water level fluctuation. 
Figure 2.1 shows the planimetric view of the wetland. During rainy season, the spatial extent of the 
lake will include (parts of) wetlands while during dry season the lake extent will exclude the wetland 
areas. This again will depend on the type of vegetation colonizing the wetland as well as the slope of 
the lake bed.  
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Figure 2.1 Wetland occupy transition zone between water and land (Source : [12]) 
 
Detailed inventory of wetlands of international importance has been a global agenda [16, 21, 29]. 
Although a detailed inventory of these wetlands has been prepared, less effort has been made to 
classify them as they depend on geographic latitude. The classification problem of wetland areas is 
due to their indeterminate nature especially where they are formed around large water bodies such as 
lakes, oceans, seas and rivers.  

2.3.2. Lake extent concept 

The lake can be defined as a large body of standing water localised to the basin, permanent and 
lacking continuity to the sea or ocean, deep enough for most of the bottom to be free of the deep 
rooted vegetation [3, 20, 35]. In the view of the wetland definition, majority of the lakes are likely to 
be surrounded by wetlands since the boundary points of the lake are interacting with land. However, 
the prevalence of the wetlands will depend on the nature of rocks and general slope of the lake basin. 
Figure 2.2 represents the situation that exists at the boundary of the lake. The spatial extent of the lake 
(defined by water-horizontal extension) at one moment in time depends on the state of shoreline. 
Some shorelines are ‘open’ while others are vegetated. Open shore in this context implies areas where 
at any moment in time water can clearly be discriminated from its background. For vegetated shore, it 
is difficult to discriminate water from vegetation especially where vegetation is not uniform 
throughout the lake boundary. Therefore, an appropriate strategy to map these areas is required so as 
to minimize the existing uncertainty. 
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Figure 2.2  Lake extent conceptual model 
 

2.4. Modelling activities  using remotely sensed data 

Over time, remote sensing technology has been used in monitoring activities of complex 
environmental processes such as forest fires [49] seasonal expanding lakes [42]  and dynamics of 
coastal landscape features [44]. Full usage of information contained in remotely sensed data requires 
appropriate algorithms that incorporate models of uncertainty. Various models of uncertainty are well 
documented [18]. Although different techniques are well developed with sophisticated variations such 
as soft classifiers, sub-pixel classifiers and spectral un-mixing techniques, it is believed that they do 
not make use of real world object semantics such as shapes, size, orientation and texture. Recently, 
advanced image analysis algorithms have been developed. Markov random field (MRF) based 
classification is currently used in super resolution mapping of land cover[45-46]. Its suitability has 
been evaluated and it seems to provide promising results as it incorporates contextual information 
through the use of neighbourhoods [22]. However, the method is pixel based approach and does not 
include real world object semantics such as shape, size and spatial relationship of objects. Object-
oriented image analysis is another advanced image analysis with subsequent classification approach in 
which various real world object features are considered during information extraction. With 
increasing availability of high-resolution satellite imagery, the use of spaceborne digital data the need 
for context-based algorithms and for object -oriented image processing are increasing as well. 
Recently available commercial products reflect this demand [14].  

2.5. Sources of uncertainty in geographic objects 

This section provides an overview of possible sources of uncertainty in geospatial objects. It further 
highlights possible approaches of handling them during image processing and subsequent modelling 
activities. 

2.5.1. Uncertainty during image acquisition 

Despite increasing the spatial resolution of satellite sensors, the uncertainty in locating geographic 
objects remains because of mixed land cover classes in an image. Due to pixel problem in location, 
some objects may appear vague on an image while in reality they are sharply defined. The problem 
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becomes serious when an object has transition zones at the boundary. On a fine resolution image, 
various objects with different meanings can be identified although it is the same object thus requiring 
appropriate functionalities for image analysis such as those found in Geographical Information 
Systems (GIS) [7].Looking at the spectral characteristics of satellite sensors, fine resolution sensors 
are limited in spectral range. Because of limitation in spectral coverage on a continuous 
electromagnetic spectrum, a single object may contain different patterns that can be classified as a 
different object. Therefore, appropriate sampling strategy to identify patterns and testing their 
correlation is required before land cover class labelling is performed. In addition, some of channels 
within a particular spectral range are highly affected by the atmospheric influence as the 
electromagnetic energy travels from the sun to the target on the earth’s surface and reflected to the 
sensor [6, 41]. Thus, it is of value to examine the spectral dimension before image analysis in detail 
since the choice of spectral bands for a particular sensor significantly determines the information that 
can be extracted from the data for a particular application especially when multispectral data is used 
[38].  

2.5.2. Uncertainty during image pre-processing 

The first step in image analysis is to relate image coordinates to ground coordinate system. Various   
ground coordinate systems ranging from national to global level exist. The importance of relating 
these coordinate systems is to be able to compare patterns discernable on an image with existing GIS 
datasets so as to minimize uncertainty during classification. For better results, accurate GIS datasets 
are required such as topographical maps that were obtained using very accurate methods such as land 
surveying and photogrammetry. The problem arises when multiple sensors are integrated to optimize 
information for better modelling. Up-scaling and down-scaling of images from different sensors is a 
usual approach for fusing them with subsequent co-registration. However, this approach can result in 
loss of information as each sensor has its own resolving power and the scaling process is subjective 
based on the intended application [38]. For is instance, one may think of fussing Landsat7 Enhanced 
Thematic Mapper Plus(Landsat7 ETM+) data with Terra Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (Terra ASTER) so as to optimize derived information. The decision 
depends on operator’s interest. This can also affect information especially when mapping geographic 
phenomenona that are indeterminate in nature such as lake extent. In this case the idea could be to 
handle each data set separately and quantify inherent uncertainty and test the correlation of the results 
through statistical methods before fusion. 

2.5.3. Uncertainty during modelling and monitoring 

While the concept of data fusion is not new, the emergence of sensors with finer spatial and spectral 
resolution providing data routinely on regular basis in time, advanced image analysis techniques and 
improved processing hardware make real time fusion of data possible [26]. However, depending on 
the speed of the process to be modelled, a single sensor can be limited in time and thus identification 
of changes that happen when observation is impossible. To bridge the gap, different sensors that 
operate at irregular basis and in the same orbit can be combined for optimal information extraction. 
However, special attention in combining these datasets is required to ensure the quality of information 
extracted. 
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2.6. Object-oriented image analysis 

Since 1970’s image processing with subsequent geo-information extraction has been performed on 
pixel basis. Despite development of powerful classification algorithms that incorporate models of 
uncertainty such as the famous and commonly used fuzzy c-means clustering algorithm (FCM) [5], 
the possibilistic fuzzy c-means clustering  algorithm (PFCM) [37], fuzzy supervised classification 
algorithm [51] and neural network classifiers borrowed from artificial intelligence systems, they do 
not consider the spatial context of real world objects. One of limitations in this development is lacking 
of image processing software that include functionalities found in GIS software. Recently commercial 
software are developed in which these functionalities are incorporated enabling access of spatial 
contextual information of an individual pattern on an image. Definiens Developer software is one the 
current commercial software in the market that provides GIS spatial analysis functions thus enabling 
image understanding before classification. 

2.6.1. Image segmentation 

Object-oriented image analysis comprises two important steps: Iterative image segmentation followed 
by classification. Image segmentation is defined as dividing an image into homogeneous regions that 
correspond to (part of) real world objects [13, 34]. Successful image segmentation implies that all 
pixels in a resulting image segment have similar grey values and form a connected region. Several 
segmentation algorithms exist [25]. In this study, a multiresolution segmentation algorithm has been 
adopted. The algorithm applies an optimization procedure which locally minimizes average 
heterogeneity of image objects for a given resolution [7, 14]. 

2.6.2. Multiresolution image segmentation 

Definiens Developer software offers artificial object-oriented programming language upon which 
advanced image analysis algorithms can be developed. Basically, algorithms are developed based on 
object-oriented analysis principles and local adaptive processing procedures. Multiresolution 
segmentation is a bottom-up merging algorithm. It begins by considering a single pixel as a separate 
object and subsequently merging adjacent objects that fulfil user defined criterion [8, 13]. In this 
procedure, the merging decision is based on local homogeneity criterion that describes the similarity 
between adjacent image objects. Adjacent image objects having smallest increase in the defined 
criterion are merged. Nevertheless, this process stops when the smallest increase of homogeneity 
exceeds the defined scale parameter. Thus, the smaller the scale parameter, the smaller the resulting 
objects and vice versa although this depends on the nature of image data in the process.  
 
During the multiresolution segmentation process, the homogeneity criterion is a combination of 
colour (spectral values) and shape properties. The shape criterion is further split up in smoothness and 
compactness parameters. An application of different scale parameters (levels) and colour/shape 
combinations results into a hierarchical network of image objects [8]. Figure 2.3 shows homogeneity 
combination criterion during image multiresolution segmentation routine.  
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Figure 2.3 Composition of homogeneity criterion 
 
The maximum admissible within-object heterogeneity in terms of spectral and spatial properties is 
given as follows [8]:  

( ) )1(1 spatialspectralspectralspectralscale hwhwh ⋅−+⋅≥
where; 

 spectralh measures the spectral variability of the object; 

spatialh characterizes the object shape; 

spectralw  inversely weights spectralh  and spatialh . 

The merging procedure continues until the within-object heterogeneity exceeds the user defined 

threshold scaleh [2].  

 
Each composition of homogeneity criterion results into a network of objects. Figure 2.4 gives an 
abstract structure of the resulting hierarchical network of image objects. Each image object ‘knows’ 
its neighbour in the same level as well as its sub- and super-objects in the lower and upper level 
respectively within the network. This enables access to contextual information for each object in the 
subsequent analysis to identify meaningful objects that correspond to real world objects. 
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Figure 2.4 Four-level hierarchical network of image objects in abstract illustration (Source: [14] ) 

2.6.3. Image objects information 

Multiresolution image segmentation results into a network of three-dimensional topologically related 
image objects. Each image object has attributes such as layer mean intensity values, shape (area and 
position) and texture. Figure 2.5 shows a structure of image objects attributes after the segmentation 
procedure. Not only in-built functions are used to determine these features, but also an operator can 
program known mathematical functions such as layer indices. This is possible through the use of 
customizable algorithms within the customized category in Figure 2.5. 
 

 
Figure 2.5 Image objects information structure 
 
Image object features are used to develop a set of rules that is used to assign classes to meaningful 
image objects. Meaningful image objects are those objects of interest in a given application. In this 
study, meaningful image objects correspond to all objects that constitute a lake (water). 

2.6.4. Fuzzy logic classification 

Since 1970’s pixel-based image classification algorithms have been developed and applied to 
remotely sensed data to optimize their value in various environmental modelling applications. 
However, these algorithms do not take into account spatial relationships among objects represented 
within an image. Recently, algorithms that incorporate spatial structure of each pixel in an image are 
developed [45-46].However, these algorithms do not consider object semantics and explicitly quantify 
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uncertainties that are inherent within real world objects. Object-oriented analysis incorporates real 
world object semantics by adopting the visual variables such as shape, size, colour and texture. As 
explained in section 4.2, object semantics are captured during segmentation process before 
classification. 
 
Based on the objectives of this research, fuzzy rule-based classification was applied to derive 
meaningful image objects from the multiresolution segmentation process. The knowledge base of the 
lake extent was incorporated in this classification. As the lake extent is characterized by the expanse 
of water that interacts with shoreline fringing vegetation and submerged as well as floating patches of 
vegetation, two broad classes were defined, namely; Water and Not water. 
  
In many representations of reality, classical set theory is used. In this approach a pixel has a full 
membership or zero membership to a land cover class. Clearly the system of representation is precise 
while the real system is uncertain. Therefore, the proper representation of a fuzzy system is to use 
fuzzy logic approach with statistical data analysis procedures while developing rules that reflect the 
object’s context. In this scenario, a single attribute cannot be used to precisely discriminate objects 
from their surroundings. It is therefore important to make use of available real world object features 
discernable on an image such as shape, colour, orientation, texture and size. Many classification 
algorithms that incorporate these models of uncertainty apply on pixel basis within multi-dimensional 
feature space whereby a pixel belongs to a class to a certain degree expressed as percentage. This is a 
general representation of uncertain phenomena using fuzzy set theory. 
 
Fuzzy sets as sets or classes that for various reasons cannot, or do not have sharply defined boundaries 
and can be described as follows [10, 51] : 
If Z denotes a space of objects, then the fuzzy set A in Z is a set of ordered pairs  
 

( ){ } ( )1.2, Ζ∈Μ=Α Α zzFz  

 

Where the membership function ( )zFΑΜ represents the grade of membership of z in A and Ζ∈z  

means that z is contained in Z. Usually ( )zFΑΜ  is the number in the range [ ]1,0 , with 0 representing 

non membership and 1 representing full membership of the set. The membership function values help 
in minimizing uncertainty especially where water interacts with land. Using water properties and 
vegetation, the range of thresholds could be defined prior to classification. Selection of thresholds 
depends on the objectives of intended study. 
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3. Study area, data and data pre-processing 

3.1. Introduction 

This chapter explores the study area, data used and their pre-processing procedure. Section 3.2 
describes the study area; section 3.3 describes the remotely sensed data used and their quality while 
section 3.4 provides the processing procedure applied to selected remotely sensed data. 

3.2. Study area description 

Lake Naivasha in Kenya has been used in this study. The lake is located at approximately 
00045’00’’S, 36021’00’’ E. It is situated in the West of Naivasha town in Kakuru district within Rift 
Valley Province. It is a shallow (mean depth of 6 m [URL 1]), endorheic, freshwater lake in warm and 
semi-arid conditions in the eastern Rift Valley of Kenya, lying within an enclosed basin at an altitude 
of 1886 m  above mean sea level  with  surface area fluctuating between 100 and 150 km2 [1]. It is 
world famous for its high biodiversity, especially for birds (more than 350 bird species) [31]. In the 
year 1995, lake Naivasha was declared as Ramsar site (Wetland of International Importance) because 
of its diverse acquatic and terrestrial ecosystems [URL 2]. 
 
The climate of this wetland area is hot and dry with a high potential evaporation exceeding the rainfall 
by around three times [23]. The area receives rainfall between April to June and October to December 
each year. The rest of the year is dry season. 
 
The lake system has fringing swamps dominated by papyrus and submerged vegetation and an 
attendant riverine floodplain with a delta into the lake. These swamps vary in size especially during 
the rainy season resulting into uncertainty in lake/water boundary. However, there are acquatic plants 
(water hyacinth) that live and reproduce freely on the surface of fresh water or can be anchored in 
mud. There are also other submerged vegetation species. The presence of these types of vegetation 
makes the delineation of water/land boundary difficult especially when they are submerged due to 
water level rise. 
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Figure 3.1 Location of study area and corresponding Landsat7 ETM+ (A) and Terra ASTER (B) images 
acquired on the same date 15th October 2002 
 
Figure 3.1 shows the location of lake Naivasha, the study area in this research, and its corresponding 
images from ETM+ and ASTER sensors. The lake boundary is fringed by vegetation shown in red. In 
the north, there are two rivers, namely Malewa and Gilgil which discharge water to the lake. These 
two major rivers play a great role in balancing the lake water level. However, the two rivers form a 
delta which influences growth of various vegetation species that may impact the spatial extent of the 
lake with time. 

3.3. Study area selection criteria 

In this study, time series images from two sensors ASTER and ETM+ were used. The selection was 
based on free availability of these images and prior knowledge of the study area via literature. In 
addition, these sensors are on-board satellites in the same orbit. The study area is within equatorial 
zone, where cloud cover is a big problem for remote sensing. Images were selected with low cloud 
cover. In most of these images, the lake was cloud free. 

3.4. Characteristics of data used 

ASTER and ETM+ are imaging instruments that are flying on NASA’s Terra and Landsat7 satellites 
respectively launched in December 1999. Although the two sensors are on different platforms and 
have different spatial and spectral characteristics, they are in the same orbit and have same revisit 
period of 16 days (temporal resolution). However, the two sensors have different spatial coverage 
indicated by their swath widths. 

3.4.1. ASTER sensor 

ASTER acquires 14 spectral bands and can be used to obtain detailed maps of land surface 
temperature, emissivity, reflectance and elevation. The sensor has three subsystems, namely visible 
near-infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) subsystem with specific 
spatial resolution [39]. In this research images from VNIR subsystem were used to estimate the lake 
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extent and quantify its uncertainty. Table 3.1 gives the summary of spectral, spatial and radiometric 
characteristics of the sensor in VNIR subsystem while Table 3.2 shows the sensor/platform 
characteristics. 
 
Table 3.1 3 spectral bands of ASTER (VNIR subsystem) 

Spectral channel Spectral range ( )mµ  Spatial resolution ( )m  Dynamic range 

1 (Green) 0.520 to 0.600 
15 8 bit 2 (Red) 0.630 to 0.690 

3 (NIR) 0.760 to 0.860 
 
Table 3.2  Sensor/platform characteristics: ASTER 

Launch Date 18 December 1999 at Vandenberg Air Force 
Base, California, USA 

Equator Crossing 10:30 AM (north to south) 

Orbit 705 km altitude, sun synchronous 

Orbit Inclination 98.3 degrees from the equator 

Orbit Period 98.88 minutes 

Grounding Track Repeat Cycle 16 days 

Resolution 15 to 90 meters 

Swath 60 km 
Source: [URL 3] 

3.4.2. ETM+ sensor 

While ASTER acquires information from 14 spectral bands, ETM+ corrects information in eight 
bands of the electromagnetic spectrum. Seven of these bands are reflective while band 6 is emissive. 
The sensor has large spectral coverage within the reflective and infrared portion of the spectrum 
though it is limited in spatial resolution compared to ASTER. Table 3.3 gives a summary of spectral, 
spatial and radiometric characteristics of ETM+ sensor while Table 3.4 describes the general 
characteristics of the sensor/platform system. 
 
Table 3.3  7 spectral bands of ETM+ (Reflective) 

Spectral channel Spectral range ( )mµ  Spatial resolution ( )m  Dynamic range 

1(Blue) 0.45-0.52 

30 
8 bit 

2(Green) 0.53-0.61 

3 (Red) 0.63-0.69 

4 (NIR) 0.78-0.90 

5(MidIR1) 1.55-1.75 

7(MidIR2) 2.09-2.35 

8(PAN) 0.52-0.90 15 
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Table 3.4 Sensor/platform characteristics: ETM+ 

Launch Date 18 December 1999 at Vandenberg Air Force 
Base, California, USA 

Equator Crossing Between 10:00 and 10:15AM (north to south) 

Orbit 705 km altitude, sun synchronous 

Orbit Inclination 98.3 degrees from the equator 

Orbit Period 98.88 minutes 

Grounding Track Repeat Cycle 16 days 

Resolution 15 to 60 meters 

Swath 185km 
Source: [URL 4] 
 
Tables 3.1 and 3.3 describe the difference between ASTER and ETM+ sensor. ASTER has spatial 
resolution of 15m but limited in spectral coverage within the reflective portion of the electromagnetic 
spectrum. However, ETM+ has large spectral coverage though limited is spatial resolution. Tables 3.2 
and 3.4 provide platform similarities and differences. The two platforms are in the same orbit with 
same inclination angle from the equator. They slightly differ in equatorial crossing time though the 
assumption is that within this short time interval the atmospheric conditions do not change. Therefore, 
the two sensors can be combined to derive useful geo-information as they complement each other both 
spectrally and spatially. However, the two sensors differ in over all spatial coverage by a single scene 
(swath) 

3.5. Data availability and their quality 

Considering the seasons of the year in the study area, table 3.5 shows selected images and their 
corresponding dates of acquisition from two sensors. However, it was difficult to obtain images in 
consecutive years due to high percentage of cloud cover. In addition, since 2003 images from ETM+ 
contain line dropouts due to scan line corrector (SLC) failure. Although these images were 
downloaded, they were not used in modelling change in lake extent and its uncertainty as an extra task 
to correct for gaps was required. Therefore, Level 1B images from ASTER sensor in combination 
with images from ETM+ (1999 to 2002) were used in this study. 
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Table 3.5 Selected images and their corresponding acquisition dates 

Platform Landsat7 Terra 
 Year Season Season Year 
  Rainy Dry Dry Rainy  

1999 23/10/1999 Cc Cc Cc 1999 

2000 

25/10/2000 27/01/2000 

Cc Cc 2000 
Cc 

12/02/2000 
15/05/2000 
22/08/ 2000 

2001 
12/10/2001 14/02/ 2001 22/01/2001 

Cc 2001 
Cc 25/08/2001 Cc 

2002 
02/02/2002 13/09/2002 01/02/2002 15/10/2002 

2002 
15/10/2002 Cc 17/02/2002 29/06/2002 

2003 

Data gaps due to SLC failure since 
2003 

15/08/2003 
Cc 2003 

28/01/2003 
2004 Cc Cc 2004 

2005 Cc 
01/11/2005 

2005 
10/12/2005 

2006 Cc 
01/04/2006 

2006 
29/06/2006 

2007 
11/09/2007 23/11/2007 

2007 
24/02/ 2007  Cc 

2008 01/01/2008 27/12/2008 2008 

2009 
19/01/2009 

Cc 2009 
30/07/2009 

Cc stands for cloud cover. 

3.6. Satellite image pre-processing 

Landsat ETM+ images were downloaded from the United States Geological Survey (USGS) archive 
[URL 5] in GeoTIFF format whereby each band was stored independently while ASTER images were 
provided in colour composite. The first step was to combine ETM+ image bands to generate colour 
composite images which enabled the co-registration process. A combination of band 5, 4 and 2 gave 
clear visualization of the lake and its surroundings within ERDAS Imagine 9.3. Since the interest was 
on lake extent, all images were subset in which only area of interest was retained. The image subsets 
were geometrically corrected respect to mapping system within the study area. In this procedure two 
topographic map sheets no. 133/4(Longonot) and 133/2(Naivasha) both at scale 1:50,000 were used. 
Permanent features like road junctions and bridges were selected on both images and topo sheets for 
ground control points (GCPs). First order polynomial transformation was adopted and applied. A total 
number of four GCPs were selected for geometric registration of a single image in UTM projection 
with Clarke 1880 (Modified) Spheroid, Arc 1960 datum and zone 37 S. In order to minimize errors, 
the selected GCPs were used during georeferencing procedure. The over all root mean square error of 
the georeferencing process was 016.0± m. The geometrically corrected image subsets were now 
ready for subsequent processing. 
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4. Methods 

4.1. Introduction 

A remotely sensed image is a raster grid with underlying scene comprising of interacting objects, 
existing at different scales which belong to different classes [14]. Traditionally, image analysis before 
classification is performed based on spectral information contained in an image. Powerful 
classification algorithms are developed based on signal processing concepts. However, these 
algorithms operate on pixel basis neglecting topological relationships of real world objects 
represented by the image. In advanced image analysis classification algorithms are trained to emulate 
human cognitive process in which the spatial context of real world objects and their interactions are 
considered [27, 40, 45, 47]. Object-oriented image analysis is one of the advanced remotely sensed 
data classification approaches and has been proved to provide accurate and valuable results for 
decision making [4, 30, 50]. This approach comprises two major parts, namely, image segmentation 
and classification of image segments. Section 4.2 describes image segmentation algorithm used while 
section 4.3 provides detailed description of fuzzy rule-based image classification applied in 
information extraction from the images.  

4.2.  Methodology flow chart 

 
Figure 4.1 Methodology flow diagram of this research 



UNCERTAINTY IN LAKE EXTENT TREND RELATED TO TIME AND FREQUENCY OF OBSERVATION 

21 

Figure 4.1 summarises the methods used in this research. The first approach was segmentation of 
georeferenced image subsets from the two sensors followed by object-based classification using fuzzy 
sets theory. The next step was accuracy assessment of the classified image objects and finally time 
series analysis in lake extent. 

4.3. Multiresolution image segmentation 

Multiresolution segmentation is a bottom-up merging algorithm. It begins by considering a single 
pixel as a separate object and subsequently merging adjacent objects that fulfil user defined criterion 
[8, 13]. The merging decision is based on local homogeneity criterion that describes the similarity 
between adjacent image objects. Adjacent image objects having smallest increase in the defined 
criterion are merged. Nevertheless, this process stops when the smallest increase of homogeneity 
exceeds the defined scale parameter. Thus, the smaller the scale parameter, the smaller the resulting 
objects and vice versa although this depends on the nature of image data used in the process [14]. In 
this study, different sets of homogeneity criteria were tested for images from ASTER and ETM+ 
sensor. The true set was obtained through ‘trial and error’ approach while observing the resulting 
image objects and associating them to the reality in the study area. The great emphasis was on the 
boundary of the lake which depends on the fringing shoreline dominated by deep-rooted, submerged 
and freely floating vegetation (water hyacinth). 

4.3.1. Homogeneity criteria 

During the multiresolution segmentation process, the homogeneity criterion is a combination of 
colour (spectral values) and shape properties. The shape criterion is further split up in smoothness and 
compactness parameters. An application of different scale parameters (levels) and colour/shape 
combinations results into a hierarchical network of image objects (Figures 2.3 and 2.4). 

4.3.1.1. Layer weighting parameters 

The layer weighting parameters depend on the spatial and spectral characteristics of a geographic 
phenomenon of interest and available image bands. Since two sensors were used to study the lake 
extent, I considered first the definition of the lake and its surrounding ecologic units namely, wetlands 
dominated by deep-rooted, submerged and freely floating vegetation whose size depend on water 
horizontal extension. Therefore, weight of 1 was assigned to NIR (band 4) while the rest of bands 
were given weight of 0.5 since water has low reflectance in NIR and vegetation has high reflectance 
in NIR. 
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Figure 4.2 Layer weighting procedure before segmentation: Landsat 7 ETM+) 
 
In Figure 4.2, band 4 (NIR) provides clear distinction between water and its surroundings. The 
shoreline is brighter than water indicating that there is vegetation. Therefore, there was a necessity to 
give more weight to band 4 since the resulting objects are more influenced by image bands that are 
input in the segmentation process. 
 
Similar procedure was done for ASTER images. In addition to visual inspection of image bands, I 
inspected the histograms for all bands from each sensor. The NIR band had clear peaks indicating the 
possibility of discriminating water from surrounding vegetation. Figure 4.2 shows original and its 
corresponding equally stretched histogram of a selected image from ASTER sensor. Within the figure, 
there are clear peaks implying minimal land cover class mixture. Based on these visual aids, I was 
able to allocate weights according to the objective of this study as meaningful image segments depend 
on the prior knowledge about the area under study and available data for analysis. 
 

 
Figure 4.3 Sample histogram for NIR band 
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4.3.1.2. Scale parameter 

The scale parameter is the most important parameter in multiresolution segmentation process. It 
determines the size of the resulting image objects [13]. Therefore, the larger scale parameter 
corresponds to fewer image objects constituted by a large number of pixels. However, the scale 
parameter allows multi-scale classification. This is because each scale parameter results in a network 
of geographically linked image objects. When applied sequentially, a hierarchy of image objects is 
constructed in which a 3-D topological relationship among objects is developed. Each object in the 
network ‘knows’ its neighbour at the same level, parent in the lower level and child in the upper level 
(Figure 2.4). This set helps in accessing the spatial context of the resulting image objects during 
subsequent analysis such as feature extraction for GIS applications or classification for monitoring 
purpose. 

4.3.1.3. Colour and shape parameters 

Basically the segmentation process is based on spectral information from the input bands. 
Multiresolution segmentation algorithm has an interface which allows an operator to choose how 
much colour or shape has to weight in the segmentation process. The shape parameter controls the 
shapes of the resulting image objects. The optimization of image objects shapes is possible within this 
algorithm by introducing another two parameters, namely compactness and smoothing parameters. 

4.3.1.4. Compactness and smoothing parameters 

The compactness parameter determines how compact the shapes of resulting image objects will be. 
The larger the value the more compact image objects will be and vice versa. The smoothing parameter 
operates on the borders of the resulting image shapes. The selection of these parameters should 
consider the data involved in the analysis. The two parameters complement each other is the sense 
that allocating weight to one implies the remaining weight is automatically allocated to another 
parameter (Definiens reference book).  

4.4. Hierarchical image objects network 

During object oriented image analysis, an image is converted into larger objects that correspond to 
real world objects by applying a set of parameters [13]. Each set of parameters determines the level of 
objects with different scale. A combination of these levels in hierarchical order results in a network of 
objects that are topologically linked thus allowing access of individual image object spatial context. 
Figure 4.4 illustrates image objects resulting from different segmentation parameter sets. 
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Figure 4.4 Different image objects from different parameter sets 

4.4.1. Segmentation parameters used  

Based on the study by Darwish et al.[13], different colour and shape parameters were tested. Table 
4.1 shows a set of parameters that gave meaningful image objects that were subjected to fuzzy rule- 
based classification. As a rule of thumb, in order to be able to produce adequate classification results, 
the image objects have to represent objects of the classes that are to be discriminated in the 
subsequent classification. Objects which are to be assigned to different classes should not be merged. 
Furthermore, it is not possible to produce an image object level in which all image objects explicitly 
represent the classes to be extracted. Therefore, at each level of segmentation, classification should be 
performed to optimize information extracted from an image. This is not possible in many pixel-based 
image classification algorithms. 
 
Segmentation parameter selection, however, depends on the imagery input in analysis. Highly 
textured images like Radar imagery would require more weight on shape parameters with little weight 
to colour criterion. In Definiens user guide, two main principles of segmentation are explicitly stated: 

• Always produce image objects in the largest possible scale which in turn still distinguish 
different image regions (as large as possible and as fine as necessary) 

• Use as much colour criterion as possible and as much shape criterion as necessary to 
come up with image objects of the least smooth and compact shape respectively. 

Generally speaking, colour criterion requires more weight as in remote sensing spectral characteristics 
of real world objects is a source of information. Using too much shape criterion, therefore, can reduce 
the quality of segmentation results as it was observed in this study. 
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Table 4.1 Segmentation parameters applied in this study 

Segmentation 
level 

Scale 
parameter 

Colour Shape 

ETM+images    Compactness Smoothness 
Level 1 30 0.7 0.2 0.8 
Level 2 60 0.7 0.2 0.8 
Level 3 90 0.7 0.2 0.8 
Level 4 150 0.7 0.2 0.8 

ASTER images      
Level 1 15 0.7 0.2 0.8 
Level 2 30 0.7 0.2 0.8 
Level 3 90 0.7 0.2 0.8 
Level 4 150 0.7 0.2 0.8 

4.5. Fuzzy rule-based image objects classification 

The first consideration in this study was the definition of lake extent. The definition depends on the 
spatial extent of water at a moment in time. Therefore, the geometric accuracy of the boundary points 
for the lake is determined by the thematic attributes (water) at that time. In addition, at the boundary 
of the lake there is vegetation which depend on the availability of water over time. However, these 
vegetation types are not uniform along the shoreline of the lake boundary. Therefore, I had to specify 
the range in spatial extent of the lake that will accommodate the uncertainty while estimating the size 
of the lake. Different image object features were considered in determining parameters to incorporate 
in the classification algorithm. 

4.5.1. Estimation of fuzzy parameters 

Since the lake extent is imprecisely defined due to the existing ecologic units at the boundary, I found 
that a single parameter could not be enough to discriminate water from its background. Therefore, I 
decided to estimate a set of fuzzy parameters that could minimize uncertainty in lake extent at a 
moment in time.  

4.5.2. Layer mean intensity 

For each meaningful image object, the layer mean value is calculated from the layer values of all 
pixels forming an image object. Mathematically (Definiens reference book), 

( )
( )

( )1.4),(
#
1

,
∑
∈

−

=
vPyx
k

v

k yxC
P

vC  

 Where; 

 vP : Set of pixels of an object v 

 vP : ( ){ ( ) }vyxyx ∈,:,  

   vP# : total number of pixels contained in vP  

 ( )yxCk , : image layer value at pixel (x,y) 

 min
kC : darkest possible intensity value of layer k 

 max
kC : brightest possible intensity value of layer k 
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 kC
−

: mean intensity of layer k 
The mean intensity of each layer in a given object will take any value between the darkest and 
brightest possible intensity values of that layer.  

4.5.3. Image object brightness 

Image object brightness is determined as the mean value of the mean intensity values of an image 
object mathematically computed as, 

( ) ( ) ( )2.41

1

vCw
w

vC
K

k

B
kB∑

=

−−

=  

Where; 

 ( )vC k

−

: mean intensity of layer k of an image object v 

 B
kw : Brightness weight of layer k 

 min
kC : Darkest possible intensity value of layer k 
max
kC : Brightest possible intensity value of layer k 





=
1

0
:B

kw  , this quantity will be 0 if no reflected intensity in all layers 

∑
=

=
K

k

B
k

B ww
1

: , for k=1, 2,…, K 

The brightness of an individual object will take any value between the darkest and brightest mean 
intensity value of layer a given layer. 
 

4.5.4. Individual layer contribution in each image object 

The individual layer contribution to an image object of interest is determined as the ratio of mean 
intensity of that layer and total brightness of that image object. However, this operation is applicable 
to multi-spectral data which is believed to contain useful geo-information. The parameter is 
mathematically determined as, 

( )
( )

( )3.4
v

−

−

=
C

vC
oncontributiLayer k

 
Where; 

 ( )vC k

−

: mean intensity of layer k of an image object v 

 ( )vC
−

: Brightness of image object v 

From equation 3 above, it is clearly seen that individual layer contribution to any meaningful image 
object will take any value between [0, 1]. It will be zero if and only if there was no reflectance in that 
band during data acquisition while 1 if and only if the mean intensity of that layer equals the image 
object total brightness 
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4.5.5. Normalized Difference Vegetation Index (NDVI) 

The NDVI is used to study vegetation phenology. However, the studies are based on processed 
MODIS data with course resolution of 1km [19, 53]. For small areas like Lake Naivasha and its 
surrounding wetlands, it can be difficult to study using these data as the interest is to estimate the 
spatial extent of the lake. However, the availability of medium spatial resolution with spectral 
coverage in the visible and near infrared portion of the electromagnetic spectrum and software with 
in-built GIS functions allow the use the data to derive physical indices such as NDVI. 
 
Definiens software provides an interactive interface which enables determination of appropriate image 
object features (attributes). Thus, all in-built high level algorithms can be oriented to suit any 
application which depends on user needs. The interactive environment enables an operator to integrate 
the prior knowledge of the process under study. In this research, I decided to determine the NDVI for 
all meaningful image objects as the entire lake is surrounded by wetlands and dry lands. These 
landscapes are dominated by vegetation. The wetland is dominated by papyrus swamps while the dry 
land is dominated by scrubs. The following are assumptions made in this study:  

• Water tends to have a low reflectance across all optical bands in the spectrum unless there are 
suspended sediments near its surface and/or has shallow depth. 

• Regardless of the impurities in water and shallow depth, water has very low reflectance in the 
near infrared band of the spectrum 

• Water will always have NDVI values in range of -1 and 0 based on mathematical formula 
(equation 4.4). However, this will depend on water constituents. 

Based on the above assumptions and literature on Lake Naivasha, the near infrared band, green band 
and NDVI were considered to be of great importance in providing spectral information of the lake 
extent. Therefore, I determined the NDVI for all image objects using the following mathematical 
function:  
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: Mean intensity value for NIR layer in object v 

 )(Re vC d

−

: Mean intensity value for red layer in object v 
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4.5.6. Implementation of NDVI model in Definiens software 

 
Figure 4.5 NDVI mathematical model implemented in Definiens 
 
Figure 4.5 shows the interface through which various mathematical models can be programmed and 
optimize parameters for information extraction from images. The mean near infrared and red bands 
used to determine NDVI index for each image object are highlighted in red colour.  

4.5.7.       Relative border to a defined class 

To identify all objects that share common boundary with water class, I used the feature “Relative 
border to” in Definiens (Definiens reference book). It refers to the length of the shared border of 
neighbouring image objects. The feature describes the ratio of the shared border length of an image 
object with a neighbouring image object assigned to a defined class to the total border length. If the 
relative border of an image object to image objects of a certain class is 1, the image object is totally 
embedded in these image objects. If the relative border is 0.5 then the image object is surrounded by 
half of its border.  
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( )5.4
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Where; 
  ),( uvb    : Topological relation border length 

 ),( mdN v : Neighbours of an image object v in class m at a distance d 

 vb     : Image object border length 

          
Figure 4.6 Relative border between neighbour objects 
 
Figure 4.6 shows sample image object with relative border to image objects whose classes are known. 
The object with borders in black can be classified based on class related features such as “Relative 
border to” using the definition of the function in equation 4.5. 

4.5.8. Relative area of a defined class 

Using this parameter I was able to identify all objects adjacent to water class and vegetation class. The 
parameter is determined as area covered by image objects assigned to a defined class in a certain 
perimeter (in pixels) around the image object concerned divided by the total area of image objects 
inside this perimeter [14].Mathematically it is determined as follows, 
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Where; 

 )(dN v  : Neighbours to an image object v at distance d 

 uP#      : Total number of pixels contained in uP  

For image objects where this parameter is 0 implies that the predefined class does not exist whereas 1 
implies that objects belong to a predefined class. However, there are objects where this parameter is 
between 0 and 1 exclusively. In this case spectral information for these objects is required to ensure 
correct assignment to a desired class.   



UNCERTAINTY IN LAKE EXTENT TREND RELATED TO TIME AND FREQUENCY OF OBSERVATION 

31 

4.5.9. Fuzzy object classification process 

In fuzzy object-based classification, the first step is to identify appropriate fuzzy parameters for 
classification algorithm. However, in analysing remotely sensed data, the problem is where to start in 
delineating boundary of a given class. The solution is to look for homogeneous regions and use these 
regions to train the classifier before actual classification. In addition we need to incorporate prior 
knowledge about the phenomenon we want to model. Corresponding to this I considered NDVI, NIR 
and green bands to be appropriate to estimate the range in which fuzzy lake extent can be estimated. 
  
From literature, Lake Naivasha has shallow water which necessitated the use of green band to 
estimate the range in which its fuzzy boundary lies. In figure 4.4, the green colour represents objects 
in which green band has higher contribution than the other three bands while the blue colour 
represents objects in which green has low contribution. In addition, I determined the NDVI for all 
objects. Since water has low reflectance in NIR which might be lower than red reflectance depending 
on water constituents at the time of observation, all image objects that belong to water class are 
expected to have negative NDVI values (equation 4.4). Figure 4.6 shows the set up of getting the 
range in which the boundary of the lake can be estimated. The black colour represents objects with 
pure water elements with gradual change in brightness an indication of sediments within water. In the 
same figure, the green colour represents objects in which NIR band has more contribution than other 
layers. However, there are objects with low NIR but do not belong to water.  

      
Figure 4.7 Fuzzy parameter estimation using green band and NDVI 
 
Combining these parameters, I was able to identify approximate boundary of the lake and this was the 
starting point of developing rules used to identify all objects expected to belong to water class. 

4.5.9.1. Definition of class hierarchy  

From the knowledge acquired during literature review and image objects analysis, I first developed 
two broad classes namely, ‘water’ and ‘not water’. For not water class I further introduced other two 
classes namely, ‘vegetation’ and ‘adjacent to water’. The adjacent to water class was intended to 
identify all objects which are more uncertainty causing difficult in estimating the lake extent while the 
vegetation class was intended to identify those objects where NIR has more contribution than other 
bands. Figure 4.7 shows the class hierarchy developed and implemented during lake extent delineation 
from images. 
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Figure 4.8 Class hierarchy definition 
 

4.5.9.2.  Identification of image objects with class water membership 

In this procedure water class was identified using the membership function within the class 
description as shown in figure 4.8 
 

 
Figure 4.9 Water objects identification 
 
Based on the condition as shown in the process tree in figure 4.8, the classification algorithm 
evaluates the membership function range for which we expect all objects that belong to water to lie. If 
the condition is fulfilled, all objects are assigned to class water with truth degrees between 0 and 1.  
Zero value implies that object does not belong to water and it is not assigned to it while 1 implies full 
membership. However, there are objects that have partial membership to the class and these are 
explicitly determined by the membership values within [0, 1] range. 

4.5.9.3. Identification of image objects that belong to class ‘not water’ 

Since all objects that belong to water were determined as described in section 4.5.2.2, I classified the 
remaining objects as ‘not water’ by negating the conditions used in classifying ‘water’ objects. 
However, there is a problem of mixed classes at the boundary of the lake because of the uncertainty of 
the pixel in location. The enlarged portion of the classification map in figure 4.9 shows the effect of 
this problem. Therefore, special consideration of all boundary pixels was required. In this case I used 
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the following function to identify all objects sharing border with class water. The class related 
features within Definiens software are available.  
 

 
 

 
Figure 4.10 Classification map 

4.5.9.4. Parameters used to classify images 

Table 4.2 and 4.3 show a set of rules developed and applied to extract lake extent information and its 
uncertainty from ASTER and ETM+ images respectively.  
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Table 4.2 Rule set for classifying ASTER images 

Scale Class name Condition Membership range Level name 

15 
Vegetation NDV>=0 NDV[0, 0.56] 

Level 1 
Water Green>=0.42 NDVI[-1, 0] 

90 Water Green>=0.42 NDVI[-1, 0] Level_water 

90 

Vegetation NDVI>=0 NDV[0, 0.56] 

Level_not water Water NDVI<0 NDVI[-1, 0] 

Adjacent to water - Relative Border to water[0, 1] 
 
Table 4.3 Rule sets for classifying ETM+ images 

Scale Class name Condition Membership range Level name 

60 

Vegetation NDV>=0 NDV[0, 0.7] 

Level 2 Water NDV<0 Ratio green[0.18, 0.237] 

Adjacent to water - Relative Area to water[0, 1] 
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5. Results of object oriented image analysis 

5.1. Introduction 

In this chapter the results of fuzzy-object-oriented image analysis are presented. The chapter 
comprises two sections. Section 5.2 presents the estimated lake extent and its uncertainty from 
ASTER and ETM+ sensor while section 5.3 describes the results of the method adopted to assess the 
reliability of the classified objects. In addition the concept of weighted average for membership values 
is introduced.  

5.2. Fuzzy objects classified as water 

During segmentation process the lake extent was identified as a network of uncertain image objects. 
Appendix 1 shows the number of image objects classified as water while tables 5.1-5.4 indicate the 
number of image objects that constitute the total area of the lake. Within the appendix, the number of 
objects classified as water is larger than the number of objects that constitute the spatial extent of the 
lake. The reason to this is that there are some objects which satisfied the applied classification rules 
and assigned to class water. Therefore, in order to identify these objects, I exported the classified 
objects to ArcGIS software. Within ArcGIS I considered image objects spatial distribution and their 
corresponding NDVI values. Having determined all objects that constitute the lake extent, I estimated 
the total area of the lake using the following formula, 
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Where, ( )tai  is an area of individual object i at time t and ( )ttotal

_

Α  is an estimated total area of the 

lake at time t. Each identified image object was characterised by a membership function value 
specifying the degree of truth to constitute the lake extent as well as other spectral information. 
However, the membership function values differed considerably. Some objects had smaller 
membership values than others in the range of 0 and 1. In this regard, objects with low membership 
values are more uncertain than those with higher values. For the membership of the entire lake, 
weighted differently the image objects based on their size and estimated the weighted average 
membership values using the following mathematical model, 
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Where; wx
−

 is the weighted average for a given lake extent information, iw is an object individual 

weight determined by its size (number of pixels), ix is  measured values for each classified object i , 
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N is a total number of objects that constitute the lake extent and ∑w  is total size of lake (number of 

pixels classified as water (lake)).  

Note that the number of pixels iw  for each object was determined by dividing its size to area 

coverage by an individual pixel. For ASTER images the area coverage by one pixel equals 225 m2   

whereas it is 900 m2   for ETM+ images.  

5.2.1. Estimated lake extent and its uncertainty from ASTER images 

Tables 5.1 and 5.2 shows the number of objects that constitute to the spatial extent of the lake as 
classified from ASTER images during dry and rainy season respectively. Column 5 indicates the 
uncertainty in lake extent quantified as weighted average membership values.  
 
Table 5.1 Image objects classified as water during dry season for ASTER images 

Date #Objects Area/m2 #Pixels Weighted average membership 
22-Jan-01 47 125117775 556079 0.9718 
02-Feb-02 43 122559750 544710 0.9355 
17-Feb-02 44 124650450 554002 0.9365 
15-Aug-03 38 123095700 547092 0.9127 
24-Feb-07 42 116614350 518286 0.8930 
11-Sep-07 69 117167175 520743 0.9098 
01-Jan-08 61 119514825 531177 0.9503 
19-Jan-09 36 116465400 517624 0.9301 
30-Jul-09 33 116096400 515984 0.9615 
 
Table 5.2 Image objects classified as water during rainy season for ASTER images 

Date #Objects Area/m2 No. of pixels Weighted average membership 
29-Jun-02 99 124176150 551894 0.9248 
15-Oct-02 97 123729300 549908 0.9248 
01-Nov-05 41 121145175 538423 0.9254 
01-Apr-06 45 119251800 530008 0.9610 
27-Dec-08 29 117136800 520608 0.9608 
 
From tables 5.1 and 5.2, it is clear that the lake extent is uncertain in all seasons of the year. However, 
the degree of uncertainty varies from year to year and within a year. The variation depends on many 
factors such as water turbidity, non- uniform depth of lake bed, presence of vegetation at the boundary 
of the lake and other patches of floating vegetation which due to limitation of a pixel in space are 
classified as water or vegetation. 

5.2.2. Estimated lake extent and its uncertainty from ETM+ images 

Tables 5.3 and 5.4 present the number of objects classified as water constituting to spatial extent of 
the lake during dry and rainy season respectively. Their corresponding weighted average membership 
values representing the uncertainty in lake extent are presented in column 5 of each table. 
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Table 5.3 Image objects classified as water during dry season for ETM+ images 

Date #Objects 
Area/m2 

#Pixels 
Weighted average 

membership 
27-Jan-00 29 128388825 142654 0.9929 
12-Feb-00 21 126134100 140149 0.9197 
15-Mar-00 35 126387450 140431 0.7031 
22-Aug-00 32 124987050 138875 0.8528 
14-Feb-01 26 123016725 136685 0.9296 
25-Aug-01 34 123837750 137598 0.8588 
13-Sep-02 38 122213250 135793 0.9467 
 
Table 5.4 Image objects classified as water during rainy season for ETM+ images 

Date #Objects Area/m2 #Pixels 
Weighted average 

membership 
23-Oct-99 46 127221300 141357 0.8953 
12-Oct-01 47 124294275 138105 0.9465 
15-Oct-02 49 123316650 137019 0.9992 
02-Dec-02 28 123318675 137021 0.9996 
 
In tables 5.3 and 5.4, the lake extent is uncertain within all seasons of the year. However, there are 
seasons where it is more uncertain than others. For instance, on the 15th March 2000 the lake extent 
was more uncertain than the rest of the months in the same year. Looking at the original image, the 
lake extent is clearly identified visually. After classification, some of the classified image objects as 
water had low membership values signifying more uncertain although their spectral information 
revealed that they belong to water. 

5.3. Accuracy assessment of classified image objects 

For quality assurance of the classification results, I investigated the class stability of each object in 
each class. The algorithm is available within Definiens software. It determines the least and best 
classified image object in each class (Definiens reference book) and returns the number of objects 
classified as the predefined classes, mean, standard deviation, minimum and maximum membership 
function value. The results of this assessment are shown in appendix 1. Based on these statistical 
values I was able to ascertain whether the class is stable or not. For class water, these values were 
higher than other classes which again was not true that all objects classified as water had equal 
membership in that class. There were some objects which were more uncertain than others. In 
addition, some of these objects were spatially away from the lake boundary which required another 
step to identify only objects that constitute to total area covered by the lake. Therefore, another 
procedure was to track those objects that constitute to the total size of the lake. In this case, all 
classified image objects were exported to ERDAS Imagine as shapefiles. I overlaid the classified 
image objects over original image (left of figure 5.1) for visual inspection of the spatial distribution of 
these objects.  
 
In identifying objects that constitute to total size of the lake, I exported water and adjacent to water 
classified objects to Arc Map. Using the NDVI condition that all objects with NDVI<0 are water, I 
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was able to identify only objects that sum up to the total size of the lake. The right map of figure 5.1 
illustrates the results after applying that condition and again exporting the results to ERDAS for 
overlay on original image. 

 
Figure 5.1 Assessment of image objects classified and identification of objects that constitute to lake extent 
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6. Time series analysis in lake extent 

6.1. Introduction  

This chapter describes time series analysis approach in lake extent from two sensors. It starts with 
analyzing time series in lake extent and its uncertainty from ASTER sensor in section 6.2 whereas 
section 6.3 presents time series analysis from ETM+ sensor. Section 6.4 describes time series analysis 
in lake extent by combining two sensors. 

6.2. Time series analysis in lake extent using ASTER images 

The aim of this analysis was to investigate how the estimated lake extent and its uncertainty vary over 
time as observed by ASTER sensor. In this case the seasons of the year for the study area were 
identified, namely, rainy and dry season. Tables 5.5 and 5.6 show the over all estimated lake extent 
information for two seasons respectively. Columns 3 to 5 are weighted average lake extent 
information computed using equation 5.2 of chapter 5. 
 
Table 6.1 Weighted average lake extent information: Rainy season, ASTER images 

Date Area/m2 NDVI Green Nir Red Membership 
29-Jun-02 124176150 -0.2293 0.4822 0.1994 0.3184 0.9248 
15-Oct-02 123729300 -0.2294 0.4824 0.1993 0.3183 0.9248 
01-Nov-05 121145175 -0.2282 0.5081 0.1898 0.3021 0.9254 
01-Apr-06 119251800 -0.1753 0.5064 0.2036 0.2900 0.9610 
27-Dec-08 117136800 -0.1770 0.5197 0.1976 0.2827 0.9608 

 
Table 6.2 Weighted average lake extent information: Dry season, ASTER images 

Date Area/m2 NDVI Green Nir Red Membership 
22-Jan-01 125117775 -0.1399 0.4801 0.2237 0.2962 0.9718 
02-Feb-02 122559750 -0.2132 0.4644 0.2108 0.3249 0.9355 
17-Feb-02 124650450 -0.2111 0.4633 0.2118 0.3249 0.9365 
15-Aug-03 123095700 -0.2455 0.5029 0.1876 0.3095 0.9127 
24-Feb-07 116614350 -0.2721 0.5045 0.1804 0.3150 0.8930 
11-Sep-07 117167175 -0.2480 0.5103 0.1843 0.3055 0.9098 
01-Jan-08 119514825 -0.1905 0.5108 0.1981 0.2911 0.9503 
19-Jan-09 116465400 -0.2211 0.5145 0.1891 0.2965 0.9301 
30-Jul-09 116096400 -0.1732 0.4904 0.2109 0.2987 0.9615 
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Figure 6.1 Lake extent and its uncertainty during rainy season, ASTER images 
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Figure 6.2 Lake extent and its uncertainty during dry season, ASTER images 
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Figure 6.3 Lake extent and its uncertainty over time, all seasons, ASTER images 
 
Figure 6.1 and 6.2 show the variations in spatial extent of the lake during rainy and dry season 
respectively between 2001 and 2009. The right graphs in the same figures represent the uncertainty in 
lake extent due to its vague definition and uncertainty in measurements during time of observation. 
Figure 6.3 shows the variation in lake extent in all seasons of the year. The scatterplots show that 
there is a falling trend in spatial extent of the lake from 2001 to 2009.   
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Having identified that there is a falling trend, the next procedure was to estimate the best fit line 
representing the falling trend from the measurements performed. In this case I performed linear 
regression modelling in which least squares method was used to estimate best fit parameters. 

6.2.1. Linear regression modelling: ASTER sensor 

Regression analysis is the statistical technique of mathematically finding relationships between 
variables and often used to predict the future. In this analysis, it is clearly seen from figure 6.3 that the 
lake extent varies with time which mathematically can be expressed as, 
 

( )1.610 iii bbY ε+Χ+=  

 

Where; 0b  and 1b  are parameters to be estimated,  iε  are statistical errors assumed to be independent 

and normally distributed with mean 0 and standard deviationσ , iY is regression line used to predict 

future values from measurements iΧ . Assuming 
^

0b  and 
^

1b  to be the estimates of 0b  and 

1b respectively and the residual ii bbY Χ+=
^

1

^

0

^

, the best fit line is the one which minimizes the sum of 

the squares of the residuals.  
In this study the Y is a trend or prediction line which should be estimated in such a way that the sum 
of the squares of the residuals is minimal and this can be expressed mathematically as 

2
^

)( iYY∑ −  = minimal. The idea is to estimate a set of parameters that characterize the fitted linear 

model and test the significance of the model, that is, whether it perfectly models the variability in the 
predicted values given sample measurements. The regression analysis was performed in Excel using 
available regression tool. In this case the measurements were arranged according to seasons and 
performing analysis while observing the parameters of the fitted model. Table 6.3 illustrates some of 
the quality assurance parameters of the fitted model with an emphasis on the P-value and the adjusted 
R-square. These values are only for the estimated coefficient as this is the most important parameter 
that influences the trend line.  
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Lake extent: Rainy season
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Lake extent: Dry season
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Lake extent over time
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Figure 6.4 Lake extent trend from 2001 to 2009 from ASTER images 
 
Table 6.3 Quality of the fitted trend line in different seasons: ASTER sensor 

Date 2R  Adjusted 2R  t-statistic F-statistic p-value 

Rainy season 0.97 0.96 -9.85 97.12 2.22x 310−  
Dry season 0.90 0.89 -7.99 63.92 9.15x 510−  
Over time 0.91 0.90 -11.13 123.97 1.00x 710−  

 
Table 6.3 shows 96%, 89% and 90% of the variability in the data used to estimate the trend in lake 
extent during rainy season, dry season and over time respectively is well represented by the model. 
However, the P-values used to test the null hypothesis, in this case, no trend in lake extent decreases 
with an increase in the number of measurements. Therefore, the trend in lake extent can be studied in 
all seasons of the year.   
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6.3. Time series analysis in lake extent using ETM+ images  

Table 6.4 and 6.5 present information about the lake extent as extracted from ETM+ images. Table 
6.4 shows information during rainy season whereas table 6.5 indicates information during dry season. 
Looking at the column containing the area of the lake at a point in time, spatial extent changes over 
time in both seasons. The next step was to find out the mathematical model of this variation. The first 
step was to plot the scatterplots of the measurements to identify their distribution over time. 
 
Table 6.4 Weighted estimated lake extent information: Rainy season, ETM+ images 

Date NDVI Green NIR Red Area/m2 #Pixels Membership 
23-Oct-99 -0.3618 0.2274 0.0873 0.1858 127221300 141357 0.8953 

12-Oct-01 -0.3595 0.1901 0.0894 0.1897 124294275 138105 0.9465 

15-Oct-02 -0.4589 0.2296 0.0721 0.1943 123316650 137019 0.9992 

02-Dec-02 -0.4512 0.2452 0.0716 0.1890 123318675 137021 0.9996 

 
Table 6.5 Weighted average lake extent information: Dry season, ETM+ images 

Date NDVI Green NIR Red Area/m2 #Pixels Membership 
27-Jan-00 -0.1051 0.2990 0.1891 0.2333 128388825 142654 0.9929 
12-Feb-00 -0.5028 0.2255 0.0631 0.1909 126134100 140149 0.9197 
15-Mar-00 -0.4695 0.2144 0.0690 0.1912 126387450 140431 0.7031 
22-Aug-00 -0.4989 0.2222 0.0660 0.1980 124987050 138875 0.8528 
14-Feb-01 -0.4746 0.2249 0.0673 0.1893 123016725 136685 0.9296 
25-Aug-01 -0.4935 0.2218 0.0693 0.2041 123837750 137598 0.8588 
13-Sep-02 -0.4818 0.2322 0.0693 0.1980 122213250 135793 0.9467 
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Figure 6.5 Lake extent and its uncertainty: Rainy season, ETM+ images 
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Figure 6.6 Lake extent and its uncertainty: Dry season, ETM+ images 
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Figure 6.7 Lake extent and its uncertainty over time, all seasons, ETM+ images 
 
The scatterplots in figures 6.4 to 6.6 indicate that there is a falling trend in lake extent between 1999 
and 2002 as observed using ETM+ sensor. However, lake extent is more uncertain during dry season 
compared to rainy season. The next step was to estimate the linear model of the falling trend in lake 
extent. Therefore, linear regression modelling was performed in which least squares method of 
parameter estimation was again applied. 

6.3.1. Linear regression modelling: ETM+ sensor 

In this section, equation 6.1 was adopted. The following figures show the fitted regression line for 
rainy season, dry season and over time (combination of measurements made between 1999 and 2002). 
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Lake extent during rainy season
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Lake extent over time
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Figure 6.8 Lake extent trend from 1999 to 2002 from ETM+ images, all seasons 
 
Table 6.6 Quality of the fitted trend line in different seasons: ETM+ sensor 

Date 2R  Adjusted 2R  t-statistic F-statistic p-value 

Rainy season 0.99 0.98 -12.28 150.70 0.01 
Dry season 0.76 0.72 -4.02 16.15 0.01 

Over time 0.74 0.71 -5.08 25.76 6.67x 410−  
 
From table 6.6 it is clearly seen that 98%, 72% and 71% of the variability in the data used to estimate 
trend in lake extent during rainy season, dry season and combined seasons respectively is well 
represented by the fitted linear model. For the case of rainy season, the R-squared value is higher than 
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that of dry season and over time. Actually this is not the best fit because few measurements were used 
to estimate this trend as other images were covered by clouds during this season. However, the P-
value was larger than that over time indicating again that the trend in uncertain lake extent can be 
studied by increasing the number of observations. Looking at the dry season, the P-value is larger than 
for the rainy season and for all seasons together. Again referring to membership column of table 6.5, 
the lake extent was more uncertain (0.70) compared to other dates. This might have influenced the 
estimated trend in lake extent though the number of observations increased. 

6.4. Time series analysis using two sensors: ASTER and ETM+ sensor 

While section 6.2 and 6.3 discussed the analysis of time series in lake extent from individual sensor, 
this section analyzes the trend identified in both sections by combining the two sensors by considering 
seasons and over time. In all cases the scatterplots for measurements are plotted to visualize the nature 
of the data before regression analysis.  
 

     
Figure 6.9 Lake extent  and its uncertainty during rainy season : ASTER and ETM+ combined 
By visual inspection of figure 6.9, there is an offset between the two datasets. The dataset from ETM+ 
sensor is lower than that from ASTER sensor. However, it is difficult to conclude that the offset is 
systematic since there is a little overlap in time of acquisition.  

     
   Figure 6.10 Lake extent and its uncertainty during dry season: ASTER and ETM+ combined 
Figure 6.10 also shows that there is an offset between the two datasets. The dataset from ETM+ 
sensor is again lower than dataset from ASTER sensor. 
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Figure 6.11 Lake extent  and its uncertainty from 1999 to 2009 :Observed from two sensors 
 
Figure 6.11 shows that there is an offset between the two datasets in all seasons of observation. 
However, the two datasets are linearly correlated as an indicator of representing the same phenomena. 
 
Considering the two datasets as different random samples, I tested their correlation by determining the 
correlation coefficient. Table 6.7 shows the correlation coefficients in two seasons and all seasons 
combined. 
  
Table 6.7 Correlation between datasets during rainy season, dry season and all seasons in total 

Season 
Correlation coefficient 

Area Membership 
Rainy 0.77 0.54 
Dry 0.85 0.28 
All 0.71 0.04 

 
Table 6.7 shows that the two datasets are positively correlated in all seasons. However, there is very 
weak positive correlation in the uncertainty within lake extent as indicated by the correlation 
coefficient when datasets acquired in dry and rainy seasons are combined. This implies that what is 
observed by one sensor at one time is different from that observed by the sensor at the same time. But 
this cannot be the reliable conclusion as there is no enough overlap between these datasets. Based on 
the evidence that the two datasets are positively correlated, I perfomed linear regression analysis to 
estimate the trend in lake extent by combining observations from the two sensors. 

6.4.1. Linear regression modelling of lake extent trend from two sensors 

In this section similar procedures for linear regression analysis as described in sections 6.3 and 6.4 
were followed. Figures 6.12 and 6.13 illustrate the data points used to estimate the best fit trend line 
using measurements from two sensors. In figure 6.12 the trend in lake extent is estimated by 
combining measurements obtained during dry and rainy season. The left plot of the figure shows the 
estimated trend in lake extent by combining observations from ASTER and ETM+ sensor during rainy 
season while the right plot of the same figure shows the trend in lake extent during dry season. The 
plot in figure 6.13 shows the trend in lake extent from combined observations as acquired by the two 
sensors between 1999 and 2002 for ETM+ sensor and 2001 and 2009 for ASTER. By visual 
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inspection it is seen that by combining the observations from both sensors the slope of the line 
changes.  

     
Figure 6.12 Lake extent trend during rainy and dry season: Two sensors combined 

 
Figure 6.13 Lake extent trend from 1999 to 2009: ASTER and ETM+ sensor combined 
 
Table 6.8 Quality of the fitted trend line using measurements from two sensors 

Date 2R  Adjusted 2R  t-statistic F-statistic p-value 

Rainy season 0.98 0.97 -17.56 308.48 4.78x 710−  
Dry season 0.91 0.90 -11.61 134.72 1.43x 810−  
All seasons 0.92 0.91 -16.00 256.01 5.87x 1410−  

 
In table 6.8, while 97% of variability in the datasets from two sensors during rainy season has been 
well represented by the model, 90% of the variability during dry season is represented by the model. 
Combining the two datasets in all seasons, 91% of the variability in the dataset is well represented by 
the fitted model. In addition, the p-value decreases giving evidence of goodness of the fitted model. 
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6.5. Comparing results from time series analysis 

Table 6.9 gives an overview of the results from lake extent time series analysis. During rainy season 
the lake extent trend is more definite than dry season as indicated by adjusted R-square values from 
observations by the two sensors. During dry season the lake extent is more uncertain as indicated by 
the membership function values. This has also impact on estimating trend for future prediction as 
unpredictable seasonality at the boundary of the lake results into difficulty to identify boundary points 
at that time. Because of this seasonality, what is observed at one time is different from what will be 
observed at another time.  
 
Table 6.9 Overview of results for ASTER, ETM+ and combined sensors 

Date 
Adjusted 2R ,p-value 

ASTER 
Adjusted 2R , p-value 

ETM+ 
Adjusted 2R ,p-value 

two sensors 

Rainy season 0.96, 2.22x 310−  0.98, 1.00x 210−  0.97, 4.78x 710−  
Dry season 0.89, 9.15x 510−  0.72, 1.00x 210−  0.90, 1.43x 810−  
All seasons 0.90, 1.00x 710−  0.71, 6.67x 410−  0.91, 5.87x 1410−  
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7. Discussion, conclusions and 
recommendations 

7.1    Discussion 

Increasingly, available remotely sensed data at irregular time interval can be used to study changes 
taking place within our planet Earth which may be difficult to detect using a single sensor/platform 
combination. However, the use of these datasets requires appropriate image mining methods in which 
uncertainty inherent in each dataset can be explicitly quantified and stated. In addition special 
attention is required in observing impact of uncertainty in datasets and object definition on studying 
underlying trend in these objects. The results of this study indicate that natural and unpredictable 
seasonal variations in water level have an impact on the trend in lake extent. It was observed when 
combining measurements from different seasons there was decrease in slope of the fitted trend line. 
 
In this study ASTER and ETM+ sensors onboard Terra and Landsat7 satellites respectively were used 
to analyse changes in lake extent and quantify its uncertainty over time. The first approach in 
understanding the definition of lake extent was to review the definition of the lake.  
 
From the definition of the lake and wetlands, uncertainty in lake extent definition at one point in time 
is caused by the interaction of water and ecological units existing at the boundary of the lake. With a 
focus to the study area and available data, these ecological units were identified as floating vegetation, 
papyrus swamps with some emergent and submerged vegetation while the papyrus swamps share 
common boundary with grassland dominated by scrub [33].  
 
Object-oriented image analysis was used to extract meaningful information corresponding to the lake 
extent. The procedure starts with transformation of raster grids into homogeneous regions that 
correspond to (part of) real world objects through the process of segmentation. In this study, 
multiresolution segmentation (bottom-up region growing) algorithm available in Definiens Developer 
software was used. Different image objects optimization parameters such as colour and shape 
parameters were used to obtain meaningful image objects that suit into subsequent analysis in lake 
extent trend and quantification of its uncertainty. Although there is great flexibility in this step, the 
problem is on obtaining the right set of parameters which give meaningful image objects of interest. 
 
The scale parameter during image segmentation has greater impact on the resulting image objects. 
Large value of this parameter results into segments with large size which sometimes are not 
meaningful for a given application. However, the parameter is useful as it allows hierarchical image 
classification thus optimizing extracted information.  
 
The shape parameter has also an impact on the resulting image objects. The compactness parameter 
results into compact shapes. The larger value of this parameter results into image objects with large 
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borders which sometimes may not be meaningful to a given application. The smoothing parameter 
results into image objects with smoothed borders. The magnitude of this parameter will depend on the 
shape of the objects to be extracted from the image.  
  
Fuzzy rule-based classifiers were developed in Definiens software and applied to images from two 
sensors. The rules were developed based on image objects attributes resulting from segmentation 
routine. With these attributes, there is a great possibility of optimizing class description rather than 
depending on single attributes and minimizing uncertainty inherent within pixels. In addition, fuzzy 
logics were used to quantify this uncertainty. 
 
The problem in this study was to validate the results of classification due to lack of sufficient 
reference dataset and field visit. Three procedures were adopted after classifying the image, namely 
looking at the class stability, visual inspection in ERDAS Imagine software after overlaying classified 
image over original image and consideration of NDVI values in Arc Map based on the assumption 
that all image objects with NDVI< 0 constitute to water. 
 
 
From time series analysis, the lake extent has been diminishing from1999 to 2002 in all seasons of the 
year as observed by ETM+ sensor. The same falling trend in lake extent was observed by ASTER 
sensor from 2001 to 2009 in all seasons of the year. On the other hand, it was also clear that the lake 
extent was more uncertain during dry season than the rainy season as indicated by the membership 
function values. This is possible because during dry season water level decreases and some reflections 
from the bed of the lake are recorded by the sensor. In addition during dry season it might be that 
some submerged vegetation emerges due to water level fall and hence what is observed is not pure 
water but a mixture of water and vegetation resulting into low values of membership. However, it is 
difficult to make a conclusion about the uncertainty of lake extent during rainy season due to existing 
wetlands that also change with time. This is because during rainy season, water level rises and the 
areal extent of the lake increases since some parts of the wetlands are submerged causing uncertainty 
in lake extent at that time. Further consideration for reliable conclusion may be that we collect 
information about the history of that lake and its surrounding wetlands such as abundance and 
distribution of vegetation species surrounding the lake. 
 
Combining observations from two sensors indicated some improvement in the fitted model as 
explained by an increasing index of correlation (R squared) from 90% to 91 and decreasing P-value. 
However, we cannot rely on this result to conclude that the two sensors represent the same 
phenomena since few observations from ETM+ were available for this study. In addition to this there 
was little overlap between the ETM+ and ASTER datasets to study the correlation between the two 
datasets.  For further investigation on the correlation of these two sensors, there is a need to find out 
the means of correcting existing data gaps due to SLC failure by ETM+ since 2003. 
 
Now the question to be answered based on the results is: why does the size of the lake change over 
time? According to literature, over centuries, there have been variations in climate and enormous 
shifts in rainfall patterns as evidenced on the meteorological data at Naivasha [48]. In addition, there 
is evidence that period of drought induced famine in the past were associated with low lake levels at 
Naivasha [48]. This implies that there might be migration of people, who depend on agriculture, from 
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drier areas to wetlands within Lake Naivasha basin in search arable land thus disturbing equilibrium 
in water cycle system. It is also believed that there is natural and unpredictable fluctuation of water 
levels which the lake has been experiencing, resulting in a drawn down zone of several vertical meters 
[24]. It is again believed that there is high rate of water abstraction from the lake due to various 
agricultural activities surrounding the lake [9]. 

7.2 Conclusions 

The over all objective of this research was to model change in lake extent and its uncertainty given 
observations from multiple sensors. The determination of change in lake extent was achieved by 
estimating the size of the lake at one moment in time and tracking the same size on a series of images 
from two sensors using object oriented image analysis with fuzzy logics. Images from ETM+ sensor 
onboard Landsat7 and ASTER sensor onboard Terra were used to study the underlying trend in 
uncertain lake extent. The two sensor platforms are in the orbit with same temporal resolution of 16 
days and dynamic range of 8 bits though they differ in spatial and spectral resolution.  
 
Object oriented image analysis when combined with fuzzy logics can give reliable results appropriate 
for a particular application. However, the problem is validation of results especially when a series of 
images is mined together to derive meaningful information about environmental phenomena.   
 
From the results of image analysis and classification, the lake extent varied from 124176150 to 
117136800 m2 during rainy season as observed by ASTER sensor from 2002 to 2009. The uncertainty 
in lake extent varied between 0.92 and 0.96. During dry season, the lake extent varied from 
125117775 to 116096400 m2 while uncertainty varied between 0.89 and 0.97 as observed by ASTER 
sensor from 2001 to 2009. 
 
The results from ETM+ images acquired during rainy season showed that the lake extent varied from 
127221300 to 123316650 m2 between October 1999 and October 2002. There was an increase in lake 
extent from 123316650 to 123318675 m2 between October 2002 and December 2002. Uncertainty in 
all time intervals varied between 0.90 and 1. During dry season, the lake extent varied from 
128388825 to 123016725 m2 between January 2000 and February 2001 while it increased to 
123837750 m2 on August 2001. There was decrease in size to 122213250 m2 as observed on 
September 2002. In all cases the uncertainty in lake extent varied between 0.70 and 0.99. 
 
Comparing results of linear regression analysis by individual sensor and when combined, the falling 
trend improved from R-squared 90% to 91% while the P-value decreased enormously from 

1.00x 710− and 6.67x 410− for ASTER and ETM+ respectively to  5.87x 1410− giving evidence that the 
trend in uncertain lake extent can be best studied by combining these sensors thus increasing the 
number of required observations.  

7.3 Recommendations 

For improved results by adopting the methodology of this study, I recommend the following: 
• Although the results of this study are promising, few remotely sensed data from ETM+ sensor 

were involved. This is because of data gaps since 2003 to date due to scan line corrector 
(SLC) failure. It could be a good idea to find out how to correct for dropout lines and combine 
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the two sensors within the same time span and compare the results. Therefore, if there are 
measurements from both sensors in the same time span, then we can test the correlation of the 
two trend lines from both sensors for strong evidence that the two sensors represent the same 
phenomenon 

• If the correlation is good, then we can think of combining another sensor such as MODIS 
onboard Terra satellite and observe whether there is significant improvement in the trend 
within the uncertain objects such a the changing lake extent and forest boundary. However, it 
is important to note that MODIS sensor has course resolution compared to ASTER and 
ETM+. 

• Furthermore, I recommend that for improved classification results at one moment in time, the 
following datasets are important 

o The digital elevation model (DEM) can be incorporated after classification especially 
when tracking those image objects that constitute to total size of the lake. This is 
because the lake is shallow with depth of 4 m on average where some deep-rooted 
vegetation can grow. 

o In addition to the DEM of this area, I recommend to have bathymetric data portraying 
the depth of the lake bed at one moment in time. If these models of lake depth and 
DEM are combined together, the certainty in boundary points for the lake can 
certainty be determined at that time. Thus, the monitoring activities can follow to 
track changes over time in the lake extent 

o In addition, it is important to have a complete history about the origin of the lake as 
well as the origin of the surrounding wetlands since the definition of the latter by the 
Ramsar convention may cause some ambiguity especially for shallow lakes as with 
time they turn into wetlands  

• For concise understanding of underlying trend within geographical phenomena that are 
uncertain in nature such as lake extents, it is of vital importance to have dataset such as 

o Climate information about an area under study as this will improve the certainty in 
the derived information from remotely sensed data 

o Land use information which again can improve the confidence in information 
extracted from images. 

o Hydrology information about all streams that discharge water to the lake is of great 
importance in the study of trend in lake extent.  

• While analysing trend in lake extent, all observations were given equal weight. However, each 
observation had its own uncertainty. For further investigation one may consider propagation 
of the uncertainty in modelling trend in lake extent by applying membership values to all 
residuals and observe the impact of this uncertainty in the resulting trend. 

• Lastly, object oriented image analysis software like Definiens Developer is very expensive to 
purchase which could not be a good idea for research purpose. However, there are free 
software such as SPRING 5.0 developed by the National Institute for Space Research in 
Brazil (http://www.dpi.inpe.br/spring/english/index.html). Although I am not sure whether it 
can involve fuzzy set concepts in classification, one could try and see if it works. 

http://www.dpi.inpe.br/spring/english/index.html
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1. The Lake Naivasha Riparian Association (LNRA): 
http://web.ncf.ca/es202/naivasha/who_are_we.html, accessed: 2010-02-08 

2. The Lake Naivasha Riparian Association (LNRA): 
http://web.ncf.ca/es202/naivasha/links.html, accessed: 2010-02-08 

3. Satellite imaging corporation: http://www.satimagingcorp.com/satellite-sensors/aster.html, 
accessed: 2009-09-20 

4. Satellite imaging corporation: http://www.satimagingcorp.com/satellite-sensors/landsat.html, 
accessed: 2009-09-20 

5. USGS: http://glovis.usgs.gov, accessed: 2009-10-07 
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Appendices 

Accuracy assessment ASTER images during dry season 

22-Jan-01 
Class Objects Mean StdDev Minimum Maximum 

Vegetation 120 0.5592 0.2806 0.1054 0.9801 

Adjacent to water 6 0.5016 0.3301 0.1369 0.9575 

water 84 0.9778 0.0139 0.9313 0.9993 

01-Feb-02 
Class Objects Mean StdDev Minimum Maximum 

Vegetation 53 0.3864 0.2473 0.1022 0.8968 

Adjacent to water 47 0.4699 0.3320 0.1034 1.0000 

water 120 0.9656 0.0260 0.8883 0.9997 

17-Feb-02 
Class Objects Mean StdDev Minimum Maximum 

Vegetation 57 0.4204 0.2513 0.1009 0.9727 

Adjacent to water 56 0.4428 0.2959 0.1008 1.0000 

water 114 0.9649 0.0271 0.8937 1.0000 

15-Aug-03 
Class Objects Mean StdDev Minimum Maximum 

Vegetation 46 0.4541 0.2635 0.1019 0.9903 

Adjacent to water 56 0.3652 0.2594 0.1038 1.0000 

water 116 0.9635 0.0337 0.8973 0.9999 

24-Feb-07 
Class Objects Mean StdDev Minimum Maximum 

Vegetation 118 0.4779 0.2734 0.1000 0.9511 

Adjacent to water 16 0.4303 0.2494 0.1224 0.8832 

water 119 0.9600 0.0412 0.8688 0.9999 

11-Sep-07 
Class Objects Mean StdDev Minimum Maximum 

Vegetation 116 0.4414 0.2571 0.1009 0.9746 

Adjacent to water 14 0.4306 0.2752 0.1070 1.0000 

water 126 0.9491 0.0389 0.8923 0.9989 

01-Jan-08 
Class Objects Mean StdDev Minimum Maximum 

Vegetation 78 0.3571 0.2522 0.1026 0.9709 

Adjacent to water 44 0.4809 0.3213 0.1023 1.0000 

water 185 0.9753 0.0210 0.9028 0.9998 
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19-Jan-09 
Class Objects Mean StdDev Minimum Maximum 

Vegetation 53 0.3098 0.2346 0.1002 1.0000 

Adjacent to water 66 0.4690 0.3021 0.1010 1.0000 

water 188 0.9747 0.0244 0.9022 1.0000 

30-Jul-09 
Class Objects Mean StdDev Minimum Maximum 

Vegetation 33 0.3407 0.2325 0.1024 0.9953 

Adjacent to water 47 0.4664 0.2701 0.1032 1.0000 

water 131 0.9741 0.0211 0.9041 0.9995 

 
Accuracy assessment: ASTER images during rainy season  

29-Jun-02 
Class Objects Mean StdDev Minimum Maximum 

Vegetation 35 0.4039 0.2529 0.1012 0.8989 

Adjacent to water 21 0.4078 0.3090 0.1108 1.0000 

water 166 0.9479 0.0313 0.8996 0.9987 

15-Oct-02 
Class Objects Mean StdDev Minimum Maximum 

Vegetation 42 0.4011 0.2373 0.1109 0.9518 

Adjacent to water 22 0.3207 0.1871 0.1057 0.8058 

water 148 0.9451 0.0321 0.9024 0.9992 

01-Nov-05 
Class Objects Mean StdDev Minimum Maximum 

Vegetation 48 0.4453 0.2570 0.1061 0.9686 

Adjacent to water 33 0.3765 0.2569 0.1019 0.9775 

water 117 0.9644 0.0303 0.8971 0.9998 

01-Apr-06 
Class Objects Mean StdDev Minimum Maximum 

Vegetation 71 0.4605 0.2488 0.1009 0.9781 

Adjacent to water 5 0.7015 0.2488 0.3953 0.9286 

water 78 0.9695 0.0185 0.9097 0.9989 

23-Nov-07 
Class Objects Mean StdDev Minimum Maximum 

Vegetation 91 0.3816 0.2452 0.1049 0.9723 

Adjacent to water 39 0.5021 0.3017 0.1001 1.0000 

water 142 0.9740 0.0259 0.9096 0.9999 

27-Dec-08 
Class Objects Mean StdDev Minimum Maximum 

Vegetation 89 0.3670 0.2643 0.1066 0.9790 

Adjacent to water 57 0.3605 0.2515 0.1030 1.0000 

water 152 0.9816 0.0152 0.9156 1.0000 
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ETM+ images 
Accuracy assessment: ETM+ images during dry season  

27-Jan-00 
Class Objects Mean StdDev Minimum Maximum 

Water 33 0.8957 0.2731 0.1088 1.0000 

Not water 0 0.0000 0.0000 0.0000 0.0000 

Adjacent to water 32 0.6910 0.3001 0.1073 1.0000 

12-Feb-00 
Class Objects Mean StdDev Minimum Maximum 

Water 23 0.8769 0.1494 0.3710 0.9968 

Not water 37 0.2750 0.1997 0.1093 0.7942 

Adjacent to water 22 0.7781 0.2108 0.3281 1.0000 

15-Mar-00 
Class Objects Mean StdDev Minimum Maximum 

Water 38 0.6296 0.2210 0.2264 0.9258 

Not water 16 0.2707 0.1635 0.1032 0.7127 

Adjacent to water 27 0.7088 0.2297 0.2258 0.9891 

22-Aug-00 
Class Objects Mean StdDev Minimum Maximum 

Water 34 0.7918 0.2006 0.3029 1.0000 

Not water 20 0.2714 0.1575 0.1059 0.6055 

Adjacent to water 28 0.8189 0.2194 0.2296 0.9882 

14-Feb-01 
Class Objects Mean StdDev Minimum Maximum 

Water 27 0.9207 0.0688 0.7272 0.9934 

Not water 456 0.3165 0.2106 0.1002 0.9521 

Adjacent to water 25 0.7406 0.2541 0.1157 1.0000 

25-Aug-01 
Class Objects Mean StdDev Minimum Maximum 

Water 35 0.7902 0.2185 0.1034 0.9811 

Not water 41 0.2287 0.1630 0.1026 0.7707 

Adjacent to water 28 0.7525 0.2615 0.1669 1.0000 

13-Sep-02 
Class Objects Mean StdDev Minimum Maximum 

Water 40 0.8893 0.1945 0.1643 1.0000 

Not water 31 0.2648 0.1656 0.1012 0.6742 

Adjacent to water 31 0.7575 0.2607 0.1331 1.0000 
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Accuracy assessment: ETM+ images during rainy season  

23-Oct-99 
Class Objects Mean StdDev Minimum Maximum 

Water 51 0.7350 0.2778 0.1156 1.0000 

Not water 153 0.4123 0.2818 0.1010 0.9739 

Adjacent to water 16 0.8257 0.2269 0.1449 0.9961 

12-Oct-01 
Class Objects Mean StdDev Minimum Maximum 

Water 50 0.8981 0.1882 0.1287 0.9991 

Not water 68 0.5932 0.3058 0.1249 1.0000 

Adjacent to water 5 0.7097 0.2361 0.4193 1.0000 

15-Oct-02 
Class Objects Mean StdDev Minimum Maximum 

Water 54 0.9596 0.1314 0.3681 1.0000 

Not water 119 0.9403 0.1374 0.2782 1.0000 

Adjacent to water 12 0.5411 0.3146 0.1341 0.9817 

02-Dec-02 
Class Objects Mean StdDev Minimum Maximum 

Water 34 0.8850 0.2637 0.1239 1.0000 

Not water 190 0.9060 0.2120 0.1172 1.0000 

Adjacent to water 0 0.0000 0.0000 0.0000 0.0000 
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