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Abstract 

Optimization of energy is a challenging issue in Markov Random Field (MRF) based remote sensing 
image analysis. Traditional energy minimization methods such as Iterated Conditional Modes (ICM) 
and Simulated Annealing (SA) are widely used to deal with this problem. ICM does not provide a 
globally best estimation but it concentrates on local area and it does not provide optimal solution. SA 
is used to find globally optimal solutions for MRF based image analysis problems which allow 
approximating the global minimum of energy function that produces better quality of solutions, but at 
it takes long computational time to approximate the global minimum. Therefore, in order to address 
this problem faster energy minimization methods from vision are proposed. The applicability of graph 
based methods such as swap-move and expansion-move algorithms in MRF based remotely sensed 
images have been proposed and studied in this research.       
 
A number of methods are proposed that address multi label (class) image classification problem, which 
make use of class separability measures. Based on these measures classification trees are constructed. 
Each level of tree nodes represents a particular class. These methods show how the sequence (order) of 
tree nodes can have an impact on classification result. The most appropriate method among them is 
selected that best represents the reality. In addition, a method is proposed that used to optimize the 
smoothness values based on “trial and error” method. Its main issue is to identify the optimal 
smoothness value, i.e. the value that is most suitable for specific spectral classes. The results show that 
these smoothness values are more sensitive to spectral classes that are least separated, and less 
sensitive to those that most separated. The “least” and “most” separated issues are based on divergence 
- class separability measures.   
 
The results of swap-move and expansion-move algorithms are compared with MLC, ICM and SA. 
Different smoothness parameters are chosen and tested for each energy minimization method. The 
results of swap-move and expansion-move algorithms are similar to SA annealing with logarithmic 
cooling schedule, which is considered able to approximate the global optimal solution. In terms of 
computation, these algorithms outperformed the SA algorithms and in some cases ICM also. In 
comparison with MLC, the swap-move and expansion-move algorithms produce better results.  
  
In conclusion, swap-move and expansion-move algorithms show that they are applicable in MRF 
based remote sensing image classification. Their performances, both in terms of computation and 
classification accuracy are considered sufficient to address the research problems. Although in some 
cases they are not able to fully detect trees, mainly due to similarity in spectral properties of trees and 
grassland classes. In addition, the proposed methods for construction of classification tree and 
optimising smoothness value showed their significant importance in addressing a multi label image 
classification problem.            
 
Key words: Markov Random Field, local optimization, global optimization, graph cuts, swap-move, 
expansion-move, performance evaluation, computational time, Simulated Annealing (SA), logarithmic 
cooling schedule, exponential cooling schedule, classification tree, tree nodes, optimizing of 
smoothness value, least separated class, most separated class .    
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1. Introduction   

1.1. Background and Problem statement  

Many organizations such as national mapping agencies, cartographic institutions, and geological 
survey agencies are interested in extracting land cover information from remote sensing images that 
can be used to plan and manage the environment both at local and global scales. Number of image 
processing and analysis techniques proposed that help to extract information form these images. In 
hard classification approaches each pixel is associated with a single land cover class. Using these 
techniques the classification results may still contain uncertainty, because of the occurrence of mixed 
pixels in coarse spatial resolution images. Soft classification techniques address these problems and 
their results are more appropriate to represent the land cover than the one produced by hard 
classification. But even with soft classification techniques it is still difficult to represent the reality. 
More promising approaches for remote sensing image analysis are developed which not only 
considering spectral signatures but also contextual information. The spatial context is very important 
for the visual interpretation of images. The suitable use of context allows the elimination of possible 
ambiguities, the recovery of missing information and correction of the errors. Using the concept of the 
context, pixels are considered to have a relationship with their neighbours. This relationship is treated 
as being statistically dependent.     
 
Markov Random Fields (MRF) are considered as relevant contextual image analysis tools. The use of 
both spectral and contextual information produces better results for image analysis. Contextual 
information can be defined as how the probability of presence of one object (or objects) is affected by 
its (their) neighbours.  During the process of analysis they are able to integrate the use of contextual 
information associated with the image data.      
 
One of the important tasks in MRF based image analysis methods is a minimization of an energy 
function that lead to better quality of solutions.  Simulated annealing for energy minimization in MRF 
based image analysis is considered as an appropriate approach to deal with this problem. SA was 
proposed first by Kirkpatrick [1]. “It is a stochastic algorithm used for combinatorial optimization and 
it simulates the physical annealing procedure in which a physical substance is melted and then slowly 
cooled down in search of a low energy configuration” [2]. For simplicity, throughout this proposal I 
refer to Simulated annealing for energy minimization in MRF based image classification as just SA. 
There are no analytical methods that are able to find globally optimal solutions for MRF based image 
analysis problems, except for very simple ones. The main reason for that is the huge number of 
variables, i.e pixels in the images. Simulated annealing allows approximating the global minimum of 
energy function that lead to better quality of solutions. There are some advantages and disadvantages 
of using SA approach. The advantages are following: simulated annealing is an intelligent random 
search method and it can deal with many constrains, nonlinear models and noisy data. Also it is robust, 
flexible and has an ability to approach a global optimality [2]. The main disadvantages of this 
approach is that it requires long computations; in order of tens of thousands of iterations (depending 
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on image analysis problem) are required to approximate the global minimum [3]. Computation speed 
of SA is proportional to the number of pixels in the image.      
 
In the field of computer vision, several algorithms have been developed and proposed that are much 
faster than simulated annealing. Graph cuts algorithms are among those algorithms. Graph cuts are 
considered as efficient energy minimization algorithms in computer vision applications [4]. These 
algorithms are widely used in image restoration, segmentation, voxel occupancy and stereo [5]. 
Boykov and Kolmogorov made a significant contribution in improving and developing new graph cut 
algorithms [5]. They studied and made an experimental comparison of min-cut/max-flow algorithms 
for energy minimization in computer vision. The implementation part is available upon request for 
research purposes. 
 
The graph cuts methods pose conditions on energy function. They can be applied in nominal 
resolution classification approach in remote sensing images, because they have been applied graph 
cuts on a problem with the similar prior energy function [5]. They use α - expansion-move algorithm 
which allows updating the pixel value not in pixel by pixel based but for a group of pixels at once. It is 
one of the main reasons that lead to faster performance than in SA approach. Perhaps this is an 
opportunity to obtain the segments, group of spatial adjacent pixels from the same land cover class, 
which means that the classification results can be represented as objects. Objects are usually more 
informative than pixels for the users. This gives sufficient motivation for exploring and investigating 
the applicability of these methods in remote sensing image analysis, which can be considered and 
addressed in the proposed research problem.     

1.2. Research identification  

A number of studies have been carried out in computer vision, where several energy minimization 
algorithms such as graph cuts are developed to solve the image analysis problems. Until now these 
algorithms did not receive sufficient attention in MRF based remote sensing image analysis literature.   

1.2.1. Research objectives  

The overall objective of this research is to explore and study the graph cuts based energy minimization 
algorithms in MRF based remote sensing image classification and compare the results with existing 
energy minimization algorithms such as Simulated Annealing (SA) and Iterated Conditional Modes 
(ICM).  
 
The following are the specific research objectives:  
 

• to explore and analyze the applicability of graph cuts algorithms in MRF based Remote 
Sensing image classification. 

 
• to identify the most appropriate graph based algorithms that can be applied in MRF based 

Remote Sensing image classification. 
 

• to evaluate the performance of the applied algorithms and compare the results with ICM and 
SA.  
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1.2.2. Research questions   

• What does the applicability means in terms of energy minimization in MRF based remote 
sensing image analysis?  

• Graph cuts algorithms are mainly applied on regular colour photographs (RGB) and medical 
images. Are the algorithms applicable for multiband remote sensing images? 

• Graph cuts algorithms are widely used to solve binary image segmentation problems. How to 
address multi label (class) MRF based remote sensing image classification problem?  

• SA produces sufficient enough classification accuracy. Do the graph cuts algorithms achieve 
similar to SA classification accuracy? 

• ICM is considered fast energy minimization method. What is the performance (in term of 
computation time) of the applied algorithms compared to ICM?  

 

1.2.3. Innovation aimed at    

The research is entirely innovative since it aims at improving the performance of remotely sensed 
image classification by applying faster energy minimization algorithms from vision.  

1.2.4. Related work    

There are no directly related works have been done in regards to this research problem. Although 
several algorithms have been proposed and tested in computer vision applications that have some 
similarity with remote sensing image classifications. The details on these algorithms are provided in 
the literature review chapter.   

1.3. Project setup   

In this section, the new approach is proposed to address the research problem. 

1.3.1. Method adopted  

 Following is the proposed method that can be considered during the thesis:  
 

• Exploring and investigating the algorithms: The first step is to study, explore and 
investigate the existing energy minimization algorithms both in MRF based remote sensing 
image classification and computer vision applications. Understanding the mathematical 
background of both fields is one of the important tasks at this stage.  

 
• Applicability of graph cuts algorithms in MRF based remote sensing image classification 

and identifying the most appropriate algorithms: In order to find out the applicability of 
the graph cuts algorithms for MRF based remote sensing image analysis, it is important to 
analyse the energy minimization functions, because graph cuts approaches are not applicable 
for all energy functions [6]. Next step is to identify the most appropriate algorithms that 
consider those energy functions which are applicable in MRF based remote sensing image 
analysis. Modification or improvement of graph cuts algorithms will be considered if 
necessary. 
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• Optimization of smoothness parameter. Optimal smoothness parameter value is very 
sensitive to characteristics of land cover classes. At this stage the most appropriate smoothness 
parameter value for each individual land cover class will be defined and tested. The “trial and 
error” method is considered in order to obtain an optimal smoothness parameter for each land 
cover class. 

 
• Construction of classification tree. Since the graph cuts algorithms are used to solve binary 

image segmentation (object of interest and background) problem, in this thesis a method is 
proposed to apply sequences of binary classification that addresses a multi label classification 
problem.  

 
• Remote sensing dataset: at this stage remote sensing dataset will be selected for a specific 

area where the algorithm will be applied and tested. Reference data for that area will be 
needed for validation purposes. The information on dataset and reference data requirements is 
described in sec 4.1.   

 
• Applying and testing the algorithms: The graph based energy minimization algorithms as 

well as the SA and ICM algorithms are applied on MRF based remote sensing images. 
 

• Performance evaluation: After applying the identified energy minimization algorithms on the 
remote sensing images, the results will be assessed. The aim of this research is not only to 
assess the performance (in term of computation time) but also the quality of classification (in 
terms of energy minimization) will be assessed.  

 
• Experimental comparison: In the last stage the classification results of all algorithms will be 

compared.  

1.4. Structure of the thesis   

The first chapter describes the background, problem statement, research identification and adopted 
method. The second chapter discusses about the MRF based image analysis both in remote sensing 
environment and computer vision. It provides number of previous related works on energy 
minimization problem in both fields. Several related works on TS-MRF models are described that 
used to improve the results of remotely sensed image classification. Also some energy 
minimization functions that are used for optimization problems are discussed. Chapter 3 provides 
detail information about the existing energy minimizations methods in both fields including the 
mathematical background that can be used for this research. Chapter 4 provides detail information 
study area and adopted method, including the implementation part. Chapter 5 provides the results. 
Charter 6 discuss about the results and provides comparison analysis of the applied methods. The 
last chapter concludes and provides recommendations including future work.          
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2. Literature Review  

This chapter reviews the previous works related to energy minimization problems both in vision and 
remote sensing fields. The first part of the chapter describes energy minimization methods to solve 
labelling problem in image analysis. A number of related works on energy minimization problem for 
remotely sensed image analysis based on MRF models is described for different application such as 
image segmentation and contextual image classification. Two widely used energy minimization 
algorithms such as Simulated Annealing (SA) and Iterated Conditional Modes (ICM) are discussed 
including their comparison analysis. The second part of this chapter provides some related works on 
energy minimization methods in computer vision. Several graph based algorithms, such as min-
cut/max-flow, swap-move and expansion-move are discussed including the group of energy functions 
that are applicably via graph cuts. Finally, a summary on chapter is provided.             

2.1. Markov Random Fields (MRF) as a contextual image analysis tool    

The contextual constrains are very important for the interpretation of images. They can be derived 
from spectral, spatial and temporal properties [7]. Markov Random Fields theory provides a consistent 
approach for modelling context dependent entities such as image pixels and correlated features. The 
suitable use of context allows the elimination of possible ambiguities, the recovery of missing 
information and correction of errors.  
 
MRF is widely used in remote sensing image processing and analysis such as image segmentation and 
classification, image restoration and reconstruction problems. MRF is considered as a useful tool for 
characterizing contextual information [8], [9]. Using the concept of the context, pixels are considered 
to have a relationship with their neighbours. This relationship is treated as being statistically dependent 
[7].     
 
Number of studies has been carried out with MRF models for image analysis which are discussed in 
the following subsections.   

2.1.1. MRF based models for Remotely Sensed image analysis  

Many researchers used MRF based model to address different issues related to remotely sensed image 
analysis, those include texture analysis, image segmentation and classification, de-noising, pattern 
recognition and other related problems. Different methods are proposed in the literature that addresses 
such problems. This section describes number works related to MRF based models for remotely sensed 
image analyzes. 
 
 Solberg et al [10] proposed a general model based on MRF for multisource classification of remotely 
sensed data where they used and tested a model for synthetic aperture radar (SAR) images, fusion of 
optical images and GIS ground cover data. MRF model was used which can exploit a spatial and 
temporal class dependency properties of the same scene. The temporal aspect of the data was included 
that allowed the proposed model to the class changes between acquisition dates of different images.  
The proposed method was applied on fusing Landsat TM and multitemporal ERS-1 SAR images and 
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in addition GIS ground cover maps were used for land use classification. The proposed method 
showed that MRF model achieved a high accuracy results.  
 
Melgani and Serpico [11] considered an approach to spatio-temporal contextual image classification 
based on MRF model which allows improving the classification accuracy as well as the reliability 
during the classification process by better exploration and using of temporal information. The method 
introduced by the authors is based on the concept of “minimum perturbation” which was implemented 
with pseudo inverse technique of minimization of the sum of squared errors. Multi-temporal dataset 
(Landsat TM and SAR) was used and the experimental results showed an improvement in terms of 
classification accuracy using the MRF based model.       
 
Tso and Olsen [12] proposed a MRF based method which make use of both contextual information 
and multiscale fuzzy line process for classification of remotely sensed imagery. IKONOS 
panchromatic and multispectral data is used to study the applicability of the method. The results show 
that the proposed method, based on the MRF model with the multiscale fuzzy line process, 
successfully generated the patch-wise classification patterns, and improved both the accuracy and 
visual interpretation. 
 
Amador [13] described a region extraction algorithm based on the MRF concept. A heuristically 
developed energy functional is presented and used with the MRF in an efficient and accurate manner. 
Since the MRF used in this work is defined using the polar coordinate system, a very large search 
space exists for radial lengths and sites. To aid in pursuing these radial sites, a combinatorial 
optimization technique known as Tabu Search is exploited. Also provided is an extensive empirical 
study on aerial imagery and parts detection.  
 

2.1.2. Markov Random Fields for image segmentation   

MRF models are often used to solve image segmentation problem. Number of existing MRF based 
image segmentation methods are discussed in this section. 
 
Kim et al. [14] provided an unsupervised image segmentation method, which makes use of 
hierarchical distributed genetic algorithm to solve the computationally intensive problem of Markov 
Random Field based models. Their results show that the method is effective in segmenting the real 
images.  
 
Arques [15] proposed an approach to the model based on Markov random field (MRF) based image 
segmentation. The author defined the energy function with robust features and their integration. To 
check the suitability of this method the author compared the robust features with classic ones. In this 
method, first an image was segmented into a set of disjoint regions and the adjacent graph. In order to 
apply the method, Markov Random Field mode was first defined on the corresponding adjacent graph. 
Simulated annealing was used to minimize the energy function.  
 
Unsupervised segmentation algorithms based on hierarchical MRF models was presented in [16] 
which allows solving the segmenting problems of both noisy and textured images. These algorithms 
are able to find the number of classes, their associated model parameters and generate a corresponding 
segmentation of the image into these classes which is achieved according to the MAP criterion. The 
experimental results showed improvement in solution with sufficient accuracy.  
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Hu and Fahmy [17] presented two segmentation techniques, supervised and unsupervised. They used 
MRF to model the textured images which is formed by combining the binomial model for textures and 
the multi-level logistic model for region distributions. The proposed algorithm is able reach the global 
maxima of the posteriori distribution in case of supervised segmentation.  In the case of unsupervised 
segmentation they proposed a new parameter estimation scheme which estimates the model parameters 
directly from a given image.  
 
Many other researchers used similar MRF based models for image segmentation problems. [18] 
proposed a multi scale segmentation algorithm for SAR images and they applied a hierarchical two-
level MRF to improve the segmentation results. Similarly, [19] proposed a new SAR image 
segmentation algorithm based on the mixture context and the wavelet hidden-class-label MRF. They 
studied different methods and made a comparison analysis. Using the new method a new MAP 
classification was obtained. The experimental results showed that their method outperformed several 
other segmentation methods. In [20] and [21] MRF based models for remote sensing image 
segmentation were used for similar problems and the results are provided. 
 

2.1.3. Tree-Structure Markov Random Fields models    

In order to achieve good segmentation results it’s not sufficient to rely on observed data only, like in 
case of non-contextual segmentation algorithms but it’s also important to consider the prior 
information about the image which allows better representing the reality. For this reason Tree-
Structured (TS) – MRF segmentation algorithms are important. Aiazzi et al. [22] used TS- MRF based 
on priori model which takes into account special dependencies within image through the conditional 
probability that pixel belongs to a given class, given the class of its neighbours. The method was used 
to solve the MAP estimation problem and also to estimate a set of unknown parameters, given the data 
and the model. The experiments showed that the method was able to extract the content from SAR 
images with sufficient accuracy.          
 
Similarly, Gaetano et al. [23] used a TS-MRF for segmentation of multitemporal remotely sensed 
images. They proposed a method to build automatically the underlying tree structure of the model 
based on metric which allows comparing the class features to establish hierarchical relationship among 
classes.         
 
Another algorithm based on a TS-MRF model that carries out the unsupervised classification of 
remote sensing images was proposed in [24]. Due to MRF model, it considers spatial dependencies 
and it achieves fast computation results because only binary MRF's were used. The results provide 
useful information about the segmentation process.  
  
D’Elia et al. [25] presented image segmentation algorithm based on a TS-MRF binary model. Binary 
segmentation obtained solution to a MAP estimation problem. Because of binary fields and tree 
structure algorithm were used, the method produced good results and allowed to address the cluster 
validation problem. A split-and-merge procedure was developed to improve segmentation accuracy in 
addition spatially adaptive MRF model was used. The method was applied on multispectral images it 
showed quite good performance both in term of segmentation and map smoothness.  
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A TS-MRF model for supervised segmentation which uses of prior knowledge on the number of 
classes and their statistical features was introduced in [26]. This allows generalizing the model so that 
the binary MRFs associated with the nodes can be adapted freely together with their local parameters, 
to better fit the data. In addition, it allows defining a suitable likelihood term to be coupled with the 
TS-MRF prior so as to obtain a precise global model of the image. The method was applied on SPOT 
images and the results showed that the proposed algorithm achieved better performance with compare 
to other MRF based algorithms.  

2.1.4. Energy minimization algorithms: Iterated Conditional Modes (ICM)    

 Maximum-a-Posteriori (MAP) estimation is often applied on image segmentation and one of the main 
issues is that it leads to the combinatory optimization problem. Therefore, several MAP estimation 
algorithms are proposed in literature. Among the proposed algorithms Iterated Conditional Modes 
(ICM) is widely used to deal with this problem. This technique was introduced by Besag (1986) [27]. 
“This iterative procedure incorporates knowledge about the underlying scene by the choice of a 
'neighbourhood system', weight function and smoothing parameter. Broadly speaking this method 
exploits the tendency of adjacent pixels to have the same colour” [27]. ICM does not provide a 
globally best estimation but it concentrates on local area.  There are advantages as well as 
disadvantages of this technique. The main advantage is that computationally it is considered as a fast 
method and the disadvantage is that its accuracy is concerned. Several studies have been carried out to 
improve the algorithm. 
 
A generalized version of ICM algorithm for image enhancement was developed which utilizes the 
characteristic of MRF in modelling the contextual information embedded in image formation [28]. 
They introduced a new MRF model with a second-order neighbourhood system that allows to extracts 
contextual information both from the intensity levels and the relative position of neighbouring cliques. 
In addition to that they introduced an outlier rejection method which depends on each candidate's 
contribution to the local variance. The method was tested on image restoration problem [28]. 
 
Magnussen et al. [29] have been studied a “contextual classification of Landsat TM images to forest 
inventory cover types” where the context of Landsat TM images forest stands are a cluster of 
homogeneous pixels. ICM algorithm was applied on contextual classification of forest cover types 
Landsat Images and the classification accuracy was assessed. The results of ICM were compared with 
Maximum Likelihood where ICM were best which improved the overall accuracy by four to six 
percentage points (statistically significant).  
 
Many other similar techniques are proposed in [30], [14], [31] and [32] where ICM was used and 
compared with other energy minimization methods. 

2.1.5. Energy minimization algorithms: Simulated Annealing (SA)    

Simulated annealing (SA) was introduced first by Kirkpatrick [1]. “It is a stochastic algorithm used for 
combinatorial optimization and it simulates the physical annealing procedure in which a physical 
substance is melted and then slowly cooled down in search of a low energy configuration” [2]. SA is 
often used to find globally optimal solutions for MRF based image analysis problems. It allows 
approximating the global minimum of energy function that produces better quality of solutions. But at 
the same time it takes long time to approximate the global minimum. Number of researches used SA to 
address the energy minimization problems which are described below.  
 



GRAPH CUTS ALGORITHMS FOR FAST OPTIMIZATION IN MARKOV RANDOM FIELD BASED REMOTE SENSING IMAGE ANALYSIS  

9 

Modestino and Zhang [33] described an MRF model-based approach to automated image 
interpretation. They used a region-based approach where an image is first segmented into of disjoint 
regions that form the nodes of an adjacency graph. Image interpretation was achieved by assigning 
object labels to the segmented regions using domain knowledge. Using the proposed method the 
interpretation of labels is modelled as an MRF on the corresponding adjacency graph. Then the image 
interpretation problem is formulated as a MAP estimation given domain knowledge and region-based 
measurements. In order to achieve an optimal MAP interpretation Simulated Annealing (SA) was used 
to for best realization. The performance of this approach was tested by applying the SA algorithm on 
real-world and synthetic images which are described in the paper.  
 
Ingber in [3] made a comparison analysis of Simulated Annealing (SA) algorithm with Simulated 
Quenching (SQ). The author used modified faster algorithms Simulated Quenching (SQ) which shows 
that it’s statistically promising to provide an optimal solution. The results showed that SQ is faster 
then SA without effecting the accuracy. 
 
Lamotte et al. [34] presented comparative study of several optimisation algorithms based that are on 
Simulated Annealing (SA). The authors introduced a new method on random descent. The study 
included ICM, the Metropolis algorithm and Gibbs Sampler. They considered several criteria’s such as 
the convergence speed, the quality of the optimum obtained with a new energy function and the total 
computing time necessary for image restoration. They applied the algorithms on the special case of 
restoration of images disturbed by a Gaussian noise. Their results allow decreasing computation time.   
 
Nasab et al. [35] presented modified implementations of SA for image segmentation problems.  The 
segmentation procedure is based on MRF model for describing regions within an image. SA is used as 
an iterative approach for computing a set of labels with MAP probability which normally take long 
computation time. They proposed a random cost function (RCF) for computing a posterior energy 
function in SA. The proposed modified SA method depicts more robust performance for image 
segmentation than standard SA at the same computational cost. The comparison analyses are provided 
which describes the performance of the new algorithm both in terms of computational cost and 
segmentation accuracy.  
 
Many other researches have been carried out to study SA algorithm for energy minimization problems 
in different applications. Hurn, M and Jennison, A [36] addressed an image reconstruction problem as 
well as the computational problems arising in determining the MAP estimate. They used ICM and SA 
algorithms to deal with the problem. The algorithms were applied on SAR image and the results are 
provided with comparison analysis.  

2.2. Energy minimization via graph cuts in vision   

Many problems in vision are formulated in term of energy minimization. Energy minimization is used 
to solve the pixel labelling problem in application such as image restoration and segmentation, image 
synthesis, stereo and motion etc.  
 
Y. Boykov and V. Kolmogorov [5] provided an experimental comparison of min-cut and max-flow 
algorithm for energy minimization in vision. In this paper they have compared the performance of the 
standard algorithms with the newly developed min-cut max-flow, which works faster then any other 
methods in vision then. 
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Still, energy minimization remains the main issue in vision because of a wide range of energy 
functions.  In some cases is possible to compute the exact global minimum. In some other cases Y. 
Boykov, et al. [45] showed how to compute the local minimum in a strong sense that is within a 
known factor of a global minimum. 
  
V. Kolmogorov and R. Zabih [6] have studied different energy minimization functions and provided a 
precise characterization of energy functions class that can be minimized by graph cuts. Also they 
provided a condition for any energy function with binary variables that can be minimized by graph 
cuts.     

2.2.1. Graph cuts for Markov Random Fields (MRF)    

Markov Random Fields are used as generative models to solve the labelling problem in image 
processing in computer vision.  They are widely used in modelling low level vision problem such as 
image restoration, image segmentation, texture analysis, etc. Graph cuts are considered effective 
approaches for solving the energy minimization problems in vision. Some examples are described 
below how Graph cuts methods can be applied to address MAP-MRF estimation problems.    
 
Boykov et.al. [5] proposed methods to solve MAP-MRF using graph-cut algorithms and they showed 
that MAP-MRF estimation is equivalent to min-cut problem on a graph. This equivalent makes graph 
cuts extremely important. They also showed that using max-flow min-cut graph algorithms it is 
possible to solve some class of energy functions with MAP-MRF framework within a known factor of 
global minimum. 
 
Lempitsky et al. [37] proposed a new approach to the optimization of multi-labelled MRFs. They used 
the LogCut algorithm which proved itself as an efficient algorithm for multi-label energy 
minimization. This algorithm was able to reduce the time complexity from linear in the size of label 
space to logarithmic. For application such as image restoration, optical flow and high resolution stereo 
they showed that this approach gives fast computational time.  
 
Kohli and Torr [38] presented a new fully dynamic algorithm for the st-mincut problem which can be 
used to find MAP solutions for certain dynamically changing MRFs rapidly. Their method is generic 
and finds exact solutions for all dynamic problems which can be formulated as sub-modular energy 
functions of binary variables. The results showed that their algorithm is substantially faster than the 
best known static st-mincut algorithm. They have demonstrated how their method can be used to 
perform efficient image segmentation in video sequences in a manner much faster than previously 
possible. 

2.2.2. Binary image segmentation with Graph cuts    

Graph cuts algorithms have been used in a wide range of problems in computer vision. They are often 
used for medical image segmentation as well as for video segmentation using stereo disparity cues 
[39].  Boykov and Jolly [40] were the first who proposed and tested a binary graph cuts algorithms for 
object segmentation. 
 
In [5] several algorithms were tested and applied on binary image segmentation. Boykov and Funka-
Lea proposed a technique used for object extraction via graph cuts [4]. This technique can be applied 
to object of interests in images and also to volumes of any dimension. They showed that it finds a 
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globally optimal binary segmentation of N-dimensional image under appropriate constrains. The 
authors tested min-cut max flow algorithms on 2D and 3D segmentation. As results they showed that 
this technique was able to efficiently re-computes the optimal solution. This approach in addition 
allows effective editing of segments if necessary.   

2.2.3. Energy minimization algorithms: the min-cut max-flow algorithm    

The min-cut max-flow algorithms are considered as an increasingly useful tool for exact or 
approximate energy minimization in vision [5]. These algorithms are used in [41], [42], [6], and 
presented with different polynomial time’s complexity. Different categories of polynomial algorithms 
for min-cut max-flow problems on directed weighted graphs with two terminals are described by 
Boykov and Kolmogorov [5]. These algorithms belong either to “push-relabel” or to “augmenting 
path”.  Boykov and Kolmogorov proposed a new min-cut max-flow algorithm [5] and it belongs to the 
category of “augmenting path”. They showed that this algorithm outperformed the already existing 
category of algorithms.  The details on implementation of the min-cut max-flow algorithms are 
described in [5].  

2.2.4. Energy minimization algorithms: swap-move and expansion-move 
algorithms    

Boykov et al. [39] introduced the most popular energy minimization algorithms, called swap-move 
algorithm and expansion-move algorithm. Both algorithms are able to compute the global minimum of 
the binary labelling problem in vision which allows producing a lower energy labelling. Both 
algorithms are described in [4]. Boykov and Jolly [45] studied the applicability of these algorithms for 
some energy functions including their differences which are explained in this paper. 
 
Szeliski et al. [39] made a comparative study of energy minimization algorithms. They have studied  
several algorithms such as iterated conditional modes (ICM) [27], swap-move and expansion-move 
algorithm [42], max-product loopy belief propagation (LBP) and finally tree-reweighted message 
passing (TRW) [43] algorithms. They have created a set of low level energy minimizations problem in 
different applications, such as stereo matching, photomontage, binary image segmentation, image de-
noising and inpainting. The results showed that the modern energy minimization algorithms such as 
swap-move and expansion-move are better than ICM because they close to compute the global 
minimum [4]. The results show that in terms of computational time, expansion-move performed the 
best among the modern energy minimization methods.     

2.3. Summary    

The chapter provided sufficient information related to the current research problem. It described the 
last improvements as well as the challenges of energy minimization problems both in remote sensing 
and vision fields. The existing energy minimization methods in both fields, their mathematical 
background, including their applicability in MRF based remote sensing image analysis have been 
studied. Comparative analysis of existing energy minimization algorithms of both fields have been 
carried out and the appropriate method was adopted that better address the current research problem. 
Certain types of energy functions were studied that are applicable for MRF based remote sensing 
image analysis. 
 
Based on the study, swap-move and expansion-move algorithms are chosen among the graph based 
algorithms that use to address the current research problem. During the study most attention paid to the 
type of energy function that is used for graph cuts methods.  
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In addition, other methods such as Tree Structured - MRF based models are studied that can be 
combined with the adopted method and use for multi label image classification.   
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3. Markov Random Fields in contextual image 
analysis      

3.1. Markov Random Fields 

There is a strong relationship between the Bayesian statistics and Markov Random Field (MRF) 
theories, which is described in this chapter.  
 
Bayesian theory has a profound influence on statistical modelling. It consists of two key elements, the 
prior and conditional probability density function (p.d.f.) and the classification can be expressed in 
terms of maximum a posteriori (MAP) by using booth elements [7]. But in practice, it is challenging 
task to use MAP estimates, because the prior information or data distribution information may not 
always be available. Maximum Likelihood (MLC) criterion can be used in case if the knowledge of 
data distribution is available but not the prior information about the data. This criterion is widely used 
in remote sensing image classification. The classification results can be improved by modelling the 
prior p.d.f. and using the class-conditional p.d.f. to establish MAP estimates [7].    
 
Context is very important in image interpretation which can be derived from spectral, spatial and 
temporal properties [7] and [10]. Contextual information produces better classification results and it 
allows reducing the ambiguity and recovering missing information.          
 
Markov Random Field (MRF) considered as a useful framework for characterising the contextual 
information and widely used to image segmentation and restoration problems [8], [9] and etc. It is also 
part of probability theory that characterizes the local contextual relationship of physical phenomena 
[44] and it has been used in statistical physics to describe the interaction between neighbouring 
particles of different phenomena [45]. The statistical dependence between pixels is defined based on 
their neighbourhood system. In other words, pixels are considered to have a relationship with their 
neighbours using the concept of context. This brings the concept of smoothness prior model which 
allows producing smooth image classification pattern [7].  
 
MRF theory including its formulation described below is adapted from [7] with some minor changes.    
 
“Let a set of random variables { }mdddd ,...,, 21=  is defined on the set S containing m number of 

sites in which each random variable ( )miyi ≤≤1 takes a label from label set L . The family d is called 

random field. The set S is equivalent to an image containing m pixels; d is a set of pixel DN values; 
and the label set L depends upon the application. The label set L is equivalent to a set of the user-
defined information classes, e.g. L = {water, forest, pasture, or residential areas}, while in case of 
boundary detection, the label set L = {boundary, non-boundary}. There are many kinds of random 
field models describing ways of labelling the random variables”[7]. Markov Random Field as one of a 
special type of random fields is described in the next paragraph. 
 
Based on the definition of random field, the configuration w  for the set S  as 

{ }mm wdwdwdw ==== ,...,, 2211  is defined, where ( )mrLwr ≤≤∈ 1 . For convenience, the 
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notation of w  can be simplified to { }mwwww ,...,, 21= . A random field with respect to the 

neighbourhood system is a Markov Random field if its probability density function satisfies the 
following three properties; 
 

Positivity: 0)( >wP , for all possible configurations of w , it has a non-zero probability and )(wP  
is the probability of given dataset w  
 
Markovianity: ( ) ( )Nrrrsr wwPwwP || =− , this defines the neighbourhood system which can be 
interpreted as follow, membership value of pixel r is strongly dependent on it neighbouring 
pixels. 
    
Homogeneity: ( )Nrr wwP |  is the same for all site r, for all pixels probability is dependent on 
neighbourhood pixels regardless of the pixel location. 
 

The neighbourhood system used in image analysis defines the first-order neighbours of a pixel as the 
four pixels sharing a side with the given pixel, as shown in Figure 1a. Second-order neighbours the 
four pixels having the corner boundaries with the pixel of interest, as shown in Figure 1b. Similarly, 
higher-order neighbours can be extended same way. Up to five neighbourhoods order is shown in 
Figure1c. More specifically, when the sites from a regular rectangular lattice, as do pixels in two 
dimension image, the site ( )jir ,=  has four first-order neighbours, donated by 

( ) ( ) ( )( )( ){ }1,1,,1,,1. +−+−= jijijijijiN .    
 

 
 

Figure 1. Nneighbourhood ordering for pixel provided in [6]. (a), (b) and (c) 
 depict the first, second and fifth order neighbourhood system, respectively. 

 
The second order neighbourhood system is sufficient for some image analysis problems as suggested 
in previous MRF modelling study [46]. In the current research the first order neighbourhood system is 
constructed.  

3.1.1. Gibbs Random Field 

Gibbs Random Field (GRF) is considered as a popular parametric random field model. It is applicable 
and widely used in many areas including image analysis, where they have become an efficient tool to 
provide statistical models for images. GRF’s characterize the global properties on an image. The 
probability density function then can be specified in [7] as follow:    

5 4 3 4 5

4 2 1 2 4

1 2 1 2 3 1 r 1 3

1 r 1 1 r 1 4 2 1 2 4

1 2 1 2 5 4 3 4 5

(a) (b) (c)
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where )(wP the probability of w , )(wU is the energy function, T is the temperature, Z is partition 
function that can be expressed as: 
 

∑
−−

⎥⎦
⎤

⎢⎣
⎡−=

ionconfiguratpossibleall T
wUZ )(exp  (3.2)

 
where Z  is the sum of all possible configurations, in practice it is not computable except for very 
simple cases. This difficulty complicates sampling and estimation problem [7].  
From (3.1) it can be observed that maximizing )(wP is equivalent to minimizing the )(wU . 
  

∑
∈

=
Cc

c wVwU )()(  (3.3)

 
In equation (3.3) C is a clique, which is subset of image and within a clique all pairs are mutually 
neighbours. ...,321 CCCC ∪∪= is the collection of all possible cliques, )(wVc is the potential 

function [7]. Figure 2 shows all possible combinations of pixel for first order in our particular case.    
 
 

 
α   

1β  2β  3β  4β  

 
(a) 

  
(b) 

  
(c) 

 
 

Figure 2, patterns (a) to (c) show possible cliques with the neighbourhood system on the first order. 
 
The complexity of computation increases by increasing the neighbourhood system which also leads to 
growing the cliques. The energy function in (3.3) can be expanded as follow in order to understand 
easy:  
  

{ }{ }
∑ ∑ ∑
∈ ∈ ∈

+++=
1 2 3', ",',

"'321 ...),,()',()()(
Cr Crr Crrr

rrrrrr wwwVwwVwVwU  (3.4)

  
Each of 1C and 2C represents a single site clique (Figure2a) and pair-site clique (Figure2b and c).  
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3.1.2. MRF-GRF Equivalence 

An Markov Random Fields (MRF) are defined in terms of local properties, in other words, the label 
assigned to a pixel is influenced only by its neighbours. The Gibbs Random Fields (GRF) are defined 
in terms of global properties of an image.  which is interpreted as the label given to a specific pixel is 
affected by the labels given to all pixels [7]. According to the Hammersley-Clifford theorem for every 
MRF a unique GRF exists as long as the GRF is defined in terms of cliques on neighbourhood system. 
The proof of the theorem is described by number of researchers including Tso and Mather [7]. They 
show that MRF-GRF equivalence offers an appropriate way to address MRF based image analysis 
problems.         

3.2. Energy minimization  

3.2.1. MAP Probability Solution 

The theoretical part is adapted from [47] with some minor changes. Many problems in image analysis 
are formulated in term of energy minimization. Energy minimization is used to solve the pixel 
labelling problem in different applications such as image restoration and segmentation etc. MAP 
solution can be obtained only by minimizing the global posterior energy. The posterior energy itself 
consists of prior and conditional energy function. In accordance to the Bayesian formulae, the MAP 
solution can be represented following:  
 

)(
)()|()|(

dP
wPwdPdwP =  (3.5)

 
where, w  is the membership value and d is a given dataset. The posterior probability can be 
maximized as follows: 
  

{ })|(maxarg dwpw =  (3.6)
 
Equation (3.1) shows that the MAP estimate is equivalent to the minimization of global energy 
function and can be expressed as: 
 

{ })()|(minargˆ wUdwUw +=  (3.7)
 
 where, ŵ  is the optimal class membership value after minimizing the global energy function, 

)|( dwU is the conditional energy and )(wU prior energy function and the global posterior energy 
function can be defined as follow:  
 

( ) ( ) ( )wUwdUdwU += ||  (3.8)
 
An additional parameter of λ is added to equation (3.8) which controls the balance between the two 
energy functions and the value of λ ranges between 0 and 1. 
 

( ) ( ) ( ) ( )wUwdUdwU ⋅+⋅−= λλ |1|  (3.9)
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 Next, it is required to minimize the global posterior energy function in order to get the MRF-MAP 
estimate. Simulated Annealing (SA) and Iterated Conditional Modes (ICM) are proposed, which are 
able to find out the MRF-MAP solution. For this research both SA and ICM are used and comparison 
analysis will be provided.     

3.2.2. Iterated Conditional Modes (ICM)  

Iterated Conditional Modes (ICM) algorithm was proposed by Besag, which allows to maximize the 
local conditional probabilities sequentially [44]. It uses a deterministic greedy or steepest strategy to 
perform local search [27]. First it starts with an estimate of labelling, then for each pixel it chooses the 
label given the largest decrease of energy function. This process is repeated until convergence [39]. It 
is quite fast technique and is able to find a local minimum. The theoretical background of ICM 
technique is adapted from [44] with minor changes.  
 
Given the data d and the other labels { }

( ) ,k
iSf −  the algorithm sequentially updates each ( )k

if into ( )1+k
if  

by maximizing { }( ),,| iSi fdfP − the conditional probability with respect to .if  

Following assumptions are made by calculating { }( )iSi fdfP −,| : First of all, the observation 

components mdd ...,,1  are conditionally independent given f and each id has the same known 

conditional density function ( )ii fdp | depend only on .if  Thus 

    

( ) ( )∏=
i

ii fdpfdp ||  (3.10)

 
Second assumption describes that f depends on the labels in the local neighbourhood, which is 

concept of Markovianity. Using these assumptions and the Bayes theorem, it follows that  
    

{ }( ) ( ) ( )
iNiiiiSi ffPfdpfdfP ||,| ∝−  (3.11)

 
It can be mentioned that ( )( )k

Ni i
fdfP ,|  is much easier to maximize than ( ),| fdP  which is the main 

issue that ICM addresses. 
Maximising (3.11) is equivalent to minimizing the corresponding posterior potential using the below 
provided rule  
 

( ) ( )( )k
Niif

k
i i

i

fdfVf ,|minarg1 ←+  (3.12)

 
where  

( )( ) ( )( ) ( )ii
k

iii
k

Nii fdVfdfVfdfV
i

|,|,| ' += ∑  (3.13)

 
An example of discrete restoration formulated in Section 2.2.2 [44], the posterior potential for (2.19) 

can be considered as follow   
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( ) ( ) ( )[ ]∑
∈

−−+−=
i

i
Ni

iiiiNii ffvdffdfV
'

'20
2 1,| δσ  (3.14)

 
where  ( )[ ] { }iii

Ni
ii Niffff

i

∈≠=−−∑
∈

'|#1 '
'

'δ  is the is the number of neighbouring sites whose labels 

'if  differ from .if  For discrete ( )
iNii fdfV ,|,Ψ  is evaluated with each Ψ∈'if and the label 

causing the lowest ( )
iNii fdfV ,|  value is chosen as the value for ( )1+k

if . When applied to each i  in 

turn, the above defines an updating cycle of ICM. The iteration continues until convergence. The 

convergence is guaranteed for the serial updating and is rapid [27].  

The ICM result depends very much on the initial estimator 0f . It is still a challenge to known how to 

set the initialization properly to obtain a good solution. A natural choice for 0f is the maximum 
likelihood estimate  
 

( )fdpf
f

|minarg0 =  (3.15)

 
when the noise is identically, independently distributed Gaussian. Obviously, ICM can be applied to 

problems where if takes a continuous value. In minimizing (2.22) for continuous restoration, for 

example, one needs to maximize  

 

( ) ( ) ( )∑
∈

−+−=
i

i
Ni

iiiiNii ffgdffdfV
'

'
2,| λ  (3.16)

for each if  . In order to achieve this, it is necessary to solve
( )

0
,|

=
i

Nii

df
fdfdV

i .  

In according to the MRF algorithm, two neighbouring sites should not be updated simultaneously. The 

“coding method” [8] is incorporated into ICM in order to parallelize the iteration. Using codings, S  

are partitioned into several sets such that no two sites in one set are neighbours (Section 6.1.3) [48]. 

Therefore, all if on a single coding can be updated in parallel.  

3.2.3. Simulated Annealing (SA)   

Simulated Annealing (SA) is an opposed to deterministic algorithms. It is a stochastic algorithm used 

to find a good optimization problem by trying randomly variation of current solution [48]. A worse 

variation is accepted as the new solution with a probability that decreases as the computation proceeds. 

The slower the cooling schedule, or rate of decrease, the more likely the algorithm is to find an optimal 

or near-optimal solution. 

A system is considered where any f in the configuration space F has following probability: 
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( ) ( )[ ] T
T fPfP

1
=  (3.17)

 
where, 0>T is the temperature parameter. ( )fPT  is a uniform distribution on F , when ;∞→T for 

( ) ( );,1 fPfPT T ==  as ( )fPT T,0→  is concentrated on the peak(s) of ( ).fP  This explains how 

samples of f  distribute in .F  
 
 
initialize T  and f  
repeat 
        randomly sample f  from ( )fN  under ;T   

        decrease ;T  

until ( );0→T  

return ;f  
 

Figure 3, the Simulated Annealing (SA) algorithm[44] 

 
Figure 3 shows the description of SA algorithm, where it applies a sampling algorithm similar to 
Metropolis algorithm or Gibbs sampler [9] and able to decrease the temperature values of .T   First of 
all T  is set very high and f  is set to a random configuration. The sampling   

( ) ( ) ( )∑ −−=
f

TfETfE
T eefP  is according to Gibbs distribution at a fixed .T  T  is decreased 

accordance to a carefully chosen schedule after the sampling converges the equilibrium at current .T  
This will continue until the T is close to 0. The cooling schedule plays an important role which is 
specified by a decrement function and a final vale [49].  
Geman and Geman [9] developed two convergence theorems where the first theorem concerns 
convergence of the Metropolis algorithm and the second one is about SA, which states that the 
decreasing sequence of temperatures satisfies following: 
 

( ) 0lim =tT  (3.18)

and  

( )

( )t
mT t

+
Δ×

≥
1ln

 (3.19)

 
where ( ) ( ),minmax fEfE ff −=Δ  the system then converges the global minimum regardless of 

the initial configuration ( )0f . These conditions are sufficient but not for the convergence. In practice 
equation (3.19) is very slow, therefore faster schedules need to be used and some examples are 
provided in [49] with their experiments.  
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3.3. Graph Cuts   

3.3.1. Min - cut max - flow algorithm 

Graph cuts algorithms have been studied in computer vision in the last years and they still remain an 
active research area in this field. Research has been done to develop and improve methods for energy 
minimization in vision. Graph theory together with a number of optimization methods are provided in 
this charter. 
The min-cut/max-flow algorithms from combinatorial optimization are provided in [41] that can be 
used to minimize number of energy functions in vision [5]. These energies as well as some graph 
based methods [42], [50], [51], [52], [53] and [54]  can be represented as (3.20).  The theoretical part 
adapted from [5] with some minor changes.      
 

( ) ( ) ( )
( )
∑∑

∈∈

+=
Nqp

qpqp
Pp

pp LLVLDLE
,

, ,  (3.20)

 
where { }PpLL p ∈= |  is called a labelling of image ,P ( ).pD  is a data penalty function, qpV ,  is 

called an interaction potential, which encourage spatial coherence by penalizing discontinuities 
between neighbouring pixels, and N  is a set of all pairs of neighbours pixels [5]. Figure 4 shows an 
example of image labelling problem.  
 

                             (a)               (b) 
 

Figure 4, an example of image labelling[5]. 
 

An image in Figure 4(a) is a set of pixels P  with observed intensities pI for each Pp∈ . In the case 

of Figure 4 b, labelling L  assigns label { }2,1,0∈pL  to each pixel Pp∈ . Such labels can represent 

object index in segmentation. In case of graph based methods it is assumed that a set of feasible labels 
at each pixel is finite. Thick lines in Figure 4 (b) show labelling discontinuities between neighbouring 
pixels [5]. 
 
Greig et al. [41] show that the minimum cost of the graph produce a globally optimal binary labelling 
L  in the case of Potts model of interaction in (3.20).  
Further in this section some basic facts and theory on graphs are provided which are described in [5].   
A directed weighted graph ( )EVG ,=  which consists of a set of nodes V and a set of directed edges 

E   connecting them is considered in [5]. The nodes correspond to pixels in this case. The graph 
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contains of additional special nodes that are called terminals. These terminals correspond to the set of 
labels that are assigned to pixels. They are source, s and sink, t and they correspond to the set of labels 
that can be assigned to pixels. Figure 5(a) shows an example of a two terminal graph that can be used 
to minimize the Potts case of energy (3.20) on 33x  image with two labels. All edges in the graph are 
assigned some weight or cost. A cost of a directed edge ( )qp, may differ from the cost of the reverse 

edge ( )pq, [5]. There are two types of edges in the graph: n-links and t-links. N-links connect pairs of 
neighbouring pixels which represent a neighbourhood system in the image. Cost of n-links 
corresponds to a penalty for discontinuity between the pixels which are derived from the pixel 
interaction term qpV , in energy (3.20). T-links connect pixels with terminals (labels). The cost of a t-

link connecting a pixel and a terminal corresponds to a penalty for assigning the corresponding label to 
the pixel which is derived from the data term pD in the energy (3.20). Figure 5 shows that t-links are 

shown in red and blue, but n-links are in yellow 
 

 
                               (a) A graph G                   (b) A cut on G  

 

Figure 5. Example of a directed capacitated graph. Edge costs are reflected by their thickness. A similar graph-
cut construction was first used in vision by Greig et al. [49] for binary image restoration. 

 
Min-cut (or max-flow) algorithm is used to help with energy minimization over image labelling. This 
algorithm is used for fast energy optimization problem and it shows very good computational time. 
The proposed graph cuts algorithms such as swap-move and expansion-move are based on min-cut 
algorithm. The mathematical background of min-cut and max-flow provided below is described in [5].  
 
An s/t cut C (can be called as cut) is a partitioning of the nodes in graph into two disjoint subset S and 
T such that the source s is in S and the sink t is in T . An example of cut is shown in figure 5(b). The 
cost of cut is { }TSC ,= is the sum of cost of boundary edges ( )qp,  such that Sp∈  and .Tq∈  The 

cost is “directed” as it sums up weights of directed edges specifically from S to T . The minimum cut 
problem on a graph is to find the cut with minimum cost among all other cuts [5]. One of the results in 
combinatorial optimization is that the minimum s/t cut problem can be solved by finding the maximum 
flow from source s to sink t. “The theorem of Ford and Fulkerson [55] states that a maximum flow 
from s to t saturates a set of edges in the graph dividing the nodes into two disjoint parts { }TS ,  
corresponding to a minimum cut. Thus, min-cut and max-flow problems are equivalent. In fact, the 
maximum flow value is equal to the cost of minimum cut” [5].            
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Boykov and Kolmogorov [5] made an experimental comparison of several algorithm where they 
proposed a new min-cut/max-flow algorithm, which outperformed the existing algorithms. Detail 
implementation of the new algorithm is described in the same paper.    

3.3.2. Swap-move and expansion-move algorithms 

The swap-move and expansion-move algorithms are introduced in [42] are able to find the local 
minimum of energy function (3.20) with respect to large moves, namely α-expansion-move and α-β-
swap, which allows a large number of pixels to change their labels simultaneously. These algorithms 
are similar in their structure. Their main is based on the graph cut method from combinatorial 
optimization. Both of them are used to compute the global minimum of a binary labelling problem. 
They are able to produce lower energy [39]. Swap-move for a pair of labels α, β takes some subset of a 
pixel given the label α and assigns them a label β and vice versa. This algorithm (swap-move) finds a 
local minimum such that there is no more swap-move for any pair of labels α-β that produces a lower 
energy labelling. In a case of expansion-move algorithm, it finds a local minimum such that no 
expansion-move for any label α, yields a labelling with lower energy.  
 
Boykov et al. [42] showed that the expansion-move algorithm can be applied to any energy where 

pqV is a metric and the swap-move can be applied to any energy where pqV is semimetric. Kolmogorov 

and Zabih [6] considered the above conditions and showed that the expansion-move can be used if for 
all α, β and γ 
                    

( ) ( ) ( ) ( )αβγαγβαα ,,,, pqpqpqpq VVVV +≤+  (3.21)

 
in other words, expansion-move algorithm can be used if the binary energy for expansion-move 
algorithm is regular, using Kolmogorov’s terminology. 
 
For the swap-move algorithm can be used if for all labels α and β 
 

( ) ( ) ( ) ( )αββαββαα ,,,, pqpqpqpq VVVV +≤+  (3.22)

 
in other words, swap-move algorithm can be used if the binary energy for the swap-move algorithm 
step is regular, due to   algorithm Kolmogorov’s terminology [6].  
  

The main computation cost of graph cuts depends on computing the minimum cut which is done via 
max-flow [39]. The detail information of the expansion-move and swap-move algorithm, including 
their lemmas, theorems, proofs and implementations are described and discussed in [42].     
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1. Start with an arbitrary labelling  f  
2. Set success : = 0 
3. For each pair of labels  { }Ψ⊂βα ,  

3.1 Find ( )'minargˆ fEf =  among 'f within one α-β swap-move of f  

3.2 If ( ) ( ),ˆ fEfE <  set ff ˆ:= and success : = 1 
4. If success = 1 goto 2 
5. Return f   
 
1. Start with an arbitrary labelling  f  
2. Set success : = 0 
3. For each pair of labels  { }Ψ⊂α  

a. Find ( )'minargˆ fEf =  among 'f within one α-expansion-move  of f  

b. If ( ) ( ),ˆ fEfE <  set ff ˆ:= and success : = 1 
4. If success = 1 goto 2 
5. Return f  

 

Figure 6. Swap-move algorithm (top) and expansion-move algorithm (bottom) [50]. 
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4. Study area, data preparation and methods 

4.1. Study area and dataset   

In order to test the applicability of the adopted method, two study areas are proposed with different 
conditions and purposes. In the case of the first study area, Landsat TM (30m spatial resolution) 
images and the second case Quick Bird Images (2.4m spatial resolution) are considered. Brief 
introduction about study areas, their needs and characteristics are provided.  

4.1.1. Study area - 1  

Lake Sarez is located in the Pamir Mountains of Tajikistan. It was created about almost 100 years ago 
when a strong earthquake triggered a massive landslide that, in turn, became a huge dam along the 
Murghob River, which is called the Usoi Dam. The lake is located at an elevation greater than 3000m. 
The length of the lake is 61 km and the depth is 500 m and holds an estimated 17 cubic km of water. 
“The area experiences considerable seismic activity and scientists fear that part of the right bank may 
slump into the lake, creating a huge wave that will top over and possibly breach the natural dam. Such 
a wave would create a catastrophic flood downstream along the Bartang, Panj and Amu Darya Rivers, 
perhaps reaching all the way to the Aral Sea. Currently, Central Asian governments, as well as the 
World Bank and the UN are monitoring the dam closely, and have proposed gradually lowering the 
lake level as a preventive measure” 
(http://eol.jsc.nasa.gov/EarthObservatory/Lake_Sarez,_Tajikistan.htm).  
The study area is situated in Easter part of Pamir, which covers about 24km from west to east and 
24km south to north. Figure 7 shows the location of study area. The information including some 
statistics on Sarez Lake is provided in NASA earth observatory website above. The proposed method 
can be useful for classification of the lake and its surrounding area. The reference data for this study 
area is not available and the performance of the applied methods is assessed based on visual 
interpretation of the classification results.     
 

4.1.2. Study area - 2  

Quickbird images (2.4m spatial resolution) of Boothoven area, Enschede is provided to extract tree 
crown information from these images. Figure 6 shows the study area. An area of 400 x 400 pixels size 
of Boothoven is used to test the applicability of the graph based energy minimization algorithms - 
swap-move and expansion-move as well as the traditional energy minimization methods – Maximum 
Likelihood (ML), Simulated Annealing (SA) and Iterated Conditional Modes (ICM). For this study 
area the reference data is available to validate and quantify the accuracy of the applied methods.  
The image including, including its reference data is  provided by Boom en Beeld Project, 
http://www.boomenbeeld.nl/. 
 
The metadata includes the following: Quickbird images: 2.4m spatial resolution, acquisition date: 26 
Sep, 2006, four bands, R, G, B, NIR. The reference data is a product of DKLN 2008. 
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Figure 7. Sstudy area – 1, Source: Google Earth, 

 
 
 
 
 
 
 
 
 
 



 

26 

 

 

a) Google Earth  b)Quick bird image of Enchede, source: Boom en Beeld 

 
c)Quick bird image of Boothoven area, source: Boom en Beeld 

Figure 8.  Image of study area - 2. 

4.1.3. Selecting spectral classes and defining their training set 

Eight spectral classes including their training set are defined for the study area - 1. This study area 
includes following spectral classes: lake, snow, landslides, vegetation, baresoil, rock, river 1 and river 
2. In this case classes “landslides”, “river 1” and “river 2” they have following characteristics: 
landslides contain mixture of rock and soil, river 1 and river 2 are spectrally different, that’s why they 
are considered separate classes. The rest of the classes are described in a standard way. Appendix (A) 
shows the training sets on Landsat TM image of Sarez Lake area and appendix (B) shows the defined 
land cover and their training sets. Based on the defined training set the mean and covariance values are 
calculated which are provided in appendix (C).   
 

Similarly, eight classes including their training sets are defined and provided for the study area – 2. 
These classes are following: “bright trees”, “dark trees”, “dark grass”, “bright grass”, “shadow”, 
“impervious”, “shadow vegetation” and “shrubs”. The mean and covariance values for the second 
study area are provided in appendix (D). For this study only the first two tree classes are considered 
and used for classification.  
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4.1.4. Reference data generation  

In order to validate the accuracy of applied methods normally reference data is used. The reference 
data for study area – 1 is not available. Therefore, Aster images are used for validation purpose, where 
visual interpretation is carried out. The reference data for study area – 2 is available. This data contains 
information about “tree crown” and “vegetation”. For this particular case, “tree crown” reference data 
is used for validation of the applied methods. This reference data is generated from high spatial 
resolution (0.25m) aerial photograph. Some differences (changes) in reference data are observed. 
These differences might have an impact on the classification results, therefore they need to be 
considered and addressed in a proper way.  In order to avoid this problem, manual editing is applied 
using ENVI software. In addition, degrading is applied on vegetation mask as well as on tree crown 
reference data, because of different spatial resolution. Figure 8 shows the result of manual editing in 
case of vegetation mask, blue area is the original reference data and the yellow area is the manual 
edited one. Quickbird images contain shadow in vegetation area, where in reference data (vegetation 
mask) this area is considered as vegetation. The vegetation mask contains also the information on tree 
crown.  
 

Legend 

Figure 9. The reference tree crown data  
 

 

Figure 9 shows the reference data for tree crown. This reference data does not contain all the trees. At 
the same, time the reference data contain small trees and due to limitation of spatial resolution these 
trees are not visible on Quickbird images. Another problem which has a direct impact on classification 
result is that some the trees are covered by shadow, both in urban and non-urban areas. These 
limitations should be taken into account when accuracy assessment is done.  
 

Reference data 

Manual edited 
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Figure 10. Reference data for tree crown 
 
 

4.2. Methods 

The adopted method for this research is described in details the following sections.  

4.2.1. Energy minimization 

In order to minimize the energy function it is important to describe following terms using graph based 
energy minimization methods. These terms are described in following section. 

4.2.2. Setting data and smoothness terms   

Energy type of (3.20) is considered for defining the data and smoothness costs which is described in 
section 3.1.1.  
 
In order to apply the energy minimization algorithms on binary image segmentation problem, it is 
important to prepare an input file. In accordance to graph cut theory for energy function type (3.20), 
data and smoothness costs should be computed for each individual pixel in the image. The content of 
input file includes following: number of rows and columns, number of labels, for binary case there 2 
labels, a label for object of interest (foreground) and a label for the rest part of the image 
(background), the ignorance part, data costs for each single pixel and the last part is the smoothness 
costs.  
 

Figure 11 shows how datacots for classes “lake” and “non-lake” are computed. The datacosts are 
likelihood energies that computed from normal distribution, where Mahalanobis distance is used. In 
the case of class “non-lake”, the least cost among the rest of the classes (seven classes) except the class 
of interest (“lake”) is computed. This procedure applies for all “class of interest”. Figure 11 (a) 
represents datacost for class “lake” and Figure 11 (b) represents data cost for class “non-lake” or 
background. The dark image (Figure 11 (a)) represent a low cost, where the bright image (Figure 11 
(b)) represents a high cost. The main idea of graph based method is to find out the energy with least 
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cost. This cost or energy can be related to probability, low cost means high probability and high cost 
means law probability. Following example is provided: in the case of low cost (Figure 11 (a)) the 
probability of pixel belonging to class “lake” is high and inverse in the case of Figure 11 (b). The type 
of datacosts for study area – 1 is integer, where the type of datacosts for study area – 2 is floating 
point. In terms of smoothness cost, first-order neighbourhood system is used and ( )const=λ , it can 
have any range of value.     
 

 

 

 
a) Datacost (lake)  b) Datacost (non-lake) 

 

Figure 11. Data-costs for classes "lake and non-lake” 
 

4.2.3. Specifying and optimizing the energy  

In order to optimize the energy in is necessary to specify it, which means, the number of labels and 
pixels, neighbourhood system, the data and smoothness terms needs to be specified. Two constructors 
are used one for grid graph case and another one for general graph. In all cases it is considered that the 
pixels go between 0, …, number of pixels-1, and the labels between 0, …, number of labels-1 [6]. The 
details on constructors are described in library which is availably through the following website: 
http://vision.middlebury.edu/MRF/. Certain type of functions is used for labelling problem which is 
provided in graph cuts library.   

4.2.4. Optimizing of smoothness parameter’s value  

Before applying binary segmentation it is important to consider the smoothness parameter ( )λ  values 
that are optimal for certain spectral class. The adopted method depends on class separability measures, 
- divergence in this case. The aim is to find the most appropriate and/or optimal smoothness value that 
can best represents a particular spectral class. There is a relationship between smoothness values and 
class separability measures. Based on divergence report, some spectral classes are least separated from 
other classes and some other are most separated. Based on this report it is observed that following 
spectral classes; “lake”, “snow” and “vegetation” belong to those classes that are most separated from 
other classes and classes “river -1”, “river 2”, “baresoil”, “landslides” and “rock” belong to those that 
are spectrally least separated from other classes. In other words, those classes that are most separated 
from other, easy to differentiate and classes that are least separated difficult to differentiate from other 
spectral classes. Based on these factors it can be expected that different smoothness value might lead 
to different classification results, which gives a sufficient reason to study and find out the optimal 
smoothness value for each spectral class. A “trial and error” method is used to test and find out the 
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optimal smoothness value for each spectral class. All possible combinations of smoothness values are 
tested and applied on each class individually and the most appropriate that better represents the 
particular class is selected.      

4.2.5. Designing the classification tree      

Since the graph cuts algorithms are applied to solve binary image segmentation (to extract the object 
of interest as foreground and the rest as background) problems, it is important to find out a proper 
method which can address a multi label image classification using these algorithms. For this purpose, a 
method is proposed that used to construct a classification tree. Different tree structure with MRF based 
models are proposed in literature ([56], [24], [25],[26] and [57]) which are discussed in literature 
review chapter. The method proposed for this study is a slightly different to those discussed in chapter 
2. 
  
The proposed method is based on class separability measures. The method makes use of class 
separability measures. It is important to consider these measures before construction of the 
classification tree. This method considers three statistical measures that are derived from class 
separability report. These are the max, mean and min values which are described below. In addition, 
an inverse tree nodes order is proposed.   
 
Class separability is a measure that provides statistics on similarity between classes. Four quantitative 
measures are widely used for class separability. These measures are following:  Divergence D, 
Transformed Divergence TD, Bhattachatyya distance - B and Jeffries-Mutasita distance – JM [58]. For 
this particular study Divergence is selected. Mathematical expression of this measure is described 
below.  
 
For any pair of class a  and b the above measure is defined following. 
 
Divergence: 

( ) ( )( ) ( )( )[ ]1111'

2
1

2
1 −−−− −−+−+−= abbabababaab CCCCTrCCD μμμμ , (4.1)

 
[ ]ATr  is a trace matrix A . Divergence takes a value from 0 to∞ . If the two classes have shared 

values, it means that there is in no difference between these classes based in spectral information.  
 
These measures are used for the study area - 1. Training set for eight classes is defined, which is used 
to estimate the mean vector aμ  and covariance matrix aC of the normal distribution for each class a . 

The class separabity measures using Divergence are calculated and provided in Table 1.  
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Class name Lake Snow Landslides Vegetation Baresoil Rock River1 River2
Lake 0 34691 18887 9042 9552.3 2118.3 2002.2 7188
Snow 34691 0 744 2665 2579.8 2144.6 1213.7 188

Landslides 18887 744 0 305 113.1 106.2 165.0 114
Vegetation 9042 2665 305 0 404.6 606.0 395.1 1059

Baresoil 9552 2580 113 405 0.0 80.6 72.8 379
Rock 2118 2145 106 606 80.6 0.0 61.6 474

River1 2002 1214 165 395 72.8 61.6 0.0 477
River2 7188 188 114 1059 379.0 473.9 477.3 0

 

Table 1. Class separability table (Divergence). 
  

 
These measures are used to construct the classification tree. The max, mean, and min values per classes 
are computed from Table 1 and provided in Table 2.       
 
Class name Lake Snow Landslides Vegetation Baresoil Rock River1 River2

Lake 34691 18887 9042 9552.3 2118.3 2002.2 7188
Snow 34691 744 2665 2579.8 2144.6 1213.7 188

Landslides 18887 744 305 113.1 106.2 165.0 114
Vegetation 9042 2665 305 404.6 606.0 395.1 1059

Baresoil 9552 2580 113 405 80.6 72.8 379
Rock 2118 2145 106 606 80.6 61.6 474

River1 2002 1214 165 395 72.8 61.6 477
River2 7188 188 114 1059 379.0 473.9 477.3

34691 34691 18887 9042 9552.3 2144.6 2002.2 7188
11926 6318 2919 2068 1883.2 798.7 626.8 1411
2002 188 106 305 72.8 61.6 61.6 114

 

Table 2. The max, mean and min values of divergence table 
 
The results of these measures (max, mean and min) from second part of the Table 2 are ordered in a 
proper way. Decreasing order is considered in this particular case. Table 3 shows this order for each 
measure.  
 

Max values 34691 34691 18887 9552 9042 7188.4 2144.6 2002.2
Mean values 11926 6318 2919 2068 1883 1411.3 798.7 626.8
Min values 2002 305 188 114 106 72.8 61.6 61.6

 
 

Table 3. Ordering class based on max, mean and min values 
 
  

After putting in order all the results in Table 3, each value is assigned to its original class. In other 
words the values in Table 3 are represented by class name (Table 4). This order or sequence for each 
measure (max, mean and min) is used to construct a classification tree. Each level of sequence 
represents node in tree. An addition, an extra order (inverse order to min value) is proposed. These 
orders are used to test and find out the most appropriate order that better produces classification result.  
 

Max values Snow Lake Landslides Baresoil Vegetation River2 Rock River1
Mean values Lake Snow Landslides Vegetation Baresoil River2 Rock River1
Min vlaues Lake vegetation Snow River 2 Landslides Baresoil Rock River1
Inv, ord.m.v River1 Rock Baresoil Landslides River 2 Snow vegetation Lake

 
 

Table 4. Defined order (sequence) for classification tree 
  

All four cases are proposed for the current method. First, constructed classification tree based on 
maximum values Figure 12(a), second based on mean values Figure 12(b), third based on min values 
Figure 12(c) and last the inverse order to min value Figure 12(d) are defined and proposed. From 
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Figure 12 it is observed that the sequence of nodes for classification tree is different in all cases. This 
difference can have a possible impact on classification results, which is addressed and studied in this 
research. All cases need a careful study and the most appropriate method will be identified. The results 
based on these methods are provided in chapter 5.    
 
Figure 12 shows four proposed methods for classification trees which are constructed based on Table 
4. “O of I” next to the class name means – an object of interest and “Root” is from where construction 
of classification tree starts.     
 

 

 

 
a) based on max value  b) based on mean value 

 

 

 
c) based on min value  d) based on inverse order to min value  

 

Figure 12. Defined classification tree for binary image classification. 
 

4.2.6. Applying the energy minimization algorithms 

After defining the above methods, both construction of classification tree and optimizing the 
smoothness parameter it is necessary to apply the energy minimization algorithms (ICM, SA, Swap-
move and expansion-move) on both Landsat TM and Quickbird mages. Graph cuts optimization 
software is used to check the applicability of swap-move and expansion-move algorithms on MRF 
based remotely sensed image analysis. In addition, ICM and SA algorithms are applied on the same 
problem.  
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4.2.7. Performance evaluation and accuracy assessment     

The last stage of the adopted method provides information about the methods that applied to evaluate 
the performance of the energy minimization algorithms, both in term of computation and the accuracy 
assessment. In order to check the performance of all algorithms, it is necessary to find out the most 
appropriate measures to evaluate them. Numbers of accuracy assessment methods are proposed in 
literature and the applicability of each method depends upon the specific purpose. The performance 
evaluation is different between the study areas.  
 
Study area – 1: For first study area the quality of classification results is assessed using visual 
interpretation by comparing the results to Aster images. In terms of computation, the algorithms are 
able to provide information on computational time. Based on these measures the methods are 
compared. 
  
Study area – 2: In this case, confusion matrix or error matrix is used to quantify the classification 
accuracy. At the same time, visual interpretation of the results is carried out. In addition, object based 
analysis is considered, where ArcGIS functionality such as raster calculators are used to evaluate the 
quality of object based analysis.  
 

4.2.8. Hardware and Software 

Desktop computer with following specifications is used for implementation of the adopted methods: 
Intel(R) Core (TM) 2 Duo CPU, 3.00GHz, 4 GB of RAM. Following operating systems and software 
are used: MS-WIN XP and LINUX. In a case of Linux, Virtual Machine is used, where 1 GHz 
processor and 2GB of RAM are allocated to this system. ERDAS IMAGINE, ENVI, ArcGIS as well 
as R and Code Blocks for programming part are used. In addition to these graph cuts algorithms 
including MRF codes are used, which are available in C++ language. The graph cuts codes are 
developed by number of people from vision [5, 39, 42]. The C++ codes for SA and ICM are provided 
by my first supervisor.      

. 
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5. Results 

5.1. Classification results of Landsat TM image  

First part of the chapter provides the results of energy minimization algorithms for binary image 
classification on Landsat TM image (Lake Sarez). In this case the results of all energy minimization 
methods are visually compared. This chapter demonstrates how the smoothness parameters have an 
impact on classification results.  
 
The results of ICM algorithm as well as the classification results of swap-move and expansion-move 
algorithms with different smoothness parameters are provided.  

5.1.1. Classification results using Iterated Conditional Modes (ICM) 

ICM algorithm is applied on binary image segmentation with defined land cover classes. Binary image 
segmentation is applied with different smoothness parameters. The aim of this method is to observe 
and study the influence of smoothness parameter on particular spectral class. Figure 13 shows binary 
image classification based on min value, where smoothness parameter value 1=λ is used. The black 
area on the map is an object of interest (foreground) and the white is a background in this case.  
 

 

 

  

 
a) Lake  b) vegetation 
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c) Snow   d)  River 1 

 

 

 

 
e) Landslides  f) Baresoil 

 

 

 
g) Rock  h) River 2 

 

Figure 13. Binary Segmentation using ICM algorithm based on “min value” method ( 1=λ ) 
 
Similarly, the same way, binary image segmentation is applied using the other three methods.  Figure 
14 provides final classification results using all the adopted methods. As mentioned above, the aim of 
constructing different tree structure is to find out the most appropriate classification tree that produces 
better results.  
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Table 7 shows computation time (in seconds) of binary image segmentation using ICM algorithms.  
 

 

Class energy time(s) 
Lake 7671198 1.66

Vegetation 7681090 0.33
Snow 7874489 0.85
river 1 7683173 0.49

Landslides 7738470 0.48
Baresoil 7817700 0.67

Rock 7720894 0.68
River 2 7684220 0.48  

 

Table 5. Computation time of ICM algorithm 
 

5.1.2. Overlap analysis   

By combining the binary classification results in Figure 13 and assigning a specific colour to particular 
class, final classified map is obtained (Figure 13). The results can be slightly different from one 
method to another. Unclassified objects are appearing in most cases (Figure 15). A study has been 
carried out during the research is to find out the overlap area in a final classified map. For this case 
study the results of swap-move algorithms are presented.   
 
The aim of overlap is to find out whether a single pixel is classified in more then one class or not.  
Figure 14 show the results of overlap analysis. Figure 14 (a) shows the sum of all classes, the black 
area in the image is the sum of all pixels that are assigned to particular class (classified pixels) and the 
white area is unclassified objects, in other words, pixels that do not belong to any of defined classes.   
Histogram (b) shows the proportion of pixels that are classified and not classified (unclassified). This 
histogram counts the sum of pixels that are classified and pixels that are remained unclassified. 
Number 1 shows the sum of pixels that are assigned to a particular class and number 0 shows 
unclassified pixels. From the histogram it can be observed that there are no pixels equal to number 2, 
which means that each pixel is classified only once and to one class. From the Figure 14 t can be 
concluded that there is no overlap between the classes. Also it can be concluded that the unclassified 
objects belong to those range of spectral signatures that are not considered during the collecting 
training sets.       
           

 

 

 
a) sum of all classified classes   b) Histogram of class overlap   

Figure 14. Overlap analysis 
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5.1.3. Influence of classification tree order    

When a binary classification is done, they results can be used to produce a final classification using the 
proposed methods. The results in Figure 15 show the influence of defined classification trees on the 
classification results.   
 

  
a) method based on max value  b) method based on mean value  

  
c) method based on min value  d) method based on inverse tree nodes order 

to min value 
Figure 15. Final classification results using the adopted methods ( 1=λ )  

 
From the Figure 15, it is observed that the first three methods (Figures 12 a, b, c) produce identical 
results. The last method based on an “inverse tree nodes order” (Figure 10 d) produces different to the 
three previous results, which means that the sequence of tree nodes has an impact on classification 
result. From the first three methods it can be concluded that the class separability measures produces 
identical results. Therefore, for further comparison the last two methods are used, method based on 
min values (Figure 15c) and its inverse tree nodes order (Figure 15d).      
 
Figure 16 shows the difference between (by zooming to a certain area on the image) the min value 
(Figure 16 c) and its inverse order (Figure 16 d).  
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c) method based on min value  d) method based on inverse order to min 

value 
Figure 16. Classification results, min value (Figure 15c) versus its inverse order (Figure 15d) ( 1=λ ) 

 
Some changes (commission errors) are observed in case of class “river 1” and “baresoil”. In case of 
class “vegetation” no changes are observed. Class “vegetation” is the only class that represents most 
separated class in this small area of an image. The rest of the classes in this case belong to least 
separated classes. The classification results can be related to two factors, smoothness value and the 
classification tree. Both of these factors can have an impact on Classification results. Using a different 
smoothness values the classification results look different. En example of applying different 
smoothness parameter using binary segmentation is provided next subsection.   

5.1.4. Classification results using swap-move and expansion-move algorithms 

Similarly to ICM algorithm, binary image segmentation is applied using the swap-move and 
expansion-move algorithms. The final results of binary image classification using these algorithms are 
provided in this subsection. Figure 17 illustrate the final classification results using swap-move and 
expansion-move algorithms, the min values (based on Figure 10c) and its inverse order (based on 
Figure 10 d).  
 

  
a) based on min value  b) based on inverse order to min value 

 

Figure 17. Classification results using swap-move algorithm ( 1=λ ) 

the 
difference 
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In the case of graph cuts algorithm the difference is not much in comparison with ICM algorithm. The 
differences are assessed based on visual interpretation. Figure 18 shows the detail where some minor 
differences are visible.    
  

 
 

a) based on min value  b) based on inverse order to min value 
 

Figure 18. Classification results, using swap-move algorithm ( 1=λ ) 
 
Similarly to the swap-move algorithm classification results are provided for expansion-move same 
way. Figure 19 shows the results of both methods.      
 

  
a) based on min value  b) based on inverse order to min value 

 

Figure 19. Classification results based on min value and its inversed order ( 1=λ ) 
 
Figure 20 shows some minor differences between the methods in more details. The differences are 
observable particularly in the edges of classes.  
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a) based on min value  b) based on inverse order to min value 

 

Figure 20. The difference between min value and it inverse method ( 1=λ ) 
 
Based on the achieved results (Figures 15, 17 and 20) it is observed that each method produces 
different classification result, which depends on the sequences of the tree nodes. An example of binary 
image classification with different smoothness parameters is provided. The choice of most optimal 
smoothness value depends on users. Some user may need smooth images and some may not.   
 
Binary image segmentation with different smoothness parameters on class “lake” and “landslides” is 
applied (Figure 21). These two classes are selected to study the impact of different smoothness values 
on classification results. Class “Lake” represents those spectral classes that are easy to differentiate 
from other classes and “landslides” represents those classes that are difficult to differentiate from 
other. This can be related to the class separability measures, discussed above. The results of binary 
classification are provided in Figure 21 – 22.               
 

   
a) 1=λ  b) 3=λ  c) 5=λ  
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d) 10=λ  e) 20=λ  f) 50=λ  

 

Figure 21. Binary classification results of class “lake” using swap-move algorithm 
 
Figure 21 shows binary image segmentation results with different smoothness parameters using swap-
move algorithm. By setting the smoothness parameter to larger value, more smoothing of class “lake” 
is observed. If we compare the results of (a) with (f) in Figure 21 (with smoothness 
parameter 1=λ and 50=λ ), then the difference in results can be easily observed, although the 
difference between the first three smoothness values is not much observable. Following can be 
predicted from Figure 21: by assigning larger smoothness value, over smoothing can be observed and 
class “lake” might not preserve its shape furthermore.   
Figure 22 provides the results of binary image classification in the case of class “landslides”. The 
results are different in comparison with class “lake”.   
 

   
a) 1=λ  b) 3=λ  c) 5=λ  

   
d) 10=λ  e) 20=λ  f) 50=λ  

 

Figure 22. Binary classification results of class “landslides” using swap-move  algorithm 
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From Figure 21 – 22 following can be observed: the smoothness parameters have different impact on 
both classes. In the case of class “landslides” the smoothness values are very sensitive, where in case 
of class “lake” they are less sensitive. Over smoothing is observed and the objects on the image do not 
preserve their shape in case of 50=λ . The same situation can be observed for other spectral classes  
 
This paragraph compares all applied algorithm based on Aster images visual interpretation. The results 
of each algorithm are compared with original Aster image. It is not the ideal method to compare the 
results, because in this case it is not possible to quantify the accuracy but it still gives an idea about the 
quality of classification results.  
 
Figure 23 shows the classification results of ICM algorithm in comparison with the Aster image. 
Particularly, the difference in the results can be observed around the class “river”. The “river” is 
shown in “cyan colour”.  If we compare Figure 23 (a) and Figure 23 (b) then it is observed that some 
commission errors are visible in 23 (b) where some objects from “river” are wrongly classified. In the 
case of 23 (a) omission errors for this class are observable, where quite numbers of pixels are missing 
in this class.        
 

  
a) method based on min value (figure 10c)  b) method based on inverse order to min 

value 

 
c) original Aster image 

 

Figure 23. Comparison analysis based on visual interpretation ( 1=λ ) 
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The following figure shows the results in details of both methods based on swap-move algorithm.  
 

 
 

a) based on min value  b) based on inverse order to min value 

 
c) original Aster image  

 

Figure 24. Comparison analysis based on visual interpretation ( 1=λ ) 
 
Similarly, the same method is applied to make comparison analysis based on visual interpretation of 
expansion-move algorithm.  
 
Except visual interpretation of the classification results and compare them with the original Aster 
image it is important to consider the computation time of applied algorithms, because this is one of the 
main problems that is addressed in this research. Computation time is proportional to number of 
interactions that the specific algorithm takes. In addition, energy values are considered, where the least 
energy should provide better classifi8cation results in according to the theory of energy optimization 
methods.  
 
Table 6 shows computation time (in seconds) versus the energy of binary classification for all 
individual classes using the applied energy minimization algorithms.  
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Algorithm energy time 
ICM 7671198 0.05

Swap 7671198 0.17
Expansion 7671198 0.12  

Algorithm energy time 
ICM 7681090 0.33

Swap 7681054 0.89
Expansion 7681054 0.64

Algorithm energy time 
ICM 7874489 0.85

Swap 7836528 0.98
Expansion 7836528 0.73

a) lake b) vegetation c) snow 
Algorithm energy time 

ICM 7683173 0.49
Swap 7683019 0.89

Expansion 7683019 0.94  

Algorithm energy time 
ICM 7738470 0.48

Swap 7733128 0.92
Expansion 7733128 0.96

Algorithm energy time 
ICM 7817700 0.67

Swap 7808464 0.95
Expansion 7808464 0.7

d) river 1 e) landslides f) baresoil 
Algorithm energy time 

ICM 7720894 0.68
Swap 7712131 0.94

Expansion 7712131 0.99  

Algorithm energy time 
ICM 7684220 0.48

Swap 7683815 0.89
Expansion 7683815 0.95  

g) rock h) river 2 
 

Table 6.  Energy versus time (in second) for each class 
 
The computation time comparison is presented in Table 6 for each individual class. Similarly, Table 7 
shows the final computation time that individual algorithm took.    
 

Algorithm time 
ICM 4.03

Swap 6.63
Expansion 6.03  

 

Table 7.Computational time (in seconds) 
 
The last step in this stage is to compare the quality of binary image classification based on visual 
interpretation among all the energy minimization methods considering the smoothness parameters 
applied above. Figure 25 shows the results of all applied algorithms based on the min value 
classification tree. The results of all energy minimization algorithms are compared with maximum 
likelihood (MLC) algorithm. 
 
 

  
a) ICM algorithm   b) swap-move algorithm  
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c) expansion-move algorithm  d) Maximum likelihood  

 
e) original Landsat image 

 

Figure 25. Visual comparison of the classification results based on min value method ( 1=λ ) 
 
The results in Figure 25 look different in all cases, MLC produces smooth classification results. ICM 
result is close to MLC where swap-move and expansion-move algorithms produces classification with 
more unclassified objects. Expansion-move algorithm produce less unclassified objects than swap-
move  algorithm. The results are visually compared with the original Landsat image.    

5.2. Classification results of Quickbird image of Boothoven, Enschede 

The second part provides the results based on methods applied on Quick Bird image of Boothoven 
area. The results are al all energy minimization methods are assessed based on visual interpretation, 
object based analysis and the classification accuracy is quantified using the error matrix. The results of 
“tree crown” are provided. Different smoothness values are tested and used for image classification. 
The most appropriate smoothness value that produces better classification result is identified for each 
energy minimization method. Next section provides some results based on object analysis. Chapter 6 
discusses in details the results of each individual algorithm.  
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5.2.1. Classification results of object based analysis 

This section provides the results of binary image classification based on visual and object analyses. 
The results of expansion-move algorithms are provided with different smoothness values. It is 
important to mention that the procedure is same for other methods.  
 
Object based analysis is done based on visual interpretation of the classification results. The total 
number of objects both from classified and reference image that intersect each other are calculated. 
This comparison is done for every defined smoothness parameter. Discussion on the results is 
provided.    
 
The classification results of expansion-move algorithm with different smoothness is provided in Figure 
26. These comparative analyses are provided using ArcMap software.  
   
 

 

 

 
a) intersect results, 05.0=λ   b) classification results , 05.0=λ  

 
c) detailed comparison, 05.0=λ  

 

Figure 26. Expansion-move algorithm, classification results using 05.0=λ  .   

 
Figure 26(a) shows intersect results between the reference image and the classified map using ArcMap 
software, where the total number of objects is identified. The intersect results shows that 458 out of 
653 objects intersect with each other, which is about 70.13%. In this particular case the meaning of 

Classified map  

Reference data  

Intersect area  
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intersect is considered as follows: two objects intersect, if at least they have one common pixel. In 
some cases the objects are very big and in some other cases they are very small, even a size of single 
pixel. This gives an object based analysis which is normally easy for users.  Figure 26 (b) shows the 
visual comparison of classification results with the reference data. Figure 26 (c) shows more details 
where the affect of smoothness parameter is observable. In Figure 26 (c) more commission errors are 
observed as the same time the trees are not fully detected using the applied smoothness value.       
 
Similarly, visual image analysis is provided based on expansion-move algorithm where 3.1=λ ( 
Figure 27). 
 
 
 

 

a) intersect results, 3.1=λ   b) classification results, 3.1=λ  

 
c) detailed comparison, 3.1=λ  

Figure 27. Expansion-move  classification results.,  

 

The results produced in Figure 27 are different in comparison with Figure 26. It is observed that by 
increasing the smoothness value classification results look smoother than with smaller smoothness 
value, at the same time the number of objects are decreasing. No commission errors are visible using  

3.1=λ .   

Classified map  

Reference data  

Intersect area  
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a) intersect results, 5=λ   b) classified versus the reference map 

5=λ  

 
c) detailed comparison 5=λ  

Figure 28. Expansion-move algorithm, classification results using 5=λ  
 
Similar effect is observed for other methods (SA and ICM) which are not presented in this case. The 
aim is to show the effect of smoothness value on classification result. It is important to mention that by 
assigning same smoothness value, all energy minimization methods provide the same number of 
intersected objects. It can be mentioned that the size of intersect objects are different. In addition, the 
results of classification accuracy using the error matrix for all methods are provided in the next 
subsection.     
 
Visual comparison of classification results based on Maximum Likelihood (MLC), Simulated 
Annealing with logarithmic schedule and expansion-move algorithms are provided. In addition, the 
results are visually compared with Quickbird images. The comparison analysis is provided based on 
visual interpretation. Figure 29-30 shows the classification results of MLC , SA with logarithmic 
schedule and expansion-move algorithms with 5=λ are provided. It is observed that expansion-move 
algorithm provide better classification results in this case. The spatial context is better considered 
using this algorithm.    
 

Classified map  

Reference data  

Intersect area  
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a) MLC  versus SA Log, 5=λ   b) MLC  versus SA Log, 

5=λ (detailed) 
Figure 29. Classification results: Maximum Likelihood versus SA_log, 5=λ  

 
 

a) MLC versus Expansion-move, 
5=λ  

 b) MLC versus Expansion-move, 
5=λ (detailed) 

Figure 30. Classification results: Maximum Likelihood versus Expansion-move, 5=λ  
 
 
Figure 31 compares the results of MLC classification with three different smoothness values of 
expansion-move algorithm.  In addition, the original image of Buickbird and the trees that classified as 
shadow are presented. The trees in shadow area are not included in classification, but it is important 
take into account this problem, because spectral signatures of these trees are different with tree crown. 
These shadow trees are quite visible in Quickbird image (Figure 31 (f)).    
 
 

SA Log results  
MLC results  

Reference data  

Expansion-move 
MLC results  
Reference data  



 

50 

a) MLC result b) Expansion-move, 05.0=λ  c) Expansion-move result, 3.1=λ  

  

d) Expansion-move, 5=λ   e) Expansion-move result, 3.1=λ   f) Original Quickbird image  
  

 
 
 
 

 

Figure 31. Classification results, MLC versus Expansion-move 
 
 
From Figure 31 following is observed: the results of expansion-move algorithm (Figure 31 c) where 

3.1=λ  look the best results in this case, because it represents better the tree crown if we compare it 
with the original Quickbird image (Figure 31 f). In the case of MLC (Figure31a) the classification 
results look noisy, more commission errors are observed. Figure 31 (e) shows those trees in shadow 
that are not detected by any algorithms.             
 
 
 
 
 
 

Classified map  

Reference data  

Trees in shadow 
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5.2.2. Classification accuracy using the error matrix  

 
In this section classification results of all energy minimization methods are provided using the error 
matrices. Table 8 shows classification results of ICM algorithm that assessed using the error matrix 
with following smoothness values: 05.0=λ , 5.0=λ , 3.1=λ and 5=λ . 
 

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

Non-Tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission

42.32 4.51 8.71 53.97 57.68

4.51

100 100 100

57.68 95.49 91.29 92.98

42.32 95.49 Overall Acc = 89.6%

46.03 7.02 Kapp = 0.42  

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

Overall Acc = 89.8 % 

Kapp = 0.42

Non-tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission

42.20 4.23 8.45 55.52 57.80

4.23

100 100 100

57.80 95.77 91.55 92.82

44.48 7.02

42.20 95.77

 
a) ICM classification results ( 05.0=λ ) b) ICM classification results ( 5.0=λ ) 

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

Overall Acc = 90.1 %

Kapp = 0.4342.23 7.05

41.61 96.20

3.80

100 100 100

58.39 96.20 92.00 92.95

41.61 3.80 8.00 57.77 58.39

Non-tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission  

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

Overall Acc = 90.8 %

Kapp = 0.40

Non-tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission

34.19 2.09 5.66 67.16 65.81

2.09

100 100 100

65.81 97.91 94.34 92.25

32.84 7.75

34.19 97.91

 
c) ICM classification results ( 3.1=λ ) d) ICM classification results ( 5=λ ) 

 

Table 8. ICM Classification results (error matrix) 
 
The results of ICM algorithm are different in all cases. There is almost not difference in case of overall 
accuracy but in case of user and producer’s accuracy some differences are observable. Kappa values 
are in the range from 0.40 to 0.43, not much difference.  
 
Table 9 -10 show the results of Simulated Annealing algorithm both with Exponential and 
Logarithmic cooling schedule for the same smoothness values.  
   

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

verall Acc = 89.6 %

Kappa = 0.4146.02 7.02

42.31 95.49

4.51

100 100 100

57.69 95.49 91.29 92.98

42.31 4.51 8.71 53.97 57.68

Non-Tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission  

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

Overall Acc = 89.8 %

Kapp = 0.4244.44 7.03

42.06 95.79

4.21

100 100 100

57.80 95.77 91.55 92.97

42.06 4.21 8.41 55.56 57.94

Non-tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission  
a) SA_Exp classification results ( 05.0=λ ) b) SA_Exp classification results ( 5.0=λ ) 
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Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

Overall Acc = 90.2 %

Kapp = 0.43

Non-tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission

41.39 3.72 7.91 58.15 58.61

3.72

100 100 100

58.61 96.28 92.09 92.93

41.85 7.07

41.39 96.28

 

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

l = 90.9 %

Kappa = 0.4132.66 7.66

35.10 97.87

2.13

100 100 100

64.90 97.87 94.21 92.34

35.10 2.13 5.79 67.34 64.90

Non-tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission  
c) SA_Exp classification results ( 3.1=λ ) d) SA_Exp classification results ( 5=λ ) 

 

Table 9. SA_Exp Classification results (error matrix) 
   

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

46.04 7.02 Kappa = 0.42

42.34 95.48 Overall = 89.6 %

4.52

100 100 100

57.66 95.48 91.28 92.98

42.34 4.52 8.72 53.96 57.66

Non-Tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission  

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

Overall Acc = 89.8 %

Kappa = 0.4244.47 7.03

42.03 95.79

4.21

100 100 100

57.97 95.79 91.59 92.98

42.03 4.21 8.41 55.53 57.97

Non-Tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission  
a) SA_Log classification results ( 05.0=λ ) b) SA_Log classification results ( 5.0=λ ) 

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

Overall Acc = 90.2 %

Kappa  = 0.43

Non-tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission

41.55 3.74 7.94 58.17 58.45

3.72

100 100 100

58.45 96.26 92.06 92.93

41.83 7.06

41.55 96.26

 

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

Overall Acc = 90.9

Kappa = 0.41

Non-tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission

34.72 2.11 5.74 67.28 65.28

2.11

100 100 100

65.28 97.89 94.26 92.3

32.72 7.70

34.72 97.89

 
c) SA_Log classification results ( 3.1=λ ) d) SA_Log classification results ( 5=λ ) 

 

Table 10. SA_Log Classification results (error matrix) 
 
In the case of SA with exponential cooling schedule following parameters are used: TO=3.0, Tupd = 
0.9, 0.95 and 0.99. In the case of SA with logarithmic cooling schedule TO=3.0 is used. All these 
parameters including their energy values are provided in Appendixes (F) and (H).  There no much 
differences in terms of accuracy assessment using the error matrix between the ICM and two SA 
algorithms.    
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Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

Non-Tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission

42.32 4.47 8.67 54.22 57.68

4.47

100 100 100

57.68 95.53 91.33 92.98

42.32 95.53 Overall Acc = 89.6 %

45.78 7.02 Kappa = 0.42  

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

Overall Acc = 90.0%

Kappa = 0.43

Non-tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission

41.77 3.92 8.12 57.16 58.23

4.21

100 100 100

58.23 96.08 91.88 92.97

42.84 7.04

41.77 96.08

 
a) Swap-move classification results ( 05.0=λ ) b) Swap-move classification results ( 5.0=λ ) 

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

Overall Acc = 90.6 %

Kappa = 0.4338.01 7.22

39.70 96.96

3.72

100 100 100

60.30 96.96 92.88 92.93

39.70 3.04 7.12 61.99 60.30

Non-tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission  

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

Overall Acc = 90.5 %

Kappa = 0.30

Non-tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission

22.11 0.94 3.29 74.57 77.89

3.72

100 100 100

77.89 99.06 96.71 92.93

25.43 8.95

22.11 96.06

 
c) Swap-move classification results ( 3.1=λ ) d) Swap-move classification results ( 5=λ ) 

 

Table 11.  Swap-move Classification results (error matrix) 
 

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

Non-Tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission

42.32 4.47 8.67 54.22 57.68

4.47

100 100 100

57.68 95.53 91.33 92.98

42.32 95.53 Overall Acc = 89.6 %

45.78 7.02 Kappa = 0.42  

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

Overall Acc = 90.0 % 

Kappa = 0.43

Non-tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission

41.77 3.92 8.12 57.16 58.23

4.21

100 100 100

58.23 96.08 91.88 92.97

42.84 7.04

41.77 96.08

 
a) Expansion-move classification results ( 05.0=λ ) b) Expansion-move classification results ( 5.0=λ ) 

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

Overall Acc = 90.6 %

Kappa = 0.43

Non-tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission

39.70 3.04 7.12 61.99 60.30

3.72

100 100 100

60.30 96.96 92.88 92.93

38.01 7.22

39.70 96.96

 

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

Overall Acc = 90.5 %

Kappa = 0.30

Non-tree

Ground Truth (Percent)

Tree

Total

Producer's 
accuracy
Errors of 

Comission

22.11 0.94 3.29 74.57 77.89

3.72

100 100 100

77.89 99.06 96.71 92.93

25.43 8.95

22.11 96.06

 
c) Expansion-move classification results ( 3.1=λ ) d) Expansion-move classification results ( 5=λ ) 

 

Table 12. Expansion-move Classification results (error matrix) 
 
Table 11-12 shows that swap-move and expansion-move algorithms produces identical results. But the 
results of these algorithms are comparable with SA and ICM algorithms. In terms of user and 
producer’s accuracy the results are different, although alone from the error matrix sometimes it is not 
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easy to interprate  the results. Visual interpretation helps to interprate and conclude the results. The 
results are discussed in details in next chapter.  
 
Table 13 provides the results of MLC using the error matrix. In comparison with swap-move and 
expansion-move algorithms MLC results are comparable; the accuracy measures are relatively less 
than the graph cuts algorithms and even less than both SA algorithms. The comparison of these 
algorithms based on visual interpretation is provided in the previous section.       
        

Classes Tree Non-tree Total User's 
accuracy

Error of 
Omission

90.99 92.96

47.75 7.04

42.38 95.16

42.38 4.84 9.01 52.25 57.62

Ground Truth (Percent)

Tree

Total 100 100

57.62 95.16

Overall Acc = 89.2 %

Kappa = 0.40

Non-tree

Producer's 
accuracy
Errors of 

Comission

4.84

100

 
Table 13. Maximum Likelihood Classification result 

 
Finally, the computation time of proposed methods are provided in table 14. It is important to mention 
that the computation time is proportional to number of interactions. In other words, every iteration 
takes approximately the same amount of time. Table 13 shows the performance in terms of iterations.    
 
 

Number of iterations 
Method 

05.0=λ  5.0=λ  3.1=λ  5=λ  
ICM 1 2 4 5 

SA_Exp 44 41 36 24 
SA_Log 1027 1024 1019 845 

Swap-move 2 2 2 2 
Expansion-

move 
2 2 2 2 

 

Table 14. Computation time in terms of iterations 
 
Swap-move and expansion-move algorithms show very interesting results, in all cases the number of 
iterations is equal to 2, which is considered very fast. ICM shows different results, the number of 
iterations ranging from 1 to 5 depends on smoothness parameter, with very low smoothness parameter 
it converges very fast where by increasing the smoothness parameter the number of iterations is 
increased. SA with exponential cooling schedule performs faster than SA with logarithmic schedule, 
but still both of these algorithms are very slow in comparison to graph cuts and ICM algorithms.       
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6. Discussion 

The achieved results are discussed in this chapter. The applicability of selected graph based energy 
minimization algorithms such as swap-move and expansion-move are discussed in detail. Their results 
are compared with Simulated Annealing (SA) (both Exponential and Logarithmic cooling schedules) 
and Interacted Conditional Modes (ICM) and Maximum Likelihood (MLC) algorithms. Performance 
evaluation of the methods both in term of classification accuracy and computational time are discussed 
as well. The first part of the chapter discusses the results of energy minimization methods based on 
visual interpretation, where a reference data is not provided. In addition to visual interpretation of the 
results, the second part discusses an object based assessment as well as the accuracy assessment based 
on error matrix.  
 
ICM is a fast energy minimization algorithm and for this particular study it shows interesting results. 
ICM is applied on binary image classification of Sarez image with eight defined spectral classes. It 
took 5.64s to classify the entire image. In terms of computational time, ICM outperformed the swap-
move and expansion-move algorithms but in terms of energy optimization, it is behind the swap-move 
and expansion-move algorithms. ICM is applied to test the applicability of adopted methods 
(Figure12) and the results show that the first three proposed methods (Figure 12 a, b, c) achieved 
identical results. These results show that the methods based on class separability measures produce 
identical results. But the inverse tree nodes order (Figure 12 d) produced different result. Based on the 
achieved results it is observed that the classification results depend on the order of tree nodes. Based 
on visual interpretation of the results it is observed that a method based on min value produces results 
with less commission errors. The results are compared with original Aster image (Figure 23). It is 
important to mention that the classification results depend on smoothness value which is assigned to a 
particular spectral class. In addition, it is observed that ICM produces results with less unclassified 
objects than swap-move and expansion-move, which is related to selecting of smoothness value. The 
comparison study has not carried out in details for Landsat image, because of the limitation of visual 
interpretation and a lack of the reference data.    
 
Similarly to ICM, swap-move and expansion-move algorithms are applied on binary image 
classification of Sarez image. These algorithms prove that the defined classification trees leads to 
different results. Besides binary image classification, these algorithms are applied to find out the 
optimal smoothness value for each individual spectral cover class (Figures 21 - 22). The optimal range 
of smoothness values are tested and observed using the swap-move and expansion-move algorithms. 
Two spectral classes are selected and tested. Class “lake” (Figure 21) represents most separated 
spectral class, which means that it is easier to differentiate from other classes, while class “landslides” 
(Figure 22) belongs to the least separated classes. This is concluded based on class separability 
measures. Figures 21-22 show that each smoothness value has a different impact on these two classes. 
From Figures 21-22 it is observed that the smoothness parameters affect less the class “lake” rather 
than class “landslides”, in other words, the smoothness values are more sensitive to class “landslides” 
and less sensitive to class “lake”. The objects in the Figure 22 change their shape when smoothness 
value is increased and in the case of 50=λ over smoothness is observed for class “landslides”. In the 
case of class “lake”, it preserves well its shape, although some minor changes are observed in the 
edges of class “lake”. This gives sufficient reason to consider the smoothness values for individual 
spectral class.  
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In terms of computational the swap-move and expansion-move algorithms show interesting results. In 
comparison to ICM algorithm, the swap-move and expansion-move algorithms are somewhat slower 
(Table 6 and 7) but the energy is lower in the majority of cases. The results of swap-move and 
expansion-move algorithms are similar in terms of energy, because they are also similar in their 
structure. In terms of computation time, the expansion-move algorithm shows slightly improved 
results (Table 7). Figure 25 shows the differences between the methods based on visual interpretation 
of classification results. The classification results show that more unclassified objects are observed in 
case of swap-move and expansion-move algorithms in comparison to ICM. These unclassified objects 
appear in transition zones between different spectral classes, which can be related to quality of 
collected training set. Among the graph cuts algorithms, expansion-move provides less unclassified 
objects than the swap-move algorithm (Figure 25 b, c). In addition to visual interpretation, an overlap 
analysis is carried out that to find out whether a single pixel is classified in more than one class. The 
results showed that there is no overlap in final classification result (Figure 14).                
 
This part of the chapter discusses the results (in case of Quickbird image) of all energy minimization 
algorithms and compare their performance evaluation in terms of visual image interpretation, object 
based analysis and the error matrices. The results of swap-move and expansion-move, MLC, ICM and 
SA with both cooling schedules algorithms are discussed and compared. The results based on error 
matrices for individual method with different smoothness values are discussed.  
 
The results in Figures 26-27 show how the smoothness values effect classification results, based on 
visual interpretation. Using the smallest smoothness value ( 05.0=λ ) the classification results look 
noisy, commission errors are observed but at the same time most of the small individual trees are 
detected. Using 05.0=λ , 458 out of 653 tree objects are detected; in case of 3.1=λ , 332 out of 653 
tree objects; and in case of 5=λ only 72 out of 653 tree objects are detected. The selected range of 
smoothness values shows that they lead to different classification results and to choose the most 
optimal smoothness parameter depends upon specific purposes. If we are interested in small individual 
trees then smaller smoothness value can be used. But the disadvantage of choosing small smoothness 
value is that the results look noisy, because of commission errors. In the case of large trees the 
smoothness value should be increased. It is observed that in case of large trees commission errors are 
not observed. Within the range of defined smoothness values, 3.1=λ shows better classification 
results. But it should be mentioned that some small trees are not detected using this smoothness value. 
In case of 5=λ only the large groups of tree are well represented, the small and medium sizes of trees 
are not detected. It is also observed that due to similar spectral properties of class “tree” and 
“grasslands” some trees are not fully detected.   
 
Figures 29-31 shows the results of Maximum Likelihood (MLC), expansion-move and Simulated 
Annealing with logarithmic schedule algorithms with different smoothness values. The results of MLC 
classification look noisy. The results of MLC is similar to expansion-move algorithm with 05.0=λ .   
In case of 3.1=λ  the results based on expansion-move algorithm look best for this particular case. If 
we assign 0=λ for expansion-move algorithm that means that it is similar to MLC, because the 
context is ignored. The results of expansion-move and SA with logarithmic schedule algorithms are 
similar, although in Figure 30 expansion-move shows more complete results in comparison to SA with 
logarithmic schedule. Increasing the smoothness value further will lead to removing the objects from 
an image, or in other words over-smoothness can be observed.   
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Tables 8-13 show the classification results based on the error matrix using different smoothness 
parameters. The first three Tables 8-10 show the results based on ICM and SA algorithms and the next 
three 11-13 show the results of MLC and swap-move and expansion-move algorithms. The results are 
different in all four cases. There is no significant difference in terms of overall accuracy and kappa 
coefficient among all results. Some difference is observed in terms of user and producer’s accuracy in 
all case. SA with exponential is considered faster version of the original SA algorithm, because of its 
faster cooling schedule, which is the advantage of this algorithm but in terms of energy SA with 
logarithmic schedule produces lower energy values (Appendixes F - G). But once you can not rely on 
only lower energy values. In practice lower energy does not always produces better classification 
results. The results in this research of both cooling schedules do not differ much. Some improvement 
in terms of energy is observed using the logarithmic schedule. From the Tables 10-12 it is observed 
that SA with logarithmic schedule shows slightly improved results in terms of accuracy over ICM and 
SA with exponential cooling schedule.     
 
The swap-move and expansion-move algorithms produced identical results in this particular study 
(Table 11, 12). Their results in terms of classification accuracy are similar to SA with logarithmic 
schedule. In comparison with MLC, swap-move and expansion-move algorithms produces better 
classification accuracy, mainly because these algorithms consider spatial context in an image.    
 
The classification results are often depends on the quality of reference data. In the case of tree crown 
class some trees are covered by shadow in the original Quick Bird image, which means that spectrally 
trees in shadow are different from other trees. Therefore, classification results are affected by these 
shadows.  Figure 31 (e) shows in details this situation, the dark area is the shadows and the green is the 
tree crown. This problem can be addressed by adding another node to the classification tree, which 
represents another spectral class (shadow). Another factor that affects the classification result is the 
existence of small tree in the reference data. Due to the limitation of spatial resolution of Quick Bird 
images these small trees are not detected. Considering these two factors, the classification results can 
be improved.       
   
Table 14 shows the performance in terms of computational time of all energy minimization algorithms. 
This performance is considered in terms of iterations. It can be mentioned that each iteration take 
approximately same amount of time, that’s why we can say that iteration is proportional to time. Table 
14 shows that ICM took a few numbers of iterations. In the case of SA with exponential cooling 
schedule it took within the range of (24 – 44 iterations) for each smoothness value different results: 
and for SA with logarithmic schedule this range is from 845 - 1027 iterations. SA with logarithmic 
schedule shows most expensive computation in this case, because of its slow cooling schedule. Swap-
move and expansion-move algorithms show interesting results. In all cases the number of iterations is 
equal to 2, which is quite stable and fast. This shows that swap-move and expansion-move algorithms 
converge very fast.  
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7. Conclusion and Recommendation   

 

7.1. Conclusion  

Optimization of energy is a challenging issue in MRF based remote sensing image analysis which is 
addressed in this research. Before making conclusion it is important mention that all the formulated 
research questions are properly answered. The results show that the graph based energy optimization 
methods such as swap-move and expansion-move are applicable in MRF based remote sensing image 
classification. They are applied both on coarse (Landsat TM) and fine (Quickbird) spatial resolution 
images and produced sufficient classification results.  
 
In addition, two methods are proposed and tested; construction of classification tree and optimizing the 
smoothness parameter value. Both of these methods show their impact on classification result. In the 
case of classification tree, the results show their dependencies on the tree nodes sequence (order). It is 
concluded that the nodes sequence matters, which is linked to class separability measures. In the case 
of smoothness values it is concluded that they are more sensitive to spectral classes that are least 
separated and less sensitive to those that are most separated, based on divergence measures.     
 
The advantages of the adopted methods are following: They show very fast performance in terms of 
computational time, as within a short period of time they are able to classify an entire image. Their 
classification results are similar to that of SA with a logarithmic schedule algorithm and they 
outperformed the MLC algorithm. The main advantage of swap-move and expansion-move algorithms 
over SA algorithms is a reduced computational time. In comparison to ICM, the computational time is 
comparable.   
 
The limitations of these methods in extracting tree crown are following: some trees are not fully 
detected, because of similarity in the spectral properties between the grassland and tree crown classes 
and similarly some other are not detected in the transition zones between spectral classes. 
  
It is remarkable to conclude that the swap-move and expansion-move algorithms are applicable in 
MRF based remote sensing image classification with the type of energy function that is considered for 
binary image classification. These algorithms performed well and produced sufficient classification 
results. The proposed methods for constructing classification tree and optimising smoothness value 
showed their impacts on classification results. Finally, the computational problem of energy 
minimization in MRF based remote sensing image classification is addressed in this research. At the 
same time, limitation is observed that mainly caused due to the spectral similarity between the classes.   
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7.2. Recommendation  

In order to address the limitations following is recommended. The performance in terms of accuracy of 
the energy minimization algorithms can be improved by introducing higher order of neighbourhood 
system. In this case only the first order neighbourhood system is used, second order or higher order of 
neighbourhood system might lead to better classification results. Furthermore, the problem in the 
transition zones between the classes needs to be addressed in future.   
 
This is one of the first experiments on testing the applicability the swap-move and expansion-move 
algorithms in MRF based remote sensing image classification and to study the applicability of these 
algorithms for other application in remote sensing such as de-noising and texture analysis would be an 
interesting and useful work.   
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Appendix A – Training set of Study area - 1 

 
Training set for Landsat TM image, Sarez Lake. 

Appendix B – Defined spectral classes for 
study area - 1  

Class name Color Number of 
pixels

Number of 
polygons

Number of 
points

Lake blue 2030 5 0
Snow black 968 3 0

Landslides cyan 4036 3 0
Vegetation green 806 1 184

Baresoil magenta 1091 2 0
Rock red 2647 2 0

River 1 coral 232 1 10
River 2 sienna 91 0 91  
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Appendix C – Mean and covarience values  for 
Study area - 1 

 
Mean values of spectral classes (classes that are defined classes in Appendix B) 
  

Mean_1 Mean_2      Mean_3      Mean_4     Mean_5 Mean_6 Mean_7     Mean_8
55.554680 219.893595 82.796829 50.069479 70.920257 52.993578 66.297414 142.879121
35.098520 206.995868 86.300793 44.578164 68.151237 45.506611 61.172414 123.186813
18.776840 229.503099 106.745045 48.832506 81.477544 49.723461 65.952586 119.945055
9.950246 146.450413 79.859267 73.740695 61.905591 35.94031 41.405172 57.406593
7.407882 16.634298 96.758672 71.637717 74.289643 36.706838 22.077586 26.835165
7.276355 14.103306 82.634787 49.584367 69.558203 33.701171 20.512931 23.868132

 

Band 1      Band 2     Band 3     Band 4   Band 5    Band 6
8.997255 13.367208 6.220931 0.843284 0.825394 0.708637
13.367208 25.155395 11.136831 1.524372 1.579312 1.259107
6.220931 11.136831 6.555895 0.70698 0.747546 0.59891
0.843284 1.524372 0.70698 0.685054 0.097189 0.097049
0.825394 1.579312 0.747546 0.097189 0.69703 0.078452
0.708637 1.259107 0.59891 0.097049 0.078452 1.129603

Covariance table for class Lake

 
 

Band 1   Band 2 Band 3          Band 4        Band 5       Band 6
705.997973 612.772052 504.996711 324.466797 58.077903 40.603558
612.772052 581.398121 483.409527 343.627509 54.514516 38.626074
504.996711 483.409527 449.263693 293.999637 36.328953 25.243733
324.466797 343.627509 293.999637 287.716256 53.066646 38.176793
58.077903 54.514516 36.328953 53.066646 23.280808 16.971634
40.603558 38.626074 25.243733 38.176793 16.971634 13.916928

Covariance table for class Snow

 
 

Band 1         Band 2         Band 3          Band 4            Band 5            Band 6
434.90741 548.253941 738.913491 562.790979 665.420845 471.08241
548.253941 727.547172 1010.940648 785.668364 970.543735 687.585717
738.913491 1010.940648 1445.998179 1138.593354 1447.181084 1025.064733
562.790979 785.668364 1138.593354 908.498653 1173.850291 832.067549
665.420845 970.543735 1447.181084 1173.850291 1639.410396 1181.895237
471.08241 687.585717 1025.064733 832.067549 1181.895237 884.224951

Covariance table for class Landslides 
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Band 1        Band 2       Band 3        Band 4         Band 5            Band 6
20.395167 17.916302 33.704819 -50.985688 47.339488 49.997858
17.916302 22.015622 33.718077 -29.177843 40.767483 41.096503
33.704819 33.718077 65.148308 -90.860877 92.69204 94.093031
-50.985688 -29.177843 -90.860877 296.425845 -185.235673 -199.791139
47.339488 40.767483 92.69204 -185.235673 196.412687 187.325013
49.997858 41.096503 94.093031 -199.791139 187.325013 190.007159

Covariance table for class Vegetation 

 
 

Band 1        Band 2     Band 3      Band 4      Band 5         Band 6
13.174369 7.286383 -0.707756 -8.94882 -30.183304 -33.370125
7.286383 7.519308 5.532298 0.757411 -6.089717 -8.075324
-0.707756 5.532298 19.743303 19.127694 40.626694 41.616675
-8.94882 0.757411 19.127694 28.089244 64.326452 67.094032

-30.183304 -6.089717 40.626694 64.326452 169.549058 179.056521
-33.370125 -8.075324 41.616675 67.094032 179.056521 193.017481

Covariance table for class Baresoil 

 
 

Band 1      Band 2       Band 3      Band 4       Band 5       Band 6
18.413035 17.795394 21.070786 14.602035 14.264934 12.725215
17.795394 20.442795 24.415283 17.618309 19.205643 16.861198
21.070786 24.415283 33.590164 24.121053 28.622224 24.703801
14.602035 17.618309 24.121053 19.812762 24.141225 20.711181
14.264934 19.205643 28.622224 24.141225 37.815762 31.348114
12.725215 16.861198 24.703801 20.711181 31.348114 28.403865

Covariance table for class Rock 

 
 

Band 1 Band 2  Band 3 Band 4  Band 5 Band 6
1311.365825 1062.557151 933.250707 280.150453 67.53769 48.092504
1062.557151 868.000173 764.248043 233.674009 58.72691 43.523893
933.250707 764.248043 681.168644 212.91489 55.949839 42.902842
280.150453 233.674009 212.91489 78.675692 35.058083 30.192018
67.53769 58.72691 55.949839 35.058083 93.48626 82.838952
48.092504 43.523893 42.902842 30.192018 82.838952 77.447782

Covariance table for class River 1

 
 

Band 1        Band 2         Band 3        Band 4       Band 5       Band 6
389.240781 308.489499 287.182173 75.00525 -67.309035 -62.005006
308.489499 259.242491 245.254823 74.056532 -44.068864 -40.297314
287.182173 245.254823 249.341392 86.000366 -34.63138 -31.118437
75.00525 74.056532 86.000366 47.643956 4.21221 3.865324

-67.309035 -44.068864 -34.63138 4.21221 89.805861 78.266911
-62.005006 -40.297314 -31.118437 3.865324 78.266911 72.249084

Covariance table for class River 2
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Appendix D - Mean and covariance values of 
defined classes for Boothoven area, Enschede  

(Class 1 – bright trees, Class 2 – dark trees, Class 3 – grass dark, Class 4 – grass bright, Class 5 – 
shadow, Class 6 – impervious, Class7 –  shadow vegetation, Class 8 – shrubs )   
 

Mean_1 Mean_2 Mean_3  Mean_4 Mean _5 Mean_6 Mean_7 Mean_8 
158.680718 146.935272 163.37015 159.13701 141.689482 259.139674 144.35294 160.615607
208.498829 174.967167 220.77909 220.28031 153.214802 379.895245 165.82353 216.736994

105.4879 81.266417 120.5 103.99685 66.485253 261.32725 75.176471 109.794798
662.28025 363.611632 467.1796 680.58268 103.845854 296.076856 212.70588 584.150289

Mean values of defined classes for Boothoven area, Enschede 

 

Band 1 Band 2         Band 3        Band 4
38.570636 82.138298 54.959024 52.473924
82.138298 301.159569 166.171275 213.703844
54.959024 166.171275 135.812549 86.235034
52.473924 213.703844 86.235034 5201.22218

Covariance table for class 1

 
 

Band 1 Band 2        Band 3          Band 4
32.160126 68.362192 47.575007 178.049017
68.362192 218.197043 142.349601 492.052964
47.575007 142.349601 113.681068 360.991828
178.049017 492.052964 360.991828 3825.47532

Covariance table for class 2

 
 

Band 1  Band 2        Band 3        Band 4
20.700847 31.362008 44.152321 3.695492
31.362008 83.684491 88.638819 82.905531
44.152321 88.638819 146.462869 30.531224
3.695492 82.905531 30.531224 1592.893457

Covariance table for class 3

 
 

Band 1 Band 2        Band 3         Band 4
19.090032 22.994657 21.609265 -93.802355
22.994657 63.520669 38.687004 -93.363906
21.609265 38.687004 51.495258 -317.122768
-93.802355 -93.363906 -317.122768 5372.107901

Covariance table for class 4

 
 

Band 1 Band 2        Band 3        Band 4
59.882367 74.685334 63.487623 -72.437647
74.685334 122.413745 93.880675 -50.969098
63.487623 93.880675 91.041681 -64.820482
-72.437647 -50.969098 -64.820482 752.249611

Covariance table for class 5
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Band 1 Band 2           Band 3           Band 4
7801.126599 12697.46134 9957.783238 7508.037057
12697.46134 21454.48799 16953.63718 13856.91866
9957.783238 16953.63718 13646.54885 11353.38556
7508.037057 13856.91866 11353.38556 11408.34541

Covariance table for class 6

 
 

Band 1 Band 2      Band 3       Band 4
45.992647 40.566176 55.308824 -9.014706
40.566176 99.029412 64.095588 -4.367647
55.308824 64.095588 97.654412 -7.757353
-9.014706 -4.367647 -7.757353 720.345588

Covariance table for class 7

 
 

Band 1 Band 2        Band 3           Band 4
22.022828 26.472522 22.642632 95.197068
26.472522 86.629178 54.67341 329.115004
22.642632 54.67341 86.273712 -105.679216
95.197068 329.115004 -105.679216 6545.044014

Covariance table for class 8 
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Appendix E – Influence of smoothness 
parameter on classification result 

 

 

 

 

Swap-move lambda 0.05  Swap-move lambda 1.3  Swap-move lambda5 

 

 

 

 

Expansion-move 0.05  Expansion-move lambda 1.3  Expansion-move lambda 5 

 

  

ICM lambda 0.05     

 

  

SA log lambda 005  SA log lambda 1.3  SA log lambda 5 
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Appendix F – Energy values for Simulated 
Annealing (Exponential schedule) 

 

T0=3.0

Tupd 1 2 3 4 5
Lambda=0.05 0.9 15.965745 15.965739 15.965796 15.965788 15.965733 15.9657602 2.94737E-05

0.95 15.900328 15.900353 15.900334 15.900353 15.900344 15.9003424 1.12383E-05
0.99 15.900369 15.900352 15.900347 15.900332 15.900347 15.9003494 1.32778E-05

Lambda=0.5 0.9 15.965745 15.965739 15.965796 15.965788 15.965733 15.9657602 2.94737E-05
0.95 16.056953 16.056911 16.056993 16.057001 16.057123 16.0569962 7.94305E-05
0.99 15.965818 15.965737 15.965725 15.965769 15.965749 15.9657596 3.64664E-05

Lambda=1.3 0.9 16.056953 16.056911 16.056993 16.057001 16.057123 16.0569962 7.94305E-05
0.95 16.057117 16.056881 16.056965 16.056705 16.056507 16.056835 0.000236127
0.99 16.057112 16.056635 16.057043 16.056671 16.056763 16.0568448 0.000218857

Lambda=5 0.9 16.273563 16.266922 16.265339 16.261799 16.26421 16.2663666 0.004434707
0.95 16.263857 16.263126 16.261732 16.262936 16.261869 16.262704 0.000894892
0.99 16.258329 16.258564 16.258165 16.258436 16.258411 16.258381 0.000147287

STDEV

Simulated Annealing ( Exponential schedule )

Repetition(trial)
Mean

 

Appendix H - Energy values for Simulated 
Annealing (Logarithmic schedule) 

T0=3.0
Lambda Mean STDEV

1 2 3 4 5
0.05 15.905455 15.906125 15.90576 15.905895 15.905972 15.9058414 0.000253125
0.5 15.970675 15.970982 15.971231 15.971072 15.971217 15.9710354 0.00022656
1.3 16.062046 16.061014 16.062183 16.06155 16.062166 16.0617918 0.000505253

Simulated Annealing (Logarithmic schedule, max iter = 1000)

Repetition (trial)

 
 

T0=3.0
Lambda Mean STDEV

1 2 3 4 5
0.05 15.900319 15.900347 15.900328 15.900349 15.900332 15.900335 1.27867E-05
0.5 15.965725 15.96574 15.965783 15.96572 15.9657 15.9657336 3.11014E-05
1.3 16.057106 16.057045 16.056793 16.056875 16.056877 16.0569392 0.000130749
5 16.260073 16.258778 16.259539 16.258297 16.258741 16.2590856 0.000709892

Repetition (trial)

Faster version of SA with Logarithmic schedule
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