
Solving time-dependent shortest
path problems in a database

context

Rodrigo Campi Sperb

March, 2010

Solving time-dependent shortest path
problems in a database context

by

Rodrigo Campi Sperb

Thesis submitted to the International Institute for Geo-information Science and
Earth Observation in partial fulfilment of the requirements for the degree in
Master of Science in Geoinformatics.

Degree Assessment Board

Thesis advisor Dr.Ir. R.A. de By
Dr. O. Huisman

Thesis examiners Chair: Dr.Ir. R.L.G. Lemmens
External examiner: Dr. Jing Bie

INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

ENSCHEDE, THE NETHERLANDS

Disclaimer

This document describes work undertaken as part of a programme of study at
the International Institute for Geo-information Science and Earth Observation
(ITC). All views and opinions expressed therein remain the sole responsibility
of the author, and do not necessarily represent those of the institute.

Abstract

All around the world people experience delays due to bad traffic con-
ditions. As a matter of fact, here in Netherlands, for instance, it is com-
mon sense to talk about the early morning pick time in the motorways
and major roads just before people start their work duties. In this con-
text, computation of shortest paths can no longer consider costs to traverse
the network fixed, as traditionally, but rather as function of the time of
the day. When these costs are known a priori (i.e., traffic condition in-
formation) the problem is usually referred to as time-dependent shortest
path (TDSP). In this research two problem formulations are tackled: (1)
a simple one-to-one TDSP for a given departure time (TDSP-GDT); and
(2) One-to-one TDSP for a given interval of departure time (TDSP-LTT). A
real-world time-dependent network from the Netherlands is used to test
the developed solutions, and we implement the solutions in a database
context. We make use of graph-theoretic approaches, more specifically an
adaption of the famous Dijkstra’s algorithm for static shortest path, pro-
posed in the literature. Preliminary results indicate that TDSP-GDT prob-
lems can be solved at reasonable computational time when opportunities
of optimizing the computation are taken by removing unnecessary nodes in
the graph (i.e., trivial graph simplification). On the other hand, TDSP-LTT
has shown to be very expensive computationally and only rather limited re-
quest sizes could be solved in a reasonable amount of time. That triggered
us toward finding faster ways of solving the problem, with the concept of
graph simplification being taken to other levels. We theoretically define
a graph simplification to traverse dense subgraphs in which the computa-
tions are found to slow down. A proof-of-concept performance test shows
that a careful delineation of dense subgraphs, brings much better results
in runtime, also allowing a broader range of requests sizes to be solved,
though the developed solutions may still have limitations when applied to
(real-world) large graphs. At any case, our investigation serves as a basis
upon which further work can be developed until fully operational solutions
for TDSP problems in a database context can eventually be reached. In this
note, we discuss other possibilities that could be exploited to achieve such
a goal, particularly focusing on how to compute faster, speed-up techniques
by precomputing parts of the problem, as well as pointing out that other
graph simplifications can still be devised.

Keywords
dynamic shortest path, spatial database, time-dependent routing, graph-
theoretic approach, graph simplification, speed-up technique

i

Abstract

ii

Acknowledgements

Praise be to God! O, Most High. Who was, is and will be. For all You have done in my
life and taken me that far. You deserve to be praised and worshiped all of my days.

I want to express my most sincere appreciation to my supervisor Rolf de By for all
the guidance and useful comments and discussion all the way of this research project.
Also for the very good first impression of GFM coursework with Module 1 in Principles
of Databases. From that moment I knew I had to do something relate to this subject.

I want also to thank my second supervisor Otto Huisman for the few but useful dis-
cussions during the work. As well as to all my colleagues at GFM course that made life
at research period still enjoyable, and for also helping one and another with discussion
and tips related to our projects. In this note, I am specially grateful for the partners
in SDIT research group, particularly Adam (Runner!) and Shelton (P!) for all shared
experiences, tips and etc.

I am grateful to NUFFIC for funding my studies and this wonderful opportunity
of living abroad. And to all administrative staff and lectures in ITC for all the help
throughout my period of study.

I can’t help thanking the outstanding support that my family always has given to
me. I excuse myself for some lines in my mother tongue directed to them: Pai e mãe, eu
lhes agredeço por tudo que fizeram por mim toda a minha e vida, e por todo o apoio neste
perı́odo longe de casa. Eu os amo muito, de todo meu coração. Estendo a toda minha
famı́lia por todo o carinho, amor e consideração que sempre tiveram comigo. Irmãos,
tios, primos, avós e bisa, amo a todos..

God has richly blessed me in the personal sense here too. I now excuse myself
once more for some words in another language: Yely, mi amor lindo, gracias por todo el
apoyo, sonrisas, abrazos y cariño todo este tiempo. Te amo muchototote.

I finally commit this document into Your Holy Hands, my dear Lord.

Rodrigo Sperb
Enschede, February 2010.

iii

Acknowledgements

iv

Contents

Abstract i

Acknowledgements iii

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Motivation and problem statement 1
1.2 Research identification . 3

1.2.1 Research objectives . 3
1.2.2 Research questions . 3
1.2.3 Innovation aimed at . 4

1.3 Method adopted . 4
1.4 Thesis outline . 5

2 Dynamics in Vehicle Routing 7
2.1 Why Dynamic? . 7
2.2 Generating time-varying travel times 8

2.2.1 Travel times/Speed profiles—a good approximation . . . 12
2.3 The role of Shortest Path Problems 13

3 Dynamic Shortest Path approaches 15
3.1 Dynamic Shortest Path problems 15
3.2 Dynamic Shortest Path solutions 19

3.2.1 The Discrete-time algorithm 19
3.2.2 The Bellman-Ford based algorithm 20
3.2.3 The adapted A∗ algorithm 21
3.2.4 The Two-step time-dependent shortest path algorithm . 22

3.3 Speed-up techniques for shortest path computation 24
3.3.1 Goal-oriented routing . 25
3.3.2 Hierarchy-based routing 29
3.3.3 Combination of speed-up techniques 32
3.3.4 Techniques for a dynamic setting 32

3.4 Dynamic Shortest Path in a database context 34

v

Contents

4 Tools for Dynamic Shortest Paths in a database context 35
4.1 A set of Time-dependent Shortest Path (TDSP) problems and def-

inition . 35
4.1.1 A simple one-to-one TDSP for a given departure time . . 37
4.1.2 One-to-one TDSP for a given interval of departure time . 37

4.2 Relevant concepts and definitions for solving TDSP problems . 37
4.3 Solving a set of TDSP problems 39

4.3.1 Explaining the Two-step LTT approach 40
4.3.2 Identifying tools to be implemented for the Two-step LTT

approach . 42
4.4 Auxiliary tools for the Two-step LTT approach 43

4.4.1 Initialization tool: generate initial arrival-time functions 44
4.4.2 Tools for X-/Y-value look-up 45
4.4.3 Tool to add-up two mathematical functions 46
4.4.4 Tool to determine the minimal function from two mathe-

matical functions . 47
4.5 Two-step LTT approach for solving a set of TDSP problems . . . 48
4.6 Interlude: encompassing multimodal shortest path problems—a

conceptual level discussion . 48
4.6.1 Why only at conceptual level? 48
4.6.2 Multimodal TDSP in a single mode TDSP setting 48

5 Case study implementation and performance tests 53
5.1 A time-dependent GIS dataset of the Netherlands 53

5.1.1 Characteristics of the transportation network 54
5.1.2 Loading the Netherlands time-dependent network dataset

into a database . 57
5.2 Abstracting a Graph for applying (time-dependent) shortest path

algorithms . 58
5.3 Delivering edge-delay functions from speed profiles 61
5.4 Solving Time-dependent Shortest Path for a Given Departure Time

(TDSP-GDT) in a database context with generalized Two-step LTT 62
5.4.1 Preliminary computational results: towards fast computa-

tion . 63
5.4.2 Graph simplification—or how to get faster TDSP-GDT prob-

lem results . 65
5.5 Solving Time-dependent Shortest Path for a given interval of de-

parture time (Least Travel Time) (TDSP-LTT) in a database con-
text with Two-step LTT . 68
5.5.1 Preliminary computational results: finding limitations . 69

5.6 Revisiting the graph simplification—or how to quickly traverse a
dense part of the graph . 71
5.6.1 Defining a dense subgraph to substitute for the simplified

graph . 73
5.6.2 Precomputing least-delay functions for the simplified graph 74
5.6.3 Finding the actual path through a dense subgraph from

least-delay functions . 76

vi

Contents

5.6.4 Substituting dense subgraphs by simplified subgraphs . 77
5.6.5 Proof-of-concept speed-up performance check 77

6 Discussion, Conclusions and Recommendations 83
6.1 Outline of the results and discussion 83

6.1.1 Further discussion—Looking outside the box 89
6.2 Conclusions . 90
6.3 Recommendations . 91

Bibliography 93

A Preparation of dataset for case study 101
A.1 Loading GIS dataset into the database 101
A.2 Loading time-dependency of the road segments 101
A.3 Abstracting the graph . 102

B Solving TDSP problems in a database context 105
B.1 Auxiliary tools . 105

B.1.1 Initialization tool—TDSP-GDT 105
B.1.2 Initialization tool—TDSP-LTT 107
B.1.3 Look-up tools . 108
B.1.4 Update arrival-time functions tool 109

B.2 Two-step LTT for TDSP-GDT . 110
B.2.1 Time-refinement step—TDSP-GDT 110
B.2.2 Path-selection step—TDSP-GDT 110
B.2.3 Shortest-path request—TDSP-GDT 111

B.3 Two-step LTT for TDSP-LTT . 112
B.3.1 Auxiliary tools . 112
B.3.2 Time-refinement step—TDSP-LTT 113
B.3.3 Path-selection step—TDSP-LTT 115
B.3.4 Shortest-path request—TDSP-LTT 116

C Optimization procedures 117
C.1 Sequence of commands for the trivial graph simplification . . . 117
C.2 Generating aggregated edge-delay functions 118

C.2.1 Aggregated edge-delay function algorithm 120
C.3 Sequence of commands for the dense subgraph simplification . 120
C.4 Identify entry nodes and exit nodes 120

C.4.1 Precomputation of least-delay functions and graph simpli-
fication . 121

C.4.2 Average performance tests 126

vii

Contents

viii

List of Tables

2.1 Reported gains with integration of time-varying travel times in
vehicle routing. 11

2.2 Findings of studies applying FCD to estimate traffic parameters. 12

3.1 Reduction to two fundamental problem variants and methods of
computation [21]. 19

3.2 Classification of TDSP problems after [15]. 20

4.1 Dimensions on TDSP problem requests. 36
4.2 Summary of tools for the development of the Two-step LTT ap-

proach. 45

5.1 Distribution of direction of modeled segment by hierarchy in the
Tele Atlas dataset roads network. 57

5.2 Distribution of time-dependency in the Tele Atlas dataset roads
network. 57

5.3 Summary of steps carried out for loading the dataset into the
database. 59

5.4 Reduction in the number of nodes by applying the simplification
of graph with gradual inclusion of other levels of hierarchy levels
of roads. 68

5.5 Precomputation time for substituting dense subgraphs by simpli-
fied version with least-delay functions to allow quick traversal of
these dense subgraphs—first attempt. 79

5.6 Impression on speed-up achieved by the graph simplification in
varying distance between start and end node (*interval for depar-
ture time refinement of 10 min). 79

5.7 Precomputation time for substituting dense subgraphs by simpli-
fied versions with least-delay functions to allow quick traversal of
these dense subgraphs—second attempt. 80

5.8 Impression on computational performance after graph simplifi-
cation to allow quick traversal of dense subgraphs, with varying
interval for departure time (*distance between start and target
node of +120 km). 81

5.9 Average response over 20 requests with randomly varying dis-
tances between start and target node, and fixed time intervals for
departure. 82

ix

List of Tables

x

List of Figures

1.1 Investigated setting with databases playing a role also as envi-
ronment for computation of routes 2

2.1 An architecture for a real-time decision system for vehicle routing
problem (after [81]). 9

2.2 An example of structure and environment of a Dynamic Routing
System (after [32]). 10

2.3 Smoothed travel time function [31]. 13

3.1 Definition and an example of a graph (adapted from [16].) . . . 16
3.2 Dijkstra’s algorithm (after [85]). 17
3.3 Orda Rom algorithm ([66] after Ding et al. [28]) 21
3.4 Outline of Two-step least travel-time algorithm [28] 22
3.5 Ding et al. (2008) [28] time refinement algorithm. 23
3.6 Ding et al. (2008) [28] path selection algorithm. 24
3.7 An overview of shortest path algorithms and speed-up heuristics

(adapted from [60]). 26
3.8 Landmarks (l1, l2) and triangle inequalities intuition [24]. . . . 27
3.9 Idealized shape of the search space for shortest path computa-

tions in different methods (after [60]). 28
3.10 Preprocessing connections from a cluster Vi [60]. 29
3.11 Intuition of identifying a highway edge. 31

4.1 TDSP problem formulations in increasing complexity levels. . . 36
4.2 Intuition and example of relevant concepts for solving TDSP prob-

lems. 38
4.3 Outline of Two-step least travel-time algorithm [28] 41
4.4 Ding et al. (2008) [28] time refinement algorithm. 42
4.5 Running example of updated of arrival-time function. 43
4.6 Ding et al. (2008) [28] path selection algorithm. 44
4.7 Running example of an optimal path-selection p∗ for the optimal

starting time t∗. 44
4.8 Initialization algorithm. 46
4.9 Look-up algorithms. 46
4.10 Add-up two functions algorithm. 47
4.11 Determination of the minimal function algorithm. 47

xi

List of Figures

4.12 Two-step LTT approach [28] with adapted presentation to include
auxiliary tools developed. 49

4.13 Two-step LTT approach [28] generalized to solve TDSP-GDT. . 50
4.14 Allowing extra time for mode changes in a multimodal network

by creating a “virtual” edge that connects the switch point to itself
before reaching the subsequent node of a different mode. 51

4.15 Representing time-windows in the edge-delay function of the tran-
sition of modes in a multimodal network. 52

5.1 Snapshot of part of a speed profile data from Tele Atlas dataset. 54
5.2 Tele Atlas dataset link between speed profiles and transportation

network segments (adapted from [6]). 55
5.3 Polynomial fit of the 60 speed profiles for one product tile of the

Tele Atlas dataset [7]. 55
5.4 Tele Atlas transportation network dataset 56
5.5 Time-dependent segments in the Tele Atlas dataset roads net-

work.) . 58
5.6 Abstraction of the graph in the database. 60
5.7 Conceptual model of the time-dependent graph. 61
5.8 Overview algorithm for getting profile with inverted speed values. 62
5.9 Derivation of edge-delay functions from inverted relative speed

profile. 62
5.10 First impression on performance for TDSP-GDT solution in a database

context for the case study. 64
5.11 First impression on performance for TDSP-GDT solution in a database

context for the case study, after creating indexes to constantly
used table columns as well as precomputing edge-delay functions
to the graph. 65

5.12 A snapshot with an impression on unnecessary nodes in the graph
that could be “dissolved”. 66

5.13 Dissolve edges algorithm. 67
5.14 Subset of the graph to which the simplification of the graph was

applied. 67
5.15 Sum-up edge-delay functions of simplified edges algorithm. . . . 68
5.16 First impression of speeding-up the performance of TDSP-GDT

solution in a database context for the case study, after simplifying
the graph and generating aggregate edge-delay functions. . . . 69

5.17 First impression of the performance of TDSP-LTT solution in a
database context for the case study, after simplifying the graph
and generating aggregate edge-delay functions. 70

5.18 Computational time to update arrival-time functions as the iter-
ations go on. 71

5.19 Intuition of the substitution by a simplified graph in a dense sub-
graph. 72

5.20 Conceptual model of the substitution by a simplified graph in a
dense subgraph. 73

5.21 Define the dense subgraphs Gk. 74

xii

List of Figures

5.22 Identify entry nodes of a tile S. 75
5.23 Identify exit nodes of a tile S. 75
5.24 Computing least-delay functions for the dense subgraph inside a

tile S. 75
5.25 Add-up two edge-delay functions algorithm. 76
5.26 Getting the minimal of two functions tool algorithm. 76
5.27 Substitution of the dense subgraph for a simplified version algo-

rithm. 77
5.28 Arbitrarily defined dense subgraph to be simplified—first attempt. 78
5.29 Arbitrarily defined dense subgraph to be simplified—second at-

tempt. 80
5.30 Runtime complexity in relation to the size of the subgraph when

applying the graph simplification. 81

xiii

List of Figures

xiv

List of Acronyms

TDSP Time-dependent Shortest Path

TDSP-GDT Time-dependent Shortest Path for a Given Departure Time

TDSP-LTT Time-dependent Shortest Path for a given interval of departure
time (Least Travel Time)

VRP Vehicle Routing Problem

DVRP Dynamic Vehicle Routing Problem

ICT Information and Communication Technology

FCD Floating Car Data

xv

List of Figures

xvi

Chapter 1

Introduction

1.1 Motivation and problem statement

Definition of routes is of major concern in logistics and transportation. The way
computing technology can aid the definition of routes is through computational
solutions that minimize costs for taking goods from one place to another. This
optimization task may take different degrees of complexity, from the simplest
definition of shortest path routes to a variety of more well-defined complex prob-
lems generically called vehicle routing problems. For the sake of clarity, in our
research context routing problems are only those that seek for shortest paths,
whatever are the costs associated to the links.

Most traditional approaches make use of distance or a distance-dominated
function as cost to be minimized, as it is in the problem introduced by Dantzig
and Ramster in 1959 [19]. When that is the case, a shortest path algorithm like
the good one of Dijkstra [16] suffice to find a solution of the problem. Over the
years, finding the shortest path over a network is an issue that has received
quite some attention from research. These efforts have produced a number
of solutions, either based on exact algorithms or some heuristic,1 as well as
empirical findings on computational performance [90]. In most cases, these
solutions are based on graph-theoretic approaches, in which the segments that
connect the nodes of a network have a cost associated, usually just distance or
a distance-dominated cost function. The task of the algorithm is to find a set of
segments that connect origin to destination while minimizing the cost.

This traditional approach of shortest path determination may accommodate
many applications (e.g., specific situations in which there is no arrival of dy-
namic requests and the dynamic changing network conditions do not interfere
for finding the solution); but fail to deal with problems in which movement is
time-dependent [47]. In many real-world applications, this should not be ne-
glected, as stated in [54] “once stochastic and/or dynamic information becomes
certain even while vehicles are en route”. This has brought a whole new per-
spective to routing problems, generically defined as dynamic shortest paths or

1Heuristic method is one used to rapidly find the best solution possible, which eventually may
not be the optimal one. In this case, there is a trade-off between computational expenditure and
optimality, whereas a near-optimal solution may be considered to be enough for providing quick
answers.

1

1.2. Research identification

dynamic routing. Under this perspective, relevant information may be avail-
able even on a real-time basis, which has received attention from Operational
Research since the last decade [81]. The main focus of this perspective is the
realization that factors may interfere in the travel time along the route, which
eventually can cause the shortest path to not be the preferable one if travel
times based on dynamically changing parameters are considered for defining
the route.

In addition to the complexity of having varying travel times, a realistic lo-
gistics and transportation setting may also involve multiple means of trans-
portation (see [74]), as well as others aspects that can turn out the routing
problem more and more complex. By more complex we mean to have to con-
sider more variables that eventually will influence the determination of the
best (shortest) path from moving to one place to another. All those aspects pre-
sented may be part of a ‘puzzle’ for defining a realistic approach for realizing
shortest paths, for instance to be used in vehicle routing problems, thus aiding
decision-making for logistics and transportation. They may still be fairly solv-
able with graph-theoretic approaches [47, 15, 40]; that is because graphs has
been for long proven to be a mathematical abstraction that suits many situa-
tion and problems [16]. What’s more, a still actual call for Intelligent Trans-
portation Systems (ITS) demands information technology [41], that today relies
on database as means to structure, organize and retrieve data, as well as to
compute solutions and hence be at the base of such system implementation.
Here it is important to notice this last argument, as today’s practice envisions
databases working within the concept of object-oriented encapsulation, with all
the functions a user may require to interact with data being provided on the
server side (Figure 1.1). Therefore, an investigation on solving shortest paths
for dynamic shortest path problems in a database context, as intended by this
research, is believed to be in line with research in the field. From the best of
our knowledge, we may refer to the work on finding time-dependent over large
graphs in a spatial temporal database [28], that only treats a single kind of
time-dependent shortest path problem and have database simply as mean of
storing the data; and the work on shortest path for moving objects in spatial
network databases [87], which may be helpful for dealing with a problem for-
mulation in which the route should be defined while the vehicle is en route.

1.2 Research identification

1.2.1 Research objectives

The main goal of this research is to carry out an investigation of solving dy-
namic shortest path problems in a database context. To accomplish that, three
dimensions are identified as necessary to be dealt with:

Problem complexity refers to the intrinsic complexity of well-defined dynamic
routing problems and their materialization in terms of computational com-
plexity, in time and space complexity measures.

2

Chapter 1. Introduction

Figure 1.1: Investigated setting with databases playing a role also as environment for com-
putation of routes

Data modeling is about modeling real-world dynamic problems and their com-
plexity in a database context, and properly translating this complexity
into a form computation of shortest paths with known approaches are pos-
sible.

Performance as an indication of how well computation of routes will perform
in the database context, for the well-defined dynamic routing problems
aforementioned.

As consequence, the following defacto objectives for the research are defined:

• Identify data model requirements for the time-dependent real-world dataset,
and then materialize (i.e. translate) those in a form that allows computa-
tion of (shortest path) routes, with known approaches.

• Develop algorithmic solutions for well-defined dynamic routing problems
with different complexity levels in a database context.

• Test the solutions against different sizes of dataset to get insight in the
complexity in different levels of problem.

• Set up experiments to indicate performance of the developed algorithms
in the database context.

• Present approaches to occasionally speed up the computation of shortest
paths against the real-world dataset.

1.2.2 Research questions

From the research objectives we can define a set of questions to be answered by
the investigation as follows:

1. How can data modeling properly translate real-world problems and dataset
into a form that the implemented solutions can work with?

3

1.3. Method adopted

2. Can different degrees of complexity in dynamic routing solutions all be
effectively and efficiently implemented in a database context?

3. What are the limitations on computational complexity of the developed
solutions?

4. How can performance of the implemented solutions for a real-world prob-
lem dataset be enhanced?

1.2.3 Innovation aimed at

Computation of shortest paths in a dynamic problem setting is not per se an
innovation, as several approaches have indeed been proposed to solve different
problems and situations. Nevertheless, it still not known a previous work that
conduct an investigation with approach similar to the one here proposed. Es-
pecially in relation to the database context, chosen for this research, and focus
on providing solutions for different problem formulations. It is fair to mention
that initiatives of solving shortest path problems in a database context do ex-
ist [28, 87], but those treat only one kind of routing problem, not a variety of
them, as intended in this research, as well as not always consider solutions
that really run in a database context. We also could mention one initiative that
is even open source and freely available (pgRouting2), for an also open source
database management system (PostgreSQL), but hitherto they only work in a
setting that is intrinsically static.

Finally, our research also has a focus on performance issues, and on how a
proper use of data modeling can eventually help to deliver request responses in
a faster way. By that we mean not only to apply the solution developed on the
dataset and report their performance, but to reason over preliminary results
and somehow come up with solutions to eventually speed up the computation
of dynamic shortest paths in a database context.

1.3 Method adopted

Dynamic shortest path determination is a fundamental part of dynamic vehicle
routing problems, just as shortest path is for the archetypical (static) Vehicle
Routing Problem (VRP), though in logistics and transportation other parame-
ters may need to be optimized as well [72] (e.g., fleet size, dispatching schema).
As our focus is on the dynamic shortest path computation and on an investi-
gation on the computational complexity of different levels of the problem, ad-
dressing as well as data model and performance issues, we can define the steps
for attaining the research objectives as follows:

1. Define a set of gradually increasing complexity levels of dynamic short-
est path problems and properly formulate them, to be implemented in a
database context.

2http://pgrouting.postlbs.org/

4

Chapter 1. Introduction

2. Search in literature available mathematic or algorithmic approaches so-
lutions for the defined set of problems formulation and implement the
solutions in the chosen database context.

3. Address the pertinent data model issues to properly convey required ar-
guments for the implemented algorithmic solutions.

4. Test the implemented algorithmic solutions against a real-world and dy-
namic changing network dataset and get insight in their performance for
solving requests of routes.

5. Define a set of scalable request sizes to evaluate performance issues re-
lated to scalability of requests—here, some attempt may be drawn to en-
hance performance.

The steps taken were not necessarily conducted in a sequential way as pre-
sented, nevertheless this should provide a picture of how the research was car-
ried out. We detail the activities of each step, focusing on the three dimensions
of the research below.

Problem complexity: to support the definition of the set of dynamic shortest
path problem formulations to be solved in the database context, a compre-
hensive search in literature for dynamic shortest paths was carried out.
This literature review also provided promising approaches and algorithmic
solutions published in scientific sources.

Data modeling: for the set of different complexity problems formulation, data
modeling issues were addressed, particularly focusing on how to translate
the available real-world dataset so that known and proved approaches
may be applied in a database context.

Performance: dynamic shortest path problems are likely to require solutions
that perform reasonably fast, sometimes even in real-time, if we think
of defining routes while a vehicle is en route. We tested the algorithms
implemented in the database context against real-world dataset, and par-
ticularly focus on getting insights on enhancing the performance of the
solutions developed.

1.4 Thesis outline

This thesis has been divided into six chapters:

Chapter 1 presents the motivation for this research project and states its prob-
lem, objectives and questions, as well as describes the adopted method.

Chapter 2 refers to an application in which the subject of this research project
is believed to play a major role, namely Vehicle Routing Problems, but
mainly point out to the need for considering the dynamics of traffic condi-
tions when computing routes. The chapter discusses issues related to that,

5

1.4. Thesis outline

as well as presents reported gains found in the literature when variations
in traffic conditions are explicitly used in routing applications, bringing
the concept of dynamic shortest paths.

Chapter 3 provides an overview of what is a shortest path problem, defines
the static and dynamic counterparts, to then provide approaches found
in the literature to solve this kind of problem. Additionally, a discussion
on existing speed-up techniques for fast computation of routes is given.
The chapter finalizes by briefly stating why we consider the solution of
shortest path problems in a database context.

Chapter 4 starts with the formulation of the (time-dependent shortest path)
problems tackled in the project, followed by an introduction of relevant
concepts for solving them. From this point on, we present and explain
the algorithmic approach of the chosen solution, including auxiliary tools
that need to be implemented along with it. All of this is in done as much
as possible in a implementation-independent form. Finally, an interlude
with a conceptual discussion on encompassing multimodal routing into a
single mode setting is also presented.

Chapter 5 is the implementation of the solutions introduced in Chapter 4 re-
garding a case study with a (real-world) time-dependent network dataset
from the Netherlands. Performance of the solutions are tested and the
limitations are identified. That triggered an exercise on optimizing the
solutions towards faster computation of routes which is also presented in
this chapter.

Chapter 6 outlines the results obtained in the research project also putting
them in context of the research objectives and questions designed for the
project. Further discussion on the subject in its broader sense is also pro-
vided, followed by the conclusions drawn for the project. Recommenda-
tions for further improvements are also presented.

6

Chapter 2

Dynamics in Vehicle Routing

2.1 Why Dynamic?

The traditional VRP is about minimizing the total cost of a distribution sys-
tem [14], as it was introduced by Dantzig and Ramster in 1959 [19]. In most
classical models and techniques (i.e., static), the costs associated to traverse
from one point to another were distance-dominated functions, that do not cap-
ture “essential trade-offs needed to understand and effectively operate trans-
portation systems, as indeed it is more important to minimize delivery times” [14].
This essential character of time [71], with the inclusion of dynamic elements [14],
would be much better captured in a dynamic fashion of such problems.1

Among the very first to consider the dynamic version of vehicle routing prob-
lems [58], Psaraftis [71] stated that Dynamic Vehicle Routing Problem (DVRP)
traditionally means dispatching of services that evolve in a real-time, i.e. dy-
namic, basis. This is specially relevant nowadays’“where the world’s economies
are more and more interdependent” [72], bringing a whole need for enhanc-
ing the efficiency of distribution systems; and what basically distinguishes a
dynamic vehicle routing problem from a static one is [71]:

• “if the output is not a set of routes, but rather a policy that prescribes how
the routes should evolve as a function of those inputs that evolve in real-
time.”

Following Psaraftis definitions, Larsen (2000) [53] formulated his definition
of a VRP having the nature that:

• “Not all the information relevant to the planning of the routes is known
by the planner when the routing process begins.”

• “Information can change after the initial routes have been constructed.”

Some important characteristics that differentiate dynamic from static ve-
hicle routing problems were listed by Psaraftis [71]. In summary, the author

1One application that would greatly benefits from routing that minimizes travel times is de-
livery of perishable food (e.g., [67, 45]).

7

2.1. Why Dynamic?

recognizes the essential role of the time dimension, but also point at the issues
of uncertainty and update due to incoming information, and the need for high
performance.

Approaching VRP in a dynamic fashion has recently gained more atten-
tion [81], particularly with the advent of revolutionary Information and Com-
munication Technology (ICT) [72, 41, 32, 44], “that allow dynamic information
to become available even while vehicles are en route” [54]. New technological
advancements allows to effectively process data in real-time, which is a kind of
distribution system that is to become the “norm in the future” [72].

Fleischmann et al. [32, 31] state that “in the majority of literature, the
only dynamic element is the arrival of customer orders during the planning
period”—as in the likely scenarios of real-time distribution mentioned in [72].
But that is not the only dynamic element that VRP should address or incor-
porate [14], as time plays an essential role [71], especially in the sense of
conditions of traffic—i.e., travel times [14] for moving from one place to an-
other. Malandraki and Danski (1992) [59] recognized the importance of consid-
ering that travel times may vary along the day, and defined a time-dependent
VRP—essentially only having dynamics in travel times— as the counterpart of
a DVRP in its classical approach—i.e., dynamics of customer orders arrival [32,
31]. To consider fluctuation of travel times across the network edges is then a
main issue. Indeed, the importance of traffic conditions turns out to be clear if
we consider that in the U.S. urban areas travel delays totaled 4.2 billion hours
for the year of 2007 [78]. In contrast, the simple inclusion of the dynamics
of travel times has been reported to enhance efficiency of different distribu-
tion systems (e.g., incident response management [46], electrical goods whole-
saler [57], that also reported savings in CO2 emissions in 7% as an additional
finding); or to better approximate real travel times against constant travel
times, that was reported to be underestimated by 10% in average true travel
times in Berlin [31] and to realize a driving time advantage between 5 to 15%
in the motorways at conurbations Rhine-Ruhr and Rhine-Main (Germany) [43]
(see Section 2.2 for more on that).

To summarize the idea of dynamically routing vehicles and managing dis-
tribution systems, Séguin et al. [81] presented a high-level architecture of a
real-time decision system for dispatching problems (Figure 2.1). In their archi-
tecture, the environment (including new order requests and traffic conditions)
are monitored by the characterizer, used for predictions and estimations by the
projector, until eventually an action plan is generated in the effector, after the
planner evaluates possible alternatives of reactions. Determination of optimal
routes would then be a part of that planner component of the system. As we
are particularly interested in the dynamic element of conditions of traffic, we
provide a discussion on generating dynamic travel times for a network below.
Though some authors restrict the definition of DVRP for only where orders ar-
rive during the planning horizon and decisions are made in a real-time ba-
sis [35, 31], for our purpose we only consider the variation of travel times as
a dynamic element, which should be incorporated to better capture real-world
phenomena in vehicle routing. At any case, making use of traffic monitoring
information for computation of (shortest) routes on request would certainly be

8

Chapter 2. Dynamics in Vehicle Routing

• Evaluate the opportunity of delaying the assignment of a new request.

•Evaluate the insertion places of a new request along a route.

•Evaluate the possibility of:

-Dispatching new vehicle,

-Rescheduling the requests,

-Exchanging requests between routes.

•Extrapolate vehicle movement and work loads.

•Predict congestion and future requests.

•Estimate travel times.

PROJECTOR

Control the overall strategy and

select the best plan in relation

with the current situation.

SELECTOR

•Analyses the information: is there anything new? What is the vehicle’s status?

Are deadlines approaching? How many requests to schedule? What is their

priority? What is the influence of breakdowns and congestions on the planning

schedule?

•Perform situation assessment.

•Trigger the projector and/or the planner.

VERBALIZER

PLANNER

•Detect requests, incidents, congestion, arrival

of vehicle at a pick-up or a delivery point.

•Get instructions from operators.

CHARACTERIZER

•Monitor the environment for

reactive actions: ask a vehicle to

serve a request “on the fly”.

•Coordinate the plans: send orders

to vehicles, follow scheduled

actions and check deadlines

EFFECTOR

ENVIRONMENT

Figure 2.1: An architecture for a real-time decision system for vehicle routing problem (af-
ter [81]).

part of any dynamic routing system.

2.2 Generating time-varying travel times

Travel time data is essential for routing vehicles, “both for modeling time con-
straints (e.g., time windows, time objectives) as well as for minimization of
travel time, waiting time, etc.” [31]. Vehicle routing algorithms, however, have
traditionally been developed under the average-speed-for-links paradigm [57].
Even when studies refer to a dynamic vehicle routing perspective, what they
truly mean is often arrival of orders in a dynamic fashion [72, 71, 32, 31]. This
can be partially explained by the difficulties related to generating sufficient
coverage of traffic conditions data [31, 89] and integrating traffic flow param-
eters into routing systems—as pointed out by [14]—but also by limitations of
the algorithms themselves, “that in many cases were not drawn to make use
of time-varying travel times” [31]. Yoon et al. [89], for instance, point out the
limitations in coverage for monitoring traffic as the network gets denser. Still,
if enough traffic condition data can be generated, it remain issues of how to ad-
equately integrate them to a routing system in a dynamic basis, i.e. considering

9

2.2. Generating time-varying travel times

them as travel costs2 that vary over time, as they may need to be processed
beforehand.

Recent technological advancements, however, have much to contribute to
overcome some of those issues [34]. As an example, Helling & Schoenhart-
ing [43] state that traffic information is now available in most European coun-
tries via the RDS/TMC radio channel .3 Fleischmann et al. [32] present a plan-
ning framework that integrates dynamic travel times into a dynamic routing
system, with online communication with drivers and customers also in place
(Figure 2.2). Huang & Pan [46] proposed an “incident response management
tool” (IRMT) that couples GIS with traffic simulation to optimize multiple in-
cident response, also reporting a case study to test and evaluate the proposed
tool with real-world data from the Clementi area of Singapore. They have in
common the ability of allowing the integration of costs of traverse that vary
over time, sometimes even in a real-time basis. Table 2.1 summarizes some
practical advantages found in the literature with the inclusion of time-varying
travel costs.

Unfortunately, technology alone can not guarantee that relevant informa-
tion on travel costs fluctuation is always available, particularly when it comes
to quality of traffic parameters dynamically generated. We refer to Helling &
Schoenharting [43] for more on quality of dynamic traffic information. But even
if information of good quality is generated, it has to be combined with afford-
able methods of estimating dynamically real time travel costs, but also with
reliable and efficient—i.e., reasonable computational complexity—methods to
provide time-varying travel costs in a good basis. For the former, the use
of so-called Floating Car Data (FCD) emerges as a promising option (see Ta-
ble 2.2) [31, 89, 68]; that means, to make use of on traffic vehicle themselves to
generate information from which they may benefit. For the latter, see [55] for a
good description of methods to estimate travel times, as well as a proposed new
approach for doing it on long freeway sections. We also point at the approach of
van Woensel et al. [84] which claims to outperform others usually applied in the
simulation of the time-dependency related to the inclusion of traffic congestion
in vehicle routing. Also the method of Yoon et al. [89] provides a good basis on
how to process FCD data and generate dynamic traffic information. Moreover,
the findings of Fleischmann et al. [31] are also relevant, as they show that a few
time slots of time-varying travel costs are already good enough to provide excel-
lent approximations of true travel costs. Finally, Pfoser et al. [69] recognize the
need for an accurate and reliable weight database (i.e., some travel time related
parameter to reflect conditions of traffic) as the basis for a dynamic navigation
system, with the use of map-matching algorithm to dynamically associate costs
to the network [13] and data management techniques for delivering dynamic
weights from FCD. To overcome shortcomes with eventual lack of online data,
Leonhardt [55] points out the combination with a historical database of traffic
conditions as a good direction. He presents approaches to derive travel time

2Though travel costs is a generic term that may encompass a number of somewhat different
kinds of costs, we here use travel costs as a synonymous of travel times.

3RDS/TMC is an international standard for delivery of traffic information to navigation sys-
tems.

10

Chapter 2. Dynamics in Vehicle Routing

Table 2.1: Reported gains with integration of time-varying travel times in vehicle routing.

What? What about? Who?
Effect of using con-
stant average and
time-varying travel
times with different
numbers of time slots.
Data from Berlin,
Germany.

Constant average times lead to approx-
imately 10% of underestimation of the
true travel times. For 5-10 times slots
excellent approximation of the true
travel times may already be obtained,
though use of more slots do not increase
significantly computational complexity.

Fleischmann
et al. [31]

Comparison of exist-
ing dynamic routing
guidance, an ideal
one (better quality
of information) and
static routing guid-
ance for commuting
trips between Dues-
seldorf and Cologne,
Germany.

Existing dynamic routing guidance
were found to allow only 5% of driving
time advantage, while the idealized sys-
tem, with optimal message quality as-
sumption, should lead to an improve-
ment of around 11%. Shortcomings
related to quality of information and
availability of infrastructure (see below
for details on that).

Helling &
Schoen-
hart-
ing [43]

Coupling of GIS and
traffic simulation for
an incident response
management tool
(IRMT). Test case in
Singapore.

Approach led to 10-25% of reduction of
travel times compared to conventional
dispatching strategy.

Huang &
Pan [46]

Use of a queueing ap-
proach to incorporate
time-dependency of
travel times. Compar-
ison of the approach
is done against time-
independent and
three time zones
approaches.

Explicitly make use of the time-
dependent congestion results in routes
that are quite considerably shorter in
terms of travel times. Extra calculation
time needed to process large dataset
is worthwhile as the solution quality
greatly improves.

van
Woensel et
al. [84]

11

2.2. Generating time-varying travel times

Observation

System

Order and Fleet

Management System

(OFMS)

Planning

System

Traffic

Management

Center
EventsDynamic travel times,

24 hour forecast, changes

transmitted every minute

Messages to customers and drivers

Request for shortest path (SP) calculation,

paths to be observed and paths to be

withdrawn, request for changes

Current schedule

Orders, vehicle status,

travel timesTravel times changes

Figure 2.2: An example of structure and environment of a Dynamic Routing System (af-
ter [32]).

data from online measurement, as well as to estimate this in the absence of
online data, and to predict travel time with the use of regression techniques
combining measured online data with a historical database of traffic condition.

Though both recent technological and methodological advancements related
to considering the time-dependency of travel costs in vehicle routing problems
have shown that they do provide advantages in terms of actual travel costs,
it still is challenging to do so. For example, Fleischmann et al. [31] comment
that traffic information is generated in a too high level of detail in traffic in-
formation systems to be used straightaway in computing travel times matrices
(usual transportation routing approach). It would cause unnecessary effort and
memory requirements. That is why they have investigated what are the effects
of aggregating traffic information on time slots (see Table 2.1). In contrast,
Helling & Schoenharting [43] do not see limitations on integrating dynamically
generated traffic information even for en route dynamic route guidance compu-
tation; but in their study case, they also show that we still struggle with the
quality of traffic messages transmitted, which in average were approximately
correct only in 35% of the transmitted travel costs. Accordingly to the authors,
that limits the potential benefits of dynamic route guidance, as do so the infras-
tructural lack of alternatives routes in a practical point of view, on the other

12

Chapter 2. Dynamics in Vehicle Routing

hand.

Table 2.2: Findings of studies applying FCD to estimate traffic parameters.

Description Author(s)
Defines algorithms and data management techniques for
delivering a dynamic traffic weights database for routing
over so-called Dynamic Travel Time Maps.

Pfoser et al. [69]

Uses a map matching algorithm to dynamically attach
travel times collected by FCD in a network (no check on
the quality of the information generated, though).

Pfoser et al. [68]

Results shows that used approach allowed an accuracy
of 90% in characterization of traffic parameters, thus the
use of a longer history would permit identifying traffic
conditions with even higher accuracy.

Yoon et al. [89]

2.2.1 Travel times/Speed profiles—a good approximation

With all existing technologies for monitoring traffic conditions as well as emerg-
ing ones like FCD, that do allow to generate traffic information on a real-time
basis, it might look tempting to straightaway use them for computing routes in
a dynamic vehicle routing system perspective. As a matter of fact, in situations
of stochastic event, such as accidents, road interruption and others may still oc-
cur, indeed a system that delivers information on traffic condition en route can
be suggested as a measure towards alleviating problems with congestion [34].
Under stochastic conditions, Nie & Wu (2009) [65] study the finding of a priori
shortest path as “reliable paths” to aid travelers to reach a certain destination
at least at a given arrival time. Gao & Chabini (2006) [34] define a taxonomy
of optimal routing problems with the use of policy in the nodes and focus on the
variant that assumes a perfect online information with all current link travel
times available at the moment the algorithm is at one node and has to choose
the next node to be reached based on least travel time.

Although considering stochastic events can always enhance any routing sys-
tem, traffic patterns are usually very consistent over time [27, 89, 23]. This
partly justifies the use of functions that attempt to model travel times (or speed
of flow) as a function of time of the day—as indeed many traffic information sys-
tems do (e.g., [31])—as a sort of “picture of the fluctuation traffic condition” or
a priori information source [34]. In this sense, Fleischmann et al. [31] suggest
a smoothed step-wise travel time function (Figure 2.3), that is a linearization
of the steps at some parametrized point, to overcome shortcomings of jumps of
travel time if the raw function generated by the traffic information system is in-
stead used. They also show that not many time slots are required to aggregate
collected travel times, as five to ten already provide excellent approximation of
the travel times, though the use of more time slots—with slightly improved ap-
proximation of travel times—has not significantly influenced the required CPU
time to process the raw data. A long history of traffic monitoring should then al-

13

2.3. The role of Shortest Path Problems

low to accurately identify traffic conditions [89] and as such even provide fairly
good forecasts, that are of particular interest for planning in vehicle routing.

Figure 2.3: Smoothed travel time function [31].

2.3 The role of Shortest Path Problems

If VRP are not only about finding shortest paths, certainly some tasks related
to that may safely be reduced to a shortest path computation, whatever the
costs associated to the moving from one point to another are. Fleischmann
et al. [32] proposed a structure for a dynamic routing system as part of a so-
called observation system (see Figure 2.2), in which shortest paths calculations
play a major role. This system would be responsible for filtering travel time
information from the management center, calculating required shortest paths
and travel times, as well as to observe changes in travel times for these paths,
that eventually trigger other shortest path computations [32]. This brings up
the need for systematic evaluation of computed routes, hence requiring shortest
path problems to be dynamic, or at least to consider the time-varying nature of
travel costs, as will be discussed in the following Chapter 3.

Dynamic shortest path problems are not restricted to the context of VRP,
but certainly these transportation and logistic problems are clear examples of
applications that may benefit from such a setting, as in general any-purpose
routing systems would do (e.g., car navigation systems). VRP, however, are
much more likely to make use of a setting as the one this research project works
with—i.e., shortest path problems to be solved in a server scenario basis.

14

Chapter 3

Dynamic Shortest Path
approaches

This chapter narrows down to the kind of problems we particularly study in this
research, namely dynamic shortest path problems, more particularly the ones
known as time-dependent shortest path. We define what are shortest path prob-
lems, as well as present traditional approaches to solve them, and then define
what we mean by a dynamic shortest path. Solutions for this variation of the
problem are the presented, followed by a discussion on speed-up techniques to
fast computation of shortest path problems. Finally, we somewhat restrict the
scope again by pointing out that focus on dynamic shortest paths in a database
context, which is the real objective of this project.

3.1 Dynamic Shortest Path problems

Shortest path problems play a major role in logistics and transportation for gen-
eral routing planning [24, 26, 80] and also in the context of VRP (see Chapter 2).
By the latter we mean that eventually routes need to be defined for the vehicles
of a fleet dispatched to attend a set of customers, using a minimum cost route,
i.e., a shortest path whatever the costs to be minimized are. Traditionally they
are distance or at least distance-dominated functions [14].

As many other engineering and scientific problems [42, 60], determination
of shortest path is well-abstracted by means of representing the transportation
network as a set of points with lines joining certain pairs of points. This gives
rise to the mathematical notation that suits this situation: the concept of a
graph [16]. Figure 3.1 illustrates the definition of a graph in which V (G) is a
nonempty set of vertices (or nodes), E(G) a set of edges (or links) and ψG is an
incident function that associates with each edge of G a (not ordered nor neces-
sarily distinct) pair of vertices of G(V,E). Those graphs that can be embedded
without edge crossings in the plane are called planar, which means that edges
only intersect in their ends [16]. Translating this to a transportation dialect,
that would define a network without overpasses and underpasses, thus usually
a transportation network is more likely to be a non-planar graph. Moreover,
if a graph has no two links that join the same pair of vertices (i.e., no loops),

15

3.1. Dynamic Shortest Path problems

it is a simple graph [16]; many transportation networks are abstracted—but
this will depend on how the network was modeled—with a single link and the
same pairs of vertices to represent an edge that actually allows bidirectional
traversal, so they may be non-simple .

Figure 3.1: Definition and an example of a graph (adapted from [16].)

Translated to graph theory, the task of finding the shortest path is the one
of searching a path that leads from a start node1 vs to an target node2 ve, both
in V (G), while minimizing the costs ψG associated to the links in E(G) [42].
If we let there be a real number w(e), that defines the incidence cost ψG as-
sociated with each edge in the graph, we attempt to find the connected set of
edges through this weighted graph that minimizes the cost of traversing from
start to target node [16]. This optimal connected set of edges we refer as the
shortest path (vs − ve), and with the adoption of the convention that all the
weights are positive, a solution can be found using the algorithm3 of Dijkstra
(1959), that actually finds the shortest path from source to all others vertices
V (G) [16]. A similar algorithm was developed independently by Whiting &
Hillier (1960) [16]. Dijkstra’s is indeed “the most commonly used approach for

1We will also use the term source node interchangeably.
2We will also use the term destination node interchangeably.
3A good graph-theoretic algorithm has the computation steps bounded by a polynomial in ν

and ε, according to Edmonds (1959) [16].

16

Chapter 3. Dynamic Shortest Path approaches

answering shortest path queries (see Figure 3.2), along with variants, with use
of some heuristic, that aim at reducing the search space” (number of nodes vis-
ited by the algorithm) [85]. One of the famous heuristic shortest path algorithm
based on Dijkstra is the A∗ algorithm, which adds the concept of closeness [47]
to drive the search towards the target node [63]. That leads to a number of
visited nodes never larger than in Dijkstra’s algorithm, but in norm actually
smaller [63].

for all nodes u ∈V setcost(u)←∞
initialize priority queue Q with source s and set cost(s)← 0
while Q 6= 0

get node u with smallest tentative cost(u) in Q
for all neighbor nodes v of u

set new cost← cost(u) + ψ(u, v)
if new cost < cost(v)

if cost(v) =∞
insert neighbor node v in Q with priority new cost

else
set priority of neighbor node v in Q to new cost

set cost(v)← new cost

Figure 3.2: Dijkstra’s algorithm (after [85]).

The most traditional approach for solving shortest path in a transporta-
tion context, that is considering distance as the cost associated to the edges
(i.e., road segments), is somewhat misleading, particularly when one considers
travel time as the cost to be minimized. In the lowest level of this issue, one
will point out that different kinds of road (e.g., hierarchy, conditions of traffic,
or even actual condition of road infrastructure) will allow diverse flow charac-
teristics, eventually leading to travel times that do not reflect the logical rule:
shorter segment, shorter travel time. What’s more, travel times may be time-
dependent, due to conditions of traffic [31, 32, 43, 44, 70, 46, 84, 57, 49] or more
generically stating, following certain environmental variables [73]. It might
also happen that unpredictable changes occur in the network data, leading to a
reoptimization problem,4, which together with time-dependency brings up the
concept of dynamic shortest paths [21]. Essentially, they are nothing but short-
est path versions that need to be performed in a dynamic graph [64]. Nannicini
& Liberti (2008) [64] define a dynamic graph as one in which any of the compo-
nents (i.e. edges, vertices or costs) change as function of time. Most commonly it
is the cost that change, following conditions of traffic. In such a setting, usually
we talk about travel time, directly or indirectly, as the cost to traverse an edge
in the graph, and that varies as a function of the time of the day. As we all know
that you better off cutting through some auxiliary roads rather than crossing
that main road at peak time, for instance.

4To reoptimize a shortest path tree is usually faster than recalculating it from scratch [64]
therefore it may be worthwhile to monitor changes in travel times and reoptimize the shortest
paths on demand.

17

3.1. Dynamic Shortest Path problems

TDSP problems have many applications [63, 64], including transportation
and logistics [8] related optimization tasks, and their conceptualization dates
back to 1966, “when Cooke & Halsey proposed it in a discrete time manner” [21].
In such problems, the travel time to traverse an edge of the network is assumed
to be predictable or previously known as a function of departure time [21],
though some uncertainty may be present [86]. The general TDSP problem is
at least NP-hard [3, 20, 21], i.e. they are as hard as any problem in NP (non-
deterministic in polynomial time) [33], and theoretically an algorithm for solv-
ing it could be translated to solve any other NP-problem [18]. But this notion of
hardness will be always related to the characteristics and size of the problem at
hand. In this sense, Impagliazzo [48] states that “there is a gap between a prob-
lem being not easy to being difficult, meaning that many problems, though not
solvable in its worst-case algorithm, may still be solvable for most instances, or
in instances that arise in practical situations”. Moreover, depending on how one
defines the problem, it may even well not be in NP, as is TDSP under the as-
sumption of FIFO5, also called a non-overtaking property [63] and the properties
that arise from it, which enables the development of efficient polynomial-time
solutions [20, 21, 1, 62, 64, 63]. Nonetheless, still the performance will also be
influenced by how complex the time-dependent network data functions are (in
other words, how much travel times vary along the network), and very often
“solutions will consist of many linear pieces that lead to slower computation
and greater memory demand” [20]. This in many cases justifies the use of ap-
proximate solutions, i.e. discrete-time solutions (see Section 3.2.1), considering
that delivering exact solutions in continuous-time would be in some cases only
possible by means of a parallel computing environment [20, 75]. To overcome
some of the slow behavior of continuous-time solutions, Dean (1999) [20] theo-
retically presents the idea of hybrid continuous-discrete algorithms that assume
behavior of a discrete-time algorithm when a fine time scale is identified in the
solution dynamics.

TDSP problems can be reduced to two fundamental problem variants: ear-
liest arrival (EA) or latest departure (LD) problems [21]. What differentiates
one from the other is only whether the constraint in time is associated to the
destination (LD) or source node (EA). Dean [21] specified a notation for the dif-
ferent flavors of the two fundamental TDSP problem variants, as well as briefly
presents how one could solve them (Table 3.1). The different flavors or versions
of the two fundamental problems only define whether one wants to solve for spe-
cific (s, d, (t)) or all possible (*) nodes (spatial constraint) and/or time (temporal
constraint).

Bérubé et al. [15] show a classification of TDSP problems which is an adap-
tation of characteristics in [17] (Table 3.2). In a sense, they extend the fun-
damental problems variant presented in Table 3.1 by considering that other
issues like objective, whether waiting in nodes is allowed as well as network
properties help to properly formulate a TDSP problem.

In practice, different approaches for solving time-dependent shortest path

5FIFO, fist-in-first-out concept, is essentially an assumption that may or may not be taken
when dealing with a network that defines whether is possible to traverse an edge later and still
reach its end earlier.

18

Chapter 3. Dynamic Shortest Path approaches

Table 3.1: Reduction to two fundamental problem variants and methods of computa-
tion [21].

Desired
Output

Method of Computation

EAs∗(t),
EAs∗(∗)

These are the two fundamental problems, from which we can
express all other variants.

EAsd(t),
EAsd(∗)

As with the static shortest path problem, the single-source
single-destination problem seems just as difficult as problems
involving either multiple sources or multiple destinations. We
therefore solve these as the more general problems EAs∗(t)
and EAs∗(∗), respectively.

EA∗∗(t),
EA∗∗(∗)

These are solved by performing n computations of EAs∗(t) and
EAs∗(∗), respectively, for every s ∈N.

EA∗d(t) One can show that this problem is no easier than computing
EA∗∗(t).

LDsd(∗),
LDs∗(∗),
LD∗d(∗),
LD∗∗(∗)

These are computed by solving for and inverting the corre-
sponding earliest arrival time functions. For example, LDs∗(∗)
is found by solving for EAs∗(∗) and taking inverses.

LDs∗(t) One can show that this problem is no easier than computing
LD∗∗(t).

LD∗d(t) Performing a time-reversal transformation on the network
transforms this into the problem of computing EAs∗(t).

LDsd(t) Solve the more general problem LD∗d(t).
LD∗∗(t) Solve LD∗d(t) repeatedly for every d ∈N.
EA∗d(t) Performing a time-reversal transformation on the network

transforms this into the problem of computing LDs∗(∗).

problems have been proposed in the literature. Ding et al. [28] discuss three
types of algorithms, namely discrete-time, Bellman-Ford based and A∗ (equiva-
lent to Dijkstra) algorithms. We will discuss each of these types of algorithms,
plus the one proposed by Ding et al. [28] in the next section.

3.2 Dynamic Shortest Path solutions

3.2.1 The Discrete-time algorithm

An efficient discrete-time algorithm for dynamic networks was presented by
Chabini [17]. At that time, he claimed to have developed “the most efficient
algorithm to what appeared to be a 30 years old problem” of computing all-to-
one shortest paths in discrete dynamic network. He also pointed out its ap-
plication at the heart of efficient solutions approaches to network models in
dynamic transportation systems, such as Intelligent Transportation Systems
applications. Among other things, Chabini [17] defined shortest path problems
as dynamic or time-dependent (interchangeably), and distinguished different

19

3.2. Dynamic Shortest Path solutions

Table 3.2: Classification of TDSP problems after [15].

Criteria Variant
Objective Minimum cost path (general formulation);

Fastest path: minimum cost path with cost = delay;
Bi-criteria path: optimization with two criteria (e.g.,
cost and time);
Multi-criteria path: optimization with more than two
criteria;

Waiting constraints Forbidden waiting: waiting at a node is forbidden;
Unbounded waiting: waiting is allowed and is un-
bounded;
Bounded waiting: waiting is allowed and is bounded;

Waiting costs Memoryless: waiting costs are independent of waiting
duration;
With memory: waiting costs depend on waiting dura-
tion;

Source and destina-
tion

One-to-all: compute paths from one source to all des-
tinations;
All-to-one: compute paths from all sources to one des-
tination;
One-to-one: compute paths from a single source to a
single destination;

Network properties FIFO network: FIFO property is satisfied;
Periodic network: cost and delay follow periodic pat-
terns;
Zero-delay arcs: arcs with zero-time delays are al-
lowed;
Travel beyond time horizon T.

dynamic shortest path problems depending on several characteristics as dis-
played in Table 3.2. Among them, the network FIFO property that allows poly-
nomial computation time [20, 21, 1, 62, 64, 63]. Many transportation networks
exhibit FIFO behavior [21], and as a rule, inland transportation networks can
be generally assumed to be of that class. Therefore it does not make sense to
allow to wait at a certain node unless it is for another reason than taking a
travel time advantage [1].

Restricted to a discrete-time representation, Chabini’s [17] algorithm find
approximately a least total travel time (LTT) by exploding the graph into k time
points evenly, allowing then the TDSP problem to be solved as a static single
source shortest path problem in the exploded graph. Two fundamental draw-
backs are inherent to discrete-time approaches [28]:

1. Difference between approximated LTT obtained and the optimal LTT, called
LTT error (accumulative way along the paths), which is very sensitive to
the parameter k in which the time dimension is discretized.

20

Chapter 3. Dynamic Shortest Path approaches

2. Whilst increasing k may lead to a closer to optimal result, the exploded
graph is k times larger than the original.

3.2.2 The Bellman-Ford based algorithm

Orda & Rom (1990) [66] addressed time-dependent shortest path problems with-
out the restriction of a discrete time representation and positive integers as do-
main and range. Their—which we refer to as OR90—algorithm (Figure 3.3) is
a generalization of the Bellman-Ford shortest path algorithm [28] and takes a
time-dependent graph GT (V ,E,W) with nodes V , edges E and costs W .

In the OR90 algorithm, gl(t) are the earliest arrival time at node vl from
start node vs, while hk,l(t) are the earliest arrival time at vl from start node vs
traversing edge (vk, vl), both for starting time t ∈ T . These two functions are
updated until convergence to the correct values, and after computing the best
starting time t∗, the optimal path p∗ can be constructed based on gl(t) and hk,l(t)
functions (see [66]).

Algorithm 1 OR90(GT (V,E,W), vs, ve, T)
for all vl ∈V do gl(t),←∞ for t∈T;
for all (vk,vl) ∈ E do hk,l(t) ←∞ for t∈T;
gs(t)← t for t∈T;
repeat

for all (vk,vl) ∈E do hk,l(t)←gk(t) + wk,l(gk(t));
for all vl ∈V do gl(t)← minvk∈N (vl)

{hk,l(t)};
until all functions gl(t) remain unchanged
return (t∗ ← argmint∈T {ge(t) - t}, p∗);

Figure 3.3: Orda Rom algorithm ([66] after Ding et al. [28])

The algorithm takes a strategy of determining paths toward destination ve
while refining the arrival-time functions gi(t) for the whole interval T , which
can be called a path selection and time refinement approach [28]. Though it has
the characteristics of treating time as continuous, costs not only as integers and
positives, as well as handles arbitrary functions for link delays [66], the high
time complexity (O(nmα(T)), where α(T) is the time required in a function
operation in interval T , n = |V | and m = |E|, makes it unfeasible to apply it
on large and dense time-dependent graphs [28]. Combining path selection and
time refinement, “the algorithm does not recognize when a function is already
well-defined for a subinterval of T , thus it always need to recalculate for the
whole interval T and the convergence is therefore slow” [28].

3.2.3 The adapted A∗ algorithm

Kanoulas et al. [50] provided an extension to the A∗ algorithm to handle TDSP
problems, which is also a path selection and time refinement approach [28]. But
again the path selection and time refinement are coupled—even more than in
the algorithm of Orda & Rom [66]—leading to a worse case in which all vs −
ve paths are enumerated and the time/space complexity is exponential with

21

3.2. Dynamic Shortest Path solutions

the size of the graph GT [28]. Some practical findings about performance on
Kanoulas et al. [50] approach are as follows [28]:

• it can only perform efficiently when estimation can assist pruning the
search space effectively and vs and ve are close to each other in graph
GT ;

• as estimation to prune search space is difficult in general graphs, it is
infeasible to handle large time-dependent graphs, where ve may be far
away from vs.

Given the fact that A∗ heuristics algorithm usually provide better results
in static shortest path solution, there are more attempts of adapting that algo-
rithm for time-dependent shortest paths. We will refer to more works in this
direction: Huang et al. [47], Delling & Nannicini [25], Zhao & Ohshima [91] and
Delling [24] for a good overview on route planing including A∗ search heuristics
adaptations.

3.2.4 The Two-step time-dependent shortest path algorithm

Ding et al. (2008) [28] also recognized the concept of time refinement and path
selection as promising for solving time-dependent shortest path problems, par-
ticularly when an interval of departure time is given for optimizing. It follows
that the main characteristic of their algorithm is the decoupling of time refine-
ment and path selection, giving rise to a two-step least travel-time algorithm
(named Two-step LTT by the authors). The outline of their algorithm can be
found in Figure 3.4, and generally treats the TDSP problem under the FIFO
assumption, but the authors also show that it is possible to apply it for non-
FIFO networks (see Section 4.6.1). It takes a time-dependent graph GT and a
query LTT(vs, ve, T) with a start node vs, and a target node ve, and a departure
time interval T = [ts, te] as input, returning an optimal vs − ve path p∗ for an
optimal departure time t∗. They make use of edge-delay functions of class con-
tinuous piecewise-linear, thus the problems of discontinuities in the functions
that make Dijkstra-based algorithms to fail in finding TDSP [66] do not apply
in this case. For dealing with functions with discontinuities,6 we refer to the
works like Dell’Amico & Pretolani [22].

The first step of Ding et al. (2008) [28] algorithm determines least arrival-
time functions gi(t) for each node vi of the graph in the give interval time T
(Figure 3.5), performing as a Dijkstra algorithm. The main advantage of this
strategy of decoupling time refinement and path selection is the ability of iden-
tifying a subinterval for which the arrival-time function is already well-defined,
therefore it does not need to be computed again. The lack of this idea is what
makes the Orda & Rom (1990) [66] algorithm slow in converging to the arrival-
time functions [28].

6This is an issue that may apply in real-world applications, as for instance when travel-time
functions are dynamically generated and straightaway put to use in a routing system (e.g., [32].

22

Chapter 3. Dynamic Shortest Path approaches

Algorithm 2a Two-Step-LTT(GT (V,E,W), vs, ve, T)

{gi(t)} ← timeRefinement(GT , vs, ve, T);
if ¬ (ge(t) =∞ for the entire [ts, te] then

t∗ ← argmint∈T {ge(t)− t};
p∗ ← pathSelection(GT ,{gi(t)}vs, ve, t∗);
return (t∗, p∗);

else return ∅;

Figure 3.4: Outline of Two-step least travel-time algorithm [28] .

The second and last step of the algorithm is to perform a fast path se-
lection. This is done after the optimal departure time followed the refine-
ment of arrival-time functions, which is defined simply as the departure time
in which the arrival-time minus the departure time from the start node (i.e.,
ge(t)− t), in the arrival-time function of the target node is minimal, or formally
argmint∈T {ge(t) − t}. Path selection occurs in a backward manner, allowing to
identify, from target node ve, step-by-step, the predecessor nodes until it reaches
the start node vs (Figure 3.6). We refer to Section 4.3.1 to further explanations
on the approach.

Ding et al. [28] conducted a series of experiments, first varying the number
of nodes, the density of the graph (i.e., increase of edges for a fixed number of
nodes) for a fixed departure time interval T = [0, 500], and then also varying the
departure time interval from 50 up to 1,000. A varying distance between source
vs and destination ve was also tested. In general, they demonstrate that their
algorithm outperforms the three others (discrete-time algorithm [17], Bellman-
Ford adapted algorithm [66] and A∗ extended algorithm [50]) in both time and
space complexity. There are a few cases in which another algorithm, namely A∗

extended [50], performs better than the Two-step LTT, which is when number of
nodes or edges is small, or the distance between vs and ve is short. But that only
reinforces the argumentation of Ding et al. [28] on the limitations of Kanoulas
et al. [50] in dealing with large graphs, as the performance of their algorithm
drastically reduces when the conditions of small graph or short distance are not
met.

3.3 Speed-up techniques for shortest path computa-
tion

Shortest paths over large-sized (i.e., real-world) graphs is an expensive com-
putation task even in its static sense. In a transportation perspective, for in-
stance, several studies state that Dijkstra’s algorithm is a prohibitive choice
for large road networks [76, 80, 27], though largely solve the problem from a
worst case perspective [76]. As a matter of fact, better performing algorithms
are usually reported as in comparison to Dijkstra’s performance over the same
request set (e.g., [76, 80, 26]). To be fair with Dijkstra’s algorithm, one should
always noticed that any eventual faster algorithm for computing shortest path

23

3.3. Speed-up techniques for shortest path computation

Algorithm 2b timeRefinement(GT (V,E,W), vs, ve, T)

gs(t)← t for t ∈ T ; τs ← ts;
for each vi 6= vs do

gi(t)←∞ for t ∈ T ; τi ← ts;
Let Q be a priority queue initially containing pairs, (τi, gi(t)),
for all nodes vivi ∈ V , ordered by gi(τi) in ascending order;
while |Q| ≥ 2 do

(τi, gi(t))← dequeue(Q);
(τk, gk(t))← head(Q);
∆← min {wf ,i(gk(τk)) |(vf , vi) ∈ E } ;
τ
′
i ← max{t | gi(t) ≥ gk(τk) + ∆};

for each (vi, vj) ∈ E do
g
′
j(t)← gi(t) + wi,j(gi(τi) for t ∈

[
τi, τ

′
i

]
;

gj(t)← min{gj(t), g
′
j(t)} for ∈

[
τi, τ

′
i

]
;

update (Q, (τj , gj(t)));
τi ← τ

′
i ;

if τi ≥ te then
if

return {gi(t) |vi ∈ V };
else
enqueue (Q, (τi, gi(t)));

return {gi(t) |vi ∈ V };

Figure 3.5: Ding et al. (2008) [28] time refinement algorithm.

come either at the expense of a perhaps non-optimal solutions—like in many
implementations on commercial routing systems [76, 77, 10]—or by a speed-up
technique that demands data preprocessing. Dijkstra’s algorithm performance
is also dependent on implementation [30] and fairly good improvements in ac-
tual running time can be achieved by implementing Dijksta’s algorithm more
efficiently (see [90]). In reality, what many speed-up techniques do is to find
a way of stopping Dijkstra’s search once one is guaranteed that the shortest
path has been found [76]. According to Delling et al. [26], research on speed-
up techniques for solving shortest paths started in the late nineties, but a real
“horse race” for getting the fastest query and preprocessing times began when
continental-sized networks became available for research in 2005.7 We refer
to their work for a chronological summary of reported speed-up techniques as
compared to the classical Dijkstra’s algorithm; but also point out that improve-
ments of several million times are already a reality in the context of static short-
est path computation [26].

An usual technique for speeding-up the computation of shortest paths is to
search simultaneously forward and backward [77, 60]. This approach is called
bidirectional search and proof can be derived that once some node was visited

7By the company PTV AG.

24

Chapter 3. Dynamic Shortest Path approaches

Algorithm 2c pathSelection(GT (V,E,W),{gi(t)}vs, ve, t∗)
vj ← ve;
p∗ ← ∅;
while vj 6= vs do

for each (vi, vj) ∈ E do
if (gi(t

∗) + wi,j(gi(t
∗)) = gj(t

∗) then
vj ←

p∗ ← (vi, vj) · p∗;
return p*;

Figure 3.6: Ding et al. (2008) [28] path selection algorithm.

from both directions, the shortest path can be found from what has been already
computed (refer to [30]). The searches are executed at the same moment over
a forward graph

−→
G(V,

−→
E) and a backward graph

←−
G(V,

←−
E) [77], starting from

the start node vs and the target node ve respectively. Terminating condition is
that the search frontiers have met [77, 80, 26, 60] (see Figure 3.9b), or formally
stating that there is node vi to/from which a shortest path has been found both
from vs and to ve.8 This technique applied to Dijkstra’s algorithm can be ex-
pected to provide a speed-up of factor two , i.e., an exploration of half of the
number of nodes, when compared to the traditional unidirectional search [60].
What’s more, bidirectional search is a flexible technique that can be combined
with most of other speed-up techniques [26, 60], and in fact is an component
of many advanced ones found in the literature (e.g., [39, 76, 80, 60]). It is also
a speed-up technique that does not demand any kind of preprocessing step,
hence it is out of the trade-off between precomputation time, need for storage
of precomputed data and query time that should be considered when devising
speed-up methods [76, 26].

Apart from bidirectional search, Sanders & Schultes [77] distinguishes two
basic speed-up approaches: (1) the search is directed towards the target node
(and towards the source node when there is a backward search); (2) the search
exploits inherent hierarchy levels, particularly in road networks. In some cases,
a mixture of the two is eventually reached by storing more information [77].
We discuss some techniques of the two approaches under the denomination of
“goal-oriented” and “hierarchy-based” routing in the following. An overview of
shortest path algorithms and speed-up techniques is shown in Figure 3.7.

3.3.1 Goal-oriented routing

The A∗ algorithm. It differs from Dijkstra’s algorithm for it takes into ac-
count the concept of “closeness” to the target node as a heuristic to drive the
search towards its destination [47]. In this case, when priority keys are de-
fined for the queue used in the algorithm’s search, an additional potential func-

8Which not necessarily mean that vi will be part of the shortest path, but one can be assured
that all the necessary nodes to found the shortest path has been visited once that happened [30].

25

3.3. Speed-up techniques for shortest path computation

Dijkstra’s algorithm

Speedup heuristics

No preprocessing
•Bidirectional search

•A* search

Preprocessing
Combinations

•Bidirectional A*

•Landmarks + Reaches

•other

Goal-oriented
•Landmark A* (ALT)

•Geometric containers

•Edge-flags

•PCD

Hierarchical
•Separator-based Multi-Level

•Highway hierarchies

•Reach-based pruning

•Transit-Node Routing

Figure 3.7: An overview of shortest path algorithms and speed-up heuristics (adapted
from [60]).

tion is defined to estimate the cost9 between any node vi and the target ve
with the effect of giving priority to nodes that are supposed to be closer to
the target [63]. There is, though, a condition to be satisfied for A∗ to always
provide optimal paths, which is that the estimation of the cost of node vi to
the target should never overestimate the real cost between them, or formally
π(vi) ≤ c(vi, ve)∀vi ∈ V [63]. When the cost considered is distance, one usual
heuristic for underestimating the costs in π is by computing the Euclidean dis-
tance between start and target node [47, 26]. Nodes are considered better can-
didates to continue the search based on the estimation π. A∗ algorithm actually
defines the priority function by balancing two costs, the traditional cost c(vi, vj)
to reach a next node connected by an outgoing edge from the visited node in
iteration and the estimation in π (i.e., f(vi) = c(vi, vj) + π(vi)). The speed-up
comes from the reduction in the search space (see Figure 3.9c) which guaran-
tees that the number of visited nodes is never higher than in the Dijsktra’s
algorithm [63]. How much gain can be obtained depends on the heuristics used
to define the potential function, and in its basic implementation (i.e., Euclidean
distance estimation) still a significant part of the visited nodes will never be a
member of the shortest path [47]. A drawback of using A∗ with heuristic of Eu-
clidean distance between start and target node may be the need for having the
layout of the graph [60] (i.e., its actual form on Euclidean space) stored along
with the graph’s representation. On the other hand, it is a reduction of search

9In these descriptions we use the generic term cost but in most of the cases this cost is dis-
tance.

26

Chapter 3. Dynamic Shortest Path approaches

space method that can eventually be used together with other speed-up tech-
nique for even faster results (e.g., [39]; see Section 3.3.2), and that has been
show to be adaptable to situations of dynamic networks [47, 25, 91].

A∗ search with landmarks—The ALT algorithm. A layout-independent
way of using A∗ algorithm is to use the concept of landmarks as heuristic to
compute the potential function [63]. It is based on the selection of nodes L ⊂ V ,
called landmarks, to which the costs to/from any other node v ∈ V is pre-
computed (or more formally, c(v, l), c(l, v)∀v ∈ V, l ∈ L) [63]. Strong bounds
to shortest path costs can be obtained by using this approach, even with only
the use of ≈ 16 landmarks well-spread along the extremes of the network [37].
This approach provides a lower bound of the cost c(u, v) following the trian-
gle inequalities c(l1, u) + c(u, v) ≥ c(l1, v) and c(u, v) + c(v, l2) ≥ c(u, l2); thus
π(vi) = maxl∈L{c(u, l) − c(v, l), c(l, v) − c(l, u)} [63, 24]. An illustration can be
seen in Figure 3.8. As lower bounds and consequently the speed-up of com-
putations using ALT are dependent on the chosen set of landmarks to better
estimate the actual cost c(u, v), some heuristics have been proposed in litera-
ture to perform this task (see [24]). Goldberg et al. [38] report a reduction in
search space of factor 44, but that only leads to a reduction of factor 21 in query
time, when compared to Dijsktra’s algorithm.

Figure 3.8: Landmarks (l1, l2) and triangle inequalities intuition [24].

Geometric containers. It is somewhat related to the classic A∗ search space
pruning, as the main idea is to define a constrained space to restrict the nodes
in the search to those that are more likely to be part of a shortest path vs − ve.
Wagner et al. [85] investigate twelve possible geometric containers to prune the
search space, which are created in a preprocessing phase of linear computa-
tional complexity to the size of the input graph. A Dijkstra’s algorithm can be
applied over the pruned search space, or a combination with A∗ algorithm can
be devised in a straightforward manner. We refer to their work [85] for details
on the investigated types of geometric containers. For the surprise of the au-
thors, the simple “bounding box” outperformed other geometric containers in
many cases; also, the speed-up factor seems to not have relation to the size of

27

3.3. Speed-up techniques for shortest path computation

the graph, therefore the method is scalable. An adaptation for a dynamic situa-
tion in which the edge cost changes is given through updates in the containers
2-3 faster than to compute new geometric containers from scratch, while en-
abling to maintain a pruned search that leads to optimality in almost all cases.
A limiting factor for this approach is the “large-graph prohibitive requirement
for computing one single-source shortest path from every node while prepro-
cessing the geometric containers” [60]. A similar technique is the so-called
edge-flags in which a precomputed flag indicates whether an edge is contained
in a shortest path to any node in a given partition [60].

s tt s

(a) Dijkstra (b) Bidirectional

tsts

t

(d) PCD(c) A* search

Figure 3.9: Idealized shape of the search space for shortest path computations in different
methods (after [60]).

Precomputed Cluster Distances—PCD algorithm. It was presented in
Maue et al. [60] and consists of the precomputation of minimum costs for any
combination of nodes, taking each node from a cluster. The graph is partition-
ated in k clusters somehow, i.e., using any kind of partitioning method. Perfor-
mance is dependent on the partition mechanism and the preprocessing stores
minimum costs for all k2 pairs of clusters. Some advantages of PCD over related
methods are: number of clusters k can be adjusted to decrease preprocessing
time; independent on the partitioning method (i.e., number of border nodes)

28

Chapter 3. Dynamic Shortest Path approaches

since exactly k single-source shortest path computations are performed; even
simple grid clustering method can achieve high speed-up; and it does not neces-
sarily need the layout of the graph to perform the partition, though this might
depend on the chosen clustering method. Preprocessing is restricted to only
k single-source shortest path computations by adding a “dummy node” s′ con-
nected to all borders of a given cluster S with a zero-cost-edge (see Figure 3.10
for an illustration). Different methods of partitioning were tested by Maue et
al. [60], demonstrating that a strong sense of target direction is achieved by
the method, which leads to speed-up of about 115 (compared to Dijsktra’s al-
gorithm) in terms of average query time. The authors conclude that a good
partitions are equal size and low diameter clusters, and suggest a combination
with hierarchical techniques to either provide even better speed-up or to use for
quickly precomputation of cluster distances.

Figure 3.10: Preprocessing connections from a cluster Vi [60].

3.3.2 Hierarchy-based routing

Exploitation of hierarchy levels in road networks is what makes commercial
routing systems able of handling large graphs, but that in many cases come
at cost of not guaranteeing optimal routes [39, 76, 10]. They usually rely on a
simple intuition that once one is going “far enough”, one will only consider to
traverse a few access routes until a network that is relevant for long-distance
travel is reached; from this point on, one may only consider this rather sparse
network until eventually be “close enough” of another set of few access routes
to reach the destination. This is far from a wrong observation [39, 10], but
the problem is that the heuristics that are normally used to perform such a
hierarchical approach in commercial systems rarely ensure that optimal routes
are always computed. That is because they usually define which roads are
important for long-distance travel only based in attribute levels [39, 76, 10].

29

3.3. Speed-up techniques for shortest path computation

Academically, then, the point is how to exploit this inherent hierarchy of road
networks in such a way that always result in optimal shortest paths. Several
approaches have been proposed in literature to do so (see Figure 3.7); we discuss
some of them in the following.

Reach-based routing. It was introduced by Gutman [39] as a scientific way
of discovering which roads are important for long-distance travel as well as to
be flexible for changes in importance (e.g., bad traffic conditions). The principle
of reach of a node is the intuition that if it lies on a shortest path that longer
extends in both directions, more important is the node. Some claimed advan-
tages of the method are: guaranteed optimality; computation time comparable
to commercial approaches (which not always give optimal routes), and looking
linear under some conditions; easily combinable with other techniques (e.g., A∗

search); precomputed data does not require much storing; preprocessing may
be fast enough to allow dynamic changes in the network costs for some ap-
plications; and it allows faster computation of multiple origins or destinations
shortest paths. Reach-values computation can be performed exactly, at cost of
more precomputation time (an average of about 16 times greater, but rising up
to about 26 times in the larger graph tested), or using a estimated bound. Exact
reach provides the fastest computational results for shortest paths (around 15
seconds for an average of 56 km of route), but a combination of estimated bound
reach with A∗ search performs similarly in computing shortest paths (around
17 seconds for an average of 56 km of route) with much less precomputation.
Delling et al. [26], however, state that the precomputation time was still pro-
hibitive for large networks; indeed, Gutman [39] tests over networks at most
with 393,368 nodes, while the largely used continental-sized networks made
available for scientific use in 2005 have above 18 million nodes each, covering
Western Europe and USA/Canada [77, 80, 10, 26, 60]. According to Delling et
al. [26], the 2006’s improvement of reach-based routing turned out precomputa-
tion faster and more accurate by adapting Highway Hierarchies preprocessing
techniques; still the preprocessing time and query time are slower than High-
way Hierarchies, and only the latter can be comparable when a goal-oriented
search is combined with reach-based.

Highway Hierarchies—HHs approach. The idea of automatically comput-
ing highway hierarchies was proposed in Sanders & Schultes [76] and then
enhanced in [77]. Exact shortest paths are delivered by a proper way of defin-
ing local search and highway network. Local search is performed visiting the
H10 closest nodes from start or target node, and edges that do not connect a
node within the H closest nodes from the source s to another within the H clos-
est nodes from the target t are called highway edges (Figure 3.11). Formally,
let SP 〈s, . . . , u, v, . . . , t〉 be the shortest path between source and target, then
∀(u, v) ∈ E ⇒ (u, v) ∈ SP ∧ u /∈ Hs ∧ v /∈ Ht. Further speed-up is achieved by
collapsing highway edges along a path consisting of node of degree two (first

10H is a tuning parameter.

30

Chapter 3. Dynamic Shortest Path approaches

implementation is on undirected graphs) into a single edge [76]. The approach
iteratively arrives at multi-levels of highway network to which a bidirectional
Dijkstra-like search is performed over a single graph with all the levels [76].
The second version of HHs [77] reduced query time from about 7 seconds in
the first implementation [76] to only around 1 second, but also preprocessing
was significantly (at least 60%) reduced. They actually provide two different
settings for the trade-off between the precomputation time, the storing require-
ment and the query time: the default HHs almost doubles the storing require-
ment, precomputes about 90% faster and returns queries in less than 1 second,
while the HHs with reduced memory requires around 20% less storing, precom-
putes about 60% faster and returns queries in over 1 second. Delling et al.[26]
recognized the HHs approach as the first one to provide millisecond query times
in large road networks, with reasonable amount of preprocessing time (15-55
minutes [77]).

Ht

t

Highway edge

Hs

s

Figure 3.11: Intuition of identifying a highway edge.

Transit-Node Routing—TNR approach. Impressive query time results us-
ing transit-node routing are presented in Bast et al. [10], after the introduc-
tion of the concept in [9]: between 5 (for global queries) and 20 microseconds
(for local queries). As other hierarchical based routing approaches, TNR starts

31

3.3. Speed-up techniques for shortest path computation

from the intuitive observation that commercial routing systems use to provide
much faster (though not always optimal) routes computation: the fact that for
long-distance travels one will only consider a rather sparse network of higher-
importance roads. This high hierarchy network is formed by a relatively small
set of “transit nodes”, to which all pairs combination are precomputed [10]. The
selection of transit nodes can be performed in different ways (see [26]), and
a locality filter ensures that always optimal paths are obtained by effectively
defining what is “far enough” to consider the precomputed information [10].
Additional layers of transit nodes are used to ‘close the gap’ of the locality fil-
ter [10, 26] that allows 98.7% of all queries to be treated using a few lookups
(refer to [79]). Precomputation time is less than 3 hours and precomputed infor-
mation consumes 4.5 gigabytes for the network of Western Europe [10]. There-
fore, the impressively reduced query time (the best on road networks known
until 2007 [80]) of TNR comes at a cost of larger preprocessing and additional
space requirement for the precomputed information [26].

3.3.3 Combination of speed-up techniques

In many cases it is possible to combine different techniques to eventually achieve
faster computations of shortest paths, or a better trade-off between prepro-
cessing time, storing need for precomputed information and query times. In
general, the simple speed-up technique of bidirectional search is recognized as
compliable to most of other techniques [26, 60]. Maue et al. [60] point that the
combination of bidirectional search with the pruning of a A∗ can also be de-
vised to an eventual synergy of speed-up as compared to only applying one of
them. They also suggest their method, PCD, as a good replacement for land-
mark A∗ (ALT) due to its more flexible trade-off between preprocessing time,
need for storage of precomputed information and query time. Nonetheless, ALT
algorithm has been reported to harmonize well with reach-based routing [38],
as well as the latter with the simple A∗ search as initially tested when reach-
based routing was proposed [39]. Wagner et al. [85] indicate that geometric
containers could be easily combined with A∗ search, and also perhaps with bidi-
rectional search, but the latter would come at cost of double preprocessing space
and time. The fastest query times known for road networks are believed11 to be
the combination of edge-flags with transit-node routing [26].

3.3.4 Techniques for a dynamic setting

As static shortest path can be considered to be largely solved even for consider-
ably dense and huge road networks like Western Europe and USA/Canada, at
fast query times and reasonable preprocessing and additional storage [27, 23],
attention of research gradually started to move towards a more dynamic set-
ting. That was also, of course, due to recent technological developments that
allow to generate and include up-to-date information on traffic condition as dis-
cussed in Chapter 2. At any case, it is clear that dynamic routing is a topic
that has recently started to earn more attention, once computation of optimal

11This information may be uncertain already.

32

Chapter 3. Dynamic Shortest Path approaches

routes in transportation is one of the “showpieces of real-world applications of
algorithmics” [77, 26].

Lifelong Planning A∗—LPA∗ algorithm for moving object. Huang et al.
proposed an adaptation of the LPA∗ algorithm that is able to cope with dynam-
ics in the network while the object (e.g., vehicle) is en route [47]. LPA∗ is an
incremental version of A∗ that reuses results of previous searches to speed up
the subsequent ones (see [52]). Besides the LPA∗ for dynamic shortest paths,
Huang et al. [47] also have developed a new search heuristic as well as a con-
straint to the space search by applying a minimum bounded rectangle. The
adaptation for dynamic network is devised by switching around start and target
node when computing the path, while the new search heuristic comes from the
intuition that the shortest path is likely to be as close as possible of a straight-
line. Thus, to the classic A∗ search heuristic (Euclidean distance) a further re-
finement is given by the distance of the path to that straight-line between start
and target node, resulting in a priority given to search nodes that are as close
as possible to the idealized straight-line path. Finally, the minimum bounded
rectangle constrained search is delivered by using the network distance as the
principal axis of an ellipse with start and target nodes being the foci; the bound-
ing box of this ellipse forms the constrain for the search space. The algorithm
does not always provide optimal solution, but the accuracy in the experimental
tests reached 99%. Moreover, the number of examined nodes can be reduced in
70-80% as compared to the original A∗.

Dynamic Highway-Node Routing. Highway-Node Routing is a method that
was firstly developed for static shortest path but then generalized for a dynamic
setting as described in Schultes & Sanders [80]. Selection of highway-nodes is
performed using the ‘importance’ of the nodes in which nodes used by many
shortest paths will generate sparse graphs of the high-hierarchy network. At
publishing time (2007), the authors claimed to have “the most efficient method
in space requirement for the preprocessed data, while allowing query times
several thousand times faster than Dijkstra’s algorithm”. They have developed
variants for two kinds of processing scenarios: server and mobile. In the former
scenario, an update is performed from the nodes affected in the higher level
graph, when costs change in the edges. In the latter scenario, the set of po-
tentially unreliable nodes is determined once changes in the cost occur; then
if the search reaches a node to which a reconstruction should be performed
(i.e., it is affected by changes), it continues searching in a sufficiently low level
to guarantee that correct paths are still found. They conclude by stating that
their method can handle effectively situations of dynamic changes in cost such
as traffic jams, but also that a time-dependent variation is an important open
issue.

Landmark-based (ALT) Dynamic Routing. It was present in Delling &
Wagner [27] and two scenarios of dynamics are dealt with: Dynamic ALT and

33

3.4. Dynamic Shortest Path in a database context

Time-dependent ALT. The former allows changes in the costs of the edges,
but these costs are time-independent—i.e, they are constant while there is no
change. The latter assumes that costs are known functions that model changes
depending on the time of the day the traversal is made in the edge. It turns out
that costs are unlikely to ever drop from the cost of an “empty road” (i.e., tra-
verse is made in full flowspeed) for all the normal cases of changes in costs (e.g.,
traffic jams and construction sites); thus ALT algorithm will always maintain
an underestimation of cost as long as the initial estimations is made consid-
ering “empty roads”, and the algorithm is still able to provide optimal routes
when costs rise though at the eventual cost of a larger search space (i.e., po-
tentially slower). The authors, then, provide two variants of the Dynamic ALT:
Eager—preprocessed data of ALT is carefully (i.e., only in the affected area) up-
dated whenever changes occur; and Lazy—preprocessing is only triggered when
unlikely drops of costs are encountered. The second scenario is adapted by tak-
ing out the ALT’s bidirectionality of search, since this is prohibitive for time-
dependent routing, and only updating the estimations when (unlikely) drops of
costs occur.

Time-dependent SHARC-Routing. Time-dependent is recognized as a very
common scenario in roads network, to which traffic conditions are reasonably
predictable [27, 89, 23]. SHARC was proposed by Bauer & Delling in [11] and
enhanced in [12]. It is based on arc-flags that notify whether an edge lies
in a shortest path to a node in a certain partition Ci in which the graph has
been splitted. As the graph is also divided in multi-levels of hierarchy, there-
fore SHARC combines techniques from arc-flags with hierarchical approaches.
Delling [23] presents an adaptation of the SHARC-algorithm to handle time-
dependent networks. Two settings of the Time-dependent SHARC-routing are
presented, with a clear trade-off between preprocessing and query time. The
faster preprocessing setting (1 hour and a half for continental-sized network)
returns queries in an average of 17.5 milliseconds, which can be reduced to bel-
low 5 milliseconds at cost of considerably more preprocessing—above 12 hours.

3.4 Dynamic Shortest Path in a database context

On database technology resides the development of Intelligent Transportation
Systems, at least as means of storing relevant data for such a system. Our
research is interested on solving TDSP problems in a database context, and
several reasons can be given to have processing of data coupled to storing (re-
fer to [4, 2]). That is a setting which seems to not have received much focus
from research, as most of time-dependent (or dynamic) shortest path solutions
not even mention a database as part of their structure. From the best of our
knowledge, we refer to the work of Ding et al. [28] that do consider database,
and suggest a storage data model for a time-dependent shortest path solution,
but that only have it as means of storing and fetching of data for an external
memory-based shortest path algorithm to perform. Yin et al. [87] explicitly re-
fer to a database based shortest path algorithm, which has not quite the kind

34

Chapter 3. Dynamic Shortest Path approaches

of dynamics we consider in our research, as they only deal with moving objects
and a classical shortest path approach (i.e., distance-based).

35

3.4. Dynamic Shortest Path in a database context

36

Chapter 4

Tools for Dynamic Shortest
Paths in a database context

In this chapter we describe the development phase of the research, starting to
describe the kind of (TDSP) problems were tackled in this research. We then
describe the chosen approaches to implement solutions to the TDSP requests
as formulated. In summary, all needed implementation is described along with
algorithms and details necessary to understand the approach used. This is all
done in an implementation-independent form, which is further materialized in
the implementation of the approach described here to the study case (Chapter 5)
of this research.

4.1 A set of TDSP problems and definition

Though TDSP problems may be conceptualized as two fundamental problems
(see Table 3.1), in practice, it may assume different flavors and complexity.
From a simple one-to-one TDSP for a given departure or arrival time up to a
much more complex traveling salesman problem1 in a time-dependent network.
We present dimensions that may be involved in formulating a TDSP problem
in Table 4.1 and depict an example of increasing complexity TDSP problems
formulations (at conceptual level) in Figure 4.1.

As it is infeasible to deal with all complexity levels of TDSP problems pre-
sented in Figure 4.1, in the time available for this research, we focus on two
problem definitions: one that forms the base of TDSP requests, and a more
complex one that has many practical applications.

Before we formalize the two specific problems, let us define the general
TDSP problem. Formally, this is the problem of finding a least travel-time path
through a time-dependent graph GT (V,E,W), with V = vi being a set of nodes,
E ⊆ V × V a set of edges and W a set of positive-valued functions. Associated

1Traveling salesman is a well-defined shortest path problem formulation where the goal is to
visit a number of points in the graph in an optimal way, meaning that in practice the order in
which the points to be visited along with the path through them are to optimized. By definition,
the costs in the graph are travel times. We refer to Bondy & Murty (1976) [16] for a formal
definition of the problem.

37

4.1. A set of TDSP problems and definition

Table 4.1: Dimensions on TDSP problem requests.

Dimension Attributes Remark
Routing vehicle Individual or

Multiple (fleet)
Planning hori-
zon

A Priori or Im-
mediate

immediate - en route optimization

Depot strategy Closed or Open open - not coming back to depot
Visit planning Single or Multi-

ple (set of visits)
Order of visit Fixed or Flexible flexible - optimization of sequence

also necessary
Departure/Arrival
time

Fixed or Flexible flexible - optimization of depar-
ture time also necessary

Time hori-
zon (de-
partue/arrival)

Constrained or
Unconstrained

unconstrained - just in this case,
optimization of departure/arrival
time is completely flexible

One-to-one time-dependent shortest path

One-to-one through many time-dependent

shortest path

Additional characteristics:

-Fixed sequence of visits

-Allow waiting in visit nodes

One-to-one through many time-dependent

shortest path

Additional characteristics:

-Fixed sequence of visits

-Allow visits to be along edges of the network

-Allow waiting in visit nodes

Travelling salesman time-dependent

shortest path

Additional characteristics:

-Allow visits to be along edges of the network

-Allow waiting in visit nodes

H
eu

ri
st

ic
?

L
ev

el o
f co

m
p
lex

ity

T
im

e
 d

im
e
n

s
io

n

-D
ep

artu
re/arriv

al tim
e: fix

e
d

o
r fle

x
ib

le

-T
im

e h
o
rizo

n
: c

o
n

s
tr

a
in

e
d

o
r u

n
c
o
n

s
tr

a
in

e
d

Figure 4.1: TDSP problem formulations in increasing complexity levels.

with every edge (vi, vj) ∈ E, there is a function wi,j(t) ∈ W for a time variable
t in a time domain called an edge-delay function. This means that for any time

38

Chapter 4. Tools for Dynamic Shortest Paths in a database context

point in T , one may know the cost to traverse a certain edge in the graph at
that moment. Costs are usually given in delays, i.e. travel time to go from vi to
vj in the graph.

4.1.1 A simple one-to-one TDSP for a given departure time

The most simple problem formulation for a TDSP request that one may imagine
is to search for the optimal path between an origin (or source) and destination
point for a certain time of departure. This problem definition, though quite
trivial, has practical applications, such as to guide a vehicle en route with the
“intelligence” of the time-dependent network being considered.

This problem formulation takes the general definition of TDSP problem (see
Section 4.1) and searches the path starting from origin at a certain point in T .
For the sake of clarity, from this point onwards in the thesis, we refer to this
problem definition as TDSP-GDT, as a short for Time-Dependent Shortest Path
for a Given Departure Time.

4.1.2 One-to-one TDSP for a given interval of departure time

In practical applications, the time of departure of a vehicle may have some
flexibility and thus we may want not only to search for a shortest path for a
given point in time, but rather a path in which the travel time is minimal within
a given time interval. In this context, to the complexity of finding a shortest
path problem is added the need for optimizing the time of departure in such a
way that the travel time is the minimal possible in the given interval.

Now, we want to find the least total travel time within a given interval
T = [ts, te] and also want to find out what is the path that uses up least travel
time. In the literature, this type of request is called LTT (least travel time) [28],
thus we refer to this problem formulation as TDSP-LTT, from Time-Dependent
Shortest Path with Least TravelTime in a given interval.

4.2 Relevant concepts and definitions for solving TDSP
problems

Before presenting a defacto approach to solve TDSP problems as formulated
above, there are a few concepts and definitions that must be formalized. We
start by formalizing the concept of dynamics in shortest path computation, by
considering a simple situation of a directed graph with only two nodes and two
possible ways (edges) connecting one point with another. This situation is de-
picted in Figure 4.2, along with the intuition of finding the time-dependent
shortest path function as the minimum function comparing the two possible
ways. In the formalization, both t and a function of t denote absolute time. A
formal definition of the concept is:

• Let there be two functions f(t) and g(t) that define the time-dependency
of two paths, such as arrival time in the target node of the path;

39

4.2. Relevant concepts and definitions for solving TDSP problems

• Clearly, both functions are defined by the departure time from the origin
node of the path t accumulated by the cost associated to traverse the given
edge, or more formally f(t) = t+ wf (t)(t);

• Consequently the definition of the time-dependent shortest path is deter-
mined by a minimal function comparing the functions f(t) and g(t) of the
two possible ways in this case, therefore a function h(t) that has the fol-
lowing definition:

h(t) =

{
f(t) if f(t) ≤ g(t)

g(t) otherwise

• This means that depending on the chosen departure time t, may f(t) be
the desired path function (minimal), otherwise g(t), and characterizes the
“dynamics” of the shortest path in the context of TDSP problems.

A simple “dynamic” shortest path

g(t)

f(t)

0

100

200

300

400

500

600

0 100 200 300 400 500 600

time unit

ti
m

e
 u

n
it f(t)

g(t)

minimum

Evolving the time-dependent function

g(t)f(t)

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

f(t)

g(t)

cumulative

Figure 4.2: Intuition and example of relevant concepts for solving TDSP problems.

Now, suppose we add one more node to the graph, but only consider one
possible path between origin and destination, passing through an intermedi-
ate node. The issue then is how to progress the time refinement of the time-
dependent functions, and the intuition of this concept is shown in Figure 4.2. A
formalization of this concept is:

40

Chapter 4. Tools for Dynamic Shortest Paths in a database context

• Let there be two functions f(t) and g(t) which define the time-dependency
of the two parts that define the path origin to destination;

• Notice that f(t) and g(t) can actually even be two functions ∈ W , describ-
ing the delays (i.e., relative time) for traversing each part of the path, but
can also be an absolute time function;

• If we now want to know a cumulative function of f(t) and g(t), thus define
a single function h(t) that will describe the time-dependency of the path
from origin to destination, we define h(t) as the cumulative summation of
f(t) and g(t). We call cumulative summation because it is not a simple
matter of summing-up f(t) and g(t), since one needs to be aware that for
the intermediate node to be reached, and g(t) to be considered, a certain
amount of time given in f(t) was used up;

• Therefore, the formal definition of the cumulative function is h(t) = f(t) +
g(t + f(t)), or intuitively: if one departs from origin at time t, it will take
f(t) to arrive in the intermediate node, thus it will only depart from this
node at time t + f(t), taking g(t + f(t)) to get to the target node. For the
case the functions denote absolute time, the definition is generalized to
h(t) = f(t) + g(f(t)).

These two formal definitions above constitute the core of the necessary time
refinement for solving TDSP problems. They identify how the time-dependent
function evolves as the problem evolves, as well as how to determine the mini-
mal function that “hides” in itself the dynamics of the shortest path (i.e., if one
leaves at t, what way to use). The defacto solution for TDSP that is introduced
below, has these two concepts.

4.3 Solving a set of TDSP problems

In its static counterpart, a shortest path problem commonly applies the good
old algorithm by Dijkstra in 1959 [16], or some variation of it that makes use
of heuristics to reduce the search space [85]. As originally presented, Dijk-
stra’s algorithm has the characteristic of always providing an optimal solution
by searching the whole graph.2 On the other hand, applying heuristics to re-
duce the search space may compromise optimality for the sake of providing
faster computation of shortest paths.

For our purpose of solving TDSP in a database context, we decided to make
use of the Dijkstra-based algorithm presented in Ding et al. [28], in which the
authors prove that their approach outperforms others in computational tests for
TDSP-LTT types of query (i.e., our most complex problem definition). But this
can also be generalized for the simple TDSP-GDT, by simplifying the arrival-
time function to be a single-point function (or a simple pair of values (t, g(t))—
i.e., departure time vs arrival time—with departure time being the given time

2Its original goal is to find one-to-all shortest paths, thus it needs to search the whole graph,
but this does not necessarily hold for the usual variation of Dijkstra’s for solving one-to-one
shortest path.

41

4.3. Solving a set of TDSP problems

of the request. In summary, the novelty of the solution is in the decoupling of
time refinement and path selection, meaning that the path only is determined
after the time dimension has been refined to the nodes in the graph, with so-
called arrival-time functions that display departure time from source against
arrival time in the node. The path-selection follows by matching arrival time
in predecessor node plus edge-delay (cost) to be traversed with arrival time of
outgoing node, in a backwards manner. From this decoupling comes the name
of the algorithm: Two-step LTT.

4.3.1 Explaining the Two-step LTT approach

In general, the Two-step LTT algorithm was presented and described in Sec-
tion 3.2.4, but here we detail it in such a way that one should be able to imple-
ment it for TDSP problems. For this reason, we adopt an approach of gradually
explaining the algorithm and its conceptualization. We follow this description
by identifying what are the tools that need to be implemented so that the ap-
proach can work correctly.

First step—Dijkstra based time-refinement. It intends to define earliest
arrival-time functions gi(t) for all nodes vi in the graph, expanding from the
source vs just like Dijkstra’s algorithm (Figure 4.4). For the terminology used
in the approach, we refer to Section 3.2.4. Arrival-time functions are incremen-
tally refined in the given departure time interval T = [ts, te]. The algorithm
starts with an initialization process within lines 01-03, in which gs(t) ← t for
t ∈ T ; τs ← ts and gi(t) ← ∞ for t ∈ T ; τi ← ts, i.e. the earliest arrival-time
function for the start node is (arrival time equals departure time), and is un-
defined (∞) for other nodes in the graph. A priority queue Q is then formed
by pairs of values of departure time and arrival time (τi, gi(t)), ordered by gi(t),
for all the nodes in line 04. The time-refinement starts by dequeueing the top
pair (τi, gi(t)) of Q, which by principle will be the pair (ts, gs = ts) from the start
node, but also to acknowledge that the next earliest arrival-time function pair
in Q at top of the queue (τk, gk(t)). The expansion in the graph continues in
lines 09-10 by identifying a subinterval I ′ = [τi, τ

′
i] that depends on the least

edge-delay value coming to the dequeued node vi at the time of the top function
value gk(t), as it is in ∆← min{wf ,i(gk(τk)) |(vf , vi) ∈ E }. The computation of ∆
allows to identify the next earliest possible arrival time via any edge (vi, vj) as
gk(τk)+∆ due to the FIFO property of GT , and it is followed by the computation
of the I ′ that can be proven to be the interval in which the arrival-time function
gi(t) is already well-defined (i.e., it is already the minimal possible) [28]. Val-
ues in the priority queue Q with τi within I ′ = [τi, τ

′
i] for vi node have then no

reason to be in Q anymore, though that is not explicitly presented in the pub-
lished algorithm. Now, with the acknowledgment that gi(t) is well-defined in
I ′ = [τi, τ

′
i], we can use gi(t) for t ∈ [τi, τ

′
i] to update arrival-time functions gj(t)

of outgoing neighbours vj of vi, which happens in lines 11-14. That is done in
g′j(t) ← gi(t) + wi,j(gi(τi), again, only where t is within I ′ = [τi, τ

′
i]. The concept

here is simple: one is at time gi(t) in node vi and wants to go to vj , traversing

42

Chapter 4. Tools for Dynamic Shortest Paths in a database context

(vi, vj) ∈ E with cost wi,j(gi(τi))
3 (i.e.. the cost for leaving at the moment one is

at vi). Updated g′j(t) where t is within I ′ = [τi, τ
′
i] is compared to what is already

in gj(t), getting the minimal function gj(t) ← min{gj(t), g′j(t)} for ∈ [τi, τ
′
i]

and leaving the rest of values in T = [ts, te] as they were. New values of gj(t)
where t is within I ′ = [τi, τ

′
i] can then be updated in Q (update (Q, (τj , gj(t)))).

Condition of termination of the algorithm (lines 16-20) is either by finishing the
priority queue Q (i.e., while |Q| ≥ 2), or by having the full interval T = [ts, te]
well-defined (i.e., τi ← τ ′i ; if τi ≥ te) for the target node ve (i.e., if vi = ve). In
this latter case, we are already assured that ge(t) for the target node ve is well-
defined for the whole given interval of request T = [ts, te]. Therefore there is no
reason for continuing iterating over the graph’s nodes. If that is not the yet case,
the pair (τi = τ ′i , gi(t)) is enqueued in Q (enqueue (Q, (τi, gi(t)))) as it needs fur-
ther refinement (i.e., arrival-time function where t ≥ τi = τ ′i is not found to be
minimal yet). A small running example of the core of the time-refinement algo-
rithm, namely the part in which the outgoing nodes’ arrival-time functions gj(t)
are updated is illustrated in Figure 4.5. After finishing the time-refinement
step, the best starting time can be determined using the arrival-time function
of the target node ve and finding the least travel time as the minimal argument
of arrival time (y-axes) in ve minus the departure time from the source (x-axes)
(t∗ ← argmint∈T {ge(t)− t}) in the main algorithm call in line 03 (Figure 4.3).

Algorithm Two-Step-LTT(GT (V,E,W), vs, ve, T)

01: {gi(t)} ← timeRefinement(GT , vs, ve, T);
02: if ¬ (ge(t) =∞ for the entire [ts, te] then
03: t∗ ← argmint∈T {ge(t)− t};
04: p∗ ← pathSelection(GT ,{gi(t)}vs, ve, t∗);
05: return (t∗, p∗);
06: else return ∅;

Figure 4.3: Outline of Two-step least travel-time algorithm [28] .

Second step—Fast path-selection. An optimal vs − ve path is computed in
a backward manner determining the predecessor node, starting from the des-
tination node ve (Figure 4.6). Based on the arrival-time functions gi(t) and
the optimal starting time t∗ the predecessor node of any vj can be determined
matching the condition gi(t

∗) + wi,j(gi(t
∗)) = gj(t

∗) (line 05). That holds un-
der the assumption that there is no waiting time in the nodes [28]. Thus, one
can find the predecessor node by adding to the arrival-time function gi(t

∗) of vi
the edge-delay from vi to vj (i.e., wi,j(gi(t

∗))) and finding which edge leads to
the arrival-time function value for the optimal starting time in vj (i.e., gj(t∗)).
Figure 4.7 shows an example of path-selection.

3It should be trivial to realize that gi(t) has in it the concept of gi(t + f(t)) where f(t) is
the arrival-time function gs(t) in the source node vs. Thus wi,j(gi(t)) is a generalization of the
concept of evolving the time-dependent function as explained in Section 4.2

43

4.3. Solving a set of TDSP problems

Algorithm timeRefinement(GT (V,E,W), vs, ve, T)

01: gs(t)← t for t ∈ T ; τs ← ts;
02: for each vi 6= vs do
03: gi(t)←∞ for t ∈ T ; τi ← ts;
04: Let Q be a priority queue initially containing pairs, (τi, gi(t)),
05: for all nodes vivi ∈ V , ordered by gi(τi) in ascending order;
06: while |Q| ≥ 2 do
07: (τi, gi(t))← dequeue(Q);
08: (τk, gk(t))← head(Q);
09: ∆← min {wf ,i(gk(τk)) |(vf , vi) ∈ E } ;
10: τ

′
i ← max{t | gi(t) ≥ gk(τk) + ∆};

11: for each (vi, vj) ∈ E do
12: g

′
j(t)← gi(t) + wi,j(gi(τi) for t ∈

[
τi, τ

′
i

]
;

13: gj(t)← min{gj(t), g
′
j(t)} for ∈

[
τi, τ

′
i

]
;

14: update (Q, (τj , gj(t)));
15: τi ← τ

′
i ;

16: if τi ≥ te then
17: if
18: return {gi(t) |vi ∈ V };
19: else
20: enqueue (Q, (τi, gi(t)));
21: return {gi(t) |vi ∈ V };

Figure 4.4: Ding et al. (2008) [28] time refinement algorithm.

4.3.2 Identifying tools to be implemented for the Two-step LTT
approach

Any algorithm to be implemented may require the development of auxiliary
functions to correctly do what it is supposed to do. In the case of Two-step
LTT approach these required functions are primarily associated with the first
step of time-refinement, in which the crucial part to identify a time-dependent
shortest path occurs. Looking at the time-refinement algorithm (Figure 4.4) one
may identify four pieces of code that constitute the approach:

1. Initialization: creation of initial arrival-time functions up to the prepa-
ration of the priority queue.

2. Determination of subinterval to update: which starts by getting the
two top of queue pairs, followed by the determination of parameter ∆,
then determination of the subinterval I ′ = [τi, τ

′
i] where the arrival-time

function of the node in iteration is well-defined (i.e., minimum possible)
and thus it can be used to update the arrival-time functions of outgoing
nodes.

3. Update of outgoing nodes arrival-time functions: this is the core of
the algorithm; on the basis of arrival-time function of the node in itera-

44

Chapter 4. Tools for Dynamic Shortest Paths in a database context

25000

27000

29000

31000

33000

35000

37000

28000 30000 32000 34000 36000

0

50

100

150

200

250

300

350

400

450

500

28000 28500 29000 29500 30000 30500

3515035000

3220032000

3025030000

2900028800

gi(t)t

15030250

12530000

12029400

15029000

20028800

wi,j(t)t

gi(t) + wi,j(gi(t))

3040030000

2974729400

2934329000

2915028800

gi(t) + wi,j(gi(t))t

for t in I’ = [28800,30000]

0

5000

10000

15000

20000

25000

30000

35000

0 5000 10000 15000 20000 25000 30000

3045030000

3000028800

1050010000

1000

gj(t)t

min{gi(t), gj(t)}

for t in I’ = [28800,30000]

3040030000

2974729400

2934329000

2915028800

1050010000

1000

Updated gj(t)t

Arrival-time function in outgoing node

Arrival-time function in node in iteration Edge-delay function of node to be traversed

Figure 4.5: Running example of updated of arrival-time function.

tion and the edge-delay function of the eventual edge to be traversed, one
can update the arrival-time function of outgoing neighbour nodes in the
subinterval determined in the previous part of the code.

4. Checking of termination condition: this is meant to check whether
the termination condition is met, but will also enqueue a pair of values
into the queue, in case the termination condition is not met yet.

Table 4.2 summarizes what are the tools needed for each of the four parts
of the time-refinement algorithm of Two-step LTT, which will eventually trig-
ger an auxiliary function implementation apart from the main code. This is
followed by the description of these auxiliary function definitions in the next
section.

4.4 Auxiliary tools for the Two-step LTT approach

Here, we present the definition of auxiliary tools for the Two-step LTT approach
that we found relevant or necessary. As we want it to be implementation-
independent, what is shown is what the algorithm should do, at conceptual

45

4.4. Auxiliary tools for the Two-step LTT approach

Algorithm pathSelection(GT (V,E,W),{gi(t)}vs, ve, t∗)
01: vj ← ve;
02: p∗ ← ∅;
03: while vj 6= vs do
04: for each (vi, vj) ∈ E do
05: if (gi(t

∗) + wi,j(gi(t
∗)) = gj(t

∗) then
06: vj ←
07: p∗ ← (vi, vj) · p∗;
08: return p*;

Figure 4.6: Ding et al. (2008) [28] path selection algorithm.

vs

ve
gi(t*) = 50200

gi(t*) = 50000t* = 48000

gi(t*) = 49850

gi(t*) = 49900

gi(t*) = 49000

gi(t*) = 48000

gi(t*) = 49000

gi(t*) = 49500
gi(t*) = 49200

wi,j(gi(t*)) = 150

wi,j(gi(t*)) = 850

wi,j(gi(t*)) = 1000

wi,j(gi(t*)) = 500

wi,j(gi(t*)) = 400

wi,j(gi(t*)) = 700

wi,j(gi(t*)) = 300
wi,j(gi(t*)) = 1000

wi,j(gi(t*)) = 900

wi,j(gi(t*)) = 500

wi,j(gi(t*)) = 200

wi,j(gi(t*)) = 1000

p* - optimal path vs-ve

Figure 4.7: Running example of an optimal path-selection p∗ for the optimal starting time t∗.

level, and where possible, pseudo-code that describes mathematically the tool
to be implemented.

4.4.1 Initialization tool: generate initial arrival-time functions

The first step to be carried out in the time refinement algorithm of Two-step
LTT approach is to initialize the arrival-time functions gi(t) for all the nodes in
the graph. This was discussed in the previous section and the code for the tool

46

Chapter 4. Tools for Dynamic Shortest Paths in a database context

Table 4.2: Summary of tools for the development of the Two-step LTT approach.

Algorithm part Required tools
Initialization May require a function to initialize the arrival-

time functions for the source node and all the other
nodes in the graph;
Mechanism for creating the priority queue by en-
queing all pair values from the arrival-time func-
tions previously initialized.

Determination of
subinterval to update

Some sort of x-value look-up (or interpolation, de-
pending on implementation choices) in a mathe-
matical function for finding the least edge-delay
value coming into a node;
Some sort of y-value look-up (or interpolation, de-
pending on implementation choices) in a mathe-
matical function for determining the upper bound
τ ′i for the subinterval to update I ′.

Update of outgoing
nodes’ arrival-time
functions

Function to add arrival-time function of node in it-
eration to the edge to be traversed to reach an out-
going node (update arrival-time function of outgo-
ing node);
Function to compare updated arrival-time function
of outgoing node with what is already in arrival-
time function, getting the minimal arrival-time
function in the comparison (look-up functions men-
tioned in the previous part of the code may come to
be useful in this context);
Mechanism of updating the priority queue with up-
dated arrival-time function values for the outgoing
nodes.

Checking of termina-
tion condition

Only a single value pair update to the queue may
be needed in this part of the code.

is derived from lines 01-03 of the algorithm in Figure 4.4. Our adaptation is
presented in Figure 4.8.

Algorithm generateInitialization(GT (V,E,W), vs, T = [ts, te])

for each vi ∈ V do
if vi = vs then
gs(t)← t for t ∈ T ;

else
gi(t)←∞ for t ∈ T ;

return {gi(t) |vi ∈ V };

Figure 4.8: Initialization algorithm.

47

4.4. Auxiliary tools for the Two-step LTT approach

4.4.2 Tools for X-/Y-value look-up

In the time refinement algorithm (Figure 4.4), there are situations in which the
code needs to know a certain x- or y-value of a mathematical function, either
from an arrival-time function or an edge-delay function, not necessarily from
one of the pairs representing the given function. A look-up function to deter-
mine an axis value given a value of another axis is demanded. How to present
such a function in a pseudo-code way, depends on implementation choices, par-
ticularly on how one represents those mathematical functions. For instance, if
these functions are represented as pairs of values in an array, or even as table
in a database, to determine an eventual intermediate point (i.e., a x-/y-value for
which the given y-/x-value is not one of the pairs that describe the function) an
interpolation is needed. Now, for a more didactical representation, let’s imagine
these functions are represented in a geometric plan (i.e., a XY cartesian plane).
In this case, a geometric interpolation draws a straight line with given x- or y-
value in one variable, with the other variable tending to∞. Then, we take the
intersection point for the two geometries (the mathematical function and the
straight line) that contains the desired x-/y-value. Obviously, this only works
in the case of monotonic function.4 By definition, arrival-time functions are al-
ways of this nature, while edge-delay functions may or may not be, depending
on how they are conceptualized. If we assume this monotonic function nature,
one can create such look-up functions as in pseudo-code in Figure 4.9. We adopt
the convention of using t for the x-axis as these are always “time” in our context.

Algorithm lookUp Yvalue(f(t), x)

line← makeLine(makePoint(x,−∞),makePoint(x,∞));
point← intersection(f(t), line);
return {getX(point)};

Algorithm lookUp Xvalue(f(t), y)

line← makeLine(makePoint(−∞, y),makePoint(∞, y));
point← intersection(f(t), line);
return {getY (point)};

Figure 4.9: Look-up algorithms.

4.4.3 Tool to add-up two mathematical functions

In the context of the time refinement algorithm (Figure 4.4) of the Two-step
LTT approach, the addition of two mathematical functions occurs when the code
seeks to update the arrival-time function of an outgoing node. This is done on
the basis of the arrival-time function of the node in iteration added to the edge-
delay function of the link to be traversed in the graph. Since the edge-delay

4One which preserves the given order, either only increasing or decreasing (i.e., none step or
backs and forwards in the function.

48

Chapter 4. Tools for Dynamic Shortest Paths in a database context

functions can be not constant, this addition need to be performed on a point-
by-point basis. As the time refinement in the approach normally happens in
subintervals I ′ = [τi, τ

′
i] of the given interval of departure time request T =

[ts, te], the addition will usually affect only part of the mathematical function.
A pseudo-code for implementing such a tool can be seen in Figure 4.10.

Algorithm addUpTwoFunctions(gi(t), wi,j(t), I
′ = [τi, τ

′
i])

pointarray ← union(serializePoints(gi(t)), serializePoints(wi,j(t)));
for p ∈ pointarray do

if getX(p) <= τi and getX(p) <= τ ′i then
p′ ← lookUp Y value(gi(t), getX(p))+
lookUp Y value(wi,j(t), lookUp Y value(gi(t), getX(p)));
update(pointarray, p′);

g′j(t)← makeLineFromArray(pointarray);
return {g′j(t)};

Figure 4.10: Add-up two functions algorithm.

4.4.4 Tool to determine the minimal function from two mathe-
matical functions

After performing the addition of two mathematical functions (Section 4.4.3),
namely the arrival-time function of the node in iteration added to the edge-
delay function of the link to be traversed in the graph, this updated added
mathematical function has to be compared with the existing arrival-time func-
tion in the outgoing node. Again, as this comparison will usually apply for a
certain subinterval I ′ = [τi, τ

′
i] of the given interval of departure time request

T = [ts, te], it is not only a matter of getting the minimal function between the
two being compared. It can be performed on a point-by-point basis (Figure 4.11).

Algorithm minimalOfTwoFunctions(gj(t), g
′
j(t), I

′ = [τi, τ
′
i])

pointarray ← union(serializePoints(gj(t), serializePoints(g
′
j(t));

for p ∈ pointarray do
if getX(p) ≥ τi and getX(p) ≤ τ ′i then
p′ ← makePoint(getX(p),mingj(getX(p)), g′j(getX(p)));
update(pointarray, p′);

gj(t)← makeLineFromArray(pointarray);
return {gj(t)};

Figure 4.11: Determination of the minimal function algorithm.

49

4.5. Two-step LTT approach for solving a set of TDSP problems

4.5 Two-step LTT approach for solving a set of TDSP
problems

At this point, following the previous sections (4.3,4.4) it should be clear how one
can solve TDSP problems by applying the Two-step LTT approach, particularly
for the case of a TDSP-LTT problem, for which the approach was originally
proposed. For the sake of clarity, especially considering that we have defined
several auxiliary functions, we now present again the Two-step LTT approach
but modified with the inclusion of the auxiliary functions.

By generalizing the Two-step LTT approach to solve TDSP-GDT (i.e., with
a fixed departure time) part of the code for time refinement (Figure 4.12) be-
comes useless, as there is no interval of departure time involved. Also, the path
selection step can also be tuned-up sorting arrival time values ascendently be-
fore checking the condition of identification of the predecessor node in the path.
This must happen when all the possible predecessor nodes in the path are well-
defined (i.e., with least arrival-time function), after reaching the target node,
thus the condition (gi(t

∗) + wi,j(gi(t
∗)) = gj(t

∗) will hold for any possible pre-
decessor node. Figure 4.13 presents the Two-step LTT approach generalized to
solve TDSP-GDT problems.

4.6 Interlude: encompassing multimodal shortest path
problems—a conceptual level discussion

4.6.1 Why only at conceptual level?

In a realistic logistics and transportation setting, reasons may exist for con-
sidering an multimodal chain (see [74]). By a multimodal transport chain, we
mean transport involving multiple transport modes: trucks and trains, for in-
stance. The complexity added by such transport is caused by additional timing
constraints (e.g., time-windows) and delays when switching modes. Meaning
that exchange of modes is not simply a matter of existence of topological connec-
tions, but that this meeting is also constrained in the time dimension [82]. More
precisely, the time dimension is considered in absolute sense, meaning that it
has to be possible to change to another mode at a specific moment. What’s
more, this may also imply delays or extra costs for changing mode, which may
influence the shortest path definition as well.

As stated in Chapter 1, a multimodal network setting may be part of a short-
est path problem investigation as the one treated in this research, but some
motives lead us to finally not consider this setting in our development, partic-
ularly at the implementation level of it. The first reason for this choice is the
realization that single mode TDSP problems already have “enough” complexity,
which can, of course, depend on how one formulates the problems. In our re-
search, we have defined a rather complex TDSP problem, namely TDSP-LTT,
as part of our set of problems to be tackled, hence one may think that we only
wanted to be safe in not adding the complexity of a multimodal network for
solving TDSP. Furthermore, it is fair to mention that there was no availability

50

Chapter 4. Tools for Dynamic Shortest Paths in a database context

Algorithm 1 Two-Step-LTT(GT (V,E,W), vs, ve, T)

{gi(t)} ← timeRefinement(GT , vs, ve, T);
if ¬ (ge(t) =∞ for the entire [ts, te] then

t∗ ← argmint∈T {ge(t)− t};
p∗ ← pathSelection(GT ,{gi(t)}vs, ve, t∗);
return (t∗, p∗);

else return ∅;
Algorithm 2 timeRefinement(GT (V,E,W), vs, ve, T)

generateInitialization(GT , vs, T); τi ← ts;
Let Q be a priority queue initially containing pairs, (τi, gi(t)),
for all nodes vivi ∈ V , ordered by gi(τi) in ascending order;
while |Q| ≥ 2 do

(τi, gi(t))← dequeue(Q);
(τk, gk(t))← head(Q);
∆← min {lookUp Y value(wf ,i(t), gk(τk)) |(vf , vi) ∈ E } ;
τ ′i ← lookUp Xvalue(gi(t), gk(τk) + ∆);
for each (vi, vj) ∈ E do
g′j(t)← addUpTwoFunctions(gi(t), wi,j(t), I

′ = [τi, τ
′
i]);

gj(t)← minimalOfTwoFunctions(gj(t), g
′
j(t), I

′ = [τi, τ
′
i]);

update (Q, (τj , gj(t)));
τi ← τ ′i ;
if τi ≥ te then

if
return {gi(t) |vi ∈ V };

else
enqueue (Q, (τi, gi(t)));

return {gi |vi ∈ V };
Algorithm 3 pathSelection(GT (V,E,W),{gi(t)}vs, ve, t∗)
vj ← ve;
p∗ ← ∅;
while vj 6= vs do

for each (vi, vj) ∈ E do
if lookUp Y value(gi(t), t

∗)+
lookUp Y value(wi,j(t), lookUp Y value(gi(t), t

∗)) =
lookUp Y value(gj(t), t

∗) then
vj ← vi; break;

p∗ ← (vi, vj) · p∗;
return p*;

Figure 4.12: Two-step LTT approach [28] with adapted presentation to include auxiliary tools
developed.

of a multimodal time-dependent network with real-world data. One may in-
terpret it was infeasible to consider a multimodal TDSP as originally planned
with real-world data. But more importantly, it is our believe that multimodal

51

4.6. Interlude: encompassing multimodal shortest path problems—a conceptual level
discussion

Algorithm 1 Two-Step-LTT(GT (V,E,W), vs, ve, t)

{gi(t)} ← timeRefinement(GT , vs, ve, t);
if ¬ (ge(t) =∞ for the entire [ts, te] then

p∗ ← pathSelection(GT ,{gi(t)}vs, ve);
return (p∗);

else return ∅;
Algorithm 2 timeRefinement(GT (V,E,W), vs, ve, t)

gs)← t; τs ← ts;
for each vi ∈ V 6= vs textbfdo gi ←∞; τi ← ts;
Let Q be a priority queue initially containing pairs, (τi, gi),
for all nodes vivi ∈ V , ordered by gi(in ascending order;
while |Q| ≥ 2 do

(τi, gi)← dequeue(Q);
(τk, gk)← head(Q);
for each (vi, vj) ∈ E do
g′j ← gi + lookUp Y value(wi,j(t), gi);
gj ← min{gj , g′j};
update (Q, (τj , gj));

if
return {gi |vi ∈ V };

else
enqueue (Q, (τi, gi));

return {gi‖vi ∈ V };
Algorithm 3 pathSelection(GT (V,E,W),{gi}vs, ve, t∗)
vj ← ve;
p∗ ← ∅;
while vj 6= vs do

for each (vi, vj) ∈ E ordered by gi do
if gi + lookUp Y value(wi,j(t), gi) = gj then
vj ←

p∗ ← (vi, vj) · p∗;
return p*;

Figure 4.13: Two-step LTT approach [28] generalized to solve TDSP-GDT.

TDSP can at least be in part encompassed in a single mode TDSP by means of
encoding smartly the edge-delay functions. This is discussed at conceptual level
in the sequel of this chapter.

4.6.2 Multimodal TDSP in a single mode TDSP setting

In its perhaps most simple formulation, a multimodal TDSP has to consider
that changing transportation mode implies incurred extra cost for this exchange.
In a TDSP perspective, this extra cost means a certain time delay without ac-
tual moving, which applies either for a individual transportation or a cargo

52

Chapter 4. Tools for Dynamic Shortest Paths in a database context

changing the transportation mode. Liu & Meng (2008) [56] treat multimodal
shortest path by first identifying what they call switch points, which are nodes
in the network in which a mode transition is possible. To extend this idea for
a TDSP perspective, we suggest the accommodation of extra cost by means of
repeating any multimodal node in as many single modal nodes exist. Different
modal nodes would be connected by a virtual edge that only exists in the time
dimension, with a delay function associated to describe the extra cost for the
transition of mode. An illustration of this idea is provided in Figure 4.14, with
two modes and a possible transition between them represented by an extra cost
that is modeled by a “virtual” edge-delay function that connects the transition
node repeated in two single modal nodes. A somewhat similar idea is presented
in Bérubé et al. (2006) [15] for allowing travelers to wait at a certain node to
take a later flight connection that eventually would be of benefit in the complete
route along a set of points to be visited. In their case, clearly they purposely take
away the FIFO assumption, as the waiting allowed is actually in there to even-
tually reach the subsequent node earlier by departing later. Our adaptation for
encompassing multimodal routing in a single mode TDSP setting, on the other
hand, may well still work under the FIFO assumption, by only realistically con-
sidering that an extra time may apply to a the change of mode, and not to take
any travel time advantage by departure in a later time. In fact, TDSP solutions
for FIFO graphs can accommodate general (i.e., non-FIFO) graphs by allowing
waiting time in the nodes and transferring this waiting time to the edge-delay
functions, or more formally by taking each edge-delay function w′i,j(t) in the
non-FIFO graph and defining a wi,j(t) = ∆i,j(t) + w′i,j(t), which would turn the
graph into a FIFO graph [28].

It should be noticed that the same approach can also be adapted to model
more complex time constraints in a multimodal TDSP, such as time-windows
for changing the mode. This may be useful when the exchange of modes is only
possible at certain intervals along the day. For instance, an impossibility of
transition of mode between 8 and 16h can be represented by raising the delay
value in the function by 4 hours of ‘extra travel time’ at 8h. To then let it to
linearly decrease until it reaches back the usual transition of mode extra travel
time (Figure 4.15).

Lately, the described approach would only require some data modeling and
handling, not real changes in the solution of TDSP problems. At least a partial
inclusion of the complexity of real-world multimodal routing could already be
envisaged in such a way.

53

4.6. Interlude: encompassing multimodal shortest path problems—a conceptual level
discussion

Mode 1 node

Mode 2 node

Switch node

v1

v2

v3

v4

v5

v6

v7 v8

wv1,v2

wv2,v4

wv4,v5

wv1,v3 wv3,v7

wv5,v6

wv6,v7

wv7,v8

Spatio-temporal graph

“Virtual” temporal graph

vi
viwvi,vi

vh vjwvh,vi wvi,vj

0

100

200

300

400

500

600

700

800

900

1000

0 20000 40000 60000 80000

time of the day (s)

tr
a
v
e
l
ti

m
e
 (

s
)

Figure 4.14: Allowing extra time for mode changes in a multimodal network by creating a
“virtual” edge that connects the switch point to itself before reaching the subsequent node
of a different mode.

Figure 4.15: Representing time-windows in the edge-delay function of the transition of modes
in a multimodal network.

54

Chapter 5

Case study implementation
and performance tests

This chapter consists of “putting into practice” the solutions developed and pre-
sented in the previous Chapter 4. We start with a description of the real-world
GIS dataset used for testing the implemented time-dependent shortest path so-
lutions, and then present how we transform this GIS dataset into a graph, as
the mathematical abstraction that the developed solutions need as input. We
follow by identifying the computational limitations of the approach on prelim-
inary running tests, as well as by presenting how one could optimize the com-
putation and cope with (at least some of) these limitations. Finally, we set up a
proof-of-concept to be run over the constructed graph applying the approaches
for optimizing the solution and reporting the repercussions of this optimization
comparing to the preliminary tests.

5.1 A time-dependent GIS dataset of the Netherlands

Demand for intelligent optimal routing has reached such a point that it has
even triggered initiatives from relevant digital mapping and navigation sys-
tems enterprises to devise time-dependency of road segments along with the
modeled transportation network. Such an example is the speed profiles dataset
from Tele Atlas,1 which covers most of United States, Canada and Europe [7].
It has been generated using data from probe, real driven speeds in the network
(without considering maximum legal limits), after removing speed values below
and above certain thresholds for minimum and maximum speed [6]. Speed pro-
files are 24h functions (Figure 5.1) with measurements at each 5 minutes of the
day [6] that work as an ‘impedance’ (proportional) against measured freeflow
speeds. These maximum speed values are average speed values during a period
of least traffic, usually reflecting nighttime traffic flows [6]. Average speeds for
weekdays and weekend days are also provided, which can be used in the ab-
sence of freeflow speed for topping up the profile speed values [6], as well as
to use as constant-cost functions in the cases of network segments that were
considered to be non time-dependent [7]. For each one of the 7 days of a week, a

1Tele Atlas BV and Tele Atlas North American

55

5.1. A time-dependent GIS dataset of the Netherlands

certain profile (or a default no profile value) is assigned to each segment of the
transportation network through a link table (HSNP Network Profile Link table)
that connects unique network identifiers in the vector dataset [5] with the speed
profiles (Figure 5.2). Hence, it is only a matter of a lookup in the HSNP link ta-
ble to know for a certain network identifier (or road segment) what is the speed
profile that model the traffic behavior for a given day of the week. Once that
is done, the speed profile data ((HSPR) permits to acknowledge the ‘impedance’
against the freeflow speed for a time slot of the day, and then lookup back to
the HSNP link table to combine the ‘impedance’ values with the freeflow speed
associated to the certain network identifier to derive speed values along the day.

Figure 5.1: Snapshot of part of a speed profile data from Tele Atlas dataset.

The fact that the speed profiles are presented as relative values to the freeflow
speed allows the same profile to be associated with more than one element of the
transportation network that experience similar traffic conditions behavior [7].
In practice, this leads to the reuse of the profiles, and allowed Tele Atlas to re-
duce the representation of time-dependency in the network to only around 60
profiles per product tile (Figure 5.3) [7].

5.1.1 Characteristics of the transportation network

Tele Atlas dataset (Multinet R© shapefile [5], Figure 5.4) for the Netherlands is
composed of 1,198,395 transportation elements (i.e., segments in the network)
that are open to traffic, totalizing 137,733.48 kilometers of roads in different
levels of hierarchy (Table 5.1). From the total, around 16% belong to bidirec-
tional transportation elements, i.e. road segments that are modeled as a single

56

Chapter 5. Case study implementation and performance tests

HSNP Table Link

HSPR Historical Speed Profiles

Figure 5.2: Tele Atlas dataset link between speed profiles and transportation network seg-
ments (adapted from [6]).

Figure 5.3: Polynomial fit of the 60 speed profiles for one product tile of the Tele Atlas
dataset [7].

element in the network but actually allow flow in both directions; the remain-
ing 64% are transportation elements that only allow traffic flow in one direc-

57

5.1. A time-dependent GIS dataset of the Netherlands

tion. Unidirectional elements are most common in the higher hierarchy levels
of transportation, such as motorways and other main roads (Table 5.1). Apart
from the network segments, which are modeled as linestrings, the dataset also
presents a set of 1,003,346 nodes (modeled as points) that are connected by the
network segments.

Tele Atlas – the Netherlands

Multinet® shapefile dataset

0 -1 hierarchy level

2-5 hierarchy level

6-8 hierarchy level

Figure 5.4: Tele Atlas transportation network dataset

As one may expect, not all segments of a transportation network will exhibit
significant changes in traffic conditions to be considered as a time-dependent
road element. Indeed, for the Netherlands Tele Atlas dataset, any degree of
time-dependency is only found in around one quarter of the total network (see
Table 5.2 and Figure 5.5). The discussion whether this is enough to justify a
time-dependent shortest path is somewhat out of the scope of this research.
We are mainly interested that this is a setting believed to be more and more
present in people’s daily life: intelligent optimal routing devices that consider
travel time dynamics in the network.

The original GIS dataset from Tele Atlas consists of a set of edges (or linestrings)
that connect nodes (or points) with each other, composing already a sort of
graph representation. Some issues need to be considered to properly abstract
the available network in a graph, so that the developed time-dependent solu-
tions may perform unto it. In the following Section (5.2), we focus on how to
transform the GIS dataset of the Netherlands into graph-theoretic dialect.

58

Chapter 5. Case study implementation and performance tests

Table 5.1: Distribution of direction of modeled segment by hierarchy in the Tele Atlas dataset
roads network.

Hierarchy level Direction Proportion
0: Motorway, Freeway, or Other Major Road Unidirectional 3.87%

Bidirectional 0.00%
(Total) 3.87%

1: Major Road Less Important Unidirectional 0.25%
Bidirectional 0.11%
(Total) 0.36%

2: Other Major Road Unidirectional 2.37%
Bidirectional 1.35%
(Total) 3.72%

3: Secondary Road Unidirectional 2.36%
Bidirectional 3.12%
(Total) 5.48%

4: Local Connecting Road Unidirectional 2.35%
Bidirectional 11.92%
(Total) 14.27%

5: Local Road of High Importance Unidirectional 0.98%
Bidirectional 2.47%
(Total) 3.45%

6: Local Road Unidirectional 2.05%
Bidirectional 30.28%
(Total) 32.33%

7: Local Road of Minor Importance Unidirectional 2.20%
Bidirectional 34.30%
(Total) 36.50%

8: Other Road Unidirectional 0.00%
Bidirectional 0.02%
(Total) 0.02%

Table 5.2: Distribution of time-dependency in the Tele Atlas dataset roads network.

Category Km Proportion
Time-dependent (TD) 73,989.75 29.21%
TD but closed to traffic 119.73 0.05%
non TD and closed to traffic 536.54 0.21%
non TD and open to traffic 178,627.42 70.53%
TOTAL 253,273.4 100.00%

5.1.2 Loading the Netherlands time-dependent network dataset
into a database

Tele Atlas road network dataset is basically composed of: (1) a vector dataset
with the geometries of the roads network and their associated attributes (Fig-
ure 5.4); (2) a table with speed profiles (Figure 5.3); and (3) a link table that

59

5.2. Abstracting a Graph for applying (time-dependent) shortest path algorithms

Figure 5.5: Time-dependent segments in the Tele Atlas dataset roads network.)

indicates which speed profile characterizes the traffic behavior of each day of
the week in a given segment (HSNP table, Figure 5.2). The data was loaded
into database especially created for the research project at ITC’s PostgreSQL
dataserver (http://itcnt07.itc.nl), following the steps summarized in Ta-
ble 5.3. We refer to Appendix A for the source code preparing the dataset in the
database.

5.2 Abstracting a Graph for applying (time-dependent)
shortest path algorithms

Though a shortest path request in a transportation context can be seen as a
spatial query, most of the solutions work with the abstraction of a graph to
represent the spatial phenomenon of a transportation network. Thus, rather
than overloading a shortest path algorithm with coordinates and geometries
of objects, one can simply work with an abstract graph with its crucial char-
acteristics allowing a graph-theoretic approach. Those characteristics can be
summarized as:

Node identifier or what is being connected by the network? This is simply a
unique identification of a node in the graph.

60

Chapter 5. Case study implementation and performance tests

Table 5.3: Summary of steps carried out for loading the dataset into the database.

Dataset part Steps for loading
Vector (geometries)
network dataset

It is actually formed by two layers, one with the
road segments and other with junctions (nodes that
are connected by the segments).

• First the original shapefiles with the network
were converted to SQL insert commands by
using the shp2pgsql data loader;

• Then, the generated SQL insert commands
were loaded into the database server using
psql client terminal.

None modification was made in the original dataset
while loading into PostgreSQL server, apart from
enforcing the name of the column to hold the ge-
ometry (geometry column) in the destination table
in the database to be named as geom instead of the
default the geom of shp2pgsql data loader.

Speed profiles data
and HSNP link table • The original tables (in dbf format) were con-

verted to a text file tab delimited, while the
structure of the tables were used as base for
creating new empty tables in the PostgreSQL
database;

• Using psql client terminal, the data in the
text file was loaded into the created new ta-
ble in the PostgreSQL database with the com-
mand copy.

Edge identifier or what are the connectors in the network? Just like for
nodes, edges must be uniquely identified in the graph. This identifier
can also be used to associate an edge delay function with it.

Edge connection or which edge is connecting which nodes? That is the essence
of a graph: an edge connects a pair of nodes, unidirectionally or bidirec-
tionally, therefore it has an origin (or from node) and a destination (or to
node).

In the specific case of the Tele Atlas dataset roads network, bidirectional
segments make use of an additional attribute2 called val dir (see Figure 5.2).
This attribute identifies the validity direction to eventually distinguish speed

2In fact, any road segment presents such an attribute, but it is strictly needed only in cases
of bidirectional segments.

61

5.2. Abstracting a Graph for applying (time-dependent) shortest path algorithms

profiles depending on the traversal direction. Our implementation assumes a
directed graph, thus a bidirectional segment in the dataset is always replicated
in the abstracted graph, with the exception that the direction validity attributes
differ, and also the from node and to node are switched around. Figure 5.6
illustrates the table that abstracts the graph in the database for further use
in the time-dependent shortest path request. A conceptual model of the graph
plus the edge-delay functions that give the time-dependent character for the
networks is further presented in Figure 5.7

The rather simple abstraction of the graph in the database allows to always
go back to the original dataset, which includes the true spatial data. It also
can easily be linked to speed profiles that characterize edge traffic patterns
through the link table called HSNP (see Figure 5.2). Speed profiles are the
basis for computing edge-delay functions which combine absolute time of the
day (in seconds) with relative travel time to traverse a certain edge of the graph
at that time of the day. This is determined at run time or can be precomputed
and stored in the database.

Nodes Edges

Figure 5.6: Abstraction of the graph in the database.

62

Chapter 5. Case study implementation and performance tests

Figure 5.7: Conceptual model of the time-dependent graph.

5.3 Delivering edge-delay functions from speed pro-
files

A speed profile can be seen as a very efficient way of modeling traffic behavior
of a road segment as it is independent of characteristics of the segment itself,
particularly length and freeflow speed. Consequently, the same speed profile
can be associated with more than one road segment to model the traffic be-
havior. On the other hand, speed profiles cannot be used straightaway for the
purpose of finding shortest paths, as the road segment characteristics also play
a role in defining what is shortest. In Figure 5.2, we have illustrated how true
speed values can be derived from the speed profiles by considering the link ta-
ble HSNP with its freeflow speed per road segment in the network. But this has
to be further handle together with the segment distance to deliver edge-delay
functions.

In our implementation, edge-delay functions are geometrically represented
and stored in the database by using the data type Geometry, subtype LineString,
with the use of PostGIS spatial database extension3 for PostgreSQL. We start
by transforming the speed profile data (pairs of time slot and relative speed) in
24h LineString functions for each of the 59 speed profiles presented in the Nether-
lands Tele Atlas dataset, but taking the inverted relative speed as y-value for the
geometry (see Figure 5.8). In this form, the relative speed profile functions only
need to be re-scaled by making use of the edge length and the freeflow speed
associated to that (in HSNP link table) as illustrated in Figure 5.9. The illus-
tration also points out that from the same speed profile different edge-delay
functions may be derived when the characteristics of road segments are then
taken into account.

3http://postgis.refractions.net/

63

5.4. Solving TDSP-GDT in a database context with generalized Two-step LTT

Algorithm invertedSpeedProfile(f(t))

pointarray ← union(serializePoints(f(t)));
for p ∈ pointarray do

p′ ← makePoint(getX(p), 100/getY (p));
update(pointarray, p′);

f ′(t)← makeLineFromArray(pointarray);
return {f ′(t)};

Figure 5.8: Overview algorithm for getting profile with inverted speed values.

1

2

0 10000 20000 30000 40000 50000 60000 70000 80000

time slot

in
ve

rt
ed

 r
el

at
iv

e
sp

ee
d

40

90

0 10000 20000 30000 40000 50000 60000 70000 80000

time slot

d
el

ay
 (

se
co

n
d

s)

Length = 1000 m

Freeflow = 78 km/h

Convert km/h to m/s = 3.6

Length = 800 m

Freeflow = 56 km/h

Convert km/h to m/s = 3.6

50

100

0 10000 20000 30000 40000 50000 60000 70000 80000

time slot

d
el

ay
 (

se
co

n
d

s)

scaleY(length*3.6/freeflow)

Figure 5.9: Derivation of edge-delay functions from inverted relative speed profile.

5.4 Solving TDSP-GDT in a database context with gen-
eralized Two-step LTT

We now present the implementation of the TDSP problem solutions described
in Section 4.3 starting from the simple TDSP for a fixed departure time (TDSP-
GDT). As our implementation is database-oriented, SQL is the preferred lan-
guage to implement the functions in the database context, and we try to stick
to it as much as possible. Eventually, the demand for procedural commands
that are not presented in the plain SQL is fulfilled by using the procedural lan-
guage of PostreSQL, called PL/pgSQL.4 The latter can be seen essentially as

4(http://www.postgresql.org/docs/8.4/static/plpgsql.html

64

Chapter 5. Case study implementation and performance tests

a SQL-based language extended with procedural control flow such as assign-
ments, loops and conditionals that strengthen the plain SQL in such a way that
a broader nature of functions can be implemented.

We refer to Appendix B for the source codes of the implemented tools. For
the sake of clarity, we point out that we treat TDSP problems under the non-
overtaking property (FIFO) assumption. That is a feature that arises from the
fact that the dataset we use has the time-dependency modeled under a flow
speed paradigm rather than directly in intervals of travel times. Sung et al.
(2000) [83] shows that in such a way the FIFO assumption can be satisfied
when computing the arrival-time functions. When that holds the principle of
optimality is also satisfied and therefore any shortest path algorithm based on
label-setting or label-correcting like Dijkstra’s can be used [51]. Furthermore,
we also clarify that in our implementation we assume that the travel is always
performed completely within a day, therefore only the edge-delay functions of
the given day are necessary to compute a time-dependent shortest path.

5.4.1 Preliminary computational results: towards fast compu-
tation

To get a first impression of performance of our solution for TDSP-GDT prob-
lems, we make use of a graph that contains only the motorways and major
roads in the Netherlands (hierarchy level 0 and 1 in the Tele Atlas dataset; see
Figure 5.4). This graph is composed of 18,263 edges and 16,947 nodes, and rep-
resents the “backbone” of intercity road transportation across the Netherlands.
We apply the implemented solution for a set of requests arbitrarily chosen with
increasing distance between source node vs and target node ve, for a given de-
parture time arbitrarily defined as 30,600 seconds into the day (also known
as 08:30 am). Figure 5.10 summarizes the characteristics of these first tests
requests along with the computational results in terms of runtime complexity
and number of nodes visited in the graph. These requests were tested before
creating any index on tables in the database, and with the edge-delay functions
for the graph being computed at runtime in the initialization phase of the algo-
rithm. Results suggest that on average the shortest path computation performs
in a rate of 1 second per km of path. The shape of the curves of computational
results (Figure 5.10) demonstrates a clear reduction on the steepness as the
number of visited nodes approaches the total number in the graph. This only
indicates the shrinking of the search’s possibilities as in many directions it will
have encountered a ‘dead end’ (i.e., it cannot go further in the graph on that
direction).

An attempt to improve the response time for the TDSP-GDT requests can
be done by means of indexing tables in the database that are constantly used
in the algorithm code (see Appendix A), as well as by precomputing the edge-
delay functions before applying the TDSP-GDT solution to the graph. Results
show that considerable improvement in computation time mainly occurs only
for shorter distances of requests, which suggests that the optimized parts of the
code, either by indexing of column or by precomputing edge-delay functions,
were most likely not responsible for much of the time to compute the shortest

65

5.4. Solving TDSP-GDT in a database context with generalized Two-step LTT

13933travel-time(sec)4dw

15324nodes visited30600ts

389.95distance(km)15280200021905ve

375485time (ms)15280201465367vs

6915travel-time(sec)4dw

12341nodes visited30600ts

198.10distance(km)15280200021905ve

321105time (ms)15280200016375vs

3576travel-time(sec)4dw

5432nodes visited30600ts

101.32distance(km)15280200027940ve

168259time (ms)15280200802144vs

1822travel-time(sec)4dw

1270nodes visited30600ts

46.60distance(km)15280200027940ve

52036time (ms)15280200802144vs

568travel-time(sec)4dw

163nodes visited30600ts

14.49distance(km)15280200592440ve

19680time (ms)15280200476341vs Computation Time x Distance (vs-ve)

0

50

100

150

200

250

300

350

400

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00 450.00

Distance (km)

T
im

e
(s

ec
)

Nodes Visited x Distance (vs-ve)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00 450.00

Distance (km)

N
. n

o
d

es
 v

is
it

ed

Figure 5.10: First impression on performance for TDSP-GDT solution in a database context for
the case study.

path (Figure 5.11). What’s more, the apparent considerable decrease in com-
putation time for request with less distance vs − ve is perhaps mainly due to
the eradication of the step of computing edge-delay functions, which is a rather
constant gain in computation time no matter the size of the request. Therefore,
its effect starts to get diluted in the overall runtime as the size of the request
increases.

These preliminary results can or can not be considered to provide satisfac-
tory performance, depending on the context one would like to consider such a
database-based solution to be applied. For instance, if we consider a scenario of
en route navigation, with the user posing requests and wanting to get responses
“on the fly,” one may ponder that up to six minutes of computation time is not a
desirable delay. On the other hand, if we consider a scenario in which a logistics
and transportation enterprise wants to define the routes for their vehicles on a
planning basis, those six minutes of computation may eventually be acceptable.
All in all, we mean that every performance test may far differ in acceptability
according to the context of application. But that only triggers our willing for
finding better ways of handling the problem to get as faster results as possible.
We present a way of doing so by applying a simplification to the graph, as it is
presented in the following.

66

Chapter 5. Case study implementation and performance tests

13933travel-time(sec)4dw

15324nodes visited30600ts

389.95distance(km)15280200021905ve

362947time (ms)15280201465367vs

1

6915travel-time(sec)4dw

12341nodes visited30600ts

198.10distance(km)15280200021905ve

307655time (ms)15280200016375vs

1

3576travel-time(sec)4dw

5432nodes visited30600ts

101.32distance(km)15280200027940ve

155175time (ms)15280200802144vs

1

1822travel-time(sec)4dw

1270nodes visited30600ts

46.60distance(km)15280200027940ve

39715time (ms)15280200802144vs

1

568travel-time(sec)4dw

163nodes visited30600ts

14.49distance(km)15280200592440ve

7378time (ms)15280200476341vs

-3.34%

-4.19%

-7.78%

-23.68%

-62.51%

decrease factor

Computation Time x Distance (vs-ve)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00 450.00

Distance (km)

T
im

e
(s

ec
)

Indexes + precomputed delay
No optimization

Factor of decrease when applying indexes and
precomputing edge-delay functions:

Figure 5.11: First impression on performance for TDSP-GDT solution in a database context for
the case study, after creating indexes to constantly used table columns as well as precom-
puting edge-delay functions to the graph.

5.4.2 Graph simplification—or how to get faster TDSP-GDT prob-
lem results

One adverse characteristic of Tele Atlas dataset is the high degree of segmen-
tation of the roads. This is understandable on the perspective of reuse of speed
profiles. Perhaps, that is why Tele Atlas could reduce to around 60 profiles per
product tile. The disadvantage of this is, however, that it is unnecessarily time
consuming to the TDSP-GDT algorithm, as it needs to visit nodes in the graph
that will eventually only lead to a single possible way. These edges could actu-
ally be collapsed into a single one in the graph (Figure 5.12). The first trivial
simplification of the graph can be described as follows:

• We identify the nodes of V that are truly necessary in the graph by apply-
ing the condition that
{v ∈ V | [[e ∈ E |e.f node = v.id ∨ e.t node = v.id • count(v.id)]] = 1∨ [[e ∈
E |e.f node = v.id ∨ e.t node = v.id • count(v.id)]]> 2}
and then to generate the set of nodes S ⊂ V that are either in the borders
of the graph (count(v.id) = 1) or in junctions of real intersection of edges
(i.e., junctions that have more than one possible way out, or more formal
count(v.id) > 2).

67

5.4. Solving TDSP-GDT in a database context with generalized Two-step LTT

• To “collapse” the abstracted graph by restarting from a given node in the
set V of truly necessary ones and gradually collecting edges until the
search finds another node in the same set (see Figure 5.13).

Figure 5.12: A snapshot with an impression on unnecessary nodes in the graph that could be
“dissolved”.

We use this simplification without any change in the geometries of the road
network, with all the modifications occurring at the level of the abstracted
graph. This allows to always refer back to the original graph, as well as to
the original geometries in the network. At this point, the intention is to prove
the concept of optimizing computation time by simplifying the graph, we only
apply it to a subset of the graph of motorways and major roads, i.e. hierarchy
levels 0 and 1 in the dataset (Figure 5.14). Similar approaches are found in the
literature for constructing a contracted highway network in hierarchical tech-
niques to speed up computation of shortest paths (e.g., [76]), and as introduced
in Section 3.3. To impose a restriction on the minimum degree of the nodes as
two is found in the literature as identifying the 2-core of a graph as well [23].

The remaining difficulty in this context is to determine aggregated edge-
delay functions that are originally apart when collapsing a set of edges into a
single one. This has to be done by incrementally summing-up the edge-delay
values of the segments but also considering the time passed since one departed

68

Chapter 5. Case study implementation and performance tests

Algorithm dissolveEdges(GT (V,E,W))

newid← 0;
S ← {v ∈ V | [[e ∈ E |e.f node = v.id ∨ e.t node = v.id • count(v.id)]] = 1∨
[[e ∈ E |e.f node = v.id ∨ e.t node = v.id • count(v.id)]]> 2};
for {(vi, vj) ∈ E |vi ∈ S } do

newid← newid+ 1;
update(D, (newid, (vi, vj)));
while vj /∈ S do
vi ← vj ;
update(D, (newid, (vi, vj)));

return (S,D);

Figure 5.13: Dissolve edges algorithm.

Figure 5.14: Subset of the graph to which the simplification of the graph was applied.

from a node and is traversing the segment (i.e., formally wi,j(t+wjk(t+wi,j(t))+
. . .; as in the relevant concept introduced in Section 4.2. Figure 5.15) shows the
overview of the algorithm that performs this aggregation of edge-delay func-
tions.

Getting rid of unnecessary nodes in the graph is an effective way of reducing
computation time, as a set of performance tests shows (Figure 5.16). Consider-

69

5.5. Solving TDSP-LTT in a database context with Two-step LTT

Algorithm addEdge-delayFunctions(GT (V,E,W))

(S,D)← dissolveEdges(GT (V,E,W));
Let L be a list of pairs newid ∈ D and aggregated edge-delay functions
{w′i,j(t) |i, j ∈ S };
for each newid ∈ D do

w′i,j(t)← wi,j(t);
if ‖newid ∈ D‖ > 1 then

while vj /∈ S do
vi ← vj ;
w′i,j(t)← w′i,j(t) + wi,j(t+ w′i,j(t));

update(L, (newid ∈ D,w′i,j(t)));
return L;

Figure 5.15: Sum-up edge-delay functions of simplified edges algorithm.

able gain in computation can be clearly noticed; for instance, while a request
with distance between origin and destination (vs − ve) of about 100 km takes
around 150 seconds to be computed after applying indexes and precomputing
edge-delay functions, in the simplified graph that would only take around 1
second. Unfortunately, this simplification has somewhat limited use in the case
study dataset as the hierarchy of roads decreases towards local roads, meaning
that the degree of segmentation of the network reduces in this direction. Ta-
ble 5.4 summarizes how much reduction in graph size (number of nodes) can be
obtained by the simplification as more hierarchy levels are aggregated to the
graph.

Table 5.4: Reduction in the number of nodes by applying the simplification of graph with
gradual inclusion of other levels of hierarchy levels of roads.

Road class (Hierarchy) Original Simplified Rate
Motorway + Major (0-1) 16947 1510 91.09%
+ Other Major + Secondary (2-3) 96533 24258 74.87%
+ Local (4-6) 557887 204161 63.40%
+ Local or Minor Importance + Others (7-8) 939830 683086 27.32%

The speed-up achieved by applying this trivial simplification to the graph
in our case followed roughly the shrinking in the size of the graph. Thus, by
reducing around 90% the graph size the runtime results went down more or
less in the same proportion.

5.5 Solving TDSP-LTT in a database context with Two-
step LTT

We now move towards the more complex TDSP problem of our research project,
in which a time interval for optimizing the departure time is given in the re-
quest. In the Two-step LTT approach the solution first determine what is the

70

Chapter 5. Case study implementation and performance tests

4784.63travel-time(sec)4dw

418nodes visited32400ts

128.44distance(km)15280201840995ve

1795time (ms)15280200894008vs

4187travel-time(sec)4dw

390nodes visited32400ts

114.06distance(km)15280200022393ve

1621time (ms)15280200886578vs

3083travel-time(sec)4dw

202nodes visited32400ts

79.31distance(km)15280200045409ve

865time (ms)15280200476341vs

2652travel-time(sec)4dw

194nodes visited32400ts

65.87distance(km)15280200031354ve

919time (ms)15280200113080vs

1588travel-time(sec)4dw

79nodes visited32400ts

38.83distance(km)15280200097175ve

390time (ms)15280201761173vs

1119travel-time(sec)4dw

26nodes visited32400ts

28.96distance(km)15280200056644ve

250time (ms)15280200617007vs

746travel-time(sec)4dw

10nodes visited32400ts

19.15distance(km)15280200060167ve

140time (ms)15280200603080vs
Computational Time x Distance (vs-ve)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140

Distance (km)

T
im

e
(s

ec
)

Nodes visited x Distance (vs-ve)

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120 140

Distance (Km)

N
. n

od
es

 v
is

ite
d

Figure 5.16: First impression of speeding-up the performance of TDSP-GDT solution in a
database context for the case study, after simplifying the graph and generating aggregate
edge-delay functions.

optimal time t∗ of departure within the given interval of request by minimizing
the total travel time (LTT) between source and destination and then fetch the
path that leads to the computed LTT. We once again refer to the Appendix B for
the source code of the functions implemented.

5.5.1 Preliminary computational results: finding limitations

According to Ding et al. [28] the time complexity of the Two-step-LTT algorithm
is defined as O((n log n+m)α(T)) for n nodes and m edges and m cost functions
wi,j(t), with α(T) designating the manipulation a function operation in time
interval T . In other words, the complexity of the computation is dependent
not only on the size of the graph (i.e., number of edges and nodes) but also on
handling the time-dependent functions.

Aware of the higher complexity of solving TDSP-LTT, we start to get an im-
pression of computational performance of the algorithm by applying it straight-
away to the graph after the trivial simplification (see Section 5.4.2) has been
achieved. The first impression of computational results was not very convinc-
ing, as the algorithm only finished processing in a reasonable time for rather
small request sizes in terms of both distance between source vs and target node
ve, and interval for departure time T (Figure 5.17). Basically, two factors are

71

5.5. Solving TDSP-LTT in a database context with Two-step LTT

believed to contribute to this situation:

1504travel-time(sec)2dw

29400t*29400te

52nodes visited32400ts

22.1distance(km)15280200033163ve

326503time (ms)15280200617007vs

1427travel-time(sec)2dw

29400t*29400te

52nodes visited32400ts

19.87distance(km)15280200095704ve

105004time (ms)15280200617007vs

varying vs-ve distance only

1725travel-time(sec)2dw

29700t*29700te

484nodes visited32400ts

19.87distance(km)15280200095704ve

2442569time (ms)15280200617007vs

1427travel-time(sec)2dw

29400t*29400te

52nodes visited32400ts

19.87distance(km)15280200095704ve

105004time (ms)15280200617007vs

varying time interval for departure only

Figure 5.17: First impression of the performance of TDSP-LTT solution in a database context for
the case study, after simplifying the graph and generating aggregate edge-delay functions.

Slow growth of interval of time-refinement: Two-step LTT works by refin-
ing the arrival time in a subinterval, which should gradually grow until
it refines the whole interval of search. In our case study, we noticed that
this growth of interval eventually converges slow, particularly when the
algorithm reaches a “cluster of nodes” close to each other, which in the
case of the graph with only motorways and major roads represents junc-
tions, with all possible entries/exits. This closeness of nodes affects the
time expansion of parameter ∆ of the Two-step LTT algorithm, which in
turn leads to a small subinterval I ′ for refining the arrival-time functions
at each iteration (see Figure 3.5), thus aversely affecting convergence.

Updating arrival-time function gets slower: As the problem evolves in the
Two-step LTT algorithm, arrival-time functions start to get more complex
as more points become concrete in their representation. That is a well-
know issue on time-dependent routing in which the aggregation of two
delay functions always have a worst-case of P (f) + P (g), where P is the
number of concrete points in the function [23]. This leads to a slowdown

72

Chapter 5. Case study implementation and performance tests

of the algorithm particularly in the update of arrival-time functions (Fig-
ure 5.18).

Figure 5.18: Computational time to update arrival-time functions as the iterations go on.

These results have shown that the algorithm demands solutions for reduc-
ing the complexity of the computation somehow, so that it can properly perform
in large graphs and characteristics of dataset from real-world, as it is the case
in our study. In the following sections, we explore possibilities toward this re-
duction of complexity for solving TDSP problems in a database context, using
the chosen Two-step LTT approach.

5.6 Revisiting the graph simplification—or how to quickly
traverse a dense part of the graph

The evolving of the subinterval to refine arrival-time functions in the Two-step
LTT approach is dependent on the magnitude of edge delay values coming to
a node in the graph, and therefore the growth of such subinterval slows down
when the algorithm reaches a dense subgraph (a cluster of nodes). A way in
which this problem could be overcome is by speeding-up the traverse of such
a dense subgraph. In Section 5.4.2, we introduced the graph simplification in
its trivial fashion, in which actually only unnecessary nodes in the graph are
removed. We envisage another level of graph simplification by defining a sen-
sible tile that encompasses that dense subgraph and substitute it by a simpli-
fied subgraph formed by the sets of entry and exit nodes and all the possible
links to represent the possible combinations between entry and exit nodes (Fig-
ure 5.19). That will obviously lead to a reduction in the number of edges in
the virtual graph down to the number of entry nodes times the exit nodes, but
will also help by enlarging the size of the delays in the edges to be traversed,
eventually speeding-up the growth of the subinterval of time refinement in the
algorithm. The real method then is to generate aggregated edge-delay func-
tions that properly represents the traverse of that original mesh of edges now
substitute by the simplified subgraph. ‘Aggregated’ in this case is not a precise
term; by aggregated case we actually mean to beforehand compute least-delay
functions starting from each entry node and growing through the graph until it
reaches each exit node.

73

5.6. Revisiting the graph simplification—or how to quickly traverse a dense part of the
graph

Original graph Simplified graph

969 nodes

2740 edges

10 entry nodes

10 exit nodes

100 edges

Figure 5.19: Intuition of the substitution by a simplified graph in a dense subgraph.

A conceptual model of the substitution of the graph in a certain dense sub-
graph by a simplified one is presented in Figure 5.20. In the model, “tra-
verse simplified edges” class represents the substitution of the original ‘mesh’
of the graph by simplified edges that allow to traverse it at any possible com-
bination of entry and exit node, while “inside simplified edges” is used to store
least-delay functions to reach any intermediate node from one of the entry ones.
The latter is not only necessary at running time, but also can be used to find
the actual path through the original graph as will be further introduced.

Two challenges arise in the attempt of establishing the simplification. The
first one is related to what is a sensible tile definition that encompasses a dense
subgraph. Derived from that, the second is how to precompute the aggregated
delay functions for the ins and outs of the defined tile. An overview of the
simplification of a dense subgraph can be given as follows:

• Define a dense subgraph to be substituted by a simplified version.

• Determine the entry and exit nodes of the dense subgraph.

• Precompute least-delay functions that allow to traverse the dense sub-
graph from an entry to an exit node.

• Substitute the dense subgraph by the simplified version.

74

Chapter 5. Case study implementation and performance tests

class GraphSimplification

entry_node exit_node

trav erse_simplified_edges

+ eid: int
+ fromNode: entry_node
+ toNode: exit_node
+ delay: function

+ leastDelay() : function

simplified_graph

+ tid: int

graph_node

+ vid: int

{ }_ , _e entry node x exit node e x∀ ∈ ∈ • ×

graph_edge

+ eid: int
+ fromNode: graph_node
+ toNode: graph_node

edge_delay

+ delay: functioninside_simplifiedl_edges

+ eid: int
+ fromNode: entry_node
+ toNode: graph_node
+ delay: function

+ leastDelay() : function

_ ,

_

t tile e entry node

v graph node e v

∀ ∈ ⇒ ∀ ∈
 ∀ ∈ • ×

}{ _v graph node∈ }{ _e graph edge∈

1

2

defines

1

Figure 5.20: Conceptual model of the substitution by a simplified graph in a dense subgraph.

We introduce the issues associated to this simplification of the graph in the
following sections. An issue derived from that, which is the determination of the
actual path through the dense subgraph that was simplified, is also discussed.

5.6.1 Defining a dense subgraph to substitute for the simplified
graph

Any speed-up that relies on the definition of partitions of the graph may have
its performance dependent on the method used for such task [60]. The kind of
partitioning methods that we are particularly interested in are those that are
based on density of the graph, or on the discovery of dense subgraphs. The latter
has received quite good recent attention from research, for instance, in the con-
text of web networks analysis [36] and bioinformatics [29]. Yiu & Mamoulis [88]
propose a density-based and hierarchical variants of clustering techniques that
apply distance in the network rather than Euclidean distance. Based on the
Single-Link hierarchical clustering intuition presented in [88], we can formal-
ize our definition of a dense subgraph of G(V,E) by initially setting the number
of cluster k = ‖V ‖ , which means that each point is a cluster. Iteratively, clusters
are merged based on their “closeness” until the number of clusters k is equal to
H, where H is a tuning parameter that turns out to determine how dense the
subgraph must be to consider it a cluster.

Another option is to first compute a road density layer for the graph and

75

5.6. Revisiting the graph simplification—or how to quickly traverse a dense part of the
graph

then define a threshold to separate the areas with dense subgraphs of interest.
That would require the graph to have its layout, which is not a feature in the
present way we abstract the graph. Nonetheless, as the original vector data is
the basis for abstracting the graph, there is no difficulty in linking the layout
(in the vector data) with the abstracted graph at all.

Yet another approach is to randomly iterate over the set of nodes in the
graph solving one-to-all shortest path restricted by a tuning parameter H that
would define how far a node can be to be considered in the same cluster. We
present the algorithmic approach for this option in Figure 5.21. We assume
that the graph given as input is a 2-core graph [23], i.e, a graph formed by
a set of nodes with a minimal degree of two (see Section 5.4.2), as well as the
existence of a function called onetoallShortestPath that takes as input the 2-core
of a graph, a start node vs and a parameter H which serves as stop criterion for
the growth of the tree from the start node in network distance. The assumed
getTree operator would be a mechanism to fetch the mesh of graph that was
reached by the onetoallShortestPath search tuned by H.

Algorithm clustering(GT (V,E,W), H)

Let V2c be a queue of the nodes ∈ V in random order;
while ‖V2c‖ ≥ 1 do

vi ← dequeue(V2c);
Gk ← getTree(onetoallShortestPath(GT , vi, H));
return next Gk;

Figure 5.21: Define the dense subgraphs Gk.

5.6.2 Precomputing least-delay functions for the simplified graph

Computation of least-delay functions occurs inside a certain tile S that covers
a mesh of the original graph GT . We denote this graph mesh inside the tile
as Gk(V,E,W), and that is the input for the algorithm that performs such a
computation (Figure 5.24). Apart from Gk(V,E,W), the tile S also needs to
have identified its entry nodes n and exit nodes x (Figure 5.22, Figure 5.23).
Entry nodes are defined by finding a node of Gk to which there is no incoming
edge in Gk. In contrast, exit nodes are defined by finding a node in Gk to which
there is no outgoing edge in Gk. To compute least-delay functions it is cryptic
to identify only the entry nodes in the subgraph in tile S, but exit nodes need to
be identified to construct the simplified version of the subgraph as it is further
introduced.

Operators ⊕ (Figure 5.25) and min (Figure 5.26) in the algorithm for com-
puting least-delay functions for the dense subgraph inside a tile S are similar
to the tools discussed in Section 4.4.3 and 4.4.4 respectively. An adaptation,
though, is necessary for the former because the adding-up here works over two
functions of t in which the y-values are both relative times (in the context of
the Two-step LTT algorithm, this add-up is defined with one of the functions
having y-values in absolute time). For both operators, the computation can be

76

Chapter 5. Case study implementation and performance tests

Algorithm entryNodes(Gk(V,E,W) ∈ GT (V,E,W), GT (V,E,W))

N ← ∅;
for each (vi, vj) /∈ Gk(E) and (vj , vk) ∈ Gk(E) do

enqueue(N, vj);
return N ;

Figure 5.22: Identify entry nodes of a tile S.

Algorithm exitNodes(Gk(V,E,W) ∈ GT (V,E,W), GT (V,E,W))

X ← ∅;
for each (vi, vj) ∈ Gk(E) and (vj , vk) /∈ Gk(E) do

enqueue(X, vj);
return X;

Figure 5.23: Identify exit nodes of a tile S.

Algorithm leastDelay(Gk(V,E,W))

N ← entryNodes(Gk(V,E,W));
for each vj /∈ N do

dnj(t)←∞;
for each vn ∈ N do

U ← ∅;C ← ∅;
enqueue(U, vn);
while U 6= ∅ do
vi ← dequeue(U);
for all (vi, vj) ∈ E do

if vj /∈ C then
enqueue(U, vj);

for each (vi, vj) ∈ E do
d′n,j(t)← dn,i(t)⊕ wi,j(t+ dn,j(t));
dn,j(t)← min{dn,j(t), d′s,j(t)};
enqueue(C, vi);

return{ds,j(t) |vj ∈ V };

Figure 5.24: Computing least-delay functions for the dense subgraph inside a tile S.

performed over the whole time interval T .
Precomputation of least-delay functions adds a requirement for represent-

ing the function in a desirable linear basis; that is, for a given dense subgraph
S the need for extra storage after precomputing least-delay functions is linear
w.r.t. to the size of the input graph in S. More precisely, let N ⊂ V be the
set of entry nodes in the dense subgraph S and let X ⊂ V be the set of exit
nodes in the same dense subgraph S. We call every node s ∈ S such as that
s /∈ N

⋃
X, i.e., s is a node inside of the dense subgraph S that is not either

an entry node nor an exit node. Thus, the precomputed least-delay functions

77

5.6. Revisiting the graph simplification—or how to quickly traverse a dense part of the
graph

Algorithm addUpDelay(dn,i(t), wi,j(t), T)

pointarray ← union(serializePoints(dn,i(t)), serializePoints(wi,j(t));
for p ∈ pointarray do

p′ ← lookUp Y value(dn,i(t), getX(p))+
lookUp Y value(wi,j(t), getX(p) + lookUp Y value(wi,j(t), getX(p)));
update(pointarray, p′);

d′n,j(t)← makeLineFromArray(pointarray);
return {d′n,j(t)};

Figure 5.25: Add-up two edge-delay functions algorithm.

Algorithm minimalDelay(dn,j(t), d
′
n,j(t), T)

pointarray ← union(serializePoints(dn,j(t), serializePoints(d
′
n,j(t));

for p ∈ pointarray do
p′ ← makePoint(getX(p),mindn,j(getX(p)), d′n,j(getX(p)));
update(pointarray, p′);

dn,j(t)← makeLineFromArray(pointarray);
return {dn,j(t)};

Figure 5.26: Getting the minimal of two functions tool algorithm.

require O(n(s+ x)αT), where αT designates the space to store a delay function
of S, as extra space storage in the database.

5.6.3 Finding the actual path through a dense subgraph from
least-delay functions

When a dense subgraph defined as a tile is substituted for a simplified version,
the whole idea behind it is to speed up the time refinement step of finding a
TDSP using the Two-step LTT approach. Still, the actual path through that
dense subgraph has to be eventually found, and that demands a slight modi-
fication of the original algorithm for path selection. In the original approach,
paths are found in a backward manner on the basis of the refined arrival-time
functions in the first step of the algorithm, or more formally by meeting the
following condition: (gi(t

∗) + wi,j(gi(t
∗)) = gj(t

∗). On the other hand, by substi-
tuting some parts of the graph for a simplified graph, not all node’s arrival-time
functions inside that mesh of the graph will be refined—in fact, it usually will be
only the case for entry and exit nodes. That turns out to be infeasible to realize
the path through that tile on the basis of arrival-time functions. But that can
be easily adapted to use the least-delay functions that are previously computed
and kept track of (see Section 5.6) for the graph mesh inside the tile. What is
necessary for that is to have in mind that at moment the aggregated edge-delay
functions start to be computed from a given entry node in the tile with a dense
subgraph, it is actually defining a relative arrival-time function to the reaching
node with relation to a certain entry node n in the dense subgraph. For the sake

78

Chapter 5. Case study implementation and performance tests

of distinction to the original approach, this aggregated edge-delay functions is
what we call a least-delay function and we denote it as dn,j(t). Thus, the condi-
tion of selecting the predecessor node in the graph mesh inside the tile can be
simply adapted to (dn,i(t

∗) +wi,j(t
∗+dn,i(t

∗))) = dn,j(t
∗), and the path selection

turns to be on the basis of the aggregated least-delay functions precomputed for
the tile (see Section 5.6.2). From here storing a lest delay function dn,j(t) from
any entry node n in the tile to any other node vj in the mesh of graph inside of
is important. Before searching for the path through a tile, it is necessary to ac-
knowledge what is the simplified edge vn− vx that is part of the TDSP solution,
to then apply the (dn,i(t

∗) +wi,j(t
∗ + dn,i(t

∗))) = dn,j(t
∗), using the proper entry

node as basis.

5.6.4 Substituting dense subgraphs by simplified subgraphs

The final step for allowing faster traversal of a dense subgraph is to actually
perform the substitution of that part in the original graph for a simplified ver-
sion with all possible combinations of entry and exit nodes. It is a matter of
aggregating the previous steps (Section 5.6.1, 5.6.2) in a single procedure (Fig-
ure 5.27). That would allow to perform shortest path computation providing
that the start and target node are not one of the nodes that were inside a simpli-
fied subgraph, i.e., to prove the concept of speed-up of computations by quickly
traversing dense subgraphs that are simplified in the precomputation phase.

Algorithm simplifyGraph(GT (V,E,W), H)

Gk ← clustering(GT , H);
for each Gk do

ds,j(t)← leastDelay(Gk);
G′T ← remove(GT , Gk);
N ← entryNodes(Gk);
X ← exitNodes(Gk);
for each n ∈ N, x ∈ X do
update(G′T , [n, x]);
update(G′T , createEdge(n, x));
update(G′T , dn,x(t) ∈ ds,j(t));

return G′T ;

Figure 5.27: Substitution of the dense subgraph for a simplified version algorithm.

5.6.5 Proof-of-concept speed-up performance check

To prove the concept of substituting dense subgraphs by simplified versions
that allow quick traversal of these graph mesh, we simplified the subset of mo-
torways and major roads as shown in Figure 5.14. Though that subset was
simplified in the trivial manner as introduced in Section 5.4.2, we apply the
precomputation of least-delay functions (Section 5.6.2) for the original graph,

79

5.6. Revisiting the graph simplification—or how to quickly traverse a dense part of the
graph

hence getting an impression of performance that reflects a worst case. Nev-
ertheless, when performing the substitution of dense subgraphs by simplified
versions, the parts of the graph that are not substituted are integrated in the fi-
nal graph with the trivial simplification. We refer to Appendix C for source code
of the implementation of this proof-of-concept speed-up performance check.

The dense subgraphs to be substituted were arbitrarily defined in the ab-
sence of an implemented solution that would carefully delineate these sub-
graphs (see Figure 5.28). Inside the defined dense subgraphs there were 2,610
edges that turned out to become only 322 after simplifying the graph, which
means a shrinking of around 88% in the dense subgraph size. The time taken
to precompute all the steps carried out to substitute the dense subgraphs, plus
fetching the rest of the trivially simplified graph that was not affected by the
substitution is presented in Table 5.5. Overall precomputation time was almost
2 hours and a half, which cannot be said to be irrelevant, though worthwhile
as it is a one time big computation for an expected considerable speed-up in
solving the TDSP requests.

Figure 5.28: Arbitrarily defined dense subgraph to be simplified—first attempt.

The performance check results in applying the substitution of dense sub-
graphs by simplified versions are reported, only considering the time refine-
ment of the Two-step LTT approach, as this is the step that can be sped up (and
need to be, once it is by far the most expensive computation part of the algo-

80

Chapter 5. Case study implementation and performance tests

Table 5.5: Precomputation time for substituting dense subgraphs by simplified version with
least-delay functions to allow quick traversal of these dense subgraphs—first attempt.

Subgraph Computation time (ms) (h)
Cluster 1 364,843 0:06:05
Cluster 2 1,648,581 0:27:29
Cluster 3 124,875 0:02:05
Cluster 4 148,672 0:02:29
Cluster 5 1,629,232 0:27:09
Cluster 6 75,295 0:01:15
Cluster 7 1,090,894 0:18:11
Cluster 8 2,028,765 0:33:49
Cluster 9 1,537,537 0:25:38
Cluster 10 158,581 0:02:39
Rest of graph 1,716 0:00:02
TOTAL 8,808,991 2:26:49

rithm) using this simplification. We start by comparing the performance after
the substitution of dense subgraphs by simplified versions against a graph with
only the trivial simplification. It turns out that simplification to the clusters
in Figure 5.28 considerably speed-up the computation of the time refinement
of Two-step LTT but mainly when the interval of departure time to optimize is
rather small such as in Table 5.8. The reason for that is probably the remaining
of relatively small dense subgraphs in the simplified graph, leading once more
to the slow growth of convergence of the refining interval. As a larger interval
of departure time is given to refine, there is more opportunity for the search
to reach farther nodes in the graph, eventually reaching one of the remaining
dense subgraphs in the graph. By testing a gradual increase in interval for
time departure for a fixed distance between start and end node of +30 km, it
was found that up to 30 minutes of interval the problem can be solved in a
several seconds based, just like as indicated in Table 5.8.

Table 5.6: Impression on speed-up achieved by the graph simplification in varying distance
between start and end node (*interval for departure time refinement of 10 min).

Distance Before (ms) After (ms) Speed-up
+30km 41,617 952 43.72
+50 km 649,277 4,883 132.97
+60 km 822,194 7,140 115.15
+70 km 898,141 8,018 112.02

To cope with the limitation of computation even after applying the simpli-
fication over the subgraphs in Figure 5.28, we redefine the dense subgraphs
arbitrary delineation to avoid any occurrence of small delay values that would
lead the solution to slowdown (Figure 5.29). That turned out to demand much
more precomputation effort as show in Table 5.7.

We finally test the redefined dense subgraphs (Figure 5.29) with a relatively

81

5.6. Revisiting the graph simplification—or how to quickly traverse a dense part of the
graph

Figure 5.29: Arbitrarily defined dense subgraph to be simplified—second attempt.

Table 5.7: Precomputation time for substituting dense subgraphs by simplified versions with
least-delay functions to allow quick traversal of these dense subgraphs—second attempt.

Subgraph Computation time (ms) (h)
Cluster 1 7,124,150 1:58:44
Cluster 2 2,165,601 0:36:06
Cluster 3 7,466,592 2:04:27
Cluster 4 2,451,464 0:40:51
Cluster 5 14,409,505 4:00:10
Rest of graph 1,185 0:00:01
TOTAL 33,618,497 9:20:18

large fixed distance between start and target node (+120 km) and gradually
varying the interval for departure time refinement.

From the speed-up achieved by the second attempt of applying the substi-
tution of dense subgraphs by simplified versions, it seems clear that one of the
main shortcomes of the chosen approach can be overcome. We should point
out, though, that our arbitrary definition of dense subgraphs to substituted
was quite exaggerated, as we only wanted to prove our view that the simplified
graph concept could cope with one of the limitations faced in the chosen algo-

82

Chapter 5. Case study implementation and performance tests

Table 5.8: Impression on computational performance after graph simplification to allow quick
traversal of dense subgraphs, with varying interval for departure time (*distance between
start and target node of +120 km).

Interval for departure time Computation time (ms) (h)
30 min 88,226 0:01:28
45 min 201,226 0:03:21
60 min 358,213 0:05:58
120 min 1,607,564 0:26:48

rithm for solving TDSP-LTT problems. Nevertheless, the issue of slowdown was
still prominent in the arrival-time functions update for a larger request size in
terms of interval for departure time refinement as the problem evolves.

In terms of time complexity for the simplification of the graph, our results
indicate a linear growth of runtime following the graph size inside the cluster
(Figure 5.30). That is a feature which in general is desirable, as it would be
prohibitive to apply the simplification in larger graphs if the precomputation
complexity was polynomial in relation to the subgraph size.

Figure 5.30: Runtime complexity in relation to the size of the subgraph when applying the
graph simplification.

Similar relation was not found in terms of space complexity, which in our
case particularly refers to the growth in number of concrete points in the edge-
delay function after the graph simplification. But obviously the aggregation of
edge-delay functions leads to an increase in space complexity. While in average
the original graph mesh had maximum of 120 concrete points in the edge-delay
functions, in the simplified version this number goes up to 193 points (i.e., an
increase of 61%).

A final test was made in the attempt of getting an average runtime per-
formance. We first analyze the average response in twenty randomly varying
distances between start and target node, and fixed time intervals for depar-
ture (1h, 1:30h and 2h). Then we fix the distance between start and target
node (+100 km), and randomly pick twenty time intervals for departure (within
10min and 2h). The results of the first average test are presented in Table 5.9,

83

5.6. Revisiting the graph simplification—or how to quickly traverse a dense part of the
graph

and show that considerable more runtime is needed to solve varying distance
TDSP requests when the time interval for departure increases. The variation of
the responses in relation to the average are indicated by the standard deviation,
which is proportionally larger in smaller time intervals for departure. Which
gives an indication that the varying distance primarily influences the runtime
when the major computational expense contributor, i.e., time interval for depar-
ture, is not large enough to lead to more runtime. This is further demonstrated
in the results of the second average test for randomly varying time interval
for departure (within 10min and 2h) and fixed distance between start and tar-
get node. With an average of 9 minutes and 21 seconds, but with a standard
deviation that is even larger than the average (0:09:35 h) for that test, the im-
plemented solution suggest to be much more sensitive to larger time interval
for departure than to increases in distance between start and target node.

Table 5.9: Average response over 20 requests with randomly varying distances between start
and target node, and fixed time intervals for departure.

Interval for departure time Computation time (h) Std. deviation (h)
0:30h 0:01:08 0:00:35
1:00h 0:02:17 0:02:17
1:30h 0:15:36 0:05:44
2:00h 0:36:25 0:10:32

Our proof-of-concept performance check shows that considerably faster com-
putation of TDSP can be achieved by use of some graph simplification tech-
nique. Nevertheless, the optimization solutions we proposed and developed are
far from an exhaustive list of possibilities in this direction. We will briefly men-
tion some others in the discussion of the following chapter.

84

Chapter 6

Discussion, Conclusions and
Recommendations

In this chapter, we outline and present a discussion on the results achieved
in this project, based on the research questions specified in Section 1.2.2, and
discuss further the subject in its broader sense. That is followed by the con-
clusions drawn from the results obtained and the previous relevant discussion.
Finally, we present the recommendations for future improvements or avenues
that we believe are worthwhile of taking in follow-up research in the context of
the present.

6.1 Outline of the results and discussion

Modeling the real-world dataset for applying graph-theoretic ap-
proach

The time-dependent network dataset we have used for our case study imple-
mentation was described in Section 5.1, including the main features related to
the original data model. We refer to [6] for details on the way Tele Atlas has
modeled the daily speed profiles, as representing the time-dependency of the
network, and its relation to the spatial network. Some important characteris-
tics of the dataset are summarized in Section 5.1.1, while Section 5.1.2 presents
the transformation of the file-based dataset into a database system, with the se-
quence of codes used shown in Appendix A.

A next step was then to abstract a graph from the generated database sys-
tem so that the developed graph-theoretic approach could operate on. This is
outlined in Section 5.2, in which a layout-free abstraction was chosen, i.e., the
graph only presents its topological relationships without involvement of geome-
tries. This was followed by the description of generating edge-delay functions
for the time-dependent part of the dataset which was originally presented as
speed profiles (Section 5.3). At this point, we had two possibilities: (1) to gener-
ate (for the given day of the week) edge-delay functions “on-demand” together
with an initialization phase every time the solution would be applied; or (2) to
precompute (for all days of the week) edge-delay functions and only fetch (for

85

6.1. Outline of the results and discussion

the given day of the week) the needed edge-delay functions in the initialization
phase. Obviously here there is a trade-off between additional runtime for option
(1) and requirement for additional space for the precomputed edge-delay func-
tions for option (2). Notice that in the latter we avoided to overload the TDSP
solution with unnecessary data by fetching the needed precomputed edge-delay
functions for the day of request. As a matter of fact, both options were tested
along with a performance verification of the solutions developed in Section 5.4.

A transformation of the graph is presented in Section 5.4.2. It removes
unnecessary nodes (i.e., nodes with degree two), and collapses the path in which
these nodes lie into a single edge with aggregated edge-delay function. This is
an important feature in optimizations of shortest path solutions, for instance, in
the Highway Hierarchies [76, 77] approach introduced in Section 3.3. Moreover
this transformation is part of tested measures to enhance the performance of
the developed solutions discussed below.

Development of formulated TDSP problems solutions in a database
context

In Section 4.1, two TDSP problems are formulated in the database context. The
first problem formulation is a one-to-one time-dependent shortest path for a
given departure time, called TDSP-GDT for short, in which the optimal path in
travel time costs has to be found for a given start-of-travel moment. The second
problem formulation is more complex: one-to-one time-dependent shortest path
for a given time interval of departure, called TDSP-LTT, or time-dependent
shortest path with least travel time. In which not only a path has to be found,
but primarily the best moment for departure has to determined on the basis of
the least travel time possible within the given departure time interval. This is
followed by formally defining relevant concepts that are inherent to a solution
of TDSP problems in Section 4.2.

A variant of Dijkstra’s algorithm for static shortest path found in the liter-
ature [28], called Two-step LTT, is introduced in Section 4.3 for solving TDSP-
LTT. The method is explained, also presenting examples to illustrate the al-
gorithm. From the proposed method, we define what are the auxiliary tools
needed to handle TDSP problems. We present the algorithmic approach for the
development of the auxiliary tools in Section 4.4. The Two-step LTT algorithm
is adapted for including the auxiliary tools as described in Section 4.5, in which
the method is also generalized for TDSP-GDT.

Limitations on computational complexity performance

After implementing the chosen TDSP problem solutions in PostgreSQL/PostGIS,
using the default procedural language of this DBMS, PL/pgSQL (Appendix B)
a set of request tests was derived to get insight on the possible limitations on
performance of the developed solutions. We started from the simpler TDSP-
GDT and a subset of the original graph, with only the higher hierarchies of
roads.

The results have shown that the algorithm is capable of finding a shortest

86

Chapter 6. Discussion, Conclusions and Recommendations

path even for considerably large (up to around 400 km) distance between start
and target note, though not with an impressive performance at first, when an
average of 1 second of computational time per km of path was found. This first
trial did not make use of any kind of optimization measure; for a second run
of tests, indexes for frequently accessed columns in the database model as well
with precomputation of edge-delay functions were included. In general, not
much enhancement was achieved with these measures, and only considerable
speed-up was noted for small request sizes (i.e., start and target node closer).
This can be explained by a reduction of computation time in the initialization
phase in which edge-delay functions were precomputed. As this rather small
extra runtime for delivering edge-delay functions “on-demand” in the first tests
is constant and independent on the size of the request (i.e., distance between
start and target node), the obtained speed-up is only noticed in small runs,
tending to get diluted over the heavier computational parts of the solution, as
the problem solution evolves.

We then introduce a speed-up technique by collapsing connected edges that
belong to a shortest path (actually, the only path possible) between two junction
node in the roads networks. It is the realization that nodes with degree two
are an unnecessary part of the graph, as they only have one way in and out,
so the graph can be simplified. This same technique is used, for instance, in
the speed-up technique for static shortest path known as Highway Hierarchies.
By generating a single edge with an aggregated delay function the number of
nodes in the test graph (higher hierarchy of roads) shrinks by more than 90%,
and as a consequence runtime is reduced in the same order. Unfortunately, this
trivial graph simplification has somewhat limited use, as the number of nodes
in the graph reduces only by below 30% with the inclusion of lower hierarchies
of roads.

If we can assume that the speed-up roughly follows the reduction in the
graph size, one could expect a speed-up of around 30% when the simplifica-
tion is applied to the complete graph set. Whether such a performance is good
enough is a completely purpose-driven issue, and certain applications may well
allow to more runtime. An example of the latter could be planning of routes
in transportation and logistics realized in a time-dependent fashion—i.e., the
costs are assumed to be known beforehand and there is no dynamic change of
costs functions while the problem is being solved. If this planning routine is
made with enough advance to the realization of the routes by the vehicle/fleet,
then one may assume that the problem not necessarily need to be solved on
blink-of-an-eye basis.

When moving to the more complex problem formulation of TDSP-LTT, how-
ever, the complexity of the task becomes much more apparent, even in a trivially
simplified graph. A first run of tests obtained a not so impressive performance,
and the problem could only be solved for rather small requests, either in dis-
tance between start and target node or in the size of the interval given for a
departure time optimization.

An investigation to identify the most expensive computation parts of the al-
gorithm defined a sensible division of the code and measured the performance
of each part over several thousands of iterations. From this exercise, slight

87

6.1. Outline of the results and discussion

changes of the code were made to improve performance here and there, turning
out that the culprit part of the code was found in the update of arrival-time func-
tions (Section 5.5.1). This can be explained by the growth in data complexity
(i.e., number of explicit points that define the function curve) as the algorithm
proceeds. Delling [23] refers to this as one of the main issues in TDSP, where
a composition of two functions f ⊕ g has as worst case of P (f) + P (g), and P is
the number of concrete points in the function.

Another issue identified as contributing to the long runtime was the slow-
down in the growth of the subinterval (I ′) of time refinement when the problem
evolving reaches a dense part of the graph in which the delay values are rather
small. The subinterval is dependent on the ∆ parameter, which is controlled
by the magnitude of the least delay value coming to a node in iteration (see
Figure 3.5), therefore when reaching a dense part of the graph, where the delay
values are likely to be considerably smaller, ∆ leads to a time refinement in
only small steps approaching the end of the given interval for departure.

We then introduce a theoretical concept that can be used to speed up the
computation using the proposed approach, by identifying dense subgraphs in-
side the original graph to be simplified, to allow fast traversal of that part of the
graph. This fast traversal comes at cost of precomputation: (1) to determine the
dense subgraphs; (2) to precompute ‘aggregate edge-delay functions’ that define
least-delay functions to traverse a given dense subgraph1; and (3) to substitute
the dense subgraph in the original graph for a simplified version. This is partic-
ularly helpful for traversing a part of the graph in which the target node does
not lie, but can also be adapted for a situation in which the target node lies in
the dense subgraph. The precomputation of least-delay functions between all
combinations of entry and exit nodes in a dense subgraph namely ends up with
least-delay functions to reach any node inside of the subgraph from any entry
node of it. This also permits the determination of the actual path through a
dense subgraph as described in Section 5.6.3.

A proof-of-concept test of the speed-up was obtained, showing that at the
cost of a single large precomputation considerable speed-up can be achieved.
But it also became clear that the definition of dense subgraphs must include
even rather small dense subgraphs. If that does not hold, the computation can
slow down when there is opportunity to the search of reaching a remaining
small dense subgraph.

As ideally one should never make any sort of assumption on where the start
and target nodes of a request are, it is clear that the situation in which one
or both of them are inside a dense subgraph that was already simplified to al-
low fast traversal need to be carefully considered. One possibility consists of a
fast mechanism that identifies the dense subgraphs in which neither start nor
target node are and quickly substitute these parts by the precomputed simpli-
fied forms, while preserving the dense subgraphs where the these nodes are.
Another possibility is a division of the problem in two levels, local and global,
which seems to be in theory a good approach.

Local queries take care of the search where it is “close enough” to either start
1Assuming that the target node is not inside of the dense subgraph.

88

Chapter 6. Discussion, Conclusions and Recommendations

or target node.

Global query continues the search when “far enough” from the start node,
and takes care of most of the long-distance travel speed-up by substitu-
tion of dense subgraphs for simplified versions until the search is “close
enough” to the target node.

The concepts of “close enough” and “far enough” in this context are driven
by the dense subgraphs substituted in the original graph. Therefore a local
query delivers the search for the global query once it has solved the search until
the possible ways out of the subgraph. Similarly, the global query returns the
search back to a local query once the dense subgraph in which the target lies
is reached. All of this should be devised in a careful manner to avoid loss of
optimality by stopping one of the levels of query too early—e.g., it may not be
enough to stop a local search once any of the exits of the subgraph has been
reached in the search.

We also believe that there is ample opportunity to developing further graph
simplification techniques to prune the search for not entering in subgraphs that
will never be part of the requested TDSP. For instance, a subgraph that is con-
nected to the rest of the graph by a single node may be removed if the target
node of the requested TDSP is not inside it. This would require a fast mecha-
nism to identify such an exceptional case and simplify the graph “on-demand”
before applying the TDSP problem solution. Though this should add some addi-
tional initialization computational effort, we certainly think that in some cases
this might be worthwhile as would avoid the subsequent search in taking ways
that do not lead anywhere else.

Perspectives on enhancing performance of the developed solu-
tions

During the implementation of the case study some measures for improved per-
formance were presented, some of them were even tested to prove the concept.
Those were the trivial graph simplification by collapsing edges, but also a fur-
ther simplification to allow fast traversal of a dense subgraph. Here we present
further discussion on enhancing performance of the developed solutions tak-
ing mostly a perspective of existing speed-up techniques that were found in the
literature (see Section 3.3).

The power of C-based programming languages. Programming languages
that are of the group of C languages are well-known for their capabil-
ity of handling heavy processing with high performance. Myers [61], for
instance, acknowledges one of these languages (C++) as the one to use
for “performance-critical” parts of solving a problem (or developing a sys-
tem). In this sense, we believe some performance improvement could be
achieved by simply transforming the culprit part of our developed algo-
rithm, namely the update of arrival-time functions, into compiled C-based
language code to be run as a library inside PostgreSQL. That perhaps
would maintain the growth of computational complexity of this part of the

89

6.1. Outline of the results and discussion

algorithm under control and eventually turn it out to be possible of solving
larger problems sizes and even in larger instances. We have tested this
problem only with the higher hierarchy of roads. A C-based implementa-
tion can also help in the precomputation of least-delay functions for the
graph simplification we have proposed, since this task suffers from the
same problem of increasing data complexity as the update of arrival-time
functions.

A∗-based search. Another possibility is to make use of a technique to direct
the search towards the target node such as the classic A∗ algorithm or
any other variant of this principle (e.g., [47]). While in intuition this looks
right, we have some concern whether this is always correct, particularly if
the heuristics used is distance-based. Our approach over time-dependent
routing is that perhaps any alternative route can be faster in traversing
besides looking the shortest one distance-wise. Or in simpler words, how
can one assure that there is no faster route to the target outside of the A∗-
based search space? Especially considering that giving up of optimality or
computation of exact time-dependent shortest paths is not at all an option
from our point of view. Hence, unless a heuristics can be developed on
the basis of travel-time rather than distance and be provable to always
provide optimal routes, our concern remains.

Hierarchical approaches. Somewhat the same concerns described for speed-
up with use of A∗ search also apply here. With this we mean that a defini-
tion of hierarchy level purely based on distance (i.e., how far you can reach
by using this road segment) may not suffice for a time-dependent setting.
As a matter of fact, in the Netherlands, for instance, it is common sense
to talk about the early morning peak time in the motorways and major
roads just before people start their work duties. In this case, it seems ob-
vious that motorways and major roads have great probability of being part
of higher levels of any hierarchy-based partitioning of the graph as they
tend to be important for long-distance travel. For instance, if we think
of a hierarchy-based technique as “reach” [39] (see Section 3.3.2), logi-
cally those kinds of road often are on a shortest long-distance path. But
those are also the roads that display biggest delays at peak traffic time.
The question is then how is that fact taken into account when hierarchy
levels? At least around peak time, it might well be that a driver is bet-
ter off cutting through cities and auxiliary roads to avoid the traffic jam.
We believe that a good approach for defining hierarchy level in a time-
dependent setting cannot purely rely on distances, and occasionally this
should be balanced with a measure of how frequent a road is at least close
to a freeflow speed travel. In other words, that would be a hierarchy level
definition which gives priority to roads that can be used for long-distance
traffic, just as in the classical hierarchy-based techniques, but also with
a refining parameter that indicates whether those roads are sensitive to
jams or not.

Local + Global queries. In [10] a combination of local and global queries is

90

Chapter 6. Discussion, Conclusions and Recommendations

devised for solving static shortest path with incredible performance re-
sults. As mentioned before, that could be a good approach to take ad-
vantages of the speed-up by substituting dense subgraphs for simplified
versions (Section 5.6) and still be able to find a shortest path that start
and/or finishes inside a simplified dense subgraph.

Other graph simplification techniques. To explore further techniques in graph
simplification, such as by identifying exceptional subgraphs that do not
need to be in a graph when searching a specific TDSP. This has to do
with connectivity of graphs and we believe there is ample opportunity for
enhancing performance by these means.

6.1.1 Further discussion—Looking outside the box

We here provide some further discussion on the issue of solving TDSP problems,
particularly with focus on a database context. We remark that this setting
is rarely found in the literature, where most reported approaches at best just
mention a database as means to fetch the data, and run fully in main memory.

• It is rather difficult to compare results when the setting is completely
different from others found in the literature. A main-memory solution di-
verges in behavior of one that runs in a database context. In our case,
the solution was even implemented in a server scenario basis, meaning
that occasionally performance may suffer from variables that are not un-
der our control, such as the server’s overload and perhaps limitations of
hardware, given all the concurrent use. We do not think, however, that
was an important impact in this project, but it may well be the case in
such a setting.

• We acknowledge the non-triviality of solving TDSP in a database context
using an approach that applies none heuristics to speed up computation
for instances that appear in real-world applications. We believe that there
is no other way of efficiently solving TDSP problems if not making use of
speed-up techniques that come at the cost of precomputation and need for
additional storage. In this sense, though there exists a trade-off to con-
sider between these two issues and computational time to actually solve
the problem, one could generally say that any precomputation that speeds
up the solution considerably may well be accommodated when storage
space is not a concern. In this direction, the work that has been carried
out at Karlsruhe University deserves mention as they have a history of
speed-up techniques for solving (static and dynamic) shortest path prob-
lems. Their achievements in static shortest paths has turned this kind of
problem to be solvable in no more than several microseconds in continent-
sized graph [10], as well as to claim to have the first technique (Time-
dependent SHARC-Routing) to solve TDSP problems efficiently (in less
than 160 seconds, but actually depending on how much traffic conditions
variation is considered) over the same continent-sized graph [23].

91

6.2. Conclusions

• Some care has to be taken when analyzing reported computational results
of speed-up techniques for solving shortest paths, since in many cases the
query times achieved only consider the solution of the problem without
actually outputting the path through the original graph itself (e.g., [80,
23]).

6.2 Conclusions

With respect to the objectives defined for this research, we draw the following
conclusions:

• The translation of the time-dependent network for the Netherlands was
conducted by abstracting a graph without its geometric layout, i.e., only
presenting the topological relationships between nodes and edges, but not
having their spatial dimension. That was preferred to avoid overloading
the solutions with data that is not needed in a graph-theoretic approach.
As the time-dependency of the edges is presented as speed profiles, we had
essentially two options for delivering the real costs (i.e., travel times) to
the edges in the graph: (1) to compute edge-delay functions “on-demand”
or (2) to precompute edge-delay functions. The second option was obvi-
ously identified as preferable because of performance.

• Efficiently solving TDSP problem in a database context has shown to be
not a trivial task, and a completely functional approach may well be be-
yond the scope and time of an MSc project. Particularly, if we consider
the choice we made from the beginning of using an approach not based on
any heuristics or speed-up technique for solving the problem. It turned
out that the developed solutions are far from providing high-performing
query responses for TDSP, especially if applied over the original graph
and a more complex TDSP-LTT request is made. In any case, we might
say that the research project helped in achieving a sort of benchmark for
solving TDSP in a database context, against which further works in speed-
ing up the solutions can be compared.

• Two main issues were identified as performance bottlenecks for solving
TDSP-LTT: one general concern for TDSP computations and another approach-
specific. The first one is the growth in complexity of the arrival-time func-
tions (i.e., the potential increase in numbers of concrete points in arrival-
time functions), which eventually is responsible for a loss in performance
per iteration as the problem worsens. The second one is the slowdown
in convergence of the departure time interval for optimization when the
search reaches parts of the graph characterized by small delay-values in
the edge-delay functions.

• The chosen approach, namely Two-step LTT, was shown to outperform
some of its counterparts in experimental tests conducted in the study in
which it was proposed, when edge-delay functions were arbitrarily gener-
ated [28]. Against real-world edge-delay functions in our case, however, it

92

Chapter 6. Discussion, Conclusions and Recommendations

has shown to have a feature that is not usually desirable for any algorith-
mic approach: to be fairly dependent on the characteristics of the input
data. Here, we refer to the slowdown in the convergence of the departure
time interval as mentioned in Section 5.5.1.

• Facing the somewhat unimpressive performance of the developed solu-
tions, we conceptually defined possible ways of coping with some of the
shortcomes. We first introduced the trivial simplification of the graph that
removes unnecessary nodes of degree two and collapses the path through
these nodes into a single edge. That is also referred to as defining the
2-core of graph in the literature [23]. This simplification positively af-
fected the performance of the simple TDSP-GDT, but was not enough to
make the more complex TDSP-LTT solvable except for rather small re-
quest sizes. We revisited then the simplification of the graph by concep-
tually defining a possible way of speeding up computations in the context
of TDSP-LTT problems, and we introduced algorithmic approaches to de-
vise the envisaged graph simplification. That was conceived in a manner
that attempts to comply with the general rule that a precomputation task
should not require more than linear growth in storage for the precomputed
data when compared to the input graph.

• A proof-of-concept performance test showed that the introduced graph
simplification can considerably speed up the computation of TDSP us-
ing the chosen approach. That is because by this means short edges
(with small delay-values) are removed from the graph, thus the algorithm
does not slow down in the convergence of the interval for departure time.
We envisage two possibilities for using this speed-up technique: (1) by
quickly substituting precomputed simplified versions of dense subgraphs;
the solution would be applied over a single graph with parts substituted;
(2) by having two levels of search, local and global, in which the global
query would be applied over the simplified graph when far enough from
start/target node, while the local query would take over when the search
is close enough to start/target node. Obviously, the local query would be
applied over the original graph with only the trivial simplification intro-
duced in Section 5.4.2.

• Unfortunately, due to the faced problems with performance of the compu-
tations, it was not possible to conduct a thorough set of performance tests,
apart from the run tests to verify the solutions developed. That would al-
low to check the scalability of the approaches for different-sized networks.
The reason behind this is the realization that it does not make sense to
verify scalability when the developed solutions in general show bad per-
formance even for a rather sparse network as used in the run tests. We
then invested more time in deriving speeding-up techniques as described
above.

93

6.3. Recommendations

6.3 Recommendations

Taking into account the results achieved in this research project, the following
recommendations are made for further improvement:

• As it is clear that solving TDSP problems without making use of any
heuristics to speed up computations is rather unfeasible, we propose fur-
ther research on techniques to realize faster computations of routes in a
database context. This could start with materializing the concepts and al-
gorithmic approaches proposed in this research project (i.e., simplification
of the graph in dense subgraphs inside of it) and verifying its applicability
in practice as well as its potential of speed-up in computations of TDSP
problems.

• To study, understand and implement approaches proposed in the litera-
ture, with a special note for SHARC-Routing algorithm in [23] that has
been already adapted for time-dependent networks. In this matter, it
seems fruitful to contact the research group at the Institute for Theoret-
ical Computer Science, Karlsruhe University (Germany), which has put
a lot of effort in delivering fast solutions for real-world applications with
routing in transportation networks.

• To consider the issues discussed under the heading “Perspectives on en-
hancing performance of the developed solutions” of this chapter, in which
we have put into context possible avenues to exploit and eventually deliver
faster computations of time-dependent routes.

• We particularly think that solutions of TDSP problems in considerably
large graphs can only be achieved by working under a hierarchical per-
spective in which the search for shortest paths would be restricted to a
rather sparse network of high-hierarchy roads when start and target node
are fairly apart. A careful study of the concepts of local and global queries
can be worthwhile to separate searches that need to look at lower levels of
hierarchy from those that can be sped-up in the sparse network of high-
hierarchy roads. An interesting discussion in this sense is a proper def-
inition of hierarchies in time-dependent routing as discussed above (see
“Perspectives on enhancing performance of the developed solutions” in
this chapter).

• When storage of precomputed data is not a limiting factor for the solution
being developed, an extreme speed-up measure for long-distance travels
is to define a (fairly small) set of proper transit nodes to which all-pairs
of least-delay functions would are beforehand, similarly to what happens
in the fastest static shortest path computation method known [10]. In
this case, the real computation expense is restricted to local queries (if
applicable), in which only a considerably small subset of the graph can be
necessary for the search.

94

Bibliography

[1] R. K. Ahuja, J. B. Orlin, S. Pallottino, and M. G. Scutella. Dynamic shortest
paths minimizing travel times and costs. Working Paper Series SSRN,
2002.

[2] S. Ambler. Agile Database Techniques: Effective Strategies for the Agile
Software Developer. Wiley Publishing, 2003.

[3] S. Arora. Polynomial time approximation schemes for euclidean traveling
salesman and other geometric problems. J. ACM, 45(5):753–782, 1998.

[4] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik.
The object-oriented database system manifesto, 1989.

[5] T. Atlas. Tele Atlas Multinet shapefile 4.4. format specifications. Technical
report, Tele Atlas and Tele Atlas North America, 2008.

[6] T. Atlas. Tele Atlas Speed Profiles: intelligent data for optimal routing.
specifications 2.0. Technical report, Tele Atlas and Tele Atlas North Amer-
ica, 2008.

[7] T. Atlas. Tele Atlas Speed Profiles: intelligent data for optimal routing.
user guide 2008.10. Technical report, Tele Atlas and Tele Atlas North
America, 2008.

[8] S. Balev, F. Guinand, and Y. Pigné. Maintaining shortest paths in dynamic
graphs. In International Conference on Non-Convex Programming: local
and global approaches. Theory, Algorithms and Applications, 2007.

[9] H. Bast, S. Funke, and D. Matijevic. Transit: Ultrafast shortest-path
queries with linear-time preprocessing. In 9th DIMACS Implementation
Challenge — Shortest Path, pages 66–79. DIMACS, 2006.

[10] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast routing in road net-
works using transit nodes. Science, 316(5824):566, April 2007.

[11] R. Bauer and D. Delling. SHARC: Fast and Robust Unidirectional Rout-
ing. In Proceedings of the 10th Workshop onAlgorithm Engineering and
Experiments (ALENEX’08). SIAM, 2008. to appear.

[12] R. Bauer and D. Delling. Sharc: Fast and robust unidirectional routing. J.
Exp. Algorithmics, 14:2.4–2.29, 2009.

95

Bibliography

[13] D. Bertsimas and D. Simchi-Levi. A new generation of vehicle routing re-
search: Robust algorithms, addressing uncertainty. Operations Research,
44(2):286–304, 1996.

[14] J.-F. Bérubé, J.-Y. Potvin, and J. G. Vaucher. Time-dependent shortest
paths through a fixed sequence of nodes: application to a travel planning
problem. Computers & OR, 33:1838–1856, 2006.

[15] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. The
Macmillan Press, first edition reprinted edition, 1978.

[16] I. Chabini. Discrete dynamic shortest path problems in transportation
applications: Complexity and algorithms with optimal run time. Trans-
portation Research Records, 1645:170–175, 1998.

[17] S. Cook. The P versus NP problem. manuscript prepared for the clay math-
ematics institute for the millennium prize problems, 2000.

[18] J. F. Cordeau, M. Gendreau, G. Laporte, J. Y. Potvin, and F. Semet. A guide
to vehicle routing heuristics. The Journal of the Operational Research So-
ciety, 53(5):512–522, 2002.

[19] B. C. Dean. Continuous-time dynamic shortest path algorithms. Master’s
thesis, Massachusetts Institute of Technology, Cambridge, MA, May 1999.

[20] B. C. Dean. Shortest paths in FIFO time-dependent networks: theory and
algorithms. Technical report, MIT, Cambridge, MA, 2004.

[21] M. Dell’Amico, M. Iori, and D. Pretolani. Shortest paths in piecewise con-
tinuous time-dependent networks. Operations Research Letters, 36(6):688
– 691, 2008.

[22] D. Delling. Time-dependent sharc-routing. In ESA’08: Proceedings of the
16th annual European symposium on Algorithms, pages 332–343, Berlin,
Heidelberg, 2008. Springer-Verlag.

[23] D. Delling. Engineering and Augmenting Route Planning Algorithms. PhD
thesis, Universität Fridericiana zu Karlsruhe (TH), Hamburg, Germany,
February 2009.

[24] D. Delling and G. Nannicini. Core routing on dynamic time-dependent
road networks. In Journal Version of ISAAC’08, 2008.

[25] D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering route
planning algorithms. In Algorithmics of Large and Complex Networks: De-
sign, Analysis, and Simulation, pages 117–139, Berlin, Heidelberg, 2009.
Springer-Verlag.

[26] D. Delling and D. Wagner. Landmark-Based Routing in Dynamic Graphs.
In Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07),
volume 4525 of Lecture Notes in Computer Science, page 5265. Springer,
June 2007.

96

Bibliography

[27] B. Ding, J. X. Yu, and L. Qin. Finding time-dependent shortest paths over
large graphs. In EDBT ’08: Proceedings of the 11th international con-
ference on Extending database technology, pages 205–216, New York, NY,
USA, 2008. ACM.

[28] L. Everett, L.-S. Wang, and S. Hannenhalli. Dense subgraph computation
via stochastic search: application to detect transcriptional modules. In
ISMB (Supplement of Bioinformatics), pages 117–123, 2006.

[29] P. Festa. Shortest path algorithms. In Handbook of Optimization in
Telecommunications, pages 185–210, Berlin, Heidelberg, 2006. Springer
US.

[30] B. Fleischmann, M. Gietz, and S. Gnutzmann. Time-varying travel times
in vehicle routing. Transportation Science, 38(2):160–173, 2004.

[31] B. Fleischmann, S. Gnutzmann, and E. Sandvo”s. Dynamic vehicle routing
based on online traffic information. Transportation Science, 38(4):420–433,
2004.

[32] L. Fortnow and S. Homer. A short history of computational complexity. In
The History of Mathematical Logic. North-Holland, 2002.

[33] S. Gao and I. Chabini. Optimal routing policy problems in stochastic time-
dependent networks. Transportation Research Part B: Methodological,
40(2):93 – 122, 2006.

[34] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs
in massive graphs. In VLDB ’05: Proceedings of the 31st international
conference on Very large data bases, pages 721–732. VLDB Endowment,
2005.

[35] A. V. Goldberg and C. Harrelson. Computing the shortest path: A* search
meets graph theory. In SODA’05: In Proceedings of the 16th Annual ACM–
SIAM Symposium on Discrete Algorithms, pages 156–165, 2005.

[36] A. V. Goldberg, H. Kaplan, and R. F. Werneck3. Reach for a∗: Efficient
point-to-point shortest path algorithms. Technical report, Microsoft Re-
search, October 2006.

[37] R. J. Gutman. Reach-based routing: A new approach to shortest path
algorithms optimized for road networks. In ALENEX/ANALC, pages 100–
111, 2004.

[38] H. W. Hamacher, S. Ruzika, and S. A. Tjandra. Algorithms for time-
dependent bicriteria shortest path problems. Discrete Optimization,
3(3):238–254, 2006.

[39] S. Hanson. Off the road? Reflections on transportation geography in the
information age. Journal of Transport Geography, 6(4):241–249, 1998.

97

Bibliography

[40] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuris-
tic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(8), 1968.

[41] U. Helling and J. Schoenharting. Travel time advantages by dynamic route
guidance in germany: Status quo and improvement potential. In European
Transport Conference 2006. AET, 2006.

[42] M. E. Horn. On-line vehicle routing and scheduling with time-varying
travel speeds. Journal of Intelligent Transportation Systems, 10(1):160–
173, 2006.

[43] C.-I. Hsu, S.-F. Hung, and H.-C. Li. Vehicle routing problem with time-
windows for perishable food delivery. Journal of Food Engineering,
80(2):465 – 475, 2007.

[44] B. Huang and X. Pan. Gis coupled with traffic simulation and optimiza-
tion for incident response. Computers, Environment and Urban Systems,
31(2):116 – 132, 2007.

[45] B. Huang, Q. Wu, and F. B. Zhan. A shortest path algorithm with novel
heuristics for dynamic transportation networks. International Journal of
Geographical Information Science, 21(6):625 – 644, 2007.

[46] R. Impagliazzo. A personal view of average-case complexity. In SCT ’95:
Proceedings of the 10th Annual Structure in Complexity Theory Conference
(SCT’95), page 134, Washington, DC, USA, 1995. IEEE Computer Society.

[47] P. Ji, Y. Z. Wu, H. Z. Liu, and H. T. Wu. The vehicle routing problem with
time-varying travel times and a solution method. International Journal
of Innovative Computing Information and Control, 5(4):1001–1011, Apr
2009.

[48] E. Kanoulas, Y. Du, T. Xia, and D. Zhang. Finding fastest paths on a
road network with speed patterns. In ICDE ’06: Proceedings of the 22nd
International Conference on Data Engineering, page 10, Washington, DC,
USA, 2006. IEEE Computer Society.

[49] D. E. Kaufman and R. L. Smith. Fastest paths in time-dependent net-
works for intelligent vehicle-highway systems application. In IVHS Jour-
nal, pages 1–11. Taylor & Francis, 1993.

[50] S. Koenig, M. Likhachev, and D. Furcy. Lifelong Planning A*. Artif. Intell.,
155(1-2):93–146, 2004.

[51] A. Larsen. The Dynamic Vehicle Routing Problem. PhD thesis, Technical
University of Denmark, June 2000.

[52] A. Larsen, O. Madsen, and M. Solomon. Partially dynamic vehicle routing-
models and algorithms. The Journal of the Operational Research Society,
53(6):637–646, 2002.

98

Bibliography

[53] L. Liu and L. Meng. Algorithmic concerns of multi-modal route planning.
In LBS Telecartography: eletronic proceedings of the 5th symposium on Lo-
cation Based Services & Telecartography, pages 19–25, Salzburg, Austria,
2008.

[54] W. Maden, R. W. Eglese, and D. Black. Vehicle routing and scheduling with
time varying data: A case study. Lancaster University Management School
Working Papers, 2009.

[55] O. B. Madsen, A. Larsen, and M. M. Solomon. Recent developments in
dynamic vehicle routing systems. In B. L. Golden, S. Raghavan, and E. A.
Wasil, editors, The Vehicle Routing Problem, pages 199–218. Springer Sci-
ence+Business Media, New York, NY, 2008.

[56] C. Malandraki and M. S. Daskin. Time Dependent Vehicle Routing Prob-
lems: Formulations, Properties and Heuristic Algorithms. Transportation
Science, 26(3):185–200, 1992.

[57] J. Maue, P. Sanders, and D. Matijevic. Goal-directed shortest-path queries
using precomputed cluster distances. J. Exp. Algorithmics, 14:3.2–3.27,
2009.

[58] N. C. Myers. C++ in the real world: Advice from the trenches, 1997. [On-
line; accessed 20-January-2010].

[59] G. Nannicini, P. Baptiste, D. Krob, and L. Liberti. Fast point-to-point short-
est path queries on dynamic road networks with interval data. In CTW,
pages 115–118, 2007.

[60] G. Nannicini, D. Delling, L. Liberti, and D. Schultes. Bidirectional A* on
time-dependent graphs. In CTW, pages 132–135, 2008.

[61] G. Nannicini and L. Liberti. Shortest paths in dynamic graphs. Interna-
tional Transactions in Operational Research, 15:551–563, 2008.

[62] Y. M. Nie and X. Wu. Shortest path problem considering on-time arrival
probability. Transportation Research Part B: Methodological, 43(6):597 –
613, 2009.

[63] A. Orda and R. Rom. Shortest-path and minimum-delay algorithms in
networks with time-dependent edge-length. Journal of the Association for
Computing Machinery, 37(3):607–625, 1990.

[64] A. Osvald and L. Z. Stirn. A vehicle routing algorithm for the distribution
of fresh vegetables and similar perishable food. Journal of Food Engineer-
ing, 85(2):285 – 295, 2008.

[65] D. Pfoser, S. Brakatsoulas, P. Brosch, M. Umlauft, N. Tryfona, and
G. Tsironis. Dynamic travel time provision for road networks. In GIS
’08: Proceedings of the 16th ACM SIGSPATIAL international conference
on Advances in geographic information systems, pages 1–4, New York, NY,
USA, 2008. ACM.

99

Bibliography

[66] D. Pfoser, N. Tryfona, and A. Voisard. Dynamic travel time maps: Enabling
efficient navigation. In Proc. 18th SSDBM conf., pages 369–378, 2006.

[67] J.-Y. Potvin, Y. Xu, and I. Benyahia. Vehicle routing and scheduling with
dynamic travel times. Comput. Oper. Res., 33(4):1129–1137, 2006.

[68] H. N. Psaraftis. Dynamic vehicle routing problems. In B. L. Golden
and A. A. Assad, editors, Vehicle Routing: Methods and Studies, chap-
ter 11, pages 223–248. Elsevier Science Publishers B.V., Amsterdam,
North-Holland, 1988.

[69] H. N. Psaraftis. Dynamic vehicle routing: Status and prospects. Journal
of Heuristics, 61(1):143–164, 1995.

[70] H. N. Psaraftis and J. N. Tsitsiklis. Dynamic shortest paths in acyclic
networks with markovian arc costs. Oper. Res., 41(1):91–101, 1993.

[71] N. Rigo, R. Hekkenberg, A. B. Ndiaye, D. Hadhazi, G. Simongati, and
C. Hargitai. Performance assessment for intermodal chains. European
Journal of Transport and Infrastructure Research, 7(4):283–300, 2007.

[72] H. E. Romeijn and R. L. Smith. Parallel algorithms for solving aggregated
shortest-path problems. Comput. Oper. Res., 26(10-11):941–953, 1999.

[73] P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest
path queries. In ESA, pages 568–579, 2005.

[74] P. Sanders and D. Schultes. Engineering highway hierarchies. In ESA’06:
Proceedings of the 14th conference on Annual European Symposium, pages
804–816, London, UK, 2006. Springer-Verlag.

[75] D. Schrank and T. Lomax. 2009 urban mobility report. Technical report,
Texas Transportation Institute, Texas A&M University System, College
Station, Texas, July 2009.

[76] D. Schultes. Route Planning in Road Networks. PhD thesis, Universität
Karlsruhe (TH), February 2008.

[77] D. Schultes and P. Sanders. Dynamic highway-node routing. In WEA’07:
Proceedings of the 6th Workshop on Experimental Algorithms, pages 66–
79. Springer, 2007.

[78] R. Séguin, J. Y. Potvin, M. Gendreau, T. G. Crainic, and P. Marcotte. Real-
time decision problems: An operational research perspective. The Journal
of the Operational Research Society, 48(2):162–174, 1997.

[79] R. Sommar and J. Woxenius. Time perspectives on intermodal transport
of consolidated cargo. European Journal of Transport and Infrastructure
Research, 7(2):163–182, 2007.

[80] K. Sung, M. G. H. Bell, M. Seong, and S. Park. Shortest paths in a net-
work with time-dependent flow speeds. European Journal of Operational
Research, 121(1):32 – 39, 2000.

100

Bibliography

[81] T. van Woensel, L. Kerbache, H. Peremans, and N. Vandaele. Vehicle rout-
ing with dynamic travel times: A queueing approach. European Journal
of Operational Research, 186(3):990 – 1007, 2008.

[82] D. Wagner, T. Willhalm, and C. Zaroliagis. Geometric containers for effi-
cient shortest-path computation. J. Exp. Algorithmics, 10:1.3, 2005.

[83] Q. Wu, J. Hartley, and D. Al-Dabass. Time-dependent stochastic shortest
path(s) algorithms for a scheduled transportation network. I.J. of Simula-
tion, 6(7-8), 2005.

[84] X. Yin, Z. Ding, and J. Li. A shortest path algorithm for moving objects in
spatial network databases. Progress in Natural Science, 18(7):893 – 899,
2008.

[85] M. L. Yiu and N. Mamoulis. Clustering objects on a spatial network. In
SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international confer-
ence on Management of data, pages 443–454, New York, NY, USA, 2004.
ACM.

[86] J. Yoon, B. Noble, and M. Liu. Surface street traffic estimation. In MobiSys
’07: Proceedings of the 5th international conference on Mobile systems, ap-
plications and services, pages 220–232, New York, NY, USA, 2007. ACM.

[87] F. B. Zhan and C. E. Noon. Shortest path algorithms: an evaluation using
real road networks. Transportation Science, 32(1):65–73, 1998.

[88] L. Zhao and T. Ohshima. A∗ algorithm for the time-dependent shortest
path problem. In WAAC08: The 11th Japan-Korea Joint Workshop on Al-
gorithms and Computation, 2008.

101

Bibliography

102

Appendix A

Preparation of dataset for
case study

A.1 Loading GIS dataset into the database

---creating the sql insert command file (+ create table)

shp2pgsql -I -S -g geom -s 4326 filename.shp schema.tablename >
sqlfilename.sql

--filename.shp -> nldnld________nw.shp (road segments);
-- nldnld________jc (road junctions)

---load into the database
psql -h itcnt07.itc.nl -d dynamic_routing -f sqlfilename.sql
-U rodrigo

A.2 Loading time-dependency of the road segments

---speed profiles table
create table speed_profile
(profile_id integer not null,
time_slot integer not null,
rel_sp real not null,
constraint speed_profile_pk primary key (profile_id,time_slot)
);

---inserting speed profiles data into table
psql => \copy "speed_profile" from filename.txt

---speed profile function table
create table speed_profile_function
(pid integer not null,
constraint speed_profile_function_pk primary key (pid)
);

select addgeometrycolumn
(’dynamic_routing’,’speed_profile_function’,’geom’,’-1’,
’linestring’,2);

insert into speed_profile_function
select sp.profile_id, st_linefrommultipoint(
st_collect(

103

A.3. Abstracting the graph

st_snaptogrid(
st_makepoint(sp.time_slot,sp.rel_sp),0.1,0.1))))
from speed_profile as sp
group by sp.profile_id;

---hsnp link table
create table nldnld_hsnp
(

network_id numeric(15) not null,
val_dir integer not null,
spfreeflow integer,
spweekday integer,
spweekend integer,
profile_1 integer,
profile_2 integer,
profile_3 integer,
profile_4 integer,
profile_5 integer,
profile_6 integer,
profile_7 integer,
constraint hsnp_pk primary key (network_id, val_dir)

);

---inserting hsnp link table data into table
psql => \copy "nldnld_hsnp" from filename.txt

A.3 Abstracting the graph

---creating vertical subset of nldnld_nw
create table nw_edges
(

id bigint,
f_jnctid bigint,
t_jnctid bigint,
meters double precision,
oneway character varying(2),
kph smallint,
constraint nw_edges_pkey primary key (id)

);

insert into nw_edges
select n.id,n.f_jnctid,t_jnctid,n.meters,n.oneway,n.kph
from nldnld_nw as n
where n.oneway<>’N’ or n.oneway is null;

---extracting edges of motorways and major roads
create table edge_majroad
(id bigint not null,
val_dir smallint not null,
f_node bigint,
t_node bigint,
length double precision,
constraint edge_pk1 primary key (id,val_dir));

insert into edge_majroad
--geometry direction corresponds to graph direction
select e.id, 2 as val_dir, e.f_jnctid as f_node, e.t_jnctid as
t_node, e.meters as length
from nw_edges e
where e.oneway::text = ’FT’::text and (e.frc=0 or e.frc=1)
union all
--geometry direction does not correspond to graph direction

select e.id, 3 as val_dir, e.t_jnctid as f_node, e.f_jnctid as

104

Appendix A. Preparation of dataset for case study

t_node, e.meters as length
from nw_edges e
where e.oneway::text = ’TF’::text and (e.frc=0 or e.frc=1)
union all
--biderectional geometry
select e.id, 3 as val_dir, e.t_jnctid as f_node, e.f_jnctid as
t_node, e.meters as length
from nw_edges e
where e.oneway is null and (e.frc=0 or e.frc=1)
union all
select e.id, 2 as val_dir, e.f_jnctid as f_node, e.t_jnctid as
t_node, e.meters as length
from nw_edges e
where e.oneway is null and (e.frc=0 or e.frc=1);

create unique index edge_majroad_idx on edge_majroad (id,val_dir);

---extracting nodes of motorways and major roads
create table node_majroad
(id bigint,
constraint node_pkey primary key (id)
);

insert into node_majroad
select distinct f_node as id
from edge_majroad
union
select distinct t_node
from edge_majroad;

105

A.3. Abstracting the graph

106

Appendix B

Solving TDSP problems in a
database context

B.1 Auxiliary tools

B.1.1 Initialization tool—TDSP-GDT

----creating arrival-time functions + edge-delay functions

create or replace function dr_initialize(node_table varchar,
edge_table varchar, vs bigint, ve bigint, ts double precision, dw integer)

returns void as
$body$
---node_table is the table that contains the set of nodes of the graph;
---edge_table is the table that contains the set of edges of the graph;
---vs is the source node id of the path to be found;
---ve is the target node id of the path to be found;
---dw is the day of the week for the traverse;
declare
edg record;
countq integer;
ltt arrival_time_function;
begin
create table _queue_arr_time_
(vid bigint not null,
tau double precision not null,
at_tau double precision not null,
--active boolean,
constraint _queue_arr_time__pk1 primary key (vid,tau));
create table _arrivaltime_
(vid bigint not null,
"time" double precision not null,
arrivaltime double precision not null,
--active boolean,
constraint _arrivaltime__pk1 primary key (vid,"time"));
create table _edgedelay_function_
(eid bigint not null,
val_dir integer not null,
constraint _edgedelay_function_pk primary key (eid,val_dir)
);
perform addgeometrycolumn
(’dynamic_routing’,’_edgedelay_function_’,’geom’,’-1’,’linestring’,2);
create index edgedelay__geom_gist

on _edgedelay_function_
using gist
(geom);

107

B.1. Auxiliary tools

insert into _arrivaltime_ values (vs,ts,ts);
execute
’insert into _arrivaltime_
select n.id, ’|| ts::text || ’, (’ || ts::text || ’+1)*90000
from ’ || quote_ident(node_table) || ’ as n
where n.id <> ’ || vs::text;
---creating edge-delay functions for proper day of the week
for edg in execute ’select * from’ || quote_ident(edge_table) ||
loop
insert into _edgedelay_function_
select edg.id, edg.val_dir, st_snaptogrid(st_scale(

st_simplify(s.geominv,0),
1,edg.length*3.6/n.spfreeflow
),0,0.01)

from (select case when p.spfreeflow > 0 then p.spfreeflow else
case when dw = 1 or dw = 7 then p.spweekend else p.spweekday end

end as spfreeflow,
(case
when dw = 1 then case when p.profile_1 = 0 then 1 else p.profile_1 end
when dw = 2 then case when p.profile_2 = 0 then 1 else p.profile_2 end
when dw = 3 then case when p.profile_3 = 0 then 1 else p.profile_3 end
when dw = 4 then case when p.profile_4 = 0 then 1 else p.profile_4 end
when dw = 5 then case when p.profile_5 = 0 then 1 else p.profile_5 end
when dw = 6 then case when p.profile_6 = 0 then 1 else p.profile_6 end
when dw = 7 then case when p.profile_7 = 0 then 1 else p.profile_7 end
end) as profile

from nldnld_hsnp as p
where edg.id=p.network_id and edg.val_dir=p.val_dir) as n,
speed_profile_function as s

where s.pid=n.profile;
end loop;
insert into _queue_arr_time_
select * from _arrivaltime_ as at;
end;
$body$

language ’plpgsql’ volatile strict
cost 1;

----creating only arrival-time functions

create or replace function dr_initialize(node_table character varying,
edgedelay_table varchar, vs bigint, ve bigint, ts double precision,
dw integer)

returns void as
$body$
---node_table is the table that contains the set of nodes of the graph;
---edgedelay_table is the table with precomputed edge-delay functions;
---vs is the source node id of the path to be found;
---ve is the target node id of the path to be found;
---dw is the day of the week for the traverse;
declare
edg record;
countq integer;
ltt arrival_time_function;
begin
create table _queue_arr_time_
(vid bigint not null,
tau double precision not null,
at_tau double precision not null,
constraint _queue_arr_time__pk1 primary key (vid,tau));
create table _arrivaltime_
(vid bigint not null,
"time" double precision not null,
arrivaltime double precision not null,
constraint _arrivaltime__pk1 primary key (vid,"time"));
create table _edgedelay_function_
(eid bigint not null,

108

Appendix B. Solving TDSP problems in a database context

val_dir integer not null,
constraint _edgedelay_function_pk primary key (eid,val_dir)
);
perform addgeometrycolumn
(’dynamic_routing’,’_edgedelay_function_’,’geom’,’-1’,’linestring’,2);
create index edgedelay__geom_gist

on _edgedelay_function_
using gist
(geom);

insert into _arrivaltime_ values (vs,ts,ts);
execute
’insert into _arrivaltime_
select n.id, ’|| ts::text || ’, (’ || ts::text || ’+1)*90000
from ’ || quote_ident(node_table) || ’ as n
where n.id <> ’ || vs::text;
---fecthing precomputed edge-delay functions for proper day of the week
execute
’insert into _edgedelay_function_
select eid, val_dir, geom_’ || dw::text || ’
from ’ || quote_ident(edgedelay_table);
insert into _queue_arr_time_
select * from _arrivaltime_ as at;
end;
$body$

language ’plpgsql’ volatile strict
cost 1;

B.1.2 Initialization tool—TDSP-LTT

create or replace function dr_initialize(
node_table character varying,
edgedelay_table character varying, vs bigint,
ve bigint, ts double precision,
te double precision, dw integer)

returns void as
$body$
---edgedelay_table is the table with the edge-delay functions;
---node_table is the table with the nodes of the graph;
---vs start node id;
---ve target node id;
---ts initial time of interval for departure time;
---te final time of interval for departure time;
---dw day of week;
declare edg record; ltt arrival_time_function; begin insert into
arrival_time_function values (vs,dr_source_g_function(ts,te));
execute ’insert into arrival_time_function select
n.vid,dr_others_g_function(’ || ts::text || ’,’ || te::text || ’)
from ’ || quote_ident(node_table) ||’ as n where n.vid <>’ ||
vs::text; raise notice ’i finished to add arrival_time_function!’;
create table _queue_arr_time_ (vid bigint not null, tau double
precision not null, at_tau double precision not null, constraint
_queue_arr_time__pk1 primary key (vid,tau,at_tau)); create table
_control_node_subinterval_ (vid bigint not null, time_s double
precision not null, time_e double precision not null, constraint
_control_node_subinterval__pk1 primary key (vid)); create table
_subset_edgedelay_function_ (eid bigint not null, val_dir integer
not null, constraint _subset_edgedelay_function_pk primary key
(eid,val_dir)); perform addgeometrycolumn
(’dynamic_routing’,’_subset_edgedelay_function_’,
’tempgeom’,’-1’,’linestring’,2); create index edge_delay__geom_gist

on _subset_edgedelay_function_
using gist
(tempgeom);

for ltt in select * from arrival_time_function

109

B.1. Auxiliary tools

loop
insert into _queue_arr_time_
select ltt.vid, st_x(st_pointn(ltt.geom,n)), st_y(st_pointn(ltt.geom,n))
from generate_series(1,st_numpoints(ltt.geom)) as h(n);

end loop;
execute ’insert into _control_node_subinterval_
select n.vid,’|| ts::text ||’,’|| te::text ||
’ from ’ || quote_ident(node_table) || ’ as n
where n.vid = ’ || vs::text;
execute ’insert into _control_node_subinterval_
select n.vid,’ || 0::text || ’,’ || 0::text ||
’ from ’ || quote_ident(node_table) ||’ as n
where n.vid <>’ || vs::text;
execute
’insert into _subset_edgedelay_function_
select eid, val_dir, geom_’ || dw::text || ’
from ’ || quote_ident(edgedelay_table);
end;
$body$

language ’plpgsql’ volatile strict
cost 1;

---creating initial arrival-time functions tools

--all nodes in the graph except for start node:
create or replace function dr_others_g_function(
double precision, double precision)

returns geometry as
$body$
---$1 ts - initial interval time;
$2 te - end interval time;
$3 - node
select st_linefrommultipoint(st_collect(st_makepoint($1,($1+1)*90000),
st_makepoint($2,($2+1)*90000))) as geom
---90000 is something big enough to be considered ’infinity’
$body$

language ’sql’ immutable strict
cost 1;

--start node:
create or replace function dr_source_g_function(
double precision, double precision)

returns geometry as
$body$
---$1 ts - initial interval time;
$2 te - end interval time;
$3 - start node
select st_linefrommultipoint(st_collect(st_makepoint($1,$1),
st_makepoint($2,$2))) as geom
$body$

language ’sql’ immutable strict
cost 1;

B.1.3 Look-up tools
---Look-up X-value
create or replace function dr_max_startingtime_value(
geometry, double precision,
double precision)

returns double precision as
$body$
select case when
st_interSection($1,st_geometryfromtext(
’linestring(’ || ’0 ’ ||
($2::text) || ’,’ || ’1e37 ’ || ($2::text) || ’)’)) =

110

Appendix B. Solving TDSP problems in a database context

’geometrycollection empty’
then $3
else
st_xmin(st_interSection($1,st_geometryfromtext(
’linestring(’ || ’0 ’ || ($2::text) || ’,’ || ’1e37 ’ ||
($2::text) || ’)’)))
end
$body$

language ’sql’ immutable strict
cost 1;

---Look-up Y-value
create or replace function dr_delay_value(
geometry, double precision)

returns double precision as
$body$
select st_ymin(st_interSection(st_linefrommultipoint(

st_geometryfromtext(’multipoint(’ || ($2::text) || ’ 0,’ ||
($2::text) || ’ 1e+37)’)),$1))
$body$

language ’sql’ immutable strict
cost 1;

B.1.4 Update arrival-time functions tool
This couples the tools for add-up and to get the minimal of two functions.

create or replace function dr_arrivaltime_function(
geometry, geometry, geometry, double precision, double precision)

returns geometry as
$body$
---$1 arrival-time function of the node in iteration;
---$2 edge-delay function of the edge to be traversed;
---$3 arrival-time function of the node to be updated;
---$4/$5 start/end of interval of time to update
select st_linefrommultipoint(st_collect(st_makepoint(x.t,x.atnew)))
from (select q.t, case when (q.t >= $4 and q.t <= $5) then

case when (dr_delay_value($1,q.t) +
dr_delay_value($2,dr_delay_value($1,q.t)))
< dr_delay_value($3,q.t) then
(dr_delay_value($1,q.t) +
dr_delay_value($2,dr_delay_value($1,q.t)))
else dr_delay_value($3,q.t) end

else dr_delay_value($3,q.t) end as atnew
from (select st_x(st_pointn($1,n)) as t

from generate_series(1,st_numpoints($1)) as h(n)
where st_x(st_pointn($1,n)) >= $4 and st_x(st_pointn($1,n)) <= $5
union
select st_x(st_pointn($2,n)) as t
from generate_series(1,st_numpoints($2)) as h(n)

where st_x(st_pointn($2,n)) >= $4 and
st_x(st_pointn($2,n)) <= $5
union

select st_x(st_pointn($3,n)) as t
from generate_series(1,st_numpoints($3)) as h(n)
union
select $5 as t

) as q
order by q.t) as x

$body$
language ’sql’ immutable strict
cost 1;

111

B.2. Two-step LTT for TDSP-GDT

B.2 Two-step LTT for TDSP-GDT

B.2.1 Time-refinement step—TDSP-GDT

create or replace function dr_time_refinement_sg(edge_table varchar,
vs bigint, ve bigint, ts double precision, dw integer)
returns void as

$body$
---edge_table is the table with the edges of the graph;
---vs start node id;
---ve end node id;
---ts initial time of interval for departure time;
---te final time of interval for departure time;
---dw day of week;
declare
edg record; ltt record; tau_i double precision; g_ti double
precision; tau_k double precision; g_tk double precision; n_i
bigint; n_k bigint; countq integer; upd record; countupd integer;
begin tau_i := ts; tau_k := tau_i; countq = 0; while (select
count(*)

from _queue_arr_time_ as q
) >= 2 loop

countq = countq + 1; select q.vid, q.at_tau, q.tau
from _queue_arr_time_ as q
order by q.at_tau
limit 1 into n_i,g_ti,tau_i;

delete from _queue_arr_time_ where vid=n_i; select q.vid, q.at_tau,
q.tau

from _queue_arr_time_ as q
where q.vid <> n_i ---and q.active = true
order by q.at_tau
limit 1 into n_k,g_tk, tau_k;

for ltt in execute ’select * from _arrivaltime_ as at inner join ’
|| quote_ident(edge_table) || ’ as e on e.t_node=at.vid where
e.f_node=’ || n_i::text loop

select into upd n.vid, g_ti + dr_delay_value(n.geom,g_ti) as newat
from (select ltt.t_node as vid, ef.tempgeom as geom

from _edgedelay_function_ as ef
where ltt.id=ef.eid and ltt.val_dir=ef.val_dir) as n;

if upd.newat < (select arrivaltime from _arrivaltime_
where vid = upd.vid) then
execute ’delete from _queue_arr_time_ where vid = ’
|| upd.vid || ’;’;
execute ’update _arrivaltime_ set arrivaltime = ’
|| upd.newat || ’ where vid = ’
|| upd.vid || ’;’;
insert into _queue_arr_time_
select at.vid, at.time, at.arrivaltime
from _arrivaltime_ as at
where at.vid = upd.vid;

end if;
end loop;
if n_i = ve then

drop table _queue_arr_time_;
return;

end if; end loop;
end; $body$

language ’plpgsql’ volatile strict
cost 1;

B.2.2 Path-selection step—TDSP-GDT

112

Appendix B. Solving TDSP problems in a database context

create or replace function dr_pathselection(edge_table varchar,vs
bigint, ve bigint)

returns void as
$body$
declare v_j bigint; v_i bigint; edg record; g_j
numeric(20,2); g_i numeric(20,2); w_gi numeric(20,2); _check
numeric(20,2); id integer;
begin id = 0; _check = 0.99; v_j := ve;
if (select arrivaltime from _arrivaltime_ where vid = ve) > 86400
then

raise notice ’it was not possible to find a path’;
return;

else while v_j <> vs loop
for edg in execute ’select e.* from ’ || quote_ident(edge_table) || ’
as e inner join _arrivaltime_ as a
on e.f_node = a.vid where e.t_node = ’ || v_j::text
order by a.arrivaltime
loop

v_i := edg.f_node;
g_i := (select arrivaltime

from _arrivaltime_ as at
where at.vid = v_i);

g_j := (select arrivaltime
from _arrivaltime_ as at
where at.vid = v_j);

w_gi := (select dr_delay_value(ef.geom,g_j)
from _edgedelay_function_ as ef
where ef.eid = edg.id and ef.val_dir = edg.val_dir);

if (g_j / (g_i + w_gi)) > _check then
v_j := v_i;
id = id + 1;
insert into paths values (id, edg.id, edg.val_dir);
exit;

end if;
end loop;

end loop; end if; end; $body$
language ’plpgsql’ volatile strict
cost 1;

B.2.3 Shortest-path request—TDSP-GDT

create or replace function dr_2std_shortest_path(edge_table varchar,
node_table varchar, edgedelay_table varchar, vs bigint, ve bigint,
ts double precision, dw integer)

returns record as
$body$
---node_table is the table with the nodes of the graph;
---edge_table is the table with the edges of the graph;
---edgedelay_table is the table with the edge-delay functions;
---vs start node id;
---ve end node id;
---ts initial time of interval for departure time;
---te final time of interval for departure time;
---dw day of week;
declare traveltime numeric(10,2); distance numeric(10,2); result
record; begin perform dr_initialize(node_table,
edgedelay_table,vs,ve,ts,dw); perform
dr_time_refinement(edge_table,vs,ve,ts,dw); perform
dr_pathselection(edge_table,vs,ve); if (select count(*) from paths)
> 0 then

traveltime := (select at.arrivaltime - ts
from _arrivaltime_ as at
where at.vid = ve);

distance := (select sum(s.meters) from shortest_path as s)/1000;

113

B.3. Two-step LTT for TDSP-LTT

else
distance := 0;
traveltime := 0;

end if; result := (traveltime, distance); --drop table
arrivaltime; drop table _edgedelay_function_; return result; end;
$body$

language ’plpgsql’ volatile strict
cost 1;

B.3 Two-step LTT for TDSP-LTT

B.3.1 Auxiliary tools

create or replace function dr_initialtime_to_update
(nodeid bigint, tau_i double precision)

returns double precision as
$body$
--vid is the node identifier;
--tau_i is the lower bound of the subinterval to be updated,
--determined in the main code;
declare
upd_ts double precision;
wr_te double precision;
begin
wr_te := (select time_e

from _control_node_subinterval_
where vid = nodeid);

if wr_te <= tau_i then
upd_ts := tau_i;

else
upd_ts := wr_te;

end if;
return upd_ts;
end;
$body$

language ’plpgsql’ immutable strict
cost 1;

create or replace function dr_finaltime_to_update
(nodeid bigint, tau_prime double precision)

returns double precision as
$body$
--vid is the node identifier;
--tau_prime is the upper bound of the subinterval to be updated,
--determined in the main code;
declare
upd_te double precision;
wr_te double precision;
begin
wr_te := (select time_e

from _control_node_subinterval_
where vid = nodeid);

if wr_te < tau_prime then
upd_te := tau_prime;

else
upd_te := 0;

end if;
return upd_te;
end;
$body$

language ’plpgsql’ immutable strict
cost 1;

114

Appendix B. Solving TDSP problems in a database context

B.3.2 Time-refinement step—TDSP-LTT

create or replace function dr_time_refinement(edge_table character
varying, vs bigint, ve bigint, ts double precision, te double
precision, dw integer)

returns void as
$body$ -- edge_table is the table that holds the edges of the graph;
--vs is the identifier of source node for the shortest path request;
--ve is the identifier of destination node for the shortest path
request; --ts is the lower bound of absolute time (in seconds along
the day) of an interval in which the shortest path request (least
travel time) is made; --te is the upper bound of absolute time (in
seconds along the day) of an interval in which the shortest path
request (least travel time) is made; --dw is the day of the week (1
- sunday up to 7 - saturday) declare ltt record; -- to fetch rows of
a table in loop inside the algorithm tau_i double precision; --
lower bound of subinterval (absolute time in seconds along the day)
in which the outgoing nodes from the current in iteration will be
updated (and the node in iteration is well-defined) tau_prime double
precision; -- upper bound of subinterval (absolute time in seconds
along the day) in which the outgoing nodes from the current in
iteration will be updated (and the node in iteration is
well-defined) upd_tau_i double precision; upd_tau_prime double
precision; g_ti double precision; -- arrival-time function value
dequeued (the node that will enter in iteration) tau_k double
precision; -- departure time (absolute time in seconds along the
day) of the next node-pair(departure time, arrival-time) in the
queue g_tk double precision; -- arrival-time function value of the
next node-pair(departure time, arrival-time) in the queue geo_ti
geometry; -- arrival-time function of the node in current iteration
delta double precision; -- parameter of the algorithm that together
with g_tk allows to identify the subinterval in which the node in
iteration is well-defined (and then we can update the outgoing nodes
on the basis of that) n_i bigint; -- node identifier of the node in
current iteration n_k bigint; -- node identifier of the next node in
the queue upd arrival_time_function; -- to get the updated
arrival-time function and then update in the table
arrival_time_function countq integer; -- debug stuff _now
timestamp;-- performance check stuff perf timestamp;-- performance
check stuff
begin
tau_i := ts; tau_k := tau_i; --raise notice ’value
of variable after operation =
--%’, tau_i;
while (select count(*)

from _queue_arr_time_ as q
) >= 2 loop

--_now := clock_timestamp();
---dequeue part
countq := (select count(*) from _queue_arr_time_);
raise notice ’countq %’, countq;
select q.vid, q.at_tau, q.tau

from _queue_arr_time_ as q
order by q.at_tau
limit 1 into n_i,g_ti,tau_i;

delete from _queue_arr_time_ where vid=n_i and tau=tau_i; select
q.vid, q.at_tau, q.tau

from _queue_arr_time_ as q
where q.vid <> n_i ---and q.active = true
order by q.at_tau
limit 1 into n_k,g_tk, tau_k;

raise notice ’n_i =
%’, n_i;
if g_tk is null then

g_tk := 2592090000;
end if; geo_ti := (select a.geom from arrival_time_function as a

115

B.3. Two-step LTT for TDSP-LTT

where a.vid = n_i); --perf := clock_timestamp();
--raise notice ’%’, extract(second from perf - _now);
--raise notice ’tau_i =
-- %’, tau_i;
---subinterval part
--_now := clock_timestamp(); if n_i = vs then

tau_prime := te::numeric(10,2);
else

if g_tk > 86400 then
tau_prime := te;

else
--_now := clock_timestamp();

execute ’select min(dr_delay_value(f.tempgeom,’|| g_tk::text || ’))
from ’ || quote_ident(edge_table) ||’ as e inner join
_subset_edgedelay_function_ as f on e.id=f.eid
where e.t_node =’ || n_i::text into delta;

--perf := clock_timestamp();
--raise notice ’%’, extract(second from perf - _now);

tau_prime := (select dr_max_startingtime_value
(geo_ti,g_tk + delta,te));
-- raise notice ’tau_prime =
-- %’, tau_prime;
end if;

end if; --countq := (select count(*) from _queue_arr_time_);
-- raise notice ’countq =
-- %’, countq;
delete from _queue_arr_time_ as q where q.vid = n_i and q.tau >=
tau_i and q.tau <= tau_prime; --countq := (select count(*) from
_queue_arr_time_); -- raise notice ’countq =
-- %’, countq;
--_now := clock_timestamp(); if n_i <> vs then

update _control_node_subinterval_ set time_s = case when time_s = 0
then tau_i else time_s end, time_e = tau_prime where vid = n_i;

end if;

--perf := clock_timestamp();
--raise notice ’%’, extract(second from perf - _now);
---update part
if tau_i < tau_prime then for ltt in execute ’select * from
arrival_time_function as at inner join ’ || quote_ident(edge_table)
|| ’ as e on e.t_node=at.vid where e.f_node=’ || n_i::text loop

upd_tau_i := dr_initialtime_to_update(ltt.t_node,tau_i);
upd_tau_prime := dr_finaltime_to_update(ltt.t_node,tau_prime);
--raise notice ’upd_tau_prime = %’, upd_tau_prime;
if upd_tau_prime > 0 then

-- _now := clock_timestamp();
select into upd n.vid, st_simplify(
dr_arrivaltime_function(geo_ti,n.geom,ltt.geom,upd_tau_i,upd_tau_prime),0)

from (select ltt.t_node as vid, ef.tempgeom as geom
from _subset_edgedelay_function_ as ef
where ltt.id=ef.eid and ltt.val_dir=ef.val_dir) as n;

---raise notice ’upd.geom %’, st_astext(upd.geom);
-- raise notice ’%’, st_numpoints(upd.geom);
update arrival_time_function set geom = st_simplify(upd.geom,0)
where vid = upd.vid;

--perf := clock_timestamp();
--raise notice ’perf = %’, extract(second from perf - _now);

--raise notice ’upd.vid %’,upd.vid;
--raise notice ’i finished updating!’;

---queueing part
--_now := clock_timestamp();

delete from _queue_arr_time_ where vid=ltt.t_node and tau >= upd_tau_i
and tau <= upd_tau_prime;
insert into _queue_arr_time_
select upd.vid, st_x(st_pointn(upd.geom,n)), st_y(st_pointn(upd.geom,n))
from generate_series(1,st_numpoints(upd.geom)) as h(n)
where st_x(st_pointn(upd.geom,n)) >= upd_tau_i

116

Appendix B. Solving TDSP problems in a database context

and st_x(st_pointn(upd.geom,n)) <= upd_tau_prime;
end if;

--perf := clock_timestamp();
--raise notice ’%’, extract(second from perf - _now);
end loop;
---final part
--countq := (select count(*) from _queue_arr_time_); --delete from
_queue_arr_time_ as q using _control_node_subinterval_ as c where
q.vid = n_i and q.tau >= c.time_s and q.tau <= c.time_e; --perf :=
clock_timestamp();
--raise notice ’%’, extract(second from perf - _now);
--_now := clock_timestamp(); --raise notice ’i finished inserting
to queue!’; tau_i := tau_prime; if tau_i >= te then

if n_i = ve then
--drop table _queue_arr_time_;
delete from _queue_arr_time_;
return;

end if;
else

insert into _queue_arr_time_
select at.vid, tau_prime, g_tk + delta
from arrival_time_function as at
where at.vid=n_i;

end if; --perf := clock_timestamp();
--raise notice ’%’, extract(second from perf - _now);
end if; end loop; end; $body$

language ’plpgsql’ volatile strict
cost 1;

B.3.3 Path-selection step—TDSP-LTT

create or replace function dr_pathselection_sg(edge_table varchar,vs
bigint, ve bigint, t_opt double precision)

returns void as
$body$
declare v_j bigint; v_i bigint; edg record; id integer;
seg_path nldnld_nw; g_j numeric(20,2); g_i numeric(20,2); w_gi
numeric(20,2); _check numeric(20,2);
begin
_check = 0.99; v_j := ve;
id := 0; while v_j <> vs loop

for edg in execute ’select * from ’ || quote_ident(edge_table) || ’
where t_node = ’ || v_j::text
loop
raise notice ’edg.f_node=%’, edg.f_node;

v_i := edg.f_node;
raise notice ’v_i=%’, v_i;
g_i := (select dr_delay_value(at.geom, t_opt)

from arrival_time_function as at
where at.vid = v_i);
raise notice ’g_i=%’, g_i;

g_j := (select dr_delay_value(at.geom, t_opt)
from arrival_time_function as at
where at.vid = v_j);
raise notice ’g_j=%’, g_j;

w_gi := (select dr_delay_value(ef.tempgeom,g_j)
from _subset_edgedelay_function_ as ef
where ef.eid = edg.id and ef.val_dir = edg.val_dir);
raise notice ’w_gi=%’, w_gi;
raise notice ’g_j-g_i=%’, g_j-g_i;

if (g_j / (g_i + w_gi)) > _check then
v_j := v_i;
id = id + 1;
raise notice ’v_i=%’, v_j;
insert into paths values (id, edg.id, edg.val_dir);

117

B.3. Two-step LTT for TDSP-LTT

exit;
end if;

end loop;
end loop; end; $body$

language ’plpgsql’ volatile strict
cost 1;

B.3.4 Shortest-path request—TDSP-LTT

create or replace function dr_2std_shortest_path_sg(edge_table
varchar, node_table varchar, edgedelay_table varchar, vs bigint, ve
bigint, ts double precision, te double precision, dw integer)

returns record as
$body$
declare traveltime numeric(10,2); distance numeric(10,2);
t_star numeric(10,2); result record;
begin
perform
dr_initialize(node_table,edgedelay_table, vs,ve,ts,te,dw);
perform
dr_time_refinement(edge_table,vs,ve,ts,te,dw);
t_star := (select
dr_optimal_startingtime(geom)

from arrival_time_function
where vid = ve);

perform dr_pathselection(edge_table,vs,ve,t_star); if (select
count(*) from paths) > 0 then
traveltime := (select dr_delay_value(geom,t_star) - ts

from arrival_time_function
where vid = ve);

distance := (select sum(s.meters) from shortest_path_sg as s)/1000;
else

distance := 0;
traveltime := 0;

end if; result := (t_star,traveltime, distance); drop table
_subset_edgedelay_function_; drop table _control_node_subinterval_;
return result; end; $body$

language ’plpgsql’ volatile strict
cost 1;

118

Appendix C

Optimization procedures

C.1 Sequence of commands for the trivial graph sim-
plification

create table subset_dissolved_edges (id integer, network_id bigint
not null, constraint subset_dissolved_edges_pk primary key
(network_id));

alter table subset_dissolved_edges add column seq serial;

create table subset_nldnld_nw (like nldnld_nw including
constraints); alter table subset_nldnld_nw add constraint
subset_nldnld_nw_pk primary key (gid)

insert into subset_nldnld_nw select n.* from nldnld_nw as n where
(n.frc = 1 or n.frc = 0) and
st_within(n.geom,st_setsrid(st_makebox3d(
st_makepoint(4.2378,51.7516),st_makepoint(5.68852,52.62677)),4326));

create table subset_nldnld_jc (like nldnld_jc including
constraints); alter table subset_nldnld_jc add constraint
subset_nldnld_jc_pk primary key (gid)

create table subset_node (vid bigint not null, constraint
subset_node_pk primary key (vid));

insert into subset_node select q.nid from (select f_jnctid as nid
from subset_nldnld_nw union all select t_jnctid as nid from
subset_nldnld_nw) as q group by q.nid having count(*) = 1 or
count(*) > 2;

select distinct r.* from subset_nldnld_nw as r, (select j.geom from
subset_nldnld_jc as j where j.id not in (select * from subset_node
as n)) as v where st_intersects(v.geom,r.geom);

insert into subset_nldnld_jc select j.* from nldnld_jc as j inner
join subset_node as n on j.id = n.vid

create or replace function dr_dissolve_edges() returns void as
$$
declare v_j bigint; seg_id bigint; e_id integer; edg record; begin
e_id := 0; for edg in select * from subset_edge_majroad where f_node
in (select vid from subset_node) loop

e_id := e_id + 1;
v_j := edg.t_node;
raise notice ’v_j %’, v_j;

119

C.2. Generating aggregated edge-delay functions

insert into subset_dissolved_edges
(network_id, id) values (edg.id, e_id);
while not v_j in (select vid from subset_node) loop
seg_id := (select id from subset_edge_majroad
where f_node = v_j);
raise notice ’seg_id %’, seg_id;
raise notice ’e_id %’, e_id;
insert into subset_dissolved_edges (network_id, id)
values (seg_id, e_id);
v_j := (select t_node from subset_edge_majroad
where id = seg_id);
raise notice ’v_j %’, v_j;

end loop;
end loop; end;
$$
language ’plpgsql’ volatile strict cost 1;

select dr_dissolve_edges();

create table subset_edge_majroad (like edge_majroad including
constraints);

insert into subset_edge_majroad select e.* from edge_majroad as e
inner join subset_nldnld_nw as r on e.id = r.id;

create table subset_edge_majroad_simplified (like edge_majroad
including constraints); alter table subset_edge_majroad_simplified
add constraint subset_edge_majroad_simplified_pk primary key
(id,val_dir);

insert into subset_edge_majroad_simplified
(id,f_node,val_dir,length) select e.id, m.f_node, m.val_dir,
m.length from subset_edge_majroad as m inner join (select d.* from
(select min(seq) from subset_dissolved_edges group by id) as o inner
join subset_dissolved_edges as d on o.min=d.seq) as e on
e.network_id = m.id;

update subset_edge_majroad_simplified as s set t_node = l.t_node
from (select e.id, m.t_node from subset_edge_majroad as m inner join
(select d.* from (select max(seq) from subset_dissolved_edges group
by id) as o inner join subset_dissolved_edges as d on o.max=d.seq)
as e on e.network_id = m.id) as l where l.id = s.id;

create table edge_delay_function (like _edge_delay_function_
including constraints); alter table edge_delay_function add
constraint egde_delay_function_pk primary key (eid,val_dir);

insert into edge_delay_function select n.id, n.val_dir,
st_snaptogrid(st_scale(st_simplify(s.geominv,0),
1,n.length*3.6/n.spfreeflow),0,0.01)
from (select edg.id, edg.val_dir, edg.length, case when p.spfreeflow
> 0 then p.spfreeflow else p.spweekday end as spfreeflow,

case when p.profile_4 = 0 then 1 else p.profile_4
end as profile

from nldnld_hsnp as p, subset_edge_majroad as edg
where edg.id=p.network_id and edg.val_dir=p.val_dir) as n,
speed_profile_function as s

where s.pid=n.profile;

C.2 Generating aggregated edge-delay functions

create or replace function dr_aggregate_edgedelay(dw integer)
returns void as

120

Appendix C. Optimization procedures

$$
declare c integer; e record; geos geometry; geo geometry;
param_query text; i_plus integer; begin for e in select distinct id
from subset_edge_majroad_simplified loop

c := (select count(*) from subset_dissolved_edges where id = e.id);
RAISE NOTICE ’e.id %’, e.id;
if (c-1) > 0 then

param_query := ’select st_collect(f.geom_’ || dw::text || ’)
from edge_delay_function as f
inner join subset_dissolved_edges as d
on f.eid = d.network_id
where d.id = ’ || e.id::text;

execute param_query into geos;
RAISE NOTICE ’ geos %’, st_astext(geos);
i_plus := 1;
geo := (select st_geometryn(geos,i_plus));
RAISE NOTICE ’ geo %’, st_astext(geo);
for i in 1..(c-1) loop

i_plus := i + 1;
geo := (select st_snaptogrid(st_simplify(
dr_aggregated_edgedelay(geo,
st_geometryn(geos,i_plus)),0),0,0.01));

end loop;
RAISE NOTICE ’ geo %’, st_astext(geo);
update subset_edgedelay_function set tempgeom = geo
where eid=e.id;

else
param_query := ’select f.geom_’ || dw::text || ’

from edge_delay_function as f
inner join subset_dissolved_edges as d
on f.eid = d.network_id
where d.id = ’ || e.id::text;

execute param_query into geo;
RAISE NOTICE ’ geo %’, st_astext(geo);
update subset_edgedelay_function set tempgeom = geo
where eid=e.id;

end if;
end loop; end;
$$
language ’plpgsql’ volatile strict cost 1;

create table subset_edgedelay_function (eid integer not null,
val_dir smallint not null,
constraint subset_edgedelay_function_pk primary key (eid,val_dir)

) select AddGeometryColumn
(’dynamic_routing’,’subset_edgedelay_function’,
’tempgeom’,’-1’,’LINESTRING’,2);

insert into subset_edgedelay_function select id, val_dir from
subset_edge_majroad_simplified

select dr_aggregate_edgedelay(1); update subset_edgedelay_function
set geom_1 = tempgeom; select dr_aggregate_edgedelay(2); update
subset_edgedelay_function set geom_2 = tempgeom; select
dr_aggregate_edgedelay(3); update subset_edgedelay_function set
geom_3 = tempgeom; select dr_aggregate_edgedelay(4); update
subset_edgedelay_function set geom_4 = tempgeom; select
dr_aggregate_edgedelay(5); update subset_edgedelay_function set
geom_5 = tempgeom; select dr_aggregate_edgedelay(6); update
subset_edgedelay_function set geom_6 = tempgeom; select
dr_aggregate_edgedelay(7); update subset_edgedelay_function set
geom_7 = tempgeom;

121

C.3. Sequence of commands for the dense subgraph simplification

C.2.1 Aggregated edge-delay function algorithm

create or replace function dr_aggregated_edgedelay(geometry,
geometry) returns geometry as $body$
---here as we know that between after 21:30 and 5:00 of the next
---day the relative speed is 100%,
---we can assume the last delay value of the day as the one to be
---added after the domain
---of the second function would be finished (went around to the next day)
select st_linefrommultipoint(st_collect(st_makepoint(q.t,q.delay)))
from (select p.t, case when (p.t + dr_delay_value($1,p.t)) > 86400
then

dr_delay_value($1,p.t) + dr_delay_value($2,0)
else dr_delay_value($1,p.t) + dr_delay_value($2, p.t
+ dr_delay_value($1,p.t)) end
as delay

from (select st_x(st_pointn($1,n)) as t from
generate_series(1,st_numpoints($1)) as h(n) union select
st_x(st_pointn($2,n)) from generate_series(1,st_numpoints($2)) as
h(n)) as p order by p.t) as q $body$ language ’sql’ immutable strict
cost 1;

C.3 Sequence of commands for the dense subgraph
simplification

create table cluster_pol (id integer not null, constraint
cluster_pol_pk primary key (id));

select addgeometrycolumn
(’dynamic_routing’,’cluster_pol’,’geom’,’4326’,’POLYGON’,2);

---polygons created in QuantumGIS.

C.4 Identify entry nodes and exit nodes

create or replace function dr_entry_nodes(edge_table character
varying)

returns setof bigint as
$body$
---edge_table is the table that holds the edges inside a tile;
declare edg record; c integer; begin for edg in execute ’select *
from ’|| quote_ident(edge_table) loop

execute ’select count(*) from ’ || quote_ident(edge_table) || ’
where t_node = ’ || edg.f_node into c;
if c = 0 then

return next edg.f_node;
end if;

end loop; end; $body$
language ’plpgsql’ immutable strict
cost 1
rows 1000;

create or replace function dr_exit_nodes(edge_table character
varying)

returns setof bigint as
$body$
---edge_table is the table that holds the edges inside a tile;

122

Appendix C. Optimization procedures

declare edg record; c integer; begin for edg in execute ’select *
from ’|| quote_ident(edge_table) loop

execute ’select count(*)::text from ’ || quote_ident(edge_table)
|| ’ where f_node = ’ || edg.t_node into c;
if c = 0 then

return next edg.t_node;
end if;

end loop; end; $body$
language ’plpgsql’ immutable strict
cost 1
rows 1000;

C.4.1 Precomputation of least-delay functions and graph sim-
plification

This code performs all the clusters at once.

create or replace function dr_precomputation_cluster(nw_table
varchar, edge_table varchar, collap_edge_table varchar,
edgedelay_table varchar, dis_edge_table varchar, collap_edgedelay
varchar, cluster_table varchar) returns void as
$$
---nw_table is the table with the (geometry) network (2-core)
---collap_edge_table is the table with the collapsed egdes (2-core)
---dis_edge_table is the link table collap_edge_table - edge_table
---edge_table is the table with the original edges
---edgedelay_table is the table with the edge-delay functions
---collap_edgedelay has the edge-delay functions of the
---collapsed edges (2-core)
---cluster_table is the table with the zones to be simplified
declare clu record; begin create table tile_edge (

id bigint not null,
val_dir smallint not null,
f_node bigint,
t_node bigint,
length double precision,
constraint tile_edge_pk1 primary key (id, val_dir)

); create table control_tile_edge (
id bigint not null,
val_dir smallint not null,
constraint control_tile_edge_pk1 primary key (id,val_dir)

); create unique index tile_edge_idx
on tile_edge
using btree
(id, val_dir);

create index tile_egde_tnode_idx
on tile_edge
using btree
(t_node);

create table tile_entrynode (
vid bigint not null,
constraint tile_entrynode_pk1 primary key (vid)

);

create table tile_exitnode (
vid bigint not null,
constraint tile_exitnode_pk1 primary key (vid)

); create table tile_vgraph (
f_node bigint,
t_node bigint,
constraint tile_vgraph_pk1 primary key (f_node,t_node)

123

C.4. Identify entry nodes and exit nodes

); create table tile_edgedelay (
eid bigint not null,
val_dir smallint not null,
constraint tile_egdedelay_pk primary key (eid, val_dir));

perform addgeometrycolumn
(’dynamic_routing’,’tile_edgedelay’,’geom’,’-1’,’linestring’,2);
perform addgeometrycolumn
(’dynamic_routing’,’tile_vgraph’,’geom’,’-1’,’linestring’,2);
create
table simplified_edge (

id bigint not null,
val_dir smallint not null,
f_node bigint,
t_node bigint,
length double precision,
constraint simplified_edge_pk1 primary key (id, val_dir)

);

create unique index simplified_edge_idx
on simplified_edge
using btree
(id, val_dir);

create index simplified_egde_tnode_idx
on simplified_edge
using btree
(t_node);

create table simplified_edgedelay (
eid bigint not null,
val_dir integer not null,
constraint simplified_egdedelay_pk primary key (eid, val_dir));

perform addgeometrycolumn
(’dynamic_routing’,’simplified_edgedelay’,
’geom_2’,’-1’,’linestring’,2);
create table simplified_node (

vid bigint not null,
constraint nonsimplified_node_pk1 primary key (vid)

); for clu in execute ’select * from ’
|| quote_ident(cluster_table)
loop

execute
---fetch ’mesh’of the graph inside the defined cluster
’insert into tile_edge
select e.id, e.val_dir, e.f_node, e.t_node, e.length
from ’ || quote_ident(edge_table) || ’ as e,
(select d.network_id as id
from ’ || quote_ident(nw_table) ||
’ as e inner join ’ || quote_ident(dis_edge_table) ||
’ as d on e.id = d.id
where st_within(geom,st_setsrid(st_geomfromtext(’’’ ||
st_astext(clu.geom)::text || ’’’),4326))) as g
where e.id = g.id’;
---getting the edges to control the rest of the graph
insert into control_tile_edge
select id, val_dir
from tile_edge;
---identify entry nodes
insert into tile_entrynode
select distinct *
from dr_entry_nodes(’tile_edge’);
---identify exit nodes
insert into tile_exitnode
select distinct *
from dr_exit_nodes(’tile_edge’);
---fetch edge-delay functions
execute
’insert into tile_edgedelay

124

Appendix C. Optimization procedures

select f.eid, f.val_dir, f.geom_2
from tile_edge as e inner join ’|| quote_ident(edgedelay_table)
|| ’ as f on e.id = f.eid and e.val_dir = f.val_dir’;
---creating all-pairs combinations between entry nodes and other nodes
insert into tile_vgraph
select n.vid as f_node, v.vid as t_node
from tile_entrynode as n,
(select t_node as vid
from tile_edge
where t_node not in (select vid from tile_entrynode)
union
select f_node
from tile_edge
where f_node not in (select vid from tile_entrynode)) as v;
---initialize least-delay functions
update tile_vgraph set geom = dr_others_g_function(0,86400);
---compute least-delay functions
perform dr_least_delay_function
(’tile_vgraph’, ’tile_edge’, ’tile_edgedelay’,
’tile_entrynode’);
---creating the simplified edges for entry x exit nodes
insert into simplified_edge
select (substring(f_node::text from 9) ||
substring(t_node::text from 9))::bigint,
1, f_node, t_node
from tile_vgraph
where t_node in (select vid from tile_exitnode) and not geom =
dr_others_g_function(0,86400);
---inserting the precomputed least-delay functions
insert into simplified_edgedelay
select (substring(f_node::text from 9) ||
substring(t_node::text from 9))::bigint,
1, geom
from tile_vgraph
where t_node in (select vid from tile_exitnode) and not geom =
dr_others_g_function(0,86400);
---clean-up tables for the next cluster
delete from tile_edge;
delete from tile_entrynode;
delete from tile_exitnode;
delete from tile_edgedelay;
delete from tile_vgraph;
raise notice ’going for other cluster...’;

end loop;
---getting the rest of the graph
execute ’insert into simplified_edge select * from ’ ||
quote_ident(collap_edge_table) || ’ where id not in (select distinct
d.id from ’ || quote_ident(dis_edge_table) || ’ as d inner join
control_tile_edge as e on d.network_id = e.id)’; insert into
simplified_node select t_node from simplified_edge union select
f_node from simplified_edge; execute ’insert into
simplified_edgedelay select distinct e.eid, e.val_dir, e.geom_2 from
’ || quote_ident(dis_edge_table) || ’ as d inner join ’ ||
quote_ident(collap_edgedelay) ||’ as e on d.id=e.eid where
d.network_id not in (select id from control_tile_edge)’; drop table
tile_edge; drop table tile_entrynode; drop table tile_exitnode; drop
table tile_edgedelay; drop table tile_vgraph; drop table
control_tile_edge; end;
$$
language ’plpgsql’ volatile strict cost 1;

This sequence of code is to perform each clusters per time.

create table simplified_edge (
id bigint not null,

125

C.4. Identify entry nodes and exit nodes

val_dir smallint not null,
f_node bigint,
t_node bigint,
length double precision,
constraint simplified_edge_pk1 primary key (id, val_dir)

);

create unique index simplified_edge_idx
on simplified_edge
using btree
(id, val_dir);

create index simplified_egde_tnode_idx
on simplified_edge
using btree
(t_node);

create table simplified_edgedelay (
eid bigint not null,
val_dir integer not null,
constraint simplified_egdedelay_pk primary key (eid, val_dir));

perform addgeometrycolumn
(’dynamic_routing’,’simplified_edgedelay’,’geom_2’,
’-1’,’linestring’,2);
create table simplified_node (

vid bigint not null,
constraint nonsimplified_node_pk1 primary key (vid)

);

create table control_tile_edge (
id bigint not null,
val_dir smallint not null,
constraint control_tile_edge_pk1 primary key (id,val_dir)

);

create or replace function dr_precomputation_percluster(clus
geometry, nw_table character varying, edge_table character varying,
collap_edge_table character varying, edgedelay_table character
varying,
dis_edge_table character varying, collap_edgedelay character varying)
returns void as

$body$
---nw_table is the table with the (geometry) network (2-core)
---collap_edge_table is the table with the collapsed egdes (2-core)
---dis_edge_table is the link table collap_edge_table - edge_table
---edge_table is the table with the original edges
---edgedelay_table is the table with the edge-delay functions
---collap_edgedelay has the edge-delay functions of the
---collapsed edges (2-core)
---clus is the dense subgraph zone to be simplified
begin create table tile_edge (

id bigint not null,
val_dir smallint not null,
f_node bigint,
t_node bigint,
length double precision,
constraint tile_edge_pk1 primary key (id, val_dir)

);

create unique index tile_edge_idx
on tile_edge
using btree
(id, val_dir);

create index tile_egde_tnode_idx
on tile_edge
using btree
(t_node);

126

Appendix C. Optimization procedures

create table tile_entrynode (
vid bigint not null,
constraint tile_entrynode_pk1 primary key (vid)

); create table tile_exitnode (
vid bigint not null,
constraint tile_exitnode_pk1 primary key (vid)

); create table tile_vgraph (
f_node bigint,
t_node bigint,
constraint tile_vgraph_pk1 primary key (f_node,t_node)

); create table tile_edgedelay (
eid bigint not null,
val_dir smallint not null,
constraint tile_egdedelay_pk primary key (eid, val_dir));

perform addgeometrycolumn
(’dynamic_routing’,’tile_edgedelay’,’geom’,’-1’,’linestring’,2);
perform addgeometrycolumn
(’dynamic_routing’,’tile_vgraph’,’geom’,’-1’,’linestring’,2);

execute
---fetch ’mesh’of the graph inside the defined cluster
’insert into tile_edge
select e.id, e.val_dir, e.f_node, e.t_node, e.length
from ’ || quote_ident(edge_table) || ’ as e,
(select d.network_id as id
from ’ || quote_ident(nw_table) ||
’ as e inner join ’ || quote_ident(dis_edge_table) ||
’ as d on e.id = d.id
where st_within(geom,st_setsrid(st_geomfromtext(’’’ ||
st_astext(clus)::text || ’’’),4326))) as g
where e.id = g.id’;
---getting the edges to control the rest of the graph
insert into control_tile_edge
select id, val_dir
from tile_edge;
---identify entry nodes
insert into tile_entrynode
select distinct *
from dr_entry_nodes(’tile_edge’);
---identify exit nodes
insert into tile_exitnode
select distinct *
from dr_exit_nodes(’tile_edge’);
---fetch edge-delay functions
execute
’insert into tile_edgedelay
select f.eid, f.val_dir, f.geom_2
from tile_edge as e inner join ’|| quote_ident(edgedelay_table) || ’ as f
on e.id = f.eid and e.val_dir = f.val_dir’;
---creating all-pairs combinations between entry nodes and other nodes
insert into tile_vgraph
select n.vid as f_node, v.vid as t_node
from tile_entrynode as n,
(select t_node as vid
from tile_edge
where t_node not in (select vid from tile_entrynode)
union
select f_node
from tile_edge
where f_node not in (select vid from tile_entrynode)) as v;
---initialize least-delay functions
update tile_vgraph set geom = dr_others_g_function(0,86400);
---compute least-delay functions
perform dr_least_delay_function(’tile_vgraph’, ’tile_edge’,
’tile_edgedelay’,
’tile_entrynode’);

127

C.4. Identify entry nodes and exit nodes

---creating the simplified edges for entry x exit nodes
insert into simplified_edge
select (substring(f_node::text from 9) ||
substring(t_node::text from 9))::bigint,
1, f_node, t_node
from tile_vgraph
where t_node in (select vid from tile_exitnode) and not geom =
dr_others_g_function(0,86400);
---inserting precomputed least-delay functions for simplified edges
insert into simplified_edgedelay
select (substring(f_node::text from 9) ||
substring(t_node::text from 9))::bigint,
1, geom
from tile_vgraph
where t_node in (select vid from tile_exitnode) and not geom =
dr_others_g_function(0,86400);
---clean-up tables for the next cluster
delete from tile_edge;
delete from tile_entrynode;
delete from tile_exitnode;
delete from tile_edgedelay;
delete from tile_vgraph;

drop table tile_edge; drop table tile_entrynode; drop table
tile_exitnode; drop table tile_edgedelay; drop table tile_vgraph;
end; $body$

language ’plpgsql’ volatile strict
cost 1;

create or replace function dr_get_rest_graph(
collap_edge_table character varying,
dis_edge_table character varying,
collap_edgedelay character varying)
returns void as

$body$
---collap_edge_table is the table with the collapsed egdes (2-core)
---dis_edge_table is the link table collap_edge_table - edge_table
---collap_edgedelay has the edge-delay functions
---of the collapsed edges (2-core)
begin execute ’insert into simplified_edge select * from ’ ||
quote_ident(collap_edge_table) || ’ where id not in
(select distinct d.id from ’ || quote_ident(dis_edge_table)
|| ’ as d inner join
control_tile_edge as e on d.network_id = e.id)’;
insert into simplified_node
select t_node from simplified_edge union select
f_node from simplified_edge; execute ’insert into
simplified_edgedelay select distinct e.eid, e.val_dir, e.geom_2 from
’ || quote_ident(dis_edge_table) || ’ as d inner join ’ ||
quote_ident(collap_edgedelay) ||’ as e on d.id=e.eid where
d.network_id not in (select id from control_tile_edge)’; end;
$body$

language ’plpgsql’ volatile strict
cost 1;

C.4.2 Average performance tests

Performance check for varying distance and fixed time interval for departure.

create or replace function dr_opt_performance_test
(edge_table character varying, node_table character varying,
edgedelay_table character varying, vs bigint, ts double precision,
te double precision, dw integer)

returns setof interval as

128

Appendix C. Optimization procedures

$body$
---edge_table is the table that holds the simplified edges;
---node_table is the table that holds the simplified nodes;
---edgedelay_table is the table that holds the least-delay functions;
---vs is the start node for the search;
---ts is the initial time of the interval of departure for refinement;
---te is the final time of the interval of departure for refinement;
---dw is the day of the week;
declare
result interval;
initime timestamp;
finaltime timestamp;
n record;
begin
for n in execute ’select * from ’ || quote_ident(node_table) ||
’ where vid <> ’ || vs::text || ’ limit 20’ loop

initime := clock_timestamp();
perform dr_initialize(node_table,edgedelay_table, vs,n.vid,ts,te,dw);
perform dr_time_refinement(edge_table,vs,n.vid,ts,te,dw);
finaltime := clock_timestamp();
delete from arrival_time_function;
drop table _control_node_subinterval_;
drop table _subset_edgedelay_function_;
drop table _queue_arr_time_;
result := (select finaltime - initime);
raise notice ’going for the next round’;
return next result;

end loop;
end;
$body$

language ’plpgsql’ volatile strict
cost 1
rows 1000;

Performance check for fixed distance and varying time interval for depar-
ture.

create or replace function dr_opt_performance_time_test
(edge_table character varying, node_table character varying,
edgedelay_table character varying, vs bigint, ve bigint, dw integer)

returns setof interval as
$body$
---edge_table is the table that holds the simplified edges;
---node_table is the table that holds the simplified nodes;
---edgedelay_table is the table that holds the least-delay functions;
---vs is the start node for the search;
---ve is the target node for the search;
---dw is the day of the week;
declare
result interval;
initime timestamp;
finaltime timestamp;
te double precision;
r double precision;
n integer;
begin
n = 0;
while n < 20 loop

r := (select random());
te := (select case when r < 0.8333333 then 29400 else 28800 + r*7200 end);
initime := clock_timestamp();
perform dr_initialize(node_table,edgedelay_table, vs,ve,28800,te,dw);
perform dr_time_refinement(edge_table,vs,ve,28800,te,dw);
finaltime := clock_timestamp();

129

C.4. Identify entry nodes and exit nodes

delete from arrival_time_function;
drop table _control_node_subinterval_;
drop table _subset_edgedelay_function_;
drop table _queue_arr_time_;
result := (select finaltime - initime);
raise notice ’going for the next round’;
return next result;
n := n + 1;

end loop;
end;
$body$

language ’plpgsql’ volatile strict
cost 1
rows 1000;

130

