
Back End Support for
Trajectory Management

Using Open Source Software

Lizda Iswari

March, 2010

Back End Support for
Trajectory Management

Using Open Source Software

by

Lizda Iswari

Thesis submitted to the International Institute for Geo-information Science and
Earth Observation in partial fulfilment of the requirements for the degree in
Master of Science in Geoinformatics.

Degree Assessment Board

Thesis advisor Dr. U. D. Turdukulov
Dr. J. Morales

Thesis examiners Dr. Ir. R.A. de By
Dr. N. Meratnia

INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

ENSCHEDE, THE NETHERLANDS

Disclaimer

This document describes work undertaken as part of a programme of study at
the International Institute for Geo-information Science and Earth Observation
(ITC). All views and opinions expressed therein remain the sole responsibility
of the author, and do not necessarily represent those of the institute.

Abstract

Trajectory is defined as a movement of an object in space and time. It
consists of a set of spatial and temporal data. Exploration of this data set
can be used to express the movement behaviour of moving objects that is
previously unknown. Trajectory data exploration can be conducted based
on their geometric and semantic properties. The geometric properties re-
lated to the characteristics of the trajectory are travelled time, travelled
distance, average speed and direction of movement. The sematic properties
can be obtained from the requirements and needs of users of the trajectory
data.

This research proposes several alternatives on how to manage and ex-
plore trajectory data in a database system. Research has been conducted in
two stages. The first stage deals with designing the data models. There are
two models involved, a general trajectory model and an application-specific
data model. These data models are designed as UML class diagrams that
specify the required attributes and methods to manage trajectories in a
database system. The second stage is associated with the provision of back
end support to extract the geometric and the semantic properties of tra-
jectory. The iceberg movements in Antarctica have been chosen as a case
study. Based on the analysis of user requirements, there are some necessi-
ties deal with: managing data errors in the data set, extracting geometric
properties of the iceberg, detecting iceberg events and analyzing behaviour
movement of icebergs.

To meet these requirements, four type of database functions were im-
plemented in the PostgreSQL database system. The first functions deal
with data pre-processing, i.e. to clean data set from inconsistencies, empty
values, duplicates and outliers. The second functions deal with extracting
the characteristic of an iceberg. The third functions deal with classifica-
tion of event during the lifespan of an iceberg and functions to detect the
calving occurrences. The last functions deal with trajectory data mining
to find similar patterns of iceberg movement based on some criteria that
are determined by the users. All these functions still consider trajectory
as an individual entity. Further research is needed to provide back end
support that also involve neighbourhood information and relationship to
other trajectories that enable data exploration based on spatial and tempo-
ral proximity.

Keywords
back end support, iceberg event, data pre-processing, similar pattern, tra-
jectory data mining

i

Abstract

ii

Acknowledgements

Alhamdulillahi Rabbil ’Alamin. Praise to Allah subhanahu wa ta’ala, the Most Merci-
ful and Gracious, to Whom I send my prayers and hope.

Firstly, I would like to express my gratitude to my first supervisor Dr. Ulanbek
Turdukulov. Thank you for the great guidance, discussion and always welcome any-
time I have questions and difficulties. I also would like to extend my gratitude for my
second supervisor Dr. Javier Morales who has helped me in technical part of my thesis.
From them I learned many about the research. Thank you for the invaluable remarks,
suggestions and comments that you have given to me.

Secondly, I would like to acknowledge to the Ministry of Education Republic of In-
donesia who have sponsored my study in the Netherlands. I also would like to send my
appreciation for Dirgahayu family. They have assisted me in many ways. Thank you
for always encourage and open my understanding on algorithms. May Allah bless your
family.

Thirdly, to all my GFM2 colleagues thank you for the nice friendship that we have
shared and also for sharing the knowledge among us. For my all Indonesian friends,
thank you for making me feel still in home. All of us had experienced many hard and
happy times. I am sure we will miss the moment that we had spent in the Netherlands.

Moreover, for the whole staff of ITC. Thank you for the knowledge, guidance and
help that has given during my stay in the Netherlands.

Finally, my deepest gratitude for my mother Hajjah Masitah and my husband
Agung Nugroho Adi. Thank you always send me prayers and always support in any
condition that I have. Also to all my family in Banjarmasin and Yogyakarta. May Allah
always bless our lives.

iii

Acknowledgements

iv

Contents

Abstract i

Acknowledgements iii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Motivation and Problem Statement 1
1.2 Research Identification . 3

1.2.1 Research Objectives . 3
1.2.2 Research Questions . 3
1.2.3 Innovation Aimed At . 4
1.2.4 Related Work . 4

1.3 Method Adopted . 5
1.4 Structure of Thesis . 7

2 Application Requirements and Concept of Trajectory 9
2.1 The Antarctic Iceberg . 9

2.1.1 Iceberg Data Set . 10
2.1.2 User Requirements toward Iceberg Data Set 12

2.2 Concept of Trajectories . 15
2.2.1 Characteristic of Trajectory 17
2.2.2 Design of Trajectory . 18

2.3 Trajectory Data Mining . 19
2.3.1 Knowledge Discovery in Databases 20
2.3.2 Data Mining . 21
2.3.3 Trajectory Similarity Based on Relative Motion Pattern 22

2.4 Summary . 23

3 Trajectory Data Modelling 25
3.1 Conceptual Data Model . 25

3.1.1 General Data Model of Trajectory 26
3.1.2 Application-Specific Data Model 27

3.2 Trajectory Class Diagram . 28
3.2.1 General Trajectory Class Diagram 29

v

Contents

3.2.2 Iceberg Trajectory Class Diagram 30
3.3 Summary . 36

4 Trajectory Back End Support Implementation 37
4.1 Back End Support for Data Pre-processing 37

4.1.1 Data Consistency Management 38
4.1.2 Empty Value Management 40
4.1.3 Data Duplicate Management 40
4.1.4 Outliers Management . 41

4.2 Back End Support for Trajectory Data Extraction 45
4.2.1 Data Conversion . 45
4.2.2 Trajectory Characteristics Extraction 48
4.2.3 Creation of Trajectory . 49
4.2.4 Trajectory Summarization 49

4.3 Back End Support for Event Detection 51
4.4 Back End Support for Trajectory Data Mining 54
4.5 Summary . 59

5 Conclusions and Recommendations 61
5.1 Conclusions . 61

5.1.1 Designing Conceptual Trajectory Data Model 61
5.1.2 Implementation of Trajectory Back end Supports on Ice-

berg Trajectory . 63
5.2 Recommendations . 66

Bibliography 69

A Back end Support for Data Pre-processing 73
A.1 Data Integration . 73
A.2 Data Consistency Management 74
A.3 Empty Value Management . 74
A.4 Data Duplicate Management . 77
A.5 Outliers Management . 79

B Back end Support for Trajectory Data Extraction 83
B.1 Data Conversion . 83
B.2 Trajectory Characteristic Extraction 86
B.3 Trajectory Creation . 90
B.4 Trajectory Summarization . 91

C Back end Support for Event Detection 95
C.1 Event Classification . 95
C.2 Calving Detection . 96

D Back end Support for Trajectory Data Mining 101
D.1 Data Interpolation . 101
D.2 Data Classification . 104
D.3 Matrix Generation . 107

vi

Contents

D.4 Pattern Detection . 108

E KML File Generation 115

vii

Contents

viii

List of Figures

1.1 Back end Support Definition . 2
1.2 Steps for Conducting Research 6

2.1 The Antarctic Quadrant . 10
2.2 The NIC Iceberg Name System 11
2.3 Iceberg User Requirements . 15
2.4 Trajectory as Spatio Temporal Path 16
2.5 Trajectory as Time Space Function 16
2.6 Process of Knowledge Discovery in Database 21
2.7 Relative Motion Analysis . 22

3.1 Trajectory as Sorted Entities . 26
3.2 General Trajectory Model . 27
3.3 Application-Specific Data Model 28
3.4 Class Diagram of General Trajectory 30
3.5 Class Diagram of Iceberg Trajectory 31
3.6 Class Diagram of Event Detection 33
3.7 Class Diagram of Similarity Pattern 34
3.8 Matrix for Searching Similar Pattern 35
3.9 Similarity Pattern Types . 36

4.1 Activity Diagram of Data Pre-processing 39
4.2 Trajectory With Outliers . 44
4.3 Trajectory Cleaned From Outliers 44
4.4 Activity Diagram of Trajectory Data Extraction 46
4.5 Visualization of Trajectory in Google Earth 50
4.6 Summary of Trajectory . 50
4.7 Activity Diagram of Event Detection 52
4.8 Calving Possibilities on Icebergs 53
4.9 Calving Distribution . 54
4.10 Activity Diagram of Trajectory Data Mining 56
4.11 Identified Conformity Pattern . 59
4.12 Identified Conformity Patterns 60

ix

List of Figures

x

List of Tables

4.1 List of Function for Data Pre-processing 40
4.2 List of Function for Trajectory Data Extraction 47
4.3 List of Function for Event Detection 51
4.4 List of Function for Trajectory Data Mining 55

xi

Chapter 1

Introduction

1.1 Motivation and Problem Statement

Development of communication and positioning technology has provided many
advantages in scientific research. One of the associated benefits is the ability
to record and track the movement of objects in space and time called the tra-
jectory [GS05, WXCJ98]. Trajectory consists of a large number of spatial and
temporal data. Exploration of this data set can be used to express the move-
ment behaviour of moving objects that is previously unknown. Spaccapietra at
[SPD+08] states that the trajectory analysis is the key to applications aimed
at a common understanding and management of the complex phenomena that
involve moving objects. Some examples of trajectory analysis can be found on
the hurricane trajectories to study climate change and the wildlife trajectories
to study the causes of their migration.

In order to explore the knowledge of the trajectories, these data sets need
to be managed in a database system. However, representing and querying tra-
jectories in a database system, which have to be matched with user needs and
requirements, is not an easy task. There are some challenges in managing
trajectories, such as how to manage and update dynamic and large amount of
trajectory data, how to maintain trajectories consistency from potential error of
missing value and data duplicate, how to mine trajectories for knowledge dis-
covery, and how to query the continuously changing spatial and temporal data
of trajectories [GS05, MS04]. Although the existing database systems have pro-
vided some functionality to represent spatial and non spatial data and also to
explore both data for discovering pattern and unknown knowledge, until recent
days, these functionalities can not be applied instantly for trajectories’ phenom-
ena that has dynamic change [SPD+08, BPT04].

Iceberg movement in Antarctica is an example of trajectory that needs to
be managed in a database system. The iceberg movements have been recorded
since 1978 until present by the National Ice Center [Cen]. A broad study of
distribution and behaviour of icebergs has been conducted which is stimulated
by natural phenomena like global warming and climate change, environmental
problems, navigation purposes, and engineering activities that are endangered
by floating or grounded icebergs [BTKP09]. Problems exist when users want to
analyze and use iceberg data with regard to their inconsistency and irregularity.

1

1.1. Motivation and Problem Statement

Figure 1.1: Back end support as database functions that connect the application to the
required resource (modified from: [Mar80])

Some problems are missing values that lead to data gaps, typing error that
create outliers, a naming system that triggers difficulty to trace the ancestor
of iceberg before it brakes into pieces, and irregularity of temporal resolution
that causes complexity of data integration. Although some studies have been
proposed in investigating the iceberg phenomena [BL02, BWM07], none of them
deal with managing large amount of dynamically changing iceberg data and
providing functionality, such as checking their consistency, providing queries
for tracing movement of iceberg and discovering their behavioural patterns.

This research proposes some alternatives of how to deal with trajectory’s
problems mentioned above. It is conducted by providing some functions that
are acted as back end support to manage trajectories in a database system. The
term of back end support can be described literally as database functions. It
has a role as data processor which interacts directly with the data source. User
can only interact with back end through front end application or high level ma-
nipulation language, i.e. SQL syntax. Maryanski in [Mar80] have illustrated
the basic form of back end support in a database system that consist of a lo-
cally connected pair of computers. As can be seen on figure 1.1, the application
programs are executed by the host computer. When these programs request
some data from a database, they have to contact a server that holds database
functions controlling access to a database.

Regarding trajectory management, some back end support is needed for
data pre-processing and data extraction. Data pre-processing deals with man-
aging data at the initial stage of data storage, update and consistency check.
The data extraction support deals with information that can be derived from
trajectory, such as its lifespan, average speed, and moving direction. These
main supporting functions are mainly focused on management of trajectories
from geometric perspective [ABdM+07].

The further needs on trajectory also address some necessities of the seman-
tic properties which can be obtained through analysis of user requirements.
Techniques from data mining, such as clustering, classification, aggregation
and pattern recognition can be employed to reveal the required semantic prop-
erties. It may also possible that further exploration on the semantic properties
can derive to the new knowledge of trajectory.

Implementation of back end support of trajectory management can not be
separated from database management systems (DBMS) that have capabilities
to handle spatial and temporal data. Although there are DBMS that have al-

2

Chapter 1. Introduction

ready provided some spatial and temporal libraries (built-in functions), selec-
tion of DBMS to develop these needed supports should also be considered. The
first priority is put on open source software. Nowadays, open source software
have been recognized and used among software developers and end-users. It
has a community that contributes the software development. As an example
is PostgreSQL that has been developed by a collaborative work of public users.
Current version of PostgreSQL has provided some features to handle spatial/-
geometry data type through a package termed as PostGIS [Pro09]. In addition,
it also features a simple way to represent spatial data, has a compliance with
OGC (Open Geospatial Consortium) spatial data standards and have the pos-
sibility to integrate with other platforms (interoperability) [Gro09]. By imple-
menting trajectory back end support using the open source DBMS, it will have
the features mentioned above in further development.

1.2 Research Identification

The aim of this research is to provide back-end supports for managing trajecto-
ries using open source database management system.

1.2.1 Research Objectives

1. To provide conceptual data model of trajectories.

2. To extent database functionality to operate on trajectories.

3. To apply back end support on a case study.

1.2.2 Research Questions

1. To provide conceptual data model of trajectories.

(a) What data types, attributes, operations, classes, and relationship are
needed to represent general trajectories?

2. To extent database functionality to operate on trajectories.

(a) What functions are needed for extracting geometric properties from
trajectories?

(b) What functions are needed for extracting semantic properties from
trajectories?

3. To apply back end support on a case study.

(a) What are the user requirements of icebergs trajectory?

(b) What is the required data model to represent icebergs trajectory?

(c) What steps are required for pre-processing data?

3

1.2. Research Identification

(d) What functions are used to detect iceberg events, such as calving,
grounded and floating; and also parent child relationship among ice-
bergs?

(e) What functions are used to detect similar movement patterns of ice-
berg?

1.2.3 Innovation Aimed At

The novelty of the research is in designing a data model of trajectory and imple-
ment the model as database functions using open source database management
system (DBMS). These functions can be applied for extracting the geometric
and semantic properties of icebergs trajectory in Antarctica.

1.2.4 Related Work

Several research efforts have been carried out on management of trajectories.
Some include modelling and representing trajectories [WXCJ98, GS05, SPD+08]
and mining pattern of trajectories [BPT04, LI02, LIW05]

Güting in [GS05] described that moving object as part of trajectory can be
modelled based on two perspectives: location management and in a spatio-
temporal database. The first perspective focuses on time-dependent locations
[WXCJ98]. Data was developed as dynamic attributes within a data model
which is called MOST (Moving Object Spatial Temporal) and can be queried
through a query language called FTL (Future Temporal Logic). This model was
restricted to one spatial data type, moving object point, and the query language
can only be used to trace current and near future movement [GS05]. The sec-
ond perspective focuses on time-dependent geometries [GBE+00, GS05]. This
model was proposed under the CHOROCHRONOS project [GBE+00, GS05].
The team project developed a first model by putting moving line and moving
region as additional spatial data types. They also provided additional query
language primitives to trace the historic movement of object. Both of these two
perspectives developed as moving object database (MOD).

While Güting and Wolfson focused on modelling moving object based on ge-
ometry properties, Spaccapietra in [SPD+08] have proposed conceptual mod-
elling that combine geometry with semantic properties of trajectory. Trajectory
is modelled or structured into countable semantic units. There are two proposed
modelling approaches, design pattern and dedicated data types. Trajectory de-
sign pattern includes all object types for representing trajectory. Each appli-
cation may have different model. Spaccapietra described design pattern as a
half-baked schema with respect to pattern modification to make it fully compli-
ant to application requirements. The next model is trajectory data types which
try to encapsulate trajectory data into a dedicated TrajectoryType data type and
provide methods to access trajectory components. This dedicated data type only
handle the geometric properties of the trajectory, the semantic properties that
complements trajectories for a given application is described as attributes and
relationships of objects that are involve in application.

4

Chapter 1. Introduction

To extract knowledge from trajectories can be done through trajectory data
mining. Laube in [LI02, LIW05, LvKI05] introduced relative motion (REMO)
patterns that can be found in groups of moving point objects. The concept of
REMO analysis is done by comparing the motion parameters, i.e. motion az-
imuth, speed, and change of speed; of different objects at different times. A
pattern is defined as a search template that can span over time, across objects,
or combination of both search templates.

Despite of general concept of how to manage trajectories mentioned above,
the chosen of trajectory representation has to consider the nature of the data
set. Not all proposed concepts are compatible when they are applied to spe-
cific trajectories. Iceberg, in this case, has different characteristic compare to
common moving entities, such as car or animal. Iceberg movements does not
have to be in a constrained spatial network. Furthermore, record of iceberg
movements may also be done in a larger temporal resolution, such as in days
or weeks. Therefore, these characteristics have to be considered when design-
ing data structure of icebergs trajectory and implementing its needed back end
support.

1.3 Method Adopted

The steps to conduct the research can be seen on figure 1.3. Briefly, each steps
can be explained as follow:

1. Literature review.
The main literatures that will be used in this research are from fields of
moving object database, trajectory data modeling, trajectory data mining
and similarity search in trajectories.

2. Analysis of user requirement.
Analysis of user requirement on iceberg movements. There are four types
of requirements, i.e. data pre-processing on iceberg data set, trajectory
data extraction, iceberg events detection, and analysis of similar pattern
on iceberg movement.

3. Design conceptual data model.
Based on analysis of user requirements, conceptual data model are de-
signed into two types: general and application specific data models. These
models are represented as trajectory design pattern and UML class dia-
gram.

4. Implementation of back end support for data pre-processing.
There are some database functions can be used to identify and manage
data inconsistencies, empty values, data duplicates and outliers.

5. Implementation of back end support for trajectory data extraction.
There are some database functions are needed to extract general informa-
tion from trajectory, such as travelled time, travelled distance, speed and
movement direction.

5

1.3. Method Adopted

Figure 1.2: Steps for conducting research

6

Chapter 1. Introduction

6. Implementation of back end support for iceberg event detection.

This back end support is related with specific requirement from icebergs
trajectory to detect events that may occur to an iceberg. These events
are classified as calving, grounded and floating. From calving detection,
parent child relationship among icebergs may also be identified.

7. Implementation of back end support for trajectory data mining.

This back end support is dealing with database functions for discovering
similar patterns of iceberg movements. There are three type of patterns
that are applied with respect to the concept of relative motion pattern
[LI02, LIW05]. These patterns are detected over time, across objects and
combination of these two parameters, i.e. over time and across object.

8. Test the implemented database functions.

Providing some queries that can be used to extract general information of
trajectory, to detect iceberg events and to search similar pattern of iceberg
movement.

9. Evaluate and validate the results.

System evaluation and validation is conducted by exploring and manipu-
lating icebergs data set, extracting information based on the needs of user
requirements and running queries on it.

1.4 Structure of Thesis

Based on the method adopted, research is organized in five chapters as follows:

Chapter 1 describes the motivation to do this research, states the problem,
research objectives and questions and also the method adopted to conduct
the research.

Chapter 2 discusses user requirements toward iceberg trajectory and liter-
ature background of how to represent and mine trajectory data. User
requirements are divided into four groups, i.e. data pre-processing, trajec-
tory data extraction, iceberg event detection and trajectory data mining.
This chapter also describes some approaches to represent trajectory based
on its geometric and semantic properties.

Chapter 3 contains trajectory data modelling which adopts the concept of
trajectory design pattern. This chapter also discusses representation of
trajectory by using UML class diagram.

Chapter 4 discusses implementation of trajectory back end support. In this
chapter, there are list of functions that have been implemented to check
and manage data errors, to extract trajectory data, to detect iceberg event
and to discover similar pattern of iceberg movements.

7

1.4. Structure of Thesis

Chapter 5 presents the conclusions that are drawn after execution of database
functions on iceberg trajectory and the recommendations which are made
for future improvement of trajectory back end support.

8

Chapter 2

Application Requirements and
Concept of Trajectory

This chapter highlights the case study and the literature background of tra-
jectory. In the first section (2.1) user requirements on iceberg trajectory are
discussed. These user requirements are presented in the list of questions and
are also illustrated in UML use case diagram. The second section (2.2) de-
scribes some concepts on trajectory. Trajectory is described as an entity that
has geometric and semantic properties. The geometric properties are general
information that can be derived directly from spatial and temporal attributes of
trajectory, such as moving direction and average speed. While for revealing the
semantic properties, trajectory data need to be explored through trajectory data
mining which is discussed in section 2.3 with provision of technique to discover
similar patterns in trajectories.

2.1 The Antarctic Iceberg

Icebergs are a result of big masses of ice separating from either a glacier or an
ice shelf. They come in many shapes, such as dome, pinnacle, and blocky; and
sizes, from ice-cube size to ice islands that are the size of a of a small country.
The term iceberg refers to a piece of ice that has diagonal of size larger than
5 meters. Typically, icebergs are found in open seas and formed during spring
and summer when warmer weather increases the rate of iceberg calving from
its ice shelf. From the whole part of an iceberg, only 1/8th is above the waterline
and the rest is under the water surface. The upper part consists of snow and
it is not very compact. Meanwhile the bottom part is located in the cold core
which makes it very compact and relatively heavy [SC09].

Icebergs are found mostly in Antarctica. Almost ninety percent of the world’s
mass of iceberg is found surrounding the Antarctic and ninety-eight percent of
the Antarctic continent is covered by ice [Bri]. Antarctica is the earth’s south-
ernmost continent located on the South Pole. The Antarctic icebergs calve from
floating ice shelves. Floating ice shelves are a continuation of the flowing mass
of ice that makes up the continental ice sheet.

9

2.1. The Antarctic Iceberg

Figure 2.1: The Antarctic quadrant as the basis for naming the iceberg (taken from:
www.solcomhouse.com)

2.1.1 Iceberg Data Set

Icebergs in Antarctica are named according to the Antarctic quadrant in which
they were originally sighted (see figure 2.1). The quadrants are divided counter-
clockwise in the following manner [Cen]:

• A = 0◦ - 90◦W (Bellinghausen/Weddell Sea)

• B = 90◦W - 180◦ (Amundsen/Eastern Ross Sea)

• C = 180◦ - 90◦E (Western Ross Sea/Wilkesland)

• D = 90◦E - 0◦ (Amery/Eastern Weddell Sea)

There are two main organizations that record icebergs existence in Antarc-
tica, i.e. the U.S. National Ice Center (NIC) and the Brigham Young University
(BYU). They use a variety of remote sensing images and sensors to track ice-
berg positions and other characteristics. However, only NIC has the authority
to coordinate iceberg positions and track all icebergs based on three basic re-
quirements [BL02]:

1. Iceberg size has to be at least 10 nm (nautical miles), equal to 18.5 kilo-
meters, along the major axis.

2. The most recent sighting of iceberg must have occurred within the last 30
calendar days.

3. Iceberg location has to be positioned south of 60◦ south latitude.

10

Chapter 2. Application Requirements and Concept of Trajectory

Figure 2.2: The approach of how NIC defines the name for icebergs in Antarctica

NIC will remove record of iceberg from database if the iceberg has size re-
duction in which it becomes less than 10 nm and loss of visual sighting for 30
consecutive days if it is positioned on the north of 60◦ south latitude.

Furthermore, NIC also has the authority to name the icebergs. When an
iceberg is first sighted and meets the requirements above, NIC documents this
iceberg based on its quadrant name along with a sequential number. However,
if the new found iceberg is a result of calving (from an already identified ice-
berg), this iceberg will be named by adding an alpha suffix to the name of its
“parent”. Examples of how NIC names the iceberg based on these rules can be
found in the following illustration (assume the last tracked iceberg in quadrant
A is A60):

1. If there is a new found iceberg located between 0◦ - 90◦W (Quadrant A)
and meet NIC criteria mentioned above, it will be named as A61.

2. If the new found iceberg has calved from A60, it will be named as A60A.
In this case, A60 is defined as the parent of A60A.

3. If A60 calves after A60A already calved into A60B, the new found iceberg
is named as A60C.

The names of A60A, A60B and A60C mark the calving events of icebergs
which belong to the group of A60. These ”new” icebergs include the parent
iceberg’s original name and an alpha suffix in alphabetical order. Figure 2.2
illustrates how NIC names the calving icebergs.

Record of icebergs movements has been provided since 1978. This data set
is downloadable for free from NIC website [Cen]. There is some basic informa-
tion, such as iceberg name, iceberg position in latitude and longitude, time of
recording in the format of long integer (four digits of the year and three digits
of the day sequence in that year), iceberg size in nautical miles, and satellite
name that is used to record icebergs movements. The temporal resolution is

11

2.1. The Antarctic Iceberg

delivered in irregular time steps. For two consecutive records of an iceberg, the
difference may be 5 to 30 days. However, there are found some records which
have more than 30 days as its temporal resolution.

The Antarctic iceberg data set consist of 301 icebergs with 15737 records.
They spread over four quadrants (see figure 2.1). Initial inspection on this data
set shows there are data errors that are caused by data inconsistencies, dupli-
cates, typing errors and missing values.

Some approaches have been addressed to manage these errors. Blok in
[BTKP09] described that to manage the missing value in longitude or latitude
had been done by simple interpolation based on neighbouring space-time posi-
tions. Duplicates have been deleted manually by visual inspection of the trajec-
tory plotted in the browser, which may be due to duplication of typing errors. Vi-
sual inspection also revealed some out of context positions along the trajectory
of some icebergs. They are assumed as records that have incidental exchange
of plus or minus signs of latitude and/or longitude. Some of these clear errors
could be corrected by considering the location of its previous and next records.

The approach mentioned above, however, has a lot of limitation. The first
limitation is on the number of records that may be employed in the prototype.
This is related with the prototype performance that gets slow and even unre-
sponsive when all records are entered. The second limitation is related to the
inability of the prototype support software to adopt the nature of the data set.
E.g. the Antarctic iceberg has its own projection system which can not be ac-
commodated directly by the visualization software, such as Google Earth. The
last limitation refers to dynamic updating and data storage. Blok described
that on the proposed prototype, data input is still managed in flat files which
create difficulty for data updating and storage capacity. Hence, management
under database technology is recommended as an alternative to handle errors
before the users can further explore the data set.

2.1.2 User Requirements toward Iceberg Data Set

The iceberg data set from NIC has been used by researchers with various ob-
jectives. As Ballantyne mentioned in [BL02], this data set has been used for
understanding the trend of climate change, for analysing several major calving
events and for navigation purposes around Antarctica. In this section, user re-
quirements toward iceberg data set are discussed. There are four main require-
ments that are dealing with data pre-processing, requirement for extracting
general information of trajectory, requirements on analyzing event detection
and requirements that are analyzing similarity pattern of iceberg movements.

User Requirements on Data Pre-processing

Iceberg records that are prepared by NIC are raw data that still need to be
refined before they can be used for further purposes. Data pre-processing is
required to provide a good quality and a consistent data set. It consists of some
sub-processes [HK06]:

12

Chapter 2. Application Requirements and Concept of Trajectory

1. Data cleaning: clean data set from errors, such as inconsistencies, empty
values, typing errors and outliers.

2. Data integration: integration of multiple databases or files.

3. Data transformation: data normalization and aggregation.

4. Data reduction: obtains reduced representation in volume but produces
the same or similar analytical results.

In the following is the list of preliminary questions that users may ask to-
ward iceberg data set before they go on further data process:

1. How to identify and manage duplicates?

2. How to fill in the missing values?

3. How to identify and remove the outliers?

4. How to identify and manage the typing errors?

5. Do all attributes ready to be used for data computation?

6. Do all attributes have consistent data types?

User Requirements on Trajectory Data Extraction

Iceberg data set identifies that there is dynamic movement behaviour of iceberg.
The movement of iceberg can be observed when an iceberg has changed its posi-
tion from the last time it was sighted. This is termed as drifting iceberg. Some
early observations and measurements of drifting icebergs were made in sup-
port of the development of practical forecasting tools [VD00]. When an iceberg
drifts, it also creates a trajectory as the path of its movement. Some questions
may be asked on iceberg trajectory, such as:

1. How far an iceberg has drifted?

2. How long an iceberg has drifted?

3. What is the average speed of the drifted iceberg?

4. To which direction an iceberg has drifted?

5. What is the complete trajectory of an iceberg during its lifespan?

6. How many records of iceberg movements have been documented during
its lifespan?

13

2.1. The Antarctic Iceberg

User Requirements on Event Detection

Schmittner in [SYW02] describes iceberg information as invaluable factors for
climate related investigations. Climatologists analyze the indicator of climate
change based on iceberg numbers and events that are occurred to icebergs, such
as calving, appearance, disappearance, grounded, or moving. Many scientists
try to investigate these events by defining the model of iceberg motion with
respect to external factor and the life history of icebergs. There are a number
of question regarding to iceberg events, such as:

1. When did the icebergs calve from its parent?

2. Where did the calving site?

3. How many icebergs that have calved?

4. Which iceberg is grounded?

5. Are the number of icebergs increased?

User Requirements on Trajectory Data Mining

Pelekis in [PKM+07] described that trajectory similarity search forms an impor-
tant class of queries in trajectory data analysis and spatio-temporal knowledge
discovery. Regarding to iceberg trajectory, this analysis is required to describe
patterns in iceberg behaviour. Many users, such as navigator, climatologist, and
glaciologist may use this analysis which is an essential information for avoid-
ing any destruction consequences, such as to define a new safe shipping lanes
in navigation area. Some basic questions of behaviour patterns are:

1. How to define similar moving pattern from iceberg data set?

2. When did an iceberg have a similar pattern?

3. Are there any clusters of iceberg that follow similar patterns of movement
at similar times?

For answering the questions above, data need to be explored and analyzed.
These activities are strongly related with data mining which offers some tech-
niques to discover patterns of movement behaviour (see section 2.3).

Use Case Diagram of Iceberg Trajectory

User requirements that have been discussed above can be summarized into
UML (Unified Modelling Language) use case diagram. As it can be seen on
figure 2.3, this diagram involves three types of actors: NIC as data provider,
iceberg specialist and climatologist that has role as data analyst as well as data
user and navigator as data user.

14

Chapter 2. Application Requirements and Concept of Trajectory

Figure 2.3: The user requirements toward iceberg data set

• NIC has responsibility to input the record of iceberg movements. This
input is considered as a raw data that needs to be refined in data pre-
processing before it can be extracted into meaningful information of tra-
jectory.

• Climatologist and iceberg specialist have necessity to detect the iceberg
events. One of data source is iceberg data set, therefore action for de-
tecting iceberg event also includes action of data pre-processing and data
extraction.

• Iceberg specialist also has necessity on analyzing the behaviour of iceberg
movement. This analysis includes data mining technique, i.e. classifi-
cation of motion parameters, and put these parameters into semi-spatial
temporal matrix to search the similar pattern of movement.

• Navigator has necessity to define the new shipping lanes based on analy-
sis of behaviour of iceberg movements.

2.2 Concept of Trajectories

Trajectory is defined as the path made by object or moving entity through the
space where it moves [AAPS08]. If t0 is defined as the moment of path started

15

2.2. Concept of Trajectories

Figure 2.4: Trajectory definition as spatio-temporal path which consist of a sequence of
moves and stops (taken from: [SPD+08])

Figure 2.5: Trajectory definition as time space function that has movement along temporal
axis in upward direction (taken from: [BPT04])

and tend is defined as the moment when it ended, for any moment ti between
t0 and tend, there is a position in space that was occupied by the object at this
moment. During the lifespan of trajectory, trajectory may semantically be seg-
mented by defining a temporal sequence of time sub-intervals where object po-
sition changes (moves) and stays fixed (stops) [SPD+08]. Hence, an object may
travel to a number of trajectories as a sequence of moves going from one stop to
the next one (see figure 2.4).

Trajectories may also be seen as a function that matches time moments
with position in space. By using a space-time-cube [BPT04], trajectory can be
described as the path that moves along the temporal axis in upward direction
(see figure 2.5).

Figure 2.5 shows a single trajectory on the left side and several trajectories
evolving in a finite region on the right side. Both of these trajectories may
consider as time space function. The top of the cube is the time of the most
recent position sample and the wavy-dotted lines represent the growth of the
cube with time.

Spaccapietra in [SPD+08] defined there are two facets of a trajectory:

• A geometric facet : the spatio-temporal recording of the position of the

16

Chapter 2. Application Requirements and Concept of Trajectory

traveling point (this research only consider the point geometry).
This facet can be defined as a single continuous subset of the spatio-
temporal path covered by the object’s position during the whole lifespan of
the object. It can also be represented as a time space function which is a
continuous function from a given time interval into a geographical space
(the range of the function). Time space function is described as:

trajectory : [t0, tend]→ space

• A semantic facet : the information that conveys the application oriented
meaning of the trajectory and its related characteristics.
The concern of this facet is to give a meaning or semantic interpretation of
the application object. There are three components of trajectory that need
to be defined in specific term based on application requirements. These
components are stops, moves, and begin and end of the trajectory.

– A stop is part of trajectory which is considered that the object has not
effectively moved.

– A move is part of trajectory that has a time interval and is delimited
by two consecutive stops (s1,s2) where consecutive stops by definition
must have non-overlapping time intervals.

– Begin and End (t0,tend) are time interval of trajectory that is neces-
sarily included in the lifespan of its traveling object and is necessarily
disjoint from the time intervals of the other trajectories of the same
object. Within (t0,tend) there is no instant that belong neither to a
move nor to a stop.

2.2.1 Characteristic of Trajectory

Along the lifespan [t0,tend] or during the subset [ti,ti+1] path of object move-
ment, trajectories can be analyzed to have a number of characteristics. These
characteristics are defined by different properties depending on application re-
quirements. The common characteristics are described as follow [AAPS08]:

1. Geometric shape of the trajectory in space

2. Traveled distance, i.e. the length of trajectory in space

3. Duration of the trajectory in time

4. Movement vector or major direction, i.e. from the initial to the final posi-
tion

5. Mean, median and maximal speed

6. Dynamics (behavior) of the speed

• Periods of constant speed, acceleration, deceleration, and stillness

• Characteristics of these periods: start and end times, duration, initial
and final positions, initial and final speeds.

17

2.2. Concept of Trajectories

• Arrangement (order) of these periods in time

7. Dynamics (behavior) of the directions

• Periods of straight, curvilinear, circular movement
• Characteristics of these periods: start and end times, duration, initial

and final positions and directions, major directions, angles and radii
of the curve.
• Arrangement (order) of these periods and turning points in time.

These characteristics are important components to represent conceptual
data model or schema of the application. Conceptual data modelling is an activ-
ity that focuses on reflecting the application requirements in a database design.
The design of conceptual data model have to be complete and understandable
for the user, so it can be translated into the logical data model, on the next step,
without any further user input [TJ99]. For trajectories, the goal of develop-
ing a conceptual model is to provide constructs and rules that enable database
designer to think about data in the model as a set identifiable trajectories trav-
elled by application objects [SPD+08]. Hence, when designing the conceptual
data model for trajectories, the employed characteristics and operations have
to be fit with the application requirements.

2.2.2 Design of Trajectory

For designing conceptual data model of trajectories, there are two approaches
that can be used [SPD+08]:

• Trajectory design pattern

In this approach, trajectories and their components (stops, moves, begin
and end) are represented explicitly in the database schema. This model
supports database designer by providing a design pattern, i.e. a prede-
fined sub schema that provides the basic data structure for trajectory
modelling. By using this approach, database schema is easy to be un-
derstood and read by user since it looks like a normal spatio-temporal
database. The database designer will not find difficulty to add the seman-
tic information specific to the application and also to modify the initial
schema for future needs. However, this approach requires implementation
of many functions to access trajectory and its components, such as gen-
eral attributes from trajectories and specific attributes from application
requirements. These functions have to be coded by the application devel-
opers or by the users, which are required to write more complex queries,
to access data from trajectories.

• Trajectory data type

The second approach encapsulates trajectory data into a dedicated Trajec-
tory data type. This data type is equipped with methods providing access
to trajectory components (stops, moves, begin and end). This approach can
be used to handles the geometric facet of the trajectory and the definition

18

Chapter 2. Application Requirements and Concept of Trajectory

of its components. However, it can not be used to manage semantic infor-
mation since semantic information is application specific which can not be
encapsulated into the data type. Hence, database designer has to define
this information explicitly in the data model. In this approach, there are
two kinds of trajectory data types that are proposed:

1. Data type TrajectoryType: an abstract data type that holds a num-
ber of properties and methods to describe a trajectory. The properties
are consisting of: a time-varying point, a list of sample points, a list
of stops, and a list moves. The methods are consisting of data acqui-
sition mechanism, such as defineSamplePoints and defineStops, and
methods for extracting additional information from trajectories, such
as temporal extent and duration.

2. Data type TrajectoryListType : an abstract data type that is formed
as a list of trajectories. This data type consists of a list of elements
from TrajectoryType data type above with one requirement of tempo-
ral domain has to be disjoint or adjacent. The methods are adopted
from generic List data types that are reformulated for trajectories,
e.g. trajectoryAtInstant(t Instant) returns the trajectory that exist at
instant t.

This research adopts trajectory design pattern for representing iceberg tra-
jectories. This is due to various user requirements toward iceberg data set (see
section 2.1.2. By using this approach, many use cases specific to iceberg data
set can be represented in the conceptual data model. System developer or user
may expand this model to fit with their needs. Furthermore, the geometric
and semantic facets of iceberg trajectories may also be included in one compact
design of iceberg trajectory data model.

Data modelling and processing methods that have been mentioned above
deal with the geometric properties. They can be formed in general term since
any trajectories can be applied to these concepts. Meanwhile, modelling and
processing semantic properties of trajectories has not been addressed yet due
to its application-dependent, whereas in fact, it may give meaningful pattern
that can be extracted from trajectories. Extraction of meaningful pattern can
be done through data mining. Techniques that are provided in data mining –
predictive modelling, clustering, classification and association analysis – enable
the process of discovering useful information from large data repositories such
as trajectories. In the following section, data mining will be discussed with
regard to discovery meaningful pattern or knowledge from trajectories.

2.3 Trajectory Data Mining

The massive amount of data in trajectories has possibility to be analyzed through
discovery of patterns, i.e. patterns that show collective movement behaviour.
Patterns will enable users to have a better understanding of the dataset or the
original system by revealing some of its motion laws which are hidden in the
chaos of trajectory representation [?]. The approach to turn trajectories into

19

2.3. Trajectory Data Mining

patterns, more broadly as usable knowledge, is termed as trajectory data min-
ing which is one part of knowledge discovery in databases.

2.3.1 Knowledge Discovery in Databases

Knowledge discovery in databases (KDD) is a combination of many research
fields such as machine learning, pattern recognition, databases, statistics, ar-
tificial intelligence, expert system, data visualization, and high-performance
computing [LIW05]. The universal goal of KDD is extracting high-level knowl-
edge from low-level data in the context of large data sets [FPSS96]. KDD com-
prises many steps, which involve data preparation, search for patterns, knowl-
edge evaluation, and refinement. These steps are repeated in multiple itera-
tions as can be seen on figure 2.6 The central belief of KDD is that information
is hidden in very large databases in the form of interesting patterns [MH09].

The process of KDD on figure 2.6 can be described as follow [FPSS96]:

1. Develop an understanding of the application domain and identify the goal
of KDD based on user requirements.

2. Create a target data set by selecting a data set or data samples on which
discovery is to be performed.

3. Data cleaning and processing, such as for removing duplicates and han-
dling errors and missing values.

4. Data reduction and projection by finding useful features to represent data
based on the goal of the task.

5. Matching the goals of the KDD process to a particular data methods, such
as classification, regression, clustering, summarization, and so forth.

6. Choosing data mining algorithm(s) and selecting method(s) to be used for
searching data patterns.

7. Searching for patterns of interest in a particular representation form,
such classification rules, trees, regression, and clustering.

8. Interpreting mined patterns.

9. Using the knowledge directly or incorporate the knowledge into another
system.

As can be seen on figure 2.6, KDD refers to overall process of discovering
useful knowledge from data, and data mining refers to a particular step in this
process. However, data mining is the central component that applies data anal-
ysis and discovery algorithms for extracting pattern from data. Giannotti in
[?] describes the process in KDD, basically can be categorized into three main
transformation steps:

1. Data pre-processing which transforms the raw source data into an appro-
priate form for the subsequent analysis (see section 2.1.2).

20

Chapter 2. Application Requirements and Concept of Trajectory

Figure 2.6: Process that are involved in discovering knowledge in databases (taken from:
[FPSS96])

2. Data mining, which transforms the prepared data into patterns or models.

3. Post-processing of data mining results, which assess validity and useful-
ness of the extracted pattern and models, and presents interesting knowl-
edge to the final users by using appropriate visual metaphor or integrating
knowledge into decision support system.

2.3.2 Data Mining

Data mining is the process of automatically discovering useful information in
large data repositories [?]. In practice, data mining has two primary goals,
namely prediction and description [FPSS96]. Prediction involves some vari-
ables to predict unknown or future values of other variables of interest, while
description focuses on finding human-interpretable pattern for data descrip-
tion. The boundary between these two goals is not very sharp; however knowing
their difference is useful to understand the overall discovery goal.

To achieve data mining goals mentioned above, there are some methods
available that can be applied to, such as [FPSS96]:

1. Classification: a function that maps (classifies) a data item into one of
several predefined class.

2. Regression: a function that maps a data item to a real-valued prediction
variable.

3. Clustering: a common descriptive task where one seeks to identify a finite
set of categories or clusters to describe data.

4. Summarization: a function for finding a compact description for a subset
of data.

5. Dependency modelling: a model that describes significant dependencies
between variables.

21

2.3. Trajectory Data Mining

Figure 2.7: Steps in finding pattern based on Relative Motion analysis (taken from: [LvKI05])

Pattern in data mining has a description as: “a pattern is an expression E
in some language L describing facts in a subset FE of a set of facts F so that E
is simpler than the enumeration of all facts in FE” [FPSS96]. In other words, a
pattern does not simply enumerate some facts but describes them all together
as a whole [?].

There are many methods that can be applied to detect interesting pattern
from trajectory. It can be done based on similarity in distance of motion pa-
rameters, i.e. similarity in route, lifespan, speed and direction [PKM+07] and
similarity in relative movement pattern by defining relative movement matrix
[LI02, LIW05]. Other approaches have also been proposed to deal with this
subject by considering only the shape of trajectories, combining shape and tem-
poral attributes [PKM+07], or applying spatial network constraint [TPN+09]
as the parameter to calculate similarity in trajectories.

Among these approaches, relative motion patterns is considered to be the
most appropriate ones for analyzing the iceberg trajectories. This is regarding
to iceberg characteristic that has unconstrained network along its movements.
The behaviour of iceberg can be analyzed through various factors, such as wind
direction, ocean currents, sea surface temperature; which can be done by apply-
ing the concept of relative motion patterns.

2.3.3 Trajectory Similarity Based on Relative Motion Pattern

Laube in [LI02, LIW05, LvKI05] introduces analysis concept called REMO (REl-
ative MOtion). The analysis is based on the comparison of motion attributes of
point objects (e.g. speed, change of speed, or motion azimuth) over space and
time, and also relates one object’s motion to the motion of all others. The obser-
vation data (id, location and time) is transformed into a matrix which features a
time axis, an object axis and motion parameters. Then, matrix is matched with
the formalized patterns to reveal basic searchable relative movement patterns
(see figure 2.7).

Figure 2.7 illustrates the construction of REMO analysis matrix. In fig-
ure 2.7(a) there are four moving objects with its respective trajectory. REMO
pattern is analyzed by using motion parameter of each object on discrete time
steps (t1 to t5). REMO matrix on figure 2.7(b) and 2.7(c) show that horizontal
axis is defined as the temporal axis (time t), the vertical axis is defined as the
object axis, and the values represent the motion parameter values (i.e. motion

22

Chapter 2. Application Requirements and Concept of Trajectory

azimuth). The temporal axis should be in ordered, while the object axis may
not be in explicit order. To analyze the pattern, the motion parameters are
grouped into discrete classes. E.g. motion azimuth is divided into eight classes
(N, NE, E, SE, S, SW, W, NW) (see figure 2.7(b)) or it may also be expressed in
code (figure 2.7(c)). From this matrix, REMO pattern can be derived by find-
ing interrelations among objects that are clustered on the time-axis, across the
objects, or combination of both (figure 2.7(d)).

In the REMO analysis, trajectories patterns can be identified and quantified
based on user-defined motion parameters. There are two approach to analyze
the pattern [LI02] :

• Motion Patterns without Neighbourhood Information: this is the basic
relative motion patterns in the REMO analysis concept. Patterns are an-
alyzed based on the order of time step and do not take spatial perspective
into account. Thus, pattern is based on the order of motion parameters in
time. There are three types of patterns in this group:

– Patterns over time (horizontal axis)

– Patterns across object (vertical axis)

– Complex patterns over time and across objects (combination horizon-
tal and vertical axis)

• Motion Patterns using Neighbourhood Information: this is an extend of
the first pattern by considering the spatial constraints in REMO patterns,
i.e. the motion of group objects in relation to the movement of other group
members. The analysis of motion parameter can be based on [LvKI05]:

– Spatial proximity: the proximity measurement that constrains the
spatial extent of single object’s motion pattern

– Convergence: the convergence area that is defined based on some
locations at certain time.

2.4 Summary

This chapter has illustrated the requirements that users have on iceberg data
set and has also discussed two concepts of trajectory representation by con-
sidering the geometric and semantic properties. Research has identified there
were four user requirements, i.e. data pre-processing, trajectory data extrac-
tion, event detection and similar pattern detection. Conceptually trajectory
may be represented as design patterns, i.e. a flexible design which complexity
depends to user requirements, or as data types, i.e. a generic data type which
encapsulate trajectory attributes with its functionality. Further needs on tra-
jectory also deal with data mining to get behaviour pattern of movement. This
chapter has identified one approach of trajectory data mining which is based
on the concept relative motion pattern. The relative motion pattern has pro-
vided two approach of pattern detections, i.e. by including and excluding the
neighbourhood information.

23

2.4. Summary

24

Chapter 3

Trajectory Data Modelling

Data Modelling is a part of software engineering that describes how to repre-
sent and access data in the system. It is a critical step to define and analyze
data requirements in a database. Within data modelling, basic information for
database design, data structure and data integrity can be provided. For trajec-
tory data modelling, the design of the data model has to combine spatial and
temporal aspects of data, i.e. representation of the geometry of moving enti-
ties in time. This chapter highlights data models that are involved to represent
trajectories in a database system. The first section (section 3.1) discusses con-
ceptual data model, i.e. definition of entity and relationship among entities that
have to be stored in a database. There are two kinds of data models, general and
application-specific. Iceberg trajectory is used as a case study of application-
specific model which is designed by extending general model to conform to the
iceberg user requirements. The second section (section 3.2) describes the im-
plementation of conceptual model, i.e. how trajectories are processed, by using
Unified Modelling Language (UML) class diagram as a static representation of
data model.

3.1 Conceptual Data Model

Conceptual data model is a description of data scope in the system. It concerns
with how users see the information by emphasizing objects and rules that are
involved in the real business world. Design of conceptual data model should
be able to reflect the application requirements without the need for computer
metaphors, i.e. complete and understandable design for users [TJ99].

For modelling trajectories, this research has applied the concept of trajectory
design pattern. There are many formats of how to represent design pattern,
each author may define his/her own style. The most common design pattern
includes a definition of entity and the relationship among these entities.

An entity represents a collection of similar objects. It could be a collection
of people, places, events, things or concepts. An entity has a similar analogy
with class description in object oriented modelling. The main difference is on
the scope of design. An entity may only provide information about entity’s prop-
erties, while in class definition, data properties (attributes) has to be combined

25

3.1. Conceptual Data Model

Figure 3.1: Trajectory definition as a sorted of entity’s positions in time

with data behaviours (methods). In design pattern, an entity is represented
only by its properties and is symbolized in a rectangle shape.

Relationships illustrate how two or more entities are related to each other.
In design pattern, a relationship is described as a verb that shows the con-
nection of two entities. A relationship may also be assigned with multiplicity,
which is a range of allowable constraints between entities. It is symbolized as
an ellipsoid circle.

3.1.1 General Data Model of Trajectory

Before representing trajectories in database system, the basic concepts of tra-
jectory have to be presented. This research defines trajectory as a collection of
entities position sorted in time. Record of an entity position in a time is termed
as a milestone. Trajectory is modelled by using three type of entities which are
formally defined as follow:

• Definition 1: Moving entity is a real world entity which location can be
observed on the earth surface.

• Definition 2: Milestone is a record of moving entity which consists of posi-
tion as a point and a time of recording.

• Definition 3: Trajectory is a sorted list of milestones. It consists of at
least two milestones that represent as the beginning and the ending of an
entity’s trajectory.

The definitions above are illustrated in figure 3.1 and the general data model
of trajectory can be seen on figure 3.2. Figure 3.2 shows that each moving entity
may only moves on a trajectory and each trajectory may only belong to a moving
entity. Trajectory consists of, at least two, milestones and each milestone may
only exists on a trajectory.

The data model above is a general model that is applicable to any trajectory.
For representing a specific application model, this model needs to be expanded
to conform to application requirements. In the following section, the expansion

26

Chapter 3. Trajectory Data Modelling

Figure 3.2: General trajectory model that consists of three main entities, named as Moving
Entity, Trajectory, and Milestone

of general trajectory model is described with iceberg trajectory as the use case
study.

3.1.2 Application-Specific Data Model

The expansion of a general model can be done by adding some new entity types
or modifying the existing entities to fulfil the application requirements. Obvi-
ously, this expansion should be done based on analysis of user requirements.

Based on user requirement of iceberg movements (see section 2.1.2), the
general trajectory model needs to be extended by modifying the characteristics
of Milestone and adding some new entity types which are named Event Detec-
tion and Similarity Pattern. The illustration of conceptual iceberg data model
is depicted on figure 3.3 and the following modification are introduced to the
general model:

• Iceberg as a moving entity which trajectories are observed and analyzed.
In this case, iceberg has the possibility to be split or calved into one or
more smaller icebergs. If the calving event occurs on a milestone, it will
create one or more new trajectories. Therefore, the constraint between
class Milestone and Trajectory is modified by stating that one Milestone
may belong to one-to-many Trajectory.

• Event Detection as a required entity to analyze the events that may occur
to icebergs. There are various events that can be detected, such as calving
or splitting, iceberg appearance or disappearance, grounded or floating
and size reduction. Event Detection is described by having relationship
to Milestone and Iceberg since an occurred event can be observed through
the difference of milestone’s position and iceberg name.

27

3.2. Trajectory Class Diagram

Figure 3.3: Application-Specific Data Model

• Similarity Pattern as a required entity to analyze the similarity movement
of iceberg. The analyzed pattern is based on relative motion parameters,
i.e. speed and direction. The output of this entity can be used to reveal
the behaviour pattern of iceberg movement.

The two data models above are described on a conceptual level. These are
high level designs which show the core entities that are involved in trajectory
and the relationships among them. However, these models do not have detailed
information on how they can be implemented. They still need to be provided
with entity attributes and operations that can be used as guidance on how to
process data among entities. One approach to describe the data models in more
detail can be by using UML class diagram that is explained in the following
section.

3.2 Trajectory Class Diagram

The next phase after designing conceptual design pattern is the implementation
of data model. In this phase, data model should be able to present information
and rules that are involved in trajectory. Trajectory design pattern needs to
be provided in more detail. There are some alternatives on how to represent a
complete data model. One approach that can be used is UML class diagram.

UML class diagram is a static diagram that describes a system structure
together with its components. Class and the relationship between classes are
the main components. A class is a template from which objects are created. It
has attributes to store the value of object and method to manipulate the value.
Class is typically modelled as a rectangle with three sections: the top section
for the name of the class, the middle section for attributes declaration, and the
bottom section for methods declaration.

In object oriented modeling, there are many kinds of relationship between

28

Chapter 3. Trajectory Data Modelling

classes, such as association, generalization, aggregation, composition, associa-
tion class and so forth. Below is a brief description of each relationship:

• Association is described as a general relationship type between classes. It
implies that elements of two classes have a relationship. Normally, it is
represented as a line, with each end connected to a class box.

• Generalization is used to indicate inheritance. It indicates that one of the
two related classes (subclass) is considered to be a specialized form of the
other (the super class). It is represented by a triangle shape on the end of
the line on the super class and connects it to one or more subclass(es).

• Aggregation is an association that represents a part-whole or part-of re-
lationship. It is used to show that a class is made up of other class. It is
represented by a diamond shape.

• Composition is a more specific version of aggregation that is used to de-
scribe that components can be included in a maximum of one composition
at a time. It is represented with a solid diamond shape.

• Association class is a construct that allows an association connection to
have operations and attributes.

Before moving on to a further design, the author has defined a convention
on how to name the entities that are involved in the data model. The goal of this
convention is make the naming uniform, so database administrator or reader is
able to differentiate directly the functionality of every name that is mentioned
in the model. Here are the applied naming conventions:

1. Every word in a class name is written in italic and started with a capital
letter. If class’ name consists of two or more words, they are separated by
an underscore. E.g. Event Detection.

2. Every word in a class attribute name is written in italic and small letters.
If attribute’s name consists of two or more words, they are separated by
an underscore. E.g. ice name.

3. Every word in a class method name follows the same convention as at-
tribute names, but method name is started with tr as the abbreviation of
trajectory and ended by a pair of half circle bracket. E.g. tr travelled time()

3.2.1 General Trajectory Class Diagram

The class diagram of a general trajectory is represented in figure 3.4. Each
component in this diagram is described as follows:

Milestone is a class representing a record of an entity’s movement in a trajec-
tory. It is characterized by having a triplet information of x and y posi-
tion (it can be longitude-latitude or XY Cartesian coordinates) and time of
when the position is recorded.

29

3.2. Trajectory Class Diagram

Figure 3.4: Class diagram of general trajectory

Trajectory is the central class of the diagram since it has aggregation rela-
tionship to Moving Entity and binary association to Milestone. Trajectory
is characterized with an attribute namely trajectory which stores the list
value of milestone(s). This class has a constructor to create the geometry
of trajectory (tr create trajectory()) and some manipulation methods for:

• Data pre-processing: tr manage inconsistency(), tr manage duplicate(),
tr manage outlier() and tr manage empty value()

• Summarizing the general information of trajectory during its lifes-
pan: tr summary trajectory() and tr summary milestone()

• Interpolating data set that might be needed to guess a probable tra-
jectory, especially for a data set that is recorded in irregular temporal
resolution: tr interpolation()

Segment is an associate class between Trajectory and Milestone. Segment con-
sists of two consecutive milestones and collection of segments will create
a trajectory. From this association, the following general information of
trajectory can be extracted:

• Travelled time: tr travelled time()

• Travelled distance: tr travelled distance()

• Speed: tr speed()

• Direction: tr direction()

3.2.2 Iceberg Trajectory Class Diagram

Class diagram for iceberg trajectory is depicted on figure 3.5. Compare to the
general class diagram on figure 3.4, there are some modifications have been
made with respect to the needs of application.

30

Chapter 3. Trajectory Data Modelling

Figure 3.5: Class diagram of iceberg trajectory

There are some new attribute additions for Milestone. The data type of
these new attributes follows as the original data source, i.e. iceberg name as
character, longitude and latitude as double precision, time as integer and size
as character. There is also an attribute termed as flag which is used to differen-
tiate between an observed and a derived data of milestone. Milestone identified
to have some data converter methods, i.e. to convert attributes data type into
required data type on specific functions. This converter methods are listed as:

• tr calculate size in nm()

• tr calculate size in km()

• tr julian to calender()

• tr calender to julian()

In class Trajectory, there are some new data pre-processing methods have
been added. These methods are intended to clean data set toward more specific
attributes, such as to clean empty value of:

• Latitude: tr manage empty latitude()

• Longitude: tr manage empty longitude()

• Size: tr manage empty size()

31

3.2. Trajectory Class Diagram

• Longitude, latitude and date: tr manage empty position time()

Also some methods to handle two types of duplication that are found in the
iceberg data set:

• tr manage duplicate full()

• tr manage duplicate partial()

Class Segment has also been modified in terms of overloading its methods.
Overloading is a form of polymorphism which enables one method name to have
several functionality with different parameters and may also have different
return type. These methods are defined to calculate travelled time, travelled
distance, speed, and direction for along trajectory lifespan or along its segment.
Below is an example of overloading method:

• tr travelled time(char): is a method to calculate total travelled time of an
iceberg during its lifespan.

• tr travelled time(int,int): is a method to calculate travelled time between
two consecutive milestones.

Based on application specific data model (see section 3.1.2), class diagram
to represent iceberg trajectory also involves two required entities which are
named as Event Detection and Similarity Pattern. For the sake of simplicity,
this diagram is divided into two parts. The first part is dealing with class dia-
gram for iceberg event detection and the second part is dealing with searching
similarity pattern among iceberg movements.

Class Diagram of Event Detection

Class diagram shown on figure 3.6 reflects the structure for detecting events
in a history of an iceberg. There are two supportive classes which are defined
as Iceberg Event and Calving Iceberg. Iceberg Event encapsulates all attributes
and methods that are needed to classify each iceberg into one of the specified
events, i.e. calving, grounded or floating. Result of classification is stored into
status event.

Calving Iceberg has a role of detecting calving event with more specific func-
tions, i.e. to define the parent of calving icebergs. When parent is detected,
calving date and position can also be identified.

Class Diagram of Similarity Pattern

Figure 3.7 is related with searching similarity pattern among iceberg move-
ments. The similarity search is based on the REMO concept (introduce ear-
lier) that employs classification technique to find the behaviour patterns of ice-
berg movements. The search for patterns is based on two key features [LI02,
LvKI05]:

32

Chapter 3. Trajectory Data Modelling

Figure 3.6: Class diagram for detecting event type that may occur on iceberg

33

3.2. Trajectory Class Diagram

Figure 3.7: Class diagram for searching similar pattern of iceberg movement

34

Chapter 3. Trajectory Data Modelling

Figure 3.8: Matrix for searching behaviour pattern that consists of classified direction for five
objects and ten time steps

1. Transformation of the trajectory data into matrix which features the clas-
sified parameters on regular time intervals.

2. Pattern detection.

Matrix is constructed as the list of icebergs’ parameter in specified time
steps. The matrix columns are based on regular time steps and the rows corre-
sponds to icebergs’ name (objects). The values of matrix are taken from classi-
fied parameters. As an example, figure 3.8 shows a matrix which holds classi-
fied direction of some icebergs on time1 to time10.

Pattern can also be termed as a search template. There are three types of
patterns that can be extracted from matrix. These patterns are named as:

1. Constancy for a search template that spans over time, i.e. one object over
several times (see figure 3.9a).

2. Concurrence for a search template that moves across objects. i.e. several
objects at one time (see figure 3.9b).

3. Conformity for a search template that combines the search over times and
across objects, i.e. several objects at several times (see figure 3.9c).

These search templates are illustrated in figure 3.9. Referring to the key
features and pattern types mentioned above, in the class diagram of Similar-
ity Pattern there is a class termed as Remo Matrix. This class encapsulates
method to generate matrix based on the specified time ranges (from time begin
to time end) and stores the classified parameter into an attribute. This research
applies speed and direction as motion parameters, hence the classified param-
eters are stored into speed class and direction class.

Pattern detection is represented by an abstract class of Remo Pattern. This
class has attributes of the classified parameter (class) and the date (date) which
can be inherited by three sub-classes, i.e. Remo Constancy, Remo Concurrence
and Remo Confirmity to store the identified patterns.

35

3.3. Summary

Figure 3.9: Three types of similarity pattern

3.3 Summary

This chapter has discussed general and application-specific trajectory data mod-
els. The basic models was based on trajectory design pattern which illustrated
the required entities and relationship. There were three general entities in-
volved: moving entity, trajectory and milestone. To conform with application
requirements, the general model has been modified by adding two new entities,
namely event detection and similarity pattern. Afterwards, the data models
were transformed into UML class diagram. There were two class diagrams
based on user requirements, i.e. class diagram for detecting the iceberg events
and the similar patterns. Iceberg event detection has divided into two sub-
classes, i.e. to classify three type of events, i.e. calving, grounded and floating;
and to detect the parent, position and time of calving occurrence. In similar-
ity pattern class diagram, it showed data structure to classified the iceberg
parameters into three type of patterns, i.e. constancy (pattern over times), con-
currence (pattern across objects) and conformity (pattern over times and across
objects).

36

Chapter 4

Trajectory Back End Support
Implementation

This chapter presents the implementation of trajectory data modelling. The
focus of the discussion lies in the four groups of database functions. The first
group, back end support for data pre-processing, is discussed in section 4.1.
Data pre-processing involves functions for cleaning data set from inconsisten-
cies, empty values, data duplicates and outliers. Section 4.2 describes the sec-
ond group of back end support for extracting the general information of trajec-
tory. Each trajectory is characterized by having a travelled time, travelled dis-
tance, speed and direction. Section 4.3 discusses the third back end support for
iceberg event detection which can also be applied for identifying parent child re-
lationship among icebergs. This chapter is finalized by implementing trajectory
data mining techniques for searching similar patterns of iceberg movements
(section 4.4).

All functions are implemented by programming language PostgreSQL, i.e.
PL/pgSQL and using PostGIS functions. Some functions are declared by using
SQL cursor. A SQL cursor in PostgreSQL is a read-only pointer that has a fully
access to execute SELECT statements. Cursor can be used to manage which
rows should be retrieved/fetched from data set.

4.1 Back End Support for Data Pre-processing

Data pre-processing is a preliminary process that has to be done before comput-
ing data in further process. For iceberg data set, data pre-processing consists
of four steps, i.e. data integration, data reduction, data cleaning, and data
transformation. The sequence activity of data pre-processing can be seen on
figure 4.1.

1. Data integration involves activity to integrate all data sources into one
working space. The Antarctic iceberg data set consists of four different
spread sheet files that represent iceberg movements in each quadrant.
To analyze the phenomena in the whole part of Antarctica, these spread
sheet files have been integrated into one working table.

37

4.1. Back End Support for Data Pre-processing

2. Data reduction is dealing with selection of the main attributes from data
source. Compares to the original data set that consists of eight attributes,
i.e. iceberg name, date, longitude, longitude sign, latitude, latitude sign,
size and image source; this research only uses five attributes that are con-
sidered as the basic information of the iceberg trajectory. These attributes
are iceberg name, longitude, latitude, date and size.

3. Data cleaning is related with cleaning data from errors that are found
on iceberg data set. Initial inspection has found that data inconsistencies,
empty values, data duplicates, typing errors and outliers are errors that
should be removed or managed in the data set.

4. Data transformation is dealing with transforming some attributes into
appropriate data type that is needed in further process. In spatially-
enabled database, transformation data into geometry type should also
identify the projection system that is referred to, i.e. the SRID (Spatial
Reference System Identifier). This research refers to WGS84 (SRID =
4326) for the geometry type in degree unit and Antarctic Polar Stereo-
graphic (SRID = 3031) for the geometry type in metric unit. For trajectory
analysis purpose, the three components of milestone, i.e. longitude, lati-
tude and date; is transformed into 3D geometry point.

There are two types of functions for data pre-processing. These functions
are applied for checking and managing data from inconsistencies, empty val-
ues, duplicates and outliers. These functions are implemented based on the
constraints below:

This section is focused on the implementation of functions for data clean-
ing. Functions for managing data from errors are implemented based on the
constraints below:

1. Milestone may not have empty value in position and time.

2. Latitude may not be assigned in positive value with respect to NIC re-
quirement that all the Antarctic icebergs should be located on the south
of 60◦ south latitude.

3. The speed of every two consecutive milestones may not be exceeded 80
km/day.

The list of functions for data pre-processing can be seen on table 4.1 and the
implementation on these functions have been attached on appendix A.

4.1.1 Data Consistency Management

Data consistency management is applied to attributes of iceberg name and lat-
itude attributes. In the original iceberg data set, name of the iceberg has been
a mixed up between upper and lowercase letters. E.g. some icebergs are named
as A20A, a20A, A20a and a20a. There is no difference among these names,
hence all icebergs’ name have been updated into uppercase letter(s).

38

Chapter 4. Trajectory Back End Support Implementation

Figure 4.1: Activity diagram of data pre-processing which consists of data integration, data
reduction, data cleaning, and data transformation

39

4.1. Back End Support for Data Pre-processing

Table 4.1: List of Function for Data Pre-processing

Name of Function Parameter Input Return
Type

tr data integration none setof table
tr manage sign latitude none setof table
tr manage empty latitude none setof table
tr manage empty longitude none setof table
tr manage empty size none setof table
tr manage empty position time none setof table
tr manage duplicate full none setof table
tr manage duplicate partial none setof table
tr manage outliers none setof table

Function to manage the sign of latitude is applied for milestone that has
latitude as positive value. This is regarding to the second constraint above
that states the Antarctic iceberg can not be positioned on the north of equator.
Therefore for all positive latitudes are assigned as negative ones.

4.1.2 Empty Value Management

Empty value management is applied to milestone that has no value either in
its latitude, longitude, size or empty in both position and date attributes.

Empty value in longitude and/or latitude position longitude and/or latitude
has been handled by applying a simple linear interpolation. Linear interpola-
tion is defined using the following equations [NRRT05]:

(x− x1)(t2 − t1)− (x2 − x1)(t− t1) = 0 (4.1)

(y − y1)(t2 − t1)− (y2 − y1)(t− t1) = 0 (4.2)

In these equation, x and y refer to milestone that has empty value either in
its longitude (x) and/or latitude (y). Therefore to interpolate the missing longi-
tude (x), function tr manage empty longitude() uses equation 4.1. It is done by
considering x1 as the longitude of the previous milestone and x2 refer to the lon-
gitude value of the next milestone of x (see algorithm 1). The same mechanism
applies for managing latitude by using equation 4.2.

Management empty sizes has been implemented by taking the size value of
the previous milestone. While if a milestone has empty value in both position
and date, it is assumed to be a non-valid milestone that will be removed from
database.

4.1.3 Data Duplicate Management

Data duplicate is defined based on four attributes, i.e. iceberg name, longitude,
latitude and date. The iceberg data set shows there are two type of duplications,
i.e. full and partial. A milestone is defined having a full duplication if other

40

Chapter 4. Trajectory Back End Support Implementation

Algorithm 1: Manage Empty Longitude

Ensure: Working table has been ordered by iceberg name and date
1: Open cursor on table
2: Fetch three milestones (m1, m2, m3)
3: loop
4: if m1.name = m2.name and m2.name = m3.name then
5: if m2.longitude = 0 then
6: m2.longitude← ((m3.longitude−m1.longitude)/(m3.date−m1.date))+

m1.longitude
7: update table for m2

8: end if
9: m1 ← m2

10: m2 ← m3

11: fetch one milestone as m3

12: end if
13: end loop
14: close cursor

milestone(s) exists with similar value in these four attributes. If the similarity
is found only on iceberg name and date, milestone is defined having a partial
duplication. Hence for managing data duplicates, there are two steps needed:

• The first step is dealing with full duplication. This is done by taking only
one milestone for each group of milestone that have full duplication (see
algorithm 2).

• The second step is applied for partial duplication which has different lon-
gitude and latitude on its duplicate group members. A similar approach
as the previous step, this step also takes only one representative of dupli-
cate milestones. Longitude and latitude is assigned as the average of all
longitude and latitude values in that group respectively (see algorithm 3).
This step able to clean data set from partial duplication; however it has
a limitation when there is outlier(s) in the group. This limitation can be
avoided by managing the outliers beforehand.

4.1.4 Outliers Management

Outliers management has been applied for milestones that have speed more
than 80 km/day [Ra80]. Speed is calculated between two consecutive milestones
of the same iceberg. There are two functions that have been implemented to an-
alyze pre- and post-processing of handling outliers. Function of pre-processing
outliers shows that outliers exist as the result of:

1. Typing errors which cause the incidental exchange of plus and minus sign
and doubled value.

2. Switch of values between longitude and latitude.

41

4.1. Back End Support for Data Pre-processing

Algorithm 2: Manage Full Duplication

Ensure: Working table has been ordered by iceberg name and date
Ensure: Table to store result (free full duplicate) has been created

1: Open cursor on table
2: Fetch two milestones (m1, m2)
3: loop
4: if not (m1.name = m2.name and m1.date = m2.date and m1.longitude =

m2.longitude and m1.latitude = m2.latitude) then
5: store m1 into table free full duplicate
6: end if
7: m1 ← m2

8: fetch one milestone as m2

9: end loop
10: close cursor

Algorithm 3: Manage Partial Duplication

Ensure: Working table has been ordered by iceberg name and date
Ensure: Table to store result (free partial duplicate) has been created

1: group milestone by iceberg name and date
2: count member for each group
3: loop
4: if number of group = 1 then
5: store milestone into table free partial duplicate
6: else
7: new longitude← average(longitude)
8: new latitude← average(latitude)
9: take one milestone and assign new longitude and new latitude as its

longitude and latitude
10: store milestone into table free partial duplicate
11: end if
12: end loop

42

Chapter 4. Trajectory Back End Support Implementation

3. Data anomaly which is related with the actual value of record, e.g. in a
short period of time there is a large movement in space.

Function to manage the outliers is defined for handling the typing errors,
i.e. the consistency of longitude value. It works by comparing the consistency of
current longitude with its previous record. This function is implemented based
on algorithm 4.

Algorithm 4: Manage Outliers

Ensure: Table to store the clean data set from outliers (free outliers) has been
created

Require: The first milestone has hold the right value
1: Retrieve two consecutive milestone (m1 and m2) of the same iceberg
2: Calculate speed between m1 and m2

3: if speed > 80 then
4: Create temporary milestone (temp)
5: dif ← m1.longitude−m2.longitude
6: if dif >= 10 then
7: temp.longitude← m2.longitude/10
8: else if (m1.longitude > 0 and m2.longitude < 0) or (m1.longitude < 0 and

m2.longitude > 0) then
9: temp.longitude← m2.longitude ∗ −1

10: end if
11: temp.longitude← m2.longitude
12: Calculate speed between m1 and temp
13: if speed < 80 then
14: Insert into free outliers
15: end if
16: end if
17: Insert into free outliers

Function of post-processing shows that there are still some outliers that
occur due to switch values. An approach to handle this problem is done by
having human intervention, i.e. manual editing.

Figure 4.2 and 4.3 illustrates the comparison before and after outliers are
managed in database.

Below is a summary of data pre-processing implementation in terms of num-
ber of error records that have been identified and corrected from 301 icebergs
with 15737 records:

• Full duplication (identical value in all attributes: iceberg name, date of
recording, latitude, longitude and size): 251 records.

• Partial duplication (identical value in iceberg name and date of recording):
300 records.

• Empty value in latitude, longitude and date: 5 records.

43

4.1. Back End Support for Data Pre-processing

Figure 4.2: Trajectory with outliers

Figure 4.3: Trajectory that has been cleaned from outliers

44

Chapter 4. Trajectory Back End Support Implementation

• Empty value only in longitude: 7 records.

• Empty value only in latitude: 6 records.

• Empty value in size: 12 records.

• Incidental exchange of plus and minus sign for latitude: 57 records.

• Outliers (milestone that has the speed value more than 80 km/day): 122
pairs of records.

4.2 Back End Support for Trajectory Data Extrac-
tion

The step for extracting the general information of trajectory is shown on fig-
ure 4.4. The involved functions are dealing with:

• Converting some attributes into required data type.

• Calculating geometric properties of trajectory, i.e. travelled time, travelled
distance, speed, and moving direction.

• Creating trajectory from the list of milestone.

• Aggregating all of this information as summary of iceberg movement.

Table 4.2 shows the list of implemented functions for extracting data from
trajectory and the actual source code of these functions has been attached on
appendix B.

4.2.1 Data Conversion

Functions for data converter are dealing with converting size and date into re-
quired data type. Data converter is needed with respect to other process, such
as calving detection that needs to compare the size of two iceberg and analy-
sis of similarity pattern that needs input of time range from user in calender
(Gregorian) format.

Original data data set store size as five characters. E.g size is declared as
”45x38”. It shows the length and the width of iceberg in Nautical Miles (nm).
For computation purpose, size has to be casted into numerical type. There are
two functions have been implemented to calculate size in nm and km (kilome-
ter) unit.

Iceberg date has its own specific format. It consists of seven digits in which
the first four digit shows the year and the last three digit shows the order of the
day in that year. E.g. iceberg A01 has a record 1978299, which means that ice-
berg was recorded in the year 1978 on the 299th day. This format enables user,
such as system developer, to apply some mathematical operations. However on
presentation level, this is not an appropriate form to be used. Therefore, there
are two functions have been implemented to convert iceberg date into Gregorian
format and vice versa.

45

4.2. Back End Support for Trajectory Data Extraction

Figure 4.4: Activity diagram of extracting general information from trajectory

46

Chapter 4. Trajectory Back End Support Implementation

Table 4.2: List of Function for Trajectory Data Extraction

Name of Function Parameter Input Return
Type

tr create trajectory ice name: text geometry
tr interpolation ice name: text setof table
tr interpolation time from: text, time to:

text
text

tr direction ice name: char double
tr direction point1: geometry, point2:

geometry
double

tr speed ice name: char double
tr speed date1: int, point1: geometry,

date2: int, point2: geometry
double

tr travelled distance ice name: char double
tr travelled distance point1: geometry, point2:

geometry
double

tr travelled time ice name: char integer
tr time difference date1: int, date2: int integer
tr is leap year date: int boolean
tr calender to julian date: text integer
tr julian to calender date: int text
tr calculate size in nm size: text integer
tr calculate size in km size: text double
tr num milestone ice name: char integer
tr get summary trajectory none setof table
tr get summary milestone none setof table

47

4.2. Back End Support for Trajectory Data Extraction

4.2.2 Trajectory Characteristics Extraction

Trajectory is characterized of having a travelled time, travelled distance, speed,
and direction. There are four main functions have been implemented as over-
loading methods to extract these characteristics. These functions perform sev-
eral different functionalities depending on the number and the type of param-
eters. Calculation can be done either for the whole lifespan of a trajectory or
between two consecutive milestones (in one segment).

Travelled time is calculated as a number of days an iceberg has travelled.
Travelled time in one segment can be considered as the time difference be-
tween two dates. While for the whole lifespan of a trajectory, it is calculated as
the total days of each segment. Function to calculate travelled time has been
implemented with support of two other functions, i.e. tr time difference() and
tr is leap year(). Algorithm 5 to calculate travelled time.

Algorithm 5: Calculate Travelled Time

Ensure: Table reference has been ordered by date
Require: Iceberg name (ice name)

1: Open cursor on table reference where iceberg name = ice name
2: Fetch two milestones (m1, m2)
3: ave time = 0
4: loop
5: dif ← (m2.date−m1.date)
6: ave time← ave time + dif
7: m1 ← m2

8: fetch one milestone as m2

9: end loop
10: close cursor
11: return ave time

Travelled distance is calculated as a Cartesian distance between two points.
Function to extract this value is implemented by using PostGIS built-in func-
tion st distance(). Parameter input of this function should be in metric unit
geometry. Therefore to calculate travelled distance, longitude and latitude at-
tributes have to be converted into point then transformed into metric unit based
on the Antarctic Polar Projection System.

Speed calculation is based on the value of travelled distance and travelled
time. Speed can be calculated as an average speed along a trajectory or speed
between two consecutive milestones. For average speed, the calculation only
consider the distance between the first and the last milestone divided by trav-
elled time along trajectory.

The same condition for extracting direction of a trajectory. It can be calcu-
lated as major direction of a trajectory, which considers the first and the last
milestone, or direction of two consecutive milestones. Function to calculate di-
rection employs PostGIS built-in function st azimuth() which require two metric
unit geometries as parameter inputs.

The output of function st azimuth() is in radian unit (-3.14 to +3.14). Com-

48

Chapter 4. Trajectory Back End Support Implementation

mon direction is presented in degree unit (0◦ to 360◦ or -180◦ to +180◦). Hence
in the implemented function, data is converted into degree unit which is based
on the equation 4.3:

degree = radian ∗ (180/3.14); (4.3)

4.2.3 Creation of Trajectory

Trajectory is created by using function tr create trajectory(). This function is
implemented by putting all milestones of the same iceberg into an array. Af-
terward, array is transformed into a linestring by applying PostGIS function
st makeline garray(geometry[]). Algorithm 6 shows the step of creating trajec-
tory.

Algorithm 6: Create Trajectory

Ensure: Table reference has been ordered by date
Ensure: Table reference has 3D geometry point (pointm)
Require: Iceberg name (ice name)

1: Open cursor on table where iceberg name = ice name
2: Fetch one milestones (m1)
3: loop
4: store m1.pointm into array
5: fetch one milestone as m1

6: end loop
7: if array length > 1 then
8: trajectory ← st makeline garray(array) {create trajectory as a

linestring}
9: end if

10: close cursor
11: return trajectory

A milestone is represented as a 3D geometry point. Research uses PostGIS
function st makepoint(double, double, double) to create this. It involves three
attributes of a milestone, i.e. longitude, latitude and date; as parameter func-
tions.

Figure 4.5 illustrates trajectory of some icebergs that occur from 1978 to
December 1984. In this figure, trajectory has been described as a linestring of
some milestones.

4.2.4 Trajectory Summarization

There are two functions have been implemented for providing summary infor-
mation of trajectory:

• Function of (tr get summary trajectory()) provides summary of trajectory
characteristics. This function can be used to generate total travelled time,
total travelled distance, average speed, major direction and number of

49

4.2. Back End Support for Trajectory Data Extraction

Figure 4.5: Visualization of trajectory in Google Earth from 1978 to 1984

Figure 4.6: Summary of trajectory

milestones of each icebergs. From this summary, user may analyze the
the statistic of these characteristics. E.g. icebergs in quadrant A have
average lifetime about 825 days, average travelled distance 3598 km and
average speed 6.5 km/day.

Furthermore, this summary also shows some non-valid trajectories, i.e.
iceberg that has only one milestone. This iceberg has to be removed from
database since violates trajectory definition (see section 3.1.1).

Figure 4.6 shows the snapshot of table summary trajectory and figure 4.5
shows one non-valid trajectory, i.e. A10, that should be removed from a
database.

• tr get summary milestone() is related with summary of the first and the
last milestone with respect to it position, date and size of each trajectory.

50

Chapter 4. Trajectory Back End Support Implementation

Table 4.3: List of Function for Event Detection

Name of Function Parameter Input Return
Type

tr detect event none setof table
tr detect calve none setof table
tr get summary calving none setof table

4.3 Back End Support for Event Detection

Back end for event detection is implemented to classify events that occur during
iceberg lifespan. There are three types of event: calving, grounded and floating.
In general these events are differentiated based on the following constraints:

• Calving is defined for an iceberg that has similar main name to other
icebergs. E.g. the group of iceberg A60 (see figure 2.2) consists of three
icebergs: A60, A60A and A60B. These icebergs are classified as calving.
The leader of the group, i.e. iceberg that has no suffix in its name, is
assumed as a parent and others are assumed as child.

• Any iceberg can be classified either as grounded or floating. If the trav-
elled distance during iceberg lifespan is zero, it is assumed to be grounded;
otherwise it is assumed to be floating.

The step for defining the general iceberg event and calving detection is il-
lustrated on figure 4.7. Table 4.3 shows the list of functions for this purpose.
These functions have been applied on icebergs of the quadrant A of Antarctica.
In total there are 95 of icebergs. Among this number, 48 were classified as
calving icebergs, 8 grounded icebergs and 36 floating icebergs. From 48 calving
icebergs, 12 icebergs are assumed as parent and the rest are classified as child.

Further process on calving detection is needed to define the source of calv-
ing, i.e. iceberg’s parent, the site and time of occurrence. In general, calving
event can be detected from iceberg name. However, the current naming sys-
tem that has been used by National Ice Center (NIC) (see section 2.1.1) creates
difficulty for identifying these needed information.

This difficulty is illustrated in figure 4.8. This figure shows there is one
group of iceberg which consists of A60, A60A, A60B and A60C. Since these
names are based on alphabetical order, it can be defined directly that:

• A60 is the root of the series

• A60A is calved from A60.

However, this approach can’t be applied to the icebergs A60B and A60C or to
any other further descendants. There are possibilities that may have occurred
to the actual calving events on this group.

• A60B may be calved either from A60 or A60A.

51

4.3. Back End Support for Event Detection

Figure 4.7: Activity diagram of detecting three type of iceberg event, i.e. calving, grounded
and floating

52

Chapter 4. Trajectory Back End Support Implementation

Figure 4.8: Calving possibilities that may occur to the group of iceberg A60

53

4.4. Back End Support for Trajectory Data Mining

Figure 4.9: Calving distribution of icebergs in quadrant A of Antarctica

• A60C may be calved either from A60, A60A or A60B.

tr detect calve() is implemented as a function to handle the problem men-
tioned above. It works by comparing the first milestone of the child with the
milestone of every candidate parent. Candidate parent is defined for iceberg(s)
that has last suffix in its name smaller than the last suffix of the child’s name.
E.g. the candidate parent of A60B is A60 and A60A.

For detecting calving occurrence, there are three comparison parameters,
i.e. size, time, and location. These parameters are used to define data con-
straints based on the following order:

1. Parent’s size may not be smaller than child’s size.

2. Calving is occurred on parent’s milestone which has the shortest differ-
ence in time with the child’s first milestone.

3. If there are more than one candidate parents that has the same difference
in time with child, calving is defined on candidate parent that has the
nearest location to the child.

Functions for detecting calving occurrence have been applied to 36 icebergs
that were classified as child. The first calving event was identified in 1986 and
the most recent ones is in 2006. Result of this detection can be used to analyze
the number of calving distribution for each year as illustrated on figure 4.9. As
can be seen on that figure, the most frequent calving was occurred in 2001 that
brought out 8 new icebergs.

4.4 Back End Support for Trajectory Data Mining

Trajectory data mining has a goal to extract new knowledge from trajectory
data set. Back end support for this purpose have been implemented by refer-
ring to the concept of relative motion pattern. The relative motion pattern has

54

Chapter 4. Trajectory Back End Support Implementation

Table 4.4: List of Function for Trajectory Data Mining

Name of Function Parameter Input Return
Type

tr remo generate interpolation none setof table
tr remo classification none setof table
tr remo assign class direction direction value: int integer
tr remo assign class speed speed value: int integer
tr remo constancy searched class: int,

quantifier: int
setof table

tr remo concurrence searched class: int,
searched time: text

setof table

tr remo conformity none setof table

featured data mining approach, i.e. classification of parameters, to get similar
pattern of object movements.

The list of implemented functions is shown on table 4.4.
This research uses speed and direction as parameter to detect similar pat-

terns of iceberg movements. The steps of discovering similar pattern from ice-
berg data set is shown on figure 4.10. It starts by interpolating all iceberg in
daily interval based on each iceberg’s lifespan. The next step is calculating
speed and direction for each interpolated value. Afterward, the value of speed
and direction is classified into predefined class.

Two types of data classification have been applied. The first one is manual
classification which is applied for classifying direction. This method is chosen
with respect to cardinal point that commonly used for describing direction. The
overall value of direction is distributed in the range of -180 degree to +180
degree. The second method is a quantile classification which is applied for clas-
sifying the speed value. This method is chosen to get an equal distribution of
data set for each predefined number of class. Source code to classify speed and
direction can be seen on appendix D.2.

To start the analysis of similarity pattern, the next step after data classifi-
cation is the creation of relative motion matrix (see algorithm 7). This matrix is
considered as a 2.5-dimensional analysis space with respect to the components
that built the matrix [LI02, LIW05]:

• The column of matrix (horizontal axis) is termed as temporal axis since it
has a sorted time steps. The range of time steps are defined by the user
(refer to time begin and time end).

• The row of matrix (vertical axis) is defined as the object axis. The object
axis is filled by icebergs that have movement in the specified time ranges.

• The matrix values is represented by the classified parameter.

After creation of remo matrix, the next step is finding the similar patterns.
There are three types of pattern that can be identified.

55

4.4. Back End Support for Trajectory Data Mining

Figure 4.10: Activity diagram of trajectory data mining for searching similar pattern based on
Relative Motion analysis

Algorithm 7: Create Relative Motion Matrix

Ensure: All icebergs have been interpolated in daily basis
Ensure: Table to store matrix (remo matrix) has been created
Ensure: Table reference has been ordered by date
Require: Time range (time from, time to)

1: for all iceberg name do
2: Take first and last milestone
3: if first <= time from and last >= time to then
4: retrieve all milestones which date fall in between the time range
5: store these milestones into table remo matrix
6: end if
7: end for

56

Chapter 4. Trajectory Back End Support Implementation

1. Similar pattern over horizontal axis which is termed as constancy.

Function to detect constancy requires two parameters, i.e the intended
class and the minimum length of the pattern (search class, quantifier).
This function works by scanning all matrix values in horizontal direction
based on the searched class type. Pattern is identified for the sequence
of value that have members equal or more than quantifier. Algorithm 8
shows how constancy is identified.

Algorithm 8: Search Template of Constancy

Ensure: Table reference has been ordered by iceberg name and date
Ensure: Table to store pattern of constancy (remo constancy) has been created
Require: Motion parameter and length of quantifier

(searched class, quantifier)
1: Open cursor on table reference
2: Fetch one milestone (m1)
3: loop
4: if m1.speed = searched class or m1.direction = searched class then
5: store milestone into array
6: if array length >= quantifier then
7: store array into table remo constancy
8: clean array
9: end if

10: end if
11: Fetch one milestone as m1

12: end loop
13: close cursor

2. Similar pattern across vertical axis which is termed as concurrence.

Function to search concurrence also requires two parameters, i.e. the class
type of motion parameter and the time search. It works by filtering the
matrix based on predefined class and time search. The step to define con-
currence is depicted on algorithm 9.

3. Similar pattern over horizontal and across vertical axis which is termed
as conformity.

Function to search conformity works by searching identical patterns in
the result of constancy. The output of this function are pairs of iceberg
that have similar pattern over time. Algorithm 10 shows how conformity
is identified.

These functions above can be categorized as tools for deterministic search-
ing since enable user to define the criteria of pattern that user needs. These
functions have been applied to search similar pattern from 10 July 2000 to 10
August 2000 to icebergs in quadrant A. The identified patterns are as following:

1. Constancy are found on iceberg A22A, A38B, A39, A41, A43A and A43B
which have similar direction of 45◦ for at least 5 consecutive days.

57

4.4. Back End Support for Trajectory Data Mining

Algorithm 9: Search Template of Concurrence

Ensure: Table reference has been ordered by iceberg name and date
Ensure: Table to store pattern of concurrence (remo concurrence) has been cre-

ated
Require: Motion parameter and time (searched class, searched time)

1: Open cursor on table reference where date = search time
2: Fetch one milestone (m1)
3: loop
4: if m1.speed = searched class or m1.direction = searched class then
5: store milestone into table remo concurrence
6: end if
7: Fetch one milestone as m1

8: end loop
9: close cursor

Algorithm 10: Search Template of Conformity

Ensure: Table reference has been ordered by iceberg name and date
Ensure: Table to store pattern of conformity (remo conformity) has been cre-

ated
Ensure: Table to store temporary pattern of conformity

(remo conformity temp) has been created
1: Open cursor on table reference
2: Fetch two milestones (m1, m2)
3: loop
4: if m1.name = m2.name and (m2.date−m1.date) = 1 then
5: store milestone into array
6: if array length > 1 then
7: store array into table remo conformity temp
8: clean array
9: end if

10: end if
11: Fetch one milestone as m1

12: end loop
13: close cursor
14: open cursor on table remo conformity temp
15: fetch two patterns (p1, p2)
16: loop
17: if p1 = p2 then
18: store p1 and p2 into table remo conformity
19: end if
20: p1 ← p2

21: fetch one pattern as p2

22: end loop
23: close cursor

58

Chapter 4. Trajectory Back End Support Implementation

Figure 4.11: The Identified conformity on icebergs A38B, A39 and A43B from 10 to 17 July 2000

2. Concurrence are found on iceberg A22C, A35A, A35B, A35C, A38C, A39,
A43B and A43C which have similar direction of 315◦ on 20 July 2000.

3. Conformity are found on iceberg A38B, A39 and A43B which have simi-
lar direction of 45◦ that occurred from 10 July 2000 to 17 July 2000 (see
figure 4.11 and 4.12).

4.5 Summary

This chapter has presented the implementation of back end support for man-
aging iceberg trajectory. Four types of functions dealt with data pre-processing,
extraction of general information of trajectory, iceberg event detection and tra-
jectory data mining. Data pre-processing involved functions for managing data
from inconsistencies, empty values, duplicates and outliers. Extraction of gen-
eral information of trajectory involved functions for data conversion, trajectory
characteristics extraction, trajectory creation and trajectory summarization.
Meanwhile regarding to event detection, two functions have been implemented
for classifying general iceberg event and for detecting the position and the time
of calving occurrence. The last functions were dealing with mining iceberg data
set for searching similar patterns of iceberg movements. This research has im-
plemented three types of deterministic pattern which are termed as constancy,
concurrence and conformity.

59

4.5. Summary

Figure 4.12: The identified conformity with similar approximate direction of 45◦ in eight con-
secutive days

60

Chapter 5

Conclusions and
Recommendations

Section 5.1 discusses conclusions that are drawn of applying back end support
on icebergs trajectory and section 5.2 discusses recommendations for further
development of trajectory back end support.

5.1 Conclusions

Conclusions are made by referring to the research objectives and questions that
were specified on section 1.2. Two main results have been achieved: design
of trajectory data model and implementation of back end support on icebergs
trajectory.

5.1.1 Designing Conceptual Trajectory Data Model

Design of trajectory data model is based on trajectory definition in section 3.1.1.
It is represented as UML class diagram (see section 3.2) which is related with
the following research questions:

What data types, attributes, operations, classes and relationships are
needed to represent general trajectories?

On chapter 3, trajectory has been defined as a collection of entities position
sorted in time. Trajectory in DBMS is represented by using three main classes,
i.e. moving entity, trajectory, milestone; and one association class termed as
segment (see figure 3.4). The relationship among these classes shows that tra-
jectory is part of a moving entity and each trajectory consists of at least two
milestones. The term of milestone is referred to a record of moving entity that
holds position and time as its main attributes. Data source which are obtained
from position tracking devices, such as GPS or satellite radio collars, can be
assumed as milestones.

The involved methods in class diagram are divided into three groups:

61

5.1. Conclusions

1. Methods for cleaning data from inconsistencies, empty values, duplicates
and outliers. They are encapsulated in class Trajectory.

2. Methods for extracting general characteristics of trajectory. They are en-
capsulated in class Segment.

3. Method to construct or create trajectory as a linestring of point.

The required attributes to represent trajectory are listed as:

position as a point that is formed by latitude/longitude or XY Cartesian coor-
dinates. It can be represented in degree unit or metric unit.

time of when position is recorded. It can be represented as date or integer data
type.

milestone as a record of entity’s movement that consists of position and time.
It is represented as 3D geometry point.

trajectory that holds collection of milestones of one iceberg. It is represented
as a linestring of geometry data type.

What functions are needed for extracting geometric properties from
trajectories?

This research has defined four types of geometric properties (as defined in sec-
tion 2.2.1), i.e. travelled time, travelled distance, speed and moving direction.

The list of functions to extract these properties is shown on table 4.2. They
have been implemented as overloading methods which calculate either for the
whole lifespan of trajectory or between two consecutive milestones (one seg-
ment).

Function to calculate travelled distance, direction and to create a trajec-
tory were based on PostGIS functions, such as st distance(), st azimuth() and
st makeline garray(). These functions require point data type as parameter in-
puts. There are three types of point that have been used:

1. Point in degree unit to calculate major direction of two points. To define
this point, WGS84 Projection System and PostGIS function st makepoint(double
precision, double precision) were used.

2. Point in metric unit to calculate travelled distance between two mile-
stones. To define this point, Antarctic Polar Projection System and Post-
GIS function st transtorm(geometry, integer) were used.

3. Point in 3D geometry point to create a trajectory. The 3D geometry point
applies on a milestone which consists of position and time. To define this
point, WGS84 Projection System and PostGIS function st makepointm(double
precision, double precision, integer) were used.

62

Chapter 5. Conclusions and Recommendations

Research has also implemented a function to summarize all these charac-
teristics. From this summary, user may find minimum, maximum and average
value of movement for all moving entities during their lifespan. Furthermore,
summary information may also help users to define some constraints to the data
set. E.g. for iceberg event detection, iceberg that has zero value in travelled
distance is assumed as grounded icebergs. Summary information of trajectory
characteristics has been illustrated on figure 4.6.

What functions are needed for extracting semantic properties from
trajectories?

Semantic properties are dealing with extraction of new knowledge from trajec-
tories. As has been discussed on section 2.2, semantic properties deal with the
application requirements toward trajectory. Analysis of user requirements has
to be done as preliminary step before extracting new knowledge from trajectory.

Data mining provides some techniques to extract the new knowledge from
trajectory. In general, data mining involves three main functions:

1. Functions for data pre-processing: to transform the raw source data into
an appropriate form for the subsequent analysis

2. Functions for data mining: to transform the prepared data into patterns
or models.

3. Functions for post-processing of data mining results: to assess validity
and usefulness of the extracted pattern and presents interesting knowl-
edge to users by using appropriate visual tools.

5.1.2 Implementation of Trajectory Back end Supports on Ice-
berg Trajectory

Research has implemented back end support as database functions to manage
iceberg trajectory in an open source DBMS of PostgreSQL. These functions are
implemented by using programming language of PL/pgSQL and using some
PostGIS functions. It is done based on the following research questions:

What are the user requirements on icebergs trajectory?

There are four requirements of icebergs trajectory (see section 2.1.2). These re-
quirements are dealing with data pre-processing, the trajectory characteristics
extraction, iceberg event detection and trajectory data mining to get similar
pattern of iceberg movements.

These requirements have been illustrated as UML use case diagram (see
figure 2.4) that involve some actors and use cases.

The relationship between actors and use cases are defined as following:

NIC has a role as data provider who records the movement of icebergs. NIC
provides a raw data set that needs to be refined before it can be used in

63

5.1. Conclusions

further process. Many errors are found in the data set, such as data incon-
sistencies, empty values in some attributes, data duplicates and outliers.
Hence to extract a reliable trajectory information, data pre-processing has
to be included as a preliminary step.

Climatologist has necessity to detect event that occur on iceberg. Life his-
tory of iceberg is consider as one of invaluable factors for climate related
investigations. Event detection, especially calving detection, is difficult to
trace from the data set (see section 4.3). Hence, use case of event detec-
tion is provided which also includes use case of data pre-processing and
trajectory data extraction.

Iceberg specialist has two necessities which are dealing with iceberg event
detection and detection of similarly moving pattern. Use case of similarity
pattern detection is required to reveal the behaviour of iceberg movement.
Some users will get benefit from this analysis, such as navigator to define
new shipping lanes and petroleum company to plant their oil pipeline in
the safe area. Similar patterns can be detected by applying relative mo-
tion patterns analysis. This analysis includes data mining technique, i.e.
classification of motion parameters, to create a semi-spatial temporal ma-
trix as the basis to search patterns.

What is the required data model to represent icebergs trajectory?

Based on user requirement of iceberg movements (see section 2.1.2), icebergs
trajectory have been modelled as UML class diagram (see figure 3.5). This
model extends the general trajectory model by adding some new classes for
detecting iceberg event and searching similarity pattern. These new classes
have been illustrated in figure 3.6 and figure 3.7.

There are some required operations in iceberg trajectory data model which
are listed as:

1. Methods for data conversion, i.e. to convert size from character into nu-
merical type and to convert date from iceberg date into calender (Grego-
rian) format.

2. Methods to detect iceberg event, i.e. to classify general event and to detect
the calving occurrence.

3. Methods to detect similar pattern, i.e. to detect pattern over times, across
objects and combination of these two parameters, i.e. over times and
across objects.

What steps are required for pre-processing data?

Steps in data pre-processing has been discussed in chapter 4 (see section 4.1)
and the list of implemented functions can be seen on table 4.1. Data pre-
processing is conducted based on four steps: data integration, data reduction,
data cleaning and data transformation.

64

Chapter 5. Conclusions and Recommendations

1. Data integration deals with integrating data source which is consists of
four spread sheets file into one working space. Research has integrated
301 icebergs with 15737 records as one working table.

2. Data reduction deals with selecting only required attributes for data
process. There are five attributes that have been chosen as basic informa-
tion of iceberg trajectory, i.e. iceberg name, longitude, latitude, date and
size.

3. Data cleaning deals with cleaning data set from errors. There are four
types of errors have been identified.

(a) Data inconsistencies found in the name of the iceberg and latitude
values. Some icebergs name have mixed upper and lowercase letters.
There are also typing errors in the latitude, where they should have a
negative value. In accordance with the requirements of the NIC (see
section 2.1.1), iceberg can not be located on the north of the equator.

(b) Empty values which are found either in latitude, longitude, size or in
both position and date attributes.

(c) Data duplicates are found as full duplicates (i.e. identical value in
iceberg name, date, latitude and longitude) and partial duplicates
(i.e. identical value in iceberg name and date).

(d) Outliers which are found on iceberg movements that have speed more
than 80 km/day.

4. Data transformation deals with transforming some attributes into re-
quired data types. These attributes are size, date, latitude and longitude.

What functions are used to detect iceberg events, such as calving, grounded
and floating; and also parent child relationship among icebergs?

The required functions to detect iceberg event has been discussed in chapter 4
section 4.3. Data model of event detection has also been illustrated in figure 3.6.
These functions have been encapsulated into two classes: Iceberg Event and
Calving Iceberg. There are two main functions are involved:

• Function to classify all icebergs into one of general event, i.e. calving,
grounded or floating.

Event classification is based on iceberg name and travelled distance. Ice-
berg that has similar main name to other icebergs is classified as calving
and for one single name is classified as non-calving. Afterward, the trav-
elled distance of non-calving icebergs is calculated. For those which have
zero in travelled distance are classified as grounded, otherwise they as-
sumed to be floating.

• Function to detect calving occurrence, i.e. to define from which iceberg it
was calved and also the position and time of calving.

65

5.2. Recommendations

Calving detection is required with respect to the way of NIC define iceberg
name (see section 2.1.1) which creates difficulty to trace the parent child
relationship between icebergs (see figure 4.8).

Function to detect the occurrence of calving is implemented based on the
constraints that are defined on section 4.3. Calving is assumed to occur
on a milestone of parent’s trajectory. There are three parameters are con-
sidered, i.e. size, time and position. The following constraints are defined
that child’s size must be smaller than the parent and child’s age must
also be younger than the parent’s. An ideal calving position is defined
as a nearest position between the first milestone of a child to its parent’s
trajectory.

What functions are used to detect similar movement patterns of ice-
berg?

Similarly movement patterns are extracted based on the concept of relative
motion patterns. As has been discussed on section 4.4, the needed functions are
related with:

1. Interpolate all icebergs based on their lifespan to daily intervals.

2. Classify the motion parameters, i.e. speed and direction, into a number of
predefined classes.

3. Create a matrix as the basis for searching the patterns.

4. Search patterns which parameters are defined by the user.

These functions above can be categorized as tools for deterministic searching
since users may define the criteria of patterns that users look for. The list of
functions that have been implemented can be seen on table 4.4.

There are three types of pattern that can be identified as:

• Constancy for similar pattern over times which enable users to define the
minimum length of pattern and the type of parameter.

• Concurrence for similar pattern across some icebergs which enable users
to specify the time and the type of parameter.

• Conformity for similar pattern over times and across some icebergs.

5.2 Recommendations

Based on implementation of back end support for managing and extracting
some information from icebergs trajectory, the following recommendations are
made for future improvement:

66

Chapter 5. Conclusions and Recommendations

1. Provide back end support to extract more trajectory characteristics.

This research has focus on characteristics of individual trajectory. Mean-
while, trajectory may also be characterized by their relationship to other
trajectories, such as place of intersection, distance between two trajec-
tories or order of duration among trajectories. Back end support to ex-
tract this additional characteristic need to be implemented since it enables
users to cluster trajectories based on their spatial and temporal proximity.

2. Develop icebergs trajectory for other user requirements.

Icebergs trajectory deal with various type of users, such as oceanogra-
phers, glaciologists, climatologists, oil companies and navigators. They
might require iceberg information that have not been covered in this re-
search, such as the evolution of iceberg distribution, the influence of exter-
nal phenomena on iceberg movements and the influence of external factor
to calving site and size reduction.

3. Improve the classification technique by using statistical computing lan-
guage, such as PL/R that can be integrated with functions from Post-
greSQL.

One requirement of trajectory data mining is ability to provide function
for statistical analysis, such as data classification or clustering. Integra-
tion of this required function to database will make system to have more
abilities to explore new knowledge from trajectory data sets. PL/R is a
recommended statistical package to be installed in PostgreSQL database
system since it has features on statistics matters which can be developed
by using similar declaration of PostgreSQL functions.

4. Enhance prototype by adding various motion parameters and search tem-
plate for patterns.

The three patterns that have been applied in this research are catego-
rized as patterns without neighbourhood information. Further research
on trajectory similarity needs to deal with searching pattern that involve
information from trajectory environment. By doing this, the location of in-
dividual trajectory can be measured relatively to other trajectories. Some
patterns have been identified for this purpose, such as flock, convergence
and divergence. According to Laube [LIW05], flock can be used to detect
the center of clusters, convergence can be used to detect a group of objects
that simultaneously heading for a specified position and divergence can
be used to describe a group that disperse.

67

5.2. Recommendations

68

Bibliography

[AAPS08] Natalia Andrienko, Gennady Andrienko, Nikos Pelekis, and Ste-
fano Spaccapietra. Mobility, Data Mining and Privacy, chapter
Basic concept of movement data, pages 15–38. Springer, 2008.

[ABdM+07] Luis O. Alvares, Vania Bogorny, Jose A. de Macedo, Bart Moe-
lans, and Stefano Spaccapietra. Dynamic modeling of trajectory
patterns using data mining and reverse engineering. In ER ’07:
Tutorials, posters, panels and industrial contributions at the 26th
international conference on Conceptual modeling, pages 149–154.
Australian Computer Society, Inc., 2007.

[BL02] Jarom Ballantyne and David G. Long. A multidecadal study of
the number of antarctic icebergs using scatterometer data. In
IEEE International Geoscience and Remote Sensing Symposium
(IGARSS 2002), and 24th Canadian Symposium on Remote Sens-
ing, volume V, pages 3029–3031. IEEE International, IEEE Com-
puter Society, 2002.

[BPT04] Sotiris Brakatsoulas, Dieter Pfoser, and Nectaria Tryfona. Model-
ing, storing, and mining moving object databases. In IDEAS ’04:
Proceedings of the International Database Engineering and Appli-
cations Symposium, pages 68–77. IEEE Computer Society, 2004.

[Bri] Encyclopedia Britannica. Origin of icebergs.
http://www.britannica.com/EBchecked/topic/281212/iceberg ac-
cessed on November 2009.

[BTKP09] Connie Blok, Ulanbek Turdukulov, Barend Köbben, and Juan L.
Pomares. Web-based visual exploration and error detection in
large data sets: antarctic iceberg tracking data as a case. In Pro-
ceedings of the 24th international cartographic conference ICC :
The world’s geo - spatial solutions, pages 10–pp. International Car-
tographic Association (ICA), 2009.

[BWM07] Douglas I. Benn, Charles R. Warren, and Ruth H. Mottram. Calv-
ing processes and the dynamics of calving glaciers. Earth-Science
Reviews, 82(3-4):143–179, 2007.

69

Bibliography

[Cen] National Ice Center. Antarctica icebergs.
http://www.natice.noaa.gov/products/iceberg accessed on Octo-
ber 2009.

[FPSS96] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth.
From data mining to knowledge discovery in databases. AI Maga-
zine, 17:37–54, 1996.

[GBE+00] Ralf H. Güting, Michael H. Böhlen, Martin Erwig, Christian S.
Jensen, Nikos A. Lorentzos, Markus Schneider, and Michalis
Vazirgiannis. A foundation for representing and querying moving
objects. ACM Trans. Database Syst., 25:1–42, 2000.

[Gro09] PostgreSQL Global Development Group. Postgresql
8.4.2 documentation. Technical report, The Post-
greSQL Global Development Group, Available at
http://www.postgresql.org/docs/8.4/static/release-8-4.html, 2009.

[GS05] Ralf H. Güting and Markus Schneider. Moving object databases.
Morgan Kaufmann, 2005.

[HK06] Jiawei Han and Micheline Kamber. Data mining concept and tech-
nique. Morgan Kaufmann, 2006.

[LI02] Patrick Laube and Stephan Imfeld. Analyzing relative motion
within rroups of trackable moving point objects. In Lecture Notes
in Computer Science, pages 132–144. Springer Berlin / Heidelberg,
2002.

[LIW05] Patrick Laube, Stephan Imfeld, and Robert Weibel. Discovering
relative motion patterns in groups of moving point objects. In Inter-
national Journal of Geographical Information Science, volume 19,
pages 639– 68. Taylor and Francis Ltd, 2005.

[LvKI05] Patrick Laube, Marc van Kreveld, and Stephan Imfeld. Find-
ing remo — detecting relative motion patterns in geospatial life-
lines. In Developments in Spatial Data Handling, pages 201–215.
Springer Berlin Heidelberg, 2005.

[Mar80] Fred Maryanski. Backend database system. ACM Computing Sur-
veys, 12(1):3–25, 1980.

[MH09] Harvey J. Miller and Jiawei Han. Geographic data mining and
knowledge discovery (2nd edition). Chapman and Hall Book, 2009.

[MS04] Hoda M. Mokhtar and Jianwen Su. Universal trajectory queries
for moving object databases. In Mobile Data Management, IEEE
International Conference, pages 12–pp. IEEE Computer Society,
2004.

70

Bibliography

[NRRT05] Mirco Nanni, Alessandra Raffaetà, Chiara Renso, and Franco
Turini. Applications of declarative programming and knowledge
management, volume 3392/2005, chapter Deductive and Induc-
tive Reasoning on Spatio-Temporal Data, pages 98–115. Springer
Berlin / Heidelberg, 2005.

[PKM+07] Nikos Pelekis, Ioannis Kopanakis, Gerasimos Marketos, Irene
Ntoutsi, Gennady Andrienko, and Yannis Theodoridis. Similarity
search in trajectory databases. In Proceedings of the 14th Inter-
national Symposium on Temporal Representation and Reasoning,
pages 129–140. IEEE Computer Society, 2007.

[Pro09] PostGIS Refractions Research Project. Postgis 1.4.0 manual. Tech-
nical report, PostGIS Refractions Research Project, available at
http://postgis.refractions.net/documentation/manual-1.4/, 2009.

[Ra80] R. Q. Robe and D. C. M aier. Long-term drift of icebergs in baffin
bay and the labrador sea. In Cold Regions Science and Technology,
volume 1 of 3-4, pages 183–193, 1980.

[SC09] National Snow and Ice Data Center. Quick facts on icebergs.
http://nsidc.org/quickfacts/icebergs.html accessed on November
2009, 2009.

[SPD+08] Stefano Spaccapietra, Christine Parent, Maria L. Damiani, Jose A.
de Macedo, Fabio Porto, and Christelle Vangenot. A conceptual
view on trajectories. In Data Knowledge Engineering, volume 65,
pages 126–146. Elsevier Science Publishers B. V., 2008.

[SYW02] Andreas Schmittner, Masakazu Yoshimori, and Andrew J. Weaver.
Instability of glacial climate in a model of the ocean-atmosphere-
cryosphere system. Science Express, 295(5559):8–pp, 2002.

[TJ99] Nectaria Tryfona and Christian S. Jensen. Conceptual data mod-
eling for spatiotemporal applications. GeoInformatica, 3:245–268,
1999.

[TPN+09] E. Tiakas, A.N. Papadopoulos, A. Nanopoulos, Y. Manolopoulos,
Dragan Stojanovic, and Slobodanka Djordjevic-Kajan. Searching
for similar trajectories in spatial networks. In Journal of System
Software, volume 82, pages 772–788. Elsevier Science Inc., 2009.

[VD00] Brian Veitch and Claude Daley. Iceberg evolution modeling a back-
ground study. Technical report, Faculty of Engineering and Ap-
plied Science Memorial University of Newfoundland, 2000.

[WXCJ98] Ouri Wolfson, Bo Xu, Sam Chamberlain, and Liqin Jiang. Moving
objects databases: issues and solutions. In Proceedings of the 10th
international Conference on Scientific and Statistical database
Management, pages 111–122. IEEE Computer Society, 1998.

71

Bibliography

72

Appendix A

Back end Support for Data
Pre-processing

A.1 Data Integration

Listing A.1: Create Table temp1
CREATE TABLE iceberg temp1 (

gid s e r i a l primary key not null ,
iceberg character varying ,
date integer ,
la t i tude double precis ion ,
longitude double precis ion ,
s ize character varying

) ;

Listing A.2: Data Integration
CREATE OR REPLACE FUNCTION tr data integrat ion () RETURNS

TEXT AS $$
DECLARE

var a quad a%rowtype ;
var b quad b%rowtype ;

var c quad c%rowtype ;
var d quad d%rowtype ;

BEGIN
for var a in s e l e c t ∗ from quad a
loop

insert into iceberg temp1 (iceberg , date , lat i tude ,
longitude , s ize)

values (var a . iceberg , var a . date , var a . lat i tude ,
var a . longitude , var a . s ize) ;

end loop ;
f or var b in s e l e c t ∗ from quad b
loop

73

A.2. Data Consistency Management

insert into iceberg temp1 (iceberg , date , lat i tude ,
longitude , s ize)

values (var b . iceberg , var b . date , var b . lat i tude ,
var b . longitude , var b . s ize) ;

end loop ;
f or var c in s e l e c t ∗ from quad c
loop

insert into iceberg temp1 (iceberg , date , lat i tude ,
longitude , s ize)

values (var c . iceberg , var c . date , var c . lat i tude ,
var c . longitude , var c . s i ze) ;

end loop ;
f or var d in s e l e c t ∗ from quad d
loop

insert into iceberg temp1 (iceberg , date , lat i tude ,
longitude , s ize)

values (var d . iceberg , var d . date , var d . lat i tude ,
var d . longitude , var d . s ize) ;

end loop ;
execute ’ update iceberg temp1 set iceberg = upper (iceberg) ’ ;
return (’ check table iceberg temp1 ’) ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

A.2 Data Consistency Management

A.3 Empty Value Management

Listing A.3: Manage Empty Value in Position Time

CREATE OR REPLACE FUNCTION tr manage empty position time ()
RETURNS SETOF iceberg temp1 AS $$

DECLARE
nullValue iceberg temp1%rowtype ;

BEGIN
for nullValue in s e l e c t ∗ from iceberg temp1
loop

delete from iceberg temp1 where (date i s null) and (
lat i tude i s null or lat i tude = 0) and (longitude
i s null or longitude = 0) ;

return next nullValue ;
end loop ;
return ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

74

Appendix A. Back end Support for Data Pre-processing

Listing A.4: Manage Empty Size

CREATE OR REPLACE FUNCTION tr manage empty size () RETURNS
SETOF iceberg temp1 AS $$

DECLARE
cur refcursor ;
var1 iceberg temp1%rowtype ;
var2 iceberg temp1%rowtype ;

BEGIN
open cur for s e l e c t ∗ from iceberg temp1 order by iceberg ,

date ;
fetch cur into var1 ;
fetch cur into var2 ;
loop

i f (var1 . iceberg = var2 . iceberg) and (var2 . s ize i s null)
then
update iceberg temp1 set s ize = var1 . s ize where

iceberg = var2 . iceberg ;
var2 . s ize = var1 . s ize ;

e lse
i f (var1 . iceberg = var2 . iceberg) and (var1 . s ize i s

null) then
delete from iceberg temp1 where iceberg = var1 .

iceberg ;
end i f ;
end i f ;

var1 = var2 ;
fetch cur into var2 ;
ex i t when not found ;

end loop ;
c lose cur ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing A.5: Manage Empty Latitude

CREATE OR REPLACE FUNCTION tr manage empty latitude ()
RETURNS SETOF iceberg temp1 AS $$

DECLARE
cur refcursor ;
var1 iceberg temp1%rowtype ;
var2 iceberg temp1%rowtype ;
var3 iceberg temp1%rowtype ;
new latitude double prec is ion ;

BEGIN
open cur for s e l e c t ∗ from iceberg temp1 order by iceberg ,

date ;

75

A.3. Empty Value Management

fetch cur into var1 ;
fetch cur into var2 ;
fetch cur into var3 ;
loop

i f (var1 . iceberg = var2 . iceberg) and (var2 . iceberg =
var3 . iceberg) and (var2 . la t i tude = 0) then

new latitude = ((var3 . la t i tude − var1 . la t i tude) /
t r t ime d i f f e rence (var3 . date , var1 . date)) + var1 .
la t i tude ;

update iceberg temp1 set lat i tude = new latitude
where gid = var2 . gid ;

end i f ;
var1 = var2 ;
var2 = var3 ;
fetch cur into var3 ;
ex i t when not found ;

end loop ;
c lose cur ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing A.6: Manage Empty Longitude

CREATE OR REPLACE FUNCTION tr manage empty longitude ()
RETURNS SETOF iceberg temp1 AS $$

DECLARE
cur refcursor ;
var1 iceberg temp1%rowtype ;
var2 iceberg temp1%rowtype ;
var3 iceberg temp1%rowtype ;
new longitude double prec is ion ;

BEGIN
open cur for s e l e c t ∗ from iceberg temp1 order by iceberg ,

date ;
fetch cur into var1 ;
fetch cur into var2 ;
fetch cur into var3 ;
loop

i f (var1 . iceberg = var2 . iceberg) and (var2 . iceberg =
var3 . iceberg) and (var2 . longitude = 0) then

new longitude = ((var3 . longitude − var1 . longitude) /
t r t ime d i f f e rence (var3 . date , var1 . date)) + var1

. longitude ;
update iceberg temp1 set longitude = new longitude

where gid = var2 . gid ;
end i f ;
var1 = var2 ;

76

Appendix A. Back end Support for Data Pre-processing

var2 = var3 ;
fetch cur into var3 ;
ex i t when not found ;

end loop ;
i f (var1 . iceberg = var2 . iceberg) and (var2 . longitude = 0)

then
update iceberg temp1 set longitude = var1 . longitude

where gid = var2 . gid ;
end i f ;
c l ose cur ;
end ;
$$ LANGUAGE ’ plpgsql ’ ;

A.4 Data Duplicate Management

Listing A.7: Create Table temp2

CREATE TABLE iceberg temp2 (
iceberg character varying ,
date integer ,
la t i tude double precis ion ,
longitude double precis ion ,
s ize character varying

) ;

Listing A.8: Manage Duplicate Full

CREATE OR REPLACE FUNCTION tr manage dupl icate ful l ()
RETURNS SETOF refcursor AS $$

DECLARE
cur refcursor ;
var1 iceberg temp1%rowtype ;
var2 iceberg temp1%rowtype ;

BEGIN
open cur for (s e l e c t ∗ from iceberg temp1 order by iceberg ,

date) ;
fetch cur into var1 ;
fetch cur into var2 ;
i f not ((var1 . iceberg = var2 . iceberg) and (var1 . date = var2 .

date) and (var1 . la t i tude = var2 . la t i tude) and (var1 .
longitude = var2 . longitude)) then

insert into iceberg temp2 values (var1 . iceberg , var1 .
date , var1 . lat i tude , var1 . longitude , var1 . s ize) ;

end i f ;
loop
var1 = var2 ;

77

A.4. Data Duplicate Management

fetch cur into var2 ;
ex i t when not found ;

i f not ((var1 . iceberg = var2 . iceberg) and (var1 . date =
var2 . date) and (var1 . la t i tude = var2 . la t i tude) and (
var1 . longitude = var2 . longitude)) then

insert into iceberg temp2 values (var1 . iceberg , var1
. date , var1 . lat i tude , var1 . longitude , var1 . s ize) ;

end i f ;
end loop ;
c lose cur ;
END;
$$ LANGUAGE ’ plpgsql ’

Listing A.9: Create Table temp3

CREATE TABLE iceberg temp3 (
iceberg character varying ,
date integer ,
la t i tude double precis ion ,
longitude double precis ion ,
s ize character varying

) ;

Listing A.10: Manage Duplicate Partial

CREATE OR REPLACE FUNCTION tr manage dupl icate part ial ()
RETURNS SETOF refcursor AS $$

DECLARE
data iceberg temp2%rowtype ;

BEGIN
for data in SELECT ∗ FROM iceberg temp2 WHERE (iceberg , date

) IN (s e l e c t iceberg , date from iceberg temp2 group by
iceberg , date having count (∗) = 1) order by iceberg , date

loop
insert into iceberg temp3 values (data . iceberg , data .

date , data . lat i tude , data . longitude , data . s i ze) ;
end loop ;
f or data in s e l e c t iceberg , date , avg (la t i tude) , avg (

longitude) from iceberg temp2 where (iceberg , date) in (
s e l e c t iceberg , date from iceberg temp3 group by iceberg ,
date having count (∗) > 1) group by iceberg , date order

by iceberg , date
loop

insert into iceberg temp3 values (data . iceberg , data .
date , data . lat i tude , data . longitude , data . s i ze) ;

end loop ;
return ;

78

Appendix A. Back end Support for Data Pre-processing

END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing A.11: Update Geometry Column

s e l e c t addgeometrycolumn (’ public ’ , ’ iceberg temp3 ’ , ’
geom degree ’ , 4326 , ’POINT’ , 2) ;

update iceberg temp3 set geom degree = setsr id (makepoint (
longitude , la t i tude) ,4326) ;

s e l e c t addgeometrycolumn (’ public ’ , ’ iceberg temp3 ’ , ’
geom metric ’ , 3031 , ’POINT’ , 2) ;

update iceberg temp3 set geom metric = Transform (geom degree
, 3031) ;

A.5 Outliers Management

Listing A.12: Create Table Iceberg Free From Outliers

CREATE TABLE iceberg c lean (
gid s e r i a l PRIMARY KEY NOT NULL,

iceberg character varying ,
date integer ,
la t i tude double precis ion ,
longitude double precis ion ,
s ize character varying ,
pointm geometry

) ;

Listing A.13: Manage Outliers

CREATE OR REPLACE FUNCTION tr manage outl ier () RETURNS SETOF
refcursor AS $$

DECLARE
cur refcursor ;
data iceberg temp3%rowtype ;
var1 iceberg temp3%rowtype ;
var2 iceberg temp3%rowtype ;
var3 iceberg temp3%rowtype ;
speed1 double prec is ion ;

speed2 double prec is ion ;
temp longitude double prec is ion ;

my val integer ;
temp geom metric geometry ;

temp geom degree geometry ;
t ime di f f er1 integer ;

79

A.5. Outliers Management

t ime di f f er2 integer ;
distance1 double prec is ion ;

distance2 double prec is ion ;
temp distance1 double prec is ion ;

temp distance2 double prec is ion ;
temp speed1 double prec is ion ;

temp speed2 double prec is ion ;
BEGIN
for data in s e l e c t d i s t i n c t iceberg from iceberg temp3
loop
open cur for s e l e c t ∗ from iceberg temp3 where iceberg =

data . iceberg order by iceberg , date ;
fetch cur into var1 ;
fetch cur into var2 ;
fetch cur into var3 ;
i f (tr num milestone (data . iceberg) >= 3) then
insert into iceberg c lean (iceberg , date , lat i tude ,

longitude , size , pointm) values (var1 . iceberg , var1 . date ,
var1 . lat i tude , var1 . longitude , var1 . size , ST MakePointM (

var1 . longitude , var1 . lat i tude , var1 . date)) ;
loop
i f (var1 . iceberg = var2 . iceberg) and (var2 . iceberg = var3 .

iceberg) then
speed1 = tr average speed (var1 . date , var1 . geom metric ,

var2 . date , var2 . geom metric) ;
i f not (speed1 >= 80) then

insert into iceberg c lean (iceberg , date ,
lat i tude , longitude , size , pointm) values

(var2 . iceberg , var2 . date , var2 . lat i tude ,
var2 . longitude , var2 . size , ST MakePointM

(var2 . longitude , var2 . lat i tude , var2 . date
)) ;

e l se
i f (abs (var1 . longitude − var2 . longitude) >=

10) then
temp longitude = var2 . longitude /

10;
e l s i f (round (abs (var2 . longitude / var1 .

longitude)) = 1) then
i f ((var1 . longitude > 0) and (var2 .

longitude < 0)) or ((var1 .
longitude < 0) and (var2 .
longitude > 0)) then

temp longitude = var2 . longitude ∗ −1;
end i f ;

e l se
temp longitude = var2 . longitude ;

80

Appendix A. Back end Support for Data Pre-processing

end i f ;
temp geom degree = setsr id (makepoint (

temp longitude , var1 . la t i tude) ,4326) ;
temp geom metric = Transform (

temp geom degree ,3031) ;
temp speed1 = tr average speed (var1 . date ,

var1 . geom metric , var2 . date ,
temp geom metric) ;

i f not (temp speed1 >= 80) then
insert into iceberg c lean (iceberg ,

date , lat i tude , longitude , size ,
pointm) values (var2 . iceberg ,
var2 . date , var2 . lat i tude ,
temp longitude , var2 . size ,
ST MakePointM (temp longitude ,
var2 . lat i tude , var2 . date)) ;

end i f ;
end i f ;

end i f ;
var1 = var2 ;
var2 = var3 ;
fetch cur into var3 ;
ex i t when not found ;
end loop ;
speed1 = tr average speed (var1 . date , var1 . geom metric , var2 .

date , var2 . geom metric) ;
i f not (speed1 >= 80) then

insert into iceberg c lean (iceberg , date , lat i tude ,
longitude , size , pointm) values (var2 . iceberg ,
var2 . date , var2 . lat i tude , var2 . longitude , var2 .
size , ST MakePointM (var2 . longitude , var2 . lat i tude
, var2 . date)) ;

end i f ;
e l s i f (tr num milestone (data . iceberg) = 2) then

insert into iceberg c lean (iceberg , date , lat i tude ,
longitude , size , pointm) values (var1 . iceberg ,
var1 . date , var1 . lat i tude , var1 . longitude , var1 .
size , ST MakePointM (var1 . longitude , var1 . lat i tude
, var1 . date)) ;

insert into iceberg c lean (iceberg , date , lat i tude ,
longitude , size , pointm) values (var2 . iceberg ,
var2 . date , var2 . lat i tude , var2 . longitude , var2 .
size , ST MakePointM (var2 . longitude , var2 . lat i tude
, var2 . date)) ;

e l se
insert into iceberg c lean (iceberg , date , lat i tude ,

longitude , size , pointm) values (var1 . iceberg ,

81

A.5. Outliers Management

var1 . date , var1 . lat i tude , var1 . longitude , var1 .
size , ST MakePointM (var1 . longitude , var1 . lat i tude
, var1 . date)) ;

end i f ;
c l ose cur ;
end loop ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

82

Appendix B

Back end Support for
Trajectory Data Extraction

B.1 Data Conversion

Listing B.1: Convert Date To Gregorian

CREATE OR REPLACE FUNCTION t r j u l i a n t o c a l e n d e r (ju l ian date
integer) RETURNS text AS $$

DECLARE
day integer ; month integer ; year integer ; num integer [] ;
day text text ; month text text ; year text text ;

BEGIN
year = cast (substring (cast (ju l ian date as text) from 1 for

4) as int) ;
day = cast (substring (cast (ju l ian date as text) from 5 for 3)

as int) ;
i f t r i s l e a p y e a r (year) = true then

num = array [31 ,29 ,31 ,30 ,31 ,30 ,31 ,31 ,30 ,31 ,30 ,31] ;
e l se

num = array [31 ,28 ,31 ,30 ,31 ,30 ,31 ,31 ,30 ,31 ,30 ,31] ;
end i f ;
i f day <= 31 then

month = 1;
e lse

for i in 1 . . (array upper (num, 1) +1)
loop

i f (day − num[i]) > num[i +1] then
day = day − num[i] ;
continue ;

e lse
day = day − num[i] ;
month = i +1;
ex i t ;

83

B.1. Data Conversion

end i f ;
end loop ;

end i f ;
i f day < 10 then

day text = cast (day as text) ;
day text = ’ 0 ’ | | day text ;

e lse
day text = cast (day as text) ;

end i f ;
i f month < 10 then

month text = cast (month as text) ;
month text = ’ 0 ’ | | month text ;

e lse
month text = cast (month as text) ;

end i f ;
year text = cast (year as text) ;
return (day text | | ’− ’ | | month text | | ’− ’ | | year text) ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing B.2: Convert Gregorian To Iceberg Date

CREATE OR REPLACE FUNCTION t r c a l e n d e r t o j u l i a n (calender
character varying) RETURNS integer AS $$

DECLARE
day integer ; month integer ; year integer ;
temp day text ; temp year text ; temp date text ;

f ina l date integer ;
BEGIN
day = cast (substring (calender from 1 for 2) as int) ;
month = cast (substring (calender from 4 for 2) as int) ;
year = cast (substring (calender from 7 for 4) as int) ;
i f month = 1 then

day = day ;
e l s i f month = 2 then

day = day + 31;
e l s i f month = 3 then

day = day + 59;
e l s i f month = 4 then

day = day + 90;
e l s i f month = 5 then

day = day + 120;
e l s i f month = 6 then

day = day + 151;
e l s i f month = 7 then

day = day + 181;
e l s i f month = 8 then

84

Appendix B. Back end Support for Trajectory Data Extraction

day = day + 212;
e l s i f month = 9 then

day = day + 242;
e l s i f month = 10 then

day = day + 273;
e l s i f month = 11 then

day = day + 303;
e lse

day = day + 334;
end i f ;
i f (month >= 3) and (t r i s l e a p y e a r (year) = true) then

day = day + 1;
end i f ;
i f day < 100 then

temp day = cast (day as text) ;
temp day = ’0 ’ | | temp day ;

e lse
temp day = cast (day as text) ;

end i f ;
temp year = cast (year as text) ;
temp date = temp year | | temp day ;
f ina l date = cast (temp date as int) ;
return f ina l date ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing B.3: Calculate Size in NM

CREATE OR REPLACE FUNCTION tr ca l cu la te s i ze in nm (character
varying , character varying) RETURNS text AS $$

DECLARE
table name al ias for $1 ;
column size name al ias for $2 ;

BEGIN
execute ’ a l t er table ’ | | quote ident (table name) | | ’ add

column ’ | | quote ident (column size name) | | ’ integer ’ ;
execute ’ update ’ | | quote ident (table name) | | ’ set ’ | |

quote ident (column size name) | | ’ = cast (substring (s ize
from 1 for 2) as int) ∗ cast (substring (s ize from 4 for 2)

as int) ’ ;
return table name ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing B.4: Calculate Size in KM

85

B.2. Trajectory Characteristic Extraction

CREATE OR REPLACE FUNCTION tr ca l cu la te s i ze in km (character
varying , character varying)

RETURNS text AS $$
DECLARE

table name al ias for $1 ;
column size name al ias for $2 ;
BEGIN
execute ’ a l t er table ’ | | quote ident (table name) | | ’ add

column ’ | | quote ident (column size name) | | ’ double
precis ion ’ ;

execute ’ update ’ | | quote ident (table name) | | ’ set ’ | |
quote ident (column size name) | | ’ = (cast (substring (s ize
from 1 for 2) as int) ∗ cast (substring (s ize from 4 for

2) as int) ∗ 3.4343900) ’ ;
return table name ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

B.2 Trajectory Characteristic Extraction

Listing B.5: Check Leap Year

CREATE OR REPLACE FUNCTION t r i s l e a p y e a r (year1 integer)
RETURNS boolean AS $$

DECLARE
BEGIN
i f (year1 % 4 != 0) then

return fa l se ;
e lse

i f year1 % 100 != 0 then
return true ;

e lse
i f year1 % 400 != 0 then

return fa l se ;
e lse

return true ;
end i f ;

end i f ;
end i f ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing B.6: Calculate Time Difference

CREATE OR REPLACE FUNCTION tr t ime d i f f e rence (var1 integer ,
var2 integer) RETURNS integer AS $$

86

Appendix B. Back end Support for Trajectory Data Extraction

DECLARE
d i f f integer ; d i f f y e a r integer ;
day1 integer ; day2 integer ;
year1 integer ; year2 integer ;

BEGIN
year1 = cast (substring (cast (var1 as text) from 1 for 4) as

int) ;
year2 = cast (substring (cast (var2 as text) from 1 for 4) as

int) ;
day1 = cast (substring (cast (var1 as text) from 5 for 3) as

int) ;
day2 = cast (substring (cast (var2 as text) from 5 for 3) as

int) ;
d i f f y e a r = (year2 − year1) ;
d i f f = var2 − var1 ;
i f t r i s l e a p y e a r (year1) = true then

i f d i f f < 366 then
return d i f f ;

e l se
i f d i f f y e a r = 1 then

d i f f = (366 + day2) − day1 ;
e lse

d i f f = (d i f f y e a r ∗ 366) + day2 − day1 ;
end i f ;
return d i f f ;

end i f ;
e l se

i f d i f f < 365 then
return d i f f ;

e l se
i f d i f f y e a r = 1 then

d i f f = (365 + day2) − day1 ;
e lse

d i f f = (d i f f y e a r ∗ 365) + day2 − day1 ;
end i f ;
return d i f f ;

end i f ;
end i f ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing B.7: Calculate Travelled Time

CREATE OR REPLACE FUNCTION tr t rave l l ed t ime (i c e i d
character varying) RETURNS INTEGER AS $$

DECLARE
cur refcursor ;

87

B.2. Trajectory Characteristic Extraction

var1 iceberg c lean%rowtype ;
var2 iceberg c lean%rowtype ;
d i f f integer ;
ave time integer ;

BEGIN
open cur for s e l e c t ∗ from iceberg c lean where iceberg =

i c e i d order by iceberg , date ;
fetch cur into var1 ;
fetch cur into var2 ;
ave time := 0 ;
loop

d i f f = t r t ime d i f f e rence (var1 . date , var2 . date) ;
ave time = ave time + d i f f ;
var1 = var2 ;
fetch cur into var2 ;
ex i t when not found ;

end loop ;
return ave time ;
c lose cur ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing B.8: Calculate Travelled Distance

CREATE OR REPLACE FUNCTION tr trave led d is tance (i c e i d
character varying) RETURNS double prec is ion AS $$

DECLARE
cur refcursor ;
var1 geometry ;
var2 geometry ;
ave dist double prec is ion ;
d i f f double prec is ion ;

BEGIN
open cur for s e l e c t geom metric from table iceberg3 where

iceberg = i c e i d order by iceberg , date ;
fetch cur into var1 ;
fetch cur into var2 ;
ave dist := 0 . 0 ;
loop

d i f f = st d is tance (var1 , var2) ;
ave dist = ave dist + d i f f ;
var1 = var2 ;
fetch cur into var2 ;
ex i t when not found ;

end loop ;
c lose cur ;
return ave dist /1000;

88

Appendix B. Back end Support for Trajectory Data Extraction

END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing B.9: Calculate Speed 1

CREATE OR REPLACE FUNCTION tr speed (i c e i d character varying
) RETURNS double prec is ion AS $$

DECLARE
ave time integer ;
ave distance double prec is ion ;

BEGIN
ave time = tr trave led t ime (i c e i d) ;
ave distance = tr t rave led d is tance (i c e i d) ;
return ave distance / ave time ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing B.10: Calculate Speed 2

CREATE OR REPLACE FUNCTION tr speed (date1 integer ,
geom metric1 geometry , date2 integer , geom metric2
geometry) RETURNS double prec is ion AS $$

DECLARE
ave time integer ;
ave distance double prec is ion ;

BEGIN
ave time = tr t ime d i f f e rence (date1 , date2) ;
ave distance = st d is tance (geom metric1 , geom metric2) /1000;
return ave distance / ave time ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing B.11: Calculate Direction 1

CREATE OR REPLACE FUNCTION t r d i r e c t i o n (i c e i d character
varying) RETURNS double prec is ion AS $$

DECLARE
cur refcursor ;
geom1 geometry ;
geom2 geometry ;
temp geom geometry ;
pi double prec is ion ;
resul t double prec is ion ;

BEGIN
open cur for (s e l e c t geom degree from iceberg c lean where

iceberg = i c e i d order by iceberg , date) ;

89

B.3. Trajectory Creation

fetch cur into geom1 ;
fetch cur into temp geom ;
pi := 3.141596;
loop

geom2 = temp geom ;
fetch cur into temp geom ;
ex i t when not found ;

end loop ;
resul t = st azimuth (geom2 , geom1) ;
resul t = resul t ∗ (180 / pi) ;
return resul t ;
c l ose cur ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing B.12: Calculate Direction 2

CREATE OR REPLACE FUNCTION t r d i r e c t i o n (lat1 double
precis ion , lat2 double precis ion , lon1 double precis ion ,
lon2 double prec is ion) RETURNS double prec is ion AS $$

DECLARE
pi double prec is ion ;
resul t double prec is ion ;
geom degree1 geometry ;
geom degree2 geometry ;

BEGIN
pi := 3.141596;
geom degree1 = setsr id (st makepoint (lon1 , lat1) ,4326) ;
geom degree2 = setsr id (st makepoint (lon2 , lat2) ,4326) ;
resul t = st azimuth (geom degree1 , geom degree2) ;
resul t = resul t ∗ (180 / pi) ;
return resul t ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

B.3 Trajectory Creation

Listing B.13: Create Trajectory

CREATE OR REPLACE FUNCTION tr create tra jec tory po intm (
i c e i d character varying) RETURNS geometry AS $$

DECLARE
cur refcursor ;
var1 iceberg c lean%rowtype ;
var2 geometry [] ;
geom geometry ;

90

Appendix B. Back end Support for Trajectory Data Extraction

i integer ;
BEGIN
open cur for (s e l e c t ∗ from iceberg c lean where iceberg =

i c e i d order by date) ;
fetch cur into var1 ;
i := 0 ;
loop

var2 [i] = var1 . pointm ;
fetch cur into var1 ;
ex i t when not found ;
i = i +1;

end loop ;
i f (array upper (var2 , 1) +1) > 1 then

geom = st makeline garray (var2) ;
end i f ;
return geom ;
c lose cur ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

B.4 Trajectory Summarization

Listing B.14: Count Number of Milestone

CREATE OR REPLACE FUNCTION tr num milestone (i c e i d character
varying) RETURNS integer AS $$

DECLARE
cur refcursor ;
var1 geometry ;
var2 geometry [] ;
i integer ;

BEGIN
open cur for (s e l e c t geom degree from table iceberg3 where

iceberg = i c e i d order by iceberg , date) ;
fetch cur into var1 ;
i := 0 ;
loop

var2 [i] = var1 ;
fetch cur into var1 ;
ex i t when not found ;
i = i +1;

end loop ;
return (array upper (var2 , 1) +1) ;
c l ose cur ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

91

B.4. Trajectory Summarization

Listing B.15: Create Table Summary Trajectory

CREATE TABLE summary trajectory (
iceberg character varying ,
traveled time integer ,
t rave led d i s t double precis ion ,
ave speed double precis ion ,
d i rec t i on double precis ion ,
t ra j e c to ry geometry ,
num milestone integer

) ;

Listing B.16: Create Summary Trajectory

CREATE OR REPLACE FUNCTION tr summary trajectory () RETURNS
text AS $$

DECLARE
data iceberg temp3%rowtype ;

BEGIN
for data in s e l e c t d i s t i n c t iceberg from iceberg c lean
loop

insert into summary trajectory values (
data . iceberg ,
t r trave led t ime (data . iceberg) ,
t r t rave led d is tance (data . iceberg) ,
tr speed (data . iceberg) ,
t r d i r e c t i o n (data . iceberg) ,
t r c reate tra jec tory po intm (data . iceberg) ,
tr num milestone (data . iceberg)

) ;
end loop ;
return ’ run s e l e c t ∗ from table summary trajectory ’ ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing B.17: Create Table Summary Milestone

CREATE TABLE table summary milestone (
iceberg character varying ,
f i r s t d a t e integer , f i r s t c a l e n d e r text ,
las t date integer , las t ca lender text ,
f i r s t p o s i t i o n geometry , l a s t p o s i t i o n geometry ,
f i r s t s i z e integer , l a s t s i z e integer ,
parent status character varying

) ’ ;

92

Appendix B. Back end Support for Trajectory Data Extraction

Listing B.18: Create Summary Milestone

CREATE OR REPLACE FUNCTION tr summary milestone () RETURNS
seto f re fcursor AS $$

DECLARE
cur refcursor ;
i c e i d character varying ;
var1 iceberg c lean%rowtype ;
var2 iceberg c lean%rowtype ;
f i r s t d a t e integer ; las t date integer ;
f i r s t p o s i t i o n geometry ; l a s t p o s i t i o n geometry ;
f i r s t s i z e double prec is ion ; l a s t s i z e double prec is ion ;

BEGIN
open cur for (s e l e c t ∗ from tab le i ceberg c lean order by

iceberg , date) ;
fetch cur into var1 ;
fetch cur into var2 ;
loop

i f (var1 . iceberg = var2 . iceberg) then
i c e i d = var1 . iceberg ;
f i r s t d a t e = var1 . date ;
las t date = var2 . date ;
f i r s t p o s i t i o n = var1 . geom metric ;
l a s t p o s i t i o n = var2 . geom metric ;
f i r s t s i z e = var1 . total s ize nm ;
l a s t s i z e = var2 . total s ize nm ;
loop

var1 = var2 ;
fetch cur into var2 ;
ex i t when not found ;
i f (var1 . iceberg = var2 . iceberg) then

last date = var2 . date ;
l a s t p o s i t i o n = var2 . geom metric ;
l a s t s i z e = var2 . total s ize nm ;

e lse
ex i t ;

end i f ;
end loop ;
insert into table summary milestone values (i c e id ,

f i r s t d a te , t r j u l i a n t o c a l e n d e r (f i r s t d a t e) ,
last date , t r j u l i a n t o c a l e n d e r (las t date) ,
f i r s t p o s i t i o n , l as t pos i t i on , f i r s t s i z e ,
l a s t s i z e , null) ;

e l se
insert into table summary milestone values (var1 .

iceberg , var1 . date , t r j u l i a n t o c a l e n d e r (var1 .
date) , var1 . date , t r j u l i a n t o c a l e n d e r (var1 . date

93

B.4. Trajectory Summarization

) , var1 . geom metric , var1 . geom metric , var1 .
total size nm , var1 . total size nm , null) ;

end i f ;
var1 = var2 ;
fetch cur into var2 ;
ex i t when not found ;

end loop ;
c lose cur ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

94

Appendix C

Back end Support for Event
Detection

C.1 Event Classification

Listing C.1: Create Table Summary Event

CREATE TABLE table summary event AS SELECT iceberg ,
t rave led dis t , num milestone FROM
table summary trajectory ;

ALTER TABLE table summary event ADD COLUMN status character
varying ;

Listing C.2: Classify Event

CREATE OR REPLACE FUNCTION tr detec t event () RETURNS seto f
re fcursor AS $$

DECLARE
cur refcursor ;
var1 summary event%rowtype ;
var2 summary event%rowtype ;
text1 character varying ;
text2 character varying ;
text3 character varying ;

BEGIN
open cur for s e l e c t ∗ from summary event order by iceberg ;
fetch cur into var1 ;
fetch cur into var2 ;
loop
text1 = substring (var1 . iceberg from 1 for 3) ;
text2 = substring (var2 . iceberg from 1 for 3) ;
i f text1 = text2 then
update table summary event set status = ’ parent ’ where

iceberg = var1 . iceberg ;

95

C.2. Calving Detection

loop
i f substring (var1 . iceberg from 1 for 3) = substring (var2 .

iceberg from 1 for 3) then
update table summary event set status = ’ child ’

where iceberg = var2 . iceberg ;
e lse

ex i t ;
end i f ;
fe tch cur into var2 ;
ex i t when not found ;

end loop ;
e lse

i f (var1 . t rave led d i s t = 0) or (var1 . t rave led d i s t
i s null) then

update table summary event set status = ’
grounded ’ where iceberg = var1 . iceberg ;

e lse
update table summary event set status = ’

f loat ing ’ where iceberg = var1 . iceberg ;
end i f ;

end i f ;
var1 = var2 ;
fetch cur into var2 ;
ex i t when not found ;
end loop ;
i f (var1 . t rave led d i s t = 0) or (var1 . t rave led d i s t i s null)

then
update table summary event set status = ’ grounded ’

where iceberg = var1 . iceberg ;
e lse

update table summary event set status = ’ f loat ing ’
where iceberg = var1 . iceberg ;

end i f ;
c l ose cur ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

C.2 Calving Detection

Listing C.3: Create Table Summary Calving

CREATE TABLE table summary calving (
iceberg character varying ,
f i r s t d a t e integer ,
f i r s t c a l e n d e r text ,
f i r s t s i z e integer ,
f i r s t p o s i t i o n geometry ,

96

Appendix C. Back end Support for Event Detection

parent character varying ,
calve date integer ,
calve calender text ,
parent size integer ,
ca lve pos i t i on geometry

) ;

Listing C.4: Detect Calving

CREATE OR REPLACE FUNCTION t r d e t e c t c a l v i n g () RETURNS seto f
re fcursor AS $$

DECLARE
cur refcursor ;
cur2 refcursor ;
var1 temp family%rowtype ;
var2 temp family%rowtype ;
f i r s t A i d character varying ;
f i r s t A date integer ;
f i r s t A s i z e integer ;
f i r s t A p o s i t i o n geometry ;
shortest t ime integer ;
shortest d istance double prec is ion ;
temp time integer ;
temp distance double prec is ion ;
parent id character varying ;
calve date integer ;
parent size integer ;
ca lve pos i t i on geometry ;

BEGIN
−− Part 1 −−
open cur for s e l e c t ∗ from temp family where iceberg l ike ’%

A’ order by date ;
fetch cur into var1 ;
f i r s t A i d = var1 . iceberg ;
f i r s t A date = var1 . date ;
f i r s t A s i z e = var1 . total s ize nm ;
f i r s t A p o s i t i o n = var1 . geom metric ;
c l ose cur ;
open cur for s e l e c t ∗ from temp family where iceberg =

substring (f i r s t A i d from 1 for 3) and date <=
f i r s t A date order by date desc ;

fetch cur into var1 ;
insert into table summary calving values (f i r s t A i d ,

f i r s t A date , t r j u l i a n t o c a l e n d e r (f i r s t A date) ,
f i r s t A s i z e , f i r s t A p o s i t i o n , var1 . iceberg , var1 . date ,
t r j u l i a n t o c a l e n d e r (var1 . date) , var1 . total size nm ,
var1 . geom metric) ;

97

C.2. Calving Detection

c lose cur ;
−− Part 2 −−
open cur for s e l e c t ∗ from temp family where (iceberg , date)

in (s e l e c t iceberg , min(date) from temp family where
iceberg <> substring (f i r s t A i d from 1 for 3) and iceberg
<> f i r s t A i d group by iceberg order by iceberg) order

by iceberg , date asc ;
fetch cur into var1 ;
i f (var1 . iceberg <> ’ ’) then
loop

open cur2 for s e l e c t ∗ from temp family where (iceberg ,
date) in (s e l e c t iceberg , max(date) from temp family

where date < var1 . date and total s ize nm >
var1 . total s ize nm group by iceberg order by iceberg)

order by iceberg , date asc ;
fetch cur2 into var2 ;
shortest t ime = 999;

loop
temp time = tr t ime d i f f e rence (var2 . date , var1 . date) ;
temp distance = st d is tance (var1 . geom metric , var2 .

geom metric) ;
i f temp time < shortest t ime then

shortest t ime = temp time ;
parent id = var2 . iceberg ;
calve date = var2 . date ;
parent size = var2 . total s ize nm ;
ca lve pos i t i on = var2 . geom metric ;

e l se
shortest d is tance = st d is tance (var1 . geom metric ,

var2 . geom metric) ;
i f shortest d is tance < temp distance then

parent id = var2 . iceberg ;
calve date = var2 . date ;
parent size = var2 . total s ize nm ;
ca lve pos i t i on = var2 . geom metric ;

e l se
ex i t ;

end i f ;
end i f ;
fetch cur2 into var2 ;
ex i t when not found ;
end loop ;
insert into table summary calving values (var1 . iceberg , var1

. date , t r j u l i a n t o c a l e n d e r (var1 . date) , var1 .
total size nm , var1 . geom metric , parent id , calve date ,
t r j u l i a n t o c a l e n d e r (calve date) , parent size ,
ca lve pos i t i on) ;

98

Appendix C. Back end Support for Event Detection

c lose cur2 ;
fetch cur into var1 ;
ex i t when not found ;
end loop ;
c lose cur ;
e lse c lose cur ;
end i f ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing C.5: Create Summary Calving

CREATE OR REPLACE FUNCTION tr summary calving () RETURNS
seto f re fcursor AS $$

DECLARE
cur refcursor ;
cur2 refcursor ;
temp check table summary event%rowtype ;
check table summary event%rowtype ;
data iceberg c lean%rowtype ;
my val integer ;

BEGIN
open cur for s e l e c t ∗ from table summary event order by

iceberg ;
fetch cur into check ;
loop
i f (check . parent status = ’ parent ’) then
open cur2 for s e l e c t ∗ from table summary event where

iceberg = check . iceberg ;
fetch cur2 into temp check ;
execute ’ create table temp family (iceberg character varying

, date integer , la t i tude double precis ion , longitude
double precis ion , s ize character varying , geom degree
geometry , geom metric geometry) ’ ;

f o r data in s e l e c t ∗ from tab le i ceberg c lean where iceberg
l ike temp check . iceberg | | ’% ’

loop
insert into temp family values (data . iceberg , data .

date , data . lat i tude , data . longitude , data . size ,
null , null) ;

end loop ;
execute ’ update temp family set geom degree = setsr id (

makepoint (longitude , la t i tude) , 4326) ’ ;
execute ’ update temp family set geom metric = Transform (

geom degree , 3031) ’ ;
execute ’ a l t er table temp family add column total s ize nm

integer ’ ;

99

C.2. Calving Detection

execute ’ update temp family set total s ize nm = cast (
substring (s ize from 1 for 2) as int) ∗ cast (substring (
s ize from 4 for 2) as int) ’ ;

execute ’ s e l e c t ∗ from t r d e t e c t c a l v i n g () ’ ;
execute ’ drop table temp family ’ ;
c l ose cur2 ;
e lse

my val = 1;
end i f ;
fetch cur into check ;
ex i t when not found ;
end loop ;
c lose cur ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

100

Appendix D

Back end Support for
Trajectory Data Mining

D.1 Data Interpolation

Listing D.1: Create Table Interpolation

CREATE TABLE table remo interpolat ion (
iceberg character varying ,
date integer ,
calender text ,
la t i tude double precis ion ,
longitude double precis ion ,
f lag character varying

) ;

Listing D.2: Interpolation

CREATE OR REPLACE FUNCTION tr remo interpolat ion (i c e i d
character varying) RETURNS text AS $$

DECLARE
cur refcursor ;
var1 tab le i ceberg c lean%rowtype ;
var2 tab le i ceberg c lean%rowtype ;
t ime d i f f e r integer ;
new time integer ; new x double prec is ion ; new y

double prec is ion ;
repet i t i on integer ; i integer ; new time string text ;

BEGIN
open cur for s e l e c t ∗ from tab le i ceberg c lean where iceberg

= i c e i d order by date ;
fetch cur into var1 ;
fetch cur into var2 ;
loop

101

D.1. Data Interpolation

insert into table remo interpolat ion values (var1 . iceberg ,
var1 . date , t r j u l i a n t o c a l e n d e r (var1 . date) , var1 .
lat i tude , var1 . longitude , ’ observed ’) ;

t ime d i f f e r = t r t ime d i f f e rence (var1 . date , var2 . date) ;
i f t ime d i f f e r > 1 then

new time = var1 . date + 1;
new x = ((var2 . longitude − var1 . longitude) / (var2 .

date − var1 . date)) + var1 . longitude ;
new y = ((var2 . la t i tude − var1 . la t i tude) / (var2 .

date − var1 . date)) + var1 . la t i tude ;
insert into table remo interpolat ion values (var1 .

iceberg , new time , t r j u l i a n t o c a l e n d e r (new time
) , new y , new x , ’ derived ’) ;

new time = new time + 1;
while (t r t ime d i f f e rence (new time , var2 . date) > 0)
loop

i f t r i s l e a p y e a r (cast (substring (cast (new time as text)
from 1 for 4) as int)) = true then

i f (cast (substring (cast (new time as text) from 5 for
3) as int) <= 366) then

new x = ((var2 . longitude − new x) / (var2 .
date − new time)) + new x ;

new y = ((var2 . la t i tude − new y) / (var2 .
date − new time)) + new y ;

insert into table remo interpolat ion values
(var1 . iceberg , new time ,
t r j u l i a n t o c a l e n d e r (new time) , new y ,
new x , ’ derived ’) ;

e l se
new time string = cast (cast (substring (cast (

new time as text) from 1 for 4) as int) +
1 as text) | | cast (’ 001 ’ as text) ;

new time = cast (new time string as int) ;
new x = ((var2 . longitude − new x) / (var2 .

date − new time)) + new x ;
new y = ((var2 . la t i tude − new y) / (var2 .

date − new time)) + new y ;
insert into table remo interpolat ion values

(var1 . iceberg , new time ,
t r j u l i a n t o c a l e n d e r (new time) , new y ,
new x , ’ derived ’) ;

end i f ;
new time = new time + 1;

e lse
i f (cast (substring (cast (new time as text) from 5 for

3) as int) <= 365) then

102

Appendix D. Back end Support for Trajectory Data Mining

new x = ((var2 . longitude − new x) / (var2 . date −
new time)) + new x ;

new y = ((var2 . la t i tude − new y) / (var2 . date −
new time)) + new y ;

insert into table remo interpolat ion values (var1 .
iceberg , new time , t r j u l i a n t o c a l e n d e r (
new time) , new y , new x , ’ derived ’) ;

e l se
new time string = cast (cast (substring (cast (new time

as text) from 1 for 4) as int) + 1 as text) | |
cast (’ 001 ’ as text) ;

new time = cast (new time string as int) ;
new x = ((var2 . longitude − new x) / (var2 . date −

new time)) + new x ;
new y = ((var2 . la t i tude − new y) / (var2 . date −

new time)) + new y ;
insert into table remo interpolat ion values (var1 .

iceberg , new time , t r j u l i a n t o c a l e n d e r (
new time) , new y , new x , ’ derived ’) ;

end i f ;
new time = new time + 1;

end i f ;
end loop ;
end i f ;
var1 = var2 ;
fetch cur into var2 ;
ex i t when not found ;
end loop ;
insert into table remo interpolat ion values (var1 . iceberg ,

var1 . date , t r j u l i a n t o c a l e n d e r (var1 . date) , var1 .
lat i tude , var1 . longitude , ’ observed ’) ;

c l ose cur ;
return ’ run s e l e c t ∗ from table remo interpolat ion ’ ;
END;
$$ language ’ plpgsql ’ ;

Listing D.3: Generate Interpolation

CREATE OR REPLACE FUNCTION
tr remo generate interpo lat ion a l l () RETURNS text AS $$

DECLARE
data table summary trajectory%rowtype ;

BEGIN
for data in s e l e c t iceberg from table summary trajectory

where num milestone > 1 and trave led d i s t > 0
loop

103

D.2. Data Classification

execute ’ s e l e c t ∗ from tr remo interpolat ion (’ | |
q u o t e l i t e r a l (data . iceberg) | | ’) ’ ;

end loop ;
execute ’ a l t er table table remo interpolat ion add column

geom degree geometry ’ ;
execute ’ update table remo interpolat ion set geom degree =

setsr id (makepoint (longitude , la t i tude) , 4326) ’ ;
execute ’ a l t er table table remo interpolat ion add column

geom metric geometry ’ ;
execute ’ update table remo interpolat ion set geom metric =

Transform (geom degree , 3031) ’ ;
return ’ run s e l e c t ∗ from table remo interpolat ion ’ ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

D.2 Data Classification

Listing D.4: Create Table Classification

CREATE TABLE tab le remo c lass i f i ca t i on (
iceberg character varying ,
date integer ,
calender text ,
speed double precis ion ,
speed class integer ,
d i rec t i on double precis ion ,
d i r e c t i o n c l a s s integer ,
geom degree geometry)

Listing D.5: Data Classification

CREATE OR REPLACE FUNCTION t r r e m o c l a s s i f i c a t i o n () RETURNS
text as $$

declare
cur refcursor ;
var1 table remo interpolat ion%rowtype ;
var2 table remo interpolat ion%rowtype ;
prev table remo interpolat ion%rowtype ;
speed value double prec is ion ;
speed class integer ;
d i rec t ion value double prec is ion ;
d i r e c t i o n c l a s s integer ;
pi double prec is ion ;

BEGIN
open cur for s e l e c t ∗ from table remo interpolat ion order by

iceberg , date ;

104

Appendix D. Back end Support for Trajectory Data Mining

fetch cur into var1 ;
fetch cur into var2 ;
pi = 3 .14 ;
loop

i f (var1 . iceberg = var2 . iceberg) then
speed value = tr average speed (var1 . date ,

var1 . geom metric , var2 . date , var2 .
geom metric) ;

d i rec t ion value = st azimuth (var1 .
geom metric , var2 . geom metric) ;

d i rec t ion value = direc t ion value ∗ (180 / pi)
;

e l se
speed value = tr average speed (prev . date ,

prev . geom metric , var1 . date , var1 .
geom metric) ;

d i rec t ion value = st azimuth (var1 .
geom metric , var2 . geom metric) ;

d i rec t ion value = direc t ion value ∗ (180 / pi)
;

end i f ;
insert into tab l e remo c lass i f i ca t i on values (var1 .

iceberg , var1 . date , t r j u l i a n t o c a l e n d e r (var1 .
date) ,

speed value , tr remo assign class speed (speed value)
, d irect ion value , t r remo ass ign c lass d i rec t i on
(d irect ion value) , var1 . geom degree) ;

prev = var1 ;
var1 = var2 ;
fetch cur into var2 ;
ex i t when not found ;

end loop ;
insert into tab l e remo c lass i f i ca t i on values (var1 . iceberg ,

var1 . date , t r j u l i a n t o c a l e n d e r (var1 . date) , speed value ,
tr remo assign class speed (speed value) , d irect ion value

, t r remo ass ign c lass d i rec t i on (d irec t ion value) , var1 .
geom degree) ;

c l ose cur ;
return ’ run s e l e c t ∗ from tab le remo c lass i f i ca t i on ’ ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing D.6: Direction Classification

CREATE OR REPLACE FUNCTION tr remo ass ign c lass d i rec t i on (
d i rec t i on double prec is ion)

RETURNS integer AS $$

105

D.2. Data Classification

DECLARE
c l a s s i f i c a t i o n integer ;

BEGIN
i f ((d i rec t ion >= −22.5) and (d i rec t i on < 22.5)) or (

d i rec t i on i s null) then
c l a s s i f i c a t i o n = 0;

e l s i f (d i rec t i on >= 22.5) and (d i rec t i on < 67.5) then
c l a s s i f i c a t i o n = 45;

e l s i f (d i rec t ion >= 67.5) and (d i rec t i on < 112.5) then
c l a s s i f i c a t i o n = 90;

e l s i f (d i rec t ion >= 112.5) and (d i rec t i on <= 157.5) then
c l a s s i f i c a t i o n = 135;

e l s i f (d i rec t ion >= 157.5) and (d i rec t i on < −157.5) then
c l a s s i f i c a t i o n = 180;

e l s i f (d i rec t ion >= −157.5) and (d i rec t i on < −112.5) then
c l a s s i f i c a t i o n = 225;

e l s i f (d i rec t ion >= −112.5) and (d i rec t i on < −67.5) then
c l a s s i f i c a t i o n = 270;

e lse
c l a s s i f i c a t i o n = 315;

end i f ;
return c l a s s i f i c a t i o n ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing D.7: Create Summary Milestone

CREATE OR REPLACE FUNCTION tr remo assign class speed (speed
double prec is ion)

RETURNS integer AS $$
DECLARE

c l a s s i f i c a t i o n integer ;
BEGIN
i f (speed = 0) then

c l a s s i f i c a t i o n = 1;
e l s i f (speed > 0) and (speed <= 0 .2) then

c l a s s i f i c a t i o n = 2;
e l s i f (speed > 0 .2) and (speed <= 0 .4) then

c l a s s i f i c a t i o n = 3;
e l s i f (speed > 0 .4) and (speed <= 1) then

c l a s s i f i c a t i o n = 4;
e l s i f (speed > 1) and (speed <= 2) then

c l a s s i f i c a t i o n = 5;
e l s i f (speed > 2) and (speed <= 4) then

c l a s s i f i c a t i o n = 6;
e l s i f (speed > 4) and (speed <= 7) then

c l a s s i f i c a t i o n = 7;

106

Appendix D. Back end Support for Trajectory Data Mining

e lse
c l a s s i f i c a t i o n = 8;

end i f ;
return c l a s s i f i c a t i o n ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

D.3 Matrix Generation

Listing D.8: Create Table Matrix

CREATE TABLE table remo matrix (
iceberg character varying ,
date integer ,
calender text ,
speed class integer ,
d i r e c t i o n c l a s s integer ,
geom degree geometry

) ;

Listing D.9: Create Matrix

CREATE OR REPLACE FUNCTION tr remo matrix (t ime start text ,
time end text)

returns text AS $$
DECLARE

cur refcursor ;
var1 tab l e remo c lass i f i ca t i on%rowtype ;
data tab l e remo c lass i f i ca t i on%rowtype ;
time from integer ;
t ime to integer ;
temp begin integer ;
temp end integer ;

BEGIN
time from = t r c a l e n d e r t o j u l i a n (t ime start) ;
t ime to = t r c a l e n d e r t o j u l i a n (time end) ;
f or data in s e l e c t d i s t i n c t iceberg from

tab le remo c lass i f i ca t i on
loop

open cur for s e l e c t ∗ from tab le remo c lass i f i ca t i on
where iceberg = data . iceberg order by date ;

fetch cur into var1 ;
temp begin = var1 . date ;
loop

temp end = var1 . date ;
fetch cur into var1 ;

107

D.4. Pattern Detection

ex i t when not found ;
end loop ;
c lose cur ;
i f (temp begin <= time from) and (temp end >=

time to) then
open cur for s e l e c t ∗ from

tab le remo c lass i f i ca t i on where (iceberg
= data . iceberg) and (date >= time from)
and (date <= time to) order by date ;

fetch cur into var1 ;
loop

insert into table remo matrix values
(var1 . iceberg , var1 . date ,

t r j u l i a n t o c a l e n d e r (var1 . date) ,
var1 . speed class , var1 .

d i re c t i on c lass , var1 . geom degree
) ;

fetch cur into var1 ;
ex i t when not found ;

end loop ;
c lose cur ;

end i f ;
end loop ;
return ’ run s e l e c t ∗ from table remo matrix ’ ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

D.4 Pattern Detection

Listing D.10: Create Table Concurrence

CREATE TABLE table remo concurrence (
iceberg character varying ,

date integer ,
calender text ,
d i r e c t i o n c l a s s integer

) ;

Listing D.11: Detect Concurrence

CREATE OR REPLACE FUNCTION tr remo concurrence (c lass search
integer , time search text) RETURNS text as $$

DECLARE
data table remo matrix%rowtype ;
date search integer ;

BEGIN

108

Appendix D. Back end Support for Trajectory Data Mining

date search = t r c a l e n d e r t o j u l i a n (time search) ;
f o r data in s e l e c t ∗ from table remo matrix where

d i r e c t i o n c l a s s = c lass search and date = date search
order by iceberg

loop
insert into table remo concurrence values (data .

iceberg , data . date , t r j u l i a n t o c a l e n d e r (data .
date) , data . d i r e c t i o n c l a s s) ;

end loop ;
return ’ run s e l e c t ∗ from table remo concurrence ’ ;
end ;
$$ language ’ plpgsql ’ ;

Listing D.12: Create Table Constancy

CREATE TABLE table remo constancy (
iceberg character varying ,

date integer ,
calender text ,
d i r e c t i o n c l a s s integer) ;

Listing D.13: Detect Constancy

CREATE OR REPLACE FUNCTION tr remo constancy (c lass search
integer , length integer) RETURNS text AS $$

DECLARE
cur refcursor ;
var1 table remo matrix%rowtype ;
i integer ;
temp date integer [] ;
temp name character varying ;

BEGIN
open cur for s e l e c t ∗ from table remo matrix order by

iceberg , date ;
fetch cur into var1 ;
i = 1 ;
temp date = null ;
temp name = var1 . iceberg ;
loop

i f var1 . iceberg = temp name then
i f var1 . d i r e c t i o n c l a s s = c lass search then

temp date [i] = var1 . date ;
i = i + 1 ;

e lse
i f array upper (temp date , 1) >=

length then

109

D.4. Pattern Detection

f o r i in 1 . . array upper (
temp date , 1)

loop
insert into

table remo constancy
values (var1 .

iceberg ,
temp date [i] ,
t r j u l i a n t o c a l e n d e r
(temp date [i]) ,
c lass search) ;

end loop ;
temp date = null ;
i = 1 ;

e lse
i = 1 ;
temp date = null ;

end i f ;
end i f ;

e l se
i f array upper (temp date , 1) >= length then

for i in 1 . . array upper (temp date , 1)
loop

insert into
table remo constancy

values (var1 .
iceberg ,
temp date [i] ,
t r j u l i a n t o c a l e n d e r
(temp date [i]) ,
c lass search) ;

end loop ;
temp date = null ;
i = 1 ;

e lse
i = 1 ;
temp date = null ;

end i f ;
temp name = var1 . iceberg ;
i f var1 . d i r e c t i o n c l a s s = c lass search then

temp date [i] = var1 . date ;
i = i + 1 ;

end i f ;
end i f ;
fetch cur into var1 ;
ex i t when not found ;

end loop ;

110

Appendix D. Back end Support for Trajectory Data Mining

c lose cur ;
return ’ run s e l e c t ∗ from table remo constancy ’ ;
END;
$$ LANGUAGE ’ plpgsql ’ ;

Listing D.14: Create Table Temp Conformity
create table table temp conformity (

oid integer ,
iceberg character varying ,
date integer []) ;

Listing D.15: Create Table Conformity

create table table remo conformity direct ion (
iceberg character varying ,

date integer []) ;

Listing D.16: Detect Conformity

CREATE OR REPLACE FUNCTION tr remo conformity () RETURNS text
AS $$

DECLARE
cur1 refcursor ;
cur2 refcursor ;
var1 table remo constancy direct ion%rowtype ;
var2 table remo constancy direct ion%rowtype ;
var3 table temp conformity direct ion%rowtype ;
var4 table temp conformity direct ion%rowtype ;
i integer ;
temp name character varying ;
temp date integer [] ;
oid integer ;

BEGIN
open cur1 for s e l e c t ∗ from table remo constancy direct ion

order by iceberg , date ;
fetch cur1 into var1 ;
fetch cur1 into var2 ;
i = 1 ;
temp name = var1 . iceberg ;
temp date = null ;
oid = 1;
loop

i f (var1 . iceberg = temp name) and (var2 . iceberg =
temp name) and (t r t ime d i f f e rence (var1 . date ,
var2 . date) = 1) then

temp date [i] = var1 . date ;

111

D.4. Pattern Detection

i = i + 1 ;
e lse

temp date [i] = var1 . date ;
i f array upper (temp date , 1) > 1 then

insert into
table temp conformity direct ion
values (oid , var1 . iceberg ,
temp date) ;

oid = oid + 1;
temp date = null ;
i = 1 ;

e lse
temp date = null ;
i = 1 ;

end i f ;
temp name = var2 . iceberg ;

end i f ;
var1 = var2 ;
fetch cur1 into var2 ;
ex i t when not found ;

end loop ;
temp date [i] = var1 . date ;
i f array upper (temp date , 1) > 1 then

insert into table temp conformity direct ion values (
oid , var1 . iceberg , temp date) ;

end i f ;
c l ose cur1 ;
open cur1 for s e l e c t ∗ from table temp conformity direct ion

order by oid ;
fetch cur1 into var3 ;
loop

open cur2 for s e l e c t ∗ from
table temp conformity direct ion where oid >= var3
. oid order by oid ;

fetch cur2 into var4 ;
loop

i f array upper (var3 . date , 1) = array upper (
var4 . date , 1) then

i f var3 . date [1] = var4 . date [1] then
insert into

table remo conformity direct ion
values (var3 . iceberg ,

var3 . date) ;
insert into

table remo conformity direct ion
values (var4 . iceberg , var4 . date) ;

end i f ;

112

Appendix D. Back end Support for Trajectory Data Mining

end i f ;
fetch cur2 into var4 ;
ex i t when not found ;

end loop ;
c lose cur2 ;
fetch cur1 into var3 ;
ex i t when not found ;

end loop ;
c lose cur1 ;
return ’ run s e l e c t ∗ from table remo conformity direct ion ’ ;
end ;
$$ language ’ plpgsql ’ ;

113

D.4. Pattern Detection

114

Appendix E

KML File Generation

Listing E.1: KML File Generation using Python

def kml () :
f1 = open (” quad a . txt ” , ” r ”)
f2 = open (” quad a . kml” , ”w”)
l ine=f1 . readline ()
l ine=l ine . s p l i t ()
f2 . write (”<kml>\n ”)
f2 . write (”<Document>\n ”)
for i in range (0 ,95) : # t o t a l number of iceberg

f2 . write (”<Placemark>\n ”)
f2 . write (”<name>”)
f2 . write (l ine [0])
f2 . write (” < /name>\n ”)
f2 . write (”<Style >\n ”)
f2 . write (”<LineStyle>\n ”)
f2 . write (”< color >”)
f2 . write (”7 f0000f f ”)
f2 . write (” < / co lor >\n ”)
f2 . write (”<width>3</width >”)
f2 . write (” < / LineStyle>\n ”)
f2 . write (” < / Style >\n ”)
#TimeSpan
oldtime=l ine [1] . s p l i t (” , ”)
f2 . write (”<TimeSpan>\n ”)
f2 . write (”<begin >”)
f2 . write (oldtime [2])
f2 . write (” < / begin>\n ”)
newtime=l ine [−1]. s p l i t (” , ”)
f2 . write (”<end>”)
f2 . write (newtime [2])
f2 . write (” < / end>\n ”)
f2 . write (” < /TimeSpan>\n ”)

115

#LineString
f2 . write (”<LineString>\n<coordinates >\n ”)
for j in range (1 , len (l ine)) :

l i n e s t r = l ine [j] . s p l i t (” , ”)
f2 . write (l i n e s t r [0])
f2 . write (” , ”)
f2 . write (l i n e s t r [1])
f2 . write (”\n ”)

f2 . write (” < / coordinates >\n</LineString>\n</Placemark
>\n ”)

l ine=f1 . readline ()
l ine=l ine . s p l i t ()

f1 . c l ose ()
f1 = open (” quad a . txt ” , ” r ”)
l ine=f1 . readline ()
l ine=l ine . s p l i t ()
f o r e in range (0 ,95) :

#Point
for c in range (1 , len (l ine)) :

f2 . write (”<Placemark>\n ”)
f2 . write (”<name>”)
f2 . write (l ine [0]) #attention ! !
f2 . write (” < /name>\n ”)
f2 . write (”<TimeStamp>”)
f2 . write (”<when>”)
oldtime=l ine [c] . s p l i t (” , ”)
f2 . write (oldtime [2]) #attention ! !
f2 . write (” < /when>\n ”)
f2 . write (” < /TimeStamp>\n ”)
f2 . write (”<Point>\n ”)
f2 . write (”< coordinates >”)
f2 . write (oldtime [0])
f2 . write (” , ”)
f2 . write (oldtime [1])
f2 . write (”\n ”)
f2 . write (” < / coordinates ></Point>\n ”)
f2 . write (” < / Placemark>\n ”)

l ine=f1 . readline ()
l ine=l ine . s p l i t ()

f2 . write (” < /Document>\n ”)
f2 . write (” < /kml>”)
f2 . c l ose ()

116

