
Spatial Database Consistency in
Web Application Frameworks

Case Study Django

Adam Kipkemei

March, 2010

Spatial Database Consistency in Web
Application Frameworks Case Study Django

by

Adam Kipkemei

Thesis submitted to the International Institute for Geo-information Science and
Earth Observation in partial fulfilment of the requirements for the degree in
Master of Science in GFM.

Degree Assessment Board

Thesis advisor Dr.Ir. R.A. de By
Dr. J.M. Morales

Thesis examiners Chair: Dr.Ir. R.L.G. Lemmens
External Examiner: Dr. A. Wombacher

INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

ENSCHEDE, THE NETHERLANDS

Disclaimer

This document describes work undertaken as part of a programme of study at
the International Institute for Geo-information Science and Earth Observation
(ITC). All views and opinions expressed therein remain the sole responsibility
of the author, and do not necessarily represent those of the institute.

Abstract

Web application frameworks promote the building of dynamic web ap-
plications based on the model-view-controller (MVC) architecture. The
MVC architectural principle ensures that, a created web application com-
plies with the ‘Don’t Repeat Yourself ’ (DRY) principle, is loosely coupled,
is reusable, and is created in a rapid and clean manner. Web applications
maintain implicit and explicit constraints either, fully in the application
layer or partly in the database and application layer. Therefore, most web
application frameworks compromise spatial database consistency because
they lack sufficient capability to define explicit validation constraints in
the application layer. Moreover, when constraints are maintained in the
application layer, then a database shared by multiple applications is not
exposed to the same validation standards. This is because different appli-
cations define the validation rules differently in their respective application
layers, hence allowing flawed data to enter into the database. We investi-
gated how web application frameworks are designed with regard to the
extent at which spatial database consistency is maintained. After identify-
ing the factors that influence spatial database consistency, we developed a
constraint design method which was implemented using Django web appli-
cation framework with GeoDjango. The constraints design method took
into consideration the philosophy of maintaining constraints within the
database layer and calling them into the web application using a Remote
Procedure Call API, and observing taxonomic granularity of constraints
during the design of integrity-preserving functions and data validation pro-
cess. The design method also provide for the creation of update functions
that call and perform the integrity-preserving functions. In addition, smart
functions that do pre-processing can be embedded inside the update func-
tions to add meaning to the stored data. We tested the design method
and prototype design architecture using the Amazonian avian distribution
data. Therefore, the prototype and constraint design method aims at main-
taining spatial database consistency in web application frameworks.

Keywords
Django, spatial web application frameworks, spatial database consistency,
constraints, GeoDjango, triggers, validation

i

Abstract

ii

Contents

Abstract i

List of Figures vii

Acknowledgements xi

1 Introduction 1
1.1 Motivation and problem statement 1
1.2 Research identification . 3

1.2.1 Research objectives . 3
1.2.2 Research questions . 3
1.2.3 Innovation aimed at . 4

1.3 Project set-up . 4
1.4 Method adopted . 4
1.5 Outline of the thesis . 5

2 Principles of Databases and Web Application Frameworks 7
2.1 Web 2.0 introduction . 7

2.1.1 Trend . 7
2.1.2 Web Framework Technology employed to build web 2.0 ap-

plications . 8
2.1.3 The benefits of Web 2.0 8
2.1.4 Impact of Internet web applications to desktop applica-

tions . 9
2.2 MVC architecture . 9

2.2.1 Model . 9
2.2.2 View . 10
2.2.3 Controller . 11
2.2.4 How MVC operates . 11
2.2.5 Object Relational Mapping (ORM) 12
2.2.6 Advantages of MVC architecture 13

2.3 Top-down versus Bottom-up database design 13
2.3.1 Top-down approach . 13
2.3.2 Bottom-up approach . 14
2.3.3 Classical database design 14

2.4 Integrity constraints . 15

iii

Contents

2.4.1 Constraint categorization based on DBMS support capa-
bilities . 15

2.4.2 Constraints categorization based on data structure granu-
larity taxonomy . 15

2.5 Database consistency enforcement based on granularity 16
2.5.1 Object consistency (Bottom level base) 16
2.5.2 Table consistency (midway level) 17
2.5.3 Database consistency (Top level) 18
2.5.4 Spatial taxonomic granularity constraints formulation . 18

2.6 Database consistency maintenance in Web 2.0 applications . . . 19
2.6.1 Application level integrity control 19
2.6.2 Database level integrity control 20
2.6.3 Strengths of maintaining consistency at the database level

against the application level 20
2.6.4 Limitations of database consistency maintained at the database

level . 21
2.7 Addressing the problem of consistency management in database

level . 21
2.7.1 Spatial databases design 22
2.7.2 Server-side functions and triggers programming 22
2.7.3 How constraints are defined in a function 23
2.7.4 Database transaction . 23
2.7.5 Legacy databases . 24

2.8 Conclusion . 24
2.8.1 Strengths of the choice of Django 24

3 Spatial consistency design for Web 2.0 applications 25
3.1 Introduction . 25
3.2 Requirement analysis . 25

3.2.1 Functional requirements 26
3.2.2 Non-functional requirements 27

3.3 Constraints design method to promote spatial database consis-
tency . 27
3.3.1 Constraint elements . 28
3.3.2 How constraints are implemented 29
3.3.3 Design of constraints as database integrity-preserving func-

tion (ψ) . 30
3.3.4 Design of integrity-preserving function at each constraint

granularity level . 30
3.3.5 Attribute integrity-preserving function (α) 30
3.3.6 Object integrity-preserving function (β) 31
3.3.7 Table integrity-preserving function (γ) 31
3.3.8 Database integrity-preserving function (δ) 31
3.3.9 Design method of update transaction function (λ) 32
3.3.10 General design of an integrity-preserving trigger function 32
3.3.11 Mechanism of executing integrity-preserving functions . 34
3.3.12 Execution of integrity-preserving functions using triggers 34

iv

Contents

3.3.13 Implementing integrity-preserving functions using a Re-
mote Procedure Call API 35

3.3.14 Summary of steps followed when implementing constraint
design method . 36

3.4 Design of Django to support Remote Procedure Call API 36
3.4.1 Functional requirements use case diagram 37
3.4.2 Design method used to create a Remote Procedure Call

API in Django . 38
3.5 PL/pgSQL wrapper design . 39

3.5.1 How PL/pgSQL wrapper is created 40
3.5.2 How PL/pgSQL wrapper is used to create database func-

tions . 40
3.6 Comparison in terms of data flow between the Django design and

proposed design . 41
3.6.1 Current design data flow in Django web framework . . . 41
3.6.2 New design data flow in extended Django web framework 42
3.6.3 Prototype design architecture 43
3.6.4 System infrastructure architecture 44

3.7 Introducing pre-processing of data before storage in databases . 45
3.8 Conclusion . 46

4 Implementation and Evaluation 47
4.1 Introduction . 47
4.2 Validation in Django . 47

4.2.1 Layout of Django validation process 48
4.2.2 Extending Django to support spatial database consistency 50
4.2.3 1. Model validation design implementation approach . . 50
4.2.4 2. Function validation design pattern implementation ap-

proach . 51
4.2.5 Summary of steps followed when implementing constraint

design method . 52
4.2.6 Implementation of the constraint method to design integrity-

preserving function . 53
4.3 Web application implementation 56
4.4 Use case motivation . 57
4.5 Conceptual schema . 57

4.5.1 Constraints . 58
4.6 Required functions . 59

4.6.1 The web application . 59
4.6.2 Required database functions 59

4.7 Constructing the Web GIS application 60
4.7.1 Django web application framework setup 61
4.7.2 Creating a spatial database 62
4.7.3 Building Amazonian web GIS application 62
4.7.4 Creating the web application 63
4.7.5 Configuring the application 64
4.7.6 Creating the database tables 64

v

Contents

4.7.7 Loading the use case data into the created tables 67
4.8 Implementation of the Amazonian use case 67

4.8.1 add distrib function . 68
4.8.2 change restrict distrib function 68
4.8.3 change augment and restrict distrib function 68
4.8.4 Amazonian web application layout 69

5 Discussion, Conclusion and Recommendation 73
5.1 Introduction . 73
5.2 Discussion . 74

5.2.1 Research study overview 74
5.2.2 Results of the research . 76
5.2.3 Achievement and real world applications 77
5.2.4 What is missing so far, and is not yet achieved 78
5.2.5 Critical analysis of the research work 78

5.3 Conclusion . 81
5.4 Recommendation . 81

5.4.1 Creation of the PL/pgSQL wrapper in the ORM 82
5.4.2 PL/Python . 82
5.4.3 Model-driven design . 82
5.4.4 Record of constraints . 82
5.4.5 Development of Django and GeoDjango installer 83
5.4.6 To determine the efficiency of taxonomic granularity en-

forcement of constraints 83
5.4.7 Django for mobile devices 83
5.4.8 Promote publication on spatial database consistency in web

frameworks . 84

Bibliography 85

A Settings.py 89

B Model.py 91

C Form.py 95

D View.py 97

E Url.py 101

F Template 103

vi

List of Figures

1.1 Model-View-Controller Architecture 2

2.1 Initial basic MVC process . 9
2.2 MVC Architecture . 10
2.3 ORM used by object intensive applications 12
2.4 Top-down-Bottom-up approach to database design 14
2.5 Class diagram . 15
2.6 Database consistency based on granularity 17

3.1 Waterfall design model . 26
3.2 Functional requirements diagram 27
3.3 Functional requirement use case diagram 37
3.4 Django’s MTV architecture . 41
3.5 Django design data flow . 42
3.6 New design data flow . 43
3.7 Prototype design architecture . 44
3.8 System architecture . 45

4.1 Django data validation layers . 48
4.2 Django extension to support check constraints 51
4.3 Extended Django that supports function creation and Remote Pro-

cedure calling . 52
4.4 Conceptual database schema, version 1 58
4.5 Amazonia web GIS home page . 70
4.6 Add species . 70
4.7 Amazinia Legal . 71
4.8 Warning Message . 71
4.9 Get info . 72

5.1 Spatial consistency cube . 76

vii

List of Figures

viii

List of Acronyms

API Application Programming Interface

ACID Atomicity Consistency Isolation Durability

CGI Common Gateway Interface

CRUD Create Read Update Delete

CSS Cascading Style Sheets

DRY Don’t Repeat Yourself

DBMS Database Management System

GDAL Geospatial Data Abstraction Library

GEOS Geometry Engine Open Source

GPS Global Positioning System

GUI Graphical User Interface

ER Entity Relationship

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

MTV Model Template View

MVC Model View Controller

TIN Triangulated Irregular Networks

OCL Object Constraint Language

OGC Open Geospatial Consortium

ORDBMS Object-Relational Database Management System

ORM Object Relational Mapping

UML Unified Modeling Language

WML Web Modeling Language

ix

List of Figures

XML Extensible Markup Language

x

Acknowledgements

It is with my deepest gratitude that I would wish to express my appreciation to my
research project supervisors Dr. R.A. de By and Dr. J.M. Morales for their persistent
guidance and assistance during the entire research study period. Their invaluable
assistance during the proposal writing, proposal defense, midterm presentation and
the final thesis writing and final defense preparation. I appreciate their wealth of
knowledge in prescribing literature and giving well informed advice that shed light
especially when I was stuck or experienced hardship in deciphering technical concepts.

I also would like to thank Wan Bakx for helping me to develop my talent in running
besides my studies in ITC. I would also like to thank my fellow GFM classmate for their
help and day to day interaction.

Finally, I would like to thank my family for being understanding when I was far
from home and their words of encouragement.

xi

Acknowledgements

xii

Chapter 1

Introduction

1.1 Motivation and problem statement

Since its inception, the Internet has undergone tremendous growth and devel-
opment in quick dissemination and use of content and services across the web
global village. Initially, the Internet was made up of static web pages that
displayed contents like text and images [14]. This enabled the users to only
navigate through the web pages without adding any of their own inputs. How-
ever, with the advancement in web technology, desktop applications were made
possible online as web-based application [14]. This gave rise to interactive web
application christened web2.0 (wisdom web) applications [22]. These applica-
tions have enabled users to add their inputs into the web application which are
later stored in back-end databases.

Web application frameworks have been used to build web 2.0 type of appli-
cation in a clean, rapid and reusable way [19]. This is because they are based
on the model-view-controller (MVC) architecture that splits the application into
three levels; model, view and controller as shown in Figure 1.1 [31]. A model
represents an application’s data and contains the logic for accessing and manip-
ulating that data. The view is responsible for rendering the state of the model.
The controller is responsible for intercepting and translating user input into
actions to be performed by the model [31, 14]. There is a clean logical separa-
tion of the view design and the code beneath partial classes [31]. The controller
handles centrally all client requests. This promotes a cleaner division of re-
sponsibilities for the controller that normally deals with view and navigation
management [31]. The model access and manipulation roles are left to request
handlers, which are request-specific [31].

The view is coded in a loosely coupled way that separates it into physical
assemblies enabling code re-use within application and in other applications,
without breaking other layers of code [8]. This saves greatly on development
and maintenance costs and avoids code replication. The DRY “Don’t Repeat
Yourself”principle makes the code clean (no spaghetti) [8]. That is, if a con-
figuration is made in one web page it does not need to be replicated in all
the pages. Common web application frameworks include TurboGears, Ruby
on Rails, Django, GeoDjango, Struts and Web2Py [8, 14].

Conceptual database design has been a classical architectural method in

1

1.1. Motivation and problem statement

Figure 1.1: Model-View-Controller Architecture (Adapted from [27])

designing spatially consistent back-end databases accessed by web user inter-
faces [7]. This is realized through the use of modeling tools like Unified Mod-
eling Language(UML) and its subset called the Object Constraint Language
(OCL) [26]. They are used to model the database in a “bottom-up ”approach,
taking into account class cardinalities, spatial constraints and many integrity
constraints [5, 26]. All the database constraints are maintained fully in the
back-end database. Hence, there is clear separation of the web application
design and the database accessed. Therefore, this spatial database is easily
plugged and played into any application. Modeling of the spatial database
starts with a conceptual design then logical design, which is finally translated
into physical database [7]. For instance, if a spatial database is built in Post-
greSQL, which is an open source spatial database that supports OGC (Open
Geospatial Consortium), simple feature spatial data types [4], there will be
maintenance of spatial database consistency within the PostgreSQL database.

However, a typical web application framework uses a model-design to build
databases that maintain some standard consistency. Model design uses an
object-relational mapping (ORM) library to create dynamic database and query
through object interface [8]. Therefore, only standard consistency rules are
maintained, and they are maintained in part within the web application, not
within the database. Hence, the database lacks spatial and other forms of
consistency if the framework adheres to its standard constraints, neglecting
the OGC standards spatial constraints. It’s also difficult to plug and run this
database into another application without breaking the logical functions, be-
cause standard consistency is maintained partly within the web application [31].
Moreover, lack of standards for integrating different web application frame-
works jeopardizes efforts to create and share spatially consistent databases
amongst web applications created using different types of web application frame-
works [15].

Taking Django as our case study, the research will be conducted to come up

2

Chapter 1. Introduction

with a design method that harnesses the strengths of MVC architecture like
DRY principle and conceptual database design approach. A prototype frame-
work will be designed to implement the design method that considers main-
tenance of spatial consistency fully in the database and enforces constraints
based on bottom-up approach based on taxonomic granularity of data struc-
ture. Thereafter, a web application will be built based on a given use case to
test and evaluate whether spatial database consistency was fully maintained
within the database and also check whether the strengths of MVC architecture
were integrated. This will result in an independent, fully-fledged spatially con-
sistent database that can be plugged into and used in any application. This
needs thorough research in web application design and modeling because a
mere combination of view, model database design and classical database de-
sign in an ad-hoc way without following a method, will not necessarily result in
a robust implementation.

1.2 Research identification

The research project aims at studying the spatial database consistency in web
application frameworks that help in building rapidly clean dynamic web appli-
cations.

1.2.1 Research objectives

1. To review and understand the architecture and functionality of web appli-
cation frameworks.

2. To determine the degree at which web frameworks maintain spatial database
consistency.

3. To define a design method that incorporates maintenance of spatial database
consistency.

4. To build a prototype web application framework that implements the method
designed to incorporate maintenance of spatial database consistency.

5. To test and compare the performance of prototype web application frame-
work against the performance of Django web framework with regard to
maintenance of spatial database consistency.

1.2.2 Research questions

1. What are the fundamental principles of web application frameworks?

2. To what extent is spatial database consistency maintained in a Django
web application framework?

3. What design method is suitable to employ to introduce spatial database
consistency in Django web application framework?

3

1.3. Project set-up

4. Which part of the Django web application framework code can be extended
to support database consistency?

5. Does the prototype web application framework work better in terms of
maintaining spatial database consistency than the Django Web applica-
tion framework?

1.2.3 Innovation aimed at

The research is geared towards designing a constraint method and implement-
ing it by extending Django web application framework to support remote call of
integrity-preserving functions that enforce constraints in bottom-up approach
based on taxonomy of data structure granularity, and also ensuring that all
consistency constraints reside in the application layer and not the database
layer. This design will pave way for smart databases that applications will not
only view databases as repository to store spatial and attribute data but also
put predefined meaning into data by enforcing constraints and other business
rules before data storage. This will result in a prototype web application frame-
work that maintains spatial database consistency within the database while
still maintaining the strengths of MVC architecture.

1.3 Project set-up

We enumerate how we intend to tackle the research problems to achieve the set
objectives.

1.4 Method adopted

We adopted waterfall design model applied in software development process.
It is basically split into five main facets that include: requirements analysis,
design, implementation, verification and maintenance [30].

We delved into the working mechanism of major existing web application
frameworks, that is, Django, Pylons, GeoDjango, Web2py and TurboGears. We
studied the database building mechanism to understand how the main system
tenets handle spatial database consistency. Thereafter, we came up with system
requirements to be improved. We also studied UML and WebML to see how
these modeling tools could be harnessed in building database consistency in
web application frameworks. At the end of process, we came up with design
factors that need to be considered to attain spatial database consistency in web
application frameworks.

After identifying what needed to be improved, we developed constraint de-
sign methods and an architectural design that helped in solving the problems
of spatial database consistency. This design methods incorporated two research
philosophies of maintenance of all constraints at the database layer and devel-
oping an integrity-preserving functions that enforced constraints based on tax-
onomic granularity of data structure in a bottom-up approach. We later studied

4

Chapter 1. Introduction

the Django code and see how to improve it in a manner that will fit like dove-
tail joint with the created module extension library, to come up with a prototype
web application framework implementation. A module extension added using
the Python programming language, was integrated into the Django web appli-
cation framework. The functionality was aimed at realizing spatial database
consistency.

We later tested our designed implementation by building a web GIS appli-
cation of Amazonia avian distribution, that is a dynamic Web 2.0 application.
The provided Amazonia avian distribution datasets were used to test and eval-
uate whether the designed prototype web application that supported validation
of datasets using by passing supplied data in integrity-preserving functions
improved the maintenance of spatial database consistency in web application
frameworks.

1.5 Outline of the thesis

Chapter 1 is an introduction to the research work, it discusses the motivation
and points out the problem statement. Furthermore, the research objectives
are stated and related questions are raised. Finally, the method adopted is
elucidated.

Chapter 2 primarily ventures into the emergence, growth and develop-
ment of the web application frameworks and the technology behind them. The
MVC architecture the enables rapid creation of websites is explained. Spatial
databases aspects that are the kernel of the research are outlined and explained
in details. Django as the framework of choice for the research study is system-
atically expounded.

In-depth study is further conducted to understand how integrity constraints
of various natures can be adopted and modeled into Django, to support creation
of integrity-preserving functions that yield spatially consistent databases.

Chapter 3 dives into the design aspect to be observed in order to instill
spatial database consistency. In the design, we take into consideration research
the project’s two philosophies of maintaining constraints in the database layer
rather than the application layer and observing taxonomic granularity of con-
straints during data validation. Moreover, the user and application require-
ments as well as the requirement analysis considered in the design method are
discussed.

Chapter 4 focuses on the execution of the design through implementation
of the design method. This involved re-engineering and extending Django to
allow spatial consistency constraints to be created into the database by Django
to guard the integrity of the spatial database. The prototype Django web appli-
cation framework is tested using an Amazonian avian distribution use case to
evaluate to what extent it has been able to maintain spatial database consis-
tency.

Chapter 5 concludes the research by giving a summary of the results by
discussing the web applications performance built by Django and the proto-
type web frameworks. The strengths as well as the limitations of the prototype

5

1.5. Outline of the thesis

framework performance are discussed. Moreover, further improvement leads
for future investigation are pointed out and new questions arise as well. Fi-
nally, the thesis is concluded.

6

Chapter 2

Principles of Databases and
Web Application Frameworks

2.1 Web 2.0 introduction

The World Wide Web has grown astronomically over the years since its in-
ception. The web revolutionary impact, its massive extent and outreach has
tremendously changed each level of our society. This is evident from the way
the web has altered the means to interact, participate, transact, gather and dis-
seminate information. It has brought the world together and made it a small
village [16].

The fundamental goal for development of the World Wide Web was to enable
easy access of information by users distributed across the globe in a consistent
way [14]. The HTTP protocol was developed to enable the exchange of informa-
tion requested by client computers from server computers. Therefore, the web
was regarded as a vast repository of static information. Initially, the web was
mainly used by the scientific community but with development and affordabil-
ity of desktops, Internet services became a household product [25].

2.1.1 Trend

The web has undergone a paradigm shift from a general repository for stor-
age and retrieval of static pages to a powerful infrastructure for developing
and running sophisticated dynamic web applications called web 2.0 (wisdom
web) [25]. The emergence of new technology like dynamic tools and languages,
together with innovative methodologies has made Web 2.0 applications come to
fruition [14]. Initially, dynamic web applications were programmed using the
Common Gateway Interface (CGI) [8]. But CGI had a number of drawbacks,
like limited reusability and extensibility [3]. It was also cumbersome for the
server to manage because all code resided in the server [14]. This resulted in
a desire for a standard language with agile development methods hence the
creation of web application frameworks. The web application frameworks pro-
mote the separation of concerns through their MVC architectural design. For
instance, the code that manages the data (i.e. model) is separated from code
that is responsible for rendering data (i.e. view) as well as functions that

7

2.1. Web 2.0 introduction

move data from component to component (i.e. controller) [8]. Moreover, the
client script that interacts with the user runs on the client-side (i.e. browser)
while the server-side script that performs the server processes interacts with
the database, running the server [14, 13].

Web 2.0 applications are dynamic web based applications that are executed
by web browsers via the Internet [14]. Web 2.0 technology has changed the
role of the user from a passive spectator to an actor. This has enabled users
to interact with the web application, that is, they can add their own inputs
interactively [25]. This has greatly shifted the software development to include
user participation. That is, front-end web applications interact with connected
distributed databases.

2.1.2 Web Framework Technology employed to build web 2.0 ap-
plications

Web 2.0 applications use dynamic tools and languages that provide an appropri-
ate development model for a rapid release cycle, debugging and quick responses
and deployment to user needs [20]. Therefore, dynamic languages allow infor-
mation to easily flow, enabling dynamic content. Compiled static languages
take a long time to deploy and are more complicated during deployment [20, 8].
Most Web 2.0 applications run on platform-independent dynamic programming
languages like Ruby, PHP and Python [20]. Common web frameworks based
on these languages that are used to build web 2.0 applications include Django,
Ruby on Rails, Struts, Web2py, Turbo Gears and Pylons [8]. These innovative
web frameworks automate the tedious repetitive processes of building a web
application by generating code, and hence leave the developer with more time
to be creative [3]. Most of web frameworks’ bundled libraries operate on the
MVC (Model-View-Controller) architectural design [31, 8].

2.1.3 The benefits of Web 2.0

• The web application release rate is faster than the traditional product
release cycle for desktop applications [20]. This is because of the suitable
development methodology adopted that allows quick fixes of bugs which
are often quickly spotted and reported by the wide range of users. It takes
as short as two weeks to have new updated functionality without a need
to install updates; its update is all done centrally by the developer [20].

• It involves users as co-developers as well as real time application evalua-
tors. The web exposes the web application to a large number of users with
diverse user need. Hence, the developers can monitor the system’s perfor-
mance. This presents the software to the users’ environment, which pro-
vides a concise model to evaluate it. With this capability, the developers
are much removed from the traditional laborious way of using prototype
releases to be tested basically by a few [20].

• New products are created because of quick releases and much feedback
from the users.

8

Chapter 2. Principles of Databases and Web Application Frameworks

• Increased responsiveness.

• Web 2.0 has enabled users to interact with the database making it richer.

2.1.4 Impact of Internet web applications to desktop applica-
tions

In the era of Internet advancement, Web 2.0 has transformed software from
package software that came in versions and needed updates to web applica-
tions that are viewed as ever available services by users [20]. The users do not
mind about what version an application is because the developer keeps updat-
ing it over and over with time. Therefore, there is no need for versions, updates
and installations. This has brought to an end the traditional packaged software
adoption cycle of design-develop-test-ship-install [20]. Instead, it has been re-
placed by the notion of software being a service that is ever improving [20].

2.2 MVC architecture

The Model-View-Control (MVC) [34] design paradigm allows the separation of
the code that controls business logic and application data from the code that
manipulates presentation data to the user and event handling [8]. The act of
separating the web application into Model-View-Control, the three logical com-
ponents, simplifies web application development and maintenance [31]. Orig-
inally, the development of MVC was to map the traditional input, processing,
output roles of a Graphical User Interface (GUI) environment as shown in Fig-
ure 2.1. However, with advancement it developed into a complex architectural
design pattern with sophisticated roles amongst the model, view and controller
triad as shown in Figure 2.2.

Figure 2.1: Initial basic MVC process (Adapted from [1])

2.2.1 Model

The model layer represents the application data and is also responsible for the
business logic of accessing and updating the data. The data facets that consti-
tute a continuous state of the application are stored and managed in the model
objects [31]. The model manages data elements and notifies observers when
that data changes. A model hosts data and functions related by a common pur-
pose, which later translates into a table schema in the physical database [31].

9

2.2. MVC architecture

Therefore, for unrelated data and functions to be modeled, two separate models
have to be created.

Figure 2.2: MVC Architecture [27]

A group of data and operations within the model wraps and abstracts the
functionality of the modeled business process. The model encapsulates access
to the data stored and provides a reusable class library of functionality [34].
The model not only encapsulates the data and the functions that operate on it,
but also serves as an abstraction or approximation of some real world system
or process [8]. For instance, a model defined to bridge the back-end computa-
tion and the front-end GUI presentation, will gather appropriate data from the
database and deliver it to the user’s GUI in a way that the users can relate with.
Within the model, reside the operations like database abstraction, authentica-
tion and validation rules [34]. Some of the model functions to data include store,
retrieve, emulate, convert, sort and convert amongst other operations.

Methods for accessing, updating and executing complex encapsulated pro-
cesses inside the model are exposed by the model’s interface. A model defines
how data is accessed and set for a given page, including any functions neces-
sary for security or data validation and modification [31, 34] . The services
rendered by the model should be generic, to support a wide variety of clients
being served. The services rendered by the model are accessed by the controller
through database querying, or respond to instructions to change the state of the
model [34]. The model does not have a visual representation, hence the model
is not aware about how the data it contains will be presented and displayed
within the user context, that is browser.

2.2.2 View

The view layer plays a key role of rendering the state of the model on the dis-
play surface to the user [8]. The view manages the area of display, ensuring
presentation of data to the user as a combination of graphics and text. The
semantics of presentation are encapsulated inside the view, hence this enables

10

Chapter 2. Principles of Databases and Web Application Frameworks

the modeled data to be adapted by numerous types of client [31, 34]. The view is
dynamic because it modifies itself automatically to reflect and maintain consis-
tency of the communicated changes within the model [34]. In addition, multiple
views can render simultaneously the contents of the model to a wide variety of
display surfaces. Moreover, the view is a platform for forwarding user input
to the receiving controller [31]. Typically, the view layer plays the role of web
page rendering, that controls the look and feel of application and facilitate data
collection from users via view technology like HTML, CSS and JavaScript [31].

2.2.3 Controller

The controller layer is in charge of intercepting and translating keyed-in user
input into actions to be executed by the model [31, 34]. Users use the controller
as a means to interact with the application, this is because the controller ac-
cepts user input and instructs the model and view to execute input based ac-
tions. That is, the controller calls model facilities and interprets the incoming
data which is rendered by the view. Therefore, the controller determines the
next view based on user input and also the model operation output [31]. Hence,
the controller maps end-user actions into application response. Some of the
user inputs accommodated by the controller include: HTTP requests from web
clients, WML from mobile clients and XML-based files. Finally, the controller
layer role is to take charge of the application exception (errors) and flow con-
trol, hence it glues and merges the view styling together with the functionality
of the model [8].

2.2.4 How MVC operates

The model, view and controller are mutually related and are in constant con-
tact, hence it is mandatory that they reference each other [34]. The relation-
ships of the Model-View-Controller is illustrated in Figure 2.2.

Figure 2.2 above portrays the fundamental lines of communication amongst
the model, view and controller. To begin, the model points to the view, this
implies that the model sends the view notifications of change as indicated by
the broken line pointer. Moreover, the model’s view pointer is just a base class
pointer; the model should not be aware of the kind of view that observes it [34].
In contrast, the view is aware exactly of the kind of model observing it. The
view has a continuous line pointer to the model; this indicates that the view
is allowed to call any of the model’s functions. In addition, the view also has
a pointer to the controller; nonetheless it should not call functions from the
controller besides those defined in the base class [34]. This is primarily to keep
the dependencies minimal in case one intends to swap out one controller in
place of another. In summary, model and controller communicate with the view
via events indicated by broken line pointers. Notice as depicted by continuous
line pointers that the controller has pointers to both the model and the view,
and therefore it knows the kind of the view and the model. Finally, since the
behavior of the triad (model-view-controller) is defined by the controller, it must
know the type of both the view and the model so that it translates the user input

11

2.2. MVC architecture

into the required application response [8, 34].

2.2.5 Object Relational Mapping (ORM)

ORM is a collection of libraries in a web framework that maps the SQL database
columns and tables onto objects and classes within a model [21]. This enables
the classes and the instantiated objects to be used in a normal programming
language like Python, and methods defined to the behaviour of the classes, that
is the tables. The ORM is concerned with mapping objects to a relational model,
so that the objects (created in a given programming language) become persis-
tent in a given RDBMS [29, 33]. Figure 2.2 shows ORM as a liaison between
application and the database. An object that is persistent can automatically
store as well as retrieve itself in permanent storage [33]. Whereas, an RDBMS
stores only data, the objects have identity, state and behaviour together with
data.

Unlike writing data directly into the database using a data-aware GUI ap-
plication, using objects results in benefits of encapsulation [29]. Encapsula-
tion is a signature of loose coupling because it enables interaction of objects
without knowledge of implementation details. Loosely coupled applications are
easy to maintain, because they lack the cascading effect when code is modified.
However, objects can’t be directly saved into and retrieved from a relational
database, hence the need for an object-relational mapping. Relational modeling
aims at normalizing data to remove table data redundancy whereas the object-
oriented design approach aims at modeling business logic by coming up with
real-world objects having data and behavioural traits [21].

Figure 2.3: ORM used by object intensive applications (Adapted from [2])

ORM tools therefore strategically map objects into relations to harness the
benefits of relations and objects [21]. Web application Frameworks based on the
MVC architecture use ORM to create a database schema indirectly by trans-
lating objects into SQL statements that are later used to create tables in a
database [8]. However, in our design we aim at harnessing object strengths

12

Chapter 2. Principles of Databases and Web Application Frameworks

as well as making it optional to either create schema from ORM or from the
database directly. However, the fundamental goal will be to maintain spatial
consistency wholly in the database.

2.2.6 Advantages of MVC architecture

The MVC architecture has a number of advantages that makes it a desirable
design pattern for building web applications. The advantages are a result of
decoupling business logic, data access, and data presentation and interaction
by users.

1. Web applications built on MVC architecture are reusable, since they are
decoupled they depend on few classes that are easy to reuse. Therefore
there is no need to invent new solutions to recurring problems, developers
only need to follow the pattern and adapt it accordingly.

2. The MVC design pattern simplifies web application development. This
is because most of the code are auto-generated by the web application
framework.

3. MVC based web applications are loosely coupled, based on a separation of
concerns.

4. The DRY ‘ Don’t Repeat Yourself ’ principle ensures clean and easy to
maintain code because of central configuration of pages.

5. Decoupling results in independent components of a web application which
makes them easy to maintain. This is because there is no ripple effect
across the components when one part of the component is changed.

2.3 Top-down versus Bottom-up database design

There exist two common methods of designing a database, the top-down ap-
proach and the bottom-up approach as shown in Figure 2.4. The two design
approaches aim at achieving database responsibilities, that is to store, modify
and retrieve data.

2.3.1 Top-down approach

In the top-down approach, the database administrator starts with the gen-
eral view and then systematically moves to specific details as shown in Fig-
ure 2.4 [28]. The developer will build the general parts of the system and later
consult with the end-users on what needs to be integrated into the database
system. This implies that the developer will work together with the users to
define the final database. To end up with an effective database, the developer
has to possess a deep understanding of the system. Web application frame-
works tend to mostly use this approach in the design of models that create the
database. This top-down approach tends to be error-prone. This is a drawback

13

2.3. Top-down versus Bottom-up database design

Figure 2.4: Top-down-Bottom-up approach to database design (Adapted from [24])

in designing consistent databases, especially if the user and developer miss to
incorporate vital details.

2.3.2 Bottom-up approach

In this approach, the database developer begins with the specific details like
the object classes, relations, business rules, user interface before venturing up
into the conceptual design as shown in Figure 2.4 [28]. The developer will then
work backward over the system to determine what data needs to be stored in
the database. It is good database design practice to first conduct a conceptual
design before getting to physical design, reduce omission and errors. A number
of modeling languages like CASE and UML are available to assist in draw-
ing up Entity Relationship (ER) diagrams as class objects together with their
respective associations, multiplicities and cardinalities [26]. Complex system
requirements can well be modelled using this approach.

2.3.3 Classical database design

Classical database design mainly focuses more on the data structure of the
database than on database functionality. Hence, we have the conceptual database
schema which is defined as data content in a data model, independent of plat-
form. The schema constitutes the class of objects, constraints, relation and
multiplicity. This can be modelled using standard modeling tools like UML or
WebML [26]. The modelled conceptual design output is portrayed in a graphical
way that is easy to interpret and understand, as shown in Figure 2.5.

The conceptual design is then translated into a logical design by the model-
ing tool. The logical design is a composition of what the business logic is, and
it models the entire operation process. Finally, the logical design is ultimately
translated into a physical database, which is the end-product [26]. At this stage,
the database is mostly not ready to be used because some business logic can-
not be defined easily and modeled by the modeling tool. Therefore, this has to
be defined explicitly by a database developer using check constraints together
with functions and triggers.

14

Chapter 2. Principles of Databases and Web Application Frameworks

Figure 2.5: Class diagram drawn in a modeling language

2.4 Integrity constraints

After the schema is defined, integrity constraints are defined before data entry.
Whenever the state of the database is to change, these constraints are first ful-
filled before a database transaction becomes complete. When no error is raised,
the data within the database represents an intended modeled reality . Integrity
constraints can be categorized into two major classification approaches, that is
based on DBMS and taxonomic granularity [9].

2.4.1 Constraint categorization based on DBMS support capa-
bilities

This classification approach is further split into implicit and explicit integrity
constraints.

Implicit integrity constraints

They are the basic inherent constraints support by the DBMS that manages
the database operations. They include referential integrity, record/domain con-
straint, and key integrity [9].

Explicit integrity constraints

They are integrity constraints that are defined by the database designer to meet
the user-defined business logic. They can be expressed as triggers, functions
and check constraints [9].

2.4.2 Constraints categorization based on data structure gran-
ularity taxonomy

They are integrity constraints based on granularity of data structure storage in
the database. There are four granularity primitives in total, that is attribute
constraints, object constraints, table constraints and database constraints [9].

15

2.5. Database consistency enforcement based on granularity

In this research project, we intend to use this approach as part of the checklist
towards spatial database consistency.

The underlying principle is to determine a minimal amount of data within
the database that needs to be validated, to check whether it violates or meets
the prescribed integrity constraint [9].

Attribute constraints

These are integrity control rules imposed on individual attribute values pegged
on a given condition. For instance, the name attribute value must be ‘a string
that begins with a capital letter’.

Object/Tuple constraints

These are integrity rules imposed on a combination of attribute values within
a given individual tuple. For instance ’the date of birth cannot be greater than
the date of enrollment into the army’.

Table/Relation constraints

These are integrity rules imposed on an array of tuples within a given table. For
instance ‘a sales territory table should not have more than 15 sales territories’.

Database constraints

These are integrity rules applicable to at least two different tables. For in-
stance, based on related table by foreign keys akin ‘Entry x in table A will be
entered if and only if it exist in table B’.

2.5 Database consistency enforcement based on gran-
ularity

Database consistency, in this approach, is enforced in a bottom-up fashion,
based on the granularity of the data. The bottom base being object consistency,
while the middle part is made up of table consistency, and the topmost being the
database consistency [9]. Upon enforcing the uppermost database consistency,
it will have inherently constituted the embedded preluded object consistencies
and table consistencies [9]. Figure 2.6 shows the database consistency based on
taxonomic granularity.

2.5.1 Object consistency (Bottom level base)

Object consistency constitutes the base foundation for building database con-
sistency bottom-up [9]. At this level, a finer list of object constraints and tu-
ple constraints are enforced, paving way for higher level constraints before the
state of the database changes during a transaction.

16

Chapter 2. Principles of Databases and Web Application Frameworks

Figure 2.6: Database consistency based on granularity (Adapted from [9])

Object consistency is explained in the expression below [9]. The object uni-
verse class for a class C, is the collection instances objects t of type τ that obey
all the rules φ for the class.

Uc = {t : τ |φ(t)}
Where:

• t (a tuple variable) represents an object state.

• τ depicts the record format of objects of class C and lists attributes for that
class, and including their respective data types.

• φ represents all the constraints enforced on objects of class C. This in-
cludes the attribute constraints acting on an attribute and the object con-
straints between attributes within the same object.

The class universe Uc is the infinite collection of allowable objects for class
C.

2.5.2 Table consistency (midway level)

Table consistency is the midway stage in building consistent a database [9]. At
this stage, a list of table constraints is enforced in addition to prior constraints
captured in object consistency.

Table consistency is portrayed in the expression below. The class universe
UC is known, the table universe for class C TC is defined, for each class C.

Tc = {tbl : Pτ |tbl ⊆ Uc ∧ Φ(tbl)}
We have here:

• tbl (a variable) represents a table state as a set of objects of the class C.

• All objects in tbl must be consistent to qualify as a member of the class
universe UC , the first condition.

17

2.5. Database consistency enforcement based on granularity

• Besides the constraints enforced at the consistency stage, additional con-
straints that are needed are given in Φ(tbl). This includes, key uniqueness
amongst other sets of explicit constraint enforced on the table level like
check constraints and functions.

Tc is the collection of allowable table states for class C.

2.5.3 Database consistency (Top level)

Database consistency is the final stage in building a consistent database [9].
At this stage, a list of coarse granularity database constraints is enforced in
addition to prior constraints captured in object consistency and table consis-
tency stages. Once the database consistency is fulfilled, all prior constraints
are inherently fulfilled guaranteeing integrity of data as the status of database
changes after a transaction executes. Hence, once all these conditions are ful-
filled the atomic data is updated, inserted or deleted from the database.

Database consistency is captured in detail in the expression below [9]. With
the knowledge of class and table universes, the database universe DB is defined.

DB = {tbl1 : Pτ1....., tbln : Pτn|tbl1 ∈ Tc1 ∧ ∧ tbln ∈ Tcn ∧Ψ(tbl1...., tbln)}
Where:

• tbli (a table variable)represents the table for class Ci.

• A consistent database is at least a consistent collection of table states.

• The database constraint Φ captures intertable integrity rules like referen-
tial integrity.

2.5.4 Spatial taxonomic granularity constraints formulation

The examples below show various granularity primitive levels of spatial con-
straints as expressed in logical statement. These constraints are input in an
integrity-preserving function stepwise for each granularity when building the
business logic.

Spatial object constraints

The constraints enforce a rule that ensures that a sales zone geometry does not
have a hole.
∀s ∈ Saleszone : numInteriorRings(s.geometry) = 0

Spatial table constraints

The constraint enforces a rule at the table that ensures all parcels make up a
contiguous area. It does so by looking within the table’s topology to ensure that
adjacency is maintained. If a geometric feature that is not adjacent to any other
is entered it will be rejected by the database integrity control.
∀l ,m ∈ Saleszone : l 6= m ⇒ Disjoint(l .geometry,m.geometry) ∨Touches

(l .geometry,m.geometry)

18

Chapter 2. Principles of Databases and Web Application Frameworks

Spatial database constraints

These constraints enforce a list of rules at the database level (across-tables) that
ensure sales zones geometry stored in table Saleszone are mutually disjoint
and each sales zone falls inside its sales region that is stored in table named
Salesregion. To achieve this, the Saleregion table is referenced and checked
before data is stored in the Salazones table, once the conditions are met.
∀l ∈ Saleszone, f ∈ Salesregion : (l , f) ∈ PartOf ⇒Within(l .geom, f .geom)

2.6 Database consistency maintenance in Web 2.0 ap-
plications

Consistency validation in web applications is enforced mainly in two layers,
that is, at the database layer and at the application level [8]. Consistency is
maintained at the application layer when a web developer codes the constraints
at the web application that is connected to a database. When a web application
framework is being used to build a dynamic application the controller provides
support for definition business rules functions that reside in the web applica-
tion. On the other hand, consistency is maintained at the database layer when
database validation rules are defined in the database by a database adminis-
trator who ensures all the rules reside within the designed database.

2.6.1 Application level integrity control

Application level integrity control is when the web UI is used to encode business
logic in forms/screen GUI/web pages [23, 6]. They are coded using client scripts.
The client script can duplicate the logic encoded in the server side. This client
sided script cannot be trusted because the script can be turned off or a form
entry field manually manipulated. The database consistency maintenance at
application level should be avoided because it carries with itself limitations
like the database being exposed to different constraints if its is accessed by
multiple applications having differently programmed business logic, this can
compromise the integrity of the data stored in the database.

Most web application framework ORMs have limited capabilities to wrap
and map into the database all the integrity constraints defined. Only a couple
of inherent database constraints are mapped into the database by the ORM [8].
Such constraints include primary keys, reference keys, domain types and mul-
tiplicities [12]. Most of the business logic is defined within the web applications
mainly at the controller and the view (user interface). This is due to some
ORM inability to support server-side programming languages like PL/pgSQL
and PL/Java. Therefore, integrity enforcing operations supported by databases
like check constraints, functions and triggers are not supported by web appli-
cation frameworks. Hence, all the business rules are captured in the web appli-
cation itself. For instance, the Ruby on Rails web application framework views
the database as a dumping repository for storing data only [6]. As a result,
Ruby on Rails maintains entirely all integrity constraints within the web ap-
plication framework. Django, for instance, does not support definition of check

19

2.6. Database consistency maintenance in Web 2.0 applications

constraints and triggers. The MVC architecture provides for validation of data
either solely at the application layer or double validation at the application
layer and the database layer.

2.6.2 Database level integrity control

A database should be responsible at all cost for the validity of data input data
since an inconsistent database loses its role as an effective and reliable sys-
tem for storage and retrieval of data. Spatial database consistency is controlled
within the database by ensuring that all constraints reside within the database
wholly, whether defined at application level (e.g., by the ORM) or defined phys-
ically at the database level. The web framework is only notified of the exis-
tence of a constraint in the database through an API. This constitutes part
of database security as a whole. Databases are primarily designed to handle
constraints better than the client applications, this is one of database’s main
roles.

The enforcement at the spatial database level is enabled by employing func-
tions and triggers [11]. This enables the definition of complex spatial rules
using PL/pgSQL procedural language that is supported by the PostgreSQL
database, together with built-in predefined PostGIS functions [9]. Both sim-
ple and complex spatial business rules operations can be handled well at the
database level by use of procedural server-side programming [11]. The trans-
action functions will encapsulate the data submitted to the database to ensure
users do not enter data directly into the database for integrity reasons.

When basic constraints are not stored in the database, at one point invalid
data might slip into the database due to application bugs and may raise excep-
tions during querying or report generation.

2.6.3 Strengths of maintaining consistency at the database level
against the application level

We believe strengths of integrity constraint controls maintained at the database
layer, are as follows.

• All the applications data entry in the database are exposed to the same
level of data quality checks, because of the central enforcement of the in-
tegrity control within the database to restrict what gets into it.

• With multiple applications possibly written in different languages, run-
ning in different platforms putting constraints in the database layer strength-
ens and protects the database. Since having two different applications, the
chance of having similar input data validation controls is remote.

• It is easier for the designer of the application to focus on the application
development without worrying about check constraints at web user in-
terface (UI) point of data entry since the constraints exist where data is
finally stored in the database.

20

Chapter 2. Principles of Databases and Web Application Frameworks

• It enhances flexibility in application design to meet frequently changing
demands for new UI. That is, if the database caters for constraints, the
front-end developer is at liberty to design an application that hooks onto
the database without worrying about back-end consistency.

• In an environment where an application is maintained by a large pool of
developers, implementing the database constraints in the database elimi-
nates possible disaster when changes of integrity controls are made at the
application layer.

• When building databases that store data received from multiple applica-
tions, in which the database administrator has no control of the applica-
tion programming, maintaining constraints at the database level will val-
idate and intercept erroneous data entered through broken applications.

• It avoids duplication of constraints at the database and application level.
Hence, it avoids unnecessary redundancy that might burden the system’s
processing and make also make tracing of errors difficult.

• It works well for new web applications that are embedded in legacy databases
that implement business logic at the database layer. If the legacy database
relies on constraints at application layer it involves much effort for devel-
opers in understanding and translating correctly the business rules im-
plemented at application layer. Legacy databases with constraints fully
maintained a priory at database layer come with a tested validation mech-
anism that makes continuation easy.

• Enforcing integrity control at database layer makes the integrity-preserving
functions easily reusable, that is, any web application can call the func-
tions stored in the database and use them to insert data into the database
without having to build business logic from scratch.

2.6.4 Limitations of database consistency maintained at the database
level

Inasmuch as consistency maintained at the database level has a number of
strengths, it also has a number of limitations, as follows:

• Triggers make the database opaque, that is they are not visible to the user
interacting with the database.

• Overloading the database with foreign keys may overload it. This is be-
cause the database integrity control has to check across tables before a
given data entry is validated.

2.7 Addressing the problem of consistency manage-
ment in database level

To ensure that the consistency is fully maintained within the database, all
the business logic specifications must be upheld explicitly by check constraints,

21

2.7. Addressing the problem of consistency management in database level

functions and triggers within the database. The web application will call these
functions when there is any update, insertion and deletion of data within the
database.

The database developer is charged with full responsibility to ensure s/he
has control over database consistency; this is attained by ensuring that all in-
tegrity controls reside within the database. The administrator ensures that the
business logic is built once for front-end user applications within the back-end
database as a good practice using functions and views [9]. This ensures that
the front-end users update and modify data uniformly and see the same view of
data.

2.7.1 Spatial databases design

Spatial database design ensures that the abstracted reality is modeled as ap-
propriately as possible in a database to meet the user needs. This is achieved
by employing database engineering concepts like consistent spatial data mod-
els. Modeling really perfectly is not trivial because of the constantly changing
complex reality [9]. This is further complicated by diverse user descriptions of
how they wish the database to appear.

Database as object design principle

‘Turning the database into a consistently behaving object’ is the design philos-
ophy adapted with regard to spatial database consistency.

Encapsulation principle

It is geared towards preserving consistency by protecting objects by the meth-
ods. Therefore, the users do not have direct access to the database. The goal is
to ensure that the database is encapsulated by functions to keep it consistent,
ensuring that all the functions adhere to the ACID (Atomicity, Consistency, Iso-
lation and Durability) properties [17].

2.7.2 Server-side functions and triggers programming

In our research project, we use PL/pgSQL procedural programming language
that is built in the PostgreSQL database to programming integrity-preserving
functions and trigger functions. These functions are programmed to host the
web application business rules for validating data submitted. PL/pgSQL sup-
ports SQL statements, control structures of PL and parametric functions [9].

Parametric transaction functions

Parametric functions support declared arguments. In our research project, we
use data to be passed into the database as arguments. These arguments form
the initial stage to enforce domain constraints because data types are declared

22

Chapter 2. Principles of Databases and Web Application Frameworks

at the argument level. In our scenario we use PL/pgSQL to create integrity-
preserving transaction functions to validate data consistency at attribute, ob-
ject, table and database levels. Once the data goes successfully through these
stages the submitted data is considered valid and there will be a resultant
change in database status [9].

Trigger functions

A trigger is a command specified for the database to automatically execute a
defined function when a certain type of event occurs. Triggers are defined to
fire when there is UPDATE, INSERT,or DELETE operation. Triggers can be
defined to execute either before and after an event, however, after declaration
is commonly used [9]. Moreover, UPDATE triggers can be fired only if certain
columns are stated in the SET clause of the UPDATE statement.

2.7.3 How constraints are defined in a function

In our research project, we adapted the model of granularity in enforcing the
constraints on the bottom-up approach. Therefore, we begin by defining object
and tuple constraints in the integrity-preserving functions. The object consis-
tency encompasses the attribute and tuple constraint that are implicitly defined
(inherent in the database) and explicitly defined check constraints. All the ob-
ject and the tuple constraints are be defined in nested IF-THEN-ELSE state-
ments to ensure they are executed as a unit of bottom granularity consistency.

The second level will be to program the table constraints that are executed
after attribute and object constraints have been validated. The function nests
all the table constraints which consist of complex business rules. Finally, the
database constraints are encoded in the integrity-preserving function defined
as referential keys and business logic. All these levels constraints in a function
are programmed to execute following granularity order, that is, from bottom-
up (i.e. fine to coarse level) approach. Therefore, the kernel of the research
project is to conceptualize how to implement all the above constraints within
PostgreSQL and PostGIS-enabled spatial database and integrated with Django
built web application.

2.7.4 Database transaction

It is an array of actions on a database that models the real world and transforms
a consistent database from one state to another [17]. If abstracted data violates
the consistency defined in the integrity-preserving function, the transaction is
rolled back. A database can either execute a transaction fully or not at all, this
is called atomicity [17]. Once executed the transaction is durable. When mul-
tiple applications are supported by a database, this implies they can execute
safely simultaneous transactions concurrently without interference, though in
isolation. The preconditions and post conditions to be fulfilled before a trans-
action is valid are held in constraints. Therefore, predefined constraints deter-
mine the transformation of the database from one state to another [9].

23

2.8. Conclusion

2.7.5 Legacy databases

Legacy databases are old databases together with records that were used by
previous systems and are available for migration and inheritance into currently
developed applications [32]. Legacy databases may have been developed using
old database technology [32]. However, it is not good practice to manage two ap-
plications running two databases concurrently. Therefore, migration of legacy
databases has to be done to have a single database. Databases are designed to
be durable because of the value of the data they archive. For this to be achieved
and to be used in future, there is need to ensure that all consistency constraints
are maintained in the database. Some web application frameworks like Django
support legacy databases by mapping and autogenerating the database schema
into models. However, not everything is mapped and hence manual editing and
cleaning has to be done to avoid making errors during data modification in the
database [12].

2.8 Conclusion

A number of web applications were studied but not all could be used to imple-
ment and evaluate spatial database consistency in web applications. Django,
Turbo Gears and Pylons have different programming capabilities for different
types of application based on the user needs [8]. Therefore, we settled on Django
because of some strengths it possesses with regard to handling spatial data.

2.8.1 Strengths of the choice of Django

Django, a python-based web application is chosen as a testing platform for im-
plementing the granularity based consistency constraints as well as a design
method. Django is free software that allows for further extension to enable the
developers come up with a suitable tool to meet user needs [12]. Django also
works well with a number of open-source spatial databases like PostgreSQL [8,
12]. Moreover, Django has an extension package called GeoDjango that en-
ables creation of web GIS applications [18]. The GeoDjango complies with OGC
simple feature data types. GeoDjango also works with other spatial web vi-
sualization and rendering tools like OpenLayers and Google Maps. In addi-
tion, Django has a built-in admin interface that handles data manipulation like
CRUD, browsing and search [8, 12, 3].

24

Chapter 3

Spatial consistency design for
Web 2.0 applications

3.1 Introduction

In this chapter, we discuss the design aspects that help solve spatial database
consistency problems in web application frameworks. In the previous chapter
on literature review, we delved into web frameworks and identified problems
affecting web frameworks with regard to maintenance of spatial database con-
sistency. We looked at how feasible it is to have the integrity controls within the
database, that is, how to bring about sharing of a database by multiple applica-
tions without compromising the integrity of stored data. Therefore, we planned
to have integrity-preserving functions that handle constraints at various taxo-
nomic granularity.

In this chapter, we focus on requirements analysis and system design. We
design how integrity-preserving functions can cater for taxonomic granularity
during enforcement of integrity constraints. We also design how to extend the
Django web framework to accommodate Remote Procedure Call API calling ca-
pabilities. Therefore, our objective is to have a design system prototype for de-
velopment that extends and improves handling of spatial database consistency
in the Django web application framework.

For our research project, we employ a waterfall design model for software
development as shown in Figure 3.1.

3.2 Requirement analysis

The main goal of this research project is to come up with a design method that
will ensure spatial database consistency in web applications. The need to have
successful spatial consistency will bring Django architecture and constraints
enforcement mechanism into the center stage of detailed requirements analy-
sis. We look deeply into Django and PostgreSQL system architecture to deci-
pher the system requirements needed to meet the user requirements to have
spatially consistent databases. During analysis, notes are made of the exist-
ing modules to tweak, decision points, and transactions handled by the present

25

3.2. Requirement analysis

Figure 3.1: Waterfall design model [30]

system.
The user requirements must be declared clearly to avoid any ambiguity

when designing a system to address the user needs. Any fuzzy description
should be clarified to avoid misrepresentation. Requirements are generally split
into two main portions, that is, functional requirements and non-functional re-
quirements [10].

3.2.1 Functional requirements

Functional requirements constitute the functions of a software system or its
components. Functional requirements consist of input, behavior and output as
shown in Figure 3.2. These functional requirements include data manipulation,
transfer, validation or processing functions. The functional requirements are
defined in the system design and can be depicted using use case diagrams in
UML.

Functional requirements require us to study deeply the Django and Geo-
Django operations and to understand their capabilities in handling spatial pro-
cessing tasks. We adhere to the rules of web design such that we did not violate
the MVC architectural design. This ensures that we end up with an improved
system that still has Django built-in benefits as well as the added functionality.
Moreover, our goal is to have minimum code, hence, we spend time in studying
the framework to ensure that we call and reuse existing classes and methods.

26

Chapter 3. Spatial consistency design for Web 2.0 applications

Figure 3.2: Functional requirements diagram [10]

3.2.2 Non-functional requirements

Non-functional requirements impose quality aspects to the implementation. It
can not be stated explicitly within the system design. In our research project,
we looked into the following non-functional requirements:

• Spatial database consistency demands that the system adheres to the pre-
scribed to the integrity controls based on taxonomic granularity levels.

• The constraints should reside in the database back-end.

• The database must be reusable by other web applications.

• The application must comply with the DRY principle and should be loosely
coupled.

• As a scalable system, it should accommodate increased volume of data
without requiring the system to be redesigned.

3.3 Constraints design method to promote spatial database
consistency

When developing spatial consistency integrity controls for web application, the
taxonomic granularity order will be adhered to. The constraints enforcement
in the database are based on four taxonomic constraints granularity levels
namely: attribute ,object, table and database constraints as explained in Sec-
tion 2.5. When data that abstracts reality passes the validation test in a spa-
tially consistent database, it is considered to represent the intended reality and
therefore it is committed changing the database status.

Just like the design of system components, the creation of constraints have
to comply with a certain design method. This is due to the fact that various
constraints that validate data operate differently and are supported differently.

27

3.3. Constraints design method to promote spatial database consistency

For instance, referential keys and check constraints cannot be similarly de-
fined. This is because a check constraint hosts data it uses to validate input
data within the conditional statement used for validation. That is, it does not
refer within the modified relation or from other relations. This because users
can modify the data referenced resulting in inconsistencies. On other hand,
referential key constraint depend on other tables to check validity of the data
submitted. However, referential key constraints and check constraints share
the similarity of being executed based on trigger mechanism.

3.3.1 Constraint elements

Some of the elements that constitute the basic components and operation of a
constraint are discussed below.

Nature of input data to be validated

The data to be validated by a constraint can be supplied either as parameters of
an integrity-preserving function executing the constraint or stored temporarily
as a record, table or database where they are called by validation expression.
Validated data can either be attribute or spatial or both types.

Nature of reference data used by a conditional statement for validation

Data used for validation can be explicitly defined in a conditional statement
like in check constraints. The condition statement can also reference data from
other relations or from within the table to be modified.

The validation conditional statement

Conditional statements that return boolean value are used to implement con-
straints used to validate the supplied datasets. If a condition is fulfilled, then
the condition statement returns true. If a condition is not fulfilled, then the
condition statement returns false.

Action after a conditional statement is executed

If a conditional statement returns a boolean of type TRUE.

• The data is committed into a database resulting in change of the database
status.

• Or, the data is processed before updated into a database.

If the conditional statement returns a boolean of type FALSE, then two of
the actions can be defined by a developer:

• A warning message to be sent to the user to correct the data.

• Or, the data can be rectified using complex pre-processing functions. For
instance, if a river is meant not go beyond a given area of jurisdiction,
then the unwanted overshoots of the river can be sliced out.

28

Chapter 3. Spatial consistency design for Web 2.0 applications

3.3.2 How constraints are implemented

Once constraints have been created, they have to be utilized, that is, used to
validate data. Validation can be done before a database update , or after an
database update, or partly before an update and partly after an update. The
three validation techniques are discuss below:

Validation done before conducting an update

In this approach, created constraints validate data before an update transac-
tion function is executed. To achieve the before update validation technique,
integrity-preserving functions are used. Validation can be done at the database
layer or the application layer. We found out that functions defined at a given
layer, that is, either database or application, maintained consistency in their
respective layers. However, based on the advantages of each layer as discussed
in Section2.6.3, database validation functions can be called into web application
for better performance.

Validation done after conducting an update

In this approach, an update transaction function is executed before validation
is done. This technique is made possible by the use of trigger mechanism that
fire when an update is made. Mostly, triggers are used in databases. However,
triggers implementation compared to integrity-preserving functions implemen-
tation have advantages and disadvantages as discussed in Sections 3.3.12and
3.3.13.

Validation done partially before update and partially after update

In this approach, validation process is done partly before and partly after an
update transaction. Most of the web applications like Django use this approach.
Django conducts validation using explicit constraints at the application layer
and then uses trigger based inherent constraints at the database layer.

The limitations of application layer validation is the lack of central location
to manage the constraints and limited support for spatial complex business
logic. This prompted us to conceptualize ways to improve spatial database con-
sistency in web application frameworks. We proposed that, if web applications
can utilized database functions whether created from a database or from a web
framework using an SQL wrapper then spatial consistency will be improved.
We also proposed that, if validation constraints are created and implemented
based on constraint granularity level then database spatial database consis-
tency is improved because they are implemented in an orderly manner and can
reused.

29

3.3. Constraints design method to promote spatial database consistency

3.3.3 Design of constraints as database integrity-preserving func-
tion (ψ)

Algorithm 1 shows the general design method employed when creating database
integrity-preserving function of various constraints levels. The elements dis-
cussed in Sections 3.3.1 and Section 3.3.2 form part of the of constraints design
requirements. Based on the business rules supplied constraints can perform
simple or complex conditions. Since the functions reside in the database, then
all the constraints will inherently be stored in the database.

Algorithm 1: General design of integrity-preserving functions (ψ)

Require: Create an integrity-preserving function ψ for a given constraint
level.

Require: Data N to be validated is supplied as parameters of the function
(arg1 datatype,.. argn datatype).

Require: Store referential validation data V in a temporary storage (as record
or table).

Require: Database status D.
Ensure: Validation if of members either attribute, object, table or database.

1: if Condition considering value (V) is FALSE then
2: Abort validation, Raise warning to the user, ψ(N) does not hold.
3: else
4: return TRUE, hence data N is valid, ψ(N) holds.
5: end if

If all the constraints at each the four integrity levels are met within func-
tions, then ψ(N),ψ′(N),ψ′′(N),ψ′′′(N) hold. Therefore, an update transaction
function µ(i) updates the database changing its status, D← D′.

3.3.4 Design of integrity-preserving function at each constraint
granularity level

The design method discussed in Algorithm 1 is further made specific for each
of the four constraints levels as discussed below, that is, attribute, object, table
and database as shown in Algorithms 2, 3, 4, 5 respectively. According to our
design method, an integrity-preserving function contains constraints for a given
single granularity constraint level.

3.3.5 Attribute integrity-preserving function (α)

An attribute integrity-preserving function validate data that is of attribute
record level. The Algorithm 2. For instance, data J of supplied as arg1 param-
eter of the function is validated by a condition statement that uses validation
value C. If the condition is not fulfilled the function aborts and sends warning
to the GUI. If the conditions is fulfilled the function returns True.

30

Chapter 3. Spatial consistency design for Web 2.0 applications

Algorithm 2: Design method of attribute integrity-preserving function (α

Require: Create a function α that has parameters (arg1 datatype,
arg2 datatype, ...argn datatype).

Require: Data to be validated J is contained in function arguments.
Require: Data used for validation C contained in the conditional expression.
Ensure: Validation should be within data structure of type attribute.

1: if Condition(C) checking (J.arg1) is False then
2: Abort, and send warning to the GUI.
3: else
4: return true,
5: end if
6: The function α(J) holds when data J is valid.

3.3.6 Object integrity-preserving function (β)

Object integrity-preserving function are created as shown in Algorithm 3. The
tuple members X and K are validated based on a given condition. If the con-
dition is not fulfilled the function aborts and sends warning to the GUI. If the
conditions is fulfilled the function returns True.

Algorithm 3: Design method of object integrity-preserving function (β)

Require: Create a function β that has parameters (arg1 datatype, arg2
datatype, ... argn datatype).

Require: Data to be validated X and K is contained in function arguments.
Ensure: Validation is amongst members of an object.

1: if (X.arg3) Condition (K.arg5) is False then
2: Abort, and send warning to the GUI.
3: else
4: return true
5: end if
6: The function β(X,K) holds, then data X,K are valid.

3.3.7 Table integrity-preserving function (γ)

Algorithm 4 illustrates how integrity-preserving function is created. Then, it
searches within the table members and checks using threshold R, for instance,
whether the table level constraints is fulfilled before the entire data supplied
can be valid for a transaction. If the condition is not fulfilled the function aborts
and sends warning to the user. If the conditions is fulfilled the function returns
True.

3.3.8 Database integrity-preserving function (δ)

Algorithm 5 shows how database integrity-preserving function is created. First,
the function is created with parameters that have their data types included.

31

3.3. Constraints design method to promote spatial database consistency

Algorithm 4: Design method of table integrity-preserving function (γ)

Require: Create a function γ that has parameters (arg1 datatype, arg2
datatype, ... argn datatype).

Require: Check value R can be used as validation data threshold stored in
condition expression.

Ensure: Check within members of a table, before all function parameters are
valid.

1: if (Condition(count members) < R) is False then
2: Abort, and send warning to the GUI.
3: else
4: return true
5: end if
6: The function γ(all parameters) holds, then all data supplied function pa-

rameters are valid.

Then, data L used to in the condition to validate data U is stored in temporarily
within the function. Then, Validation is between members across tables. If the
condition is not fulfilled the function aborts and sends warning to the user. If
the conditions is fulfilled the function returns True.

Algorithm 5: Design method of database integrity-preserving function (δ)

Require: Create a function δ that has parameters (arg1 datatype,
arg2 datatype, ... argn datatype).

Require: Data to be validated U is contained in function arguments.
Require: Data used for validation L is stored in temporary storage within the

function.
Require: L← (SELECT ∗ FROM table B) if data is gotten from tableB.
Ensure: Validation should be between across tables members.

1: if Condition(C.Column1) checking (U.arg4) is False then
2: Abort, and send warning to the GUI.
3: else
4: return true
5: end if
6: The function β(U) holds, then data U is valid.

3.3.9 Design method of update transaction function (λ)

Algorithm 6 illustrates the method developed to create transaction update func-
tions when the all integrity-preserving functions return True value.

3.3.10 General design of an integrity-preserving trigger func-
tion

An integrity-preserving trigger function for each constraint level are created
almost in the same way as shown Algorithms 2, 3, 4, 5 but with two major

32

Chapter 3. Spatial consistency design for Web 2.0 applications

Algorithm 6: Create update function (λ)

Require: Create a update function λ that has parameters(arg1, arg2).
Require: Data to be updated arg1 and arg2.
Require: Database status H.
Ensure: Call all the integrity functions α, β, γ, δ and perform them within

from update function.
1: if (SELECT Integrity functions (arg1,arg2) = True) then
2: Update genus table.
3: Database state changes H ← H ′.
4: end if
5: The function λ(H) holds when data H is valid.

differences. First, the function is created as a trigger function. Secondly, the
triggering condition is set to fire if there is a detection of any new update that
intends to change status of the database. If there is no update, the triggers
remain dormant. Suppose integrity-preserving trigger functions α′, β′, γ′, and
δ′ represent constraint level attribute, object, table and database respectively.
The trigger functions α′(W) and β′(W) and γ′(W) and δ′(W) hold for data W
validated, then database state is changed. Algorithm 7 shows the design tech-
nique of the trigger functions.

Algorithm 7: General design of an integrity-preserving trigger function

Require: Create an function α′, β′, γ′ and δ′ as trigger function that return
true.

Require: In each trigger function α′, β′, γ′ and δ′ ,insert a trigger statement
that fires after a new update event.

Require: The data to be validated is W .
Require: The database state is Z.

1: if data W is not updated then
2: Trigger remain dormant.
3: else
4: Fire trigger and to validate W .
5: end if
6: if α′(W) and β′(W) and γ′(W) and δ′(W) do not hold then
7: Abort, and send warning for the indication the constraint level violated.
8: else
9: Commit transaction and change the database status Z ← Z ′.

10: else
11:
12:
13: end if

33

3.3. Constraints design method to promote spatial database consistency

3.3.11 Mechanism of executing integrity-preserving functions

In our design method, we explain two approaches employed when executing
the integrity-preserving functions in order to conduct data validation processes.
These approaches are: use of triggers functions and Remote Procedure Call API
defined in the application layer. The two approaches comply with the philoso-
phy of having the constraints reside in the database.

3.3.12 Execution of integrity-preserving functions using trig-
gers

Triggers are fired when there is an UPDATE, DELETE and INSERT event.
The triggers can be set to fire before or after an event. The Algorithm 8 shows
how the integrity-preserving triggers functions for each constraint level are
implemented in a database. To begin with, in a transaction, the entire input
datasets are updated using a transaction function κ resulting in a new (B’)
database state. The a triggers for each constraint level (i.e. attribute,object,
table and database) is fire to test the validity of the new database state and
returns boolean. If data violates any constraint in a given integrity-preserving
trigger function, then the transaction is aborted. However, if all the constraints
in each integrity-preserving trigger functions is fulfilled, then the transaction
is committed.

Algorithm 8: Execution of integrity-preserving functions using triggers

Require: Create integrity-preserving trigger function γ,θ, π, ω for each of the
four constraints levels

Require: Update data q to be validated into a database of state B, resulting in
new state B′ using traction function κ.

1: if γ(q) and θ(q) and π(q) and ω(q) do not hold then
2: Abort transaction, send warning to user indicating the constraint violate.
3: else
4: Commit transaction, B ← B′.
5: end if

The integrity-preserving trigger functions are used to implement validation
and modification of data in a database, they reside in a database guarantee-
ing the integrity of a database. However, it has a number of limitations. For
instance, the constraints are opaque to the client application that has access
and user rights to modify a database. Moreover, when complex business logic is
used to validate large datasets, especially spatial data, the validation process
takes a long time. Since multiple triggers can fire per event, trigger firing rate
also increases with increase in the number of users updating a database, hence
the validation process is further slowed. Also the cascading effect of triggers
can slow the processing of data, that is, if other triggers are fired.

34

Chapter 3. Spatial consistency design for Web 2.0 applications

3.3.13 Implementing integrity-preserving functions using a Re-
mote Procedure Call API

Implementation using Remote Procedure Call API aims at addressing the lim-
itations resulting from the use of triggers as discussed in Section 3.3.12. The
Algorithm 9 shows how an update function λ is called into an application by
Remote Procedure Call API. The update function λ then call all the integrity-
preserving functions in an orderly manner, starting with the attribute α, then
object function β, then table γ, and finally the database δ integrity preserving
function. If all the integrity-preserving functions return True, then the update
function λ (as designed in Section 3.3.9) is used to commit the transaction re-
sulting in change of the database status. If False is returned, then a warning
message is sent to the GUI.

Algorithm 9: Implementing integrity-preserving functions using a Remote Procedure Call API

Require: Create a Remote Procedure Call API.
Require: Data g to be validated.
Require: Integrity preserving functions α, β, γ, δ.
Require: API calls update functionλ.
Require: Update function λ calls all integrity functions. It then prompts the

integrity functions to perform the below test. If all return True, then modify
database status K.

1: if α(g) does not hold then
2: Abort, Raise warning.
3: else
4: return true
5: end if
6: if β(g) does not hold then
7: Abort, Raise warning.
8: else
9: return true

10: end if
11: if γ(g) does not hold then
12: Abort, Raise warning.
13: else
14: return true
15: end if
16: if δ(g) does not hold then
17: Abort, Raise warning.
18: else
19: return true
20: end if
21: if α(g) and β(g) and γ(g) and δ(g) holds then
22: Database state changes K ← K ′

23: end if

The Remote Procedure Call API implementation has a number of advan-

35

3.4. Design of Django to support Remote Procedure Call API

tages over the trigger implementation. To begin, constraints are made known
to the application while in triggers they are opaque, therefore the triggers run-
ning behind the scene can be forgotten and a times difficult to debug when
errors arise. Data validation process is faster because processing is done one at
time following the granularity constraint levels unlike in trigger implementa-
tion where all the triggers fire sporadically upon updating the database.

3.3.14 Summary of steps followed when implementing constraint
design method

Constraint design method prescribes a four-step method to promote spatial
database consistency in web applications. The method was developed after tak-
ing into consideration constraints design parameters and techniques discussed
in Section 3.3.

1. Understand both simple and complex business logic, then define each ba-
sic constraint based constraint granularity levels (i.e. attribute, object,
table and database).

2. Then an integrity-preserving function is created that wraps each con-
straint in a function based on granularity levels. The integrity function
return boolean.

3. Then create an update transaction function that calls the integrity-preserving
functions. If the called functions return True then update statement com-
mits the transaction into a database.

4. To utilize the transaction update function, we use a Remote Procedure
Call API.

It should be noted that if the integrity-preserving functions are implemented
using triggers, then the fourth step is avoided. However, because of the limita-
tions of triggers being slow and opaque, we use a Remote function call Remote
Procedure Call API.

3.4 Design of Django to support Remote Procedure
Call API

In this section we discuss the redesigning of Django to support the creation of
Remote Procedure Call API that will enable web applications to call integrity-
preserving database functions to be used for validation and hence promote spa-
tial database consistency. We begin by discussing the system components of
Django and GeoDjango that need to be taken into account in order to create
a Remote Procedure Call API that will enable the constraints to reside in the
database back-end. Then we will compare the current Django design with the
new design with respect to handling validation constraints. Then we summa-
rize with a new layout of the new prototype design.

36

Chapter 3. Spatial consistency design for Web 2.0 applications

3.4.1 Functional requirements use case diagram

Key functional requirements to be contained in the new system are depicted
using UML use case diagrams as show in Figure 3.3. A use case simplifies the
specifications and avoids the use of jargon making it easier to understand. In
our scenario, a use case diagram is used to model internal working of the system
that needs to be extended and those that participate in extending it. Therefore,
the entire system is not captured in the use case and we only focus on those
major components that need to be modified. The use case does not capture the
non-functional requirements like reusability. Ultimately, the modeling of the
system activity at the requirement analysis phase, helps to avoid errors that
may result during the system implementation, that are harder to correct at a
later stage. This guarantees success of the project. The Figure 3.3 shows how
the system’s actors interact with system functions in use cases.

Figure 3.3: Functional requirement use case diagram

The functional requirements use case diagram in Figure 3.3 represents the
system improvement requirements needed to archive a spatial database consis-
tent web application. The Django Template (i.e. Form or Viewer) constitutes
part of the graphical user interface. Within the GUI exist form fields for data
entry. In addition, the GUI displays output feedback messages sent to notify the
user whether the data was submitted successfully or rejected. The Model, Tem-
plate and View (MTV) constitutes part of the MVC architecture. That is, the
central engineering concept of web applications should be maintained together

37

3.4. Design of Django to support Remote Procedure Call API

with all its functions.
PostgreSQL and its PostGIS extension are chosen as the spatial database of

choice for the system. A Remote Procedure Call API needs to communicate with
the model and view when it calls functions and commits transactions. On the
other hand, the database serves the purpose of storing the functions, validating
data and executing transactions. The model uses its ORM to create the schema,
though an option is provided for the database to use raw SQL to create schema.
The implicit and explicit constraints are meant to reside in the database. Im-
plicit constraints are defined inherently within the database while the complex
business logic is defined using PL/pgSQL server-side procedural language and
stored in the database as discussed in Section 3.3.3.

3.4.2 Design method used to create a Remote Procedure Call
API in Django

The main goal of a Remote Procedure Call API is to ensure that a web applica-
tion can call integrity-preserving functions, use the functions to validate data
and be able to convey warning message back to the user.

Design of Remote Procedure Call API component in model.py

The component of API that resides in model module is charged with responsi-
bility of providing communication with the database, requesting for database
transactions and acting on feedback from the databse. Algorithm 10 explains
how the API component in model.py is created.

Algorithm 10: Design of Remote Procedure Call API component in model.py

Ensure: Django application modules model.py is opened.
Require: Call database connection and transaction classes into model.py.

1: In model.py create a class with an appropriate name (e.g. Dbase funct call).
2: Within the class create a method (e.g. func trasact).
3: The func trasact method takes parameters, that is, data received from view

for validation.
4: Create a variable (e.g. genus) to assign cursor method that takes data to

be validated (i.e. method parameters) and the name of integrity-preserving
function as its arguments.

5: Define execute cursor to ask the integrity function to evaluate the data.
6: if V alidation process is complete then
7: Send to the view the message returned by the database validation func-

tion.
8: else
9: Wait for response from database.

10: end if
Ensure: Method returns response (i.e. success or message).

38

Chapter 3. Spatial consistency design for Web 2.0 applications

Design of Remote Procedure Call API component that reside in view.py

The component API in view module is responsible for sending and receiving
information to and from Form/GUI. It utilizes the methods defined in the API
class in the model module. Algorithm 11 explains how the API component in
view is created.

Algorithm 11: How to create Remote Procedure Call API component in view.py

Ensure: Django application modules view.py is opened.
Require: Call Dbase funct call class created in model.py.
Require: Call Django Form class {this enable the API to receive data from

GUI and send warning messages to GUI}.
1: Create a function in model module (e.g. called render post).
2: Create a variable that uses request method from Form to establish connec-

tion with the form field in GUI.
3: The render post function inherits the func trasact method from

Dbase funct call class. Within the class create a method (e.g. func trasact).
4: Create a variable (genus) that call method (func trasact) in class

Dbase funct call that takes values received from the GUI as its arguments.
5: if Data is received from GUI then
6: Send data to API component in model.py module.
7: else
8: Send message received from the database via model API component to

GUI.
9: end if

Ensure: The function returns render response (i.e. present information for
display by url.py).

3.5 PL/pgSQL wrapper design

The PL/pgSQL wrapper once created will provide will enable Django to define
PL/pgSQL functions and also triggers that reside in the database using Django
functions. Therefore, the need of running raw SQL codes in Django will be
avoided. With the wrapper in place, we will simplify the creation of functions
that reside centrally in the database. The PL/pgSQL wrapper that will extend
Django ORM should be able to:

• Enable a developer to create and delete both functions and trigger func-
tions.

• Allow the declaration of data types for function arguments.

• Allow unlimited entries of parameters.

• Return either boolean, integer, void , real or varying character.

• Allow one to pass a declare variables and also create temporary records
within the function.

39

3.5. PL/pgSQL wrapper design

• Strive to include all the built-in PL/pgSQL statements like UPDATE,
BODY , END, RETURN, SELECT FROM WHERE , REFCURSOR, IN-
SERT , DELELE ,OLD, NEW, IF-THEN-ELSE, LOOP, TG OP, TG NAME
among others.

• Call and reuse other built-in database functions.

• Though not a must, the PL/pgSQL wrapper should also be able to trans-
late an existing PL/pgSQL function back into a Django method.

3.5.1 How PL/pgSQL wrapper is created

Concatenation of built-in statements and input variables then returning a string
variable, is the fundamental principle behind the design and creation of a PL/pgSQL
wrapper as explained in Algorithm 12.

Algorithm 12: How PL/pgSQL wrapper is created

Ensure: Create a class (e.g. plpgsql wrapper) that has a number of methods.
Require: Create methods that each takes argument variables.
Ensure: Every method created should return a string value.
Ensure: Every method concatenate built-in SQL statements with variables

passed to them.
Ensure: Between concatenated statements, a space should inserted to avoid

creating a continuous string that would raise errors.
Ensure: init .py file is created that will trigger the creation of ‘CREATE

FUNCTION’ statement and closing statement ‘LANGUAGE ’plpgsql” when
the a create class is called. Then all the concatenated strings will be in-
serted inside at the end, hence avoid omission errors.

3.5.2 How PL/pgSQL wrapper is used to create database func-
tions

The PL/pgSQL wrapper enables a developer to create Django functions that
generate PL/pgSQL codes used to create database functions. A Django function
works on the principle of inheriting and passing variables to methods of class
wrapper. The wrapper concatenates and returns string variable. The Django
function executes the generated code by as raw SQL statement. A Django func-
tion that generate PL/pgSQL code can either generic or specific to certain busi-
ness rules. For instance, for simple validations, Django functions can be reused
to create database functions by varying the input parameters, but for complex
validation rules, a developer has to create user-defined functions.

40

Chapter 3. Spatial consistency design for Web 2.0 applications

3.6 Comparison in terms of data flow between the
Django design and proposed design

The proposed design method has an impact on data flow, that is , starting from
data entry point at the GUI, then going through validation checks at appli-
cation and database layer and finally committed to the database for storage.
Therefore, we illustrate the difference in two designs by discussing data flow in
each design method.

3.6.1 Current design data flow in Django web framework

Figure 3.5 shows how data flows currently when a Django web framework is
used to build a web application. Take note, that Django follows the MCV archi-
tecture but interchanges its layers in terms of terminology. The View in Django
is considered to be the MCV architecture’s controller, the Template is consid-
ered as the View in MVC architecture’s View and the model remains the same,
hence Django’s MTV architectural design as shown in Figure 3.4.

Figure 3.4: Django’s MTV architecture

Bear in mind that Django together with GeoDjango has been used to create
a web application that is connected to a spatial database ready for data en-
try. According to the current design method, the flow of data in the deployed
spatial web application is illustrated in Figure 3.5. First, the user enters the
data into the GUI form fields (Template) and presses the submit button. Then,
the Django view layer that has similar roles as the controller, is responsible
for getting data in and out of the database while it communicates with model
and ORM. The view hosts the web application complex business logic that is
responsible for consistency checks.

Therefore, the application level validation first takes place in the view. If
an error occurs, an error message is send back to the GUI client. The user is
then expected to cross check and enter the correct data. However, if the data is
found to comply with defined business rules, the view sends the data into the
database where the inherent constraints further validate the data. If the data
is found to be correct the transaction is submitted into the database for storage.
Otherwise, if there is violation of these constraints, an error message is send

41

3.6. Comparison in terms of data flow between the Django design and proposed design

back to the client user interface. The same process is repeated again for the
next transaction.

Based on this design the spatial data consistency is compromised because
constraints are not maintained in a central location . This is because Django
consistency controls reside partly in the application layer and in the database
layer. Complex business rules cannot currently be defined in the database by
Django. Therefore, Django define and maintain complex business rules in the
view. The Django together with GeoDjango supports the creation of limited
spatial business rules in the view. Forms support validation of simple rules like
data types.

Figure 3.5: Django design data flow

3.6.2 New design data flow in extended Django web framework

Considering the existing Django design, there are limitations when it comes to
guaranteeing spatial database consistency. Therefore, the new extended design
proposes the creation and maintenance of all the integrity constraints within
the database. According to the new design, the expected data flow is shown in
Figure 3.6.

First, the user enters the data into the GUI form fields (Template) and
presses the submit button as shown in Figure 3.6. Then, the Django View layer
communicates with model and ORM and allows movement the data in an out
of the database via a Remote Procedure Call as discussed in Section 3.4.23.
However, the view in the new design is not used to store the complex spatial
business logic, hence, the validation stage is left out at the application level.

42

Chapter 3. Spatial consistency design for Web 2.0 applications

Figure 3.6: New design data flow

Therefore, the spatial business logic and all the integrity controls are stored in
the database layer.

The API is designed to call integrity-preserving functions from the spatial
PostgreSQL database. Moreover, the API enables data to be wrapped in prede-
fined database functions, which then forwards the data through the database
validation based on taxonomic granularity before committing it into the database
for storage. Once the data reaches the database, it goes through validation pro-
cess. If the dataset is erratic an error message is send back to the GUI of the
client browser. The user is then expected to cross check and enter the correct
data. However, if the data is found to comply with defined business rules the
API commits the transaction and stores data, hence, changing the status of the
database. The same procedure is observed again for the next transactions.

In this approach we get rid of redundancy of double validations at the appli-
cation and the database levels. Moreover, we achieve the goal of having the in-
tegrity controls reside in the database layer. This will promote the consistency
of spatial web application because of the earlier reasons stated in the literature
review like ability of the database to be access by multiple applications without
messing the integrity of the database.

3.6.3 Prototype design architecture

After taking into consideration the system requirements analysis and delving
deep into the operation mechanism of Django web application framework, a
new design architecture for a prototype web application framework that ex-
tends Django was developed. Figure 3.7 illustrates the new stet-up of extended
Django with an API that promotes spatial database consistency.

The design give provide options that improve the building of spatially con-
sistent web applications. For instance, the classical database design can be

43

3.6. Comparison in terms of data flow between the Django design and proposed design

Figure 3.7: Prototype design architecture

used to create schema and later the model and the ORM notified of the built-in
schema and the inherent database constraints. A modeling language like UML
is used model the complex relationship between the schemas and to define any
multiplicities. Therefore, the ORM can be used at liberty to create schemas or
not, based on the developer’s desire and choice.

A Database API is another addition into the design. It is mainly used to call
built-in PostGIS functions and transact with the database. PL/pgSQL wrapper
is also proposed to extend Django to support the creation of database functions.
Other applications and clients can as well plug into the database and do some
edits so long as they do not violate the consistency rules.

3.6.4 System infrastructure architecture

The system architecture is divided into client, web server and database as
shown in Figure 3.8. It constitutes software, hardware and network.

Client

The user interacts with the web application via an Internet browser. This en-
ables many users across the world to have access to stored information or con-
tribute their data via a GUI form into the database. The hardware used at the
client side include desktops, PDA, laptops or Mobile phones.

Web server

The server is charged with the responsibility of responding to HTTP requests
made by distributed clients via the Internet. Apache web server which is em-

44

Chapter 3. Spatial consistency design for Web 2.0 applications

Figure 3.8: System architecture

ployed in this research project is also used to receive content from the client.
For instance, uploaded files or submitted web data entries.

Database

We use PostgreSQL database which is an object-relational database manage-
ment system (ORDBMS) and its spatial extension called PostGIS for this re-
search project. Database models together with business logic are created and
stored within PostgreSQL and PostGIS. It supports the SQL statements and
has a server-side procedural programing language called PL/pgSQL.

3.7 Introducing pre-processing of data before stor-
age in databases

The discussed design method will pave way for smart databases that will not
only view databases as repository to store spatial and attribute data but also
put predefined meaning into data by enforcing constraints and other business
rules. These rules are enforced through the use of integrity functions as dis-
cussed in Section 3.3.3. By adhering to these rules defined in the database,
meaningful datasets that have been validated and processed accordingly are
committed into a databases during a transaction.

This approach is much different from the conventional GIS practice where
users could only draw datasets into the spatial database in a GIS environment
and save the edits without subjecting the data to any validation checks. There-
fore, a lack of meaningful validation or built-in processing functionality that
interacts with the entered vector and attribute data before storage in spatial
database, will result in overall erroneous datasets despite the good accuracy of
the input datasets. This occurs mainly if the entered data is related other to
existing base datasets within the database.

45

3.8. Conclusion

3.8 Conclusion

We have explained constraint design method and the system architectural de-
sign phases of a spatially consistent database, that is, the framework when
extending a Django web framework by creating an API and techniques of cre-
ating integrity-preserving functions. The proposed design method, was used to
develop a web-based spatial application, that is, be used to test the and evaluate
the design’s viability in promoting spatially consistent databases. The proposed
design methods affects the application development method of web application
using the Django web framework as explained in Chapter 4.

46

Chapter 4

Implementation and
Evaluation

4.1 Introduction

In this chapter, we focus on implementation and evaluation of the design method
as proposed in Chapter 3. We delved into the programming process using
Python programming language to extend the Django web application frame-
work. We also built a web application that maintains spatial database consis-
tency that is based on an Amazonia avian distribution use case. The web appli-
cation has an additional API for calling database integrity-preserving functions
residing in the database. Therefore, we also did server-side database program-
ming to encode the business logic within the database as defined the constraint
design method in Section 3.3. The database of choice is PostgreSQL with its
POSTGIS extension.

We built the web application taking into consideration the two research
project’s main philosophies, that is, maintaining constraint validation in the
database, and enforcing the validation of constraints based on taxonomic data
granularity as postulated in the design method. The ultimate goal is to guar-
antee spatial database consistency.

The built system is tested using Amazonia avian distribution data to ensure
that it performs as designed. Testing is critical during implementation and is
primarily geared towards mitigating costly bugs in the system.

4.2 Validation in Django

We begin by showing how Django handles validation of input data at both the
application and the database layer. Then, we go through two implementation
approaches that we developed to enrich Django according to the design pattern
proposed in Chapter 3.

47

4.2. Validation in Django

4.2.1 Layout of Django validation process

Figure 4.1 shows the approach of how Django handles validation. The model
generates the schemas and inherent database constraints. These inherent con-
straints are the only constraints that reside in the database layer. The view
module is used to enforce the application’s complex business logic.

Check constraints are not defined by the Django model. However, the Geo-
Django extension supports definition of geographical fields that take SRID and
geometry type constraints. The class below in the model module shows that the
included polygon geometry is of SRID type 4326.

class Distrib(models.Model):
speciesid = models.CharacterField(length=50)
name = models.CharacterField(length=50)
geom = models.PolygonField(SRID: 4326)

From our research studies, we learnt that the model is handicapped by the
failure of some databases, like MySQL, to support check constraints. However,
for a PostgreSQL database it is not an impediment but it limits the creation of
complex business rules within the model. This is because the model does not
support complex business logic. This is because Django stores the complex busi-
ness logic in the application layer and not in the database back-end. Therefore,
it rules out the creation of functions within the model. Current, the Django
ORM SQL wrapper cannot define complex functionality that do complex oper-
ations like server-side programming. This is the reason why Django employs
the view to define functions that do application layer data validation as shown
in Figure 4.1. The form checks that the input data type is valid and clean to
be supported by the database. The view is used to create user-defined func-
tions are then passed to the form for data type validation of the result or else
a validation error would be raised. Appendix C and D show an example of how
form support validation and how form sets are used in a view (which is similar
to Controller in the MCV architecture) for validation including complex rules
definition.

Figure 4.1: Django data validation layers

48

Chapter 4. Implementation and Evaluation

The weakness of this design implementation approach is that the explicit
constraints reside in the application layer. This implies that the philosophy
of central location of integrity rules in the database where the data is stored
is cannot be achieved. Also, it is hard to monitor the implementation of con-
straints according to the taxonomic granularity design pattern.

The Figure 4.1 shows in summary how the Django system handles data
validation. This provides us enough insight helping us to understand how to
change the framework, but still play within two philosophies. It shows how the
system components beneath the system impedes the research project philoso-
phy implementation. We use an implementation of how Django web framework
handles data validation to illustrate the system functioning mechanism clearly
with regard to the research project and MVC philosophies.

We evaluated the current capabilities of Django based on the philosophies
checklist with regard to Django data validation.

Research Project philosophy

The research project aims at implementing two philosophies.

a) Database consistency

Django design maintains consistency in the database layer by enforcing the
inherent constraints defined and generated by the model. It also maintains
the explicit constraints in the application layer, though the complex business
validation rules defined in Django view module as shown in Figure 4.1.

b) Taxonomic data granularity in enforcing constraints

The Django design system does not follow data granularity order when enforc-
ing constraints according to the constraints enforcement design as stated in
Chapter 3. The data first goes through the form data validation that data types.
Then the data is submitted to the database for database inherent constraint
checks.

MCV architecture philosophy

The MVC design philosophy includes the DRY principle: reusability and code
generation by web framework to build applications in a rapid and clean manner.

a) DRY principle

The business rules defined in the view cannot be accessed by other forms in
other applications sharing the same database. This implies that the rules have
to be copied to similar viewa for each application accessing similar tables in the
database. This violates the ‘Don’t Repeat Yourself ’ principle.

49

4.2. Validation in Django

b) Reusability

There is a lack of reusability of already defined functions since they cannot
be called outside the application. This means that other applications have to
define new constraints based on their design without breaking the integrity of
the database.

c) Clean

The is no clean order followed when enforcing constraints. Some are strewn in
the application while others are put in the database as explained earlier.

d) Code generation by web framework

The code is purely pythonic. This resonates well with the purist idea of keeping
Django to be pure python. The SQL is wrapped in the ORM to generate schemas
and inherent database constraints.

4.2.2 Extending Django to support spatial database consistency

We looked into two implementation solutions for creating spatially consistent
web applications based on the proposed design method. These implementation
approaches are: model and function validation designs. To achieve this, we
gathered an in-depth understanding of how Django and GeoDjango web appli-
cation framework handle data validation in various modules. We discuss both
implementation approaches below.

4.2.3 1. Model validation design implementation approach

In this implementation approach, we extended the Django model to support the
definition of check constraints. This involved patching some of the responsible
modules like: creation.py, validation.py, options.py and models.py. The model
class below shows how the model handles the definition of constraints. The
constraints are passed as a set of tuples within a tuple under a variable named
constraints as shown in model class Distrib below. This ensures that the check
constraints tasks conducted at the view module are moved to the database as
shown in Figure 4.2. Therefore, we were able to achieve the task of moving the
check constraints that resided in the application layer into the database layer.

However, complex business logic still remained in the form module which
is part of the application layer as shown in Figure 4.2. Also, despite having
defined the check constraints in the model, we still did not have control of or-
dering the constraints executions based on taxonomic granularity, such that we
begin with attribute constraints, object constraints, then table constraints and
finally database constraints.

We were not able to have the business logic entrenched in the database.
Therefore, the DRY principle is still not fully adhered to because we only man-
aged to move the check constraints to the model but not the complex business
logic defined in the application. This meant that all the complex business logic

50

Chapter 4. Implementation and Evaluation

Figure 4.2: Django extension to support check constraints

functions have to be repeated in all the forms that have access to a similar table
in the database. Therefore, this approach works on the a compromise of having
some constraints reside in the application layer and some in the database layer.

class Distrib(models.Model):
speciesid = models.CharacterField(length=50)
name = models.CharacterField(length=50)
geom = models.PolygonField(SRID: 4326)

class Meta:
constraints = (
(‘object constraint’,Check(speciesid gte = 100, speciesid lte = 999)),
)

4.2.4 2. Function validation design pattern implementation ap-
proach

In this design implementation, we address the problems that arose when imple-
menting our design method using the model validation approach. We therefore
developed a function implementation that would guarantee the validation in
the database. To comply with our research project requirement to fully have a
system that maintains spatial consistency in the database as well as adhering
to the taxonomic granularity order, we developed this implementation for the
proposed design method.

The implementation relies on database integrity-preserving functions that
wrap and validate any posted data in the form GUI by a client user. Therefore,
the business logic will no longer be defined in the view but in the database,
different from functions in Figure 4.1 and Figure 4.2 functions. The database
integrity preserving functions enable use to define a wanted validation order in
the database based on granularity.

Moreover, we had to subject our implementation analysis to see whether it
meets the research project’s and MVC philosophy. First, the integrity-preserving
functions are programmed using server-side PL/pgSQL procedural language

51

4.2. Validation in Django

Figure 4.3: Extended Django that supports function creation and Remote Procedure calling

and stored in a database. We also created a function calling API in the model
module that calls the functions into the view avoiding the view validation. This
makes the implementation DRY principle compliant. The application is clean
because the complex coding is taken to the database where the data reside. It
is very flexible because the server-side programming is versatile and provides
built-in functions.

The created integrity-preserving functions are stored in the database where
they can be reused by other applications to access the same tables of the database.
This implementation also ensures that uniform integrity rules are enforced by
all the applications or other forms that share common tables. It also promotes
rapid creation of web applications. This is because once an integrity-preserving
function of a certain table has been created, the developers are left with the
task of only calling the functions.

It is loosely-coupled because when changes are made in the API, it does
not affect the entire system. For instance, each function exist as an indepen-
dent validation function, that is, any alteration will not affect the other con-
straints. The function creation is done using raw PL/pgSQL because there is no
wrapper in Django for generating PL/pgSQL statements. Therefore, facility of
code generation is lacking. However, when a wrapper is developed as discused
in Section 3.5 it will make it easy to define the constraints within a Django
view module. This will ensure that the implementation grows to become pure
Pythonic.

4.2.5 Summary of steps followed when implementing constraint
design method

Constraint design method prescribes a four step method to promote spatial
database consistency in web applications. The method was developed after tak-
ing into consideration constraints design parameters and techniques discussed
in Section 3.3.

1. Understand both simple and complex business logic, then define each ba-

52

Chapter 4. Implementation and Evaluation

sic constraint based constraint granularity levels (i.e. attribute, object,
table and database).

2. Then an integrity-preserving function is created that wraps each con-
straint in a function based on granularity levels. The integrity function
return boolean.

3. Then create an update transaction function that calls the integrity-preserving
functions. If the called functions return True then update statement com-
mits the transaction into a database.

4. To utilize the transaction update function, we use a Remote Procedure
Call API.

It should be noted that if the integrity-preserving functions are implemented
using triggers, then the fourth step is avoided. However, because of the limita-
tions of triggers being slow and opaque, we use a Remote function call Remote
Procedure Call API.

4.2.6 Implementation of the constraint method to design integrity-
preserving function

We show how the proposed constraint and API design methods discussed in
Sections 3.3.14 and3.4.2 are used to create integrity-preserving functions and
develop Remote Procedure Call API are implemented in Django web application
framework and PostgreSQL.

Attribute integrity-preserving function implementation

The design method discussed in Section 3.3.5 has been used to create an integrity-
preserving function of attribute constraint granularity level shown below. The
integrity-preserving function returns TRUE if a valid genusid is entered but if
a wrong genus is entered it raises an exception indicating the nature of the of
violation. Algorithm 16 implements the method developed to create integrity-
preserving function of type attribute.

Algorithm 13: attribute genus

Require: Create a function attribute genus that has parameters (gdxint).
Require: Data to be validated gdx.
Require: Create temporary record called myrec.
Ensure: Validation is of type attribute.

1: if IF myrec.gidx IS NOT NULL THEN then
2: Abort, and send warning to the GUI.
3: else
4: return true,
5: end if
6: function attribute genus(gdx) holds when data gdx is valid.

53

4.2. Validation in Django

The code below shows how the Algorithm 16 implemented in PL/pgSQL is
used to creat integrity fucntion.

CREATE OR REPLACE FUNCTION check_attribute_genus(gdx int)
RETURNS BOOLEAN AS $ $
--The function arguements are represented as (gdx = genusid)

DECLARE

myrec RECORD;

BEGIN
-- Searches for the supplied gidx within the genus table
-- and then assigns the rows into the myrec record

SELECT INTO myrec * FROM genus WHERE gidx = gdx;

IF myrec.gidx IS NOT NULL THEN

-- This statement checks uniqueness of the input data
-- This is an attribute constraint

RAISE EXCEPTION
‘Reject as a primary key because % alredy exists’, gdx;

ELSE
RETURN (TRUE) ;

END IF;
END;
\$\$ Language ’plpgsql’;

Transaction update function

The transaction value below is used to update data into genus table in the Ama-
zonia database where the genusid represented as gdx was found to be valid. The
update function returns void.

Algorithm 14 illustrates the design method discussed in Section 3.3.9 used
to create transaction update function in PL/pgSQL.

CREATE OR REPLACE FUNCTION update_genus(gdx int) RETURNS VOID AS\$\$

-- Performs the transaction and updates the genusid.

IF (select check_attribute_genus(gdx) = True) THEN

UPDATE genus SET gidx = ’gdx’ WHERE gidx = ’45’;

54

Chapter 4. Implementation and Evaluation

Algorithm 14: Create update function

Require: Create a update function update genus that has parameters(gdxint).
Require: Data to be updated gdx.
Require: Database status G

1: if IFcheck attribute genus = True then
2: Update genus table.
3: Database state changes G← G′

4: end if
5: function update genus(gdx) holds when data gdx is valid.

END IF

RETURN;
END;

\$\$ Language ’plpgsql’;

Remote Procedure Call API implemetation

The Remote Procedure Call API below that reside in Django view.py module
was created using the method discussed in Section 11. It is used to post the
genusid (represented as gidx) entered at the GUI to the model.py API portion
and sends the response received from the database via the model to the GUI.

def genus(request):

if request.method == ‘POST’:
form = GenusForm(request.POST)

if form.is_valid():
my_funct = Call_Dbase__genfunctions()

genusupdate = my_funct.call_distrib(request.POST[‘gidx’],)

return HttpResponseRedirect(‘/distrib/’)

else:
form = DistribForm()

return render_to_response(‘form.html’,{‘form’:form,‘error’:True},)

55

4.3. Web application implementation

The portion of the Remote Procedure Call API is created using the methods
described in Section 10. It calls the validation function ‘check attribute genus’
and transation function ‘update genus’. When the attribute is found to be valid,
genus data is updated.

class Call_Dbase_genfunctions():
def call_genus(self, genusid):

cursor = connection.cursor()
genusupdate = cursor.callproc(‘update_genus‘, (genusid))
cursor.execute(‘COMMIT’)
cursor.close()

return genusupdate

Using Remote Procedure Call API to execute validation and update
functions

We use the Remote Procedure Call API to call validation functions and an up-
date function as explained in Algorithm 15.

Algorithm 15: Using Remote Procedure Call API to execute validation and update

Require: Create a Remote Procedure Call API.
Require: Data entered at the GUI gdx← gidx.
Require: Integrity preserving functions check attribute genus.
Require: Call database update function update genus to modify database of

state G.
1: if checkattribute genus(gdx) does not hold then
2: Abort, Raise warning.
3: else
4: Call update function update genus(gdx) and commit transaction.
5: Database state changes G← G′

6: end if

4.3 Web application implementation

We are provided with a use case of Amazonia avian distribution data that is
used to build a web application. The use case forms the basis to test and eval-
uate our design method described in Chapter 3. The web application is charac-
terized with an additional Remote Procedure Call API and is built using Django
web framework and GeoDjango.

We leveraged the second design implementation as a pragmatic solution to
the Amazonia avian distribution use case. This is because we planned to show
how database consistency is maintained in the database, and how it promotes
spatial database consistency. We also employed it to show how taxonomic data
granularity order is used in executing constraint checklist within an integrity-
preserving function, ensuring the database integrity is not broken by flawed

56

Chapter 4. Implementation and Evaluation

data. Finally, the design implementation shows how MVC philosophies of web
frameworks are adhered to when implementing the use case.

We elucidate the entire process from installation, to coding and finally hav-
ing an output in the form of a working web application site.

4.4 Use case motivation

This small document describes a use case for a test on web frameworks. Specifi-
cally, that test should demonstrate the ease with which a web-based application
can be build that displays some spatial (vector) data functionality. At first, the
use case description is simple, and many details are omitted. We expect the use
case to gradually evolve and become more complicated.

The use case is a real one, that could be put in place in a project that has
been running, slowly, since 2006. The project is a collaboration with INPA,
Manaus Brazil on an information platform about Amazonian life forms, i.e.,
plants and animals and their distribution. At present, only avian life forms are
covered, for one because distributions are on average much better known than
for other life forms. But over time, the coverage is expected to be extended to
aquatic animals like crustaceans, but also mammals, and plants.

4.5 Conceptual schema

In Figure 4.4, is depicted an early and simplified information design of our
spatial database. It is derived from an Enterprise Architect project, which is to
be distributed together with this document. We continue to describe here what
the information content of the system is.

The system captures information about species, here, specifically names in
three languages as well as spatial distribution for most (but not all) species.
The listname is the scientific name, port and eng name give Portuguese and
English vernaculars. For historic and archival reasons, spatial distributions
are modelled as separated objects. This decision is to be retained throughout
the model.

The system maintains separate objects for avian genera and avian families,
with the obvious biotaxonomic structure in place, as depicted in the figure. The
system also maintains a single spatial object, which is an administrative Brazil-
ian legal entity, known as Amazonia Legal. This area enjoys special protective
measures under Brazilian law, for instance laws about the lands of indigenous
people, laws about deforestation, and so on. The purpose of our system is to
maintain as faithfully as possible the avian distributions known for the area of
Amazonia Legal.

Support information comes from interfluves and ecological regions. An inter-
fluve literally is an area between rivers, and for the purpose of mapping species’
distributions, Amazonia Legal has been ‘cut up’ into interfluves. Interfluves are
a biogeographic reality in the sense that their borders (the rivers) form natural
boundaries for many species. It was later decided to expand the notion of inter-
fluve to the neighbouring areas of Amazonia Legal, both inside and outside of

57

4.5. Conceptual schema

Figure 4.4: Conceptual database schema, version 1

Brazil. The reasons for this will become clear below. Interfluves have a name, a
polygon geometry and an indication of whether they are inside Amazonia Legal
or not.

Ecological regions have not yet been modelled in the diagram. Also, the
default SRS should have been mentioned. Its srid is 4326, for all geometries
in the information system.

4.5.1 Constraints

The EA project contains a small number of constraints, recorded per class or
specifically for an attribute. Some are regular uniqueness constraints (but not,
at this conceptual level, primary key constraints, as they surface at the logical
level only), others have been informally described in text in the project file.

Observe that there have been defined a few ‘unique within’ constraints.
These specifically apply to taxorder attributes. A taxorder attribute serves
to indicate the linear order within a taxonomy. The taxorder value for a genus,
for instance, must be unique for that genus amongst other genera in the genus’s
family, but not (necessarily) globally across genera.

There is no guarantee that the data that accompanies this case study obeys
all the constraints here presented.

58

Chapter 4. Implementation and Evaluation

4.6 Required functions

In the section below, we describe a small number of important functions that
our web application should offer to its users. One philosophy on functional
development is to include these as much as possible as stored procedures in the
database, so as to make the database a self-contained and functionally complete
resource. In the application code outside the database this would be visible as
a single function call.

A forthcoming paper will describe and illustrate a method of developing
stored procedures for a database, arguing from the perspective of constraint in-
tegrity. That method follows an inside-out approach, addressing first attribute
constraints, then tuple constraints, table constraints and eventually database
constraints. That method is not yet available (or described) but has been dis-
cussed with supervisors.

4.6.1 The web application

The primary, web-based, application that we have in mind here is essentially a
content management system. The reason is that in such a system data updates
are more prominent. We describe a few of these functions. We do describe
them as integrity-preserving functions, i.e., they are meant to never invalidate
database integrity, and should be implemented as such.

4.6.2 Required database functions

Where details are left out of the description, the implementor can decide at
will. An implicit precondition and postcondition is always that the database is
consistent.

add family

Signature newfamname:string, existingfamname:string,
beforeorafter:{’a’,’b’}

Precondition newfamname does not exist yet
existingfamname does exist

Semantics adds a new family to the database just before/after a
given family

Postcondition newfamname exists and occurs just before/after
existingfamname

Remark that, though we describe this function first, it does not actually
precisely constitute a consistent database function. The reason is the multiplic-
ity constraint (1..*) on hasFamily, which requires that any family is associated
with at least one genus. A new family can therefore only be added if it also has
a genus. The challenge is to come up with a stored procedure that combines
those two database actions. But initially one can (should!) relax the condition
and assume (0..*) multiplicity.

59

4.7. Constructing the Web GIS application

add genus

Signature newgenname:string, existinggenname:string,
beforeorafter:{’a’,’b’}

Precondition newgenname does not exist yet
existingfamname does exist

Semantics adds a new genus to the database just before/after a
given genus, and in that given genus’s family

Postcondition newgenname exists and occurs just before/after
existinggenname

This is a robust database function.

add species

Not fully described for the moment. Provides values for all attributes but
cidx, which will be autogenerated, and taxorder, which will be derived from
providing (as above) an existing species by engname or listname, and a be-
fore/after indication. This can be done in two functions, one for engname one
for listname, or in just one of these. Obviously, the various uniqueness con-
straints should remain valid.

add distrib

Adds a geometry for an existing species. The specific challenge here is to obtain
the geometry from an indicated shapefile. An extra version of this function will
allow on-screen digitization of the geometry. In both cases, the stored geometry
will be restricted to or by AmazoniaLegal.buffer.bbox().

change restrict distrib

This function changes the distrib for a given species by restricting the old distrib
to a given list of interfluves. The latter are indicated by fid, but the web app
may provide a picklist, possibly even through a map interface.

change augment distrib

This function also changes the distrib for a given species, but now by filling
up boundary slivers of an indicated interfluve and the old distrib. An extra
parameter indicates the size threshold of slivers repaired, above which slivers
are left untouched.

More functions will eventually be described here.

4.7 Constructing the Web GIS application

We elucidate the entire process from installation, to coding and finally having
a final output in form of a working web application site.

60

Chapter 4. Implementation and Evaluation

4.7.1 Django web application framework setup

All the software package packages constituting the web framework setup are
open source, this gives us the rights to access the source code and improve it
to suit the web application requirements. We started first with acquiring the
software, installing and configuring.

Python, Django and GeoDjango installation

To begin, version 2.6 of Python was installed in the main server to support
pythonic Django web framework and its spatial extension GeoDjango. The
Django web framework cannot run without the presence of the Python lan-
guage in the computer environment that the application is meant to run on.
Then, version 1.1 of stable Django was downloaded and installed systemati-
cally following the installation procedure provided at the official Django official
site. We also downloaded and installed GeoDjango as add-on spatial package
for Django. Django and GeoDjango are both installed in the server that hosts
the web GIS application.

Spatial libraries

GeoDjango comes with Proj4, GEOS and GDAL/OGR spatial modules. Proj4 is
a cartographic projection library. Geometry Engine Open Source (GEOS) is a
library that facilitates programing of 2 D geometries. The GDAL (Geospatial
Data Abstraction Library) library has tools for manipulating raster data while
OGR facilitates manipulation of simple feature geospatial vector data.

Web server setup

Django comes with its built-in server for development purpose, meant for small
capacity requests. However, for online deployment to a lager number of dis-
tributed users, it uses Apache web server which is capable of processing and
responding to a large number of client requests for a busy site. Hence, the
Apache web server and mod python were installed and configured to serve the
web clients. Mod python is a Python interpreter embedded in Apache that facil-
itates writing of fast Python web applications that run faster than traditional
CGI.

Database connectivity

The web application being dynamic and interactive, it needs a repository to
enter, modify and store data from active users. Therefore, we also had to down-
load and install the PostgreSQL, a database that supports spatial geometries.
Moreover, in order to have more predefined functions in the database we also in-
stalled PostGIS which is a spatial extension of PostgreSQL. To facilitate connec-
tivity between the web application and the database, psycopg2 was installed.

61

4.7. Constructing the Web GIS application

4.7.2 Creating a spatial database

With installed software up and running, a spatial database which is core of
our research study, is the next initial part of web application creation. The
spatial database was created by running the command prompt below in the
home directory of the user with rights to create databases. This is due to the
fact that the setting.py file as shown in Appendix A in Django application will
request for the database during configuration of database connectivity.

• C:/Users/postgres/ createdb -T template postgis Amazonia.

All the tables/schemas created either through ORM or directly in the database
are hosted within the Amazonia spatial database.

4.7.3 Building Amazonian web GIS application

With the spatial Amazonia database ready, we created a directory called Brazil
where all the application files will reside. This file can be located anywhere
in the computer but not in the root directory for security reasons. During the
project creation is placed automatically under the PYTHONPATH.

Project Creation

In the directory called Amazonia. we ran the command below to create a project
called Brazil that contains modules to manage and configure the web applica-
tion.

• home/Amazonia/ django-admin.py startproject Brazil

The Brazil project is a Python package directory, the command above adds it
to the PYTHONPATH to enable its module files to be called by any Python mod-
ule file. In addition, the above command prompts the web application frame-
work to create automatically the project modules the include: init .py, man-
age.py, settings.py, settings.py and urls.py.

The roles of the Python modules which are python files are explained as
follows:

init .py

This module informs the Python interpreter that the Brazil directory is a python
package. That is, an extension of the web application framework.

manage.py

It is a thin wrapper around django-admin.py, it executes two roles before for-
warding to django-admin.py [12]:

1. It places the created projects package on sys.path.

62

Chapter 4. Implementation and Evaluation

2. It configures and directs the DJANGO SETTINGS MODULE environment
variable to point towards the created projects settings.py file.

The django-admin.py is a command prompt utility for administrative tasks
in Django.

settings.py

The all web application settings and configurations are performed in this mod-
ule. Some examples of configuration include

urls.py

Application urls are defined in this module. The url.py render the web appli-
cation to the browser depending of how it has been described by a rendering
functions in the view.

4.7.4 Creating the web application

We then ran the command below within the project Brazil directory to create
the web application fundamental modules.

• home/Amazonia/Brazil/python manage.py startapp Avian

The modules created included model.py and view.py,.

model.py

This module is used to define the table schema, multiplicities and implicit con-
straints. It is in this module that part of the API code for calling database
defined functions is situated as stipulated by the discussion of the system de-
sign method. Admin and GeoManager(a class that manages spatial geometries)
functionality are also called from the model module. Model.py module is shown
in Appendix B.

view.py

This module constrains the controller functionality as stated in the literature
review of Section 2.2.3. Also some of the database API code for calling integrity-
preserving functions is defined is this module. The API takes the data valida-
tion role from the view. The view receives the data from the form field that is
entered by the user and passes it to the called function for validation. Once
the submitted field data is considered to be valid, the API commits it to the
database. The Appendix D shows the view.py module.

A number of applications can be created within the Amazonia project in an
a similar manner by observing the web application creation procedure.

63

4.7. Constructing the Web GIS application

4.7.5 Configuring the application

Within the setting.py module, shown in Appendix A, the following configura-
tions were performed:

Configuring the database

The database configuration was done by entering the database engine name,
database name, database user, host, password and the port. The database en-
gine used in our scenario is the postgresql psycopg2.

Configuring the base directory

Base directory is a variable that defines explicitly the path of the project direc-
tory. This path locates the template that determines how the site is rendered.
The path also contain other addition visualization widgets and raw vector data
like shapefiles. Appendix A shows an example of how we defined our base di-
rectory.

Installed applications configuration

The modules that are needed to have the application up and running are de-
fined in a python tuple INSTALLED APPS. For instance ‘brazil.avian’ calls the
Avian application, ‘django.contrib.gis’ calls the geospatial functionality, ‘olwid-
get’ calls JavaScript OpenLayers, ‘django.contrib.admin’ calls the built-in ad-
min functionality, the rest are built-in Django ORM functionals that participate
in creation of schema and authentication of users of a site.

INSTALLED APPS = (
‘django.contrib.auth’,
‘django.contrib.contenttypes’,
‘django.contrib.sessions’,
‘django.contrib.sites’,
‘django.contrib.admin’,
‘django.contrib.gis’,
‘brazil.avian’,
‘olwidget’,)

The entire setting file is listed in Appendix A.

4.7.6 Creating the database tables

The Model.py module supports the creation of schemas and definition of inher-
ent database constraints. It also supports the creation of table schema in the
database and simply informs the web application of their existence by using
legacy functionality to automatically write back into the model. According to
the use case provided, UML modeling language was used to define the concep-
tual schema, which we later translated into the logical design and finally after
some modification into a the physical database.

64

Chapter 4. Implementation and Evaluation

In our approach, we experimented by defining the table in the database.
Figure 4.4 shows the conceptual design of the database based on the user re-
quirements. Logical design phase was run and the physical design which was
in the form of SQL statements. The correctness of the SQL statements were
looked into critically and additional commands were added. For instance, UML
does not support the creation of spatial geometries column in a schema, this
was done manually.

After ensuring that the database tables have been created and are well de-
fined interm of fields, multiplicity and inherent database constraints, the entire
tables are mapped backwards into Django as using Django Legacy tools. The
command below was run in the Brazil directory.

• home/Amazonia/brazil/ manage.py inspectdb

• home/Amazonia/brazil/ python manage.py inspectdb>home/Amazonia/brazil/
avian/models.py

Thereafter, we checked and corrected any errors committed in the process of
database introspecting and mapping into the model module. Appendix B shows
the model contents inherited from the database and translated into the model.

Synchronizing the application with the database

Once the model was found to be clean of errors, we ran the ‘run synchroniza-
tion’ command below that created other Django schemas in the database. We
avoided the duplication of the mapped model schemas by commenting out the
‘brazil.avian’ in the setting.py module.

• Amazonia/brazil/ python manage.py syncdb

Thereafter, we uncommented the ‘brazil.avian’ and started the server. At
this point the database schemas were considered complete and ready for data
entry, unless when minor glitches were reported, then then edits were con-
ducted.

Remote Procedure Call API

This API is designed to facilitate calling of functions by the Django view (con-
troller). The view receives the data data it receives from the form entry fields
and forwards it to the integrity-preserving function as parametric arguments.
Therefore, the function wraps the data and then subjects it to the database
layer for consistency validation. If there exists any error, the API forwards
the error to the Template (viewer) for the user to know the kind of violation
committed. The API also allows for insertion of the name of the function to be
called. The function is inserted at the API code located in the model as shown
in Appendix B. The API resides partly in the model module as shown in Ap-
pendix B for easy entry of names of functions without having to interfere with
the main web framework code. The API inherits classes and methods within
the web framework like the transaction and connection classes. This optimizes
, and help in making the API code making it lean, efficient and effective.

65

4.7. Constructing the Web GIS application

Creating the form fields

The form module creates the GUI fields that are to appear in the template.
The form either reads and inherits from the model entries columns, or can be
defined explicitly from scratch. In our scenario, we defined explicitly the form
contents because we added an OpenLayers widget for drawing the geometries
interactively. The OpenLayers widget fields requires for explicit definition of
parameters as shown in Appendix C to set up how OpenLayers is rendered at
GUI. The other reason for using this approach is that not all tables created need
to be modified, some just serve as base data referenced by those being modified,
hence no need to have their fields in the GUI forms. Appendix F has the code of
the form module used to render the OpenLayers widget and the form fields in
the GUI.

Creating the Django view

The view in Django plays the role of controller in the MVC architecture as
stated before in Chapter 2. It facilitates communication between the model
and form modules and the template (viewer). It also accommodates method
definition for data integrity validation, that is, when data is entered via the the
GUI it must first validate the data before posting to the database. The busi-
ness logic is defined and enforced within the application methods, hence the
term ‘application layer consistency enforcement’. The method normally lacks
capability to define complex spatial constraints.

However, in the new design approach, we no longer have of the application
layer validation by calling the Remote Procedure Call API situated in the model
module. The API ensures that the data is forwarded to the database for vali-
dation, where all our constraints reside. If the data is found to be correct, it is
committed to the database and saved, or else it raises an exception prompting
the user to enter correct data.

The view is also used to render the database data into the template for
visualization. This ensures separation of concerns that sets aside the core pro-
gramming code from the aesthetic styling CSS, HTML and JavaScript for pre-
sentation and visualization. The view code is displayed in Appendix D.

Creating the template

The template is the styling that determines the look of the web application in
the web browser. The template can be in HTML, CSS, JavaScript or XML. The
widget as used in our use case is embedded in the HTML template as shown
in Appendix F. The templates files reside in the Amazonia project directory
and its path is defined as shown in Appendix A in the setting file under TEM-
PLATE DIRS.

Configuring the OpenLayers widget

This widget enables drawing of geometries interactively like in a GIS environ-
ment. Base maps can be embedded beneath. We use the use case data as our

66

Chapter 4. Implementation and Evaluation

base data. We created a folder called OLwidget in the Amazonia project direc-
tory. The location of the widget is configured in the setting module under ME-
DIA ROOT, MEDIA URL and ADMIN MEDIA PREFIX as shown in Appendix
A.

Configuring the urls model

The urls determine the paths followed to allow a request reach the web applica-
tion as shown in Appendix E. The responses are also relayed through the same
path. The url depends on the rendering function defined in the view module.

4.7.7 Loading the use case data into the created tables

GeoDjango has a class called LayerMapping that is used to load OGR vector
files like shapefiles, into the created models that support geographic data. The
other easy way is to first import the use case data into Amazonia database using
built-in PostGIS functionality, which creates tables automatically. Then using
appropriate SQL INSERT AND UPDATE statements the created schemas, are
populated thereafter. In this implementation, we used the first option of Lay-
erMapping to upload the use case base data into the schemas.

Setting up the admin

The admin is a built-in capability of Django that enables the administration of
the site. It is used to create users and the security level of each user. It also
generates GUI form fields interface the emulate the model field structure used
for data entry. GeoDjango has its built-in OpenLayers that is automatically
generated in the edit map GUI.

However, in our design we did not use the admin auto generated GUI be-
cause it is complex to tweak due to lack of documentation on how it operates.
Therefore, for us to have full control to define the GUI to suit our user needs,
we programmed the GUI from scratch rather than obtaining it from autogener-
ation. This act enabled us to create a link between the GUI for data entry and
the called functions and the database validation report. The validation report
can either return success after submission, or a failure indicating where the
error was committed.

Up to this stage, the application layer is considered complete. The next
phase is the definition of business rules using the PL/pgSQL database pro-
gramming language. The wrapper does not exist, so we pass raw PL/pgSQL
into Django.

4.8 Implementation of the Amazonian use case

The constraint design method and the prototype architectural design discussed
in Chapter 2 were applied to construct the Amazonian GIS web application.

67

4.8. Implementation of the Amazonian use case

4.8.1 add distrib function

Adds a geometry for an existing species. The specific challenge here is to obtain
the geometry from an indicated shapefile. An extra version of this function will
allow on-screen digitization of the geometry. In both cases, the stored geometry
will be restricted to or by AmazoniaLegal.buffer.bbox().

Algorithm 16: Create add distrib function

Require: Create a function add distrib that has parameters (distrib-
geom geom).

Require: Data to be validated distribgeom.
Require: Create temporary record called myrec.
Require: Let V = SELECT geom FROM amazonialegal
Ensure: Validation is of type database.

1: if (Select ST Intersects((distribgeom), (V)))IS NOT NULL then
2: Abort, The speciedid distribgeom is not in the Amazonlegal.
3: else
4: return true,
5: end if
6: function add distrib(cidx) holds when data distribgeom is valid.

Algorithm 17 calls the add distrib integrity-preserving function and if the
called function returns True, then the database is updated with the new distrib
geometry.

Algorithm 17: add distrib update function

Require: Create a update function update genus that has parameters distrib-
geom geom).

Require: Data to be updated distribgeomgeom.
Require: Database status G
Require: Call function add distrib

1: if (SELECT add distrib(distribgeom)) = True then
2: INSERT INTO distrib (distribgeom) V ALUES (distribgeom)
3: Database state changes A← A′

4: end if
5: function update genus(distribgeom) holds when data distribgeom is valid.

4.8.2 change restrict distrib function

The Algorithm 18 is used to creates an integrity-preserving function restrict distrib
that restricts a species to certain interfluves before making an update.

4.8.3 change augment and restrict distrib function

The update function in Algorithn 19 calls and performs restrict distrib func-
tion which checks that a species is with a certain interfluve before making an

68

Chapter 4. Implementation and Evaluation

Algorithm 18: Create change restrict distrib function

Require: Create a function add distrib that has parameters (distrib-
geom geom).

Require: Data to be validated J ← distribgeom.
Require: Create temporary record called myrec.
Ensure: Validation is of type database.
Require: Let S = SELECT geom FROM amazonialegal

1: if (Select ST Intersects((J), (S))) IS NOT NULL then
2: Abort, The speciedid J is not in the Amazonlegal.
3: else
4: return true,
5: end if
6: function add distrib(cidx) holds when data distribgeom is valid.

update. The update (update augment and Restrict distrib) function has smart
code that repairs the slivers before doing an insertion once (update augment and
Restrict distrib) returns a boolean of type True.

Algorithm 19: Create update function (update augment and Restrict distrib)

Require: Create a function update augment distrib that has parameters (dis-
tribgeom geom fid int).

Require: Data to be validated distribgeom.
Require: Create temporary record that store fid.
Require: Database status C.
Require: Let U = SELECT GeomUnion(geom) FROM interfluves where id = fid.
Ensure: Call all the integrity functions change restrict distrib and run them

within from update function.
1: if ((SELECT change restrict distrib) and (change augment distrib) = True)

then
2: Update (Select ST Intersects((distribgeom), (U)))
3: {Repair any slivers with a zero threshold from the interfluve boundary,

i.e. uses the boundary to fill}.
4: Database state changes C ← C ′.
5: end if

4.8.4 Amazonian web application layout

The web application GUI is divided into two section. One for entering and
editing data and the other for visualization of the existing datasets by the users.

Figure 4.5 show the Amazonia avian distribution home page. A user can
modify a tables in Amazonia database by clicking at an appropriate hyperlink.
For instance, to add a distribution geometry of species into the distrib table a
user needs to click ‘Add avian distribution geometry’ as shown in Figure 4.5. It
provides for entry of a speciesid and drawing of geometrical features. If a user
enters a geometry that falls outside the Amazonialegal a warning message is

69

4.8. Implementation of the Amazonian use case

Figure 4.5: Amazonia web GIS home page

sent to the end user indicating the nature of the violation as shown in Figure 4.8
but if the geometry and speciesid entered are correct then the distrib table is
updated.

Figure 4.6 shows the form field for entry data into the species table. It does
not according to the use case it only takes attribute data.

Figure 4.6: Add species

Figure 4.7 shows the form field of the distrib table which according to the
use case has an attribute field for speciesid and an editable geometric field. At
the bottom corner of the editable map is text box that shows the coordinates of
the entered featured.

70

Chapter 4. Implementation and Evaluation

Figure 4.7: Amazinia Legal

Figure 4.8 shows the error message sent to the user if s/he enters erroneous
data. For insatance, a user entered wrong geometry outsidet the amazonia legal
for a species of id 1083.

Figure 4.8: Warning Message

Figure 4.9 shows an info box at the visualization section that gives informa-
tion about a feature that a user has clicked on.

71

4.8. Implementation of the Amazonian use case

Figure 4.9: Get info

72

Chapter 5

Discussion, Conclusion and
Recommendation

5.1 Introduction

Software systems have life cycles that they undergo in development. This cycle
may often take a long time and a considerable amount of human resource before
considered complete, but it never reaches absolute completeness. This princi-
ple of continuous improvement also applies to web application frameworks like
Django. Therefore, development of web frameworks does not stop at the release
stage. Often, users of web frameworks have to tweak them to suit special-
ized needs, address technical problems or correct code glitches. In our research
project, we extended Django to support the maintenance of spatially consistent
databases by leveraging the strengths of hosting the business rules and other
constraints within the database layer.

In this chapter we discuss what has been achieved so far in terms of knowl-
edge of web frameworks and implementation of the constraints design method
and prototype architecture to meet the set out objectives. We also recap on how
the formulated questions were addressed. Moreover, we assume an unbiased
perspective of criticism to our research work. This will finally pave way to raise
new questions and to build cogent arguments to back our proposed recommen-
dations for future work.

Django as a collection of libraries used to rapidly build clean dynamic web
applications, keeps changing day by day to suit a wide range of users. Django
web applications handle a collection of their contents and services that can ei-
ther be for personal, public, business, scientific, or user group data and can be
represented as raster maps, vectors, graphical image, audio,video, digital text,
or geoprocessing functions. Django, as displayed in the implementation stage,
can be used to build a digital library of spatial data from various distributed
users for diverse purposes, in which collaboration and data sharing are impor-
tant social elements.

73

5.2. Discussion

5.2 Discussion

We discuss the research project findings with regard to maintenance spatial
database consistency in web application frameworks.

5.2.1 Research study overview

We began the research by first venturing into understanding fundamental ar-
chitecture of the web application frameworks. We reviewed a number of exist-
ing frameworks to understand their architecture and how they handle spatial
database consistency. We found out that most web frameworks were mainly
designed for non-spatial task like running business enterprises, on-line point of
sales, social networks and keeping inventory. The issue of geographical support
mechanism was missing in most web framework studied. We looked into Ruby
on Rails, Web2py, Pylons, Struts, Drupal and Django. Django was the only web
framework in our study that had a fully developed extension that supported the
building of spatially enabled web applications.

After delving deep into the architectural design of web application frame-
works, we developed an in-depth understanding of how created web applica-
tions maintain database consistency. Most web applications maintain implicit
and explicit constraints that are used for data validation within the applica-
tion layer and some partly in the database. For instance, Ruby on Rails, views
the database as a storage repository for storing data while all the constraints
reside in the application layer. Django and its spatial extension GeoDjango,
that formed the case study of our research project, was found to maintain im-
plicit and explicit spatial constraints in the application layer and partly in the
database. The inherent constraints like primary keys, referential keys, the
geometry type and the SRID are stored in the database. However, the user-
defined business logic resides in the application layer, defined as Django func-
tions within the view module.

The built-in and user-defined form classes of Django are in charge of data
validation. Forms are part of the clients GUI. Form receives posted data by
a user and forwards it for validation within the functions in the application
layer. The investigation found out that the Django design contravened the DRY
principle of MVC architecture design. There is a non-conformance of the DRY
principle because the views that access the same table in the database had to
copy the same validation code in each view. This compromises the spatial in-
tegrity of the database because multiple applications can have different coding
and small bugs in the code can introduce flawed data into the database.

After understanding how the web application frameworks operate with re-
gard to maintaining spatial database consistency, we had to come up with new
constraint design method based on the research study philosophy as well as the
MVC design philosophy. The research study advocates for two main philoso-
phies which are: to maintain spatial consistency constraints within a database
and to enforce constraints using a checklist based on constraints taxonomic
granularity levels. The MVC architecture philosophy includes: ‘Don’t Repeat
Yourself ’ principle, loosely coupled, reusability and code generation for rapid,

74

Chapter 5. Discussion, Conclusion and Recommendation

clean creation of web applications. The design method and its implementation
had to consider all these philosophies.

During the implementation of the design method to extend the Django frame-
work, two school of thoughts were conceptualized and developed. First, was the
model validation approach that aimed in migrating the constraints defined at
the form (e.g. data type validation) and view (i.e. complex business rules) mod-
ule at the application layer to the model layer that would then be translated
into the database via the ORM, as explained in Section 4.2.3. In this approach,
we were able to only achieve check constraints migration hence leaving a large
portion of the complex (i.e. conditions that involved spatial evaluation expres-
sions) business logic still defined in the application layer.

To correct the limitation in model validation implementation, we came up
with a second design implementation called the function implementation ap-
proach that took away all constraints from the application layer to the database
layer, as shown in Section 4.2.4. These functions would be used to wrap input
data, and validate them based on constraint taxonomic granularity before do-
ing an update, deletion or an insertion of data in a database. The function
validation approach complies with the research philosophy of having all the
constraints reside in a database and following the taxonomic constraint gran-
ularity. It also complies with the MVC architectural philosophy of the DRY
principle, loosely coupled and rapid and clean application development. This is
because the functions are located centrally in the database and all applications
that modify the database are exposed to the same standard of integrity control.

Within the integrity-preserving function, complex database constraints can
integrate with smart code that does preprocessing before the data is stored in
the database. For instance, a smart code can be used to limit a drawn species
geometry to certain interfluves that support them. If the geometry overshoots,
the function carries out the slicing process before saving the correct geometry.
This introduces smart checks that never existed in spatial databases or desktop
GIS applications.

To test and evaluate our design implementation, we used the Amazonia
avian distribution use case and dataset provided to create an Amazonia GIS
web application. The Amazon web application is divided into two main sections
one for data modification and another section for visualization. We were able
to call functions (using Remote Procedure Call API) that validate constraints
from the database into Django web framework and passed the data into the
functions for validation before a change in database status. After studying and
identifying the factors that affect spatial consistency as discussed in Chapter
3, we were able to show that spatial database consistency is achieved by defin-
ing the constraints in the database where the data reside. The functions can be
called by multiple applications, modifying similar tables in a given database.
Enrichment introduced into the prototype shows how web application frame-
works like Ruby that lack database layer validation can leverage the function
validation approach to ensure spatial database consistency.

75

5.2. Discussion

5.2.2 Results of the research

During the research project we came up with four findings that constitute our
research project results.

1. Constraint design method

The research project developed a four-step constraint design method that pro-
motes spatial database consistency in web application frameworks, as summa-
rized in Section 4.2.5. The design method starts with the identification of con-
straints into granularity levels from the business rules, then creating integrity
preserving functions, then creating update functions, and finally implementing
the constraints using the Remote Procedure Call API. The method ensures all
constraints reside in the database.

We were able to show how a technique of designing constraints, based on
granularity levels, works well with respect to spatial database consistency. The
constraint design method enables one to implement constraints in an orderly
manner. Granularity constraints, defined as integrity-preserving functions that
return a boolean value can be called and reused by transaction update functions
and be used to validate data in web application promoting the DRY principle,
loose coupling and reusability.

2. Web framework spatial database consistency cube

Figure 5.1: Spatial consistency cube

There is a number of factors that affect spatial database consistency in web
application frameworks. Figure 5.1 shows a spatial database consistency cube

76

Chapter 5. Discussion, Conclusion and Recommendation

with three axes, each representing factors that affect spatial database consis-
tency in web application frameworks. The x-axis represents where constraints
are maintained, the y-axis represents web application framework capabilities,
and the z-axis represents implementation techniques of constraints. We as-
sume that the cube applies if different types of web frameworks under fixed
choice of database platform, for instance, PostgreSQL with POSTGIS. Each of
the factors has its advantages and disadvantages, as discussed earlier.

When a developer intends to improve the performance of a web application,
or develop a spatially consistent web application, s/he should consider these
factors. For instance, if one intends to increase the validation speed, then trig-
gers should be minimized. If one intends to expose all data that is entered into
the database from different applications to similar validation standards, then
database layer validation should be used as discussed in Section 3.3.3. More-
over, one cannot have spatial consistency if the framework does not support
the creation of spatial geometries. Therefore, the web framework needs to be
extended to support geographical data types.

3. Altering the system component introduces factors that promote spa-
tial database consistency

Frameworks that support spatial data but do not have well-developed built-in
libraries to define complex spatial validation constraints, can call and utilize
the strengths of databases in creating complex user-defined validation rules.
Therefore, to achieve this, a web application framework can be extended to have
a Remote Procedure Call API, and also wrap embedded SQL code to enable def-
inition of integrity-preserving functions from the web framework environment.

4. Remote Procedure Call API does not compromise the MVC architec-
ture principles

The use of an Remote Procedure Call API does not affect the MVC architecture
principles, that is, the strengths of MVC like DRY principle, code generation
and loose coupling still hold. The API enriches the web framework as discussed
in Section 3.6.

5.2.3 Achievement and real world applications

There are instances when users are deliberately biased when feeding data into
the system for selfish reasons. Mostly, a biased user would want to sway a
pattern or trend extracted from the data during data mining and discovery
to suit his/her needs. Nevertheless, well-designed consistency constraints and
preprocessing with a smart algorithm allows to separate valid data from flawed
data, and processing by comparing the consistency of supplied data with exist-
ing data according to business rules. The constraint is capable of reject outliers,
or flawed data or do internal adjustments. Therefore, all the stored information
in the database is subjected to checks that makes it have embedded meaningful
traits, beside the geometric and attribute properties.

77

5.2. Discussion

The quality aspects of data are pivotal in determining the usability of data.
The integrity-preserving functions can also be defined to enforce quality pa-
rameters like positional and topological accuracy if stated in the business rules.
Adding quality checks to stored spatial data provides added value.

5.2.4 What is missing so far, and is not yet achieved

We ventured into the initial process of creating the PL/pgSQL wrapper that
maps PL/pgSQL code into Django Python functions that would enable pure
Django to generate PL/pgSQL statements. This is to enable the creation of
integrity-preserving functions as methods of a class granular constraints. As
the class grows rich in code, similar code can be inherited and extend to create
other integrity-preserving functions. The Django created functions in the view
module would create database functions through the PL/pgSQL wrapper. This
will still comply with the research philosophy that ensures that the business
logic still reside in the database layer.

However, because of the complexity and vastness of the Django and Geo-
Django code coupled with lack of clear documentation describing the code, we
were not able to have a functioning wrapper for PL/pgSQL. With a PL/pgSQL
wrapper in place it would remove the need to run raw PL/pgSQL code in Django.
It will also promote the use of predefined PostGIS functions to be used to define
smart functions for evaluating and validating input data before update, inser-
tion or deletion into or from the database. This is a major research frontier in
the Django framework. This is because this functionality is lacking in Django.
It will create a new opening for GeoDjango as well, because GeoDjango users
will be able to manipulate existing spatial built-in codes to create complex ap-
plication that guarantees spatial consistency of data.

5.2.5 Critical analysis of the research work

Django uses non-standard terminology when referring to the architectural de-
sign. For instance, Django uses the Model-Template-View (MTV) to mean Model-
View-Controller (MCV). The use of different terminology may be confusing to
the readers or developers who are used to the well-known MCV design pattern.

There is still a limit to the size of spatial data that can be rendered on a web
page without straining the system. Large dataset that display well on desk-
top applications fail to display in web applications that use OpenLayers due to
bandwidth and the processing speed of the computer. This is even made harder
for mobile devices like PDA and phones that have low processing capabilities.
This limitation greatly hinders the interactive mapping and visualization at
present. This is the reason we had to split our web 2.0 application into data
modification and presentation GUI. We also had to filter what was needed and
can be accommodated by the web application at a single moment. Finally, we
never tested the created web application on whether it could run effectively on
mobile devices like phones and PDAs.

The solution focuses mainly on PostgreSQL spatial database neglecting other
spatial databases like Oracle. This is so because we are working on a prototype.

78

Chapter 5. Discussion, Conclusion and Recommendation

However, with Oracle database the integrity-preserving functions are created
using PL/SQL server-side procedural language. The design architecture ex-
plained in Chapter 3 still applies. Nevertheless, enterprise databases like Ora-
cle are not available to for free. It requires investments to purchase and support
provision, hence, it is not a software of choice for small web applications. On the
contrary, PostgreSQL and PostGIS is the chosen platform because it is available
for free.

Inasmuch as the integrity-preserving functions can be called by other web
applications created by other web frameworks, the design method is specific
to Django system components. This implies that applications built by other
framework like Drupal or Zope will require tailor-made design to address the
problem of spatial inconsistency. This is because each framework handles data
validation differently. Others are easy to customize but may have complex al-
gorithms. Lack of standards in web frameworks with regard to maintenance
of spatial database consistency makes it difficult for developers to share and
improve web framework designs and performance.

For a developer to achieve the same level of result, s/he has to dive into
each web framework design to have an insight on how to customize a given web
framework. This would have been made easier with the existence of standards.
Standardization of the web application framework would have made it easier
to develop them based on agreed design guidelines. This would have created
a pool of common users working and sharing knowledge in common fields, like
database consistency, expanding the user groups of developers. Hence, it would
have enabled the web application frameworks in various platforms to interact
seamlessly and share easily databases that have constraints at the database
layer.

Our implementation design works with a single database that is accessed by
the created web application. However, it would be good if the implementation
would have factored into multiple databases and applied the research philoso-
phy with regard to having a spatially consistent databases. The design method
only calls integrity-preserving functions that reside in a database that the web
application is connected with, according to the settings defined in the setting
module as shown in Appendix A. With an ability to access multiple databases
it would make it easy to access other databases with an intention of access-
ing more functions and extend the scope of data validation through referenced
tables.

Inasmuch we wanted to have all constraints in the database, it is impossible
to get rid of double validation that is created as a result of GUI form validation
of data type and user-friendly interface properties like drop-down list that select
some field data from reference tables in a database. For instance, it is easier for
a person working in the field to select than to type a name. The form also does
the data type checks to ensure that a submitted value’s data type is text and
not numeric.

Triggers cannot be gotten rid of completely because inherent constraints
like check constraints and referential keys are based on trigger mechanism.
Triggers are also reliable in doing back-end data modification after an update
to promote database consistency.

79

5.2. Discussion

The Django web framework is not portable like other web frameworks such
as Joomla, web2py and Drupal. This is because it has to be installed in the
Python program file. The dependency on the Python program makes it hard
to move the application to other computers or development environment in a
portable disk with need for reconfiguration. Therefore, the developer will al-
ways have to work in the same hardware, where the Django framework is in-
stalled, this limits the flexibility in development environment.

When creating a Django project, the web developer interacts directly with
the generated Python module codes that exposes it to easy tampering with then.
If there would have been a user interface that project the raw code and provides
for the developer to have a editor. This would make the work of the program-
mer easier and faster. The use of command prompt is not user friendly when
running generation of codes and starting the database.

The selection functionality in OpenLayers did not enable us to select the
database attributes and also see them interactively in the visualization part.
We were able to visualize the rendered data as geometrical shapes, but we could
not see the attributes of the table content generated during the query process.

We cannot be able to determine to what degree exactly one factor is better in
promoting spatial database consistency than the other. For instance, we cannot
give a definite value in percentage of how integrity-preserving functions are
more efficient compared to the use of triggers.

The web GIS interface created has limited cartographic properties and func-
tions compared to that of a desktop web application. For instance, it is hard to
create a map that meets cartographic requirements from the data that is al-
ready spatially consistent in the database. This is due to a lack of functions
that enable map creation with title, legend, graticules, scale and margins. Also,
it is hard to print a map from the GUI. This only makes the OpenLayers suit-
able for visualization of the datasets. This limitation inhibits the realization of
a full-fledged GIS web application, despite a spatially consistent database.

The web application created using Django has a limitation of rendering 3D
datasets. Due to the reliance on the Geometry Engine Open Source (GEOS)
library that facilitates programing of only 2D geometries. Also, the OpenLay-
ers lack the shading and tinting effect that bring about 3D visualization. The
3D visualization can only be achieved through draping of the vector data over
Google map terrain base data. However, creation of Triangulated Irregular
Networks (TIN) is not supported by the web GeoDjango functions. Therefore,
online display of a 3D spatially consistent database is not currently possible.

When working with the OpenLayers interface, we had a problem with the
delete function for geometrical fields. It is not possible to delete specific features
from multiple features drawn. If one presses the delete button after making a
selection of an unwanted feature, it ends up deleting all the features in the
map edit including the ones that are not selected. This makes editing of fea-
tures interactively hard because this implies that all the geometric features for
that transaction have to be created afresh again. The edit mode also lack the
snap feature that enables the creation of contiguous features. Most of these
operations can be resolved by using built-in functions or defining functions that
would handle this edits automatically, based on given intelligent business rules.

80

Chapter 5. Discussion, Conclusion and Recommendation

5.3 Conclusion

The increase in Internet use has led to the development of interactive web
applications that are christened web 2.0. Web 2.0 applications are dynamic,
and as a result require a repository to store and retrieve data supplied by ac-
tive users distributed across the globe. The databases play the role of storing
data that can be accessed later through report generation and running queries.
The database administrator will always ensure that the data managed in a
database is correct and reliable for making informed decisions. For a flawless
database to be achieved, user requirements that spell the business rules that a
database must comply with are defined. These rules have to be translated into
constraints to be used to validate any data submitted to the database before an
atomic transaction is executed.

Various types or rules determine the type of constraint that is enforced.
In our investigation, we dealt with four granularity levels of constraints, they
include: attribute, object, table and database constraints. These constraints
affect the database attributes and the spatial geometries. In our research study,
we investigated the spatial database consistency in web application framework
with Django being our case study. We found out that most web applications
maintain integrity controls partly in the application layer and partly in the
database layer.

Maintaining, constraints at two layers compromised spatial consistency and
therefore we came up with philosophy of having all constraints, that is, implicit
and explicit constraints to reside in the database layer. To achieve this, we de-
veloped a design method that allowed for the creation of integrity-preserving
functions that reside in the database and calling them into the application us-
ing a Remote Procedure Call API. The functions were meant to wrap the data
and pass data through a series of validation units that are based on data gran-
ularity. Granularity based constraint validation means that once a database
has passed successfully through database constraints it is considered to be in-
herently attribute and table consistent as explained in Chapter 2.

Therefore, to have a spatially consistent web application, we advice the use
of constraint design method and the prototype design architecture as discussed
in Chapter 3. Moreover, a developer should be cautious when using triggers,
that is, triggers should be be avoided in the validation process but triggers can
be used for data modification to promote spatial database consistency.

5.4 Recommendation

During the research study, new questions arose that could not be answered in
the research project due do to hardship and lack of required resources. Hence,
we came up with a number of recommendations that need to be investigated
further in future work.

81

5.4. Recommendation

5.4.1 Creation of the PL/pgSQL wrapper in the ORM

The current Django ORM has SQL wrapper that generates SQL statements
that creates schemas and query the database. However, Django lacks a PL/pgSQL
wrapper that would have made the entire process of creation of the database
integrity-preserving functions using Python in Django possible. This would
have introduced the concept of PL/pgSQL code generation. Therefore, this will
enable ordinary web developers to easily and rapidly create complex spatial
business logic from Django that ensure web applications to run on spatially
consistent database.

5.4.2 PL/Python

PostgreSQL also supports server-side python language called PL/Python. We
would recommend a future study on how PL/Python can be used together with
Django with regard to creation of functions in the database. Future research
study should investigate the advantages of PL/Python compared to PL/pgSQL
and what are its limitations. PL/Python may be easier for Django developers
who already have skills in python. However, just like PL/pgSQL, a wrapper
is still required to allow for code generation. Python being an object-oriented
language, we believe that it is better placed than the procedural server-side
PL/pgSQL programming language.

5.4.3 Model-driven design

We also recommend the re-engineering of Django to adapt a model-driven ap-
proach. Such an approach would support the modeling process when creating
web applications from conceptual stage, then logical, and finally the physical
web application as a product, ready for deployment. The system developer will
be left with the task to define application components, constraints and multi-
plicities, navigations and database schema as class diagrams using the Object
Constraint Language (OCL) and the Web Modeling Language (WebML).

5.4.4 Record of constraints

We suggest the use of a tracking chart that shows the number of validation
constraints for a data structure granularity per function. The organization will
be in four levels, that is attribute constraints, object constraints, table con-
straints and database constraints. This will help to create a metadata to locate
various constraints for each integrity-preserving function in a database. The
metadata record will help in keeping inventory of the constraints performance,
for instance, how constraints are violated and how the constraints have been
improved when bugs are reported. With this kind of data, the developer will be
able to trace the constraints that are most the violated with the aim of improv-
ing the system.

82

Chapter 5. Discussion, Conclusion and Recommendation

5.4.5 Development of Django and GeoDjango installer

Inasmuch as creation of spatial web application using the Django framework
is easy and rapid, the learning curve is a bit steep. First, installation and
configuration of the system is complicated for someone with no knowledge in
programming or Python. This is because a mistake made by putting the appli-
cations files outside the PYTHONPATH might result in hidden errors. There,
setting, url, model, view and form module use Python classes and methods that
need to be imported and called appropriately. We recommend that an installer
be developed that will make the installation and configuration of the Django
web framework easy and fast for new and less experienced developers. This
will make them focus more on programming the web application. The installer
should also give database choices, for instance, PostgreSQL and its POSTGIS
extension.

5.4.6 To determine the efficiency of taxonomic granularity en-
forcement of constraints

With a critical look at the taxonomic granularity enforcement in function, there
arises weakness when data validation is done in a hierarchical order based on
granularity. Despite taxonomic method encompassing all the constraints, there
arises the issue of system efficiency. This is because the integrity-preserving
function may have raised an exception and stopped earlier had it started with
the reference keys which is a database constraint rather than going through at-
tributes then table constraints and stopping at the database constraints. There-
fore, if we place the database constraints at the last stage then the system will
have to rollback after spending system’s resources in validating the object, tu-
ple and table constraints. Although this is subject to testing to determine which
method is more efficient, that is, random validation versus the hierarchical tax-
onomic granularity. We would recommend for a future study to be done to see
the performance quality of the taxonomic granularity validation versus the ran-
dom validation process.

5.4.7 Django for mobile devices

Since most applications are going mobile, I would recommend a Django applica-
tion that can be operated on the mobile devices that are fitted with GPS devices
in future, this will go a long way in helping the development for location-based
web application that are spatially consistent. The databases can be located at a
central server to serve as the hub for multiple users of the application to enter
and get spatial information that are spatially consistent. This will require a
middleware that will link the edit map interface with the GPS device to enable
the creation of geomtric features and attribute data in real time.

83

5.4. Recommendation

5.4.8 Promote publication on spatial database consistency in
web frameworks

The GeoDjango user group is still very small. Also finding literature on ge-
ographical information web frameworks is hard. The online user group that
focuses on GeoDjango is very small. Scientific papers on the Web GIS database
consistency are hard to find. We would recommend more scientific papers and
books to be written in this field that are related to web GIS to boost the publicity
and interested in this field.

84

Bibliography

[1] J.D. Anderson. Cake PHP A Rapid Development Framework. Cake Soft-
ware Foundation, version 0.10 edition, 2006.

[2] C. Bauer and G. King. Hibernate in Action: Practical Object/Relational
Mapping. Manning Publications, 2004.

[3] J. Bennett. Practical Django Projects. Apress, 2008.

[4] F. Cagnacci and F. Urbano. Managing wildlife: A spatial information
system for GPS collars data. Environmental Modelling & Software,
23(7):957–959, 2008.

[5] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Mat-
era. Tools for model-based development of web applications. In Designing
Data-Intensive Web Applications, pages 499–517. Morgan Kaufmann, San
Francisco, 2003.

[6] D. Chak. Enterprise Rails. O’Reilly Media, 2008.

[7] T.M. Connolly and C.E. Begg. Database Systems, A Practical Approach to
design, Implementation and Management. Addison-Wesley, 2005.

[8] L. Daly. Next Generation Web Frameworks in Python. O’Reilly, 2007.

[9] R. de By. Designing spatial databases: from reality to a reality. Lecture
Notes 2008.

[10] A. U. Defense. Systems Engineering Fundamentals. Defense Acquisition
University Press, 2005.

[11] K.R. Dittrich, A.M. Kotz, and J.A. Mülle. An event/trigger mechanism to
enforce complex consistency constraints in design databases. ACM SIG-
MOD Record, pages 22–36, 1986.

[12] A. Holovaty and J. Kaplan-Moss. The Definitive Guide to Django Web De-
velopment Done Right. Apress, 2007.

[13] K. Janne and M. Tommi. Partitioning web applications between the server
and the client. Proceedings of the 2009 ACM symposium on Applied Com-
puting, pages 647–652, 2009.

85

Bibliography

[14] M. Jazayeri. Some trends in web application development. IEEE Computer
Society Digital Library, pages 199–213, 2007.

[15] G. Kappel, E. Michlmayr, B. Proll, S. Reich, and W. Retschitzegger. Web
Engineering. John Wiley & Sons, Ltd, 2006.

[16] B. Kelly, L. Nevile, EA Draffan, and S. Fanou. One world, one web but
great diversity. ACM International Conference Proceeding Series, Vol.
317:141–147, 2008.

[17] J. Kienzle and S. Gélineau. Ao challenge - implementing the acid proper-
ties for transactional objects. Proceedings of the 5th international confer-
ence on Aspect-oriented software development, pages 202–213, 2006.

[18] S. Mash. Beginning GeoDjango: Rich GIS Web Applications with Python.
Apress, 2009.

[19] D. Moore, R. Budd, and W. Wright. Professional Python Frameworks Web
2.0 programming with Django and Turbogears. Wrox Press Ltd, 2008.

[20] J. Musser, T. O’Reilly, et al. Web 2.0 Principles and Best Practices. OReilly,
2006.

[21] E.J. O’Neil. Object/relational mapping 2008: Hibernate and the Entity
Data Model (EDM). Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1351–1356, 2008.

[22] E. Oren, A. Haller, M. Hauswirth, B. Heitmann, S. Decker, and C. Mes-
nage. A flexible integration framework for semantic web 2.0 applications.
Software, IEEE, 24(5):64–71, 2007.

[23] N. Paladi. Model based testing of data constraints. Proceedings of the 8th
ACM SIGPLAN workshop on Erlang, pages 71–82, 2009.

[24] J. K. Peeter. Database management. http://pkirs.utep.edu/, 2004.

[25] C.J. Pilgrim. Improving the usability of web 2.0 applications. Proceed-
ings of the nineteenth ACM conference on Hypertext and hypermedia, pages
239–240, 2008.

[26] F. Pinet, M. Duboisset, and V. Soulignac. Using UML and OCL to main-
tain the consistency of spatial data in environmental information systems.
Elsevier Science Direct, Volume 22:1217–1220, 2006.

[27] V. Ramachandran. Design patterns for build-
ing flexible and maintainable j2ee applications.
http://java.sun.com/developer/technicalArticles/J2EE/despat/, January
2002.

[28] M.M. Reek. A top-down approaach to teaching programming. Proceed-
ings of the twenty-sixth SIGCSE technical symposium on Computer science
education, pages 6 – 9, 1995.

86

Bibliography

[29] C. Richardson. ORM in dynamic languages. May/June 2008 ACM
QUEUE, 6 Issue 3:30–37, 2008.

[30] W. Scacchi. Process models in software engineering. Encyclopedia of Soft-
ware Engineering, 2, 2001.

[31] V. Thakur. ASP.NET 3.5 Application Architecture and Design Build robust,
scalable ASP.NET applications quickly and easily. Packt Publishing, 2008.

[32] P. Thiran, J.L. Hainaut, G.J. Houben, and D. Benslimane. Wrapper-based
evolution of legacy information system. ACM Transactions on Software
Engineering and Methodology (TOSEM), Vol 15 , Issue 4:329 – 359, 2006.

[33] P. Van Zyl, D.G. Kourie, and A. Boake. Comparing the performance of
object databases and ORM tools. page 11, 2006.

[34] M. Veit and S. Herrmann. Model-view-controller and object teams: A per-
fect match of paradigms. 140 - 149, pages 140 – 149, 2003.

87

Bibliography

88

Appendix A

Settings.py

Django settings for brazil project.
import os
baseDirectory = os.path.dirname(file)
fillPath = lambda x: os.path.join(baseDirectory, x)
staticPath, templatePath = map(fillPath, [‘static’, ‘templates’])
DEBUG = True
TEMPLATE DEBUG = DEBUG
ADMINS = (
(’Your Name’, ’your email@domain.com’),) MANAGERS = ADMINS
DATABASE ENGINE = ‘postgresql psycopg2’
DATABASE NAME = ‘prototype’ # this is spatial database not an ordinary one
DATABASE USER = ‘postgres’
DATABASE PASSWORD = ’banana’ # Not used with sqlite3.
DATABASE HOST = ‘ ’ # Set to empty string for localhost .
DATABASE PORT = ‘ ’ # Set to empty string for default.
Local time zone for this installation. Choices can be found here:
http://en.wikipedia.org/wiki/List of tz zones by name
although not all choices may be available on all operating systems.
If running in a Windows environment this must be set to the same as your
system time zone.
TIME ZONE = ‘America/Chicago’
Language code for this installation. All choices can be found here:
http://www.i18nguy.com/unicode/language-identifiers.html
LANGUAGE CODE = ‘en-us’
SITE ID = 1
If you set this to False, Django will make some optimizations so as not
to load the internationalization machinery.
USE I18N = True
Absolute path to the directory that holds media.
Example: ‘/home/media/media.lawrence.com/’
MEDIA ROOT = staticPath
URL that handles the media served from MEDIA ROOT. Make sure to use a
trailing slash if there is a path component (optional in other cases).
Examples: ‘http://media.lawrence.com’, ‘http://example.com/media’

89

MEDIA URL = ‘/static/’
URL prefix for admin media – CSS,JavaScript and images.
Make sure to use atrailing slash.
Examples: ‘http://foo.com/media/’, ‘/media/’.
ADMIN MEDIA PREFIX = ‘/media/’
Make this unique, and don’t share it with anybody.
SECRET KEY = ‘iˆoow(aquo(&&u7&hd5+1hhm88*x94c-8p=xe(l4= %7l ˆ$xmf’
List of callables that know how to import templates from various sources.
TEMPLATE LOADERS = (

‘django.template.loaders.filesystem.load template source’,
‘django.template.loaders.app directories.load template source’,
‘django.template.loaders.eggs.load template source’,)

MIDDLEWARE CLASSES = (
‘django.middleware.common.CommonMiddleware’,
‘django.contrib.sessions.middleware.SessionMiddleware’,
‘django.contrib.auth.middleware.AuthenticationMiddleware’,)

ROOT URLCONF = ‘brazil.urls’
TEMPLATE DIRS = (

#‘C:/amazonia/brazil/template’,
templatePath,)

INSTALLED APPS = (
‘django.contrib.auth’,
‘django.contrib.contenttypes’,
‘django.contrib.sessions’,
‘django.contrib.sites’,
‘django.contrib.admin’,
‘django.contrib.gis’,
‘brazil.avian’,
‘olwidget’,)

90

Appendix B

Model.py

from django.contrib.gis.db import models
class SpatialRefSys(models.Model):

class Amazonialegal(models.Model):
id = models.IntegerField(primary key=True)
amazonialegalid = models.IntegerField()
buffer = models.MultiPolygonField()
geom = models.MultiPolygonField()
objects = models.GeoManager()
class Meta:

db table = u‘amazonialegal’

classInterfluves(models.Model):
fid = models.IntegerField()
fluvename = models.CharField(max length=80)
geom = models.MultiPolygonField()
objects = models.GeoManager()
class Meta:

db table= u‘interfluves’

class Distrib(models.Model):
gid = models.IntegerField(primary key=True)
cidx = models.DecimalField(max digits=20, decimal places=0)
distribgeom = models.MultiPolygonField()
objects = models.GeoManager()
class Meta:

db table = u‘distrib’

class Speciesdistrib(models.Model):
speciesid = models.IntegerField()
interfluveid = models.IntegerField()
class Meta:

91

db table = u‘speciesdistrib’

class Family(models.Model):
fidx = models.IntegerField(primary key=True)
famname = models.CharField(max length=50)
taxorder = models.IntegerField(unique=True)
class Meta:

db table = u‘family’

class Genus(models.Model):
gidx = models.IntegerField(primary key=True)
genusname = models.CharField(max length=50)
taxorder = models.IntegerField(unique=True)
familyid = models.ForeignKey(family, db column=’fidx’)
class Meta:

db table = u‘genus’

class Species(models.Model):
cidx = models.IntegerField(primary key=True)
authority = models.CharField(max length=50)
eng name = models.CharField(max length=50)
listname = models.CharField(max length=50)
port name = models.CharField(max length=50)
taxorder = models.IntegerField(unique=True)
genus = models.ForeignKey(genus, db column=‘gidx’)
class Meta:

db table = u‘species’

class Call Dbase famfunctions():
def call family(self, familyid, famname, taxorder):

cursor = connection.cursor()
family = cursor.callproc(‘add2 family’, (familyid, famname, taxorder))
cursor.execute(‘COMMIT‘)
cursor.close()
return family

class Call Dbase genfunctions():
def call genus(self, genusid, genusname, taxorder, familyid):

cursor = connection.cursor()
genus = cursor.callproc(‘add2 genus‘, (genusid, genusname, taxorder, familyid))
cursor.execute(‘COMMIT’)
cursor.close()
genus

92

Appendix B. Model.py

class Call Dbase spfunctions():
def call species(self, speciesid, authority, eng name, listname,

port name, taxorder, genus):
cursor = connection.cursor()
species = cursor.callproc(‘add2 species‘, (speciesid, authority,

eng name, listname, port name, taxorder, genus))
cursor.execute(‘COMMIT’)
cursor.close()
return ret

class Call Dbase distfunctions():
def call distrib(self, speciesid, speciesgeom):

cursor = connection.cursor()
distrib = cursor.callproc(‘add2 distrib’, (speciesid, speciesgeom))
cursor.execute(‘COMMIT’)
cursor.close()
return distrib

93

94

Appendix C

Form.py

from django import forms
from django.contrib.gis.db import models
from django.contrib.gis import forms
class CreateForm(forms.Form):

class FamilyForm(forms.Form):
fidx =forms.IntegerField()
famname =forms.CharField(max length=50)
taxorder =forms.IntegerField()

class GenusForm(forms.Form):
gidx =forms.IntegerField()
genusname =forms.CharField(max length=50)
taxorder =forms.IntegerField()
familyid =forms.IntegerField()

class SpeciesForm(forms.Form):
cidx =forms.IntegerField()
authority =forms.CharField(max length=50)
eng name =forms.CharField(max length=50)
listname =forms.CharField(max length=50)
port name =forms.CharField(max length=50)
taxorder =forms.IntegerField()
genus =forms.IntegerField()

Distrib
class DistribForm(forms.Form):

distributionid =forms.CharField(max length=100)
distribgeom = forms.CharField(widget=EditableMap(options=
‘name’: ‘Avian Distribution’,‘layers’: [‘google.hybrid’, ‘google.streets’,
‘google.physical’,‘google.satellite’,], ‘geometry’: ‘polygon’, ‘is collection’:
True,‘default lat’: -8, ‘default lon’: -50, ‘editable’: True, ‘hide textarea’:
False,‘map div style’: ‘width’: ‘600%’, ‘height’: ‘550px’,))

95

96

Appendix D

View.py

from django.shortcuts import get object or 404, render to response
from django.http import HttpResponseRedirect, HttpResponse
from django.core.urlresolvers import reverse
from django.core.exceptions import *
from django.template import RequestContext
from brazil.avian.models import *
from django.contrib.gis.db import models
from django.contrib.gis import admin
from olwidget.widgets import EditableMap
from olwidget.widgets import MapDisplay
from olwidget.widgets import InfoMap
from django.avian.forms import *
from django.template.loader import get template
from django.template import Context
from django.http import HttpRespon import datetime

class def family(request):
if request.method == ‘POST’:

form= FamilyForm(request.POST)
if form.is valid():

my funct = Call Dbase famfunctions()
family = my funct.call family(request.POST[‘fidx’],
request.POST[‘famname’],request.POST[‘taxorder’])
return HttpResponseRedirect(‘/family/’)

else:
form = FamilyForm()

return render to response(‘family.html’, ‘form’:form)

def genus(request):
if request.method == ’POST’:

form = GenusForm(request.POST)
if form.is valid():

97

my funct = Call Dbase genfunctions()
family my funct.call genus(request.POST[‘gidx’],request.POST[‘genusname’],
request.POST[‘taxorder’],request.POST[‘familyid’])
return HttpResponseRedirect(‘/genus/’)

else:
form = GenusForm()

return render to response(‘genus.html’, ‘form’:form , ‘error’: True ,)

def species(request):
if request.method == ’POST’:

form = SpeciesForm(request.POST)
if form.is valid():

my funct = Call Dbase spfunctions()
species = my funct.call species(request.POST[‘cidx’],
request.POST[‘authority’],request.POST[‘eng name’],
request .POST[‘listname’],request.POST[‘port name’],
request.POST[‘taxorder’],request.POST[‘genus’])
return HttpResponseRedirect(‘/species/’)

else:
form = SpeciesForm()

return render to response(‘species.html’, ‘form’:form , ‘error’: True ,)

def distrib(request):
if request.method == ‘POST’:

form = DistribForm(request.POST)
if form.is valid():

my funct = Call Dbase distfunctions()
distrib = my funct.call distrib(request.POST[‘distributionid’],
request.POST[‘distribgeom’])
return HttpResponseRedirect(‘/distrib/’)

else:
form = DistribForm()

return render to response(‘form.html’, ‘form’:form , ‘error’: True ,)

def interfluves(request):
fields = [instance.distribgeom for instance in Distrib.objects.all()]
map = MapDisplay(fields=fields)
returnrender to response(‘map.html’, ‘map’: map)

#amazonialegal
def amazonialegal(request):

instance = Amazonialegal.objects.all()[0]
map = MapDisplay(fields=[instance.geom],options=‘
layers’:[‘google.hybrid’,

98

Appendix D. View.py

‘google.streets’,‘google.physical’,
‘google.satellite’,], ‘geometry’: ‘polygon’, ‘is collection’:
True , ‘default lat’: -8,‘default lon’: -50, ‘hide textarea’:
False ,‘map div style’: ‘width’: ‘600px’, ‘height’: ‘550px’, ,)

return render to response(‘amazonialegal.html’, ‘map’: map)

#infocursor
def interfluveinfo(request):

instance = Distrib.objects.all()[10]
map = InfoMap([[instance.distribgeom,
‘html’: instance.gid,
‘style’: ‘fill color’: ‘ #03FF02’,],]) return r̄ender to response(‘map.html’, ‘map’:

map)

defmapping(request):
fields = [instance.geom for instance in Avianite.objects.all()]
map = MapDisplay(fields=fields)
return render to response(‘map.html’, ‘map’: map)

99

100

Appendix E

Url.py

from django.conf.urls.defaults import *
from django.contrib.gis import admin
from brazil.avian.views import mapping, interfluves,info,

interfluveinfo, home , renderdistrib, visualization , family
from brazil.avian.views import amazonialegal,genus, species,

distrib, amazonhome, amazonvisualization #,message
from brazil.avian.views import message
Import custom modules
import settings
admin.autodiscover()

urlpatterns = patterns(‘ ’,
(r‘ˆadmin/’, include(admin.site.urls)),
(r‘ˆtest/’, message),
(r‘family/’ , family),
(r‘genus/’ , genus),
(r‘species/’ , species),
(r‘distrib/’ , distrib),
(r‘amazonvisual/’ , amazonvisualization),
(r‘amazonhome/’ , amazonhome),
(r‘amazonlegal/’ , amazonialegal),)
if settings.DEBUG:

Set
mediaURL = settings.MEDIA URL[1:]
Extend
urlpatterns += patterns(‘ ’,
(r‘ ˆ% s(?P <path >.)$’ % mediaURL, ‘django.views.static.serve’,
‘document root’: settings.MEDIA ROOT),)

101

102

Appendix F

Template

<head >
{{ form.media }} {{ map.media }}
<table border=0 cellspacing=0 cellpadding=5 width=100% class=‘bg nav left header’>
<tr >
<td><a class=‘nav left header text’ href=‘http://127.0.0.1:8000/home/‘ title=‘FrontPag’
><h1 >Home </h1 > </td >
</tr >
</table >
</head >
<body >
{% if form.errors %}
<pstyle=‘color: red;’ >
Please correct the error{{ form.errors—pluralize }} below.
</p >
{% endif %}
<h1 >Amazonian Web GIS Application </h1 >
<form action=‘.’ method=‘POST’ >
<table >
form map
</table >
<p ><input type=‘submit’ value=‘Submit’ class=‘actiontable’ ></p >
</form >
</body >
<head ></head >
<body >{{ map }} </body >

103

