
Performance of Smith-Waterman DNA sequence
matching on a FPGA

1 Juli 2022
P. Kingma

p.j.kingma@student.utwente.nl
University of Twente, Enschede

Abstract—Because of advancements in molecular sequencing
technology, a need for even faster processing of this fast-growing
pool of data is needed. Preferably, this data is processed as
soon as possible, as fast as possible, so having a low latency
and high throughput is of importance. This usually includes
finding matches between certain DNA sequences. These algorithms
have a lot of parallelizable operations, and could have significant
improvements in latency and throughput when implemented on
a FPGA. One such algorithm is Smith-Waterman, which locates
the best local alignment according to the set scoring system.
The goal of this paper is to explore what the limits of current
implementations of Smith-Waterman are, and how these limits
show in the performance metrics of the algorithm’s hardware
implementation.

CONTENTS

1 Introduction 1

2 Background 1

3 Related Work 3

4 Architecture 3

5 Implementation 5

6 Results 6

7 Conclusion 7

8 Recommendations 7

References 8

1. INTRODUCTION

The usage of FPGA’s (Field Programmable Gate Array) to
accelerate algorithms is not new to the medical field [1]. With
the fast amount of data that the field generates and needs
processing for in mind, it is logical that these algorithms are
among the first to give use to what FPGA’s offer in terms of
computational power. One such algorithm is Smith-Waterman,
designed to find the best local alignment (partial match) of
two sequences, in this case DNA sequences. These algorithms,
including Smith-Waterman, are still being improved. As
becomes apparent with current state of the art implementations

offering throughputs up to 214 GCUPS (Giga Cell Updates
per Second) [2]. These implementations offer tremendous
performance.
To get an overview of how what limits the performance
of Smith-Waterman hardware implementations, as well as
trade-offs between performance, resource usage, power
usage and cost, a broader look is needed. Implementing a
parametric design for Smith-Waterman allows to keep the
same architecture, and explore the effect of only changing one
parameter. A look at these effects can help in deciding what
trade-offs to make for certain use cases.
This paper discusses what parameters currently limit
implementations of Smith-Waterman in their performance
and resource usage. This information can then be used to
estimate FPGA requirements and/or as a start for future
research, showing what change offers what improvement. To
attempt this, the same High Level Smith-Waterman design is
synthesised while only changing one parameter at a time.
But first, the background to this paper is explained, followed by
a discussion and comparison with related work. Then the design
is presented, divided into architecture and implementation.
Finally, the results are presented, discussed and concluded in
the conclusion at the end.

2. BACKGROUND

A. Smith-Waterman

The Smith-Waterman algorithm was first published in 1981
by T.F. Smith and M.S. Waterman [3]. The algorithm finds
the mathematical best local sequence alignment, that is, it
determines regions of similarity following a certain scoring
system. The algorithm is a variation on Needleman-Wunsch
[4], by setting negative scoring cells to zero, a positively
scoring local alignment becomes visible in the scoring matrix.
This ability to find local alignment instead of global alignment
is Smith-Waterman’s main difference compared to needleman-
Wunsch.

The scoring system consists of a certain score for two matching
sequence elements, and a gap penalty when a gap is inserted.
These can be constant, but also implemented as a linear gap
penalty for example, giving a higher gap penalty as the inserted
gap gets larger. Also the score for matching two sequence



elements can be dependant on what sequence element it is,
although this is not used very often, as generally any match
is worth the same.
Now a score matrix can be constructed, with one of the
sequences along the horizontal, and one along the vertical axis
of the matrix. The first column and row are initialized to zero,
see figure 1. With a chosen scoring system in hand, the scoring

Fig. 1: An example score matrix, based on [5]

can begin. For every cell, three scores will be evaluated:
• The score to the left, minus the gap penalty
• The score to the top, minus the gap penalty
• The score to the top-left, plus or minus the score for match

depending on if the words are a match
If the highest score of the three is positive, it will be inserted
in the matrix, otherwise a zero is inserted. And this goes on for
the whole matrix until completion. Or mathematically, this can
be put in eq. 1.

hi,j = max


hi−1,j − gapPenalty

hi,j−1 − gapPenalty

hi−1,j−1 ±matchScore Sign dependent on match or not
0

(1)

Now that the score matrix is determined, the trace-back step
can start. This involves finding the highest score, and then
following back from which surrounding cell it got its score.
This process continues until a cell with score zero is found. This
trace-back now creates the part of the reference and the query,
with insertions, that match mathematically optimal, following
the chosen scoring system.

B. Parallelism and Sequentialism in Smith-Waterman

The Smith-Waterman scoring system is based on scores to the
top, to the top-left and to the left of the cell that is being scored.
This dependency makes for the possibility that the anti-diagonal

Fig. 2: Parallelism of Smith-Waterman, the colored arrows show
what data dependency a cell has, the cell color shows which cells
can be calculated simultaneously, without being dependent on
each other

of the scoring matrix can be determined at once, without data
dependency conflicts. This can be seen in an example part of a
score matrix in figure 2.
When applying this parallelism to hardware design, this keeps
the LUTs (Look Up Table) smaller, as a certain score is only
dependant on a certain part of the input. This reduces the amount
of inputs the LUT needs, reducing the resource requirement of
the LUT, and allowing higher clock frequency as critical paths
are shorter. It is important to make the synthesis tool aware
of this parallelism in the anti-diagonal, as otherwise it will go
through each row, left to right, requiring larger LUTs as the
inputs required are larger.
It must also be noted that the length of a row will be related
to the latency, as the inherent sequential calculations create
a critical path that can be pipelined, increasing throughput,
but can’t be shortened, increasing the latency as the reference
sequence increases.

C. FPGA

A FPGA (Field Programmable Gate Array) is an integrated
circuit designed to be (re)configured after manufacturing. A
design on an FPGA is often described in a Hardware Description
Language (HDL). This versatility to be configured makes a
FPGA a great tool to test ASIC (Application Specific Integrated
Circuit) designs, as ASIC’s are often described in HDL as well.
Another application of a FPGA is as a hardware accelerator
besides a ”regular” processor. In this case, when a user starts
a workload that could benefit from the parallelised processing
a FPGA offers, the corresponding HDL design is implemented
on the FPGA, and the processor offloads the workload to the
FPGA.
This application of a FPGA is what is used in this paper, as
Smith-Waterman becomes a very large workload when taking
into account the scale of DNA sequences.

2



3. RELATED WORK

As the Smith-Waterman algorithm [3] is commonplace in
the medical data-analysis field, the algorithm has seen it’s
share of implementations and improvements, on both CPU’s
and GPU’s, as well as hardware accelerators like FPGA’s.
The work by [1] presents a comparison of the performance
diffences between mentioned hardware. GPU’s show an eight-
fold improvement in throughput over CPU implementations,
while FPGA implementations show improvements from 6- to
24-times compared to CPU implementations [1]. This shows
that Smith-Waterman as an algorithm can make great use of
parallelism, as more parallelisation focussed hardware like
GPU’s and FPGA’s show a great improvement.
Another aspect is power usage, both from a costs perspective
as well as a space perspective. FPGA’s offer an improvement
from 8- to 66-times in power usage when compared to GPU
implementations [1]. This shows the advantage an FPGA has
over a GPU, saving power cost, and being able to be packed
denser together, because of less cooling needed when compared
to a GPU.
The currently highest performing Smith-Waterman
implementation by throughput is Houtgast [2]. This paper
shows that improvements could be made by making sure all
hardware is also always ”busy”. Their implementation uses
99.8% of the hardware continuously, while their predecessor
in throughput, Sirasao [6] ”only” used 56.9% of hardware
continuously. This difference in hardware usage contributes
to their three-fold improvement over Sirasao [2]. It must also
be noted that Houtgast used an Intel Arria 10 GX FPGA
Development Kit, but also presented the performance of their
implementation on an FPGA with a lower fabric speed grade.
Here, the importance of the used hardware becomes apparent,
as their implementation improved linearly with the higher
frequency they were able to run on the Arria 10 Dev kit.
To compare latency performance is more difficult, as different
implementations can have different definitions of latency. In
this paper, it is defined as the time between having received
a set of words from the query stream, and having calculated
the corresponding rows. To determine this latency from related
work, eq. 2 is defined. Although this equation misses start-up
and finishing time of the rows, that measurement is seldom
presented in papers, so it would be difficult to obtain. It can
also be assumed that start-up and finishing times are less
significant to the calculation of the whole row, because loading
M words should only take one cycle.

Lpacket = Ncells per row +Mwords per set − 1 ∗ Tcycle period

(2)

This definition of latency is chosen as it still includes the
parallelism from section 2-B, because of M .
As for latency performance, a current implementation that also
targeted latency is de Oliveira [7]. This paper offers a really
specific look at how each step of Smith-Waterman can be

implemented, and explained on the level of the individual
logic elements. The suggested implementation has as main
advantages a reduced hardware resource usage on the used
FPGA, while maintaining a high performance. Besides showing
an implementation, the paper also clearly shows how they
measured the performance of their implementation, which
provides a solid reference when comparing performance.
From table I the performances of the related works, as well as
this paper’s performance can be compared.
As the main source to implement a parametric Smith-Waterman
implementation, the work in [8] must be mentioned. It identifies
how Smith-Waterman can be implemented in hardware, and
what optimization strategies can be used to exploit the
parallelism in Smith-Waterman, which has been detrimental to
the implementation designed in this paper.

4. ARCHITECTURE

The architecture first covers a few terms that are important to
be understood.

word
Single sequence element,

in case of DNA, an A, C, T or G

Reference sequence
The sequence of words completely

loaded into memory at the beginning

Query sequence

The sequence of which an amount of words
set by a parameter is streamed to
the architecture every clock cycle

TABLE II: Often used terms

First, the inputs and outputs are discussed, as they are what
the master device sees when interfacing with the architecture.
Afterwards, the internals of the architecture are discussed
individually.

A. IO

The architecture features three IO ports, two inputs streams, one
for the reference and one for the query, and an output stream,
which outputs the highest score and its location in the scoring
matrix continuously.
To the device interfacing with the architecture, there are three
steps:

• Loading the reference sequence into memory
• Streaming the query sequence in the FPGA
• Streaming the highest score out of the FPGA

Step two and three happen continuously, as for every part of the
query sequence streamed to the FPGA, an highest score output
is returned.
1) Loading the reference sequence into memory: This step
can be seen as the start-up step, as first a reference sequence
is loaded into memory. By only loading one sequence into
memory, the resource requirement of the architecture is kept
low. Streaming the query sequence also allows for improved
throughput, as the architecture is already processing the first
words, and doesn’t have to wait until the whole query is loaded
in.

3



GCUPS Frequency (MHz) Latency (ns) Resource Usage (LUTs)
Houtgast [2] *1 214.8 164 853.6 1046500
Houtgast [2] *2 107.4 137 1022 678500

de Oliveira 79.5 155 1094 35286
This paper 115.68 225.94 1341 60995

TABLE I: Performance of discussed papers. *1 is the maximum performance presented, *2 is performance on the lower fabric
speed FPGA.

Fig. 3: The hardware architecture, note the three steps mentioned in 4-A.

2) Streaming the query sequence to the FPGA: On the query
sequence input, a certain amount of words are received.
These amount of words dictate the amount of rows that can
be determined simultaneously improving throughput following
section 2-B. Using this, a two-dimensional array is initialized,
sized adequately to the length of the reference sequence and
the width of the amount of words. In this array the scores are
calculated, and the highest score of each row is kept track of,
to be output later. The highscores are kept per row, as rows are
inherently sequential, keeping track of the highest score does
not introduce data dependency issues, while keeping track of
the highest score in all rows at the same time does. To find the
total highest score, a separate segment of hardware is used.

3) Streaming the highest score out of the FPGA: To efficiently
determine the highest number of the simultaneous determined
highscores of the rows, they are compared one-by-one, creating
a tree-like structure as can be seen in the bottom right of figure
3. This part receives the stream of highscores per row, and
starts finding the highest score. This highest score is then finally
compared to the highest score until then, and the highest is
output in the end, along with it’s row and column.

B. Score Calculation

The score calculation of a single cell follows eq. 1 strictly. The
three scores are determined, and compared for the largest (also
with zero). Then the largest is stored in the cell.

C. Rows Calculation

As multiple words arrive per clock cycle on the query stream,
multiple rows can be calculated using the parallelism discussed
in section 2-B. This is implemented by two for loops, one nested
inside the other, with the upper loop going through the words
received on the stream, and the nested loop going through each
word on the reference query. To improve latency, these loops
are unrolled, as by default nested loops are implemented taking
a clock cycle to change from the upper to the nested loop. The
latency between starting in the upper left and finishing the final
cell in the bottom right of figure 2 takes, assuming the goal
from 2-B to calculate one anti-diagonal every clock cycle:

LatencyRows = (Nreference +NWordsperclockcycle − 1) + 1
(3)

This relation becomes apparent when looking at the shortest path
between the first cell (left-top) and the final cell (bottom-right).
Because an extra clock cycle is needed to add the highscore of

4



the row to the output stream, an extra clock cycle is added to
the latency to account for this.
Because the throughput of at maximum only calculating one
anti-diagonal per clock cycle is rather low, and makes low use of
the allocated resources, this row calculating function is pipelined
with no delay, so every clock cycle as many rows are output as
the query stream inputs words.

D. Upper functionality

The upper functionality is basically the connection between the
streams on the IO, and the internals. The upper functionality first
streams the the reference into memory. And then proceeds read
the query stream every clock cycle, and putting the received
query sequence into the rows calculation pipeline. It also
connects the highscores per row stream to the comparator to
find the highest score, and output it back to the master device.

5. IMPLEMENTATION

A. High Level Synthesis

The architecture is implemented in Vitis High Level Synthesis
version 2022.1 build 3526262 [9], running on Ubuntu 20.04.4
LTS. The computer synthesizing the design has an AMD Ryzen
7 3700x CPU, with 16 GB of memory, along with a swapfile
of 64 GB to work with the larger designs.
In the final design, only five parameters have to be set for an
accordingly scaled architecture:

• The word size (bits)
• The number of words in per packet on the input stream

(Number)
• The number of words in the reference query (Number)
• The gap penalty (Integer)
• The match score (Integer)

This parametric design allows us to generate design points
of varying size and performance, allowing for adaptation to
different FPGA’s, as well as re-configuring the architecture to
use a larger reference sequence and less words per packet or vice
versa as needed. As all the derivative parameters are determined
at compile time, they appear as constant expressions to the
synthesis tool, allowing for the complete unrolling of for loops.
For example, the target latency to calculate a row following eq.
3 is implemented as a Vitis HLS pragma (#pragma HLS latency
max=), in which this max latency is determined by a constant
expression function at compile time.
1) Loading the reference sequence into memory: To load the
reference sequence into memory, an HLS STREAM is used, as
per the examples [10]. This memory is fully parallel, meaning
all elements can be accessed every clock cycle, to allow for the
pipelining of the score matrix calculations.
2) Streaming the query sequence to the FPGA: As the
calculation of the scores is implemented as two nested for loops,
a loop for each word on the input, and a nested loop for each
reference element. This unrolling is necessary to parallelize as
much operations as possible, as by default, entering and exiting

a nested loop both cost a clock cycle. Besides this, by unrolling
the synthesis tool explores what can be executed concurrently,
and in combination with setting a certain latency for this to
run, will realize the anti-diagonal parallelism from section 2-B.
An attempted implementation had the for loops designed to
go through the anti-diagonal, but this stopped the loops from
being completely unrolled, as the nested loop’s iteration was
dependent on the outer loop.
3) Streaming the highest score out of the FPGA: To create
the tree-structure to determine the highest score, two nested for
loops are used, an outer loop that goes through the levels of the
tree, an a nested loop going through the individual comparisons.
As the amount of comparisons is related to the level of the
tree by 2treelevel, the implementation has to take powers of 2.
Raising a number to a certain power is costly in hardware, but
a power of two is essentially a left shift of a binary one by said
power. This operation is much easier to do in hardware, and
saves resources.

B. Limitations of the implementation

This implementation of Smith-Waterman does not allow for a
match score matrix, which means giving different scores for
different matches, and also does not allow for a non-linear gap
penalty systems. Also, the output is only the row, column and
score of the highest cell in the score matrix at that time. This
means the host system will have to do the trace-back via a
reverse calculation of the three scores, moving to the correct
one, and repeat this until finding a zero, which is costly.

C. Test bench

A test bench was designed to validate the design. The test
bench creates a random reference and query sequence, and
inputs it to the simulated FPGA. When the FPGA simulation
is complete, the same reference and query sequence are put
through a validated C++ Smith-Waterman implementation. Then
the outputs of the FPGA simulation and the C++ implementation
are output to the user after running the test bench, and it can
then be verified.
To also test if the synthesized implementation works, a co-
simulation is run with the same test bench. The co-simulation
is then verified by the timing of the synthesized modules of the
implementation, as well as general output correctness.
The test bench, as well as the implementation can be found on
gitlab [11].

5



Fig. 4: The wordSize in bits, with a reference size of 128, and 4 rows in parallel

6. RESULTS

These results are from synthesis and simulation in Vitis HLS,
targeting the ZYNQ-7 ZC706 Evaluation Board, which uses the
xc7z045ffg900-2 FPGA. To quantify how the three parameters
(word size, rows calculated in parallel and reference size)
influence the scale and performance of the architecture, the
following three test cases were designed:

• Word size: 2, 4, 8; With a reference size of 128 and 4 rows
calculated in parallel.

• Rows calculated in parallel: 1, 2, 4, 8; With a reference
size of 128 and a wordsize of 2.

• Reference size: 64, 128, 256; With 4 rows calculated in
parallel and a wordsize of 2.

A. Word size

The results of the variable word size can be seen in figure 4.
Of interest is the lack of change in resource usage, frequency,
latency and throughput when doubling the word size from four
to eight bits, while the frequency and GCUPS did change
significantly for two bits to four bits. This can be due to the
synthesis tool prioritizing latency in cycles and resource usage
over the frequency.

B. Rows in parallel

The results of the variable amount of rows calculated in parallel
can be seen in figure 5. Of interest here is the linear increase
in resource usage and GCUPS, indicating that increasing the
amount of rows in parallel indeed exploits the parallelism from
section 2-B. This also shows in the latency in cycles, as the
cycles do not double when doubling the rows in parallel.

C. Reference size

The results of the variable reference sequence size can be seen
in figure 6. Of interest is how the resource usage increases
in similar fashion to the variable rows in parallel. What
differs when comparing to the variable rows in parallel, is the
drop in frequency, and doubling of the latency in ns when
doubling the reference size. This does make sense however, as
following eq. 3, with Nreference being a much larger number
than Nwords per clock cycle, the doubling of Nreference will also
roughly double the latency, which is clearly visible. Also, the
final result (reference size of 256) must be discussed, as it does
not follow the rest of the results, and was due to the synthesis
tool not successfully pipelining the row calculation function,
causing the drop in frequency and especially GCUPS.

D. Discussion

As High Level Synthesis will always be a hardware
interpretation of the provided high level code, results will
vary between compiler/synthesizer settings, FPGA choice and
optimization settings. So these results are only indicative when
using another FPGA or settings, and will not compare well
with results that change the FPGA or settings when changing
parameters as well.
Also, the synthesis tool will make sacrifices when certain
requirements are close to or over a certain limit of the chosen
FPGA, in which case it will drop certain requirements, changing
the architecture and influencing the performance metrics, which
is what might be the reason of the deviation of the final result
for the variable reference size in figure 6.

6



Fig. 5: The amount of rows in parallel, with a reference size of 128, and a word size of 2

7. CONCLUSION

The quantization of reference sizes, word sizes and bus widths
on the latency, throughput and resource usage of a general
Smith-Waterman implementation presented in this paper provide
insight in the performance of running the implementation at a
certain scale, and what can be expected when changing such
parameters. The presented Smith-Waterman implementation
obtained from a high level description is verified for correct
performance using co-simulation and comparing the output with
a verified software Smith-Waterman implementation.
With the focus of the paper being a parametric design and it’s
scalability, some losses are expected when compared to state of
the art implementations. This becomes apparent when looking
at table I, as this paper’s implementation does not lead in any
performance metric, but does stay in the ball park.
Concluding what parameter is worth further research is the
increase in bus width, as this leverages the parallelism discussed
in section 2-B.

8. RECOMMENDATIONS

As for future research, it is first of all important to run the same
experiments on a physical FPGA, instead of simulation, as this
would provide real world performance, instead of the theoretical
maximum. This would also be a more fair comparison with other
work, as theoretical performance is usually the same as or better
than real-life.
The design could also allow for giving different scores to
different matches, as well as a variable gap penalty, as this
would make this implementation closer to the complete Smith-
Waterman algorithm. This is shortly mentioned in section 5-B.
Although it must also be noted that this would introduce another

variable, as the complexity of both the variable match score as
the variable gap penalty will add to the complexity of calculating
a score.
In future implementations, the whole matrix could be outputted
to the parent system, as that would speed up the trace-back
stage of Smith-Waterman. In the current implementation, the
host system has to reverse calculate the left, upper-left and
upper score of every cell passed in the trace-back, instead of just
finding the highest of the three. Another option is to integrate
the trace-back into the design, but this would increase resource
usage, as the complete score matrix has to be stored for the
trace-back stage.
As synthesis times went up to twelve hours for the larger
experiments, and memory usage to 60 Gigabyte, a more
dedicated machine than the used computer are recommended,
especially the memory, as working with a swapfile decreases a
computer’s performance significantly.

7



Fig. 6: The size of the reference sequence in words, with 4 rows in parallel, and a word size of 2

REFERENCES

[1] L. S. M. Bragança, A. D. Souza, R. A. S. Braga, M. A. M. Suriani,
and R. M. C. Dias, “Sequence alignment algorithms in hardware
implementation: A systematic mapping of the literature,” Advances in
Intelligent Systems and Computing, vol. 1346, no. 6, pp. 307–312, 2021.

[2] E. Houtgast, V.-M. Sima, and Z. Al-Ars, “High performance streaming
smith-waterman implementation with implicit synchronization on intel
fpga using opencl,” in 2017 IEEE 17th International Conference on
Bioinformatics and Bioengineering (BIBE), 2017, pp. 492–496.

[3] T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” Journal of Molecular Biology, 1981.
[Online]. Available: http://dornsife.usc.edu/assets/sites/516/docs/papers/
msw papers/msw-042.pdf

[4] S. B. N. C. D. Wunsch, “A general method applicable to the search
for similarities in the amino acid sequence of two proteins,” Journal of
Molecular Biology, 1970.

[5] “Smith-waterman algorithm.” [Online]. Available: https://en.wikipedia.
org/wiki/Smith-Waterman algorithm

[6] R. S. A. Sirasao, E. Delaye and S. Neuendorffer, “Fpga based opencl
acceleration of genome sequencing software,” in 2017 IEEE 17th
International Conference on Bioinformatics and Bioengineering (BIBE),
vol. 128, no. 8.7, 2015, p. 11.

[7] de Oliveira, F. F., Dias, L. A., Fernandes, and M. A. C., “Parallel
implementation of smith-waterman algorithm on fpga,” bioRxiv,
2021. [Online]. Available: https://www.biorxiv.org/content/early/2021/
07/27/2021.07.27.454006

[8] X. Chang, F. A. Escobar, C. Valderrama, and V. Robert, “Optimization
strategies for smith-waterman algorithm on fpga platform,” in 2014
International Conference on Computational Science and Computational
Intelligence, vol. 1, 2014, pp. 9–14.

[9] “Xilinx Downloads.” [Online]. Available: https://www.xilinx.com/support/
download.html

[10] “Vitis HLS Introductory Examples.” [Online]. Available: https://github.
com/Xilinx/Vitis-HLS-Introductory-Examples

[11] “Fpga smith-waterman.” [Online]. Available: https://gitlab.com/
kingma1999/fpga-sw

8

http://dornsife.usc.edu/assets/sites/516/docs/papers/msw_papers/msw-042.pdf
http://dornsife.usc.edu/assets/sites/516/docs/papers/msw_papers/msw-042.pdf
https://en.wikipedia.org/wiki/Smith-Waterman_algorithm
https://en.wikipedia.org/wiki/Smith-Waterman_algorithm
https://www.biorxiv.org/content/early/2021/07/27/2021.07.27.454006
https://www.biorxiv.org/content/early/2021/07/27/2021.07.27.454006
https://www.xilinx.com/support/download.html
https://www.xilinx.com/support/download.html
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples
https://gitlab.com/kingma1999/fpga-sw
https://gitlab.com/kingma1999/fpga-sw

	Introduction
	Background
	Related Work
	Architecture
	Implementation
	Results
	Conclusion
	Recommendations
	References

