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Abstract—In this work the automated numerical design of an 120°
MMI-based downconverter is discussed. A program has been
made which is able to quickly estimate the output of thousands
MMI’s based on one simulated Poynting field. A figure of merit
has been defined to, after simulation in multiple dimensions,
characterise the performance of the estimated MMI outputs
and to select the dimensions with the optimal performance.
An MMI in Al3O2 was autonomously designed and optimised
in approximately eight hours. The average phase error after
calibration went as low as 0.08° for a noiseless system and stayed
below 1° for systems with an SNR above 45 dB.
Index Terms—Downconverter, MMI, Automation, Al2O3

I. INTRODUCTION

Mach Zehnder interferometers (or MZI’s) play an very im-
portant role in optics. These can be used to determine phase
variations between two collimated beams of light, and MZI’s
have been used in, among others: Sensors [1], wavemeters
[2], modulators [3], and quantum computing [4]. MZI’s are
typically made with ”two inputs-two outputs” (or 2x2) optical
couplers [5]. This last elements however poses a problem as it
is impossible to directly characterise the aforementioned phase
variation. Figure 2b shows the phasor diagram of the output
of a 2x2 coupler. An alternative option is shown in [6] in the
form of a 3x3 coupler, specifically a 3x3 MMI (or multi mode
interferometer) based downconverter. By using a coupler with
three output ports, evenly spaced with a 120° phase shift at
the outputs, it becomes possible to uniquely define the output,
see figure 2a.
A disadvantage, however, is that the design of such 3x3
MMI’s is typically numerically determined and that it is
very dependent on the specifications of the system in which
it is to be integrated. To make the use of these 3x3 MMI
more accessible for any system, we created a program that
can simulate and optimise a wide range of MMI’s and we
introduced a novel figure of merit to estimate the performance
of these MMI’s. First, this figure of merit is defined in
section II, followed by the theory of taking measurements and
doing calibrations in section III. Then a small section about
the Poynting field approximation and section V in which
a method is presented to optimise an MMI given a certain
MMI width. In section VI the performance of an optimal
MMI, designed for use in Al2O3, is evaluated by varFDTD

simulations including the addition of noise to simulate a lab
environment.

The general design of the proposed downconverter can be seen
in figure 1. Please note that, although the design shows a 3x3
MMI, the middle input (left in figure 1) is not connected.
Figure 12 shows an example of the typical behaviour of a
3x3 MMI for different input phase differences. Finally, a flow
diagram of and a link to the full program made in this report
can be found in appendix VII-B.

Fig. 1: The general design of the downconverter, with inputs
to the left and output to the right. a) MMI body, b) Taper, c)
S-bend

II. FIGURE OF MERIT

The figure of merit used to evaluate the performance of the
MMI’s is essentially the summed difference of the ideal and
simulated output phasors, see figure 2a. Mathematically, it is
defined as follows:

FoM = log10(
1

3
·
∑
i

∆phasori) (1)

With:

∆phasori = |2
3
· e−j( 2π

3 ·(i−1)) − Pi(ϕi) · e−j(ϕi−ϕ1)| (2)

Where Pi and ϕi are the amplitude and phase shifts of the
sinusoidal output signal of the three output ports and Pin is
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(a) 120° (3x3) MMI output phasors (b) 180° (2x2) MMI output phasors

Fig. 2: Comparison of 120° and 180° spaced phasors

the total power of the input signals. Please note that (ϕi−ϕ1)
is used instead of ϕi as this means that only the relative
phase shift is evaluated.

The parameters Ai and ϕi as used in equation 2 are determined
as follows:

ci =
Pi(0) + Pi(

2π
3 ) + Pi(

4π
3 )

3
(3)

ejϕi =

√
∆Pi − ej

2π
3√

e−j 2π
3 −∆Pi

(4)

ϕi = arg(ejϕi) (5)

Ai =
(Pi(0)− ci)

cos(ϕi)
(6)

With ∆Pi =
Pi(

2π
3 )−ci

Pi(0)−ci
and such that Ai > 0. Derivations for

the above equations can be found in appendix VII-C through
VII-E. Pi(θ) denotes the measured output power at port i and
the input phase difference θ and is defined as follows:

Pi(θ) = Ai cos (θ − ϕi) + ci (7)

At least three data points, with differing input phase
differences, are required to reconstruct the full output of an
MMI, as can be seen in the above equations. Those data
points are chosen specifically as Pi(θ) for θ = 0, 2π

3 , 4π
3 .

Consequently, three simulations must be run per MMI.

Finally, to make the figure of merit more accurately represent
the performance of an MMI that is actually fabricated, a
normal distribution with standard deviation σ can be used
to average the FoM around every point. This, assuming any
deviations in the production process take the shape of a
normal distribution, characterises the average performance of
the resulting MMI.

III. MEASUREMENTS AND CALIBRATION

The output powers also need to be interpreted as an input
phase difference θ. This can be done by constructing the in-
phase (I) and quadrature (Q) components from those output
powers and then computing the complex signal s = I +Q · j.
From this we can determine θ using the equations below [7]:

I = P2 − 0.5P1 − 0.5P3 (8)

Q =

√
3

2
· (0.5P1 − 0.5P3) (9)

θ = arg(s) (10)

Assuming an ideal design and fabrication, those outputs will
follow equation 7 with Pi(ϕi) = 2

3 and ϕi = 0, 2π
3 , 4π

3 . If
that is the case, then s = 1

2j e
(−iθ), as shown in [8], which

is a circle centered around the origin in the complex plane.
Unfortunately, an actually fabricated MMI can deviate from
the ideal, either by non-uniformly distributing the input power
over the ports, by deviating from the relative 120° phase shift
and/or by losses in the MMI. These deviation can be seen as
either a rotation, shift and/or partial scaling of the circle s,
see figure 3, taken from [7].

These deformation, here called ŝ, and the resulting errors in the
reconstruction of θ can be compensated by blind calibration,
assuming enough measurements have been done. The ŝ recon-
structed from the measured data points is fitted to an ellipse
and mathematically re-transformed to a circle after which the
transformation parameters become the calibration parameters.
The more measurements are done, the better the fit of ŝ and the
more accurate the calibration process. Any data points with a
known reference, i.e., with a known θ, can be used to improve
the above mentioned calibration by shifting the resulting angle
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after calibration, using least-squares optimisation between the
reconstructed θ̂’s and the known θ’s. This can resolve any
constant phase errors that can remain after calibration due to
inaccuracies in the fit of ŝ.

Fig. 3: Unit circle vs ellipse [7]

IV. POYNTING FIELD ESTIMATION

We used the characteristic that, for any MMI width,
the interference pattern in the MMI is a function of the
propagation length independent on the location of the MMI
end. Using this we can find the interference pattern of a given
length MMI by only simulating the longest MMI of interest.
Figure 4 shows a comparison between the Poynting fields
within a larger and shorter MMI. Notice how the Poynting
field in figure 4b is identical to the Poynting field before the
dotted line in figure 4a. Please note that the MMI ”length” is
parallel the propagation direction (x-direction in figure 1) and
the MMI ”width” is transverse to the propagation direction
(y-direction in figure 1).

By integrating the Poynting field at the location and width
of the taper interface, we can estimate the output power of
the MMI. This is an estimation as the integration yields the
power that enters the taper, and not necessarily the output
power. Now, by doing this integration for every point along
the x-axis of a long MMI we can estimate the output power
of many shorter MMI’s in the simulation time of only one.
The normalised output power for port i becomes:

Pi =

∫
Ti

S⃗xdh

Pin
(11)

Where
∫
Ti

is the integral over the output taper with i = 1, 2, 3
for the three output ports and Pin the total input power. Using
this method can speed up the simulations by a significant
factor approximately equal to the number of desired MMI
lengths per MMI width, which can easily range in the
thousands.

V. DESIGN

The general design of the proposed downconverter can be
seen in figure 1. It consists of three separate subcomponents,
which will be discussed here. All sub-components are

assumed to be of the same substrate material and height. The
first is the MMI body, seen as element (a) in figure 1. It is
the region in which the interference patterns are created that
determine the behaviour of the MMI. We chose to the shape
to be a rectangular cuboid with symmetric port locations, but
it can be any shape that allows for the wanted interference
patterns [9].

The second subcomponent is the taper, seen as element (b)
in figure 1. These can be used to maximise the energy
transfer between the waveguides/s-bends and the MMI body,
by matching the mode fields at the interface. Essentially tapers
are waveguides with slowly increasing or decreasing width
[10]. The width and location of the taper on the MMI side
are determined by optimising the power overlap between the
fundamental TE mode in the taper with the TE3 mode in the
MMI. This is done in simulation, for which the Lumerical
FDE solver is used. The efficiency of the taper itself depends
on the length and shape of the taper. The taper shape is set by
a variable m such that the shape is proportional to the taper
length (in the x-direction) to the power m. See figure 5 for
examples of the aforementioned shapes [11]. This variable m
and the taper length are determined by sweeping over both
and choosing the combination that results in the shortest taper
with an efficiency equal to or greater than a user defined value.

Fig. 5: Three taper shapes. Left to right: m = 0.5, m = 1 and
m = 2

The third subcomponent is the S-bend. This is implemented to
prevent crosstalk between evanescent waveguides. In general,
the shallower the bend, the better the energy transfer [10]. The
program determines the shortest length for which the S-bend
can create the wanted height difference without a bend radius
smaller than the minimum bend radius of the waveguide. It
does so using the equation below:

L =
√
|∆H2 − 4 ·R ·∆H| (12)

With L the length (x-axis) and ∆H the increase in height (y-
axis) of the S-bend and R the minimum bend radius of the
waveguides [12].

VI. RESULTS

The following subsection shows the successful simulation
of an MMI. The program has been run using the input
parameters in table I. The output MMI validations are created
by simulating 180 samples at increasing phase difference
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(a) Full-side MMI (b) Shortened MMI

Fig. 4: Comparison of Poynting fields inside MMI’s

between two sources of equal amplitude placed at the inputs,
ranging from 0 to 2π radians. These validation simulations
were done by varFDTD simulations. Blind calibration test
results are determined without access to the set of input phase
differences, while the relative calibration is done with access
to full set of input phase differences. These input phase
differences were used to remove any remaining constant
phase shift after calibration by least squares fitting the
reconstructed data with the input data, see section III above.
The automation program, which run consisted of 81 MMI
width points and 3779 MMI length points took approximately
eight hours to complete.

TABLE I

Set parameter Value
Wavelength 1.985 [um]
Waveguide width 1.5 [um]
Minimum waveguide bend radius 300 [um]
Minimum waveguide spacing 19.85 [um]
Substrate height 0.55 [um]
Production σ 0.1 [um]
Substrate material Al2O3
Cladding material SiO2 (Palik)

The resulting figure of merit scores, with and without
probability distribution, can be seen in figure 9 (please note
that some of the figures have been placed in appendix VII-A
for better readability). One of the first things the reader might
notice is that the FoM results with the probability distribution
looks slightly ”burrier”. Which makes sense as a convolution
of an image with a Gaussian is literally a blur filter. This also
shows that using the probability distribution can be useful
for the elimination of ”unstable points”, meaning points
that might have a good FoM at their exact dimensions, but
deteriorate quickly for a little shift in width and/or height of

the MMI. See figure 10 for an example. Please note that this
last figure is not made using the same system specifications
as compared to the rest of the results.

The output dimensions for the MMI with the best FoM
(with probability function) are listed in table II. Figure
11a shows the normalized output powers Pi for one period
of θ, simulated with varFDTD. One of the first things
the reader might notice when comparing these results to
11b, which shows the estimation as reconstructed from
the dimension sweep, is that the two do not share the
same amplitudes. The maximum powers for the simulated
and reconstructed outputs are 0.5451, 0.5225, 0.5268 and
0.4680, 0.4021, 0.3978, respectively. It is possible this is
due to the inclusion of the tapers, s-bends and output
waveguide in the validation simulation (which were omitted
in the sweep). The fact that P1 and P3, both of which are
connected to an s-bend, show a higher difference in amplitude
could support the aforementioned theory. The phase shifts
relative to P1 are more similar, being approx. 112° and 238°
for the validation and approx. 124.4° and 234.9° for the sweep.

TABLE II

Parameter Value
MMI width 14.6 [um]
MMI length 234.9 [um]
Taper width 4.056 [um]
Taper length 15 [um]
Taper m 2
Taper location 0, ±5.146[um]
S-bend length 132.017 [um]

A phase reconstruction diagram can be seen in figure 6. The
figure shows that both the blind and referenced calibration
systems do show improvements over the non calibrated output.
Figures 7 and 8 show this performance in more detail, as well
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as with the addition of noise. This noise was simulated in
Matlab as white Gaussian noise and placed directly on top of
the validation data, before the calibrations. The limit at high
SNR for the maximum phase error is shown to be approx.
8.83° without calibration, 0.30° with blind calibration, and
0.13° with referenced calibration. For the average phase error
these are approx. 3.97° without calibration, 0.17° with blind
calibration and 0.08° with referenced calibration. Noticeable
is that for both the average and maximum phase errors, the
difference between blind and referenced calibration becomes
very small around an SNR of 50 dB. This would mean that
for environments with an SNR up to this value, there is no
phase benefit to having access to any known θ as reference.
The maximum phase error at 50 dB SNR is approx. 1.86°
and the average phase error is approx. 0.56°.

Finally, figure 12 shows the Poynting fields and the outputs of
the MMI for a single source, and θ = 0, 2π

3 , 4π
3 . Notice how

the power is evenly distributed over the output ports when
only a single source is used and that there is always a single
highest output in the other images, corresponding with θ.

Fig. 6: Phase reconstruction for all three calibration schemes

VII. CONCLUSION

This report has shown that it is possible to automatically
design an 3x3 MMI based downconverter. Although there is
some deviation between the estimated and validated devices,
this is likely a good trade-off against the efficiency of the
program compared to manual design. With blind calibration,
which is the most likely method, the average error in
determining θ can be shown to be as low as 0.17°.

Being able to investigate a large range of dimensional points
also has the benefit of increasing the probability of finding
the global maximum instead of a local maximum for the
performance of the MMI. The significantly higher simulation
speed should allow for rapid prototyping and an interesting
prospect, which lay outside the scope of this report, might be

Fig. 7: SNR performance of optimal MMI. Showing the
average phase error for all three calibration schemes.

Fig. 8: SNR performance of optimal MMI. Showing the
maximum phase error for all three calibration schemes.

to manually fine-tune any generated MMI’s to possibly reach
even better results.
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APPENDIX

A. Result figures

(a) FoM without the probability distribution (b) FoM with the probability distribution

Fig. 9: Figure of merit results

(a) FoM (b) FoM with the probability distribution

Fig. 10: Figure of merit results zoomed around unstable point
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(a) Created by varFDTD simulation
(b) Reconstructed from dimension sweep

Fig. 11: Output power versus input phase difference

(a) Single source (b) 0° phase difference

(c) 120° phase difference (d) 240° phase difference

Fig. 12: Poynting fields in the MMI with different input phase differences
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B. Program overview and code

https://gitlab.utwente.nl/optical-sciences/automated-3x3-mmi

Fig. 13: A flow diagram of the automation program

C. Derivation equation 16: ”c” parameter

The derivation for equation 16 starts with the following cosine property:

cos(x) + cos(x− 2π

3
) + cos(x− 4π

3
) = 0 (13)

Now, using equation 7:

Pi(0) + Pi(
2π

3
) + Pi(

4π

3
) = Ai cos(θ) + ci +Ai cos(θ −

2π

3
) + ci +Ai cos(θ −

4π

3
) + ci

= Ai(cos(θ) + cos(θ − 2π

3
) + cos(θ − 4π

3
)) + 3ci

(14)

Combining this with the property in equation 13 gives:

Pi(0) + Pi(
2π

3
) + Pi(

4π

3
) = Ai · 0 + 3ci (15)

From this directly follows that:

ci =
Pi(0) + Pi(

2π
3 ) + Pi(

4π
3 )

3
(16)

D. Derivation equation 4: ”ϕ” parameter

Using Euler’s formula and equation 7:

Pi(θ) =
Ai

2
(ejθ · e−jϕ + e−jθ · ejϕ) + ci (17)

Now, assume:

∆Pi =
Pi(

2π
3 )− ci

Pi(0)− ci
(18)

Combining the above equations gives:
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∆Pi =
A
2 · (ej

2/pi
3 · e−jϕ + e−j

2/pi
3 · ejϕ)

A
2 · (ej·0 · e−jϕ + e−j·0 · ejϕ)

=
ej

2/pi
3 · e−jϕ + e−j

2/pi
3 · ejϕ

e−jϕ + ejϕ

(19)

For ease of notation, let’s say ejϕ = x and ej
2π
3 = y, then continuing with the above equations gives:

∆Pi =
x−1 · y + x · y−1

x−1 + x

∆Pi =
y + x2 · y−1

1 + x2

∆Pi · (1 + x2) = y + x2 · y−1

∆Pi +∆Pi · x2 = y + x2 · y−1

x2 · y−1 −∆Pi · x2 = ∆Pi − y

x2(y−1 −∆Pi) = ∆Pi − y

x2 =
∆Pi − y

y−1 −∆Pi

x = ±

√
∆Pi − y

y−1 −∆Pi

(20)

Which, by re-substituting the values for x and y, and assuming x to be positive, results in:

ejϕi =

√
∆Pi − ej

2π
3√

e−j 2π
3 −∆Pi

(21)

E. Derivation of equation 6: ”A” parameter

From equation 7:

Pi(0) = A cos(−ϕ) + c (22)

Using the cosine property cos(x) = cos(−x) gives:

Pi(0) = Ai cos(ϕ) + ci (23)

From which directly follows:

Ai =
(Pi(0)− ci)

cos(ϕi)
(24)
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