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Abstract 
Finding a pig in a large herd is tedious as pigs are housed in large groups and look-alike 

for humans. This project aims to solve the problem of finding pigs in a shed using 

computer vision. The problem is split up into acquiring an image of pigs, detecting, 

identifying and locating pigs. The focus is on the identification of pigs. A method similar 

to human face recognition is proposed where new pigs can be added without retraining. A 

dataset of 105 individual pigs is collected to train the network and evaluate the method. 

The evaluation shows that ten pigs seen during training of the embedding network can be 

identified with an accuracy of 87.8%. Identifying pigs not seen during training of the 

embedding network can be identified with an accuracy of 55.5%. There are still 

limitations when detecting pigs in another perspective or later in time than added to the 

identification system.  
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1. Introduction 
 

1.1 Context 
Pig farms can nowadays hold thousands of pigs. These large amounts of animals bring 

challenges. As pig herds grow even further, it is almost impossible for farmers to assess 

individual animals to assure their well-being. The farmer might need to know where a 

particular pig is when the pigs need to get diagnosed or treated for an illness. At this 

moment, finding a pig in a barn is cumbersome since someone has to search for the 

animal himself, and to humans, pigs look alike. Automating this task could reduce a 

person’s workload. A system that would find a particular animal should know which pig 

is which and where the pigs are located in the bard. The system should thus be able to 

detect, identify, and locate the pigs inside the barn and navigate the farmer to this pig. 

This thesis focuses on the technology that can assign a location to an identified pig and 

not on navigating the farmer to a pig.  

 There are multiple technologies used for locating animals on farms. RFID sensors 

are one of these technologies used to identify pigs from short distances [1]. Wireless 

technologies are another type of technology used for identification and localisation.  

Bluetooth [2] and WLAN [3] are wireless technologies that can be used from further 

distances to locate cows inside a barn. Besides wireless technologies, computer vision can 

also be used to identify and locate pigs. Using cameras over wireless technologies have 

the advantage that it is non-invasive. For this reason, this thesis focuses on computer 

vision-based solutions.  

 

1.2 Problem Definition 
The problem of locating pigs will be split up into multiple steps. The steps are the 

different steps a system has to do to locate pigs. The different steps are visualised in 

Figure 1. The first step is capturing images or videos of the pigs. Different types of 

cameras can be used for this. The second step is detecting each pig in the video. Each pig 

in the video should be isolated so that only one pig is identified at a time. Identifying pigs 
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is the third step of the process. The last step is obtaining the actual location of the pigs 

inside the shed.  

 

 
Figure 1: Visualisation of four steps 

 

 

1.3 Challenge 
The literature shows that the existing methods used for identifying pigs using computer 

vision can only identify pigs that it has been trained on. This is unsuitable for real-world 

applications where pigs are continuously added and removed from the group. The main 

challenge of identifying pigs using computer vision is that it should work in a setting 

where pigs are continuously added and removed from the group. The main challenge is to 

add pigs to the identification system without training again. 

 

1.4 Research Questions 
The main research question of this project is: 

 

“How can pigs be identified in a real-world application where pigs are continuously 

added and removed from the group?” 
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The main research question is split up into multiple research questions. These research 

questions will be answered using a prototype of the proposed methods. During the 

evaluation of the prototype, the following research questions will be answered:  

  

“How does our identification method compare to the existing method?” 

“How well can our identification method identify pigs not seen during training?” 

“How does our identification method perform on newer data?” 

“How does our identification method perform in other camera perspectives?” 

 

 

1.5 Structure 
This thesis starts with a literature review to identify what has already been done and the 

shortcomings. A prototype based on this is made to identify if the technologies found suit 

our purpose. This is described in the technology exploration chapter. A dataset of pig 

heads is collected for evaluation of our identification method. The data collection is 

described in the data collection chapter.  Experiments are done using this collected dataset 

to answer the research questions. These experiments are described in the method chapter 

and their results in the results chapter.  
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2. Literature Review 
A literature review is done to review what prior work has been done. There is not yet a 

system that can identify and locate pigs using computer visions. However, the different 

parts of the problem are done. This literature review examines the four steps explained in 

the introduction and evaluate their suitability for our application. The five questions that 

are answered in the literature review are:  

 

“What cameras are used to capture the pig?” 

“How can pigs be detected in an image?” 

“How can individual pigs be identified?” 

“How can the location of an individual pig be determined?” 

“Are the existing methods good enough for our purpose?” 

The type of camera that should be used will be determined by reviewing what type of 

camera other studies used for pig detection and identification. The pig detection question 

will be answered by looking at studies that focused on detecting pigs in a video or image. 

Identification and verification will however review studies of pigs, other livestock 

animals and humans. Localizing the pigs focuses on calibrating the cameras. Search terms 

are chosen based on these topics. The following search terms are used: PIG 

DETECTION, PIG FACE RECOGNITION, ANIMAL FACE VERIFICATION, 

ANIMAL BIOMETRIC VERIFICATION, LIVESTOCK BIOMETRICS, LIVESTOCK 

BIOMETRIC VERIFICATION, CAMERA CALIBRATION, AUTOMATIC CAMERA 

CALIBRATION. Google Scholar is used as database to search in. The articles of the first 

five pages are selected on the title, abstract, peer review status and availability in the 

University of Twente library. A snowball method is used, with the starting point being the 

literature selected using the search terms. The literature review should indicate how 

individual pigs can be captured, detected, identified and located and if these methods are 

good enough for our purpose. 
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2.1 Capture 
Capturing the pigs in digital content is the first step in identifying pigs using computer 

vision, and different types of cameras can be used for this. This section will review 

different cameras. The technology chosen to capture the pigs influences the performance 

of the identification. There are multiple cameras besides the standard RGB camera that 

can be found in many consumer products. These RGB cameras can capture images very 

similar to what the human eye can see. However, some cameras can capture depth, 

thermal information, or perform very well in low light conditions. Each type of camera 

has its pros and cons, and every camera is suited for different applicants. A camera will be 

selected to identify pigs in a pig shed. The cameras that will be considered are an RGB 

camera, depth camera, infrared camera for thermal imaging and an infrared camera for 

night vision.  

 The environment in which the camera will be used affects the camera choice. The 

camera will be used in a pig shed which can have some problematic conditions for 

capturing the pigs. According to [4] and [5], light conditions inside a pig shed are 

challenging. Sudden light fluctuations, direct sunlight and low light conditions can affect 

how well the camera can capture the pigs. The second major challenge mentioned in 

paper [4] is object deformations and occlusions. Insects might corer the lens, or pigs 

might occlude each other when they are close together. Selecting the right camera might 

help overcome these challenges. 

 Several studies are done where an image or video is used to detect pigs. The 

camera used for capturing the data in these studies and their results can help determine a 

suitable camera. Most of the cameras used in pig detection and identification papers are 

RGB cameras. Thermal cameras are not used in pig detecting papers. However, thermal 

cameras are used to measure the pigs' temperature to detect diseases [an overview of]. 

Thermal cameras for detection is, in contrast to pigs, used for detecting cows [6], [7]. 

Detection cows using thermal cameras seem to perform well. However, it is expected that 

the performance for pigs is less. This is because pigs tend to get closer to each other than 

cows. This might result in the pigs becoming a blur on the thermal camera. Depth 
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cameras are used quite frequently, especially in recent years. All depth cameras are used 

in combination with either an infrared camera or an RGB camera. The depth information 

is used for both detecting pigs using a threshold or when in combination with an RGB 

camera for vision in the dark. The depth camera's used in the studies were either a 

Microsoft Kinect or an Intel RealSense. Two studies that used a Kinect [8], [9] mentioned 

that the Kinect has poor depth measurements at distances larger than 4 meters. Depth 

information is also used to overcome low light conditions, as seen in [10], which is used 

in combination with an infrared camera. Challenging light conditions can also be 

overcome using a somewhat simpler solution which is an infrared security camera. The 

data from an infrared camera, which is a grayscale image, is easier to process while still 

performing well at detecting pigs in low light conditions [5]. The Infrared cameras used in 

the two studies are security cameras that automatically switch between RGB and infrared, 

based on the lighting conditions. Although the camera switches between RGB and 

infrared, a color image might not be needed at all. Pig face recognition, as proposed 

in[11], performed significantly better on grayscale images compared to RGB images. It is 

expected that the Kinect and RealSense depth cameras, and thermal cameras are not 

suitable for identifying pigs. The depth resolution of the Kinect and RealSense are not 

high enough to see detail about the pigs [8], [9].  

 Lighting conditions inside a pig shed seem to have a strong influence on the 

camera choice. Some studies use depth cameras to overcome this, while others use 

infrared cameras. Footages of both camera types seem to perform well when it comes to 

detecting pigs in low light conditions. RGB cameras perform well in a room with good 

lighting. However, they perform poorly in difficult lighting conditions. The performance 

of thermal cameras in detecting pigs is unknown; however, it is expected to perform 

poorly since pigs tend to be close together. While depth cameras perform equally as 

infrared cameras, they might not be the best option. Accessible depth cameras such as the 

Kinect or RealSense are not designed for harsh conditions such as a pig shed, in contrast 

to security cameras. Using a security camera that can capture RGB and infrared for pig 

identification seems to be the best solution. 
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2.2 Detection 
The pigs or part of the pigs in the captured image have to be detected before they can be 

identified. This is because later on, the identifier should identify each pig separately. This 

section will review different detection and segmentation methods. The image has to be 

cropped in such a way that there is only one pig in the image. This can either be done 

using detection or segmentation. Detection deals with detecting every instance of a pig in 

an image and drawing a bounding box around every pig. This bounding box can be used 

to crop the image. Segmentation identifies every pixel if it belongs to an instance and cuts 

the pig out along its contours. There are numerous ways to segment or detect pigs in an 

image, for example, by thresholding, edge detection or object detection using machine 

learning. There have been done quite some attempts at segmenting and detecting pigs, and 

they will be reviewed to choose the right method to identify later and locate pigs.  

 Background subtracting can be used to separate pigs from the background and uses 

multiple images to separate the foreground from the background. McFarlane and 

Schofield [4] used image differencing with respect to the background and a Laplacian 

operator to detect pigs in 1995. Although the method used a low-resolution camera, it still 

performed well on single piglets.  

 Thresholding and the gaussian mixture model are two other techniques that can be 

used to separate the foreground and background. The thresholding technique either can 

threshold the color intensity or depth in case a depth camera is used. Thresholding the 

color intensity will block darker colors. In the case of pigs in a pig shed, the pigs will be 

segmented from the background since pigs are usually brighter than the background. This 

thresholding technique based on color intensity can be seen in [12] and [13]. Both papers 

use a dynamic threshold value since lighting conditions have much influence on the 

threshold value. After thresholding the image, an ellipse fitting method is done in [13] to 

actually detect a pig, while in paper [12], only the center of a blob is calculated. 

 Depth information from a depth camera can also be thresholded to detect and 

segment pigs [9], [10]. The threshold is set between the distance between the camera and 

the pig, and the camera and the floor. This method is relatively simple compared to 
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thresholding the colour intensity and works excellent in various lighting conditions. The 

accuracy of detecting pigs using a depth threshold performs well and can reach an 

accuracy of 94% [9], although that method combined depth thresholding with a 

convolutional neural network. The method proposed in [10] only used depth information 

and reached an accuracy of 79%. 

 The thresholding method seems to perform well at separating pigs from the 

background, however, there can be problems when pigs get too close to each other, and 

multiple pigs are detected as one [12]. 

 A gaussian mixture model can be used to separate the foreground and background 

besides thresholding. The Gaussian mixture model, or GMM,  can, for instance, be seen 

in [14], where it is combined with a dyadic wavelet transform. This segmentation was 

then used to track the pigs with a tracking error of 5 percent. The Gaussian mixture model 

is used as well in paper [8], where it is used in combination with a convolutional neural 

network. This paper provided a method on how two pigs that are close to each other can 

be separated. The problem with background subtraction is that if two pigs are close to 

each other, they will be segmented as one pig. The method in paper [8] first subtracts the 

background with a GMM, after which a convolutional neural network detects the 

individual pigs. It is expected that all methods that use a foreground and background 

separation technique suffer from the problem that multiple pigs that are close to each 

other will be segmented as a whole and thus be detected as one pig.  

 Another method to detect and segment pigs in an image is by using a convolutional 

neural network, or CNN in short. This learning-based approach uses an artificial neural 

network to analyse images. There are different approaches for object detection, for 

example; Single Shot Detector (SSD), You Only Look Once (YOLO), RefineDet, 

RetinaNet, R-FCN, R-CNN, and Faster-R-CNN. Approaches like SSD and YOLO give a 

bounding box around the detected object, while R-CNN and Faster-R-CNN provide a 

region of interest. These approaches have different accuracies and speeds between which 

a trade-off has to be made. A higher accuracy generally means a lower speed. In paper 

[15], an approach for detecting pigs and their posture is explained using a Faster-RCNN 
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method. This approach performed well at detecting pigs with a 97% precision. However, 

it did not perform well at detecting the pigs' posture. A comparison between R-FCN, 

Faster-RCNN and SSD is made in [5] regarding speed and accuracy while detecting pigs. 

SSD has the highest accuracy of the three while also being the quickest. A custom 

convolutional neural network is proposed in [16] and which has a precision of 99% at 

detecting pigs and a recall of 95%. This approach detects not only pigs but also four 

different parts of the pig's body, namely both ears, shoulder and back. This might be 

beneficial if, for example, the identification only needs a pigs face. The CNN based pig 

detection approaches seem to perform really well, even if pigs are close to each other or 

partly obstructing each other [5]. The downside of these CNN based approaches is that 

they are more complex compared to the previous methods and need to be trained.  

 Having a good pig detector is crucial for identifying pigs. If the system can't detect 

pigs and segment them, identifying will also not be possible. The different methods all 

have their pros and cons. Threshold methods are one of the easiest methods of detecting 

pigs in an image. Thresholding does show great performance with single piglets, 

however, it has difficulties to detect individual pigs when they are close. This problem 

occurs on both thresholding depth and color information. Background subtraction using 

GMM has the same problems as thresholding. Convolutional neural networks perform 

great and can even detect different parts of the pig's body. The advantage of this is that 

only the pig's face can be detected, which might be beneficial for identification. CNN's 

still perform well in different lighting conditions and have much fewer difficulties if pigs 

get close to each other. The downside of a CNN is that it is a much more complex method 

of detecting pigs. Considering the importance of detecting in the whole system, a CNN 

will most likely be the best method.  
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2.3 Identification 
After a pig is detected in an image, it has to be identified. This way, the system knows 

which pig is which. This can either be done by identification or verification method. This 

information can later be used to determine the location of a particular pig. There are 

multiple ways of identifying and verifying a pig. While some methods use markings or 

ear tags to identify [17], others use face recognition to identify a pig [11], [18]. 

Identifying a pig using face recognition, or using the pig's whole body, is the preferred 

way to identify pigs. Since pig identification using computer vision is not very common, 

methods for identification and verification of other livestock animals will be reviewed as 

well as identification and verification for people.  

 Pig face recognition systems seem to perform great although pigs look the same for 

people. A comparison between three different methods is made in paper [18]. The 

comparison between fisher face, VVG and a custom CNN is made. FisherFace and VVG 

are two methods that are used for human face recognition. They showed that a custom 

CNN outperformed the two human face recognition methods, and the CNN reached an 

accuracy of 97%. The CNN was trained on ten pigs using over 1500 images. These 

images were closeups of the pig's faces. A visualisation of what regions the network 

learned most shows that the system looks primarily at the forehead and nose. A 

visualization of the learning regions can be seen in Figure 2. 

 
Figure 2: Close up of pig face and visualization of learning regions [11] 
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Another study [11] that also trained a CNN to recognize pig faces show a similar map of 

what the network looks at. These regions can also be visible from a top view, which might 

allow for face recognition using a top view. Using a CNN to identify pig faces seems to 

work well. The papers show that face recognition for pigs is possible. The networks of 

both papers were trained on ten particular pigs. This means that these networks won't 

allow for more pigs to be added or changed for different pigs. For every new pig added, 

the network has to be trained again, which is not feasible for real-world usage. A 

verification method should be able to verify pigs without training again, however there 

are no studies found that focus on pig verification.  

 A different approach for pig face recognition is presented by Wang and Liu [19]. 

Instead of using a network with an output for each pig, they trained a network that outputs 

embeddings where similar pigs are grouped together. This is done using the triplet loss 

function in combination with a full-connected layer. In this study 28 pigs are used to train 

the network and these 28 pigs are also used to test it. This is done by splitting it into 200 

train images per pig and 50 test images. The grouped embeddings are classified using a k-

nearest-neighbour (KNN) classifier. Six different networks are tested, and the 

classification accuracy for the different networks range between 82% to 97%. This is a 

similar accuracy as the previous two pig face recognition papers. While the performance 

is similar, this approach does have an advantage over the previous two. It might be 

possible to add new pigs to this network because it does not have a fixed network output 

for each pig or use it as a verification method. It should be noted that this research was 

published during the project.   

 Verification of cows can be done using the cow’s muzzle because the muzzle 

pattern of a cow is a unique biometric characteristic for cows[20]. The method proposed 

by Kumar et al. [20] matches the muzzle features from test images with the features from 

a stored image. Matching is done using a one-shot similarity and incremental first-class 

SVM learning model. The method yields an accuracy of 96.87% tested on 500 cows. It is 

not expected that muzzle images can be used for recognizing pigs. Another technique of 

identifying cows is using face recognition. A 3D face recognition system is proposed by 
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Yeleshetty et al. [21]. A point cloud of a cow's face is captured using two 3D cameras. A 

point cloud of a test image is compared with a point cloud in the point gallery using the 

RMSE after aligning the two point clouds. A set of 32 cows with 5 point cloud per cow 

can be identified with an accuracy of 99.53%. This method seems to work well for 

identifying cows nearby. However, it is expected that the resolution of a point cloud 

obtained in an overview perspective of a barn is not high enough for identification. A 2D 

face reidentification is demonstrated by the authors of [22], where a single view 

reidentification is compared with a multi-view reidentification. They trained a CNN that 

outputs embeddings. These embeddings can be classified using a KNN with an accuracy 

of 74.8% for a single view and 89.1% for a multi-view. This is lower than 3D face 

recognition. However it does not require a 3D camera.   

 Face identification and verification is most seen for humans. One of the better face 

recognition methods is Google’s Facenet [23]. FaceNet uses a deep learning method that 

calculates embeddings from face images. Embeddings of similar identities are grouped 

together. This is done by using a triplet loss function where similar identities are brought 

close together while different identities are brought further apart. These clusters are 

created by training a network using triplet loss. Images of similar identities are brought 

close together, while images of different identities are brought further apart. This method 

is used in Wang and Liu’s pig face recognition paper [19]. However, FaceNet is trained 

on 100 to 200 million images of 8 million different identities. This results in a network 

that can distinguish images not seen during training. The embeddings are verified by 

thresholding the Euclidian distance between two embeddings. Identification is done by 

using a k-nearest-neighbour classifier. FaceNet reaches an accuracy of 99.6% on the 

Labeled Faces in the Wild (LFW) dataset. Face verification using the triplet loss function 

is also presented by Parkhi et al. [24] with similar results. However, a much smaller 

dataset of 2.6K identities is used instead of the 8M identities used for facenet. Another 

face verification approach, called deepface, is presented by researchers at Facebook [25]. 

Deepface uses 2D and 3D face alignment to get a frontal view of a person's face. This 

frontal view is verified using a Siamese neural network, two similar neural networks that 
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verify two images based on the similarity. Deepface reaches an accuracy of 97.35% on 

the LFW dataset, which is lower than facenet. The deep learning verification methods of 

livestock animals and humans have in common that embeddings are calculated from two 

images that are compared for verification.   

 The reviewed pigs' identification methods can identify pigs with high accuracy. 

However, these methods can only identify pigs that are seen during training. Verification 

methods for livestock animals and humans can identify identities not seen during training 

with high accuracies. Using triplet loss to train an identification or verification network 

seems to be one of the better methods for human face verification. The triplet loss 

function is also used for pig face recognition [19], but it was tested on the same pigs as 

trained. It is expected that the triplet loss method can also be used for identifying or 

verifying pigs not seen during training. 

  

2.4 Localization  
The position of a pig in the barn has to be determined once a pig is identified. After 

identification, the system knows where each pig is on the image. This pig’s location on 

the image is however not the same location as in the shed. An understanding of the 

camera and how the camera is positioned in the world is needed to calculate the actual 

position of the pigs inside the shed. Methods to get this understanding will be reviewed in 

this section.  

 The camera can be modelled using the camera pinhole model to get a better 

understanding of the camera and how it relates to the world. This camera pinhole model 

describes the mathematical relationship between a point in 3D space and its projection 

into the image plane. This pinhole camera model both has intrinsic and extrinsic 

parameters. The extrinsic parameters describe the rotation and translation of the camera. 

The intrinsic parameters include camera characteristics such as the focal length, optical 

centre and skew coefficient. Both the extrinsic and intrinsic parameters can be expressed 

as matrixes that can be used to calculate world coordinates from pixel coordinates and 

vice versa. Lens distortion is missing in the pinhole camera model. A perfect lens is 
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assumed in this model that has no distortion. However, not all lenses are perfect, and lens 

correction has to be applied if the distortion is too much and affects performance. 

 Estimating the intrinsic parameters is also known as camera calibration. The most 

used method is Zhang’s method [26]. This method is designed to be used by people 

without special knowledge of camera calibration. The camera can be calibrated using a 

picture of a checkerboard with a known size. At least two images are used to calculate the 

intrinsic parameters. The extrinsic parameters can be calculated using the checkerboard as 

well. In this case, the extrinsic parameters express how the camera is positioned in 

relation to the checkerboard. Zhang's method is implemented in the Matlab camera 

calibrator in combination with a model for lens distortion.  

 While Zhang’s method is the most used, there are other methods to calibrate a 

camera. Vanishing points can be used to determine both the intrinsic and extrinsic 

parameters [27]. These vanishing points are obtained by selecting parallel lines in an 

image. The perspective view will cause parallel lines to intersect. Intersections in three 

orthogonal directions are needed to calculate the intrinsic or extrinsic parameters. 

Calibrating the camera using vanishing points is less accurate than Zhang’s method. 

However, the advantage is that there is no need for a checkerboard and calibration can be 

done after taking the images. Calibrating a camera using vanishing points does mean that 

parallel lines in three orthogonal directions should be visible in the image. This might not 

be the case if a top view which means that the vanishing point calibration might not be 

feasible. The vanishing point method also assumes that there is no distortion in the image.  

 The previous two methods require manual interaction to calibrate the camera. 

Automatic calibration of the intrinsic parameters can be achieved using a convolutional 

neural network. DeepCalib can calibrate wide field-of-view cameras automatically [28]. 

This method does perform not as good as Zhang's method, but it can be used if manual 

calibration using a checkerboard can not be done. 

 There are multiple ways to calibrate a camera manually or automatic. However, 

there is still a challenge when determining the position of pigs. That challenge is 

determining the coordinate system in which the location of the pigs will be expressed. 
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The methods described previously choose a world coordinate system somewhere on the 

image. However, in the case of locating pigs, the world coordinate system might be 

somewhere not visible on the image. If multiple cameras are used they should use the 

same coordinate system. A ground plan of the pig farm might be needed with the location 

of each camera and a coordinate system.  

 The camera used to identify pigs has to be calibrated to obtain the position of the 

pigs. This calibration consists of the intrinsic and extrinsic parameters. There are multiple 

methods of calibration of the intrinsic parameters. Zhang’s method is the most popular 

and seems to estimate the intrinsic parameters with high precision compared to others. 

Calibrating the extrinsic parameters are a bit more challenging because a world coordinate 

system has to be chosen somewhere in the pig farm that might not be visible on the 

image. Extrinsic parameter calibration is dependent on where the camera is installed in 

the farm, while the intrinsic parameters stay the same for every camera. Calibration of the 

extrinsic parameters can be done with Zhang's method in combination with a linear 

transformation to set the coordinate system to somewhere in the pig farm. Once both the 

intrinsic and extrinsic parameters of the camera are calibrated, the identified pigs can be 

located in the shed.   

 

2.5 Conclusion 
This literature review aimed to understand what methods are available that can identify 

and locate pigs using computer vision and assess whether these methods are suitable. Four 

sub-questions are answered to understand how the system can be made. Capturing pigs 

can be done using different cameras. Lighting conditions have an influence on how well 

the cameras can capture pigs. Security cameras with an infrared camera can capture well 

in difficult lighting conditions and the footage can be used to detect and identify pigs. 

This is why security cameras seem to be the best camera to captures pigs for detection and 

identification. A convolutional neural network can be used to detect the individual pigs in 

a video. CNNs can still detect pigs in different lighting conditions and if pigs get close to 

each other, which is why a CNN is the best technique to detect pigs. Besides detecting 
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pigs, CNNs can also be used to identify pigs. The proposed methods in the literature for 

capturing, detecting, and localization seem to be suitable for our application. However, 

the proposed methods for pig identification do not seem to be suitable. The proposed 

methods can only identify pigs that it has been trained on. The network has to be trained 

again in case new pigs are added, which is not feasible for a real-world application.  

Identification methods for other livestock animals and humans do seem to be suitable for 

identifying pigs. Triplet loss is a training technique seen in human identification and 

verification which is also used for identifying the same pigs as trained on. It is therefore 

expected that triplet loss can be used to identify and verify pigs not seen during training.  

 

 

  



 23 

3. Technology Exploration 
The technology found in the literature will be explored with the aim of identifying if and 

how they are suitable for our application. The literature review showed that identification 

of pigs is where could be improved upon the most. Pig detection is an essential step 

before identification can be done on our dataset which is why this chapter will also focus 

on pig detection. The research question if the technologies are suitable for our application 

will be answered using a research-through-design methodology [29]. Research through 

Design is a method that attempts to discover knowledge by doing design work. A 

prototype of pig detection and identification is made and evaluated. The outcome of the 

technology exploration is a detection and identification technique suitable for our 

application with the available data and hardware.  

 
3.1 Detection 
The literature review showed that a convolutional neural network seems the best option to 

detect pigs. There are many types of convolutional neural networks that can detect 

objects. For a detection method to be suitable for our application, it should be able to 

detect every pig in an image or video and should be able to do this real-time or close to 

real-time. A fast detector is eventually wanted to identify and locate the pigs in real-time. 

A comparison between different object detectors detecting pig faces is made in 

[19] between efficientDet, Faster RCNN, MobilenetV3-SDD, SSD, Tiny-YOLO v3 and 

YOLOv3. This comparison showed that tiny-YOLOv3 is the best balance between 

accuracy and speed. Tiny-YOLOv3 runs at 7.9ms with an average precision of 98.86%. 

An improved version of YOLO v3, YOLO v4, is presented in [30] and improves YOLO 

v3’s AP and FPS by 10% and 12% respectively.  Yolov4 tiny, the faster version of yolov4 

seems to be the best object detector for our purpose. Yolov4 tiny is trained using the 

existing dataset to evaluate if it is suitable for our application using the available data.  

Five existing datasets are used for the detection experiment. These datasets are all 

the available datasets found in the literature. All datasets consist of a top view or slightly 

angled view. An overview of the datasets and information can be seen in Table 1. An 
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example of each of the five datasets can be seen in Figure 3. The datasets are referred to 

using the numbers seen in table 1. This dataset consists of both RGB and infrared videos. 

The videos are annotated with points on the shoulder and tail of this pig and the pig’s ear 

tag number. Dataset 2 has the same shoulder-tail annotations as dataset 1 but has a point 

on each ear. Datasets 1 and 2 do not contain bounding box annotation. A bounding box 

could be calculated using the shoulder-tail annotation but is not done for training the 

detector. Datasets 3, 4 and 5 contain bounding box annotations which are used to train a 

custom detector. There are no datasets available with images of pigs' faces.  

 
Table 1: Datasets used for pig detection 

Dataset 
Number 

Data type Number of 
annotated 
images/frames 

Annotation type Reference 

1 Videos 15 videos of 30m at 
5fps 

Shoulder point, tail point, ID [17] 

2 Images 2000 images Shoulder, tail, and ears point [16] 

3 Images 297 images Bounding boxes and standing/lying 
position 

[15] 
 

4 Videos and 
images 

380 images Bounding boxes [31] 

5 Videos 12 videos of 1m at 
30fps 

Bounding boxes, behaviour and ID [32] 
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Figure 3: Examples of datasets. Top left) dataset 1, Top middle) dataset 2, Top right) dataset 3, Bottom 

left) dataset 4, Bottom right) dataset 5 

 
The data of datasets 3, 4, 5, and 8 manually annotated images of dataset 1 will be 

used to train a custom YOLO v4 tiny object detector. Bounding boxes of datasets 1 and 2 

could be calculated but are inaccurate and will not be used. In total, 1047 images are used 

containing 13.558 individual pigs. The images are split into 95% train and 5% test 

images. This split is done for each dataset separately. The detector is trained for 6000 

iterations. The mAP is calculated by dividing the intersection over the union of the 

predicted bounding box and labelled bounding box and thresholding this at 50%. The 

highest mAP is 82.1%. This is lower than reported in [19], however it seems to predict 

every pig correctly in Figure 4. The yolov4 tiny detector ran at 1.5 fps without the use of a 

GPU on a 2019 MacBook. 

 
Figure 4: Pig detection using yolov4 tiny 
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3.2 Identification 
Literature showed that the triplet loss could be used to identify or verify pigs not seen 

during training. This allows for identifying and verifying newly added pigs to the group 

without retraining a network. This section explains how triplet loss can be used, how 

different types of data influence a network trained using triplet loss and how various 

networks behave on data of pigs.  

 

3.2.1 Triplet loss function 
The identification system strives for an embedding where the distance between similar 

identities is small, and the distance between different identities is large. A prototype of 

such a system will be made using the MNIST handwritten database. The prototype aims 

to understand how triplet loss works and evaluate the feasibility of using the triplet loss 

function.  

 The triplet loss function uses three images to calculate the loss, hence the name 

triplet loss. The triplet loss function tries to bring an image of a pig (Anchor) closer to 

another image of the same pig (Positive) than an image of a different pig (Negative). This 

is visualised in Figure 5. This way, the network is trained to group embeddings of images 

with a similar identity.  

 
Figure 5: Triplet loss decreases the distance between Anchor and Positive, and increases the distance 
between Anchor and Negative [23] 

 

 

 

 



 27 

Bringing the positive closer to the anchor than the negative is formalised as follows, 

where alpha is a margin between the positive and negative pairs: 

 
||𝑓(𝐴𝑛𝑐ℎ𝑜𝑟) − 𝑓(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)||! + 	𝛼 ≤ 	 ||𝑓(𝐴𝑛𝑐ℎ𝑜𝑟) − 𝑓(𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)||! 

 

Three types of triplets could be generated: easy triplets, hard triplets, and semi-hard 

triplets. The three different triplets types are visualised in Figure 6. Moindrot [33] describes 

these three types of triplets as follows. 

- Easy triplets are triplets where the negative plus a margin has a larger squared 

distance to the anchor than the positive to the anchor and thus satisfy the constrain.  

- Hard triplets are triplets where the negative is chosen to have the minimum squared 

distance to the anchor and the positive to have the maximum squared distance to 

the anchor.  

- Semi-hard triplets are triplets where the squared distance between the negative and 

anchor is larger than the distance between the positive and anchor, but smaller than 

the distance between the positive and anchor plus a margin.  

 
Figure 6: Easy, Hard and Semi-hard triplets visualization [33] 

 



 28 

As shown in [23], the best results are from training using the semi-hard triplets. These 

triplets are selected using an online learning method because it is more efficient. The 

semi-hard negatives will be selected for all anchor positive pairs in a mini-batch. The 

semi-hard negatives are selected by creating a pairwise distance matrix of the embeddings 

of all images in a mini-batch. The loss value for a mini-batch is the average loss of all 

semi-hard triplets. The loss function for one semi-hard triplet is as follows: 

 
ℒ(𝐴𝑛𝑐ℎ𝑜𝑟, 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

= max(||𝑓(𝐴𝑛𝑐ℎ𝑜𝑟) − 𝑓(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)||!!	 −	||𝑓(𝐴𝑛𝑐ℎ𝑜𝑟) − 𝑓(𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)||!! + 	α, 0)	 

 

The max function combined with the margin ensures that only semi-hard triplets are used 

for calculating the loss. The mini-batches should be chosen large enough such that enough 

semi-hard triplets can be selected. Small batch sizes might result in a division by zero 

because there are no triplets of which the average loss could be calculated. 

 

3.2.1.1 Triplet loss example 
 The triplet loss function as explained above is implemented in TensorFlow and will 

be used to create a demonstrative example. The implementation of the triplet loss function 

in TensorFlow includes both selecting triplets as well as calculating the loss. 

TensorFlow’s documentation about the triplet loss function [34] will be followed mainly 

for this example. The MNIST handwritten digit database will be used instead of pigs 

because the MNIST database is a bit less complex and contains many images. The dataset 

is split into 80% train and 20% test images. These images are normalised and batched in 

groups of 32. A relatively small network is used and consists of two convolutional layers 

each followed by a max-pooling and dropout layer. This network has a 256-dimensional 

output vector which is L2 normalised. The network is trained for five epochs using the 

Adam optimiser with a learning rate of 0.001. Embeddings of the test set are obtained 

using the trained network. Principal component analysis is used to reduce the dimensions 

of the test embeddings from 256 to 2, such that the embeddings can be visualised. The 
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PCA visualisation of the test set embeddings before and after training the network can be 

seen in Figure 7.  

 
Figure 7: PCA of the test set embeddings before and after training of the network. Each colour represents 

a digit class. 

It can be seen in Figure 7 that similar digits of the test set are grouped after training. 

Note that the colours for each class are not the predicted classes but their actual class and 

is only used to evaluate the clusters.  

Although not all digits are grouped perfectly, it still does show that the triplet loss 

works as expected. The groups are much more distinct compared to before training. 

Actual performance measures are not calculated for this prototype because that is not the 

goal. Although the MNIST dataset is simple compared to pigs, it is expected that using 

the triplet loss function on pigs is feasible based on this triplet loss example.  

 

3.2.1.2 Identification and Verification 
The embeddings from the network trained using triplet loss do have to be identified or 

verified to assign identity to an image of a pig.  The embeddings of the same class or 

identity are closer together than embeddings of a different class or identity. This can be 

used to identify or verify the images. In the facenet paper [23] k-nearest-neighour (KNN) 
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is proposed for identification and a threshold on the distance between two embeddings for 

verification. These two techniques are possible because the Euclidian distance is reduced 

for similar identities and increased for different identities during training. KNN will 

assign the identity of the closest group to an embedding of unknown size. The main 

advantage of using KNN as classifier is that new instances can be added and removed 

easily without training, as KNN does not require training. Verification can be used to 

verify if the images of two pigs have the same identity. This can be done by settings a 

threshold on the distance between the embeddings of the two images. If the distance 

between the two is below the threshold, the pigs in the images are of the same identity. 

Opposite, if the distance is above the threshold, the pigs in the images have a different 

identity.  

 

3.2.2 Triplet loss on pigs 
The triplet loss example showed that the triplet loss function could be used to distinguish 

handwritten digits from each other. Distinguishing written digits is very different from 

distinguishing pigs from each other. Multiple experiments are done using an existing 

dataset found in the literature. These experiments aim to learn how different types of data 

and various types of networks influence the performance. The performance is evaluated 

using the result of a KNN classifier. This classifier uses the output of the triplet loss 

network.  

The data used for these experiments are videos from dataset 1. This dataset is used 

because it contains the identity of the pigs in each frame of the video. The videos of 

dataset 5 contain identities as well, but this dataset was not found yet during these 

experiments. Every 1000 frames, or 200 seconds, a snapshot of the video is made such 

that there is enough difference between each snapshot. The snapshots are cropped to each 

bounding box resulting in a separate image for every pig. The dataset is annotated using 

shoulder and back points from which the bounding boxes are calculated. In total, there are 

9 images per pig per video.  
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The images of video 6 are edited to evaluate different types of data. Only the 

images of one video are chosen such that quick iterations can be made. Four alterations 

are used. Namely, the calculated cropped images, manual cropped images, colored ear 

tags erased, and head cropped. Manual cropped images are used because the calculated 

bounding boxes are spacious. The ear tags are erased to test whether the networks can 

learn from the colored ear tags. In previous work [17], colored ear tags are used to 

identify and track pigs. Lastly, the pigs’ heads are cropped instead of the whole body. Not 

all frames are used for the head crop because the head is not always visible. An image of 

each of the four alterations can be seen in Figure 8.   

 
Figure 8: Four data alterations. From left to right: calculated bounding box, manual cropped bounding 

box, ear tag erased, head cropped 

 

Video 6 consists of 16 pigs, of which 9 images are used per pig. These images are split 

into a train, test and validation set. The train set is used for training the triplet loss 

network, and the validation set is used to monitor the training. The test set will again be 

split into a gallery and probe split. The gallery set is used to for the KNN identification of 

the probe set.  The gallery and probe are splits are done per image while the train, test, 

and validation splits are done per identity. The splits can be seen in Table 2.  

  



 32 

 
Table 2: Dataset split. Blue: Validation split, Green: Probe, Yellow: Gallery, Purple: Train 

Image 
Pig 
Identity                         

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1                                 
2                                 
3                                 
4                                 
5                                 
6                                 
7                                 
8                                 
9                                 

The experiments with different types of networks use the images of three videos. Videos 

1, 6, and 11 are chosen because this includes all three age types: nursery, early finishers, 

and late finishers. These videos are recorded during the day, and the pigs have a high 

activity according to the annotations of the dataset. In total, 27 pigs are used, each with 9 

images per pig. The dataset split is done similarly as the previous set. 25 pigs are used for 

training, 8 for the test set and 6 for the validation set. The test set is again split into a 

gallery and probe set.  

Similar to the previous triplet loss prototype, this prototype is made in TensorFlow 

and Keras. The images are loaded into TensorFlow and labelled according to the images’ 

folder. All images are resized to 96x96 pixels. This size is in the similar range as the other 

three studies about pig face recognition which used sizes of 64x64 [18], 96x96 [19], and 

128x128 [11]. The images are normalised to the expectations of the network. The 

different backbone networks that will be used are DenseNet, MobileNetV2, Inception, 

VGG, and ResNet. The data alteration experiments are done with the network that 

performs best. The convolutional neural networks used are pre-trained networks on 

ImageNet. These networks are available in Keras. The networks are used without a fully-

connected layer but use a 128-dimensional dense as the final layer, which is L2 

normalised. The semihard triplet loss function is used which is available in the 
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TensorFlow Addons library. The loss function handles both the triplet selection as well as 

loss calculation.  

After training, the embeddings of the gallery and probe sets are calculated. The 

gellery set is used to ‘train’ the KNN classifier. The number of neighbors used for the 

classification is set to 5. Evaluation will be done using the classification's accuracy, 

precision and recall metrics as well as the triplet loss of the train and validation set.  

The results of the experiments with the different networks can be seen in Table 3. 
Table 3: Results of network experiments 

Network Data Triplet loss 

train after 

training 

Triplet loss 

validation after 

training 

KNN Accuracy  KNN 

Precision  

KNN Recall  

DenseNet121 Calculated crop 

Video 1, 6, 11 

0.064 0.978 0.46 0.63 0.46 

 

MobileNetV2 Calculated crop 

Video 1, 6, 11 

0.044 0.998 0.4 0.63 0.4 

InceptionV3 Calculated crop 

Video 1,6, 11 

0.757 0.999 0.27 0.19 0.27 

VGG16 Calculated crop 

Video 1,6, 11 

0.999 0.999 0.2 0.14 0.2 

ResNet50 Calculated crop 

Video 1,6, 11 

0.056 0.979 0.46 0.6 0.46 

 

The results of the network experiments show that the triplet loss of the validation set is 

higher than the triplet loss of the train set for all the networks, except for VGG16. The 

triplet loss of the train set is similar to the loss for the validation set for VGG16. The 

accuracy and recall are the highest for DenseNet and Resnet50. However, Densenet has a 

slightly higher precision. VGG16 and InceptionV3 performed worse than the other three 

in all evaluation metrics. DenseNet and ResNet perform similarly, but DenseNet has 

fewer parameters than ResNet. DenseNet seems to be the best network based on these 

results. Wang and Liu [19] made a similar conclusion where they compared 6 networks 

trained using triplet loss on pigs. DenseNet121 will be used for the experiments with 
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image alterations. This experiment only uses the pigs from video 6. The results of the 

image alteration experiments can be seen in Table 4.  

 
 
Table 4: Results of data alteration experiments 

Network Data Triplet loss 

train after 

training 

Triplet loss 

validation after 

training 

KNN Accuracy  KNN 

Precision  

KNN Recall  

DenseNet121 Calculated crop 

Video 6 

0.0003 0.933 0.83 0.91 0.83 

 

DenseNet121 Manual crop 

Video 6 

0.0003 0.932 1 1 1 

DenseNet121 Ear tag erased 

Video 6 

0.0003 0.883 0.66 0.70 0.66 

DenseNet121 Head crop 

Video 6 

0.0009 0.948 1 1 1 

 

The KNN classification metrics of the data experiments are higher than in the network 

experiments. This is because less data is used for the data experiments. There are only 9 

images in the probe set, which might not be enough to draw actual conclusions. The 

validation loss is the lowest for the dataset with ear tags erased, while it performed worst 

in the KNN classification. The opposite can be seen in the network experiments, where a 

lower validation loss results in a higher KNN calcification performance. Nevertheless, it 

can be observed that the manual crop and head crop performed best in the KNN 

classification. The pig’s head is used to recognize them is used in all three previous 

studies [11], [18], [19]. Besides that, it is expected that the body does not contain enough 

biometric information and that the pigs are identified based on the mud patterns. These 

mud patterns can rapidly change over time. Using the pig’s faces for identification seems 

to be the best option based on the previous work and our experiments.  
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3.3 Conclusion technology exploration 
This technology exploration chapter aimed to identify if the technologies found in the 

literature are suitable for our application. The pig detection should be able to work real-

time and detect all pigs in an image or video. The YOLOv4-tiny detector did not run real-

time on a macbook without GPU, but should be able to run at framerate higher than 300 

with the use of a GPU [30]. The detector was able to detect all pigs in an image with an 

mAP of 82.1%. Based on this the detector seems to be suitable for our application. The 

identification showed that using triplet loss could be suitable for our application. The 

KNN identifier can identify 9 images of pig heads with an accuracy of 100%. Although 

this is tested with 9 images in the same perspective and over a time span of 30 minutes, it 

is expected that using a triplet loss function is suitable for a real-world pig verification or 

identification system. A dataset with pigs’ heads in different perspectives over a longer 

time period should be collected and used for evaluation to answer the research questions.  
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4. Data Collection 
The literature and triplet loss experiments showed that a dataset of pigs’ faces is needed 

for identification or verification. There are no publicly available datasets of pig faces 

which is why our own dataset is collected. The data is captured in two perspectives, a 

controlled perspective, and an overview of the shed perspective. This simulates a real-

world application where pigs are enrolled in the controlled perspective and identified in 

the overview perspective. Eventually, the identification must be working in real-time. In 

this project, we will not be focusing on real-time data, but collect a dataset on which 

experiments can be done. This section will describe how this dataset is collected and 

preprocessed.  

 

4.1 Environment 
The farm where the data is collected has multiple sheds, one of which will be used to 

collect the data. The used barn consists of approximately 100 sows. An impression of the 

shed can be seen in image Figure 9. 

 
Figure 9: Pig shed where the data is collected 

 

The shed is installed with Nedap SowSense. This is an intelligent system for individual 

animal management. It can identify each sow, track her feed consumption and weight and 
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separate each animal if needed. A schematic of the installed SowSense components can 

be seen in Figure 10.  

 

 
Figure 10: SowSense. 1: Electronic Sow Feeders. 2: Weight sampler. 3: Color Spray Markers. 4: 

Separation unit 

The pigs' identity is checked multiple times when they walk through the SowSense units 

using an RFID tag. The identity information of the SowSense will be used to label the 

videos of both perspectives. The controlled perspective will be installed on the SowSense 

itself, and the overview perspective will be pointed towards the exit of the SowSense. 

This way, both perspectives use the identity information of the SowSense to annotate the 

images with a pig identity.  

 

4.2 Raspberry Pi Camera 
The camera used to record the pigs is a Raspberry Pi V2 camera. Although the literature 

showed that a security camera seems the most suitable, the pi camera is chosen for its 

price, availability and simplicity. The camera has a resolution of 1080x1920, but the 

videos are recorded in 480x640 pixels at 15fps. Reducing the resolution is done to avoid 

video stuttering. An 800-lumen led light is used for lighting the environment. The videos 

are captured only when motion is detected using MotionEye [35]. The camera's shutter 

speed is reduced in MotionEye’s settings to minimise motion blur.  
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4.2.1 Collected Videos 
The data is captured for five days using the Raspberry Pi camera. A snapshot of the 

captured videos of both perspectives is shown in Figure 11. During the five days, 2175 

videos were taken in the overview perspective, and 3776 videos were taken in the 

SowSense perspective. This is not the same amount of individual pigs because one visit 

might be split up into multiple videos, or the motion detection is wrongly triggered. The 

data from the weight scale shows that there were 1454 weighing events over the 5 days. 

There are approximately 100 sows in the shed, which mean that, on average, the pigs 

walk three times a day through the SowSense. The captured videos of the controlled 

perspective are dark despite a light is used as a result of the reduced shutter speed. 

Increasing the shutter speeds leads to videos with a lot of motion blur. The images of the 

overview perspective as much brighter as there is more light than in the SowSense.  

 

 
Figure 11: Left) Video captured in controlled perspective. Right) Video captured in overview perspective 
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4.3 Security Camera 
A security camera is used to capture brighter videos from the controlled perspective. The 

literature showed that security cameras are suitable for the pig shed environment. They 

are designed to be used outdoors and in dark environments. The security camera used is 

an Axis M3058-PLVE. It is a 12MP dome camera with a 360-degree view. This security 

camera is chosen because it is available. Only one camera is available which is why only 

the controlled perspective is captured using this camera. A 360-degree view is not 

necessary, but a partition of the 360 view can be selected to be similar to a regular lens. 

Digital pan-tilt-zoom controls are used to select a view that is automatically rectified. The 

camera is set up to record infrared videos, resulting in brighter and cleared videos.  

 

4.3.1 Collected Videos 
The data is captured for three days from 30-04-2022 until 02-05-2022. The continuous 

recording is split up into videos of 10 seconds. The resolution of the videos is 2048x1536 

at a frame rate of 10 fps. Videos of 105 individual pigs are captured during the three days. 

Besides the three days of recording, there is another day of recordings 18 days later on 

20-05-2022.  A snapshot of one of the captured videos is shown in Figure 12. The videos of 

the security camera are much brighter than the raspberry pi camera. The downside of the 

security camera is that it has a larger lens which collects more dust. This dust results in 

blurry videos. 

 
Figure 12: Video captured in controlled perspective using the security camera 
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4.4 Video Preprocessing 
The videos have to be annotated first, and the pig's head has to be cropped from each 

frame in the video before it can be used for identification. This section will explain how 

the videos are cleaned, labelled with the pig’s identity and cropped in each frame.  

 

4.4.1 Labeling raspberry pi videos controlled perspective 
The weighing data includes the identity of the weight pig and the time of weighing, which 

can be used to label the videos. The weight data is first cleaned by removing the events 

where multiple pigs walk closely behind each other. These events have multiple pig 

identities for one weighing event. This is less than 10% of all weighing data. This avoids 

selecting videos with multiple pigs visible in one video. After that, the videos are matched 

to a weight event by checking if there is a weight event between the start and end of the 

video. If there is only one weight event during the video, the identity for the weight event 

is matched to the video. This is done by moving all videos of one identity into one folder, 

which is named to the pig’s identity. There are 1331 videos of 105 unique pigs from the 

controlled perspective. The videos are captured from 07-04-2022 until 12-04-2022. 

 The videos of one day between 8:00 and 20:00 are manually checked to see if they 

are correctly matched to a weighing event. There were 179 weighing events between this 

time, of which 133 videos could be matched correctly. Most of the videos that are not 

matched are because the videos started when the pig was already on the scale and thus 

could not be matched to a weight event. There are no videos that are incorrectly matched 

to an identity.  

 

4.4.2 Labeling raspberry pi videos overview perspective 
Ideally, the pigs of the overview perspective would be grouped similarly to the controlled 

perspective. This would be possible if the pigs walked out of the SowSense immediately 

after they stepped on the weight scale. However, the pigs stay in the SowSense for some 

time and come out of it in groups. MotionEye detects multiple pigs exiting as one motion 

event. This results in a video where multiple pigs are exiting the SowSense. The 
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automatic video and weight event matching do not work because there are multiple pigs 

in one video. The videos are manually grouped by identity; if needed the videos are split 

into multiple videos. The videos are matched to an identity by using the weight 

information. The number of pigs walking through the SowSense between two breaks of at 

least 10 minutes is counted in the weighing data. The pigs are matched to these weighing 

events if the number of pigs walking out of the SowSense in the videos is the same. The 

videos are discarded if this number is not the same. Only the videos of one day are 

labelled because this is a tedious task. In total, 196 videos of 77 unique pigs are labelled.  

 

4.4.3 Labeling security camera videos 
The data preprocessing is similar to the previous dataset. The difference is that the video 

of this dataset is recorded continuously. The videos can be matched to a weight event 

using the start and end times of that weight event. This is possible because the recording 

is split into videos of 10 seconds. Weight events with more than one pig on the scale or 

where a pig steps on the scale before the previous video is ended are not used. In total, 

there are 814 weight events used over the three days. The videos taken 18 days later 

contain 240 weighing events. 
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4.4.4 Cropping head in videos 
The head of the pigs must be cropped from the videos so they can later be used for 

identification. An example of the cropped heads is shown in Figure 13. Cropping the videos 

of the close-by perspective is done using a yolov4 tiny object detector. This object 

detection is trained on snapshots of the dataset itself. 253 images are manually annotated 

with bounding boxes around the pig’s head, which are used to train the yolov4 tiny object 

detector. The bounding boxes do not include the pig's ears. The object detector detects the 

pig's head in each frame and saves this as an image. The raspberry pi controlled 

perspective dataset consists of 111.968 images of 105 individual pigs. The security 

camera dataset contains 25.097 images. Cropping the head from the overview perspective 

is done manually although the initial idea was to automatically detect the pigs using the 

detector of the previous chapter. Pigs are in front of each other regularly, making it hard 

for object detection and tracking to know which pig is which. In the tracking experiments, 

it could be seen that identity swapping happens when pigs get close to each other. To 

prevent this, the heads are cropped manually.  In total, 1052 images of pig faces are 

collected from 77 individual pigs.  

 

 
Figure 13: Left Two) Controlled perspective rpi. Middle Two) Overview Perspective. Right Two) 

Overview perspective security camera 
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5. Method 
The evaluation methods are explained in this chapter. Each of the research questions will 

be answered using an experiment. The different experiments compare with existing 

methods, identifying and verifying pigs not trained on, identifying and verifying pigs on 

later data, and identifying and verifying pigs in a different perspective. The experiments 

are explained in detail below and the network used for these experiments.  

The network used in the experiments is densenet121, which showed the best results 

in the previous chapter. After the output of the embedding, extra layers are added, which 

are used for a SoftMax classification, as shown in Figure 14. These layers can be used for 

multitask learning which makes the network converge faster [19] and can be used in the 

experiment that compares our method to the existing. The extra layers after the 

embedding output are removed after training for the other experiment.  

 
Figure 14: Visualization of embedding network 

 
Except for the experiment that compares our method to the existing ones, the network is 

trained on different pigs than tested. After training the network using triplet loss and the 

cross-entropy loss, pigs are enrolled in the system. Embeddings of the pig’s images, 

including their identity, are stored in the gallery. The embeddings with their identity will 

be used to identify or verify new images. This process is visualized in Figure 15.  
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Figure 15: Training, enrolling and identifying/verifying pigs using the embedding network 

 
 

The fact that embeddings are trained such that the Euclidian distance is small between 

embeddings of similar identities and large between embeddings of different identities will 

be used to identify or verify the images. Identification is done using k-nearest-neighbour 

because this uses the distance between embeddings. Besides that, the main advantage of 

using k-nearest-neighbour as classifier is that is does not have to be trained again if new 

identifies are added or removed from the gallery. Verification will also be using the 

Euclidian distance between two embeddings. A threshold will be determined by making 

all combinations of the gallery set. If the distance between two embeddings is below the 

threshold, they are verified to be the same. If the distance is above the threshold they are 

not verified. Embeddings with unknown identity are compared to the embeddings in the 

gallery. The embeddings that are compared with the gallery is called the probe set.  
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5.1 Experiment 1: Comparison with existing methods 
This experiment will compare our network and data to the existing methods found in the 

literature. This test will use the same number of pigs during training as the existing 

methods and compare their classification method to ours. The datasets used in previous 

work are unavailable, which is why our dataset is used. Two experiments with different 

classification methods will be used during this test. The first method reproduces the state 

of the art as best as possible, and the second is our proposed method. This will show how 

KNN and distance threshold compares to the SoftMax classification, as seen in the 

literature. Besides that, a comparison between our network and data can be made to the 

ones in the literature. This test answers the following research question. 

“How does our identification method compare to the existing methods?” 

The first experiment uses a SoftMax classification to identify the pigs using the cross-

entropy loss. This is similar to the two methods in the literature [18] [11]. The second 

experiment uses KNN for identification and distance threshold for verification. The 

following parameters are used for training the network.  

- Epochs: 35 

- Learning rate: 0.001 

- Optimiser: Adam 

 

 Ten pigs are used in both studies, and the networks have a network output for each 

pig. This test is also done using ten pigs from the security camera dataset as the literature 

datasets are unavailable. The ten pigs with the most images are used for this test, and the 

average number of images per pig is 116. Consecutive frames are checked on similarity 

using the structural-similarity index measure (SSIM) and removed if they are too similar. 

Testing is done using different images of the same pigs as in the training set similar to 

[18] [11]. The images of the ten pigs are split into 80% train images and 20% test images 

for the SoftMax classifier. The KNN and verification split the test set up again in 80% 

gallery and 20% probe sets. A 5 fold cross-validation is used. The identification is done 

such that every image in the probe set is identified. All combinations between the probe 
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set and gallery set are made for verification. The evaluation metrics used for the SoftMax 

and KNN identification are the accuracy, precision, and recall. The distance threshold 

verification is evaluated visually using a kernel density estimation (KDE) plot on the 

distances of similar and different identities. A threshold is chosen from a ROC curve 

where the difference between the true positive rate and false positive rate is highest. This 

is considered the optimal threshold. Using this threshold the F1 score, precision and recall 

are calculated on the combinations between the probe set and gallery set.  

  

 

5.2 Experiment 2: Identify and verify pigs not trained on 
In this test, the identification method is trained on a different set of pigs than tested. The 

following research question is answered with this test. 

“How well can our identification method identify pigs not seen during training?” 

This experiment evaluates how the identification method performs in identifying pigs not 

seen before during training of the embedding network. Two experiments are done: 

identification using KNN and verification with distance threshold. Identification considers 

the problem “which pig is this?” while verification answers “are these two images of pigs 

the same?”. The identification experiment is done using a fixed gallery size and a variable 

gallery size. This is done to evaluate the influence of the gallery size on the performance. 

The following parameters are used for training the embedding network. 

- Epochs: 3 

- Learning rate: 0.001 

- Optimizer: Adam 

The security camera dataset is used for this experiment where similar frames are removed. 

The data splits are shown in Table 5. Every image in the probe set will be identified using 

KNN. All combinations between the probe set and gallery set are made for the 

verification experiment, and these combinations are verified.  
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The dataset is split into 80% train and 20% test using 5-fold cross-validation. The test set 

is split up again into a gallery set and probe set. The experiment with fixed size uses an 

80%-20% gallery and probe split—the test with variable size from 1%-99% to 99%-1% 

splits.  

 
Table 5: Data splits pigs not trained on test 

Experiment Train set Test set Gallery set Probe set 

Experiment 2.1 

KNN identification 

fixed gallery size  

80% of security 

dataset 

 

20% of security 

dataset 

 

80% of test set 

 

20% of test set 

 

 

KNN identification 

variable gallery 

size 

80% of security 

dataset 

20% of security 

dataset 

 

 

Varying 1% - 99% 

of test set 

 

Varying 99% - 1% 

of test set 

 

Experiment 2.2 

Verification using 

fixed gallery size 

80% of security 

dataset 

 

20% of security 

dataset 

 

80% of test set 

 

20% of test set 

 

 

 

The KNN identification is evaluated using the accuracy, precision and recall for the fixed 

gallery size. The experiment with variable gallery size will be evaluated with an interval 

of 1 percent using the accuracy. The verification experiment is evaluated visually using 

the KDE plot. The F1 score, recall and precision are calculated for the optimal threshold.  
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5.3 Experiment 3: Identify and verify pigs in later data 
In this experiment, the images in the gallery are older than the images in the probe set. 

This test aims to evaluate how well the identification system can still identify the pigs 

after a certain amount of time. The pigs' appearance might change due to ageing or being 

covered in dirt. The following research question is answered with this test. 

“How does our identification method perform on newer data?” 

This experiment evaluates how well the identification method can identify pigs 18 days 

after they are added to the gallery. The datasets used are the security camera dataset, and 

the security camera dataset collected 18 days later. These will be referred to as the old 

dataset and the new dataset. The splits of the dataset for both experiments are shown in 

Table 6. The embedding network is trained on 80% of the identities in the old and new 

datasets combined. The other 20% is used for the gallery and probe set. A 5-fold cross-

validation is used for the train and test splits.  The following parameters are used for 

training the embedding network. 

- Epochs: 3 

- Learning rate: 0.001 

- Optimiser: Adam 

Two experiments are done. In the first experiment, images from the old set are added to 

the gallery.  In the second experiment, the images from both the old and new datasets are 

added to the gallery. Both experiments use images of the new dataset as probe set.  Both 

experiments are done with KNN identification and verification using a distance threshold. 

All combinations between the probe set and gallery set are made for verification. The 

identification is evaluated using the accuracy, precision, and recall. The verification is 

visually evaluated using KDE plots. The optimal threshold is calculated from a ROC 

curve and this threshold is used to calculate the F1 score, precision and recall. The 

evaluation metrics are calculated for each fold.  
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Table 6: Dataset splits for test on later data 

Experiment Train set Test set Gallery Probe 

Experiment 3.1 

Old dataset gallery. 

New dataset probe 

80% of combined 

old and new security 

dataset 

 

20% of combined 

old and new dataset 

 

Only old images of 

test set 

Only new images of 

test set 

 

 

Experiment 3.2 

New and old 

dataset gallery. 

New dataset probe 

80% of combined 

old and new security 

dataset 

 

20% of new dataset 

 

 

80% of test set 

 

20% of test set 

 

 

 

 

5.4 Experiment 4: Identify and verify pigs in overview 
perspective 
This test will evaluate how well pigs can be identified from another perspective. This test 

simulates adding pigs to the gallery in a controlled perspective where their identity is 

known and later identified in an overview perspective. The following research question is 

answered with this test. 

“How does our identification method perform in other camera perspectives?” 

This experiment evaluates how well the identification method can identify pigs in another 

perspective than used for adding them to the gallery. Both perspectives are captured using 

the raspberry pi are used for this. Two different experiments are done for which the data 

splits are shown in Table 7. For both experiments, the embedding network is trained on 

80% of the combined perspectives. The following parameters are used for training the 

embedding network. 

- Epochs: 3 

- Learning rate: 0.001 

- Optimizer: Adam 
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In the first experiment the images of the test set captured in the controlled perspective are 

added to the gallery.  In the second experiment, the images of both perspectives are added 

to the gallery. The probe set contains images captured in the overview perspective. KNN 

identification and verification with a threshold on distance is done for both experiments. 

For the verification, all combinations between the probe set and gallery set are made. The 

identification is evaluated using the accuracy, precision, and recall. The verification is 

visually evaluated using KDE plots. The optimal threshold is calculated from a ROC 

curve and this threshold is used to calculate the F1 score, precision and recall. The 

evaluation metrics are calculated for each fold. 
 

 
Table 7: Datasplits of identifying pigs in overview perspective experiment 

Experiment Train Test Gallery Probe 

‘Train’ KNN on 

controller 

perspective, test on 

overview 

perspective 

80% of combined 

controlled and 

overview 

perspective. 

20% of combined 

controlled and 

overview 

perspective. 

Only Controlled 

perspective of test 

set 

Overview 

perspective of test 

set 

 

 

‘Train’ KNN on 

overview 

perspective Test 

KNN on overview 

perspective 

80% of combined 

controlled and 

overview 

perspective. 

20% of combined 

controlled and 

overview 

perspective. 

 

80% of test set 

 

20% of test set 
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6. Results 
The result of the experiments as described in the method chapter are shown in this 

chapter.   

 

6.1 Experiment 1: Compare with the existing methods 
This experiment aims to compare our method to the existing pig identification methods as 

found in the literature. This is done by comparing the SoftMax classification with KNN 

identification and distance threshold verification of the embeddings. This is done using 10 

pigs.  

 

6.1.2 Results Standard Classification Network 
The average accuracy, average precision and average recall of the five folds of the 

standard classification network can be seen in Figure 16. The average accuracy is 84.4% 

±7.7%, the average precision 83.6%±9.2%, and the average recall is 79.8%±13.0%. 

 

 
Figure 16: Average Accuracy, Precision and Recall of the standard classification experiment 
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6.1.2 Results Embedding Network with KNN Classification 
The average accuracy, precision and recall of the five fold of the embedding network after 

KNN classification can be seen in Figure 17. The average accuracy is 87.8%±7.0%, the 

average precision 89.8%±5.4%, and the average recall is 89.8%±6.2%, 

 

  
Figure 17: Average Accuracy, Precision and Recall of the embedding network with KNN experiment 

 
6.1.3 Results Embedding Network with Distance Threshold Verification 
The KDE plot of the Euclidian distances between similar and different identities is shown 

in Figure 18 The average optimal threshold of the five folds is 1.25. At this threshold, the 

F1 score, precision and recall are calculated for all probe gallery combinations which are 

shown in Figure 19. The average F1 score, precision and recall is 65.2%±12.5%, 

55.0%±15.4%, and 83.0%±8.6%,, respectively. 
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Figure 18: KDE plot for each fold of compare with existing experiment 

 

 
Figure 19: F1 score, Precision and recall for verification of comparison with existing experiment 
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6.2 Experiment 2: Identify pigs not trained on  
This experiment evaluates how well pigs can be identified and verified that are not seen 

during training. The security dataset in the controlled perspective is used for this 

experiment. Identification is done with both a fixed and varying Gallery size.  

 

6.2.1 Results Identifying Pigs Not Trained On 
The accuracy, average precision and recall for each of the 5 folds are shown in Figure 20. 

The average accuracy of the five folds is 55.5%±4.8%, the average precision is 48.6% 

±4.2%, and the average recall is 47.4%±5.6%.  

 

 
Figure 20: Average Accuracy, Precision and recall of identification experiment of pigs not trained on 

  

0%

20%

40%

60%

80%

100%

Experiment 2
Identification

Accuracy Precision Recall



 55 

6.2.1.2 Results Varying Gallery Size 
The accuracy for each probe and gallery split can be seen in Figure 21. The x-axis shows 

the percentage of the test set used as gallery.  

 
Figure 21: Accuracy of varying gallery size for each fold 

 
 

6.2.2 Results Verifying Pigs Not Trained On 
The probability density of the distances between similar and different identities for each 

fold is shown in Figure 22The average optimal threshold is 1.09, at which the F1 score 

precision and recall are calculated for each fold and are shown in Figure 23. The average 

F1 score, precision and recall are 21.0%±3.9%, 12.8%±3.3%, and 52.0%±1.4%.  
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Figure 22: KDE plot of each experiment for pigs not trained on experiment 

 

 
Figure 23: Average Verification F1 score, precision and recall of pigs not trained on experiment 
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6.3 Experiment 3: Identify pigs in later data 
This experiment evaluates how well the identification and verification work using later 

data. Two experiments are done. The first experiment only has old data stored in the 

gallery. The second experiment has both old and new data stored in the gallery. In both 

experiments, new data is used as probe set. The controlled perspective dataset captured 

using the security camera is used for this experiment.  

 

6.3.1 Results experiment 3.1 later - identify 
In Experiment 1, data from the old dataset is used to ‘train’ the KNN, and the new dataset 

is used to test. The accuracy, precision, and recall for each fold are shown in Figure 24. The 

average accuracy, precision and recall over the five folds are 17.6%±1.7%, 13.8±1.6%, 

and 15.2%±1.6%, respectively. 

 

 
Figure 24:Average Accuracy, precision and recall of experiment 3.1 of the later data test 
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6.3.1 Results experiment 3.1 later - verify 
The KDE plot of the distances between similar and different identities for each fold is 

shown in Figure 25 The average optimal threshold is 1,11 at which the F1 score precision 

and recall are calculated for each fold and are shown in Figure 26. The average F1 score, 

precision and recall are 16.6%±1.8%, 10.4%±1.1%, and 45.6%±7.9%.  

 
Figure 25: KDE plot for each fold of later experiment 1 

 

 
Figure 26: Average Verification F1 score, precision and recall of later experiment 3.1 
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6.3.2 Results experiment 3.2 later - Identify 
In Experiment 2, data from the new dataset is used to ‘train’ and test the KNN. The 

accuracy, precision, and recall for each fold are shown in Figure 27. The average accuracy, 

precision and recall over the five folds are 58.0%±9.6%, 51.6%±8.0%, and 49.0%±5.7%, 

respectively. 

 

 
Figure 27:Average Accuracy, precision and recall of experiment 2 of the later data test 

 
 

6.3.3 Results experiment 3.2 later – Verify 
The KDE plot of the distances between similar and different identities for each fold is 

shown in Figure 28. The average threshold is 1.05 at which the F1 score precision and 

recall are calculated for each fold and are shown in Figure 29. The average F1 score, 

precision and recall are 25.4%±1.7%, 16.8%±1.8%, and 56.2±8.7%. 
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Figure 28: KDE plot for each fold of later experiment 2 

 
 

 
Figure 29: Average Verification F1 score, precision and recall of later experiment 2 
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6.4 Experiment 4: Identify pigs from in overview perspective 
This experiment aims to evaluate how well pigs can be identified and verified in another 

perspective than the perspective in which they are added to the gallery. Only pigs 

captured in the controlled perspective are added to the gallery in the first experiment. In 

the second experiment, the controlled and overview perspectives are added to the gallery. 

The overview perspective is used as probe set for both experiments.  

 
6.4.1 Results experiment 4.1 overview perspective - identify 
In the first experiment, data from the controlled perspective is used to ‘train’ the KNN 

and data from the overview perspective are used for testing the classifier. The accuracy, 

precision and recall of each fold are shown in Figure 30. The average accuracy, precision 

and recall over the five folds are 19.8%±2.6%, 19.2%±5.2%, and 19.6%±4.8%, 

respectively. 

 

 
Figure 30: Average Accuracy, precision and recall of experiment 1 of different perspective test 
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6.4.2 Results experiment 4.1 overview perspective – verify 
The KDE plot of the distances between similar and different identities for each fold is 

shown in Figure 31. The average threshold is 1.11 at which the F1 score precision and 

recall are calculated for each fold and are shown in Figure 32. The average F1 score, 

precision and recall are  15.8%±0.8%, 9.6%±0.5%, and 49.2%±9.0%. 

 

 

 
Figure 31: KDE plot of each fold of overview perspective experiment 1 
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Figure 32: Average Verification F1 score, precision and recall of overview perspective experiment 4.1 

 

6.4.3 Results Experiment 4.2 overview perspective - Identify 
In the second experiment, both perspectives are added to the gallery. The accuracy, 

precision and recall of each fold are shown in Figure 33. The average accuracy, precision 

and recall over the five folds are 61.4%±8.4%, 64.0%±9.3%, and 62.4%±11.4%, 

respectively. 

 

 
Figure 33: Average Accuracy, precision and recall of experiment 4.2 
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6.4.4 Results Experiment 4.2 overview perspective – Verify 
The KDE plot of the distances between similar and different identities for each fold is 

shown in Figure 34 The average threshold is 0.91 at which the F1 score precision and recall 

are calculated for each fold and are shown in Figure 35. The average F1 score, precision 

and recall are 25.0±1.4%, 16.6%±1.8%, and 56.8%±10.3%.  

 
Figure 34: KDE plot for each fold of overview perspective experiment 4.2 

 
Figure 35:Average  Verification F1 score, precision and recall for overview perspective experiment 4.2 
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7. Discussion 
Four tests have been done in the evaluation of the final prototype. The results of the four 

tests will be discussed.   

 

7.1 Experiment 1 
The first test compared the final prototype to the existing methods in the literature. 

The average accuracy over the 5-folds is 84.4% for our implementation of the existing 

methods. The average recall and precision are 83.6% and 79.8%, respectively. Marsot et 

al. [11] reported an average of 83% and Hansen et al. [18] 96.7%, and both used a 

softmax classification. Our results are similar to Hansen et al. but lower than Marsot et al. 

Hanset et al. did test on the same pigs as training but tested on data captured 30 days later. 

It is expected that the data used greatly influences the results. Marsot et al. used pigs with 

very distinct black skin spots. From their class activation map, it can be seen that their 

network looks at those black spots which is expected to positively influence the results. 

The pigs used by Hanset et al. look more like the pigs we used. The results using a KNN 

classifier are higher than using a softmax classifier. The average accuracy recall and 

precision of the embedding network and KNN classifier are 87.8%, 89.8% and 89.8%, 

respectively. This is an higher accuracy than Marsot et al. however it is still not as high as 

the result of Hansen et al. Verification scored much lower than both identification 

methods. For verification, the average F1 score, precision and recall are 65%, 55%, and 

83%, respectively.  

 

7.2 Experiment 2 
The second test evaluated how well the final prototype identified pigs that were not 

seen during training of the embedding network. The average accuracy, precision and 

recall for the KNN classification are 55.5%, 48.6% and 47.4%, respectively. This is much 

lower than identifying pigs which are seen during training as seen in the previous 

experiment. Verification is even lower with an F1 score, precision and recall of 21%, 

13%, and 52%. This is much lower than other livestock verification methods [21][22]. 
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Besides that, is it can be seen that facenet [23], which is similar to the verification method 

we used, achieves an accuracy of 99.6% on the LWF dataset.,  Other human face 

verification techniques perform at similar accuracies as facenet [24], [25]. The 

verification as seen in the literature only needs less than 10 images in the gallery. From 

our experiment it can be seen that the KNN identification performs better if there are 

more images in the gallery. After around 80%, the accuracy does not increase, 

corresponding to roughly 30 images. This is more than the identification techniques as 

seen in the literature. There could be less biometric information in a pig's face than other 

livestock animals or humans and therefore perform worse. However, even if there is less 

biometric information, it should be able to reach a performance closer to the first 

experiment where testing and training are done on the same pigs.  

 

7.3 Experiment 3 
The third test evaluated the identification performance 18 days after the pigs were 

added to the KNN classification. This showed that pigs could not accurately be 

recognised 18 days after being added to the KNN classifier. The average accuracy, 

precision and recall are 18%, 14%, and 15%, similar to a random classification. After 

adding the newer data to the KNN classifier, the classification performance is similar to 

the older data. It is expected that the newer data is in different clusters than the older data 

because the results are much higher in experiment 2.  Hansen et al. tested on data 30 days 

later than trained and reached a performance of 84%. Although they tested on the same 

pigs as trained, they showed that it could be done to recognize pigs after a certain amount 

of time. Verification again performed worse than the KNN classification in both 

experiments. It is expected that the image quality does influence our results. The security 

camera attracted a lot of dust which made the videos look different than 18 days earlier.  
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7.4 Experiment 4 
The last test evaluated how the final prototype performs when identifying pigs 

from another perspective than they are added to the KNN classifier. This test did use the 

controlled dataset captured using the Raspberry Pi, which was expected to be too dark for 

recognition. However, it is used such that the same camera type in both perspectives is 

similar. When testing on images from the overview perspective and the gallery only 

contains images of the controlled perspective, the KNN accuracy precision and recall is  

20%, 19%, and 19% respectively. Verification does not perform better and has a F1 score, 

precision and recall of 15%, 10%, and 49%. The difference is that the recall for 

verification is higher than for the KNN identification. When images of the overview 

perspective are added to the gallery, the performance of both the KNN identification and 

verification are higher. Again the performance of the KNN identification is higher than 

that of the verification. The accuracy of the KNN identification is 61% if images of the 

overview perspective are added to the gallery. This is higher than the accuracy of the 

second experiment where images of the same perspective are used. The difference 

between these two experiment is that another dataset is used. The dataset captured using 

the raspberry pi is used for this. The difference between the two is that the raspberry pi 

dataset has more images per pig and that RGB images are used instead of infrared. The 

security camera did also collect more dust which made the images blurry. These 

differences can all influence the performance. Although the accuracy is higher than that of 

the second experiment it still not is as high as when training and testing on the same pigs. 

Bergamini et al. [22] showed that identifying a cow in different angles does lower the 

performance. The accuracy was 74% when trying to identiy the cow in different angles 

and 89% when trying to identify the cow using a technique that uses two angles. The 

effect could also be present for pigs. The overview and controlled view angles might be 

too different for the identification or verification to match the two.  
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7.5 Identification and Verification 
 In the experiments, it could be seen that verification performs worse than KNN 

classification.  

The KDE plots of experiment 2, 3 and 4 show that there is very little difference in 

distance between similar and different identities. The performance of verification is low 

for these experiment. The KDE plot in experiment 1 does show a difference between the 

distances and the verification performance is higher than for experiment 2,3, and 4. In all 

four experiments, verification performed worse than identification. In the facenet paper 

[23], it could be seen that verification performed similarly to KNN identification. Based 

on the KDE plot it seems that the network fails to create one distinct cluster for each 

identify.  This can be observed when used later data or identified in another perspective. 

Images can only be identified or verified if later images or images in another perspective 

are added to the galley. There are many different clusters instead of one cluster per 

identity. The higher performance of the KNN identification is expected from the fact that 

it only looks at the closest embedding and thus can still identify even if there are many 

different clusters per identity. This can either be the result of not enough biometric 

information in the pigs’ faces or the fact that the images in the dataset are dark or blurry 

due to the bad conditions in the shed.  
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8. Conclusion and Recommendation 
The literature review and technology exploration showed that this could be done using a 

convolutional neural network trained using the triplet loss function. This method is 

evaluated using a dataset containing 105 individual pigs. The evaluation that the 

performance is in the same range as the existing identification methods for pigs when 

tested on ten pigs. However, the performance is much lower when trying to identify or 

verify pigs not seen during training. The pigs not seen during training can be identified 

with an accuracy of 56% and verified with an f1 score of 21%. This is lower than 

verification of other livestock animals and human face recognition, which reach 

accuracies of 99% [21][23]. Identifying and verifying pigs using later data or in another 

perspective only performs better than random when data from the same time or same 

perspective is added to the gallery as used in the probe set. If later images and images in 

the overview perspective are added to the gallery the identification accuracy is 58% and 

61%, respectively. This showed the effect of different perspectives and how KNN can be 

used to deal with those. Added images over a longer period of time in multiple 

perspectives to the gallery is not wanted in a real-world application as it is cumbersome. 

The KNN identification performs better than verification using a distance threshold for all 

experiments. Time constrains prevented exploring fully why the performance degraded so 

much in different perspective and over time, but it shows the need for more extensive data 

collection.  

 Future work should focus on how much biometric information there actually in in a 

pig’s face and if this is enough to reach similar performances as verification of humans 

and other livestock animals. A more complete dataset can help with this, especially since 

there is not yet a public dataset containing images of pig faces. This dataset should be 

captured over a longer period of time and from multiple perspectives. Most important is 

that the images should be clear and bright unlike our collected dataset. It is expected that 

better results can be achieved using our method with a better dataset.  
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