
Faculty of EEMCS: Electrical Engineering, Mathematics and
Computer Science

Course program in Applied Mathematics

Specialization in Mathematics of Data Science (MDS)

Master’s thesis

Membership Inference Attacks and Synthetic Data
Generation

with Differential Privacy

Advisors:
Dr. Jins De Jong (TNO)
Dr. Cristóbal Guzmán (UT)

Canditate:
Giorgio Micali

Enschede, August 2022



Acknowledgements

There are way too many people who would like to thank for all they have done for me
during these years.

I would like to start by thanking my advisors, Cristóbal and Jins, whose support
and intellectual insides were enormously precious to me and for this work. A special
acknowledgment goes to Cristóbal in particular, for his availability at the most absurd
times and days, for his patience and human touch. Thank you for all your support, I will
not forget it.

I would like to thank all my friends, starting with the ones in The Netherlands, Thomas,
Bohzo, Mihir and Riccardo. Thank you all for the moments together, the long discussions
and the exchange of ideas and fun we had together. Our friendship made me feel welcomed
and more bounded to The Netherlands.

Among my Italian friends: I own a lot of what I have achieved so far to Vincenzo
Mariani, who always encouraged me to push myself beyond my limits. Most of what hap-
pened in the last years was only possible because of him. Likewise, Giuseppe Recupero
and Filippo Testa, my ex roommates and dear friends. I had countless hours of valuable
discussions and ideas with both of them. They will forever remain a primary source of
wisdom and intelligence I can always rely on. Then, my dear friends Rosalba, Alessan-
dra, Daniele and Massimiliano, with whom I spent most of my days back in Pisa. They
significantly contributed to my mathematical grow.

I also want to thank my friends around the world, Gabriele e Pierfrancesco, always
a great source of knowledge and inspiration. Lastly, I would like to thank my childhood
friends, who have accompanied me from the begging of this journey: Emanuele, Simona,
Alessandra, Gabriele, Gianpaolo, Salvatore M.D.G and Francesco.

My family has played a crucial role for which I will forever be in debt. I am grateful
for all the resources, time and patience you dedicated to me, especially my sister Cristina,
the person that has always given me everything I needed. Also, an acknowledgement goes
to my cousin Massimilano, who also encouraged me.

Lastly, I want to dedicate this thesis to Kaja, who believed in me the most, starting
from the very begging of this work until the end. Thank you for your patience, wisdom,
support and intellectual stimulation.

Without you all, this would have not been possible. I hope you enjoy reading this
thesis,

Giorgio Micali.

2



Abstract

Machine learning (ML) is one of the most popular methods for data analysis. A carefully
chosen design supplied with a set of training data yields a predictive model for the problem.
However, it has been documented that parts of the training data or even complete records
can be extracted from the model, which exposes the model to privacy attacks. One such
example is a membership inference attack (MIA), where, based on the trained model, the
attacker tries to determine whether a single record was in the training data or not. In
order to satisfy strong and quantifiable privacy guarantees, differential privacy (DP) is the
preferred tool because it introduces randomization in the algorithm, which obfuscates the
private data in the model. However, noise and randomness reduce the utility of the data
analysis. This means that a balance must be found between privacy and utility. How to
resolve this trade-off is a highly non-trivial question, which is the main objective of this
project.

To show that such combination is possible, we worked on two aspects simultaneously:
attacking and defending the model. An attack takes advantage of the fact that ML models
are trained multiple times over the same train data set. As a result, the outcome of a point
in the data set can be predicted more easily. A defence is therefore needed as a response
for the increased concerns about the privacy of individuals whose data is used during the
training.

In more details, we show that the effectiveness of a MIA is reduced when the attacked
ML model is being trained using a DP-learning algorithm. Particularly, using stochastic
gradient descent (DP-SGD) and the DP-Frank Wolfe (DP-FW) which are suitable for
privatization. Concretely, we will run two metric based attacks on three simple ML models
that were trained using both DP-FW and DP-SGD, and later compare the results of
Linear Regression, Logistic Regression and Multiclass Logistic Regression.

The results of implementation of DP show a decrease of the effectiveness of these
attacks, without compromising too much the target accuracy of the ML models. In par-
ticular, both DP-FW and DP-SGD show satisfactory privacy protection, but DP-SGD
has better computational performances, and it also converges faster. Furthermore, the
effectiveness of our MIAs is model dependent. The most meaningful results are obtained
on Multiclass Logistic Regression, where the defence through DP is sharper. For other
models, the effects of DP are only clearly visible when we impose additional assumptions
on the data sets used for both training and testing. Without these assumptions, MIA is
barely distinguishable from a random guess attack.

The experiments for Logistic and Multiclass Logistic regression also show that the
attacks are highly sensitive to changes of a threshold, which measures how much the
dataset over-fitted the model. Therefore, such threshold depends on the data and it
is needed for building an adequate metric based attack. In principle, this information
must be kept private as well. Therefore, we will also explain how to set such threshold
adequately. In the second part of the thesis, we switch points of view. Instead of creating a

3



mechanism that guarantees privacy computation over a data set, artificial data is generated
with the purpose of preserving privacy. Synthetic data is created by using different types
of algorithms, such as Multiplicative Weights. The output is a dataset whose statistical
properties are similar to the original data, but does not reveal any information regarding
real data. More specifically, we create synthetic data by minimizing the error we commit
when querying the dataset over a fixed set of statistical queries. Such formulations yields
a saddle point optimization problem, for which different types of regularization are used.
Since real datasets usually do not contain many repetitions of the same individual’s data,
it was given more focus to regularizations that promote high entropy.

4



Contents

1 Differential Privacy 16
1.1 Randomized Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Laplace Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 (ε, δ) Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Membership Inference Attacks 23
2.1 Attacks in Machine Learning models . . . . . . . . . . . . . . . . . . . . . . 24
2.2 MIA on Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Neural Network based attacks . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 NN based attacks in black-box setting . . . . . . . . . . . . . . . . . 26
2.2.3 NN based attacks in white-box setting . . . . . . . . . . . . . . . . . 26

2.3 Metric Based Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Differentially Private Optimization 28
3.1 Stochastic Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Frank Wolfe Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Stochastic Frank Wolfe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Numerical Experiments 37
4.1 `1 Constrained Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Multinomial Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Synthetic Data Generation 59
5.1 Min Max formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Stochastic Optimization for Synthetic Data release . . . . . . . . . . . . . . 62
5.3 Frank Wolfe for dual formulation of synthetic data . . . . . . . . . . . . . . 63
5.4 Effect of regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5 Frank Wolfe on regularized dual problem of synthetic data for empirical risk 69
5.6 Frank Wolfe on regularized dual problem of synthetic data for Population

Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.7 Full Batch Frank Wolfe on dual synthetic data of population risk . . . . . . 76

6 Appendix 79
6.1 Appendix chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Appendix chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Bibliography 85

5



Introduction

As the collection and analyses of sensitive data become more prevalent, there is an in-
creasing need to protect individuals private information. Differential privacy (DR13) is
the rigorous tool that defines the mathematical notion of privacy.

This work primarily focuses on two privacy related problems: analysis of membership
inferences attacks and synthetic data generation.

In the next section we present an overview of what these two problems are, and how
to design privacy preserving strategies. We can consider this introduction as an overview
of what comes in the next chapters, giving a first glimpse and guiding the reader through
the main results of this work.

Firstly, we present the mathematical background necessary to understand what are the
goals of this work. This includes differentially private stochastic optimization, membership
inferences attacks and synthetic data generation. Lastly, we will clearly state what we
achieved, at the end of every section.

Differential privacy

As stated in the abstract, differential privacy is a new tool introduced to protect leakage
of information from machine learning models. We will informally introduce the idea which
leads to the mathematical definition of privacy.

Let us consider the situation described in Figure 1. Suppose there is an analyst who
wants to perform some statistics on a dataset. Moreover, suppose the data analyst has full
access to these data. What normally happens is that the data analyst queries the dataset
and, in return, he extracts information that are later processed. A privacy issue arises in
the moment that this dataset contains sensitive information, as the analyst would get full
and direct access to the data, Figure 1 (UP).

A possible solution could be the following: when the analyst queries the dataset, some
sort of mechanism adds noise to the data. To be precise, it is enough noise to protect
individual’s privacy and not too much to compromise the quality of the statistics either.
In other words, the mechanism takes as input the query of the analyst and releases back
noisy information from the dataset.

In this way, both goals are achieved: the privacy of the data is protected and the data
analyst can perform his statistics, even if the data are sensitive. This is the basic intuition
behind differential privacy. Now, we shall formalize this idea.

Idea behind the definition

Consider two datasets D1 and D2 that differ in one individual. We write this condition
as D1 ∼ D2. Let A be a function of the dataset whose output releases noisy data. We call
such function a mechanism.

6



Contents

Figure 1: Two scenarios: (UP) the data analyst has full access to the dataset, violating
privacy. (DOWN) the information are protected using a mechanism that slightly alter the
data.

If the outcomes of the mechanism on both datasets are similar — we write A(D1) ∼= A(D2)
— then data analyst cannot determine whether D1 or D2 was used.
This means that he did not learn much about the individual in which they differ. This
motivates the definition of differential privacy

Definition 1. (DR13) A mechanism A is (ε, δ) differentially private if for every D1 ∼ D2

and for every set of responses T

P(A(D1) ∈ T ) ≤ eεP(A(D2) ∈ T ) + δ .

This definition captures the idea that the probability of obtaining two different out-
comes is roughly the same, where roughly refers exactly to that multiplicative factor exp(ε).
There is also a small correcting term δ - whose meaning will be explained later in chap-
ter 1. For the moment, the take-home message is that the smaller ε and δ are, the higher is
the privacy, since the two probabilities on left-hand-side (LHS) and right-hand-side (RHS)
would be the same. Furthermore, one might ask why something as odd as exp(ε) would be
chosen as a regulating factor, while another term, mathematically easier, could have been
picked, like 1 + ε, without changing the meaning of the definition. It turns out that the
formulation with exp (ε) is rather convenient when composing more private mechanisms.
The total level of privacy results to be the algebraic sum of all the single privacy budgets.

The whole chapter 1 is dedicated to formally introduce the theory of differential privacy.
At high level, privacy means adding noise to protect data.

Where does differential privacy come into the picture of membership inference attacks
(MIA) and synthetic data generation (SD)? It turns out that both MIA and SD boil
down to solving an optimization problem, which is formulated in terms of the sensitive
information contained in the dataset. That is why we will make use of what is known as
differentially private convex optimization, object of the next section.

7



Contents

Differentially private stochastic convex optimazation

The goal of machine learning is to output a set of parameters w that minimizes a loss
function. For example, this happens in linear regression or neural networks. To be more
specific, we usually minimize a function of of the form 1

|D|
∑

i l(w, di), where w is the

parameter we are taking the minimization over, D = {d1, · · · , dN} is the dataset of points,
and l(·, di) is the loss on each datapoint.

However, this minimization may reveal sensitive information. For instance, this phe-
nomena is evident Support Vector Machine, where it is well known that the optimal
parameter vector is entirely determined by the data points which are closest to it — the
support vectors. Removing or adding one of these points shifts the parameter vector, again
violating privacy.

Differentially private stochastic convex optimization (DP-SCO) is one way of perform-
ing the training (learning phase) in machine learning models, while protecting privacy.
More specifically, DP-SCO privatizes the set of parameters defining the model, with re-
spect to the training dataset D. Mathematically:

Definition 2. Let C be a convex and compact set. D dataset of points containing sensitive
information and Z ∼ P r.v whose support is in D.

Population Risk: Let P a distribution over D and l : X ×D −→ R. We define the
population risk as

L(w;D) = EZ∼P [l(w,Z)] .

When P = U(D), L is called Empirical Risk.

SCO: Let C ⊂ X be a convex and closed set (note that we do not assume compactness
in the definition). We define of minimizing the population risk

min
w∈C
L(w;D)

as Stochastic Convex Optimization.

DP-SCO: The problem of determining a DP private mechanism A(D) ∈ X such
that

EA[L(A(D);D)− L?] N−→∞−−−−−→ 0

is called Differentially Private Stochastic Convex Optimization.

DP-SCO is at the core of the two problems we want to address in this thesis (not yet
presented). Nevertheless, how do we design a differentially private learning algorithm?
How do we concretely privatize learning? In the context of DP-SCO, the noise to ensure
privacy can either be injected once the learning is completed (output perturbation) or
during the learning (gradient perturbation). Gradient perturbation is the approach we
will be following, (BST14).

Idea behind gradient perturbation

Let us consider for a moment the gradient descent algorithm, whose steps are listed below

Choose w0

For t = 0 : T − 1 do.

8



Contents

1. Compute ∇L(wt)

2. wt+1 = wt − γ∇L(wt)

End

Since computing the gradient ∇L(wt) = 1
N

∑
i∇l(wt, di) directly involves the individ-

uals in the dataset di, which are supposed to be private, an idea could be to add noise to
the gradient. Concretely, the step 2. would be replaced by wt+1 = wt−γ(∇L(wt)+noise)
where, intuitively, noise should be a smallish term, so that the new direction does not
deviate too much from the steepest descent one. We add white noise with appropriately
tuned variance, obtaining:

Algorithm 1 DP-SGD

1: Input: (D, L0, C, ε, δ)
2: σ = 32N2 log(N/δ) log(1/δ)

ε2

3: select w0 ∈ C
4: for t = 1 : N2 do
5: pick d ∼ U(D)
6: wt+1 = πC(wt − γ(∇l(wt, d) + ξ)) ξ ∼ N (0, σ2)

7: Output: wDP = wN2

The projection is needed since the updated point wt+1 might end up outside the set
C. In that case we have to project it back and restart the iterations.

It can be shown that introducing this Gaussian noise makes the final output (ε, δ)
private. The proof makes use of advanced tools that are presented in chapter 1.

Moreover, using the following theorem, we can also prove that Algorithm 1 converges:

Theorem 3. (SZ13) Let L be a convex function and w? = arg min
w∈C

L(w). Consider the

iterations wt+1 = πC(wt − γGt(wt)) where E[Gt(wt)] = ∇L(wt) and E[||Gt(wt)||22] ≤ G2,
with learning rate γt = C2/(G

√
t). Then, for T > 0 iterations, we have

E[L(wt)− L?] = O
(
C2G log T√

T

)
.

In fact, in step 6 : of Algorithm 1 we are using an unbiased estimator of the gradient.
Despite the good performances of SGD, in this work, we will focus on a specialized

algorithm, DP-Frank Wolfe algorithm. Why do we need to consider a second algorithm?
The reason is that, SGD suffers from the high dimensionality of the data, by a factor pro-
portional to O(

√
d), whereas Frank Wolfe reduces it to a factor proportional to O(log(d)).

Moreover, Frank Wolfe is projection-free, which makes the implementation easier. In
fact, unlike SGD, Frank-Wolfe does not create iterates that move along the steepest di-
rections. Given a convex loss function L over convex and compact set C, we consider
the first order Taylor expansion at a given point wt. By convexity, the graph of its
linearization lies all below the graph of the loss function L(wt). Then, we find the min-
imizer st = arg min

s∈C
〈∇L(wt), s − wt〉 and move towards the direction determined by st,

i.e wt+1 = wt + γ(st − wt). In this way, we are performing convex updates. Moreover,
the iterations are kept within C, thus the projection is not needed anymore. Lastly, from
this moment on, we always assume that C is polyhedron for reasons that will be explained
later. In practice, we run the following steps

9



Contents

For t = 1 : T do.

st = arg min
s∈vertex(Q)

(〈∇L(qt), s〉)

γ = 2
2+t

qt+1 = qt + γt(st − qt)

End

Exactly as in SGD, we are using the information contained in the dataset while com-
puting the gradient of the loss L. Again, the privatization is done by gradient perturbation,
obtaining

Algorithm 2 DP-Frank Wolfe

1: Input: (D, L0, C1, T , ε, δ)
2: select w0 ∈ C
3: for t = 1 : T do
4: st = arg min

s∈Vertex(C)
(〈∇L(wt,D), s〉+ us) where us ∼Lap(λ)

5: wt+1 = wt + (st − wt)γt where γt = 2
2+t

6: Output: wDP = wT

This time the white noise was introduced by Laplacian random variable with zero mean.
Similarly to the SGD, we can prove that the noise introduced in one iteration privatizes the
whole chain of iterations, making the output wDP completely (ε, δ) differentially private.

Throughout the thesis, we will always use the Frank Wolfe framework, both for mem-
bership inference attacks and synthetic data generation. It is worth to double remark the
answer to the question why would we use something as odd as this Frank Wolfe when we
have already DP-SGD available? As we said, Frank Wolfe does not need a projection
to be implemented. This constitutes an advantage since implementing the projection is
rather complicated. Furthermore, since our set of constraints C is assumed to be polyhe-
dron, Frank Wolfe presents an advantage: if we compare the utility guarantees of the two
algorithms for the same number of iterations we get

Gradient Descent Frank Wolfe

E[R(wT )] ≤ O
(√

d log(1/δ)

Nε

)
E[R(wT )] ≤ O

(
log(|vertex(C)|)

√
T log(1/δ)

Nε

)
Table 1: Excess risk comparison between Stochastic gradient descent and Frank Wolfe
using the same number of iteration. If the dataset is made of points that belog to Rd, a
polyedron in Rd needs to have O(d) number of vertices

The number of vertices must be of the same order as the dimension on the space
Rd, otherwise the relative interior of C would be empty. This means, that for highly
dimensional data, the factor log(d) in the Frank Wolfe upper bound increases more slowly
than

√
d, hence Frank Wolfe has stronger guarantees on the excess risk. Moreover, the d

factor appearing in the upper bound of the gradient descent is solely determined by the
Gaussian mechanism we used to perturb the gradient, whereas Frank Wolfe controlled the
convergence by adding noise for every vertex.

10



Contents

Figure 2: Scheme of a membership inference attack. UP: standard scheme of a statistical
model. DOWN: once the model has been trained, an input sample x is fed as input; the
attack tries to recover the membership of x from its output p(y|x).

In the next two sections we will see how the theory of DP-SCO naturally appears and
applies for membership inference attacks and synthetic data generation.

Membership inference attacks

Let us consider the situation in Figure 2 (up). Suppose we are given a classic statistical
model, for instance logistic regression. Our goal is to find the set of parameters defining
the model; in our case this means that we want to find w ∈ Rd for p(y|x) = 1

1+exp−w·x .
To this purpose, we will be given a data set Dtraining that we feed to the model, collecting
losses L (w, di) for every data point. Summing over all the losses and averaging by the
number of points in the datset, we get the loss function we want to minimize. The argmin
of L is the vector of parameters we are looking for. This phase is called Training the
model.

Now, suppose we have completed the training phase and we want to test the model.
Moreover, suppose that Dtraining is drawn from a distribution we know, so that we can
create new dataset Dtest sampled from the same distribution. In principle, these two
datasets have the same properties and they are indistinguishable.

If the the training was done appropriately, we possess an algorithm which classifies
points into classes. Therefore, if we draw x ∈ D = Dtraining ∪ Dtest and feed it to the
model, the model returns an output — in this example a probability vector — telling
us what is the class where x should belong to. Driven by curiosity, we ask ourselves a
question: given the output, is it possible to determine whether x ∈ Dtraining or Dtest? In
other words, can we recover the membership of a sample point x? Examples of succeeding
in recovering such information happen in the case of overfitting of the training dataset. It is
clear that if Dtraining contains sensitive information then we cannot let anybody determine
its true membership, since it would constitute an individual’s violation of privacy. As an
example, imagine if we could determine whether a person participated in a medical study
regarding the HIV. We would learn that a specific individual is affected by the virus.

11



Contents

Results and contributions MIA

In the thesis we will be playing the role of the attacker whose goal is to recover the
membership of the individual x, and the defender, who tries to prevent the leakage of
information from the dataset. These two roles can and will be performed separately. In
chapter 2, we present an overview of possible attacks, depending on what the attacker
knows. We will work in black-box attack, i.e we assume that an attacker only has access
to the output and type of architecture of the model.

The goal of this first half of this thesis is to

1. design a metric based attack: We define a function M that classifies the input data
as a member of Dtraining or a member of Dtest by looking at the output of the model;

2. test the defence while training the model with a Differentially Private learning algo-
rithm, such as Algorithm 1 and Algorithm 2.

Since the goal is to test the effectiveness of differential privacy, we keep the choice of the
model simple: Linear Regression, Logistic Regression and Multiclass Logistic Regression.
Implementing DP-SCO for neural network would require a complete re-design of the back
propagation algorithm, but the whole theory clearly generalizes to it as well.

In order to achieve the two goals 1. and 2. stated above, we implemented the following
strategies for both roles of attacker and defender.

Attack: For the sake of the experiment, suppose both Dtraining and Dtest are known.

1. Metric loss attack: we measure the loss of D = Dtraining ∪ Dtest after training
without DP and with DP for many values of ε ∈ (0, 1]. We order the losses
from the lowest to the biggest. The first 50% of the losses should correspond
to points in the dataset, because during the training they might have overfitted
the model. Then, we count how many actually were correctly classified. We
should expect to see something slightly above 50 % with a not private attack
and around 50 % with DP. Indeed, we cannot be more less accurate of a random
guess.

2. Entropy loss attack: Only for logistic regression types. Since the outputs are
going to be probability vectors, the outputs corresponding to points in the
training dataset should present a higher entropy. The rest is like the point 1.

Defence: The privatization is guaranteed by injecting noise during the training
phase of the model, i.e in the training algorithm, that makes use of the of Dtraining,
which is supposed to be private. We will compare the performances of DP-SGD and
DP-FW. The latter can only be applied if the minimization is constrained to some
set. Instead of adding a regularized (unlike what we will happen in the synthetic
dataset chapter), what we would normally do is to localize the minimum or design
models for which we already know where the minimum should lie, and design ad-hoc
polyhedron around it.

The results we would intuitively expect match the outcomes of the numerical simulations:
adding more privacy — lowering the value of ε — prevents the attack from being successful.
However, it destroys the utility, so a good trade-off needs to be found. The details of
numerical results can be found in chapter 4.

12



Contents

Synthetic data generation

In the second part of this thesis, we switch point of view on how to protect data. We
assume to be in the same scenario displayed in Figure 1. However, instead of releasing a
noisy version of the data, we create a fake (synthetic) dataset to operate with. Such dataset
is created preserving the same statistical properties as the original one, but guaranteeing
individual’s privacy. In other words, we create a new dataset that returns similar responses
to the all queries asked by the data analyst. We refer to the construction of such dataset
as differentially private synthetic data generation. The advantage of this method is that
we do not need to inject noise after every query. The mechanism A is no longer required,
thus we can work with the synthetic dataset as we would normally do. Creating such
dataset boils down to solving an optimization problem, the reason why we will make use
of DP-SCO again.

Formally, we consider the space of data X , of dimension d, i.e X = X1 × · · · × Xd. We
will be working in the general form of X , with d̃ := |X | ≤ (maxi |Xi|)d. A dataset is a
collection of N individuals, hence D ∈ XN . Moreover, we will think of a dataset as its
empirical distribution over X : pD(x) is the frequency of x in X , i.e number of times a point
x ∈ X appears in D, divided by N . Identifying a dataset as a probability distribution over
X , allows us to formally define a statistical query

Definition 4. Let D be a datset and J : X −→ [0, 1] a predicate over X . We define the
statistical query q as a function of (not on) the dataset D

q(D) =
∑
x∈X
J (x)pD(x) = 〈q, pD〉 ,

and pD(x) is the normalized frequency of x in D.

Generating a synthetic dataset translates into finding the probability distribution p for
which the largest error on all queries is as small as possible:

Find p s.t max |〈q, pD〉 − 〈q, p〉| is small ,

i.e, p answers as accurately as possible to all queries (answering a query means providing
a numerical value for 〈q, p〉).

Definition 5. The distribution representing the synthetic data is given implicitly by the
solution of

min
p distib.

max
q queries

|〈q, pD − p〉| (P ) .

This is call min max formulation.

In the previous chapter we showed how to find a solution of this optimization problem,
using the DP-SCO algorithms presented earlier. The goal of this second part is to obtain
the synthetic data as the argmin of this formulation, by using DP-SCO. In the known
literature, as far as we are aware, there are no attempts to generate the synthetic data
using this approach. We will also add an entropy regularization term, which serves to
keep the distribution p closer to the uniform U . Moreover, we will think of our di ∈ D
as sampled from a distribution P in X , thus we can generalize the definition of statistical
query

13



Contents

Definition 6 (Population). Let us denote ∆d̃ = {p ∈ Rd̃ |
∑d̃

i pi = 1 pi ≥ 0}. A
statistical query q is a function

q :∆d̃ −→ [0, 1]

P −→ 〈q,P〉 = EZ∼P [J (Z)]

Our method to obtain the synthetic dataset, using DP-SCO, goes as follow (for both
pD and P):

1. Regularization. Firstly, since we look for distributions p? that are close to the
uniform distribution, we add the regularization term

min
p∈∆d̃

max
q∈Q
|〈q, pD − p〉|+αH(p) (Pα) .

2. Solve the dual. It turns out that the form of the dual is more convenient to work
with. Frank Wolfe is perfectly suitable for this case.

3. Go back to primal. We take the value computed by Frank Wolfe qT ∼= q?α approx-
imating the exact solution of (Dα), and we plug in (Pα). The solution p?α of (Pα), is
taken as approximation of (P )

4. Quantify the error. We will give an exact upper bound on how much p?α differs
from p?, exact solution of the original problem (P ).

We can visualize the previous steps in the scheme below

(Dα)︸ ︷︷ ︸
Frank Wolfe output: qT∼=q?α

 (Pα)︸︷︷︸
input: qT output: q?α

 (P )︸︷︷︸
input: q?α output: Gap(P )(p

?
α)

.

A section will be entirely dedicated on how to opportunely tune the regularization
parameter α. The choice of α minimizes the primal gap, i.e we require α to be such that
Gap(P )(p

?
α) is as small as possible. Such chosen α will depend on the dataset, the privacy

parameters and the number of points.

Results and contributions SD

Not only we designed a method that produces a p? whose error maxq〈q, pD − p?〉 matches
the best known upper bound, but we also applied the same method on the population
mean, the general distribution of the data. As far as we are aware, there is not literature
on this last case.

Empirical Population

O
(
d1/5 log2/5 |Q| log1/5(1/δ)

(εN)2/5

)
O
(
d1/5 log2/5 |Q| log1/5(1/δ)

(εN)2/5
+ d1/2√

N

)
These upper bounds can be reasonably improved. In fact, in both cases we had to

upper bound the Frank Wolfe gap, instead of the empirical risk. In doing so, we did not
use the convexity of the loss function, which normally leads to stricter upper bounds, but
we only used the smoothness of the gradient. The reason why we decided not to upper
bound the risk is due to the regularization term. Indeed, the upper bound of Gap(P )(p

?
α)

is expressed in terms of the Frank Wolfe gap. Trying to express it in term of the empirical
risk — that we know how to estimate better — yields an upper bound too large to control.
This will be explained in chapter 5.

14



Contents

Outline of the thesis

The thesis begins with chapter 1, where we laid out a general introduction about differential
privacy, presenting the most known results and general tools. chapter 2 introduces the
theory of the membership inference attacks, giving exact details of what kind of attack
and setting we are going to implement. chapter 3 is the hearth of the thesis. We present
the general setting of Stochastic Convex Optimization with the Frank Wolfe algorithm,
and how to make it private, as well as the proof of the convergence — fundamental for
the modification of the algorithm in chapter 5. In chapter 4, the DP-FW and DP-SGD
are implemented and compared on various statistical models. We analyzed the privacy
guarantees and observed how DP does protect privacy, using both algorithms. Finally, in
chapter 5, the general setting of synthetic data generation is explained, then we dive into
the adaptation of Frank Wolfe for the corresponding optimization problem, re-adapting the
results of chapter 3. The second half on the chapter shows how to tune the regularization
parameter and how to obtain an upper bound on the total error we commit in answering
all the queries. Lastly, we present the generalization of the method for the case of the
excess population risk.

15



Chapter 1

Differential Privacy

The purpose of this first chapter is to recall briefly the notion differential privacy
and some basic properties. What does it mean to rigorously ensure privacy? In
particular, more emphasis is put on the Laplacian Mechanism and its properties, since
it is going to be the main differentially private tool used throughout 3. The chapter
will begin with an example meant to laid out the intuition behind the notion of privacy
in a mathematical sense. Most of the theory presented in this chapter is covered in
(DR13).

1.1 Randomized Response

Suppose that we are given n samples Xj ∈ {0, 1} from a survey where Xj takes the value
1 if the i− th subject satisfies a certain property P and 0 otherwise. In this scenario, the
collection of these values form a data set {X1, · · · , Xn} that could be used by an analyst
to do some statistics. What if Xj = 1 contains information that we would not like to
share, i.e if it is private, but we are forced to send to the analyst? Maybe we could send
to the analyst information that is not exactly true, but not so compromised to make the
statistics meaningless either. For instance, the i − th subject could send the variable Yi
defined as

Yi =

{
Xi w.p 1

2 + γ

1−Xi w.p 1
2 − γ

so that Yi ∼ B
(
0, 1

2 + γ
)

and for γ ∈ [0, 1/2]. The information encoded in the vari-
able Yi has the following meaning: we can either send the correct information Xi with
probability controlled by γ, or the false one with the complementary probability. To get
a deeper insight, if γ = 1/2 the people would be transmitting the the true answers with
probability 1, i.e they would be outputting the whole data set. This a totally non private
scenario. On the other hand γ = 0 means that with equal probability the people are likely
to send the correct or false answer to the analyst, i.e maximum privacy. The inner values
of γ guarantee intermediate levels of privacy.

Through this mathematical trick, somehow we compromised the answers that have to
be sent to the analyst, who will not be able to say anything about a particular person i,
since the answer maybe be not the real one. In a sense, we protected the individual’s pri-
vacy. What about the statistics that still needs to be done? Are the data too compromised
now?

The short answer to this question is that it depends on the statistics we are interested
in. Let us assume that the original goal was to estimate the mean of the data set, so that

16



1.1. Randomized Response

we wanted to compute

p =
1

n

n∑
k=1

Xk .

Now, the analyst does not see the Xi, but he sees the Yi. He observes that

E[Yi] = Xi

(
1

2
+ γ

)
+ (1−Xi)

(
1

2
− γ
)

= 2γXi − γ +
1

2

hence,

E
[

1

2γ

(
Yi + γ − 1

2

)]
= Xi.

Using this observation, we found out that the quantity

p̂ =
1

2γn

n∑
i=1

(
Yi + γ − 1

2

)

is an unbiased estimator of p. In a way, we can still estimate the mean without using the
real information about the data set.

This is the spirit of the differential privacy: we learned something about the population,
without learning anything specific about a single individual.

This method just exposed is called Randomized Response, and it is out first example
of differential privacy.

How do we formalize this idea? In the next section we laid out the formal definition of
privacy. Before going into the details of the definition of privacy, recall that we think of a
randomized algorithm, map or mechanism , as a machine M that computes M = M(x, l),
where x is the problem input and l is a random variable that might or might not depend
on the input x. Also, we have the following definition,

Definition 7. We say that two data sets D1,D2 are neighboring if they only differ in one
element. In such case with write D1 ≈ D2.

Definition 8. Let X n be the set containing data sets of n and M : X n −→ Y be a
randomized map defined on this set. We say that M is ε differentially private if for every
couple of neighbouring data sets D1 ∼ D2 and for every event T ⊂ Y,

P(M(D1) ∈ T ) ≤ eεP(M(D2) ∈ T )

What is the meaning of this definition?

- ε = 0 is equivalent to absolute privacy. It can be derived directly from the definition
of Differential Privacy. Briefly, ε = 0 is equivalent to P(M(D1) ∈ T ) = P(M(D2) ∈
T ), this leads to the algorithm M being independent of the data and thus protects
privacy perfectly, at the expense of complete loss in accuracy.

- Suppose M represents the learning algorithm for a statistical model, like a classifier.
Decreasing ε leads to a decreasing in the accuracy of the target model. If an algorithm
M is 0-DP, namely it protects privacy well, then it has very performances in terms
of target accuracy, thus it would be useless.

17



Chapter 1. Differential Privacy

Observation. From the definition, instead of imposing bounded ratio between the two
probabilities P(M(D1) = T ) and P(M(D2) = T ), we can also bound their respectibe PDFs.
In fact observe that if

P(M(D) ∈ T ) =

∫
T
pD(z)dz

it follows that

pD1(z) ≤ exp(ε)pD2(z) =⇒
∫
T
pD1(z)dz ≤ exp(ε)

∫
T
pD2(z)dz.

Properties of Differential Privacy:

Theorem 9 (post-processing). LetM,F be randomized algorithms such thatM : X n −→
Y is ε-DP and F : Y −→ Z. Then, F ◦M is ε−DP.

Proof. Let Z ∈ Z and X ∈ X n.

P(F◦M(X) ∈ Z) = P(M(X) ∈ F−1(Z)) ≤ exp(ε)P(M(Y ) ∈ F−1(Z))) = P(F◦M(Y ) ∈ Z).

Observe that F does not have to be ε −DP . As a results, once a mechanism M has
been made ε-DP, no matter how many more operations we perform on M(D), the final
product F ◦M keeps protecting privacy, being ε-DP.

1.2 Laplace Mechanism

Suppose we are given a data set X we need for doing some statistics. The collection, or we
would rather say the composition, of all the operations performed on X will be results in
a deterministic function f : X n −→ Y. Such functions are known as statistics of the data
set D. Since f is deterministic, it is interesting to think about way to turn f(D) into a DP
mechanism. Also, what is the good amount privacy needed not to compromise significantly
the effectiveness of outcome of f(D)? In this paragraph we will laid out a methodology
which privatizes deterministic outcomes f(D), and it is called Laplacian Mechanism. We
shall use it throughout the whole chapter 3. We need some definitions first.

Definition 10 (Laplace distribution). The Laplace Probability Distribution Function
(p.d.f) Lap(µ, b) is defined as

d(x|µ, b) =
1

2b
exp

(
−|x− µ|

b

)
.

Definition 11 (Sensitivity). Let f : X n −→ Rk. The sensitivity of f is defined as

∆ = sup
X∼Y

||f(D1)− f(D2)||`1

where D1 ≈ D2.

The sensitivity of f expresses how much f mutates when the data set changes in just
one individual.

18



1.3. (ε, δ) Differential Privacy

Definition 12 (Laplace Mechanism). Let D be a data set of points and let f : X n −→ Rk
be a statistics of D. We call Laplace Mechanism the random map

M(D) = f(D) + [Y1, · · · , Yk]

where Yj are i.i.d Laplacian distributed as Yi ∼ Lap
(

∆
ε

)
.

Theorem 13. The Laplace Mechanism is ε−DP .

Proof. Let D1 ∼ D2 be neighbouring data sets and pD1(z), pD2(z) the pdf of M(D1) and
M(D2) respectively. Further, since all the elements of D − 1,D2 are the same but one,
wlog we indicate by j the index for which they differ.

pD1(z)

pD2(z)
=

Πn
i=1 exp

(
− ε|zi−(f(D1))i|

∆

)
Πn
i=1 exp

(
− ε|zi−(f(D2))i|

∆

) =︸︷︷︸
D1∼D2

exp
( ε

∆
(|zj − (f(D2))j | − |zj − (f(D1))j |)

)
≤ exp

( ε
∆
|(f(D1))j − (f(D2))j |

)
≤ exp

( ε
∆

∆
)

= exp(ε).

1.3 (ε, δ) Differential Privacy

The notion of ε−DP can be rephrase using a more convenient tool, called Privacy Loss
Random Variable.

Definition 14 (Privacy Loss Random variable). Let Y,Z be two random variable defined
on the same support. We define the privacy loss random variable as

LY ||Z(t) = log

(
dP(Y = t)

dP(Z = t)

)
t ∼ Y,

where dP(·) is used to the denote the p.d.f of Y and Z.

Remark: It is a random variable whose distribution is obtained drawing and out-
putting a value from the distribution of Y . In simpler words, when Y takes a value t ∈ R
with some probability =⇒ LY ||Z takes value log

(
dP(Y=t)
dP(Z=t)

)
with the same probability.

A simple algebraic manipulation shows that the following equivalence holds

M is ε−DP ⇐⇒ LM(D1)||M(D2) ≤ ε.

There is a straight geometric representation of L that helps to understand the need
for this variable. Suppose we are about to plot the graph of L in a plan. In the horizontal
axis we put the outcomes of t of Y and on the vertical axis the value LY ||Z(t). Essentially,

LM(D1)||M(D2) is being plotted in the plot L0̂Y plan - meaning that on the vertical axis
we plot L on the horizontal axis there is the support of the real valued random variable
Y .

Remark: If still unclear: Given t ∈ Supp(Y ) then LM(D1)||M(D2)(t) is a function.
There is not randomness anymore, hence we plot it in a graph (t,LM(D1)||M(D2)(t)). To
make things even clearer, if we had any real valued random variable X, representing
(X,X2) would still look like a parabola, of course not entirely defined on R but only on
the support of X, but still a parabola, independently from the distribution of X.

19



Chapter 1. Differential Privacy

Figure 1.1: On the left two laplacian distribution with the same variance but different
mean. On the right, in blue it is represented the graph of the Privacy Loss random
variable for the Laplacian mechanism.

Figure 1.2: Same plot like in figure 1.1, but with Gaussian distribution. The Privacy Loss
random variable will be line in the plan, hence it will blow up to infinity when t→∞.

In this plan, LM(D1)||M(D2) is completely bounded from above by this threshold ε. For
instance, this is true for the Laplacian mechanism, whose graph is represented in 1.1

and this correspond to geometrical meaning of ε-DP privacy.
Suppose that we want to preserve the methodology of the Laplace Mechanism, i.e

adding some noise to a deterministic outcome of the data set, but using another distribu-
tion. Unfortunately, it might happen that the graph of L is no longer bounded with the
new distribution. In fact, this is the case of the Gaussian Mechanism (that has not been
covered yet) for which the resulting LM(D1)||M(D2) will be unbounded. Then, what can
we say in terms of privacy since the mechanism will not be ε-DP? For this purpose, it is
needed a relaxation of the definition of ε DP.

Definition 15. A stochastic algorithm M : X n −→ Y is (ε, δ) differentially private if for
every couple of neighbouring data sets D1,D2 and for every event T ⊂ Y,

P(M(D1) ∈ T ) ≤ eεP(M(D2) ∈ T ) + δ

What is the role of δ? As it was said, for the Gaussian mechanism the graph of
LM(D1)||M(D2)(t) is unbounded on t ∈ R (figure 1.2), thus it is impossible to conclude
that the mechanism is ε−DP. The same behaviour for LM(D1)||M(D2)(t) is preserved if we
re-scale the horizontal axis into FY (t) with Y :=M(D1). This means that we are plotting
into the (FY (t),LM(D1)||M(D2)(t)) plane, figure 1.3 . Then, fixing the level y = eε, the
set of all points x = FY (t) in the horizontal axis such that LM(D1)||M(D2)(t) ≤ eε will be
finite, due to the fact that LM(D1)||M(D2)(t) is monotone. Since the the horizontal axis
is scaled, the measure of all the points for which LM(D1)||M(D2)(t) is above eε has some

measure that we call δ = FY (t̂), for a certain t̂. This shows that

20



1.3. (ε, δ) Differential Privacy

Figure 1.3: graph of figure 1.2 with the scaled horizontal axis. On the right the geometric
meaning of δ and ε - in the graph it should be eε instead of ε.

LM(D1)||M(D2)(t) ≥ ε⇐⇒ Y ≤ t̂

and, taking the probabilities on both sides

P(LM(D1)||M(D2)(t) ≥ ε) = P(Y ≤ t̂) = δ.

Translated into words: (ε, δ)-DP is equivalent to saying that the absolute value of the
privacy loss random variable is bounded by ε with probability 1− δ:

P(LM(D1)||M(D2)(t) ≤ ε) = 1− δ.

Report Noisy Max Mechanism

Suppose we have aj : X n −→ R functions of a data set D, all with sensitivity ∆(aj) ≤ L
for some constant L. The mechanism RNM defined as

RNM(D) = arg max
i=1,··· ,n

[
ai(D) + Lap

(
nL

ε

)]
Lap i.i.d

is called Report Noisy Max Mechanism. Essentially, taking n statistics of the data set D
the mechanism outputs the max and the index for which it reaches the maximum.

Proposition 16. RNM is ε−DP

Proof. The result follows from the composition theorem and the Laplace Mechanism. For-
mally,

RNM(D) = arg max
i=1,··· ,n


 a1(D)

...
an(D)

+

 Y1

...
Yn




︸ ︷︷ ︸
Lap Mechanism

Yi ∼ Lap(nL/ε).

RNM(D) is the composition of the deterministic map π :=argmax : Rn → [n] and the
Laplace mechanismML(D). The composition theorem makes us conclude that π◦ML(D)
is ε private when the Laplacian random variables are distributed as Lap

(
∆a
ε

)
. To conclude:

21



Chapter 1. Differential Privacy

∆ = sup
D∼D′

||a(D)− a(D′)||1 = sup
D∼D′

n∑
i=1

|ai(D)− ai(D′)|

≤
n∑
i=1

sup
D∼D′

|ai(D)− ai(D′)| ≤
n∑
i=1

∆(ai) ≤ nL.

Observation. This proof is rather straightforward. However, it misses one important
point. We are introducing a noise that is n times greater that the upper bound on each
a′is sensitivity.

Thinking of RNM as a composition means that we first output the whole vector ai
and then we select the maximum. Instead, thinking of it as an whole, i.e only revealing
the argmax, leads to a better result in term of noise introduced. This is the content of the
following:

Theorem 17. The RNM with Lap
(
L
N

)
is ε−DP .

For the proof see (DR13). Note that they only prove it for counting queries, i.e each
aj is a function that counts how many times a certain property is satisfied for the dataset
D.

some properties of pure differential privacy are preserved over to the relaxed DP.

Lemma 18. Let M : X n −→ Y - (ε, δ)-DP and F : Y −→ Z any random map. Then the
composition F ◦M is (ε, δ) -DP

The following is an important result the we will need later in Chapter 3.

Theorem 19 (Advanced Composition Theorem(DRV10)). For all ε, δ, δ′ > 0, let M =
[M1, · · · ,MT ] be a sequence of (ε, δ)−DP algorithms where Mi are sequentially and adap-
tively chosen. Then, the whole chain M is (ε̂, δ̂) where{

ε̂ = ε
√

2T log(1/δ′) + Tε e
ε−1
eε+1

δ̂ = Tδ + δ′
.

A specialized version of this theorem holds

Theorem 20 (Advanced Composition Theorem). For all ε > 0 and 1 > δ > 0 with
log(1/δ) ≥ ε2T , let M = [M1, · · · ,MT ] be a sequence of (ε, 0)−DP algorithms where Mi

are sequentially and adaptively chosen. Then, the whole chain M is (ε̂, δ) where

ε̂ = 4ε
√

2T log(1/δ).

Another important results is the following:

Lemma 21 ((BKN10)). Suppose an algorithm is ε < 1 differentially private. If it is
executed on a uniformly random subset of the data set of size γn then it will be 2γε-DP.

Basically, this means that subsampling amplifies privacy.

22



Chapter 2

Membership Inference Attacks

In the previous chapter the definition of DP has been introduced in its pure and
approximate forms. Also, we claimed that the purpose of DP is to avoid leakage of
information from a data set D, but a rigouros explanation of what this precisely means
is still missing. We shall begin this chapter proving an example of how an attacker
does not learn much about a data set when the information he receives is the outcome
of a DP algorithm, proving that DP protects the data set D. The most known attack
in literature is the Membership Inference Attack: the attacker tries to guess whether
a x ∈ D was in the data set or not. Afterwards, the most known methodologies for
constructing such attacks against ML models shall be explained.

So far, the idea behind DP has been the following: if a mechanism behaves similarly for
D1 ∼ D2 then an attacker cannot tell what whether D1 or D2 was used. More specifically,
we assume to have the following situation

- There is an attacker or adversary who wants to retrieve information about the
data set D. In order to achieve his goal, the attacker asks queries to the curator.

- There is a data set curator that is the only one who has access to the data set D.
The curator releases a model M(D) as response to the queries, which is thought as
a mechanism of the data set. Moreover, M is DP.

In particular, the attacker knows D− {x} and wants to understand if x is the missing
element in D or not. Somehow he concludes that either D = D1 or D = D2, with D1 and
D2 that only differ in one element, exactly x. The prior probability of x is known and it
is P(x ∈ D). He cannot distinguish between D1 and D2, therefore he starts querying the
curator, who replays outputting the M(D)− εDP. How much does the attacker learn from
this information? In other words, how does the prior probability change now that he can
estimate P(x ∈ D|M(D))?

Using Bayes’s

P(x ∈ D|M(D)) =
P(M(D)|x ∈ D)P(x ∈ D)

P(M(D)|x ∈ D)P(x ∈ D) + P(M(D)|x /∈ D)P(x /∈ D)

Since x ∈ D1 and x /∈ D2 then P(M(D)|x /∈ D) = P(M(D2)), Further, M is DP private,
hence P(M(D2)) ≤ eεP(M(D1)) = eεP(M(D)|x ∈ D).

23



Chapter 2. Membership Inference Attacks

Using this inequality in the expression above we get

P(x ∈ D|M(D)) =
P(M(D)|x ∈ D)P(x ∈ D)

P(M(D)|x ∈ D)P(x ∈ D) + P(M(D)|x /∈ D)P(x /∈ D)

≥ P(M(D)|x ∈ D)P(x ∈ D)

P(M(D)|x ∈ D)P(x ∈ D) + eεP(M(D)|x ∈ D)P(x /∈ D)

=
P(x ∈ D)

P(x ∈ D) + eεP(x /∈ D)
=

P(x ∈ D)

P(x ∈ D)(1− eε) + eε

and, since 1− eε < 0 for all ε > 0, we have

P(x ∈ D|M(D)) ≥ P(x ∈ D)e−ε.

Also, using the symmetry of the DP definition,

P(x ∈ D|M(D)) ≤ P(x ∈ D)eε.

In conclusion, the total information earn boils down to an estimation on the posterior
probability bounded as

P(x ∈ D)e−ε ≤ P(x ∈ D|M(D)) ≤ P(x ∈ D)eε.

This inequality gets stricter as ε gets closer to zero. In other words, the lower ε is the
higher is the level of privacy insured.

The example just described shows the full spirit of DP. An attacker cannot really learn
much more from a query M(D) when DP is implemented. However, this does not mean
that he will simply give up. On the contrary, the attacks will be designed to gain as much
as possible, even though theoretical bounds restrict the learning limits, like the inequality
above.

2.1 Attacks in Machine Learning models

As we know, the goal of defining ML models or algorithms is to define function that cannot
be written analytically. Typically, we want to learn a set of parameters ? which defines
a function or model f(x; θ). Obtaining θ? is a process that involves the training of the
model f over a given data set D = {(xn, yn)}Nn=1 with a learning algorithm A. The training
is concluded when θ? which minimizes the empirical risk on the training set is obtained
through the algorithm A. The model f(x; θ?) is then taken as a new prediction function
on the unseen data.

A Membership Inference Attack (MIA) aims to determine whether a given data in-
stance is part of the target model’s training data set or not. The strategy is based on the
attacker’s knowledge, for which there are many scenarios.

- Data knowledge: the adversary knows the distribution of Dtrain. He can get a
copy D′ distributed as D. Furthermore, the new set of data can be disjoint (here the
distributions are meant to be continuous)

- Training knowledge: The adversary knows the learning algorithm A, including
the procedure to solve the optimization problem, number of training steps and etc.

24



2.2. MIA on Neural Networks

- Model knowledge: The adversary knows the architecture or ”model” of the NN,
f(x; θ) - topological architecture and model parameters.

- Output knowledge: The adversary knows the final output of the model, for in-
stance the prediction vector of a forward neural network, p(y|x).

It is always assumed that the adversary knows at least the output vector. Based on
what he/she knows, the attack is further divided in black-box (only output knowledge)
and white-box (full access to the items above) attacks.

The upcoming sections are based from (HSS+21).

2.2 MIA on Neural Networks

Remember that the goal of the membership attacks is to determine whether a data point
is a member of a training data set or not. How do we recognize if a point belongs to
the data set? For the moment, let us assume our model to be a simple forward neural
network that does classification. How do we attack the model? The idea behind the attack
is that, more than often the NNs are trained multiple times over the same Dtrain. As a
result, a point in Dtrain is more likely to have an higher confidence score. To make it more
concrete, let us suppose that we have a NN that classifies the data input into 5 classes
which outputs a vector p(y|θ?). If we are given an x ∈ Dtrain as input, the confidence score
might look like [0.9, 0.05, 0.04, 0.01, 0] i.e assigning 90% of confidence to the first class. If
we give as input another x′ /∈ Dtrain whose label is class 1, the confidence score might look
like [0.6, 0.3, 0.1, 0, 0]. The point will be assigned the correct class (and this is the goal of
the classifier after all) but the confidence score is significantly lower than before.

The attacks are built upon the above example. We shall try to capture this behaviour.
There are two types of attacks methods. One is NN based attacks and the other one is
NN metric based attacks.

Even if these attacks are defined for NNs, we can partially recycle the same approaches
for other ML models.

2.2.1 Neural Network based attacks

From now on, the Neural Network is referred to target model . What comes before the
attack is phase in which the adversary prepares the data set. It is assumed that the he
only has access to the distribution on the data set and the output of the target model.
Also, he can use the model, i.e given a data set D, the adversary can observe the output
f(D, θ?) = P.

The first step is to create a data set of points that will be used to train a binary
classifier (the adversarial NN) - which recognizes whether a point is a member or not. To
get this data sets, the procedure is the following

1) Let us drawn D1, · · · ,Dn from the distribution of Dtrain such that they are disjoint
from Dtrain. These are called shadow training sets.

2) Train the target model on each data setDi and get the ready functions f(Di, θ?) = Pi.

3) Furthermore, consider other testing sets T1, · · · , Tk disjoint from D1, · · · ,Dn

4) Feed the target model with the previous data sets, getting :

25



Chapter 2. Membership Inference Attacks

Pmj = f(Dj , θ?) and Pnmj = f(Tj , θ
?) for j = 1, · · · , n

where nm and m stand for non member and member respectively.

5) Pmj × {1}
⋃
Pnmj × {0} form the new data set of points that we are going to use to

train the adversarial Neural Network. The labels 1 and 0 represent being a member
or not.

The adversarial NN, which has the architecture of a binary classifies ( it could be a
simple forward model) is trained on {Pmj × {1}

⋃
Pnmj × {0}}.

This works in both white and black box setting. Of course there are small differences.
The adversarial NN shall be denoted as g(·, θ) and takes Pj as input and it outputs the
confidence score for 0 and 1.

2.2.2 NN based attacks in black-box setting

As a reminder, in this setting the adversary has only access to the output of the target
network and he can only create the data set to train his own NN following the procedure
above.

Let L be the loss function of the binary classifier. and I the indicator function (it is a
vector whose entries are all zero except for one).

The learning phase boils down to solving the optimization problem

arg min
θ

1

2n

2n∑
j=1

L(I(xj ∈ Pm), g(p(y|xj), θ))

which returns the optimal parameter θ = θ? and therefore the adversarial classifier
g(·, θ?).

2.2.3 NN based attacks in white-box setting

There is only one significant different respect to the black-box scenario. The adversary
knows more information since he has full access to the intermediate computations of the
target model. We are going to use this further information. Let h(x; θs) the intermediate
computations at the layer s (it is assumed that the NN has the structure of a forward NN),
∂L
∂θi

the partial derivative in the backward step at layer i and p(y|xj) the output prediction
vector.

Let v be the row vector containing

v =

[
∂L
∂θ1

, h(x, θ1), · · · , ∂L
∂θn

, h(x, θn), p(y|x)

]
,

then, the data set is amplified as (v, 0) for non members and with (v, 1) for members. The
optimization problem that we need to solve is therefore

arg min
θ

1

2n

2n∑
j=1

L(I(xj ∈ Pm), g(vj , θ)).

We can solve both optimization using SGD. However, we will see later on that there
are finer techniques to these purposes.

26



2.3. Metric Based Attacks

2.3 Metric Based Attacks

Unlike NN based attacks, the Metric based attacks directly define a function M which
classifies the input data as member (1) or not member (0) by measuring some ”metrics”.
Based on what we measure, there are four types of attacks, all based in black-box mode.

- Prediction correctness based attack : an input data instance x is a member if it is
correctly predicted by the target model, otherwise it is not a member. The intuition
is that the target model should make correct predictions on its own training data
set. Therefore, the decision metric M is

M(p(y|x); y) = I(arg max p(y|x)︸ ︷︷ ︸
class

= y︸︷︷︸
label

).

- Prediction loss based attack : Once the target network is trained, the loss of computed
on one of its training data should be quite smaller compared to the loss on any other
input. Using this intuition, we define a metric M which assigns a input data as a
member if the input has ”low loss”. This ”low loss ” is controlled through a threshold
τ ≥ 0. Therefore,

M(p(y|x), y) = I(L(p(y|x), y)) ≤ τ).

- Prediction confidence based attack : Using the same reasoning as just done above, it
is intuitively clear the if the input is a data used in the training face, we expect an
higher confidence score (like shown in the example in the introduction). Hence, we
can classify a point correctly if the highest probability of the class - the confidence
score - is bigger of a set threshold:

M(p(y|x)) = I(max p(y|x) ≥ τ).

- Prediction entropy based attack : Recall that for a discrete distribution [p1, · · · , pn]
s.t
∑

j pj = 1, the entropy is defined as

H(p1, · · · , pn) = −
n∑
j=1

pj log2 pj

and it achieves its maximum value when all pj = 1
n for all j, and its minimum when

all pj = 0 except for one pi = 1.

Intuitively, the higher the disorder of the distribution, the higher is the entropy.
When a point belongs to the data set, exactly as we said earlier, we expect its
output vector p(y|x) to be close to the distribution with all zeros and only one
entry that accumulates the mass distribution, i.e it should have a low entropy. The
classification is therefore defined as

M(p(y|x), y) = I(H(p(y|x), y)) ≤ τ),

for a set threshold τ .

In the chapter 3 will be using only two attacks, that seem to be more effective; loss
based attack and entropy based attack, or their variations. The reason is that they better
capture the overfitting of data. The drawback comes to the choice of the threshold τ , not
easy to set. Whereas the less effective is the prediction correctness based attack : even if the
data overfitted the model, a well trained classifier will likely classify correctly an unseen
data. After all, this is what it is requited from a classifier.

27



Chapter 3

Differentially Private Optimization

3.1 Stochastic Convex Optimization

Definition 22. Let D be a bounded set of N data points in Rd, w ∈ Rp the parameter
vector.

minimize L(w;D) :=
1

N

N∑
j=1

l(w, xi, yi) + µR(w)

is called Empirical Risk Minimization (ERM) with regularization R(w). The minimization
is taken over the set of parameter w.

The parameter µ controls how much we want to constrain our minimization.
L(w;D) is the loss function that we are going to use here.
The minimization of

minimize L(w;D) :=
1

N

N∑
j=1

l(w, xi, yi)

subject to ||w||1 ≤ h

can be shown to be equivalent to ERM for a certain h, via dual Lagrange formulation.
Notation: For convenience, I denoted with L(w,D) the sum of the losses L, i.e using

the same L.

Definition 23. Let D = {d1, · · · , dN} be N samples drawn from a distribution and C a
polyhedron. We define the risk

R̂(w,D) =
1

N

N∑
i=1

l(w, di)−min
w∈C

1

N

N∑
i=1

l(w, di).

We are looking for an a random mechanism A of D to the space of parameters w, i.e
A : Dn −→ Rp such that

lim
N→∞

R(A) := EA
[
R̂(A(D),D)

]
= 0.

To minimize the empirical risk we need to know the data set D. However, the access
to the data set D might bring to a privacy violation that should be avoided. We will try
to minimize R(A)) in a private way.

The following observation is useful to generalize the concept of ERM

28



3.1. Stochastic Convex Optimization

Observation. Suppose Z ∼ U(D). Then,

L(w,D) =
1

N

N∑
j=1

l(w, di)
1

N
=

N∑
j=1

l(w,Z = di)P(Z = di) = EZ∼U(D)[l(w,Z)] .

This means that the empirical risk corresponds to the expectation of l(w,Z) when Z is a
uniform distributed random variable.

Definition 24. We define

Population Risk: Let P a distribution over D and l : X ×D −→ R. We define the
population risk as

L(w;D) = EZ∼P [l(w,Z)] .

When P = U(D), L is called Empirical Risk.

SCO: Let C ⊂ X be a convex and closed set (we assumptions on the compactness
in the definition). We define of minimizing the population risk

min
w∈C
L(w;D)

as Stochastic Convex Optimization.

DP-SCO: The problem of determining a DP private mechanism A(D) ∈ X such
that

EA[L(A(D);D)− L?] N−→∞−−−−−→ 0

is called Differentially Private Stochastic Convex Optimization.

Throughout the chapters we will always assume that l(·, d) is L− Lipschitz and β−smooth
in the first entry.

Related work

A long line of works on differentially private private stochastic convex optimization focus
on empirical risk minimization (ERM). Special emphasis is put on SGD algorithm for
both SCO and ERM. In Table 3.1, the most known upper bounds of Excess Risk for
both cases, are provided. In (BST14) it is provided a version of DP-SGD algorithm

which achieves O
(

1/
√
n+

√
d log(1/δ)

εN

)
, known to be tight. Moreover, if d/ε2 = O(n) the

bound is comparable to the non-private SCO bound of O(1/
√
N). However, the price

for privatizing is reflected in both efficiency and utility, for which this algorithm requires
O(min{N3/2, N5/2/d}) computations, i.e is less effective than its non-private version, that
requires N computations.

29



Chapter 3. Differentially Private Optimization

Algorithm No. of Iters. Accuracy Tot. comp. cost

DP-SGD (ERM) (BST14) T = N O
(√

d log(1/δ)

εN

)
DP-SGD (SCO) (BFTT19) T = N2 O

(
1/
√
N +

√
d log(1/δ)

εN

)
O
(

min{N3/2, N
5/2

d }
)

DP-SGD (SCO) (HSS+21) T = N O
(

1/
√
N +

√
d log(1/δ)

εN

)
O
(

min{N, N5/2

d }
)

Table 3.1: The accuracy of DP-SGD algorithm on dimension d solely depends on the noise
introduced with the Gaussian mechanism.

3.2 Frank Wolfe Algorithm

Let C be the polyhedron defined through a convex hull of vertices, i.e C = conv{s1, · · · , sk} ⊂
Rp and let L be the Lipschitz constant of the loss (||∇l(x) − ∇l(y)|| ≤ L||x − y||). Let
D = {(x1, y1), · · · (xN , yN )} be the data set of points (xj , yj) ∈ Rd × R. Then, we define
the following

Algorithm 3 Differentially Private Frank-Wolfe, version 1

1: Input: (D = {(x1, y1), · · · (xN , yN )}, L, C1, T )
2: select w0 ∈ C
3: for t = 1 : T do
4: ∀s ∈ Vertex(C), Mt(D) := (〈∇L(wt,D), s〉+ us) where us ∼ Lap (λ)
5: ŝt = arg minsMt(D)
6: wt+1 = wt + (ŝt − wt)γt where γt = 2

2+t

7: Output: wDP = wT

We will show that this algorithm is DP using 19. In 3, We are injecting noisy by a RMN
mechanism. This makes the line 4. of 3 ε−DP. Furthermore, wt depends by the previous
wt−1 for all t, i.e all the conditions of the adaptive composition theorem are satisfied. To
be more precised, with a correct choice of λ this algorithm is (ε, δ)−DP .

Theorem 25 (Privacy Guarantee). The DP-FW algorithm 3 is (ε, δ) differentially private
if λ is set as

λ =
8L||C||1 · ||D||∞

√
2T log(1/δ)

Nε
,

with Tε2 ≤ log
(

1
δ

)
.

Proof. Every iterate of [3] is ε̂- DP private because uj ∼ Lap
(γ
ε̂

)
with λ = γ ε̂. By the

advanced composition theorem with δ = 0, the whole algorithm is then{
4(2ε̂)

√
2T log(1/δ)

δ
−DP.

We want our final outcome to be (ε, δ) = 8ε̂
√

2T log(1/δ), δ) DP, for any choice of
ε > 0. Hence, ε̂ needs to be chosen as

ε̂ =
ε

8ε̂
√

2T log(1/δ)

30



3.2. Frank Wolfe Algorithm

that, substituted in λ,

λ =
γ8
√

2T log(1/δ)

ε
.

The only thing left to do is to estimate the sensitivity of

∆j := sup
D∼D′

|〈L(wt,D), sj〉 − 〈L(wt,D′), sj〉|,

when D and D′ differ in one element.
Remark: it is enough to estimate the sensitivity of each coordinate and not as a

vector of all of them because it is being used a Report noisy Max mechanism.
Before we move on, we need a technical lemma first.

Lemma 26. Let l(·, z) be both L0 Lipschitz and convex w.r.t || · || in the first argument.
Then

||∇l(w, z1)−∇l(w, z2)||? ≤ 2L0 ∀w ∈ C, ∀z1, z2 ∈ D .

Proof. By convexity of l(·, z)

l(w′, z1) ≥l(w, z1) + 〈∇l(w, z1), w′ − w〉
l(w′, z2) ≥l(w, z2) + 〈∇l(w, z2), w′ − w〉

and subtracting these two inequalities

〈∇l(w, z1)−∇l(w, z2), w′ − w〉 ≤l(w, z2)− l(w′, z2) + l(w′, z1)− l(w, z1)

≤|l(w, z2)− l(w′, z2)|+ |l(w′, z1)− l(w, z1)|
≤L0||w − w′||+ L0||w − w′|| = 2L0||w − w′|| ∀w 6= w′ .

Dividing both sides by ||w−w′||, and considering that the inequality holds for any w′ ∈ RN

〈∇l(w, z1)−∇l(w, z2),
w′ − w
||w − w′||

〉 =︸︷︷︸
∀w′

max
||z||=1

〈∇l(w, z1)−∇l(w, z2), z〉︸ ︷︷ ︸
=:||∇l(w,z1)−∇l(w,z2)||?

≤ 2L0 .

Using the Holder inequality, each |〈∇L(wt,D)−∇L(wt,D′), sj〉| is bounded by

|〈∇L(wt,D)−∇L(wt,D′), sj〉| ≤ ||∇L(wt,D)−∇L(wt,D′)||∞ · ||C||1

||∇L(wt,D)−∇L(wt,D′)||∞ = || 1
N

N∑
j=1

∇l(wt, dj)−∇l(wt, d′j)||∞

=︸︷︷︸
D∼D′

1

N
||∇l(wt, dk)−∇l(wt, d′k)||∞ ≤

2L0

N
=: γ.

where ||D||∞ denotes the maximum in infinity norm of the points in the datasets, that are
bounded by hypothesis. To conclude,

31



Chapter 3. Differentially Private Optimization

λ =
16L0 · C1

√
2T log(1/δ)

Nε
.

Observation. The noise does not depend on the number of vertices, but it only depends
on the sensitivity of each 〈L(wt,D), sj〉. This is a property that follows immediately from
the Report Noisy Mechanism. Also, observe that if we had used the property of the
Laplacian or Exponential mechanism, we would had gotten the same λ multiplied by the
the number of vertices, i.e a noise p times greater.

About the convergence: We have to show that the empirical risk is bounded by a
function with nice asymptotic properties:

Theorem 27 (Utility Guarantee, similar to (TGTZ15)). Suppose l(·, d) is L0 Lipschitz
and L1 smooth w.r.t || · ||1. The algorithm 3 above, with λ determined by the previous
theorem and performing T iterations, has a utility guarantee of

E[L(wT ,D)− L(w?,D)] ≤ O

(
L||D||∞ · C1 log(k)

√
T log(1/δ)

Nε

)
Proof. Using the convexity of L and the L1-smoothness, by the descent lemma we get the
inequality

L(wt+1) ≤L(wt) + 〈∇L(wt), wt+1 − wt〉+
L1

2
||wt+1 − wt||2 (3.1)

≤L(wt) + γt〈∇L(wt), st − wt〉+
L1

2
C1γ

2
t (3.2)

where we used the step 6. of algorithm (3) for wt+1.
Furthermore, we observe that by definition of st

〈∇L(wt), st〉+ min
s∈C

us ≤ 〈∇L(wt), st〉+ ust ≤ 〈∇L(wt), s〉+ max
s∈C

us ∀s ∈ C,

which implies

〈∇L(wt), st〉 ≤ 〈∇L(wt), s〉+ (max
s∈C

us −min
s∈C

us) ∀s ∈ C.

Notice that maxs∈C us and mins∈C us are pointwise max and min of random variables.
Therefore, this is also a random upper bound. There was no way to avoid this drawback
since st is also a random variable. This upper bound holds for any s ∈ C, thus for s = w?.

L(wt+1) ≤L(wt) + γt〈∇L(wt), st − wt〉+
L1

2
C1γ

2
t (3.3)

≤L(wt) + γt〈∇L(wt), w
? − wt〉+ γt(max

s∈C
us −min

s∈C
us) +

L1

2
C1γ

2
t . (3.4)

Now, by convexity of L

〈∇L(wt), w
? − wt〉 ≤ L(w?)− L(wt).

32



3.2. Frank Wolfe Algorithm

Using this upper bound in the inequality above and subtracting L(w?) on both sides

L(wt+1)− L(w?) ≤ L(wt)− L(w?)− γt(L(wt)− L(w?)) + γt(max
s∈C

us −min
s∈C

us) +
L1

2
C1γ

2
t .

and with R̂(wt) = L(wt)− L(w?),

R̂(wt+1) ≤ (1− γt)R̂(wt) + γt(max
s∈C

us −min
s∈C

us)uj +
L1

2
C1γ

2
t .

We can now take the expectation on both sides over the randomness of the laplacian
Mechanism (recalling that R = E[R̂])

R(wt+1) ≤ (1− γt)R(wt) + γtE
[
max
s∈C

us −min
s∈C

us

]
+
L1

2
C1γ

2
t .

It can be shown (see Appendix) that

E
[
max
s∈C

us −min
s∈C

us

]
= O(λ log(k)) ∼= λ log(k) + small(k, λ).

Let us go back to the inequality. To simplify the notation, let M1 = λ log(k) and
M2 = L1/2C1. Then, we find a recursive relation

R(wt+1) ≤ (1− γt)R(wt) + γtM1 + γ2
rM2.

It can be proved, (see [49]) that

R(wt) ≤M1 +M2at,

where {
a0 = 1

at+1 = at(1− γt) + γ2
t γt = 2

2+t .

This sequence (at)t≥0 is monotone (decreasing) and positive for all t and converges to
0 as 1

t . In conclusion, with T = t iterations,

E[L(wT ,D)− L(w?,D)] := R(wT ) ≤M1 +M2at ∼M1 +
1

T
M2 ∀T >> 1.

There exists a sufficiently large T , such that 1
TM2 ≤ M1(T ), hence E[R(wT )] ≤ 2M1(T ).

Substituting the value of M1 = M1(λ(T )) and M2, taking into account that λ is set equal

to λ =
16L0C1

√
2T log(1/δ)

Nε to ensure (ε, δ)−DP :

E[L(wT ,D)− L(w?,D)] ≤ O

(
L0C1 log(k)

√
2T log(1/δ)

Nε

)
.

Observation. To be more specific, we can do better. We know that E[L(wT ,D) −
L(w?,D)] := R(wT ) ∼M1 + 1

TM2 ∀T >> 1. Therefore,

E[L(wT ,D)− L(w?,D)] ≤ O

(
L0C1 log(k)

√
2T log(1/δ)

Nε
+
L1C1

2T

)
.

33



Chapter 3. Differentially Private Optimization

Optimizing over T ,

T = O

(
L

2/3
1 (Nε)2/3

L
2/3
0 [log(1/δ)]1/3[log(k)]2/3

)
.

Plugging this number of iterations into the upper bound, we do find — analogous of
(TGTZ15)

E[L(wT ,D)− L(w?,D)] ≤ O

(
C1L

2/3
0 L

1/3
1 [log(1/δ)]1/3[log(k)]2/3

(Nε)2/3

)
.

Lemma 28. The expectation E[maxs∈C us] satisfies

E[max
s∈C

us] = O(p log(k))

where k is the number of vertices of the polyhedron C and p is the dimension of the space.

Proof. Since minus = −max−us and −us is still a Laplace with same parameter λ -
because the mean is 0 and Laplacian has a symmetric density, without loss of generality
we assume to bound maxs us.

For every r > 0, using the fact that uj are i.i.d,

exp (tE[max
j∈C

uj ]) ≤ E[exp (rmax
j∈C

uj)] ≤ E

[
k∑
i=1

exp (rui)

]
= kE[exp (tu)]

where u ∼ Lap(λ). Taking log on both sides ( log is monotone, so it preserves the
inequality)

E[max
j∈C

uj ] ≤
log (kE[exp (tu)])

t
for all t > 0.

Since the density function of the Laplacian distribution is known, E[exp (tu)] can easily
be computed as an integral in the usual way. It can also be shown that this value is finite
if and only if 0 < t < 1

λ and that

E[exp (tu)] =
2

(1 + tλ)(1− λt)
≤ 2

1− λt
for all 0 < t <

1

λ
.

Choosing t = 1
2λ , we finally get the upper bound

E[max
j∈C

uj ] ≤ 2λ log (4k) .

This lemma overkills, and indeed we can do better computing more precisely the ex-
pectation and obtaining λ log(k)

Remarks:

1) The higher is the value of ε, the lower is the expected risk. However, λ of the form
λ = ·

ε implies an amplification of the noise introduced in the learning phase, hence
a very poor privacy guarantee.

3) It is natural that T appears at the numerator, though it might be counter intuitive.
We want that the empirical risk goes to zero when the number of points in the
dataset goes to infinity. We then adjust the T accordingly, i.e as a function of N .

34



3.3. Stochastic Frank Wolfe

4) A similar bound is found in (TGTZ15). The difference is that the curvature function
has not been used, but we assumed smoothness of the loss function L - continuity
of the gradient. Therefore, asymptotically is the same result, we are only changing
constants.

Noise: δ, λ Excess Risk

SDG 8L2 log(1/δ)/ε2 O
(
L||D||1+

√
8p log(1/δ)√
Nε

)
DP-FW 8L||D|| · ||C||

√
2 log(1/δ)/

√
Nε O

(
L||D||·||C|| log(2p)

√
log(1/δ)√

Nε

)
Table 3.2: Noise and Excess Risk with T = N , The crucial difference is in the factor
log(2p) and p in the Excess Risk. FW is expected to perform better on highly dimensional
data respect to SDG. Here FW is being performed over the `1 ball, thus there are k = 2p
vertices.

3.3 Stochastic Frank Wolfe

As previously discussed in the utility guarantee of Frank Wolfe, the gradient ∇L(w) =∑
i∇l(w, di), takes O(pN) computations, which makes it quite slow. We shall brie As in

SGD, we need to construct an unbiased estimator of the gradient that is cheap in terms
of computations, and replace it with ∇L. We will denote such estimator with ∇t.

Suppose we want to consider the population minimization problem minw Ez∼P [l(w, z)].
Further, given the distribution P, we can sample b (zi)

b
i=1 i.i.d from P. Then, an unbiased

estimator of the gradient L can be constructed by

1

b

b∑
i=1

∇l(w, zi) zi ∼ P i.i.d .

In fact,

Ez∼P

[
1

b

b∑
i=1

∇l(w, zi)

]
=

1

b

b∑
i=1

Ez∼P [∇l(w, zi)]

=
1

b

b∑
i=1

∇Ezi∼P [l(w, zi)]︸ ︷︷ ︸
L(w,z)

=
1

b

b∑
i=1

∇L(w, z)

=∇L(w, z) .

We used the fact that zi are i.i.d and that here we can interchange derivatives and integrals.
This estimator posses a fundamental property

Lemma 29. Suppose L(w) = Ez∼P [l(w, z)] with maxsupp(z) ||∇l(w, z)||? ≤ G for some
constant G, then the estimator ∇ satisfies

E[||∇ −∇L(w, z)||] ≤ G√
b
.

In other words, the variance of the estimator is bounded. This yields the following
stochastic version of Frank Wolfe:

35



Chapter 3. Differentially Private Optimization

Algorithm 4 Stochastic Frank-Wolfe, population (RSPS16)

1: Input: T number of iterations, batch size b, step size γ
2: select w0 ∈ C
3: for t = 0 : T − 1 do
4: Sample z1, · · · , zb i.i.d from P.
5: Compute ∇t = 1

b

∑b
i ∇l(wt, zi)

6: ŝt = arg min
s∈vertex(C)

〈∇t, s〉

7: Update: wt+1 = wt + (ŝt − wt)γ
8: Output: wU where U ∼Uni({0, · · · , T − 1}).

Remark 1. Note that nothing is yet private.

It can be shown that this algorithm converges ref and that it can be made private in
the usual sense we imagine, by adding Laplacian noise and using a report max mechanism
in line 6:. We will be using this algorithm as framework in chapter 5 for algorithm 6.

36



Chapter 4

Numerical Experiments

In this Chapter we will implement the attacks and defence presented in the previous
chapters. We will consider three models: Linear Regression, Logistic Regression and
Multinomial Logistic Regression

4.1 `1 Constrained Regression

We shall laid down the details regarding the implementation of Algorithm 3 on LASSO
(equivalent to `1 Constrained Regression) and perform a simple MIA attack, explained
below. This attack is based on the framework of the Prediction Based attack presented in
the second chapter.

Recall the setting: Let {x1, · · · , xN} = Dtraining be a data set with labels yi = w? +
noise. For every point we have the loss li defined as

li : R −→ R t→ 1

2
(t− yi)2.

Then, the LASSO is defined as the minimization of the following

min
w

1

N

N∑
i=1

li(〈w, [1, xi]〉)

s.t. ||w||1 ≤ C

(4.1)

where w ∈ Rp+1.

Observations and assumptions:

- It is known that the `1 ball in Rp+1 is the convex hull of the canonical basis of
Rp+1: ||w||1 ≤ C = C · conv{±e1, · · · ,±ep+1}. Thus, the number of vertices is
2(p+ 1) = O(p).

- Without loss of generality, we assume that ||D|| = 1.

- each li(〈w, x〉) is smooth with constant L = O(1)

37



Chapter 4. Numerical Experiments

- The gradient of the Empirical Loss

∇w

(
N∑
i=1

li(〈w, [1, xi]〉)

)
=

N∑
i=1

∇wli(〈w, [1, xi]〉) =

N∑
i=1

l′i(〈w, [1, xi]〉)[1, xi] =

=
N∑
i=1

(〈w, [1, xi]〉 − yi)[1, xi].

- The actual parameters of the model, w?, might not be in C`1. In order to keep things
simple, C := ||w?||. In particular, this choice implies that the exact minimizer could
be computed in practice, even though the minimization includes constrains.

We will design an attack as follow: [3] is used to learn a set of parameters wDP .
Then we can generate another data set Dtest with the same distribution of Dtraining. The
enriched data set D′ := Dtraining ∪ Dtest shall be used for the attack. D′ is being fed to
the model, i.e we are computing the labels ypredict = wDP · D. Reasonably, the points
belonging to the data set Dtraining which was used for training the model have somehow
over-fitted the model during training, thus their loss is expected to be lower.

Algorithm 5 Prediction Based Membership Inference Attack

Input: Dtraining = {(x1, y1), · · · (xN , yN )}
2: Draw Dtest ∼ Dtraining

Set D = Dtest ∪ Dtraining
4: Set δ

for ε ∈ (0, 1] do
6: Compute wεDP = DP.FW (Dtraining, ε, δ)

for x ∈ D do
8: Compute L(D).append(L(wεDP , x))

L(D)← sort(L(D))
10: Counter = 0

for k = 1 : N/2 do
12: find x such that L(wεDP , x) ∈ L(D)[k]

if x ∈ Dtraining then
14: Counter + +

for k = N/2 + 1 : N do
16: find x such that L(wεDP , x) ∈ L(D)[k]

if x ∈ Dtest then
18: Counter + +

Store accuracy.append(Counter/N%) for ε

20: Output: accuracy

Therefore, the most natural attack would be the one in alg. 5. After having fixed a
level of privacy ε, we run a DPFW with this ε and compute the global loss L(D). Sorting
this vector from the lowest to the highest value, it reasonable to think that the first N
points with the lowest loss are those who were in the training data set Dtraining.

Applying the algorithm 3 in step 7. of algorithm 5 with T = Nε number of iterations,

we obtain the upper bound on the excess risk of E[L(wεDP ,D)−L?] = O
(
C log(4p)

√
log(1/δ)√

Nε

)
.

38



4.1. `1 Constrained Regression

These are some results of the MIA attack with DP-SGD and DP-FW alg 3.

Figure 4.1: Left: Membership inference attack with N = 1000 points. On the left: Av-
erages over 10 epochs. In the middle, the highest and lowest values of MIA over the 10
epochs. Right: Theoretical loss bound, computed loss and ||wεDPSGD − w

?||.

This means that the model has been trained on Dtraining with DP-SGD. For every ε,

we ran [5] for epochs = 10 times and we display the averages 1
epochs

∑epochs
i=1 MIA(wεDP ,D)

on the left. The two dot lines in red define a neighbor of 50%. We say that the at-
tack is effective if most of the blue points lie within this region and are below the NOT
DP MIA attack. In the middle, for every ε it is plotted maxepochsMIA(wεDP ,D) and
minepochsMIA(wεDP ,D).

For clearness, combining the first and second plot and fitting the blue dots helps to
understand what is the behaviour of the MIA attack in (0, 1], in Fig. 4.2.

Slightly better results are obtained increasing the number of points, as it is shown in
the graph below and in Fig 4.4:

Figure 4.3: Left: Membership inference attack with N = 10000 points. The graphs shows
the results of the accuracy for 10 epochs. The highest and the lowest recording has been
added. Right: Theoretical loss bound vs the computed loss.

Similarly, the results of the attack when the defense uses DP-FW:

39



Chapter 4. Numerical Experiments

Figure 4.2: N=1000. The algorithm has been rerun and the plot in the middle of fig 4.1
appears as confidence regions; the red and blue dots have been fitted with a log model
-shadow blue lines.

40



4.1. `1 Constrained Regression

Figure 4.4: N=1000. appears as confidence regions; Not that the log fit converges to the
Non private attack as ε gets larger.

41



Chapter 4. Numerical Experiments

Figure 4.5: N=1000. The attack seems to be stable, even though for small ε the attack is
meaningless. The loss does not decrease as fast as it did with DP-SGD.

The range of ε ∈ (0, 1] is nice for privacy guarantees. However, one might wonder if it
is enough to consider this range and not a large interval for ε. The experiments suggest
that the more ε increases, the more the attacks level out.

Figure 4.6: N=1000, for ε ∈ (0, 5]. The attack appears to be stable at ε = 1 already.

and

Figure 4.7: N=1000, for ε ∈ (0, 10]. The stabilization is sharper in this example. Small
values of ε yield to larger fluctuations.

Let us comment these results. Empirically, the points level out at a value of ε around 1.

42



4.1. `1 Constrained Regression

Most of the averages values are below the non private attack and usually slightly less than
50%. This proves and measures the protection of DP. In theory, with a perfectly trained
model, a MIA attack has an expect value of 50% of accuracy, with a variance that decreases
with the training. In other words this means that we expect MIA attacks without DP to
have an accuracy slightly above 50%. Indeed, half of the points are generated from the
same distribution of Dtraining and a perfect attack should have the same expected accuracy
of a random guess. Goal of MIA attack is to improve this accuracy, pushing it above 50%,
while the role of DP is to make it lower. As it can be seen from these simulations, the
DP offers a slight protection against these attacks. Moreover, our intuition suggests that
the smaller ε gets, the more the accuracy of the attack decreases, in accordance with the
results displayed above, for which we observe this log-trend. On overall, we are right: most
of the time the graphs will look like in 4.6. However, for values of ε in (0, 0.2] the attack
seems not to be so relevant for the privacy analysis. In fact, with T = εN , for ε = 0.1 we
already need at least N = 1000 to perform T = 100 iterations, i.e we are not learning at
all. Indeed, the graphs in 4.3 and 4.5 emphasize this discrepancy: with N = 10000, the
blue points are shrunk (look at the band delimited by the two red lines). Also, rerunning
[3] with the same setting as 4.6 we get:

Figure 4.8: N=1000. for ε ∈ (0, 5]. The log-trend is still visible, but less evident. The
attack is still effective, the most of the points are below the threshold of the non private
attack.

In conclusion, most of the time the defences are effective against the attacks: the
percentages do not lie outside the red band too much and most of the points are below
the not DP attack, that is what we wanted. Also, we observed that the more privacy we
add, the more the results are unreliable. Of course, the drawback is that that we need less
privacy budget to make up for the lack of accuracy, clearly bringing to a privacy issue.
However, the good new is that the attacks do converge and level out pretty soon, as we
expected from the theory. Empirically - by looking at the graphs- this stabilization starts
in a neighbor of ε = 1, thus it still makes sense to restrict the analysis to the range (0.2, 1],
keeping in mind that the greater ε, the better are the results. This shows that considering
ranges of (0, 100], like in (CWS20) is not necessary, unless the dimension p� N . In this
case we need a privacy budget extremely high, in accordance with what we see in table
3.2.

43



Chapter 4. Numerical Experiments

4.2 Logistic Regression

We will repeat the same experiments of the previous section on the Logistic - Regression
model. Recall that the goal is to perform classification: We want to classify a point
x ∈ Rn as belonging to two classes, either 0 or 1. This information is stored in a label
y ∈ {0, 1}. For the sake of experiments, we assume that the data can be linearly separable.
The parameters of this model shall be denoted with β = [β0, β1, · · · , βp]. Recall that in a
logistic regression we directly estimate the probability of a class, assuming there is relation
between the weights and a probability of a class as

log

(
P(Y = 1|X = x)

1− P(Y = 1|X = x)

)
= 〈[1, x], β〉.

From this relation, we obtain the probability of one class expressed as

P(Y = 1|X = x) =
1

1 + e−〈[1,x],β〉 = φβ(〈[1, x], β〉)

where φ(x) is the sigmoid function.

In practice, we are given the dataset of points D = {(x1, y1), · · · , (xN , yN )} ⊂ Rp ×
{0, 1}, and we have to recover the vector of parameters β. We use the maximum likelihood
method. First, note that the probability of yj ∈ {0, 1} given X = xj can compactivately
written as

P(Y = yj |X = xj) =P(Y = 1|X = xj)
yjP(Y = 0|X = xj)

1−yj

=P(Y = 1|X = xj)
yj (1− P(Y = 1|X = xj))

1−yj

=p(xj)
yj (1− p(xj))1−yj .

Therefore, the log-likelihood will be

l(β) = log
(
ΠN
j=1p(xj)

yj (1− p(xj))1−yj
)

=
N∑
j=1

yj log(p(xj)) + (1− yj) log(1− p(xj))

=
N∑
j=1

yj log

(
1

1 + e−〈[1,xj ],β〉

)
+ (1− yj) log

(
e−〈[1,xj ],β〉

1 + e−〈[1,xj ],β〉

)

=

N∑
j=1

yj〈[1, xj ], β〉 − log(1 + e−〈[1,xj ],β〉).

Thus

β? = arg min
β∈Rp+1

N∑
i=1

[log(1 + exp(β · [1, xi]))− yiβ · [1, xi]] .

In order to apply the SGD and FW, we need to compute the derivative of −l(β), that
is

∂

∂β
(−l(β)) =

N∑
i=1

(φβ([1, xi])− yi)[1, xi].

44



4.2. Logistic Regression

For the attack, it has been used a Entropy Based attack. The classification rule for a
point x ∈ Rp with logistic regression is the following:

If φβ(x) ≥ 0.5 =⇒ x is classified as 1.

The intuition behind is clear: from the relation above, φβ(x) is the probability that x
is labeled or classified in class 1. Thus, if this probability is above 1/2 then it is reasonable
to think that x has label 1. More formally,

φβ(x) =

[
p(x)

1− p(x)

]
.

As usual, an x ∈ Dtraining is inclined to have overfitted the model. As a results, it is
expected that when such x is fed to the model, its output vector will be similar to

φβ(x) =

[
close to 1
close to 0

]
or φβ(x) =

[
close to 0
close to 1

]
.

Either way, the entropy of such φβ(x) is roughly 0. This observation yields to the
definition of our MIA:

Algorithm 6 Entropy Based Membership Inference Attack

Input: Dtraining = {(x1, y1), · · · (xN , yN )}
2: Draw Dtest ∼ Dtraining

Set D = Dtest ∪ Dtraining
4: Set δ

for ε ∈ (0, 1] do
6: Compute βεDP = DP.FW (Dtraining, ε, δ)

for x ∈ D do
8: Compute φβεDP (x)

Compute H(φβεDP (x))

10: Counter = 0
for x ∈ D do

12: if H(φβεDP (x)) ≤ τ then
yMembership−pred(x) = 1

14: else
yMembership−pred(x) = 0

16: if yMembership−pred(x) = M(x) then
Counter + +

18: Store accuracy.append(Counter/N%) for ε

Output: accuracy

- Data: The points x ∈ D are randomly generated and drawn uniformly in [a, b]p (first
class) and [c, d]p (second class), in a way that they are linearly separable. a, b, c, d
are chosen by hand, tuning the intersection between the two classes

- Attack type: In the experiments, we run alg. 6 with both DP-FW and DP-SGD.
Also, the attack in alg 6 identifies the number of points whose membership has been
guessed correctly. We are not identifying the actual number of members in Dtraining.
That would be the true-positive rate.

45



Chapter 4. Numerical Experiments

- True model: The actual vector of parameters β has been computing using a FW
without privacy with number of iteration fixed to 105. This guarantees an accuracy of
O(10−5) and empirical trials show that the resulting β achieves the highest accuracy
in terms of classification. Hence, β will be set and consider as the true underneath
model.

- Delta: δ = exp(−ε3N) fixed in all experiments - this choice satisfies log(1/δ) ≥ ε2T .

Figure 4.9: Up left: Entropy based attack with DP − FW protection. Up right: Same
attack with DP − SGD learning. The two graphs look similar. However, the SGD seems
to show stabilize a bit quicker while FW guarantees more privacy. Indeed, observe that
most of the points are below the threshold of the true NOT DP attack with DP-FW.
Down left: plotting of the data set for N = 300, and plotting of the classifier for values
of ε ∈ {0.5, 1} and the optimal one. Down right: Target accuracy for both DP-SGD and
DP-FW.

Figure 4.10: Rerunning the same attack and plotting the highest and lowest record, di-
mension p = 11.

46



4.2. Logistic Regression

As we can see from example 4.9, there differences between the two learning algorithms.
DP-SGD converges faster and it levels out sooner, while one could conclude that DP-FW
guarantees more privacy than DP-SGD. Again, 4.10 shows this way of thinking misleads
to wrong conclusion. 4.9 is only one instance of a process, and in4.10 we can observe that
DP-SGD has stronger privacy guarantees. What keeps being true is the meaningless of
the results for ε ∈ (0, 0.2] and the asymptotic convergence for increasing ε. Whereas, it is
interesting to observe one thing: The two classes overlap for 20% of their data sets. What
happens if this overlapping increases?

Figure 4.11: Overlap of 40% of the data.

Figure 4.12: Overlap of 60% of the data.

47



Chapter 4. Numerical Experiments

On average, the private learning gets less effective, until it completely fails for 60%
overlapping.

Fitting a log-curve for the blue dots helps to understand how the trend would smooth
out in each case, obtaining

Figure 4.13: Overlap of 20% of the data, with log-fitting of the MIA attacks. The attack
has been rerun again.

Figure 4.14: Overlap of 40% of the data, with log-fitting of the MIA attacks. The attack
has been rerun again.

Figure 4.15: Overlap of 60% of the data, with log-fitting of the MIA attacks. The attack
has been rerun again.

Note that the fit is straighter 4.13 and it gets more log-like when the overlapping

48



4.3. Threshold

increases. Why do we observe this effect? To answer this question, we need to explain
how to choose the τ first.

4.3 Threshold

How is τ chosen? The simulations above are too good because both data and τ have been
chosen ad hoc. More specifically, an entropy based attack the points with a higher entropy
are those close to the margin of the classifier. One can realize it immediately by looking
at the 1D case;

On the right it is displayed the rotated graph of the entropy function and the fix
threshold x = τ (vertical line). The margin of this classifier is the hyperplane x = 0. In
other words, whatever is on the right of 0 belongs to the class one and whatever on the
left is in zero. The blue shadow corresponds to the region of points whose entropy is at
least τ . It is clear that the smaller τ is, the smaller this region becomes. When we perform
an entropy based attack, the strategy consists of declaring members those points whose
entropy is small (H(φ(x)) ≤ τ). Those points correspond to the ones close to the margin.
Ideally, if the blue show did not contain any points, every single data would be labeled
as Member during the attack, yielding to a perfect accuracy of 50%. This happens when
the two classes are perfectly separable: it is possible to pick a τ sufficiently close to 1
for which there are no points close to the margins. Whereas, the hyperplanes computed
through DP-learning can move the classifier a bit, therefore some points falling in the blue
region will be classified as Non Member.

Keeping all in mind, in the analaysis above, the data set of points was overlapping only
for the 20% of the points, i.e only a few of them was in the shadow. While τ was always
chosen as

τ =
τtraining + τtest

2

with τtraining and τtest the mean estimation Dtraining and Dtest respectively. The mo-
tivation behind this choice is that τtest is generally greater than τtraining, hence their
arithmetic mean separates quite well the two classes. Of course, this choice has the clear
drawback that we need to know the data sets in advance, nullifying all efforts done to
protect privacy. Even though all these strategies have been taken into account, we barely
beat a random guess attack. Even with the highest level of privacy - smallest ε used - we
did not below 48%.

49



Chapter 4. Numerical Experiments

Setting a slightly higher overlapping of the two classes brings while keeping the same
criteria for τ leads to

Figure 4.16: Down-Right: Percentage of points correctly classified with DP-FW.

There are no meaningful differences with a random guess. As a result of the overlapping
of the two classes (for each data set), the shadow zone around any hyperplane will cross the
cloud of points and contain approximately the same number of elements from Dtraining and
Dtest, since they are drawn from the same distribution. In other words, it is an equivalent
attack to the random guess.

Quick proof of what we are claiming: setting τ = maxxH(φ(x)) leads to

Figure 4.17: Down-Right: Percentage of points correctly classified with DP-FW.

Figure 4.18: τ = maxxH(φ(x))

50



4.3. Threshold

τ makes the shadow as big as the whole data set, thus every point is labeled a member
and only for half of them the prediction is correct.

After all that has been discussed, we deduce that the quality of MIA strongly depends
on two features: 1) the average entropy of D, which might not be available in black box
attacks, and 2) on the the separability of the classes.

Before we conclude this section, it is interesting to investigate the correlation between
MIA and the dimension p. In the examples below, we analyse the differences between
DP-FW and DP-SGD for increasing values of p.

Figure 4.19: p = 10, i.e β has 11 entries. We only represented the averages with highest
and lowest records, ignoring the analysis of the accuracy.

In general, if p increases so does the excess risk of DP-SGD and DP-FW. Nevertheless,
from table 3.2 SGD will be roughly proportional to O(

√
p). Similarly FW will have to

get worse but with a factor of O(log(p)). In other words, we expect SGD to produce a
βSGD whose corresponding hyperplane performs a worse classification than FW . Setting
p = 10000 we get

Figure 4.20: Left: Entropy based attack with DP − FW protection. Right: Same attack
with DP − SGD learning. The graphs show averages of 10 epochs for every ε. Note
that the variance of the difference between the highest and lowest record has significantly
increased.

Essentially, the hyperplane produced by the DP-SGD will pass through the points of D
in random directions without a criteria. As a result, this will make both the classification

51



Chapter 4. Numerical Experiments

and the attack almost ”nearly” a random guess. This is why on the figure on the right
we observe an average of 50% for the MIA attacks. Also, the variance of the difference
between the highest and lowest record has increased consistently, of almost the same factor:
In other words, there exists 0 ≤ γ � 1 such that Newhigh=50+γ and NewLow=50-γ. The
same happens with DP-FW, even though the results are more stable, due to two reasons;
FW has better Empirical Risk guarantees for the dependence of the of the dimension; the
minimization over the `1 ball constraints the choices of β. A way to counter balance the
worsening of the result is by increasing the same size N . However, the drawback is that
the computational time increases too.

Conclusion: under strong assumptions, it is possible to observe the effects of the DP
in the context of protection as well as the effectiveness of the MIA attack. However, when
these conditions are not met, both attack and defence loose meaning, or it would be better
to say that they are not as effective as they should are expected to be. In general, Logistic
Regression with two classes is not a good model for applying an entropy attack.

Furthermore, there is space left for improvements. Some experiments were compelled
by the computational power available. We had to use a not optimal number of steps,
T = Õ(Nε), instead of T = Õ((Nε)2/3) (with N = 1000 and biggest ε = 1, we barely
execute 63 iterations ) due to the high computational costs of gradients as function of N .
Whenever N > 104, the time needed per execution gets prohibitive. However, the results
would mirror the same conclusions we presented here (they must, as proven in the theory
above), although with sharper evidences.

52



4.4. Multinomial Logistic Regression

4.4 Multinomial Logistic Regression

In the previous section we analysed how the effect of DP optimization for a logistic re-
gression with two classes. That model is rather convenient to use as toy model, but a
model that only deal with two classes rarely appears in real life model. The purpose of
this section is to generalize the results of the previous one for an higher number of classes.
There is no shortage of algorithms performing multiple classes classification, like KNN or
even a simple FNN. However, for the sake of the applicability, the model we are going to
present has the advatantage that can be implemented more easily. After all, the goal of
the project is to exploits how to produce MIA attacks and defences against the former.

Notation: In this section, the i− thcolumn vector is indicated as vi.

Suppose we are given the following problem: let D = {(xi, yi)} ∈ Rp × Rk a data set
of points. We want to classify points x ∈ Rp into k different classes. The point xi belongs
only to one of the classes {1, · · · , k}. Suppose that xi belongs to the j − th class. We
express this condition with the label yi as

yi =



0
...
1
...
0

 ← j − th.

Given a new x ∈ Rp, we deal with the problem of classifying it. The idea is to think of
y as a vector of probabilities for each class. The point x is going to assigned to the class
whose index maximizes the entries of the label y. In the label above, the j− th entry is 1,
i.e there is 100% of probability of being classified as member of the class j.

Let see how to compute these probabilities. Let us define

πij = P(Y = ej |X = xi),

the probability that xi belongs to the j − th class. Furthermore, we assume that between
two classes there is a relationship [idea explained later] of the form:

log

(
πij
πik

)
= 〈[1, xi], βj〉

for a certain βj ∈ Rp+1.

We want to find a close expression for each πij . We start by exponenting out both
sides, obtaining the relation

πij = e〈[1,xi],βj〉πik j = 1, · · · , k − 1.

Now we use the fact that for fix i, πij is a probability distribution

1 =

k∑
j=1

πij = πik + πik

k−1∑
j=1

e〈[1,xi],βj〉 = πik

1 +

k−1∑
j=1

e〈[1,xi],βj〉

 .

Hence,

53



Chapter 4. Numerical Experiments

πij =


e〈[1,xi],βj〉

1+
∑k−1
j=1 e

〈[1,xi],βj〉
, j = 1, · · · , k − 1

1

1+
∑k−1
j=1 e

〈[1,xi],βj〉
, j = k.

Finally, it has been obtained the multinomial distribution

P(Y = yi|X = xi) = πy1ii1 · · ·π
yki
ik = Πk

j=1π
yji
ij .

Observation. The values πij do depend on X = xi. The expression above is indeed a
conditional probability.

Estimation of the parameters → Likelihood method. The likelihood is

L

 βT1 · · · βTk y1 · · · yN

 = ΠN
i=1Πk

j=1π
yji
ij .

As usual, it is better to use the log of the Likelihood

l := logL(βT1 , · · · , βTk ) =
N∑
i=1

k∑
j=1

yji log(πij).

The matrix of parameters β̂T := [βT1 , · · · , βTk ] of the weights is taken as

β̂ = arg max
[β1,··· ,βk]∈Rp+1×k

N∑
i=1

k∑
j=1

yji log(πij)

and, since we want it in a minimization form we get

β̂ = arg min
[β1,··· ,βk]∈Rp+1×k

N∑
i=1

k∑
j=1

−yji log(πij) .

As the minimization in the previous paragraphs, this is a convex minimization problem
with a L−smooth function.

Notation: Let us group the data in the following structures

β̂ =

 β1

...

βk−1


k−1×p+1

, Π =

 π11 · · · π1k

...
...

πN1 · · · πNk


N×k

X =


1 · · · 1

x11 · · · x1N

...
...

xp1︸︷︷︸
x1

· · · xpN︸︷︷︸
xN


p+1×N

, Y =


y11 · · · y1N

...
...

yk1︸︷︷︸
y1

· · · ykN︸︷︷︸
yN


k×N

54



4.4. Multinomial Logistic Regression

In order to apply our minimization algorithms we need to compute the gradient of
l(β̂,D) w.r to β̂. In order words, we need to compute ∂l

∂βst
for every row s = 1, · · · , k and

column t = 0, · · · , p. It can be shown that (see [50])

∂l

∂βst
= −Xrow(t)(Y

T
row(s) −Πcol(s)) for s = 1, · · · , k − 1 t = 0, · · · , p.

Now that we have computed the gradient the derivative respect to each component of
β, we can apply The Frank Wolfe algorithm. Once we get the outcome β̂FW we find the
predicted labels as

ypredicted =

 arg max[k][π11, · · · , π1k]
...

arg max[k][πN1, · · · , πNk]

 .
Attack: The implementation of the attack is the one described in [6]. Let us get

started by setting the number of classes k = 3 in dimension p = 2, so that visualizing the
data helps us to find out feasible correlation. τ is chosen as the mean entropy of the two
data sets. As usual, we will have a type of plot which compares SGD and FW with a band
around 50 %, and one plot including the highest and lowest record.

Figure 4.21: N = 300, δ = exp (−ε3N) and ε ∈ (0, 1].

Unlike the previous models, for multiclass regression the attack seems to make more
sense. The non private attack a very high accuracy, and at the same attack the differential
privacy does lower the accuracy of the attack, dropping out to 55% and 50%. It is not
just a lucky outcome. In fact, rerunning the code brings to

55



Chapter 4. Numerical Experiments

Figure 4.22: Same attack as in 4.21, displaying the highest and lowest record.

Also, observe that SGD stabilizes quicker than FW, and both do not provide consistent
results for ε ∈ (0, 0.2]. We prove that this is the asymptotic behaviour by letting ε vary
in a bigger interval, obtaining

Figure 4.23: ε ∈ (0, 6] with same number of points N = 300.

Of course, as previously explained for Logistic regression, the results are amazingly nice
because we are dealing with an ideal case where the classes do not overlap at all. Both
SGD and FW reach a target accuracy on Dtest of nearly 100%, which does not happen in

56



4.4. Multinomial Logistic Regression

real examples.

Figure 4.24: ε ∈ (0, 6], N = 300 and slightly overlapping classes.

A slight overlap of two classes results in a drop of 10% on both DP and NOT DP
attack, as well as the target accuracy.

Figure 4.25: ε ∈ (0, 6], N = 300 and completely overlapping classes.

57



Chapter 4. Numerical Experiments

Conclusions and future work

Among the three models analyzed, the multiclass logistic regression seem to show more
more meaningful results in terms of privacy protection. This makes us believe that using
this model for real data sets will lead to similar results. For instance, for the MNIST data
set we can imagine that every digit is a point in Rm×n with a sparse structure due to the
color map in black and white of the image, like in the figure:

Figure 4.26: A sample from MNST data set. Every image can be thought a vector with a
sparse structure.

Then, the whole data sets can be thought as a collection of 10 classes spread around
the vertices of the `1 ball in Rm×n. Also, the sparseness should improve the performances
of our FW implementation, regardless from the high dimension of these data. As we saw,
a drawback of FW is that uses the whole batch of points. 4 is designed to overcome this
issue, and by the privacy amplification lemma, we should also expect the same speed in
leveraging out as we observed in the SGD. In SGD, for every iteration, one point is sampled
from a data set that needs to be protected, and then keep running the DP algorithm. This
amplifies the privacy and it is the reason why in the simulations SGD has almost always
beated FW. It is also quicker in terms of computation costs because FW needs to compute
O(N) gradients per iteration, while for SGD it is done in constant time O(1). 4 is expected
to perform better than both SGD and FW: we should get the computational speed of SGD
and higher privacy protection by lemma 21.

From what discussed in this Chapter, DP does protect against MIA attacks even
though DP has been tested on simple model and ideal situations. Especially, for logistic
regression when the data sets are truly linearly separable, and the constant τ is chosen
properly, we can clearly observe a stable and coherent behaviour of the DP defence in
accordance with the theoretical results.

58



Chapter 5

Synthetic Data Generation

In the previous chapters we focused on how to privately train a statistical model
and measuring the effectiveness of privacy when a Membership inference attack is
performed on it.

In this chapter we switch point of view. Suppose we have a data set containing sensi-
tive information that we want to protect. Instead of coming up with a differentially
private algorithm which realises noisy data, we shall try to construct a new dataset
that preserves the same statistical properties. This construction will be differentially
private. The advantage consists in the fact that the new data set can be used naked,
it does not need a mechanism that injects noise.

5.1 Min Max formulation

Let X = X1×· · ·×Xd be the space of the data or records. We call data i the i−th element
of this space, and we will indicate it either as zi or di. Xi can be any kind of set. As an
example, di = [name, surname, high, weight]. The first two entries are strings, whereas
the last two are values in Q. Further, let d̃ = |X |.

A dataset D is a set containing data di of N different people, D = [d1, · · · , dN ] with
di ∈ X . In this context, a data set is not thought as a mathematical set but rather as a
multiset, i.e we allow D to have repetitions of the same record. Continuing on the line of
our example above, D might be containing the data of two identical twins with the same
name. We now pose the problem of answering statistical queries over such data set. We
introduce the notion of statistical query over a dataset first.

Definition 30 (Empirical). Let D be a datset and J : X −→ [0, 1] a predicate over X .
We define the statistical query q as a function of (not on) the dataset D

q(D) =
∑
x∈X
J (x)pD(x)

and pD(x) is the normalized frequency of x in D.

Note that the sum is taken over x ∈ X . In other words, we think of a dataset as its
empirical distribution: for every x ∈ X we count how many times it appears in D and
then we divide by the number of total people N . In other words, a dataset can be thought
as probability distribution pD over X .

This definition can be extended, thinking of a dataset as realization of a sample from a
distribution. Such probability distribution representing D would be a vector in the unitary
simplex of RN . This observation motivates the following extension

59



Chapter 5. Synthetic Data Generation

Definition 31 (Population). Let us denote ∆d̃ = {p ∈ Rd̃|
∑d̃

i pi = 1 pi ≥ 0}. A
statistical query q is a function

q :∆d̃ −→ [0, 1]

P −→ 〈q,P〉 = Ez∼P [J (z)]

where q = [J (z1), · · · ,J (zd̃)] and z a random variable taking values in X and dis-
tributed as P. We can think of q as a linear function over the unitary symplex.

Let Q be a set of queries q that we would like to answer. Answering a query means
that we have to provide a value for 〈q,P〉. Of course, in a not private setting, it would
be enough to compute this dot product algebraically, since the data set P ∈ ∆d̃ would be
fully available. Of course, in a private setting, such information is not public, thus the
need to compute 〈q,P〉 arises.

To this purpose, the idea would be to privately create a new data set which preserves
the same statistical properties of the data set we want to keep private, i.e a new probability
distribution p over D. We will refer to such created data set as synthetic data set. Next,
we fully release the synthetic data and we work with it as it was not private.

Mathematically, we have the following definition

Definition 32 (synthetic data). Given a private probability distribution pD representing
a private data set D, and a set of statistical queries Q, the problem of finding a synthetic
probability distribution p, such that the maximum error over all the queries is minimized,
namely max

q∈Q
〈q, pD − p〉, is called private synthetic data release. p is called synthetic data

set or distribution.

In practice, we want to find the p? that minimizes

min
p∈∆d̃

max
q∈Q
|〈q, pD − p〉| (P ) .

Observation. Note that in a not private setting, (P ) admits solution p = pD. The privacy
constraint ensures that p 6= pD - otherwise the private data set would be realised.

Remark 2. since the problem is linear, Q = conv{q1, · · · , qk}, we take the polyhedron as
the convex hull of our finite set of queries. The max will be achieved at one of the vertices.

Remark 3. We do not have to make confusion between empirical distribution of the data
set and population distribution.

As we said, di ∈ D is an element of X too. Suppose our dataset D is made of elements
(dj)

N
j=1 sampled i.i.d from a distribution P over X , which is unknown to us. According

to our definition of query q, we want to compute

q(D) = EZ∼P [J (Z)] .

To do so, we would need the distribution P and integrate over it, which is not available.
However, we do have access to a sample D = {d1, · · · , dN} drawn from P. When this is
the case, using the law of large numbers, the sample mean converges in probability to the
expectation of its distribution, namely

J (d1) + · · ·+ J (dN )

N
−→ EZ∼P [J (Z)] .

60



5.1. Min Max formulation

Further, note that

J (d1) + · · ·+ J (dN )

N
=

1

|D|
∑
x∈D
J (x)

=
1

N

∑
x∈D
J (x) + 0

=
∑

x∈D∩X
J (x)pD(x) +

∑
x/∈D∩X

J (x) pD(x)︸ ︷︷ ︸
=0

pD(x) =
|frequency of x in D|

N

=
∑
x∈X
J (x)pD(x) (def of empirical query)

=
∑
x∈X
J (x)pD(x)

P−→ EZ∼P [J (Z)] .

In conclusion, we work with empirical distribution pD and we try to find a synthetic data
w.r.t this pD. This also shows that

q(D) = 〈q, pD〉 =
∑
x∈X
J (x)pD(x) =

1

|D|
∑
x∈D
J (x)

and,

〈q, pD〉︸ ︷︷ ︸
depends on N

= EZ∼pD [J (Z)]
P−−−−→

N→∞
EZ∼P [J (Z)] = 〈q,P〉 .

Related work

Private synthetic data for query release has been studied in a long series of works (BLR11),(RR09).
The largest class of available algorithms for private synthetic data for query release are
based under the framework of the private multiplicative weights algorithm (VTB+20).
They called this method Multiplicative Weights Exponential Mechanism (MWE). MWEM
iterative uses a differentially private selection mechanism, like the exponential mechanism,
to pick a query with high error qt, and then it uses this query to compute an approximate
distribution pt (solution of (P )) by solving an optimization problem. Many variants are
known, depending on how this optimization problem is solved and regularized (VTB+20),
(ABK+21). These methods compute an l-approximate solution p? such that 〈q, pD−p?〉 ≤ l
for all queries q ∈ Q. The most known algorithms and their corresponding quality of ap-
proximation are listed in Tab. 5.1.

Our approach to design an algorithm for answering linear queries is however different.
Firstly, the Multiplicative Weights framework requires a finite number of statistical queries
in Q, whereas our method will run over a Q that is a polyhedron given by the convex hull
of those finite queries. Secondly, their running time suffers the highly dimentionality of the
data, while the approach we present inherits the convergence rates from the corresponding
method to optimize the problem. Also, under the MW frame work, (GAH+14) uses an idea
similar to ours. By looking at the problem as a zero sum game, they find an l−approximate
solution to the Nash Game; this leads to [theorem 4.6] an algorithm they call DualQuery,
which finds a synthetic database that answers all queries in Q within additive error α with
probability 1− β.

61



Chapter 5. Synthetic Data Generation

Algorithm l

MWEM O
(
d1/4 log1/2 |Q| log1/2(1/δ)

(εN)1/2

)
DualQuery O

(
d1/6 log1/2 |Q| log1/6(1/δ)

(εN)1/3

)
sepFEM O

(
d3/4 log1/2 |Q| log1/2(1/δ)

(εN)1/2

)
DQRS O

(
d1/5 log3/5 |Q| log1/5(1/δ)

(εN)2/5

)
This work O

(
d1/5 log2/5 |Q| log1/5(1/δ)

(εN)2/5

)
Table 5.1: Q set of queries, Q1 diameter in norm 1 if Q is a polyhedron, |Q| number of
queries otherwise. d dimension of the data, (ε, δ) are privacy parameters and N is the
number of points.

5.2 Stochastic Optimization for Synthetic Data release

As explained in remark 3, we are always given a dataset D whose data are drawn from
some unknown distribution P. As of now, we shall focus on the empirical version of
the problem, finding the private p that is close to pD. This latter represents our sample
dataset. Let us get started with some assumptions.

Since a data set usually does not contain many repetitions of a same record, it is rea-
sonable to speculate that the entropy of pD is quite large (that the entropy of a distribution
is maximum when the distribution is uniform). Therefore, one possibility is forcing the
entropy of p to be as high as possible. In other words, we could add a entropy based
regularizing term to our primal (P ) and find p such that

max
q∈Q

(〈q, pD − p〉+ αH(p))

is as small as possible, where pD is the initial empirical distribution of the dataset. Of
course, α > 0 should be small for promoting higher entropy. In conclusion, we have to
solve the following

min
p∈∆d̃

max
q∈Q

(〈q, pD − p〉+ αH(p)) . (5.1)

Remark 4. The absolute values have been removed because we are assuming that Q is
symmetric, i.e if q ∈ Q then −q ∈ Q.

Observation. 5.1 can be written differently, since strong duality holds

min
p∈∆d̃

max
q∈Q

(〈q, pD − p〉+ αH(p))⇐⇒ max
q∈Q

min
p∈∆d̃

(〈q, pD − p〉+ αH(p))

⇐⇒ max
q∈Q

[
〈q, pD〉+ min

p∈∆d̃

−α
(
〈 q
α
, p〉 −H(p)

)]
⇐⇒ max

q∈Q

[
〈q, pD〉 − αmax

p∈∆d̃

(
〈 q
α
, p〉 −H(p)

)]
⇐⇒ max

q∈Q

[
〈q, pD〉 − αH?

( q
α

)]
.

62



5.3. Frank Wolfe for dual formulation of synthetic data

H? denotes the Fenchel’s conjugate of H. In conclusion, solving 5.1 boils down to
maximizing first

q?α := arg max
q∈Q

[
〈q, pD〉 − αH?

( q
α

)]
. (5.2)

Proposition 33. Let φα(p) := φ(p) + αH(p) where φ(p) = max
q∈Q
〈q, pD − p〉 and ψα(q) :=

〈q, pD〉 − αH?
( q
α

)
. Then,

min
p∈∆d̃

φα(p) = φ(p) + αH(p) (Pα) (5.3)

and

max
q∈Q

ψα(q) := 〈q, pD〉 − αH?
( q
α

)
(Dα) (5.4)

are primal and dual with respect to each other and strong duality holds.

Since Q is a polyhedron, a convenient approach is to privately solve 5.2 by using Frank
Wolfe. Adapting Frank Wolfe to 5.4 will be the goal of the next section.

Remark 5. Solving the regularized problem will result in an l−approximate solution,
whose upper bound will be analyzed in the upcoming section.

5.3 Frank Wolfe for dual formulation of synthetic data

Before we start analyzing the algorithm 3 on 5.4, we need to recall some definitions and
facts that will be fundamental for the rest of the analysis.

Recall that H is the negative entropy H(x1, · · · , xN ) =
∑

i xi log(xi).

Proposition 34. Let || · || be any norm. f : E︸︷︷︸
cvx

−→ R ∈ C2(E).

f is k − strongly convex w.r.t || · || ⇐⇒ 〈∇2f(x)h, h〉≥k||h||2 ∀h, x ∈ E.

Proposition 35. Let || · || be any norm. f : E︸︷︷︸
cvx

−→ R ∈ C2(E).

f is k − smooth w.r.t || · || ⇐⇒ 〈∇2f(x)h, h〉≤k||h||2 ∀h, x ∈ E.

For f and its Fenchel’s conjugate f?, strongly convex and smoothness of the gradient
are dual properties:

Theorem 36 (Zalinescu: 1983). Let || · || be a norm and k > 0. Then

1) If f : E → R is convex and 1/k− smooth w.r.t || · ||, then f? is k−strongly convex
w.r.t || · ||?.

2) If f : E → R is k−strongly convex w.r.t || · ||, then f? is 1/k−smooth w.r.t || · ||?.

Lemma 37. The Negative Entropy H(x1, · · · , xd) =
∑

i xi log(xi) is 1−strongly convex
w.r.t the || · ||∞.

63



Chapter 5. Synthetic Data Generation

Proof. The Hessian of H is

∇2H(x) =


1
x1

. . .
1
xd

 ∀x ∈ ∆d̃

therefore,

〈∇2H(x), h〉 =
d∑
i=1

1

xi
h2
i ≥

1

xs
||h||2∞ ≥ 1︸︷︷︸

k

||h||2∞

where s = arg maxi |hi| and xi ∈ (0, 1).

By Relinescu’s Theorem 54, it follows that H? is 1 = 1
k− smooth w.r.t (||·||∞)? = ||·||1.

Thus, ||∇H?(q1)−∇H?(q2)||∞ ≤ ||q1 − q2||1.

Frank Wolfe steps

When applying Frank Wolfe 3 on 5.2, with objective 〈q, pD〉 − αH?
( q
α

)
we perform three

steps

1. Compute the gradient ∇qψα(qt)

2. st = arg maxs∈Vertex(Q) (〈∇qψα(qt), s〉+ Lap(λ))

3. qt+1 = qt + γt(st − qt)

Privacy Analysis

To study the privacy of the algorithm, we need to know what is the sensitivity of the
the function ψα(q) (which implicitly depends on the dataset). We are applying a Report-
Noisy-Max Mechanism in step 2. above.

As we know, we only have to bound in norm || · ||1 the sensitivity of As(pD) :=
〈∇qψα(qt, pD), s〉

∆(As) = sup
pD∼pD′

||pD −∇H?
( q
α

)
− pD′ +∇H?

( q
α

)
||1 = sup

pD∼pD′
||pD − pD′ ||1 =

1

N
.

The sensitivity of As is bounded in statistical sense by 1
N for any vertex s. As a results,

if we want step 2. to be -DP, we need to use Laplacian noise tuned by λ = ∆s
ε̃ = 1

Nε̃ .

Since we repeat DP-FW T times, by using 20 the whole algorithm will be

ε = 4ε̃

√
2T log

(
1

δ

)
, δ −DP .

Thus λ will be set as

λ =
4
√

2T log
(

1
δ

)
Nε

.

64



5.3. Frank Wolfe for dual formulation of synthetic data

Convergence Analysis

In order to analyze the convergence of FW applied on 5.2, we have to be sure that ψα(q)
is L−smooth w.r.t some norm. It has been shown above that H? is 1−smooth w.r.t the
|| · ||1 norm.

Hence,

||∇ψα(q1)−∇ψα(q2)||∞ = ||∇H?
(q1

α

)
−∇H?

(q2

α

)
||∞ ≤︸︷︷︸

1−smooth

||q1

α
− q2

α
||1 =

1

α
||q1−q2||1 .

As a result, we can make use of the descent lemma with || · ||1 and repeat the same
proof of the previous chapter.

Recall that by setting M1 = λ log(k) and M2 = L/2 · Q1 [proof of 3], we found the
recursive relation

R(qt+1) ≤ (1− γt)R(qt) + γtM1 + γ2
rM2 .

It can be shown 49 that
R(qt) ≤M1 + atM2 ,

where at ∼ 1
t .

Substituting M1 and M2 for T iterations,

M1 +
1

T
M2 =

4 log(k)
√

2T log
(

1
δ

)
Nε

+
Q1

αT
.

Here, we used the fact that the L−smoothness constant is 1
α . Moreover, the diameter

Q1 = 2.
The only thing left to do is to optimize over T to reach the lowest value for M1 + 1

TM2.

The function g(T ) =
4 log(k)

√
2T log( 1

δ )
Nε + Q1

αT admits one global minimum that we can
find by setting the first derivative equal zero. In fact, for small and large values of T , g goes
to +∞ and the derivative has only one stationary point. This is enough for concluding
that g has a unique minimizer. Formally, by setting g′(T ) = 0, the optimal number of
iterations is

T =
4(Nε)2/3

α
2
3 (log(k))2/3

(
log 1

δ

)2/3 .
Substituting the value of T in the upper bound and λ found before, gives the following

Proposition 38. Let max
q∈Q

[
〈q, pD〉 − αH?

( q
α

)]
= ψα(q), where Q is a polyhedron with k

vertices in Rd̃. Let ε, δ be privacy parameters. Running DP-Frank Wolfe 3 on this problem

with T = 4(Nε)2/3

α
2
3 (log(k))2/3(log 1

δ )
2/3 iterations and Laplacian noise λ =

√
128[log( 1

δ )]
1/6

(Nε)2/3α1/3[log(k)]1/3
yields

E[ψα(qT )− ψα(q?)] ≤ O

(
[log(k)]2/3

[
log
(

1
δ

)]1/3
α2/3(Nε)2/3

)
.

The algorithm produces an output qT that is ε, δ-DP.

Note that the number of iterations explodes when we take a low α. α small is desirable
for our regularization: this promotes an higher entropy in our dataset. Thus, α must also
be tuned.

In other words, introducing a regularization parameter amplifies our upper bound of a
factor 1/α2/3. In the upcoming section we shall present a discussion on how to tune α to
get a small primal gap.

65



Chapter 5. Synthetic Data Generation

5.4 Effect of regularization

Definition 39. Let minp φ(p) and maxq ψ(q). We define the

Gap(P )(p) = φ(p)− φ?

Gap(D)(q) = ψ? − ψ(q).

The Gap measures how much a feasible point differs from its optimal. Of course,
Gap(q)=0 if and only if p = p?. Our goal is to analyze how much the solution of of (Pα)
differs from the solution of (P ). In other words, we want to compute an upper bound for
the l−approximation max〈q, pD − pα〉 ≤ l. A list of such upper bounds can be found in
5.1. In practice, instead of computing the exact solution of the primal (P ), the problem
have been moved and transformed a few times

(P ) (Pα) (Dα) .

Thus, the procedure goes backwards: we solve the (Dα) (5.4) obtaining the approx-
imate qT ∼= q?α. Then, substituting qT into (Pα) (5.3), we obtain exactly p?α (of course
with not exact input q?α) as approximation of p?, exact solution of (P ). The computation
chain:

(Dα)︸ ︷︷ ︸
Frank Wolfe output: qT∼=q?α

 (Pα)︸︷︷︸
input: qT output: p?α

 (P )︸︷︷︸
input: p?α output: Gap(P )(p

?
α)

.

We would like to measure what is the Gap(P )(p
?
α) in terms of α. Intuitively, we are

trying to understand what is the price we pay in terms of utility when we introduce a
regulation parameter.

By definition of φ

Gap(P )(p
?
α) =φ(p?α)− φ?

=φα(p?α)− αH(p?α)− min
r∈∆d̃

φ(r)

≤φα(p?α)− αH(p?α)− min
r∈∆d̃

(φ(r) + αH(r))

≤φα(p?α) + α log(d̃)− φ?α property of H

=φα(p?α)− ψ?α + α log(d̃) strong duality

=φα(p?α)− ψα(qT ) + ψα(qT )− ψ?α + α log(d̃)

=φα(p?α)− ψα(qT )−Gap(Dα)(qT ) + α log(d̃)

=φα(p?α)− ψα(qT ) + Gap(Dα)(qT ) + α log(d̃) .

Let us comment what we have found so far. Gap(Dα)(qT ) is bounded in expectation
according to the utility analysis of FW 38, and it does depend on α; α log(d) remains as
it is; we only have to deal with φα(p?α)− ψα(qT ).

Lemma 40. Let q ∈ Rd any vector and p?α

p?α = arg min
p∈∆d̃

[〈q,−p〉+ αH(p)] .

66



5.4. Effect of regularization

Then,

〈q, p?α〉 = αH(p?α) + αH?

(
q

α

)
.

Now, we can go back to estimating φα(p?α)− ψα(qT ).

φα(p?α)− ψα(qT ) = 〈q?α, pD − p?α〉+ αH(p?α)− 〈qT , pD〉+ αH?
(qT
α

)
±〈qT , q〉

= 〈q?α − qT , pD − p?α〉−〈qT , p?α〉+ αH(p?α) + αH?
(qT
α

)
︸ ︷︷ ︸

=0,by lemma

= 〈q?α − qT , pD − p?α〉 .

Therefore we have,

Gap(P )(p
?
α) ≤ Gap(Dα)(qT ) + 〈q?α − qT , pD − p?α〉+ α log(d̃) . (5.5)

The term 〈q?α − qT , pD − p?α〉 can be further estimated.

Relationship among q?α, qT , pD, p
?
α

We know that by definition

q?α := arg max
q∈Q

[
〈q, pD〉 − αH?

( q
α

)]
.

Note that Q is a compact and symmetric polyhedron with k vertices. Symmetric means
that if q ∈ Q =⇒ −q ∈ Q. Using the Fourier–Motzkin algorithm, we know that there exist
S ∈ Rm×N matrix and b ∈ Rm such that Q = {q| Sq ≤ b point wise and for some m}.
Expressing Q as constrains, the maximization problem is now rewritten as

q?α := arg max
Sq−b≤0

[
〈q, pD〉 − αH?

( q
α

)]
.

Lagrangian

L(q, λ) = 〈q, pD〉 − αH?
( q
α

)
+ λT (Sq − b) .

Then, q?α satisfies the KKT 53 conditions

KKT 
pD −∇H?

(
q?α
α

)
+ STλ = 0

λi ≥ 0 fori = 1, · · · ,m
λT (Sq − b) = 0 .

and from the first of the KKT’s

∇H?

(
q?α
α

)
− STλ = pD .

Observation. λi = 0⇐⇒ the constraint i is not active.

For q?α ∈ Q◦ =⇒ λi = 0 ∀i ∈ [m].

67



Chapter 5. Synthetic Data Generation

Now, consider the definition of p?α

p?α = arg min
p∈∆N

[〈qT , pD − p〉+ αH(p)] .

Lagrangian

L(p, µ) = 〈qT , pD − p〉+ αH(p) + µ

(
1−

d∑
i

pi

)
.

Observation. The Lagrange multipliers w.r.t the constraints pi ≥ 0 all vanish.

Similarly, from the first of the KKT’s

∇H(p?α) =
qT
α

+
µ

α
~1 ,

where ~1 is the vector whose entries are all 1. Applying ∇H? on both sides on this expres-
sion,

p?α = ∇H?(∇H(p?α)) = ∇H?
(qT
α

+
µ

α
~1
)

= ∇H?
(qT
α

)
.

The first equality follows from properties of Fenchel’s conjugate. The last equality follows
doing the mathematics with the expression ∇H?(y1, · · · , yN ). [add computations in the
appendix].

In conclusion

1) pD = ∇H?
(
q?α
α

)
− STλ

2) p?α = ∇H?
( qT
α

)
.

Inequality

Now, let us go back to the inequality 5.5,

Gap(P )(p
?
α) ≤ Gap(Dα)(qT ) + 〈q?α − qT , pD − p?α〉+ α log(N) .

Everything is now ready to estimate the term in the middle 〈q?α − qT , pD − p?α〉.

〈q?α − qT , pD − p?α〉 = 〈q?α − qT ,∇H?

(
q?α
α

)
−∇H?

(qT
α

)
− STλ〉 (using relation above)

= 〈q?α − qT ,∇H?

(
q?α
α

)
−∇H?

(qT
α

)
〉+ 〈q?α − qT ,−STλ〉

≤ 〈q?α − qT ,∇H?

(
q?α
α

)
−∇H?

(qT
α

)
〉+ 2bTλ (q?α,−qT ∈ Q)

≤ ||q?α − qT ||1||∇H?

(
q?α
α

)
−∇H?

(qT
α

)
||∞ + 2bTλ (Holder)

≤ 1

α
||q?α − qT ||21 + 2bTλ (H? is 1− smooth).

Note that q?α ∈ Q by definition and qT ∈ Q =⇒ −qT ∈ Q because qT is computed by
Frank Wolfe updates, which are convex and within Q.

68



5.5. Frank Wolfe on regularized dual problem of synthetic data for empirical risk

We can now glue all the pieces together. Moreover, taking the expectation (over the
randomness of Frank Wolfe) on both sides of 5.5,

Gap(P )(p
?
α) ≤ E[Gap(Dα)(qT )] +

1

α
||q?α − qT ||21 + 2bTλ+ α log(d̃) . (5.6)

Comments:

1) The E[Gap(Dα)(qT )] depends on the Frank Wolfe version we are using. For instance

in 38, E[Gap(Dα)(qT )] ≤ O
(

[log(k)]2/3[log( 1
δ )]

1/3

α2/3(Nε)2/3

)
. For tuning α, we will use the

E[Gap(Dα)(qT )] provided in (BGN21), which turns out to be

E[Gap(Dα)(qT )] = O
(
Q2

1 +Q1

αε
√
N

log

(
N

log(k)

)
log

(
KN

β

)√
log(1/δ)

)
w.p 1− β .

Q1 denotes the diameter of Qin || · ||1.

2) ||q?α − qT ||21 ≤ 4Q2
1.

3) λ = 0 if and only q?α ∈ Q◦. Unfortunately, at least one λi must be positive. The
reason is that H? is neither strongly nor strictly convex. For instance, if take the
direction t~1 then t → H(t~1) = log(N) + t, i.e t → H(t~1) goes linearly. In other
words, there exists a direction in which the graph of H? is flat. All we can do is to
leave 2βTλ on the RHS of 5.6 and minimize for α. The minimizer α? will not depend
on 2βTλ.

Tuning α

We minimize the right hand side of 5.6 respect to α. The optimal α? will then be

α? =

√
Q2

1 +Q1

log(N)ε
√
N

log

(
N

log(k)

)
log

(
KN

β

)√
log(1/δ) +

Q2
1

log(N)
.

5.5 Frank Wolfe on regularized dual problem of synthetic
data for empirical risk

The resulting upper bound on Gap(P )(p
?
α) is O(1), due to the term STλ. The problem is

that the Holder inequality leads to large upper bounds. We shall deal with that chain of
inequality using something less strong. Let us begin by recalling a few notions from the
theory of convex functions:

If L is convex =⇒ L(q?) ≥ L(qt) + 〈∇(qt), q
? − qt〉 .

We can then write

0 ≤ L(qt)− L(q?) ≤ 〈∇L(qt), qt − q?〉 ≤ max
s∈Q
〈∇L(qt), qt − s〉 =: gL(qt).

Hence, we define

Definition 41. Let L be a convex function. We call Frank Wolfe gap on x the quantity

g(x) = max
s∈Q
〈∇L(x), s− x〉 .

69



Chapter 5. Synthetic Data Generation

Remark: This is a measure which bounds the excess risk, gL(x) ≥ L(x) − L? =
Gap(P )(p

?
α).

We will use this notion to form an upper bound for Gap(P )(p
?
α). For the moment,

suppose we have the outcome of Frank Wolfe type algorithm, which we call qU - and we
will later see how to create such algorithm. We then denote with p?α the solution of the
5.3 with qU .

Let us repeat the same steps we had previously

Gap(P )(p
?
α) ≤Gap(Pα)(p

?
α) + α log(d̃)

=φα(p?α)− φ?α + α log(d̃)

=φα(p?α)− ψ?α + α log(d̃) (strong duality)

=φα(p?α)− ψα(qU ) + ψα(qU )− ψ?α + α log(d̃) (for any iteration qU )

=φα(p?α)− ψα(qU )−Gap(Dα)(qU ) + α log(d̃)

≤φα(p?α)− ψα(qU ) + 0 + α log(d̃)

=〈q?α − qU , pD − p?α〉+ α log(d̃) (lemma)

=〈q?α − qU , pD −H?
(qU
α

)
〉+ α log(d̃) (previous section)

=〈q?α − qU ,∇ψα(qU )〉+ α log(d̃)

=〈qU − q?α,∇(−ψα)(qU )〉+ α log(d̃) (−ψα is convex)

≤g−ψα(qU ) + α log(d̃) .

We used that

g−ψα(qU ) ≥ −ψα(qU )− (−ψ?α) = ψ?α − ψα(qU ) = Gap(Dα)(qU ) ≥ 0 .

Therefore,

Gap(P )(p
?
α) ≤ g−ψα(qU ) + α log(d̃) (5.7)

=⇒ E[Gap(P )(p
?
α)] ≤ E[g−ψα(qU )] + α log(d̃) . (5.8)

Note that qU can be any vector in Q. We did not use any property of any algorithm.
If we can produce a variant of Frank Wolfe which provides an estimate for E[g−ψα(qU )],
then 5.8 will be upper bounded.

Let L be L = −ψα(q), that is convex. All we know from the previous section is that

- L is convex and 1
α−smooth w.r.t || · ||1.

- The sensitivity of Ap(s) = 〈∇L(qt), s〉 is at most 1
N .

Therefore, for the moment we use the usual Frank Wolfe framework, following the steps

For t = 0 : T − 1 do.

st = arg min
s∈vertex(Q)

(〈∇L(qt), s〉+ us) us ∼ Lap(λ)

qt+1 = qt + γ(st − qt)

70



5.5. Frank Wolfe on regularized dual problem of synthetic data for empirical risk

End

with the difference that now γ is a fixed step size. Right now, we do not worry too
much about having an output corresponding to these lines of pseudo-code. Our usual
analysis of the advanced composition theorem tunes λ as

λ =
4
√

2
√
T log(1/δ)

εN

so that each iteration within the For cycle is (ε, δ) - DP.
Mirroring the analysis of 3, for any qt, qt+1, the following chain of inequalities holds:

L(qt+1) ≤L(qt) + 〈∇L(qt), qt+1 − qt〉+
1

2α
||qt+1 − qt||21

≤L(qt) + γ〈∇L(qt), st − qt〉+
1

2α
Q2

1γ
2 (definition of qt+1)

≤L(qt) + γ〈∇L(qt), s− qt〉+ γV +
1

2α
Q2

1γ
2 ∀s ∈ Q, and V = maxus −minus

=L(qt)− γgL(qt) + γV +
1

2α
Q2

1γ
2 (choose s = arg max

w∈Q
〈∇L(qt), qt − w〉) .

Now, we rearrange the inequality

L(qt+1) ≤L(qt)− γgL(qt) + γV +
1

2α
Q2

1γ
2

⇐⇒ γgL(qt) ≤L(qt)− L(qt+1) + γV +
1

2α
Q2

1γ
2

⇐⇒ gL(qt) ≤
1

γ
(L(qt)− L(qt+1)) + V +

1

2α
Q2

1γ (dividing by γ)

⇐⇒
T−1∑
t=0

gL(qt) ≤
1

γ

T−1∑
t=0

(L(qt)− L(qt+1))︸ ︷︷ ︸
L(q0)−L(qT )

+V T +
1

2α
Q2

1γT (summing over t)

⇐⇒ 1

T

T−1∑
t=0

gL(qt) ≤
1

γT
(L(q0)− L(q?)) + V +

1

2α
Q2

1γ (dividing by T )

⇐⇒ E

[
1

T

T−1∑
t=0

gL(qt)

]
≤ 1

γT
(L(q0)− L(q?)) + λ log k +

1

2α
Q2

1γ (taking expectation ) .

Optimizing over γ, we find that the optimal step size is

γ =

√
L(q0)− L(q?α)2α

TQ2
1

which, plugged in the right hand side of the inequality above (and using the given expres-
sion for λ)

E

[
1

T

T−1∑
t=0

gL(qt)

]
≤
√

2Q1

√
L(q0)− L(q?α)√
αT

+
8
√

2
√
T log(1/δ) log(k)

εN
.

71



Chapter 5. Synthetic Data Generation

Again, optimizing over T the right hand side, this latter transforms into

T =

√
L(q0)− L(q?α)Q1√
α
√

log(1/δ) log(k)
εN .

Observation. By definition of expectation we have

1

T

T−1∑
t=0

gL(qt) = E[gL(qU )] ,

where U ∼ Uni(T ). In other words, on the left hand side of the previous inequality we have
an expectation of a variable, which is again an expectation. qU is the given by sampling
uniformly an iteration in {0, · · · , T − 1}.

In conclusion, we obtain

E[gL(qU )] ≤ O

(
Q

1/2
1 log1/4(1/δ) log1/2(k)

α1/4(εN)1/2

)
.

What done so far corresponds to running the following algorithm

Algorithm 7 Frank Wolfe for Synthetic Data

1: Input: (ε, δ) privacy parameters, k number of vertices, N Number of points, pD true
distribution, Q set of queries.

2: Select q0 ∈ Q
3: Set T =

√
ψα(q?α)−ψα(q0)Q1
√
α
√

log(1/δ) log(k)
εN , γ =

√
ψα(q?α)−ψα(q0)2α

TQ2
1

, λ =
4
√

2
√
T log(1/δ)

εN

4: for t = 0 : T − 1 do
5: Compute the gradient ∇ψα(qt)
6: st = arg min

s∈vertex(Q)
(〈−∇ψα(qt), w〉+ us) for us ∼Lap (λ).

7: qt+1 = qt + (st − qt)γ
8: Draw U ∼Uni({0, · · · , T − 1})
9: Output: qU

Observation. The algorithm involves L(q0)−L(q?α), which is impossible to compute. In
our analysis, we could have continued the series of upper bounds with L(q0) − L(q?α) ≤
L||q0 − q?α|| ≤ LQ||·||, and everything we would have gotten the same expression where
LQ||·|| replaces L(q0)− L(q?α).

Theorem 42. The algorithm 7 that runs on max
q∈Q

ψα(q) 5.4, is ε, δ DP and produces the

following upper bound on the Frank Wolfe dual gap

E[g−ψα(qU )] ≤ O

(
Q

1/2
1 log1/4(1/δ) log1/2(k)

α1/4(εN)1/2

)
.

Optimal α

Lemma 43. The optimal value of α = α? which minimizes the primal gap Gap(P )(p
?
α) is

given by

α? = O

Q 2
5
1 log1/5(1/δ) log2/5(k)

log4/5(d̃)(εN)2/5

 .

72



5.5. Frank Wolfe on regularized dual problem of synthetic data for empirical risk

Proof. Finally, we are ready to go back to our inequality 5.8.

E[Gap(P )(p
?
α)] ≤ E[g−ψα(qU )] + α log(d̃)

≤ Q
1/2
1 log1/4(1/δ) log1/2(k)

α1/4(εN)1/2
+ α log(d̃)

and, optimizing over α

α? = O

Q 2
5
1 log1/5(1/δ) log2/5(k)

log4/5(d̃)(εN)2/5

 .

Remark 6. For k = O(d̃), remembering that d̃ = costd

α? = Ô

(
[log(1/δ)]1/5

(εN)2/5d2/5

)
N→∞−−−−→ 0 .

Lastly, plugging α? in our gap:

E[Gap(P )(p
?
α)] ≤ O

Q 2
5
1 log1/5(1/δ) log2/5(k) log1/5(d̃)

(εN)2/5

 .

Thus, the following result holds

Corollary 44. For any dataset D ∈ XN , a symmetric polyhedron of statistical linear
query Q with k = |Q| vertices (i.e |Q| queries), and privacy parameters ε, δ, then there
exists an algorithm that outputs a synthetic dataset D?  p? which answers all the query
with an error

E[max
q∈Q
|q(D)− q(D?)|︸ ︷︷ ︸
〈q,pD−p?〉

] ≤ O

(
d1/5 log1/5(1/δ) log2/5 |Q|

(εN)2/5

)
.

Remark 7. The number of queries |Q| is the number of vertices k, hence, substituting,
we nearly match the best known rate, 5.1

E[Gap(P )(p
?
α)] ≤ O

(
d1/5 log2/5 |Q| log1/5(1/δ)

(εN)2/5

)
.

Observation. In Corollary 44, we should subtract φ?. We can avoid it by considering
the primal (P ) without DP constraint, which returns φ? = 0, and continuing to solve the
(Pα) with DP. All the steps in the chain of inequalities are formally identical.

73



Chapter 5. Synthetic Data Generation

Conclusion Empirical Risk

So far, we have obtained two different algorithm for the empirical risk, 3 and 6 applied on
ψα. These produce an utility guarantee, for any choice of α, given by

Excess Risk E[R(qT )] Frank Wolfe gap E[g(qU )]

O
(

log2/3 |Q| log1/3(1/δ)

α2/3(Nε)2/3

)
O
(
Q

1/2
1 log1/4(1/δ) log1/2 |Q|

α1/4(εN)1/2

)

The upper bound on the left clearly decays faster due as function of N , and it should:
not only we did use the differentiability of ψα, but we also used its convexity. The upper
bound derived on the right column for the Frank Wolfe gap never directly involved the
convexity. We only used the 1

α−smoothness of L = −ψα in the first step. The reason
why we were interested in the upper bound on E[g(qU )] is due to the inequality 5.8. If
we could find a clever bound in the chain of inequality that led to 5.8, i.e the bound on
Gap(P )(q

?
α), then we could make use of it on the excess risk and produce an expected gap

E[Gap(P )(q
?
α)] ≤ Ô((εN)−2/3), that would be optimal. More work needs be done on 5.6.

5.6 Frank Wolfe on regularized dual problem of synthetic
data for Population Risk

As said at the begin of the Chapter, so far only the empirical distribution has been used,
and never the real distribution of the population. We will now try to repeat the same
analysis for the population risk, using the algorithm 4 in (BGM21). Clearly, the min max
formulation presented in the first section holds replacing P with pD.

Observe that 5.4 can be written as a SCO optimization:

ψα(q) =〈q,P〉 − αH?
( q
α

)
=
∑
i∈D

qiPi − αH?
( q
α

)
=Ez∼P [qz]− αH?

( q
α

)
= Ez∼P

[
qz − αH?

( q
α

)]
=:Ez∼P [l(q, z)]

where qz is the z−th entry of the vector q, our query.

Lemma 45. l(q, z) := qz − αH?
( q
α

)
is both L0 = 2 Lipschitz and L1 = 1

α smooth w.r.t
|| · ||1 in the first argument.

Proof. By definition,

74



5.6. Frank Wolfe on regularized dual problem of synthetic data for Population Risk

Lipschitz:

l(q1, z)− l(q2, z)| =|q1
z − αH?

(q1

α

)
− q2

z + αH?
(q2

α

)
|

≤ |q1
z − q2

z |︸ ︷︷ ︸∑
z |q1z−q2z |

+α|H?
(q1

α

)
−H?

(q2

α

)
|

≤||q1 − q2||1 +
α

α
||q1 − q2||1 .

Smoothness:

||∇l(q1, z)−∇l(q2, z)||∞ =||ez −∇H?(q1/α)− ez +∇H?(q2/α)||∞ ≤
1

α
||q1 − q2||1 .

Corollary 46 (population). For any dataset D ∈ XN , a symmetric polyhedron of sta-
tistical linear queries Q with k vertices, and privacy parameters ε, δ, then there exists an
algorithm that outputs a synthetic dataset D?  p? which answers all queries with an error

E[max
q∈Q
|q(D)− q(D?)|︸ ︷︷ ︸

〈q,P−p?〉

] ≤ Q1[log(k)]1/3[log(N)]1/3[log(1/δ)]1/12[log(d̃)]1/2

(Nε)1/6
.

Furthermore, the optimal α? is

α? =
Q1[log(k)]1/3[log(N)]1/3[log(1/δ)]1/12

[log(d̃)]1/2(Nε)1/6
.

Proof. From (BGM21),

E[g−ψα(qU )] ≤ O

(
Q1

(
2 +

Q1

α

)
[log(k)]2/3[log(N)]2/3[log(1/δ)]1/6

N1/3ε1/3

)
.

Plugging this in 5.8,

Gap(P )(p
?
α) ≤ Q1

(
2 +

Q1

α

)
[log(k)]2/3[log(N)]2/3[log(1/δ)]1/6

N1/3ε1/3
+ α log(d̃) .

Optimizing over α, we get

α? =
Q1[log(k)]1/3[log(N)]1/3[log(1/δ)]1/12

[log(d̃)]1/2(Nε)1/6
.

For k = O(d)

α? = O

(
Q1[log(N)]1/3[log(1/δ)]1/12

[log(d̃)]1/6(Nε)1/6

)
−−−−→
N→∞

0 .

75



Chapter 5. Synthetic Data Generation

This α? returns

Gap(P )(p
?
α) ≤ Q1[log(k)]1/3[log(N)]1/3[log(1/δ)]1/12[log(d̃)]1/2

(Nε)1/6
.

Remark 8. For k = O(d̃)

Gap(P )(p
?
α) ≤ O

(
Q1[log(d̃)]5/6[log(N)]1/3[log(1/δ)]1/12

(Nε)1/6

)
−−−−→
N→∞

0 .

5.7 Full Batch Frank Wolfe on dual synthetic data of pop-
ulation risk

We can try to apply 7 on ψα(q) = Ez∼P [l(q, z)] using an estimator of the gradient for
∇ψα(q).

Theorem 47. Suppose we apply 7 on ψα(q) = Ez∼P [l(q, z)] with the unbiased gradient
estimator at every iteration t given by ∇t = 1

N

∑N
i=1 ezi − ∇H?

( q
α

)
, where zi ∼ P i.i.d

(sample dataset). Then,

E[g−ψα(qU )] ≤ O

(
Q

1/2
1 log1/4(1/δ) log1/2(k)

α1/4(εN)1/2
+
Q1 log1/2(d̃)√

N

)
.

Proof.

L(qt+1) ≤L(qt) + 〈∇L(qt), qt+1 − qt〉+
1

2α
||qt+1 − qt||21

≤L(qt) + γ〈∇L(qt)±∇t, st − qt〉+
1

2α
Q2

1γ
2 (definition of qt+1)

=L(qt) + γ〈∇L(qt)−∇t, st − qt〉+ γ〈∇t, st − qt〉
1

2α
Q2

1γ
2 (definition of qt+1)

≤L(qt) + γ〈∇L(qt)−∇t, st − qt〉+ γ〈∇t, s− qt〉
1

2α
Q2

1γ
2 + γV

=L(qt) + γ〈∇L(qt)−∇t, st − qt〉±γ〈∇L(qt), s− qt〉+ γ〈∇t, s− qt〉
1

2α
Q2

1γ
2 + γV

=L(qt)− γgL(qt) + γ〈∇L(qt)−∇t, st − s〉+ γV +
1

2α
Q2

1γ
2 ,

choosing s = arg max
w∈Q

〈∇L(qt), qt − w〉). Now, we rearrange the inequality

L(qt+1) ≤L(qt)− γgL(qt) + γ〈∇L(qt)−∇t, st − s〉+ γV +
1

2α
Q2

1γ
2

⇐⇒ γgL(qt) ≤L(qt)− L(qt+1) + γ〈∇L(qt)−∇t, st − s〉+ γV +
1

2α
Q2

1γ
2

⇐⇒ gL(qt) ≤
1

γ
(L(qt)− L(qt+1)) + ||∇L(qt)−∇t||∞Q1 + V +

1

2α
Q2

1γ (dividing by γ)

⇐⇒
T−1∑
t=0

gL(qt) ≤
1

γ

T−1∑
t=0

(L(qt)− L(qt+1))︸ ︷︷ ︸
L(q0)−L(qT )

+Q1

T−1∑
t=0

||∇L(qt)−∇t||∞ + V T +
1

2α
Q2

1γT

76



5.7. Full Batch Frank Wolfe on dual synthetic data of population risk

Note however, that

||∇t −∇L(qt)||∞ =|| 1
N

N∑
i=1

ezi −∇H?
(qt
α

)
− Ez∼P [ez] +∇H?

(qt
α

)
||∞

=|| 1
N

N∑
i=1

ezi − Ez∼P [ez]||∞ ,

i.e, it does not depend on t. Therefore

⇐⇒
T−1∑
t=0

gL(qt) ≤
1

γ

T−1∑
t=0

(L(qt)− L(qt+1))︸ ︷︷ ︸
L(q0)−L(qT )

+TQ1||
1

N

N∑
i=1

ezi − Ez∼P [ez]||∞ + V T +
1

2α
Q2

1γT

⇐⇒ 1

T

T−1∑
t=0

gL(qt) ≤
1

γT
(L(q0)− L(q?)) +Q1||

1

N

N∑
i=1

ezi − Ez∼P [ez]||∞ + V +
1

2α
Q2

1γ

⇐⇒ E

[
1

T

T−1∑
t=0

gL(qt)

]
≤ 1

γT
(L(q0)− L(q?)) +Q1E

[
|| 1
N

N∑
i=1

ezi − Ez∼P [ez]||∞

]
+ λ log k +

1

2α
Q2

1γ .

From (JN08) or (DGVW10), it holds E
[
|| 1
N

∑N
i=1 ezi − Ez∼P [ez]||∞

]
≤ O

(√
log d̃
N

)
.

Therefore,

E

[
1

T

T−1∑
t=0

gL(qt)

]
≤ 1

γT
(L(q0)− L(q?)) +Q1

√
log d̃

N
+ λ log k +

1

2α
Q2

1γ .

Also, Q1 log(d̃)√
N

neither involves γ nor T , hence the analysis continues exactly like in the

utility proof of 7, obtaining

E[g−ψα(qU )] ≤ O

(
Q

1/2
1 log1/4(1/δ) log1/2(k)

α1/4(εN)1/2
+
Q1d

1/2

√
N

)
.

Moreover, the same observation that

√
log d̃
N does not depend on α yields

Corollary 48 (population). For any dataset D ∈ XN , a symmetric polyhedron of sta-
tistical linear query Q with k vertices, and privacy parameters ε, δ, then there exists an
algorithm that outputs a synthetic dataset D?  p? which answers all queries with an error

E[max
q∈Q
|q(D)− q(D?)|︸ ︷︷ ︸

〈q,P−p?〉

] ≤ O

(
d1/5 log1/5(1/δ) log2/5 |Q|

(εN)2/5
+
d1/2

√
N

)
.

The optimal α? is the same as in 43.

77



Chapter 5. Synthetic Data Generation

Conclusion population risk

As far as we are aware, there are no results for bounding the Gap(P ) using the population
risk. What we found applying the algorithms of the previous section is summarized in the
table:

Frank Wolfe gap: Population (BGM21) Frank wolfe gap: Population alg. 7

O
(
Q1

(
2 + Q1

α

)
[log(k)]2/3[log(N)]2/3[log(1/δ)]1/6

N1/3ε1/3

)
O
(
Q

1/2
1 log1/4(1/δ) log1/2(k)

α1/4(εN)1/2
+ Q1 log1/2(d̃)√

N

)
.

Using alg 7 we pay an additional term O(
√
d/
√
N). Again, during the analysis of the

utility, we did not use the convexity of −ψα, expect for the condition of 1
α smoothness.

This leave space for possible future improvements.

78



Chapter 6

Appendix

6.1 Appendix chapter 3

Lemma 49. Let R(wt+1) ≤ (1− γt)R(wt) + γtM1 + γ2
rM2. Then,

R(wt) ≤M1 +M2at,

where {
a0 = 1

at+1 = at(1− γt) + γ2
t γt = 2

2+t .

Proof. By induction

- t = 0:

R(w1) ≤
(

1− 2

2 + 0

)
R(w0) +

2

2 + 0
M1 +

(
2

2 + 0

)2

M2 = M1 +M2 · 1.

- t =⇒ t+ 1

R(wt+1) ≤(1− γt)R(wt) + γtM1 + γ2
rM2

≤(1− γt)M1 + (1− γt)atM2 + γtM1 + γ2
rM2

=M1 +M2(at(1− γt) + γ2
t )

=M1 +M2at+1.

Lemma 50. The partial derivatives of the function

l(β) =
N∑
i=1

k∑
j=1

−yji log(πij)

are

∂l

∂βst
= −Xrow(t)(Y

T
row(s) −Πcol(s)).

79



Chapter 6. Appendix

Proof.

∂l

∂βst
= −

N∑
i=1

k∑
j=1

yji
πij

∂πij
∂βst

= −
N∑
i=1

k−1∑
j=1

yji
πij

∂πij
∂βst

+
yki
πik

∂πik
∂βst

 .

Everything boils down to computing
∂πij
∂βst

- CASE j < k

∂πij
∂βst

=
∂

∂βst


e〈xi,βj〉

1 +
k−1∑
r=1

e〈xi,βr〉︸ ︷︷ ︸
=:D


=
xtie

〈xi,βj〉
(
δjsD − e〈xi,βs〉

)
D2

.

- CASE j = k

∂πik
∂βst

=
∂

∂βst


1

1 +

k−1∑
r=1

e〈xi,βr〉︸ ︷︷ ︸
=:D


= −e

〈xi,βs〉xti
D2

.

Substituting these two expressions into the derivatives above:

∂l

∂βst
= −

N∑
i=1

k−1∑
j=1

yji
πij

∂πij
∂βst

+
yki
πik

∂πik
∂βst

 =

= −
N∑
i=1

k−1∑
j=1

yji
πij

xtie
〈xi,βj〉

(
δjsD − e〈xi,βs〉

)
D2

− yki
πik

e〈xi,βs〉xti
D2

 =

= −
N∑
i=1

k−1∑
j=1

yji
πij

xtie
〈xi,βj〉δjs
D

− xti
D2

e〈xi,βs〉

k−1∑
j=1

yji
πij

e〈xi,βj〉 +
yki
πik

 ,

[
πij =

e〈xi,βj〉

D

]

= −
N∑
i=1


k−1∑
j=1

yji
πij

xtie
〈xi,βj〉δjs
D

− xti
D
e〈xi,βs〉

k∑
j=1

yji︸ ︷︷ ︸
1

 , δjs = 1⇐⇒ j = s

= −
N∑
i=1

(
ysi
πis

xtie
〈xi,βs〉

D
− xti
D
e〈xi,βs〉

)
=

= −
N∑
i=1

(ysi − πis)xti =

= −〈yTs −Πs, x
T
t 〉 for s = 1, · · · , k − 1 t = 0, · · · , p.

80



6.2. Appendix chapter 5

We can rewrite this last expression using the matrix notation:

∂l

∂βst
= −Xrow(t)(Y

T
row(s) −Πcol(s)).

6.2 Appendix chapter 5

Definition 51. Let f : E −→ R be a convex function. We define the Fenchel conjugate
of f as the function f? : E −→ R

f?(y) = sup
x∈E

[〈y, x〉 − f(x)] .

Proposition 52 (properties). Let f : E −→ R be convex. Then

1. f(x) + f?(y) ≥ 〈y, x〉 ∀x, y ∈ E

2. The equality holds if and only if y ∈ ∂f(x)

3. f?? = f

Theorem 53 (KKT conditions.). Let f, gi, hi be convex and differentiable. Consider

min
x

f(x)

s.t. gi(x) = 0 i = 1, · · · , n
hj(x) ≤ 0 j = 1, · · · ,m .

(6.1)

Then, necessary condition for x to be a minimizer is that
∇f(x) + λT∇g(x) + µT∇h(x) = 0

g(x) = 0 h(x) ≤ 0

µTh(x) = 0

µi ≥ 0 ∀i = 1, · · · ,m .

Theorem 54 (Zalinescu: 1983). Let || · || be a norm and k > 0. Then

1) If f : E → R is convex and 1/k− smooth w.r.t || · ||, then f? is k−strongly convex
w.r.t || · ||?.

2) If f : E → R is k−strongly convex w.r.t || · ||, then f? is 1/k−smooth w.r.t || · ||?.

Lemma 55. The negative entropy

φ(x) =

{∑d
j=1 xj ln(xj) xj ≥ 0,

∑d
j=1 xj = 1

+∞ otherwise

is strongly convex and its Fenchel conjugate is

φ?(y) = log

 d∑
j=1

eyj

 .

81



Chapter 6. Appendix

Proof. We will proof that, since φ is convex and continuous, φ?? = φ. Furthermore, for
a convex function f that is also 1

κ - smooth respect to a norm || · ||, then f? is strongly
convex with respect to the dual || · ||?.

Therefore, it is enough show that φ? is 1
κ - smooth for some norm, and therefore ob-

taining φ?? = φ strongly convex.
STEP 1: So, φ? needs to be computed first. By definition φ?(y) is the sup of

sup
x
〈y, x〉 −

d∑
j=1

xj ln(xj)

s.t.
d∑
j=1

xj − 1 = 0

− xj ≤ 0 i = 1, · · · , d

(6.2)

Changing the sup with − inf −function, the problem (1) is in standard form and it is
possible to apply the KKT conditions.

The Lagrangian is

L(x, λ, µ) = φ(x)− 〈y, x〉 − µTx+ λ

 d∑
j=1

xj − 1

 .

Therefore, the KKT:

∇(x)− y − µ+ λ1 =0

µi ≥0 i = 1, · · · , d
µixi =0 i = 1, · · · , d

d∑
j=1

xj − 1 =0

−xj ≤0 i = 1, · · · , d

• From the first equation:

∇φ(x)− y − µ+ λ1 = [ln(x1), · · · , ln(xd)] + (λ+ 1)1− y − µ = 0

so, for each j index
xj = exp(yj + µj − 1− λ).

• From the condition µjxj = 0, it follows

µj = 0

because xj > 0 since it is an exponential, thus xj = exp(yj +−1− λ).

• From
∑

j xj = 1,
d∑
j=1

xj = e1−λ
d∑
j=1

eyj = 1

82



6.2. Appendix chapter 5

and taking the ln on both sides,

1− λ+ ln

 d∑
j=1

eyj

 = 0⇐⇒ λ = ln

 d∑
j=1

eyj

+ 1.

Note that each xj is expressed in term of the value λ just computed and it is the only
unknown. In other words, we know x = x(λ).

Everything is ready to compute φ?. Substituting x in (1) and, taking into account that
we changed the sign of the optimization problem:

φ?(y) =〈y, x(λ)〉 −
d∑
j=1

xj ln(xj) =

d∑
j=1

yjxj −
d∑
j=1

xj(1 + yj − λ)

=

d∑
j=1

yjxj −
d∑
j=1

yjxj − (1− λ)

d∑
j=1

xj︸ ︷︷ ︸
=1

= λ− 1

= ln

 d∑
j=1

eyj

+ 1− 1 = ln

 d∑
j=1

eyj

 .

In conclusion,

φ?(y) = ln

 d∑
j=1

eyj

 .

STEP 2: From the theory, we know that, given f : E −→ R convex and C2,

L1 smooth ⇐⇒ 0 ≤ 〈∇2fh, h〉 ≤ L1||h||2.

This is the proposition that I am going to use to show the f is L1 smooth.
We need the derivatives of φ? first. Calling

∑
j e

yj = S(y),

∂φ?

∂yi
=

eei

S(y)

and
∂φ?

∂yi∂yj
=
∂φ?

∂yi

[
eyj
S(y)

]
= − eyieyj

(S(y))2
.

Now, we should compute 〈(∇2f)h, h〉.

Observation. For a generic matrix A,

〈x,Ax〉 =

d∑
i=1

xi

d∑
j=1

aijxj ≤
d∑
i=1

xi||A||∞||x||∞ ≤ ||A||∞||x||∞||x||1 ≤ ||A||∞||x||21.

Therefore,

||∇2φ?(y)||∞ = max
1≤i≤n

d∑
j=1

eyieyj

(S(y))2
= max

1≤i≤n

eyi

(S(y))2

d∑
j=1

eyj =
eyi

(S(y))2
S(y) = max

1≤i≤n

eyi

S(y)
≤ 1.

83



Chapter 6. Appendix

To conclude, φ? is L1 is 1-smooth w.r.t || · ||1.
Here, the norms are flipped respect to what it was suggested in the slides. Nevertheless,

as consequence of the equivalence of norms in finite spaces, all the norms are equivalent.
The request of the exercise was to show the strong convexity. I thought that this should
be fine.

STEP 3:
φ? is convex and 1- smooth respect to || · ||1 =⇒ φ?? = φ is 1- strongly convex respect

to (|| · ||1)?.

Lemma 56. Let q ∈ RN and p

p = arg min
p∈∆N

[〈q,−p〉+ αH(p)] .

Then,

〈q, p〉 = αH(p) + αH?

(
q

α

)
.

Proof. Consider the definition of p:

p = arg min
p∈∆N

[〈q, pD − p〉+ αH(p)] .

Lagrangian

L(p, µ) = 〈q, pD − p〉+ αH(p) + µ

(
1−

N∑
i

pi

)
Observation. The Lagrange multipliers w.r.t the constraints pi ≥ 0 all vanish.

Similarly, from the first of the KKT’s

∇H(p) =
q

α
+
µ

α
~1 ,

where ~1 is the vector whose entries are all 1. Applying ∇H? on both sides on this expres-
sion,

p = ∇H?(∇H(p)) = ∇H?

(
q

α
+
µ

α
~1

)
= ∇H?

(
q

α

)
.

The first equality follows from properties of Fenchel’s conjugate. The last equality follows
doing the mathematics with the expression ∇H?(y1, · · · , yN ). We can substitute the value
of q in the objective

−〈q, p〉+ αH(p) = −〈q, p〉+

N∑
i=1

pi log(pi)

= −〈q, p〉+
N∑
i=1

pi

qi
α
− log

 N∑
j=1

e
qj
α

 = −αH?(q) .

84



Bibliography

[ABK+21] Sergul Aydore, William Brown, Michael Kearns, Krishnaram Kenthapadi,
Luca Melis, Aaron Roth, and Ankit Siva, Differentially private query release
through adaptive projection, 2021.

[AFKT21] Hilal Asi, Vitaly Feldman, Tomer Koren, and Kunal Talwar, Private stochastic
convex optimization: Optimal rates in `1 geometry, 2021.

[BFTT19] Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Thakurta, Pri-
vate stochastic convex optimization with optimal rates, 2019.

[BGM21] Raef Bassily, Cristóbal Guzmán, and Michael Menart, Differentially private
stochastic optimization: New results in convex and non-convex settings, 2021.

[BGN21] Raef Bassily, Cristóbal Guzmán, and Anupama Nandi, Non-euclidean dif-
ferentially private stochastic convex optimization, CoRR abs/2103.01278
(2021).

[BKN10] Amos Beimel, Shiva Kasiviswanathan, and Kobbi Nissim, Bounds on the sam-
ple complexity for private learning and private data release, vol. 94, 02 2010,
pp. 437–454.

[BLR11] Avrim Blum, Katrina Ligett, and Aaron Roth, A learning theory approach to
non-interactive database privacy, 2011.

[BST14] Raef Bassily, Adam Smith, and Abhradeep Thakurta, Differentially private
empirical risk minimization: Efficient algorithms and tight error bounds, 2014.

[CLC+22] M. A. P. Chamikara, Dongxi Liu, Seyit Camtepe, Surya Nepal, Marthie Grob-
ler, Peter Bertok, and Ibrahim Khalil, Local differential privacy for federated
learning in industrial settings, 2022.

[CMS09] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate, Differen-
tially private empirical risk minimization, 2009.

[CWS20] Junjie Chen, Wendy Wang, and Xinghua Shi, Differential privacy protection
against membership inference attack on machine learning for genomic data.

[DGVW10] Lutz Dümbgen, Sara Geer, Mark Veraar, and Jon Wellner, Nemirovski’s in-
equalities revisited, The American mathematical monthly : the official journal
of the Mathematical Association of America 117 (2010), 138–160.

[DNT13] Cynthia Dwork, Aleksandar Nikolov, and Kunal Talwar, Efficient algorithms
for privately releasing marginals via convex relaxations, 2013.

85



Bibliography

[DR13] Cynthia Dwork and Aaron Roth, The algorithmic foundations of differential
privacy, Foundations and Trends in Theoretical Computer Science 9 (2013).

[DRV10] Cynthia Dwork, Guy Rothblum, and Salil Vadhan, Boosting and differential
privacy, Proceedings of the 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS ‘10) (Las Vegas, NV), IEEE, IEEE, 23–26 October
2010, p. 51–60.

[GAH+14] Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and
Zhiwei Steven Wu, Dual query: Practical private query release for high di-
mensional data.

[HLM10] Moritz Hardt, Katrina Ligett, and Frank McSherry, A simple and practical
algorithm for differentially private data release, 2010.

[HSDZ21] Hongsheng Hu, Zoran Salcic, Gillian Dobbie, and Xuyun Zhang, Membership
inference attacks on machine learning: A survey, CoRR abs/2103.07853
(2021).

[HSS+21] Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S. Yu, and
Xuyun Zhang, Membership inference attacks on machine learning: A survey,
2021.

[Jag13] Martin Jaggi, Revisiting frank-wolfe: Projection-free sparse convex optimiza-
tion, vol. 28, 01 2013.

[JN08] Anatoli B. Juditsky and Arkadii S. Nemirovski, Large Deviations of Vector-
valued Martingales in 2-Smooth Normed Spaces, working paper or preprint,
May 2008.

[JWHT13] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, An
introduction to statistical learning: with applications in r, Springer, 2013.

[KD19] K. S. Sesh Kumar and Marc Peter Deisenroth, Differentially private empiri-
cal risk minimization with sparsity-inducing norms, ArXiv abs/1905.04873
(2019).

[KHD20] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras, On the effectiveness of
regularization against membership inference attacks, 2020.

[LM11] Chao Li and Gerome Miklau, Efficient batch query answering under differen-
tial privacy, 2011.

[LVW21] Terrance Liu, Giuseppe Vietri, and Zhiwei Steven Wu, Iterative methods for
private synthetic data: Unifying framework and new methods, 2021.

[NDT+20] Geoffrey Négiar, Gideon Dresdner, Alicia Tsai, Laurent El Ghaoui, Francesco
Locatello, Robert M. Freund, and Fabian Pedregosa, Stochastic frank-wolfe
for constrained finite-sum minimization, 2020.

[RR09] Aaron Roth and Tim Roughgarden, Interactive privacy via the median mech-
anism, 2009.

[RSPS16] Sashank J. Reddi, Suvrit Sra, Barnabas Poczos, and Alex Smola, Stochastic
frank-wolfe methods for nonconvex optimization, 2016.

86



Bibliography

[SSMS22] Pierre Stock, Igor Shilov, Ilya Mironov, and Alexandre Sablayrolles, Defending
against reconstruction attacks with rényi differential privacy, 2022.

[SZ12] Ohad Shamir and Tong Zhang, Stochastic gradient descent for non-smooth
optimization: Convergence results and optimal averaging schemes, 2012.

[SZ13] , Stochastic gradient descent for non-smooth optimization: Conver-
gence results and optimal averaging schemes, Proceedings of the 30th Inter-
national Conference on Machine Learning (Atlanta, Georgia, USA) (Sanjoy
Dasgupta and David McAllester, eds.), vol. 28, Proceedings of Machine Learn-
ing Research, no. 1, PMLR, 17–19 Jun 2013, pp. 71–79.

[TGTZ15] Kunal Talwar, Abhradeep Guha Thakurta, and Li Zhang, Nearly optimal
private lasso, Advances in Neural Information Processing Systems (C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, eds.), vol. 28, Curran
Associates, Inc., 2015.

[VTB+20] Giuseppe Vietri, Grace Tian, Mark Bun, Thomas Steinke, and Zhiwei Steven
Wu, New oracle-efficient algorithms for private synthetic data release, 2020.

[WCX19] D. Wang, C. Chen, and J. Xu, Differentially private empirical risk minimiza-
tion with non-convex loss functions, 36th International Conference on Machine
Learning, ICML 2019, vol. 2019-June, 2019, Cited By :3, pp. 11334–11343
(English).

[YGFJ17] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha, Privacy
risk in machine learning: Analyzing the connection to overfitting, 2017.

[YKK+22] Da Yu, Gautam Kamath, Janardhan Kulkarni, Tie-Yan Liu, Jian Yin, and
Huishuai Zhang, Per-instance privacy accounting for differentially private
stochastic gradient descent, 2022.

[YSZ+22] Dayong Ye, Sheng Shen, Tianqing Zhu, Bo Liu, and Wanlei Zhou, One param-
eter defense – defending against data inference attacks via differential privacy,
2022.

[ZMX+20] Qiuchen Zhang, Jing Ma, Yonghui Xiao, Jian Lou, and Li Xiong, Broadening
differential privacy for deep learning against model inversion attacks, 12 2020,
pp. 1061–1070.

87


	Differential Privacy
	Randomized Response
	Laplace Mechanism
	(,) Differential Privacy

	Membership Inference Attacks
	Attacks in Machine Learning models
	MIA on Neural Networks
	Neural Network based attacks
	NN based attacks in black-box setting
	NN based attacks in white-box setting

	Metric Based Attacks

	Differentially Private Optimization
	Stochastic Convex Optimization
	Frank Wolfe Algorithm
	Stochastic Frank Wolfe

	Numerical Experiments
	1 Constrained Regression 
	Logistic Regression
	Threshold
	Multinomial Logistic Regression

	Synthetic Data Generation
	Min Max formulation
	Stochastic Optimization for Synthetic Data release
	Frank Wolfe for dual formulation of synthetic data
	Effect of regularization
	Frank Wolfe on regularized dual problem of synthetic data for empirical risk
	Frank Wolfe on regularized dual problem of synthetic data for Population Risk
	Full Batch Frank Wolfe on dual synthetic data of population risk

	Appendix
	Appendix chapter 3
	Appendix chapter 5

	Bibliography

