
 

 
 
 
 
 
 
 
 
 
 
 

Faculty of Electrical Engineering, 

Mathematics & Computer Science 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Privacy-Preserving 

Counterfactual Explanations 

To Help Humans Contest AI-

Based Decisions. 
 
 
 
 
 
 
 
 
 

 
Dhivin Joshua 

Nelson 

M.Sc. Thesis  

August 2022 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supervisor 

 

                                                                                                                                                  prof. dr. Ir M.Van Keulen, UT 

                                                                                                                                                  dr. D.K.Sarmah, UT 

                                                                                                                                                  dr. B.Kamphorst, TNO 

                                                                                                                                                  M Sc. Jasper van der waa, TNO 

     
 

 



Preface

This thesis recounts my work to get a Master’s degree in Computer Science from the University
of Twente, focusing on Data Science and Technologies. Two subfields of computer science have
piqued my attention during my graduate studies: artificial intelligence (AI) and cryptography. These
fields are becoming increasingly significant in our daily lives, and they provide us with complex and
much-needed solutions.

Throughout my thesis, I am grateful for exploring the possibility of privacy-preserving explainable
artificial intelligence. It has been more complicated than expected, necessitating reworking the re-
search topics, but progress has been made. Furthermore, I am thrilled by the depth of knowledge I
have gained from researching and writing my thesis.

I want to use this moment to express my gratitude to my supervisors and mentors. First, I want
to thank my thesis supervisor, Prof. Maurice van Keulen, and Dipti Sarmah for participating in this
study, and Bart Kamphorst and Jasper van der Waa for their insightful direction and participation in
several brainstorming sessions. Second, I want to also express my gratitude to my family and friends
for their support during my thesis.

Oh give thanks to the LORD, for He is good; for His steadfast love endures forever - 1 CHRONI-
CLES 16:34 (Bible). I thank my Lord for His blessings and guidance throughout this study.

I hope you would enjoy the reading.

Dhivin J Nelson
Enschede, August 2022

ii



Abstract

Machine learning (ML)-enhanced telemedicine and chronic management systems that aid physicians
or patients in their treatment may be a significant asset due to the escalating prevalence of diseases,
particularly cardiovascular accidents. Adopting machine learning techniques might aid in the effort to
make healthcare more accessible with increased efficacy and productivity. Machine learning-enabled
chronic management systems, however, face some challenges.

First, the structure of Black-box AI models is highly complicated, and when applied to making
decisions, it is difficult to understand how the model arrived at the result. The field of Explainable
Artificial Intelligence (XAI) deals with making machine learning models more transparent and their
predictions more explicable. More specifically, Counterfactual explanations are an XAI method that
focuses on developing contrastive explanations by creating a hypothetical reality that opposes the
observable facts. Counterfactual explanations answer the question,” If X had not happened, Y would
not have happened.”

The second reason is that the importance of medical data and machine learning models has
increased over time. As a result, there has been significant growth in norms and regulations govern-
ing their storage and use. Privacy-Enhancing Technologies (PET), combined with machine learning
models, ensure that data and model privacy are not compromised.

It has not been thoroughly investigated how the use of counterfactual explanations might result in
introducing new attack surfaces to the systems that are being modeled. For example, an attacker with
malicious intent might use the information offered by explanations to their advantage to undertake
a Membership Inference Attack (MIA) that would threaten the system’s overall level of privacy [1].
This work will study the vulnerabilities of the counterfactual explanations, followed by performing a
membership inference attack by generating multiple counterfactual explanations.

The use of Privacy-Enhancing Technologies, such as Differential Privacy, to protect privacy of
individuals while generating counterfactual explanations, as well as the accompanying challenges
and potential countermeasures against MIA is investigated in this research. In this study, synthetic
datasets were used instead of the original data to construct counterfactual explanations, and the
explanations were quantified using high-level performance metrics such as proximity, sparsity, and
diversity to evaluate how useful they are in private and non-private contexts and relative entropy,
which measures how much information is revealed as a result of these explanations.

The trials revealed that the performance of the synthetic data model degrades as the privacy bud-
get shrinks. When the privacy budget is a more significant value, the synthetic data most accurately
mimics the original data, and the counterfactual explanations provided are remarkably similar to those
generated on the original data. On the contrary, a smaller privacy budget fails to simulate original
data accurately, and the counterfactual explanations were ineffective; however, repeated queries re-
vealed less information about the synthetic and original data demonstrating a good level of privacy.
For a larger privacy budget, the synthetic data was exposed to a high level that always reveals few
characteristics of the original data.
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Chapter 1

Introduction

This chapter will address the health background and issues due to the chosen domain, followed by
the use case scenario to explain to the reader the current challenges and the motivation which leads
to the research question.

1.1 Health Background

According to WHO’s 1970 definition, a stroke is ”rapidly developing clinical evidence of focal (or
global) impairment of brain function, with symptoms lasting 24 hours or more or leading to death,
with no clear cause other than a vascular origin” [2]. Traditional stroke risk factors may be divided
into two categories: those that can be modified and those that cannot. Hypertension, diabetes, high
cholesterol, cardiovascular disease, lifestyle, smoking, and alcohol use are modifiable stroke risk
factors, whereas age and gender are not modifiable factors [3] [4]. Stroke is the second biggest cause
of death globally, killing 5.5 million people annually [4]. Stroke has significant economic and societal
effects. Community-based education programs and the application of digital health technologies are
essential techniques for the prevention of stroke [5].

Using digital health technology such as the Chronic Management System (CMS) would substan-
tially reduce the burden of health care. However, CMS is not a substitute for physicians but rather a
tool to assist healthcare practitioners or patients.

1.2 Use Case Scenario

Consider the following scenario to understand better why patients require a CMS: Mark has not been
in the best of health as of late; he is a mature adult in his late 50s and has been feeling ill more
frequently during the past several weeks and has a minor excess of body fat. He would want to visit
a specialist for a checkup, but because medical professionals typically have large waiting lists, this
may take a few weeks. A machine learning (ML)-enhanced CMS trained with big data containing
information from different hospitals or nations can provide a preliminary diagnosis. Mark may have
less of a need to continue making an appointment with the expert if the CMS produces a negative
result. This would allow the medical professional to devote more time to treating needy patients. On
the other side, if the CMS forecast is accurate and Mark is finally clinically diagnosed with a higher
risk of having a stroke due to his lifestyle, this would most likely result in treatment plans that will
need to be followed for the rest of his life.
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1.3 Motivation

The scenario described in section 1.2 has two significant impediments to overcome. Firstly, why
should Mark trust the result from a machine learning-enabled CMS? Moreover, there is no convincing
evidence for Mark to challenge the decision if it turns out discriminatory. In order to counteract this
obstacle, there are four approaches to contesting decisions made by the black-box AI model: (i)
increasing the accuracy of the model by testing; (ii) ensuring perceptibility through explanation and
confidence scores; (iii) training users; and (iv) monitoring the system [6]. This work will focus mainly
on the Explainability of AI decisions.

The issue of trust becomes increasingly crucial as we outsource more decision-making to artificial
intelligence (AI) and rely on AI to defend vital human commodities like safety, security, and health-
care [7]. To gain users’ trust, the CMS must describe the decision-making process of the AI model
or offer explanations for the AI’s conclusion [8]. Research into XAI is on the rise because of the
rising complexity of ML models. XAI is an area of study that aims to make black-box models trans-
parent, interpretable, and understandable [9]. Explainable AI makes black-box models with complex
learned functions comprehensible through transparent boxes or post-hoc explanations. Interpretable
models approximate the black-box model in order to create a transparent box. Interpretable models
include decision trees [10], Sparse Linear Models [11], Decision Rules [12], Rulefit [13]. On the other
hand, post-hoc explanations attempt to explain the link between the feature values and the black-box
prediction [1]. A disadvantage of XAI is that an increase in a model’s transparency is often accom-
panied with a decrease in performance owing to the necessity for a less complicated classification
system [14].

Users of CMS can be divided into two groups in a clinical setting: healthcare professionals
and patients [15]. A healthcare professional is expected to have the expertise, whereas a pa-
tient’s comprehension might vary greatly depending on their past education and experience with
the condition. This work focused on contrastive post-hoc explanations since patients often antici-
pate a counter explanation to address the query, ”Why this outcome and not that outcome?” [16].
Diverse Counterfactual Explanations (DiCE) [17], a post-hoc explanation method that generates con-
trastive/counterexamples is researched in this work. Its multi-objective nature enables it to generate
a broad range of different and diverse counterfactual explanations from the original data. These
counterfactual explanations are similar enough to the query instance but have a different prediction.
Using the given scenario, Mark wants to understand the relationship between the features and the
prediction by obtaining an explanation contrary to what was predicted.

The second impediment is that medical data privacy is a considerable concern. When it comes
to the exchange of information, medical records, in particular, are accompanied by a considerable
measure of concern [18]. Membership Inference (MIA) is an attack through which the adversary can
discover if an individual record was included in the target model’s training dataset or not through the
confidence scores of the prediction [19]. The use of perturbing the outcome as a defense against
MIA with strict privacy assurances is known as Differential Privacy (DP) [20]. In DP, statistical noise
is used to restrict the amount of knowledge an adversary may learn due to the release of specific
information [21].

Aı̈vodji et al. [1] stated that it remains an unresolved question whether DP will affect the robustness
of the counterfactual explanations and the privacy of individuals, which motivates to research DP as
a candidate to generate privacy-preserving counterfactual explanations.
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1.4 Research Question (RQ)

The following study questions have been developed in order to investigate these potential trade-offs:

RQ 1 : To what extent can we preserve privacy when generating multi-objective counterfactual
explanations?

Sub questions for the above mentioned research question are:

1.1 How vulnerable are multi-objective counterfactual explanations to membership inference at-
tack?

1.2 Given the counterfactual explanation method DiCE, how effective is Differential Privacy in pre-
serving the privacy of individuals?

1.3 How effective are the generated counterfactuals after applying Differential Privacy?

The following is how the remaining portion of this work is organized: A literature review on the
more technical features of XAI may be found in chapter 2. Chapter 3 is a general review of counterfac-
tual explanations. Chapter 4 discusses attacks on machine learning models. Chapter 5 is a general
review of the various PET. In Chapter 6, an overview of the most recent advancements in Differ-
ential Privacy approaches is presented for the reader. The procedures for the tests are described
beginning in Chapter 7, and then the experiments are carried out in Chapter 8. In the last chapter,
Chapter 9, conclusions are formed from the acquired results, and the study’s limits and future work
are discussed.



Chapter 2

Explainable AI

Artificial intelligence (AI) has seen a growth in the recent years, given the fact that its rising per-
formance is unequaled by the solutions that are traditionally used. The inner workings of AI have
become increasingly obscure as research and development of the technology proceeds. Although
the growing opacity of the model does not pose a problem in all applications, decisions made by
artificial intelligence may substantially influence human lives in some industries. For example, health
care and law enforcement are two examples of fields where there is an inherent need to understand
how an AI model came to its conclusion, this may assist in justifying or trusting the results, as well
as avoiding inappropriate behavior such as prejudice [22]. Explainable AI can assist end-users in
trusting that the AI is making good decisions, debate the decision, or build new hypotheses about the
AI’s capabilities.

2.1 Introduction

A real-life example to illustrate the social implications of using AI, An artificial intelligence system
assigned ratings to instructors in Houston based education institution on how well their students per-
formed on standardized tests compared to the state average [23]. Those staff who received excellent
evaluations received accolades and sometimes even incentives. Those who performed poorly faced
the possibility of being fired. The educators impacted by this AI system had the impression that
it graded them incorrectly for no apparent reason. However, there was no way for them to verify
whether or not the software was accurate or flawed. Explainable AI in ethical scenarios, if deployed,
will assist end-users in trusting the AI system or contesting the decision made by the AI system. Fig-
ure 2.1 shows the contrast between the traditional machine learning setting and Explainable AI [7].
The traditional approach approximates a learned function with the data. The learned function is used
to provide decisions for the tasks specified by the end-user. Whereas Explainable AI either approxi-
mates the complex learned function with a more straightforward function that the end-user interprets
or uses post-hoc explanations to explain the reason behind the decision made by the complex learned
function [10].

4
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Figure 2.1: Traditional vs Explainable AI setting

2.1.1 Regulation

The existence of a ”right to explanation” in the EU General Data Protection Regulation (GDPR) and its
consequences for companies and people have been highly contested topics of discussion. However,
under the GDPR, there is no legally enforceable entitlement to explanation [24]. Relatively non-
binding, Recital 71 in GDPR states that data processing techniques involving personal data ”should
include specific information to the data subject, as well as the rights ”to obtain human intervention,”
”to express his or her viewpoint,” ”to obtain an explanation of the decision reached after such assess-
ment,” and ”to challenge the decision” [25]. Given the societal implications of AI in crucial sectors, it
is necessary, even if the right to explanations is not mandated.

2.2 Methods

Black-box models need additional techniques and approaches to determine how the system arrived
at its conclusions [26]. The critical aspect for dividing XAI methods is the level of interpretation. If the
explanations are for the original instance/current outcome, then it is local [27], and if the XAI method
explains the entire black-box model, then it is global. The other distinction is that if the XAI method is
applicable only for certain families of an algorithm (machine learning model), then it is model-specific.
On the contrary, it is called model-agnostic [10]. Few examples are stated below for each category.

Global Model-Agnostic

Interpretable models are used when the black box model must be globally approximated. For exam-
ple, a Decision tree can be trained on data and predictions from the black-box model. This resulting
model (Decision tree) closely approximates the black-box model [10]. The decision rules from the
tree can be used to explain the black-box decisions. The biggest challenge is fidelity, which mea-
sures how well the interpretable model approximates the black-box. Black-box models are complex;
using a simple model to approximate a complex model is difficult. Therefore, it is not easy to achieve
global fidelity.
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Local Model-Agnostic

Ribeiro et al. [27] proposed a local interpretable model explanation (LIME) to explain local individual
black-box predictions. Lime creates a local approximation for the black-box model for the original
instance. The local model should be a good approximation of the black-box model in that local
region. The accuracy for approximation is known as local fidelity.

To understand the working of LIME, a local neighborhood of instances around the original in-
stance is generated using an exponential smoothing kernel. Exponential smoothing kernel returns
proximity score that helps sample around the original instance to provide faithful local explanations.
For example, in Figure 2.2 the red cross denotes the original instance, and the exponential smoothing
weights each sample around the red cross based on its proximity.

Next, a linear model (Interpretable model) was used to approximate the decision boundary of
the black-box model in the local neighborhood (black-dashed line in Figure 2.2). Finally, the most
influential features for the prediction in the local neighborhood are selected to generate explanations.

Figure 2.2: LIME [27]

Neural Network Interpretation

In a neural network context, many layers of multiplication with weights and non-linear transformations
are used to produce predictions. Depending on the design of the neural network, a single prediction
might comprise millions of numerical computations. Unfortunately, our brains cannot trace the precise
path from data input to prediction. Therefore, saliency maps are often used to emphasize the pixels
in an image (original instance) critical to the network’s classification to comprehend the findings of a
neural network [28].

Example-Based Explanations

Example-based explanation approaches choose specific examples of a dataset to explain the behav-
ior of machine learning models.

The approaches mentioned above do not support a strategy for finding a contrastive explanation
for the existing decision by the black-box model. Counterfactual explanations are example-based
explanations that provide contrastive explanations [10]. Counterfactual explanations will help the
end-user comprehend how to succeed in a specific activity. As a result, it stands out above other
methods. Counterfactual explanations are covered in detail in the next chapter.



Chapter 3

Counterfactual Explanations

Counterfactual explanations are post-hoc explanations that help understand the meaningful relation-
ship (causal) between the features and prediction [17]. The GDPR does not seem to necessitate
opening the ”black-box model” to explain the reasoning of the decision-making process to data sub-
jects. With this in mind, counterfactuals may give information following the GDPR’s different informa-
tional standards while also giving some insight into the reasoning behind a particular decision [29].

To illustrate counterfactual explanations, in Table 3.1 the original instance is predicted with Stroke
by a black-box AI model. If the end-user wishes to know how they can move to the other side of the
decision boundary, that is No Stroke, counterfactual explanations will provide examples based on the
desire of the end-user (see Figure 3.1). Counterfactual instance (explanation) generated helps the
end-user to understand that, by reducing the average glucose level (diabetes) from 165.97 to 120.56
and BMI (obesity) from 31 to 24.9, the prediction changes to No Stroke.

Example
Instance Gender Age Smoking status Hypertension avg gluscose

level
BMI Prediction

Original (x) Male 70 0 0 165.97 31 Stroke
Counterfactual
(x’)

Male 70 0 0 120.56 24.9 No Stroke

Table 3.1: Counterfactual instance (explanation) for the original instance

A valid counterfactual instance (explanation) should be closer to the original instance, thereby
promoting higher actionability. An important consideration while making a recommendation is which
attributes can be modified (for example, high blood pressure, obesity, and diabetes) and which can-
not be changed (e.g., gender, age). In a recommended counterfactual, the non-modifiable features
should never be altered. When a modification is made to a legally sensitive attribute and the pre-
dicted outcome changes, this clearly shows that the data used to generate counterfactuals is biased.

7
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Prediction:
Stroke 

Prediction:
No Stroke 

Original
instance

Figure 3.1: Counterfactual Explanations

3.1 Themes of research for Counterfactual Explanations

The themes involved during the generation of counterfactuals are as follows [30],
Proximity means that the original and counterfactual instance (example) should be close enough

to produce different outputs. To explain this property, the original instance and counterfactual instance
in Table 3.1 are close enough but produce different outputs. A distance metric d is used to measure
the distance between the original instance (x) and counterfactual instance (x′). The counterfactuals
(CF1, CF2, CF3) generated in Figure 3.2 are closer to the decision boundary when proximity is
weighted high. Conversely, the produced counterfactuals are far from the decision boundary when
proximity is weighted low.

Actionability means the counterfactual instance (example) should never change immutable fea-
tures. To illustrate this example, the counterfactual instance in Table 3.1 preserves actionability by
not changing Age and Gender.

Data manifold closeness means the generated examples should be close enough to the training
data, thus making counterfactual instances to be valid, accurate, and not unrealistic for the end-user.
In Figure 3.2 the dashed line represents data manifold.

Sparsity means the number of changes in features that produce a counterfactual instance with
a different output. To illustrate this, in Table 3.1 the changes in feature avg glucose level and BMI
produce a counterfactual instance with a different output. For a counterfactual to be as valuable as
possible, the number of features that need to be altered should be kept to a minimum. It has been
stated that individuals find it simpler to comprehend shorter explanations [31]; hence, sparsity should
be taken into mind as an essential factor. When proximity is given a high weight, sparsity tends to be
low. This indicates that there have been few modifications made to the features. On the other hand, if
the proximity weight is set to a low value, the sparsity will be significant, and the features will undergo
many modifications. When comparing the original instance to the counterfactuals, the sparsity can
be determined by employing a distance metric that keeps track of the number of times the features
of the counterfactuals have been altered.

Finally, Multiple Diverse counterfactual instances provide end-users with various options to choose
which explanation best suits the end-user. Mothilal et al. [17] proposed the concept of mutiple and
diverse counterfactuals and explained that the generated counterfactual explanations should follow
two properties: feasibility and Diversity. A single counterfactual instance may not be feasible for the
end-user; and in order to achieve feasibility multiple and diverse counterfactual explanations are gen-
erated. In Figure 3.2 multiple counterfactuals are generated (CF1, CF2, CF3) that promotes more
feasibility than a single counterfactual generated in Figure 3.1.

There is a trade-off between proximity, sparsity, and diversity. When proximity is weighted high,
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sparsity is low, and diversity between the counterfactuals generated is low. On the other hand, if
proximity is weighted low, sparsity is high, and diversity between the counterfactuals generated is
high. Figure 3.2 illustrates the trade-off when proximity is high, diversity is low, and vice-versa.

Prediction:
Stroke 

Prediction:
No Stroke 

Original
instance

CF1

CF2

CF3

Prediction:
No Stroke 

Original
instance

CF1

CF2

CF3

Proximity high, Diversity low Proximity low, Diversity high

Figure 3.2: Themes

3.2 Generating Counterfactual Explanations

This section will explain the three most common counterfactual explanation methods followed by
the research themes covered in the methods [10]. Table 3.2 illustrates counterfactual explanation
methods followed by the themes in the research [30].

Themes of Counterfactual explanations
Methods Proximity Actionability Data manifold

closeness
Sparsity Mutliple,Diverse

[29] UCA ✓ ✗ ✗ ✗ ✗

[17] DiCE ✓ ✓ ✗ ✓ ✓

[32] MOC ✓ ✓ ✓ ✓ ✗

Table 3.2: Themes of research in counterfactual explanations

3.2.1 Generating single counterfactual explanations (UCA)

Wachter et al. [29] proposed an optimization algorithm to generate counterfactuals. Equation 3.1 is
the optimization objective that denotes the proximity constraint mentioned in Table 3.2. Where x is
the original instance, x′ is the counterfactual instance, y′ is the desired prediction specified by the
end-user, f(x′) is the output from the black-box model.

arg min
x′

d(x, x′) subject to f(x′) = y′ (3.1)

The Equation mentioned above is converted into an unconstrained optimization (see Equation
(3.2)) where λ is the regularizer term that balances between the desired output and distance function
d(x, x′).
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L(x, x′, y′, λ) = arg min
d

max
λ

λ(f(x′)− y′) + d(x, x′) (3.2)

3.2.2 Generating multiple and diverse counterfactual explanations (DiCE)

Mothilal et al. [17] proposed diverse counterfactual explanations (DiCE), aiming to generate multiple
and diverse counterfactual explanations, thus enabling end-users with many options. The optimiza-
tion constraints are similar to Equation 3.2. The only difference here is the diversity of the generated
counterfactuals. Diversity is measured using a determinantal point process that calculates the de-
terminant of the matrix k, where k measures the distance between the generated counterfactuals
dist(ci, cj) (see Equation 3.4). To avoid ill-defined determinants, the diagonal values in the matrix k

are perturbed. Proximity between the query instance and the multiple counterfactuals is measured
using dist(ci, x). Equation 3.3 is the loss function specified for generating counterfactuals optimized
using a gradient descent. f(ci) is the output from the black-box model for the multiple counterfactu-
als. (f(ci) − y

′
) calculates how close is the predicted outcome of the counterfactuals to the desired

output (y
′
) specified by the end-user. λ1 and λ2 are hyperparameters that balance proximity and

diversity.

C(x) = arg min
ci....ck

1

k

k∑
i=1

(f(ci)− y′) +
λ1

k

k∑
i=1

d(ci, x)− λ2 dpp˙diversity(c1...ck) (3.3)

dpp˙diversity = det(k), where k =
1

1 + dist(ci, cj)
(3.4)

There is a trade-off between proximity and diversity when generating counterfactual instances. If
proximity λ1 is weighted high, then diversity λ2 reduces and vice-versa. So the hyperparameters
should be balanced such that counterfactual instances preserve both properties. The motivation
specified by Mothilal et al. [17] to generate multiple and diverse counterfactual instances is action-
ability. A single counterfactual instance may not be actionable for the end-user, but diverse and
multiple counterfactual instances increase the probability of actionability.

3.2.3 Generating multi-objective counterfactual explanations (MOC)

Multi-objective counterfactual explanations (MOC) satisfy proximity, actionability, data manifold close-
ness, and sparsity [32]. The first objective is to get the desired output specified by the end-user. The
first objective is weighted using λ (see equation 3.5). The second objective (proximity) is the distance
between the counterfactual instance and original instance. The third objective is the number of fea-
ture changes done between the original instance and counterfactual instance (sparsity). Finally, the
fourth objective checks whether it is a plausible counterfactual, i.e., follows the underlying distribu-
tion (data manifold closeness). The underlying data distribution is denoted by Xobs and E denotes
explanation for the original instance x. The objective of Equation 3.5 is to decrease the distance
between the original and counterfactual instances while also increasing the likelihood of obtaining a
counterfactual with the desired output specified by the end-user.

E(x) = min
d

max
λ

λ(f(x′)− y′) + d(x, x′) + g(x′ − x) + l(x,Xobs) (3.5)



Chapter 4

Attacks on Machine Learning

An adversary’s objective in privacy-related attacks is to get information that was not meant to be
disclosed. This knowledge may pertain to the training data, the model, or even the extraction of
information about data features. In this study, the attacks are classified as membership inference,
property inference, and model extraction.

4.1 Membership Inference

A membership inference attack detects whether a particular data item was included in the target
model’s training or not [1]. The adversary queries the target model (machine learning model), receiv-
ing the prediction. An adversarial attack model uses the prediction and the real label to deduce the
membership of the instance (see Figure 4.1).

Target Model/ ML
model

Data
instance,True

Label

1.Predict
(data)

Attack Model
2.Prediction

3.True
Label

4.Data belongs
to the training

set?

Figure 4.1: Membership Inference Attack

Membership inference attacks commonly leverage machine learning overfitting to differentiate
between members and non-members of training data (see Figure 4.2). When a model is overfitted,
it performs well on its training samples but not so well on new data. It is simpler for an adversary
to conduct membership inference attacks if a machine learning model is overfitted [19]. In Figure
4.2, an adversary can construct an attack model to distinguish between the confidence scores of
instances that a machine learning model is familiar with and instances that it is unfamiliar [19]. An
example of the confidence-based membership inference attack is given below.

11
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Machine Learning
model

No StrokeStroke

Prediction API

Instance
that the

ML model
is familiar

Instance
that the ML
model is not
familiar

1 2 3 4

Compute
Differences No StrokeStroke

Figure 4.2: Exploit Model’s Prediction

Shokri et al. [19] proposed an attack model for membership inference, a confidence-based attack
exploiting the model’s prediction. The adversarial creates k shadow models denoted by fshadow and
trains each model using shadow datasets. For simplicity, the shadow datasets were generated using
the marginal distribution of the features in the target data.

The attack strategy is as follows, each shadow model is queried with its own shadow dataset,
Dtrain, and a disjoint dataset Dtest (see Figure 4.3). For all (x, y) ∈ Dtrain, the prediction y =

fshadow(x) is computed and added to a new record in the form of (y, y, in). y denotes the confidence
score of the true label, y denotes the confidence score of the predicted label, and in denotes that the
record was present in training [19]. A similar process was followed for the disjoint dataset (Dtest),
and the output was then added to a new record (y, y, out) where, out denotes that the record was
not present in training. Finally, the attack model is trained on the records ((y, y, in) and (y, y, out)) to
perform a membership inference.

Dtrain

. . . .Shadow model 1 Shadow model k

Dtest DtestDtrain

Prediction

Prediction

IN OUT IN OUT

Train the
attack
model

Figure 4.3: Training Attack Model for Membership Inference
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4.2 Property Inference

Property inference is based on the premise that models trained with similar datasets or learning pro-
cesses would have similar representations of functions [33]. The adversary aims to identify patterns
in the target model parameters that expose characteristics that the model owner may not wish to
disclose publicly.

Figure 4.4 shows how the adversary first trains a shadow model on the same challenge as the
target model to build an attack model that predicts whether or not the target model has the property
P . Shadow model is trained on a dataset similar to that of the target model but explicitly constructed
to either have the property P or not (P̃ ). Finally, the Shadow model is used to create the attack
dataset, which consists of (F, P ) and (F, P̃ ), where F represents the feature representation. Then,
the attack model is trained on the attack dataset to distinguish whether or not the property belonged
to the target model [33].

Shadow
Dataset

Shadow model

(F,P) 
   .
   .
   .
 
(F,P)

Train
Feature extraction

̃

Train
Attack model

Figure 4.4: Property Inference Attack

4.3 Model Extraction

Model Extraction attack is an inference attack, where the adversarial aims to create a surrogate
(replicate) model with high fidelity or accuracy that can be a substitute for the commercial API for the
financial benefit [1]. These attacks are often categorized into reconnaissance-motivated and theft-
motivated model extraction [34]. For example, in Figure 4.5, the theft-motivated adversary prefers the
blue dashed decision boundary because of its high classification accuracy. In contrast, a reconnais-
sance motivated adversary prefers the dotted brown line because it closely approximates the target
model’s decision boundary.

Target model

Theft motivated attack

Reconnaissance
 motivated attack

Figure 4.5: Types of Model Extraction
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4.4 Adversarial Attack on Counterfactual Explanations

Machine learning models have been the focus of the attacks so far. Attack using counterfactual
explanations (XAI) is addressed in this section.

The adversary utilizes the explanations to build the surrogate model in a counterfactual explanations-
based model extraction attack [1]. For example, in a black-box situation, given a target model, its pre-
diction API, and its explanation API, the explanation-based model extraction approach exploits the
explanations of the original instance (current outcome) to generate a surrogate model (see Figure
4.6).

In the proposed work by Aı̈vodji et al. [1], the attacker builds an attack dataset DA. For each
x ∈ DA, the attacker queries the prediction API and explanation API and receives counterfactual
explanations for each query. The attacker then trains a surrogate model with these generated coun-
terfactual explanations (Shadow Dataset) to create a surrogate model with high fidelity and accuracy.
The framework that was used to generate counterfactuals is explained in section 3.2.2.

Model
Owner+Explanation

Provider

Data Owner

Explanation Recipient

Requests
prediction and

explanation

Receives
prediction and

explanation

MLaas

Train
model

Store Data

API

Figure 4.6: Architecture for Model Extraction Attack



Chapter 5

Privacy-Enhancing Technologies

Machine learning models require data to train. Data is often gathered by institutions specialized in
information aggregation; however, data providers are typically hesitant to contribute data owing to
privacy concerns. Therefore, in order to safeguard privacy and ownership during the collaborative
training of the machine learning model, federated learning (FL) or cryptographic or perturbation ap-
proaches are employed. This chapter will discuss the cryptographic approaches, federated learning,
and perturbation strategy.

5.1 Cryptographic approaches

Cryptographic approaches are used to solve the problem of protecting the confidentiality of data and
models. Homomorphic encryption, for example, is a kind of cryptographic approach that enables
users to do computations on encrypted data, which ultimately leads to a solution that is also en-
crypted and can only be deciphered by the owner of the secret key [35]. This assures that there is
no breach of confidentiality while the computation is being done. In addition, there is a technique
known as Secure Multiparty Computation, which makes it possible to compute a function or trade
data without ever disclosing the data used in the process [36]. These cryptographic algorithms make
it possible to train machine learning models using only encrypted data, ensuring both the model’s
and the data’s integrity.

5.1.1 Homomorphic Encryption

A type of encryption known as homomorphic encryption (HE) uses the fact that some encryption
techniques are homomorphic. This property makes it possible to execute operations on ciphertexts
(encrypted data). The resulting output is legitimate in the same way if the data were not encrypted.
For example, in Figure 5.1, the result of the summation function remains the same in the encrypted
domain and the unencrypted domain. There are different types of Homomorphic encryption, partial,
somewhat, and fully [35]. Partial homomorphic encryption (PHE) permits only a single operation to be
performed numerous times on ciphertext. The operation may be either addition or multiplication, but
never both. In contrast to PHE, somewhat homomorphic encryption (SHE) permits a limited amount
of addition and multiplication operations. Finally, fully homomorphic encryption (FHE) enables an
endless number of addition and multiplication operations on ciphertexts.

The most common homomorphic cryptosystem are ElGamal [37] and Pallier [38]. A practical
example of the Pallier cryptosystem in the context of the neural network is given in this section.

15
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Figure 5.1: Homomorphic Property

A practical example of homomorphic encryption in a neural network to preserve data privacy is
as follows, Zhu et al. [39] proposed a privacy-preserving neural network based on the homomorphic
cryptosystem, and the experiment was performed on the MNIST dataset. To encrypt the MNIST
dataset, the authors used the pallier homomorphic cryptosystem [40]. Pallier cryptosystem is a
public-key encryption scheme that has the following stages, key generation, encryption, and decryp-
tion [38]. The key generation system generates a public key and a private key. The public key is
used to encrypt the MNIST dataset, which results in the ciphertext of images. The client then sends
the encrypted data to the server-side. At the server-side, features are extracted (convolution). In
order to compute the activation function, Zhu et al. [39] designed an interactive protocol where the
server computes the activation (ReLU) by interacting with the client. The client decrypts the result
from convolution and sends positivity or negativity. If negative, the server squashes the output to
zero; on the other hand, if positive performs the activation function (ReLU). An average pooling was
used to calculate the average of each patch in the extracted features. A linear transformation was
applied in the final classification stage, and the same process mentioned above was followed for the
final activation function (ReLU). Finally, the output from the activation function is sent to the client; the
client then decrypts the output using the private key generated from the pallier cryptosystem. Figure
5.2 below explains the entire process.

Client

Server

Encryption

Encryption

2. Convolution

3.
Decryption

+/-

1. MNIST

4. ReLU

5. Pooling 6. Linear
transformation

+/-

7.
Decryption

8. ReLU

output

9.
Decryption

Figure 5.2: Homomorphic Encryption in Convolutional Neural Network
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5.1.2 Secure Multi-Party Computation

Secure multiparty computation (S-MPC) protects the privacy of many participants’ input (data) to
calculate a joint output. Sub problem for secure multi-party computation is two-party computation
(2PC) [41].

Homomorphic encryption and garbled circuits enable two parties to calculate the outcome of their
input (data). The steps involved in a garbled circuit with respect to a Boolean logic are as follows:
In order to generate the garbled circuit, a garbler encrypts the boolean circuit and then encrypts the
truth table’s output entry with the two input labels (Double-Key symmetric encryption). The table
that has been encrypted is called a garbled table. Lastly, the garbler sends the input labels and the
encrypted table to the other party. Finally, the evaluator deciphers the table with the input labels to
get the output label [41].

Most MPC protocols use Shamir secret sharing, when an honest majority is needed in secure
multiparty computation. When the secret is shared among n parties, t+1 or more parties may come
together to interpret the secret. This is an example of a secret sharing system. There is no way for
parties lower than t to get any information or decipher the secret [36].

For MPC and Homomorphic encryption, the most significant problem is the speed. In addition, it
is necessary for all parties involved in MPC to communicate and be connected; hence the overhead
costs of MPC are considerable [42].

5.2 Federated Learning

Remote execution is an alternative to a centralized training model because the data is not stored in
a centralized location; Federated learning may decentralize the modeling process while still training
a global model [43]. Federated learning can be used even if the information is kept on a large data
center or as little as a single mobile phone. In Federated learning, local models are trained on each
device, and the parameters are subsequently shared to train the global model.

A widely used framework is Federated Averaging (FedAvg) [44]. (1) Selected parties in the Feder-
ated averaging framework are initially provided with an up-to-date global model. (2) The global model
is then updated using the local data. (3) Next, the server receives the local models. Finally, a new
global model is generated by averaging all incoming local models. The above mentioned method
continues as long as FedAvg has not reached the stated number of iterations. (see Figure 5.3).

1 1

2 2

3 3

Figure 5.3: Federated Average
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5.3 Perturbation Approach

Data perturbation can preserve individual record confidentiality by using a data security approach
that introduces ’noise’ into databases (data) [45]. Differential Privacy, the most frequent type of
perturbation technique, offers a quantitative measure of privacy and is quite popular [46].

5.3.1 Differential Privacy

Differential Privacy is a guarantee made by the data holder to the data subject that the use of the data
in any research or analysis would not impair the subject’s privacy [47]. The basic rule of Information
recovery stipulates that excessively exact responses to too many questions would undermine privacy;
Differential Privacy seeks to extend this phenomenon as long as possible and produce noise in the
output that obscures the involvement of a particular person in the data [47]. There is a trade-off
between privacy and accuracy; a large amount of noise added will increase privacy but reduce the
system’s accuracy.

A mechanism is considered differentially private when an attacker looking at the output cannot
comment on whether or not a specific instance was included in the dataset [48]. In addition, differen-
tially private algorithms may protect against attacks like membership inference (Refer to section 4.1).
The next chapter covers Differential Privacy in detail because of its relevance in this research.



Chapter 6

Differential Privacy Details

Differential Privacy, introduced by Dwork et al. [47] states that, a mechanism is differentially private
when looking at the output; the attacker cannot comment whether an individual instance was included
in the dataset or not. When a mechanism is differentially private, it can protect against intrusions such
as membership inference. Below is the generalized equation (6.1) for Differential Privacy. D and D

′

are two neighboring datasets that differ in only one row, M is a randomized mechanism, and S is
a subset of the outcome space [47]. Differential Privacy guarantees that the outcome produced by
both datasets D and D

′
will remain the same even if they differ in one record.

Pr[M(D) ∈ S] ≤ eε Pr[M(D
′
) ∈ S] (6.1)

The Equation 6.1 can also be re-written as Equation 6.2 which is bounded by an ε value known as
privacy budget. Privacy budget controls how much the mechanism’s (M ) output can differ between
the two neighboring dataset. If the ratio of the probabilities of the outcome of the two datasets, D and
D

′
is small, then the adversarial attacker cannot learn whether an individual was present or not.

Pr[M(D) ∈ S]

Pr[M(D′) ∈ S]
≤ ε (6.2)

Differential Privacy is closely related to divergence in statistics [49]. Divergence measures the dif-
ference between two distributions. Renyi divergence states that if the distribution over the outcome
M(D) and M(D′) is the same even if they differ in one instance, the mechanism is differentially pri-
vate [49]. The Laplace mechanism is a classical approach for differential privacy, which adds noise
sampled from the Laplace distribution to the output of the mechanism to perturb the results [50].
More details about the noise is covered in Section 6.1 and 6.3.

6.1 Privacy Parameters

This section discusses the trade-off between privacy budget (ε) and noise.

6.1.1 Privacy Budget

The most significant distance between a query on a dataset D and the identical query on a neighbor-
ing dataset D

′
is denoted by the privacy budget. An alternative name for this metric is the ”Epsilon”

(ε).

19
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A small privacy budget value means that an adversary cannot distinguish individuals based on
the outputs of the mechanism (M ) on the dataset D and the neighboring dataset D′.

On the contrary, when the privacy budget is a significant value, the ratio of the probabilities (see
Equation 6.2) of observing the output of the mechanism (M ) on the dataset D and D

′
is large. An

adversary observing the output can distinguish whether an individual belongs in the dataset or not
when the privacy budget is a significant value.

In order to maintain high levels of privacy, small values of privacy budget guarantee similar outputs
for comparable inputs; on the other hand, significant values of privacy budget permit less similar
outputs and hence less privacy.

For example, a count query on a database counts the number of individuals with an average
glucose level higher than 160. As a result, the count query returns a value of 10, 000. To make this
mechanism of counting queries differentially private, we add noise. Assuming the sensitivity of the
count query is 1, privacy budget is 0.1, and the noise is sampled from a Laplace distribution centered
at 0 with a scale of 10. The output of the count query is 10021, and the query results are different
each run, but they are still relatively close to the actual outcome (10, 000).

6.1.2 Privacy Budget and Noise trade-off

Random noise in the mechanism’s output efficiently means attaining differential privacy. The signifi-
cant difficulty is to add enough noise to fulfill the criteria of Differential Privacy, but not so much that
the response becomes too noisy to be of value.

If the privacy budget is increased from 0.1 to 15 from the previous example in Section 6.1.1, then
the output of the differentially private count query is 10, 000.04, which is very close to the actual
outcome. This means that with the increase in privacy budget, the noise value reduces, and the
output is very close to the actual outcome.

6.1.3 Sensitivity

The degree to which a function’s output shifts in response to a change in that function’s input is
referred to as the function’s sensitivity (∆f ). Sensitivity is a complicated subject that is an essential
component in estimating the noise to accomplish Differential Privacy [50]. The sensitivity of a function
should always be a bounded value, and in the case of unbounded value, clipping helps to bound the
value of the function. Section 6.3.3 covers clipping in the context of neural networks.

6.2 Properties

This section analyzes the properties of differentially private mechanisms, which emerge from the
notion of Differential Privacy [46].

• Sequential composition is a property of Differential Privacy that limits the total privacy cost
incurred by disclosing numerous outcomes of differentially private mechanisms applied to the
same input data [51]. If a mechanism (F1(D)) is ε1-differentially private and another mechanism
(F2(D)) is ε2-differentially private, the combined mechanism is (ε1 + ε2)-differentially private.
Adding up of the privacy budgets (ε1 + ε2) enables to build more complex differentially private
algorithms.

• Post-processing computation, states that differentially private computations may be released
with confidence since any post computation will likewise be differentially private, as long as
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the privacy protection given by the differentially private mechanism is maintained [46]. Hence,
it is perfectly safe to execute arbitrary calculations on the output of the differentially private
mechanism.

6.3 Mechanism

This section discusses the different mechanisms to achieve Differential Privacy [46].

6.3.1 Laplace

Statistical noise distributed from the Laplace distribution is used to perturb the results of a numeric
query to achieve ε-Differential Privacy [50].

Definition 1 (Laplace Distribution) The Laplace distribution (centered at 0) with scale b is the
probability distribution with probability density function:

lap(D|b) = 1

2b
exp

(
−|D|

b

)
(6.3)

Noise to be added is given by the parameter (b), which is to be calibrated based on the privacy
budget (ε) and the global sensitivity (∆1f ).

Definition 2 (L1 Global Sensitivity) The L1 global sensitivity (∆1f ) of a function f for two neigh-
boring dataset D and D

′
is:

∆1f = max
{∥∥f(D)− f(D

′
)
∥∥
1

}
(6.4)

Differential Privacy is obtained by adding noise selected from the Laplace distribution. Each time
a value has to be made private, a different quantity of noise is taken from the distribution and added
to the output of the function (f ). Definition 3 combines all the above definition, to make a mechanism
differentially private. Y is a random variable drawn from the Laplace distribution with a scale (b) given
by ∆1f

ε .
Definition 3 (Laplace Mechanism) Given any function f , the Laplace mechanism is defined as:

M(D, f(·), ε) = f(D) + Y (6.5)

6.3.2 Gaussian

The Gaussian mechanism is similar to the Laplace mechanism. However, the difference is that it
achieves (ε, δ)-Differential Privacy by adding Gaussian noise [47]. The other difference is that the
Laplace mechanism uses L1 global sensitivity, whereas the Gaussian mechanism can utilize both L1

and L2 global sensitivity.
Definition 4 (Approximate Differential Privacy) Approximate Differential Privacy for two neigh-

boring dataset D and D
′

is given by:

Pr[M(D) ∈ S] ≤ eε Pr[M(D
′
) ∈ S] + δ (6.6)
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The parameter δ denotes failure probability. With a probability of 1 − δ, we get a guarantee
that the mechanism is differentially private. Approximate Differential Privacy satisfies the sequential
composition and post-processing properties. If a mechanism (F1(D)) is (ε1, δ1)-differentially private
and another mechanism (F2(D)) is (ε2, δ2)-differentially private, the combined mechanism is (ε1 +

ε2, δ1 + δ2)-differentially private thus allowing to build complex algorithms [46]. In order to make
a mechanism differentially private, Gaussian noise with mean 0 and variance (σ2) is added to the
output of the function (f ). The variance (σ2) is calibrated using L2 sensitivity (∆2f

ε2 ).
Definition 5 (Gaussian Mechanism) Given any function f , the Gaussian mechanism is defined

as:

M(D, f(·), ε, δ) = f(D) +N (σ2), where σ2 =
2∆2f log( 1.25δ )

ε2
(6.7)

6.3.3 Differential Privacy in Neural Networks

Abadi et al. [52] proposed a differential private stochastic gradient descent (DP-SGD), Where the
noise sampled from Gaussian distribution is added to the computed gradient in each iteration and
then back propagated to optimize the weights. Adding noise prevents an adversarial from recon-
structing data from the weights [53]. Furthermore, preserving the privacy of training data.

Algorithm 1 represents the entire process to make a training process differentially private [52].

Algorithm 1 An algorithm for differentially private stochastic gradient

Require:
{
(x, y)···(x, y)N

}
, samples. cg, clipping for gradient. σ2, noise scale. T , number of epochs

for training. L, loss function. η, learning rate.
Initialize θ0 randomly.
for i = 1,...,T do

Take a mini-batch of random samples
Compute Gradient, gi(x)← ∇iL(θi, y)

Clip Gradient, gi(x)← gi(x) / max(1, ∥gi(x)∥2

cg
)

Add Noise, g̃i(x)← gi(x) +N (0, σ2c2gI)

Gradient Descent, θi+1 ← θi − ηg̃i(x)

end for

Compute Gradient

A neural network comprises of interconnected neurons, and the weight assigned to each link in a
neural network is distinct. The neuron’s activation function defines the output of a neuron. The initial
forward propagation phase begins when the network is exposed to training data. Next, a loss function
estimates the loss (or error) and compares the prediction result to the actual prediction. Finally,
gradient descent allows the weights to be changed incrementally by computing the loss function’s
derivative (or gradient).

Clip Gradient

Due to non-linear activation functions, it is needed to bound the gradient to achieve Differential Pri-
vacy. The gradient vector is clipped using a threshold cg (see Figure 6.1). The clipping constant
ensures that if the gradient is greater than the clipping constant, then it is scaled down to be the
norm of cg, and if smaller than the clipping constant, then the gradients are not clipped [52].
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Figure 6.1: Gradient Clipping

Noise

If the Gaussian noise with variance σ2 is chosen from equation 6.7, Algorithm 1 is (ε, δ)-Differentially
private. For a batch-size of L, size of the dataset N and sampling probability denoted by q = L

N ,
Algorithm 1 satisfies (O(qε), qδ)-differentially private using the strong composition theorem [47].

Abadi et al. [52] proposed the moments accountant method which proves that the Algorithm 1 is
(O(qε

√
T ), δ)-differentially private and provides much tighter bound and smaller privacy budget (ε)

compared to the strong composition theorem. The theorem for the moments’ accountant method is
given below.

Theorem 1 There exist constants c1 and c2 so that given the sampling probability q = L/N and
the number of steps T , for any ε < c1q

2T , Algorithm 1 is (ε, δ)-differentially private for any δ > 0 if we
choose noise such as:

σ ≥ c2
q
√

T log(1/δ)

ε
(6.8)

6.4 Synthetic Data

Medicine and health informatics are two fields where it is hard to get as much data as other fields [54].
The collection process is both costly and time demanding, restricting the quantity of data that can
be collected. As a result, the topic of constructing machine learning models for medical analytics
continues to be particularly hard. The Generative Adversarial Network, or GAN, and its variants have
shown excellent performance when modeling the underlying data distribution and producing high-
quality samples [55]. However, the GANs may still reveal confidential information about the training
sample. It is envisioned that training GAN with the principles of Differential Privacy, particularly
differentially private stochastic gradient descent, would preserve the privacy of individuals against
inference attacks [56].

GAN train two models simultaneously: a generator model (G) that creates fake samples and
a discriminator model (D) that differentiates the samples created by the generator as real or fake.
Equation 6.9 is the loss function to train the generator and the discriminator [57]. The generator aims
to minimize the distance between the generated and original data (real), whereas the discriminator
aims to maximize it. In Equation 6.9, Preal(x) is the original data distribution, Pfake(z) is the input
noise distribution.
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min
G

max
D

= Ex∼Preal(x)
[log(D(x))] + Ez∼Pfake(z)

[log(1−D(G(z)))] (6.9)

Figure 6.2 is the pictorial representation of the differentially private GAN. The generator creates
fake data from input random noise, and the discriminator is trained on both the fake data and original
data. The training of the discriminator is done by the techniques mentioned in section 6.3.3 thus
making it differentially private. The generator parameters can also guarantee Differential Privacy
because of the post-processing property (see section 6.2). It is safe to produce data once the training
phase has been completed since the generator’s settings ensure Differential Privacy. In short, we
have a discriminator that is differentially private and makes the generator differentially private.

Generator

Random
Noise 

Discriminator

Differentially Private
Stochastic gradient

Fake
data

Original
Data

Discriminate Samples

Learn from
discriminator

Figure 6.2: DP-GAN

A practical example of how differentially private synthetic data can hide information, Xie et al. [56]
used Differential Privacy techniques along with GAN to generate synthetic data for the electronic
health records, and the synthetic data safeguarded the count of the rareness of illnesses. This ex-
emplifies how differentially private synthetic data may be used to safeguard information. Assuming
that there is public-available data of a specific population, an adversary may derive statistical infor-
mation and use it to their advantage. However, because Differential Privacy has the potential to alter
statistical information, the adversary is unable to obtain the correct information.

The idea of differentially private synthetic data is utilized in this research to generate counterfac-
tual explanations to hide statistical information and preserve privacy.



Chapter 7

Methodology

This chapter describes the data used for the experiments, the employed models, the privacy-preserving
framework, the metrics used for assessment, and lastly, how the experiments were setup.

7.1 Data

The dataset used for the experiments is Stroke Prediction Dataset. The dataset is available freely in
Kaggle [58]. Figure 7.1 describes the categorical features and Figure 7.2 describes the continuous
and discrete features in the dataset.

Figure 7.1: Categorical features

The Stroke Prediction Dataset consists of 5110 rows and 11 columns. Modifiable factors include
work type, residence type, smoking status, average glucose level, body mass index, hypertension,
and heart disease. Nonmodifiable factors include age, gender, and marital status (Refer to Appendix
A.1). The target feature (outcome) is stroke. Out of 5110 records, 4861 records have the outcome No

25
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Continuous Variables

Discrete Variables

Figure 7.2: Continuous and Discrete features

Stroke, which is equivalent to 95 percent, and only 249 records have the outcome Stroke. Due to the
class imbalance, data processing is necessary which is covered in the next section.

7.1.1 Data Processing

Categorical features, work type, residence type, smoking status, gender, and marital status are
one-hot encoded [59]. The total features after one-hot encoding are 21. To oversample the target
feature (Stroke), minority random oversampling was used [59]. After the random oversampling, the
total size of the dataset is 9722. The features are reduced using the correlation coefficient with the
target feature (Stroke) to choose the best-correlated features [60], which results in 12 columns. The
Stroke prediction Dataset is also normalized using min-max scaling; the reason behind the scaling
is covered in section 7.2.3. The processed data is split into train and test using the 80/20 ratio. The
training data is referred to as original data in the following sections.
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Figure 7.3: Continuous and Discrete variables after data processing
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7.2 Models

This section describes the models used in the study, beginning with the model that was used to gen-
erate diverse and multiple counterfactual explanations, following that, the attack model that leverages
counterfactual explanations to perform a membership inference attack; following that, the synthetic
data model and then the data compression model to visualize the synthetic data.

7.2.1 Counterfactual Explanation Model

DiCE algorithm was used (Refer to section 3.2.2) to generate counterfactual instances, which form
the basis of the explanations of Stroke prediction decision of the black-box model. The architecture
of the black-box model can be found in Appendix A.2.2. DiCE is available as a free and open-
source package [61]. The objective function of DiCE comprises several distinct parameters, the most
important of which are proximity and diversity. When it comes to generating counterfactual explana-
tions, the existing architecture utilizes the original data for generating the counterfactual explanations
through random sampling, and the end-user determines the required levels of proximity and diversity
and the number of counterfactuals to be generated. The counterfactual explanations generated for
this research only change the modifiable features (Refer to Appendix A.1 to understand modifiable
features) and use synthetic data in contrast to the original data. The algorithm and an example for
DiCE can be found in Appendix A.2.3.

7.2.2 Membership Inference Attack Model

The membership inference attack suggested by Shokri et al. [19] depends on the construction of a
shadow dataset (Refer to section 4.1) that is similar to the original data. In this study, the shadow
dataset is made of counterfactual explanations produced by simple API queries.

The membership inference attack for this study is broken down into two parts: First, an adversary
attacker accesses the explanation and prediction API with an instance and, as a result, obtains
the prediction (Stroke Prediction) and the multiple counterfactual explanations. Next, the adversarial
attacker uses the explanation to build a shadow dataset (Dtrainshadow) and then builds a disjoint dataset
(Dtestshadow) from Dtrainshadow such that Dtrainshadow ∩ Dtestshadow= ∅. All the records in Dtrainshadow are
labeled 1 based on the hypothesis of the adversary attacker that all the records would have been
a part of the training of the target/victim model (black-box model); on the other hand, records in
Dtestshadow is labeled as 0, assuming the data did not belong in the training.

The second part involves training the attack model. The attack model is simply a supervised
classification model that predicts, given an instance, whether it belongs in the training of the black-
box model or not. The attack model is a Multi-layer perceptron built using the Keras library [62] [63],
and consists of 6 hidden layers trained with Rectified Linear Unit (ReLU) as the activation function,
and the final activation function used is Softmax [64]. Negative log-likelihood as the loss function
and root mean square propagation (RMSProp) with learning rate 0.0001 was used to train the attack
model [64]. The architecture of the membership inference attack can be found in Appendix A.2.4.
Figure 7.4 is a pictorial representation of the membership inference attack.
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Figure 7.4: Membership Inference Attack Model

7.2.3 Synthetic Data Model

Three algorithms were benchmarked for the synthetic data generation using Differential Privacy (dif-
ferentially private stochastic gradient descent). The explanation for generating data can be read in
section 6.4. The general GAN architecture for all the models can be found in Appendix A.2.5. The
synthetic Data models are built using the Keras library and differentially private stochastic gradient
descent (DP-SGD) in the TensorFlow privacy package [65].

Differentially Private GAN (DP-GAN)

Algorithm 2 explains the process of training a GAN using differentially private stochastic gradient
descent. For a given number of iterations (T ), the discriminator is trained with a batch of original
data (Ex∼Preal(x)

[log(D(x))]) and the fake data from the generator (Ez∼Pfake(z)
[log(1 − D(G(z)))]).

After completing the discriminator’s training, the weights are fixed, and the generator will next un-
dergo training by utilizing the discriminator. After T iterations, the generator attempts to deceive the
discriminator by producing samples comparable to the original data.

Differentially Private Wasserstein GAN (DP-WGAN)

Algorithm 3 explains the process of training a Wasserstein GAN using differentially private stochastic
gradient descent [56]. Algorithm 3 differs from Algorithm 2 in the concept of clipping, using Wasser-
stein distance as the loss function and the training iteration of the discriminator. Instead of clipping the
gradients, weights involved in each neuron are clipped [56]. Training iterations for the discriminator
are greater than the generator and are denoted by nd.

Differentially Private Conditional Tabular GAN (DP-CTGAN)

Algorithm 4 explains the process of training a Conditional GAN using differentially private stochastic
gradient descent [66]. The loss function 6.9 is translated into a conditional probability. The discrimi-
nator is now trained with a batch of original data given a label (Ex∼Preal(x)

[log(D(x|y))]) and the fake
data points from the generator given a label (Ez∼Pfake(z)

[log(1 − D(G(z|y)))]) [67]. The label is the
output class which is either Stroke denoted by 1 or No Stroke denoted by 0.
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Algorithm 2 An algorithm for differentially private GAN

Require: ηg, learning rate for generator. ηd, learning rate for discriminator. cg, gradient clipping
constant. T , number of epochs for training both the discriminator and generator. b batch size for
training the discriminator. l, input dimension size for the generator. σ2, noise scale.

Ensure: Differentially private discriminator.
1: Initialize descriminator parameter θ0 randomly.
2: for i = 1,...,T do
3: Sample {x(i)}bi=1 a batch of original data points.
4: Sample {z(i)}li=1 a batch of fake data points from the generator
5: xreal, yreal = preal(x), where yreal is labeled as 1 to indicate original.
6: zfake, yfake = pfake(z), where yfake is labeled as 0 to indicate fake.
7: dtrain, Merge the above samples .
8: For each (x,y) in (dtrain), Compute Gradient, gi(x)← ∇iL(θi, y)

9: Clip Gradient, gi(x)← gi(x) / max(1, ∥gi(x)∥2

cg
)

10: Add Noise, g̃i(x)← gi(x) +N (0, σ2c2gI)

11: Gradient Descent, θi+1 ← θi − ηdg̃i(x)

12: Make the weights of the discriminator not trainable after the end of batch.
13: Train the generator by using the discriminator.
14: end for

Algorithm 3 An algorithm for differentially private WGAN

Require: ηg, learning rate for generator. ηd, learning rate for discriminator/ critic. cp, weight clipping
constant. T , number of epochs for training the generator. nd, number of epochs for training the
discriminator. b batch size for training the discriminator. l, input dimension size for the generator.
σ2, noise scale.

Ensure: Differentially private discriminator.
1: Initialize descriminator parameter θ0 randomly.
2: for i = 1,...,T do
3: for i = 1,...,nd do
4: Sample {x(i)}bi=1 a batch of original data points.
5: Sample {z(i)}li=1 a batch of fake data points from the generator
6: xreal, yreal = preal(x), where yreal is labeled as −1.
7: xfake, yfake = pfake(x), where yfake is labeled as 1.
8: dtrain, Merge the above samples .
9: For each (x,y) in (dtrain), Compute Gradient, gi(x)← ∇iL(θi, y)

10: Add Noise, g̃i(x)← gi(x) +N (0, σ2I)
11: Gradient Descent, θi+1 ← θi − ηdg̃i(x)

12: Clip Weights, θi+1 ← clip(θi+1,−cp,cp)
13: end for
14: Make the weights of the discriminator not trainable after the end of batch.
15: Train the generator by using the discriminator.
16: end for
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Algorithm 4 An algorithm for differentially private CTGAN

Require: ηg, learning rate for generator. ηd, learning rate for discriminator. T , number of epochs
for training the generator and discriminator. b batch size for training the discriminator. l, input
dimension size for the generator. σ2, noise scale. cg, gradient clipping.

Ensure: Differentially private discriminator.
1: Initialize descriminator parameter θ0 randomly.
2: for i = 1,...,T do
3: Sample {x(i), label(i)}bi=1 a batch of original data points.
4: Sample {z(i), label(i)}li=1 a batch of fake data points from the generator
5: [xreal, label], yreal = preal(x), where yreal is labeled as 1.
6: [xfake, label], yfake = pfake(x), where yfake is labeled as 0.
7: dtrain, Merge the above samples .
8: For each (x,y) in (dtrain), Compute Gradient, gi(x)← ∇iL(θi, y)

9: Clip Gradient, gi(x)← gi(x) / max(1, ∥gi(x)∥2

cg
)

10: Add Noise, g̃i(x)← gi(x) +N (0, σ2c2gI)

11: Gradient Descent, θi+1 ← θi − ηdg̃i(x)

12: Make the weights of the discriminator not trainable after the end of batch.
13: Train the generator by using the discriminator.
14: end for

Considerations for Synthetic Data Model

Stroke Prediction Dataset was processed using min-max normalization to get feature values with a
fixed range between−1 and 1 [59]. It is a necessary process to improve the stability and performance
of the synthetic data models. Consequently, the explanations would also be on a similar scale.
Therefore, using the correct scaling factor to do an inverse transformation on the findings would be
one technique to get the original values. This is plausible, but it adds a degree of ambiguity and
complication. Thus it is neglected in this study. A disadvantage of synthetic data models is that the
discrete features were transformed into continuous features; therefore, a threshold to convert from
continuous to the discrete domain is needed to resolve this issue [56]. In this work, the threshold was
set as 0.5, similar to the work by Xie et al. [56].

Privacy Parameters for Synthetic Data Model

The quantity of noise and the privacy budget are the two most essential criteria to fine-tune while
making adjustments. Unfortunately, no simple answer can be provided to this problem. In order to
accomplish this goal, one would need to conduct an exhaustive examination of the domain and the
level of compliance possessed by the data, which is beyond the ambit of this work. The privacy
budget was calculated using the TensorFlow Responsible AI toolkit [65]. The overall privacy budget
(ε) was computed from the noise, training iterations, sampling ratio, and failure probability (δ).

The clipping threshold for this study is set based on the advice from Abadi et al. [52]. The more
significant the clipping value, the less the exposure of the gradients to the generator, and the data
quality deteriorates. For the failure probability (δ), the rule of thumb is to set δ as the inverse of the
dataset size [68].
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7.2.4 Data Compression Model

A data compression model was used to compress the original and synthetic data, followed by a
principal component analysis for dimensionality reduction to visualize the quality of the synthetic
data generated [69]. Figure 7.5 is the pictorial representation of the data compression model.
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Figure 7.5: Data Compression Model

The architecture of the data compression model are as follows,

• The encoder is a single dense layer with ReLU as the activation function. The dense layer
takes the number of features as the input (None, 12) and compresses data to give (None, 5)
dimension as the latent representation.

• The decoder is a single dense layer with ReLU as the activation function that reconstructs the
data from the dimension (None, 5) back to (None, 12).

• Encoder and decoder are trained together such that the output of the encoder is the input to the
decoder [70]. The combined model of the encoder and decoder is trained using the stochastic
gradient descent as the optimizer, with a learning rate of 0.0001 and reconstruction loss (Mean
Squared Error) [71]. Refer to section A.2.1 to understand reconstruction loss.

• The latent representation from the encoder for all the records in the original data (7777, 5) is fed
as the input for the principal component analysis (PCA) to reduce further the dimension of the
latent representation to (7777, 2).

• Synthetic data generated in the study were first transformed using the built encoder and further
compressed using the built PCA model.
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The goal of the data compression model was to train the encoder to reduce the dimension of
the data and then perform PCA on the latent representation; therefore, the reconstruction loss was
not effectively minimized. After applying the PCA, the first and the second principal components are
used to visualize the quality of the synthetic data from the synthetic data model. Details about the
principal component analysis and also how to interpret the plot with principal components can be
found in Appendix A.2.7.

7.3 Privacy-Preserving Framework

The centralized architecture for this study consists of a data owner, model owner, explanation provider,
and explanation recipient who requests prediction and explanation through the API.

Data Owner

The data owner is responsible for three roles: possession, responsibility, and execution [72]. The
idea of possession refers to having legal and physical custody of the data, whether stored on the
cloud or locally. Accountability means the data owner is held accountable and responsible for the
quality of the data and the upkeep of privacy. Last, execution denotes that the data owner authorizes
or extends ownership rights to parties inside the trusted environment so that those parties may act
on the data. Figure 7.6 illustrates the framework followed in this research. The two roles of the data
owner are as follows,

1. The data owner extends the ownership rights to the model owner to build a model (black-box)
on the Stroke Prediction Dataset. The black-box model predicts the probability of having a
Stroke or No Stroke for the given modifiable and nonmodifiable features.

2. The data owner is also responsible for creating differentially private synthetic data to generate
counterfactual explanations.

Model Owner

The model owner trains a black-box model on the data provided by the data owner. The Stroke
Prediction Dataset consists of input features and output class, either Stroke or No Stroke. The
objective of the model owner is to find a function that maps the input and the output class label [73].

Explanation Provider

The roles of the explanations provider are as follows,

3. The explanation provider creates a counterfactual explanation model using the prediction model
provided by the model owner.

4. The synthetic data provided by the data owner is also used to generate counterfactual expla-
nations.



CHAPTER 7. METHODOLOGY 33

Data Owner

Model Owner

Synthetic Data

Explanation Provider
Explanation Recipient

1

2

3

4

5

Figure 7.6: Framework for Privacy-Preserving Counterfactual Explanations

7.4 Metrics

In this section, the utility and the privacy metrics are discussed. Utility metrics will assist in differen-
tiating the quality of the counterfactual explanation derived from the synthetic data and the original
data. Privacy metrics will assist in analyzing the quantity of information that has been disclosed to
the adversary due to the excessive querying of counterfactual explanations.

7.4.1 Utility Metrics

The utility measures have been extracted from the DiCE research paper [17]. The metrics are similar
to the objective function in Equation 3.3 except for sparsity.

Proximity

Proximity measures how close the query instance (x) is to the generated counterfactuals. k denotes
the number of counterfactuals generated. dist(ci, x) denotes a distance function which can be either
a L1 (Manhattan) or L2 (Euclidean) distance metric [74].

Proximity =

k∑
i=1

dist(ci, x) (7.1)

Sparsity

Sparsity counts the total number of changes done to the features. d denotes the number of features.
Sparsity metrics compare the feature value of the query instance (x) and counterfactual instance (c);
if they are not equal, the distance score is added by 1.

Sparsity =

k∑
i=1

d∑
j=1

1[cji ̸=xj
i ]

(7.2)
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Diversity

Diversity measures how different are the generated counterfactuals when compared with each other.
k denotes the number of counterfactuals.

Diversity =

k−1∑
i=1

k∑
j=1

dist(ci, cj) (7.3)

7.4.2 Privacy Metrics

Relative Entropy

When two probability distributions are compared, relative entropy is used to determine how far apart
they are from each other [75]. Information gain is another name for this statistic. X denotes the
original (true) distribution, and X∗ denotes the adversary’s estimate. Relative entropy measures in
bits because of the use of log2. A smaller value means more information is leaked and vice-versa.
For example, a password known by all participants results in zero entropy.

privRLE ≡ DKL(X||X∗) =
∑
x,x∗

p(x∗) log2
p(x∗)
q(x)

(7.4)

Accuracy of the Membership Inference Attack

The accuracy of the membership inference attack model explained in section 7.2.2 was benchmarked
before and after applying Differential Privacy. The total ratio of accurate predictions to misclassifica-
tions on the test data is used to measure the accuracy. True positive (TP ) and True Negative (TN )
denote accurate predictions. False positive (FP ) and False negative (FN ) denote misclassification.

Accuracy =
TP + TN

TP + TN + FP + FN
(7.5)
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7.5 Experimental Setup

This section discusses how the experiments were setup. Refer to section A.2 to understand the used
neural network layer, optimizer, and loss function.

7.5.1 Effect of Low Proximity and High Diversity

Problem

To study the impact of proximity low and diversity high and multiple counterfactual explanations.

Aı̈vodji et al. [1] developed a counterfactual explanation-based model extraction attack (Refer
to section 4.4) by constructing shadow datasets using counterfactual explanations. The model ex-
traction attack has a recommended setting that recommends making the proximity and diversity
parameters high while generating counterfactual explanations. In contrast to what was suggested by
Aı̈vodji et al. [1], proximity and diversity were kept at low and high levels, respectively, throughout the
investigation. This decision is based on the intuition that the shadow dataset generated by simply
querying with proximity low and diversity high will provide a significant approximation of the original
data distribution.

Setup

A black-box model (Stroke Prediction) trained on the original data predicts the probability of Stroke
or No Stroke given the modifiable and nonmodifiable features. The black-box model is a Multi-layer
perceptron [63] with 6 hidden dense layers having ReLU as the activation function and the final
output layer with a Softmax activation function trained for 100 epochs with Negative log-likelihood as
the loss function, and stochastic gradient descent with a learning rate of 0.0001 as the optimizer. The
architecture of the black-box model can be found in Appendix A.2.2. The existing DiCE framework
was used to generate explanations for the outcomes predicted (decision) by the black-box model. The
default value of proximity and diversity in the DiCE framework is 0.5 and 1.0, respectively; however,
how far the values for proximity and diversity can be set from the default value is not explained in the
research of DiCE, Hence, in this study, an iterator for the values of proximity (1 to 10) and diversity
(proximity value +2) was set, and for the proximity and diversity values of 3 and 5, respectively, the
optimization algorithm for the DiCE worked well.

The query approach for generating multiple counterfactuals, which serve as the foundation for the
shadow dataset, is shown in Table 7.1. For simplicity, 40 instances from the test data are used to
query.

Surrogate Model Queries CF generated in 1
query

Size of Shadow
Dataset

1 20 100 2000
2 20 50 1000
3 20 20 400
4 40 100 4000
5 40 50 2000
6 40 20 800

Table 7.1: Query Strategy used to generate counterfactual explanations. The accuracy of the surro-
gate models is used to study the effect of low proximity and high diversity.
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On each of the shadow datasets generated, models were fitted similarly to the task of the black-
box model. The models fitted are called as ”Surrogate model” because these models closely ap-
proximate the black-box model. The surrogate model consists of 3 dense layers with ReLU as the
activation function and the final output layer with Softmax as the activation function. The models were
trained for 100 epochs using stochastic gradient descent as the optimizer [76], with a learning rate of
0.001 and Negative log-likelihood as the loss function. The architecture of the surrogate model was
built when the architecture of the black-box model was unknown. The architecture of the surrogate
model can be found in Appendix A.2.8. The accuracy (Refer to equation 7.5) of surrogate model is
used to understand the effect of setting proximity low and diversity high.

7.6 Comparison of Results between Synthetic Data Models

Problem

To study the effectiveness of the three synthetic data models in generating synthetic data.

Three algorithms were used to generate synthetic data. More details on the algorithm can be
found in section 7.2.3. Unlike the existing framework of DiCE that generates counterfactual explana-
tions from the original data, synthetic data is used in this study.

Setup

Table 7.2 describes the three algorithms and the various parameters. The overall privacy budget (ε)
was computed from the noise, the training iterations (T ), the sampling ratio = 250

7777 ( Batch Size
Size of Dataset ), and

failure probability (δ). Details on the privacy parameters can be read in sections 6.1 and 7.2.3.

Parameters DP-GAN DP-WGAN DP-CTGAN
Generator (opti-
mizer)

Adam Adam Adam

Discriminator/ Critic
(optimizer)

DP-SGD DP-SGD DP-SGD

Learning rate(ηg, ηd) 0.0001 0.0001 0.0001
Loss Min-Max [6.9] Wasserstein Min-Max
Noise (σ2) 0.5 0.5 0.5
Privacy Budget (ε) 476 476 476
Clipping (cg) 3 − 3
Weight Clipping (cp) − 0.1 −
Training iteration (T ) 1000 1000 1000
Discriminator train-
ing iteration (nd)

− 2 −

Sampling ratio (q) 0.03 0.03 0.03
Failure probability
(δ)

0.0001 0.0001 0.0001

Input dimension for
generator (l)

21 21 21

Table 7.2: Training Parameters for the Synthetic Data Models. Three synthetic data models are used
in the experiments.
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7.6.1 Effect of noise on the Accuracy of Model and Synthetic Data

Problem

To study the effect of varying noise values on the accuracy of the synthetic data model and the quality
of data generated.

The stable synthetic data model from the previous experiment is used in this experiment. In
addition, different noise values are introduced into the synthetic data model to study the synthetic
data model’s behavior and the data’s quality.

Setup

Table 7.3 denotes the different noise values used to generate synthetic data. The quality of the data
generated for the varying noise is visualized using the data compression model (Refer to section
7.2.4).

Synthetic
Data

Noise (σ2) Privacy
Budget (ε)

Clipping
threshold
(cg)

Failure
Probabil-
ity (δ)

Training
iterations
(T )

Sampling
ratio (q)

Data 1 0.5 476 3 0.0001 1000 0.03
Data 2 0.7 143 3 0.0001 1000 0.03
Data 3 1 56.5 3 0.0001 1000 0.03
Data 4 10 2.18 3 0.0001 1000 0.03
Data 5 150 0.1 3 0.0001 1000 0.03

Table 7.3: Synthetic data generated for varying noise values. The noise (σ2) values chosen are
used to generate 5 synthetic data using the stable synthetic data model from previous
experiment.

7.6.2 Utility and Privacy Trade-off

Problem

To study the trade-off between the utility of counterfactual explanations and the privacy loss caused
by multiple counterfactual explanations in private and non-private settings.

Counterfactual explanations generated using synthetic data are considered private (Refer Ta-
ble 7.3), and the counterfactual explanations generated using the original data are considered non-
private settings.

Setup

A set of counterfactual explanations (2, 4, 6, 8, 10) for a given query instance is generated using the
synthetic and original data. The generated counterfactual explanations in both settings (private and
non-private) are quantified using the utility metrics (Refer to section 7.4.1).
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Privacy metrics explained in section 7.4.2 are quantified in the following way, counterfactual ex-
planations are generated in private and non-private settings with 10 queries, and 100 counterfactuals
are generated in each query. Generated explanations are the foundation for the shadow dataset.
Surrogate models were built on the shadow dataset of private and non-private settings, similar to the
task of the black-box model. The architecture can be found in Appendix A.2.8.

Finally, for the test data, relative entropy measures the closeness of the distribution between the
predicted outcome (X∗) from the surrogate models, that is, the adversary’s estimate versus the true
outcome (X) for both private and non-private settings; the outcome is Stroke or No Stroke. The
accuracy of the membership inference attack (Refer to section 7.2.2 to read about the attack) and
relative entropy scores are used to study the effect of using synthetic data in contrast to original data.



Chapter 8

Experiments and Results

8.1 Effect of Proximity Low and Diversity High

The choice of low proximity and high diversity as opposed to the proposed setting by Aı̈vodji et al. [1]
is investigated in this section. Readers can find the problem, how the experiment was setup and the
choice of the value of proximity and diversity in section 7.5.1.

6 surrogate models are built on the shadow dataset generated by counterfactual explanations. In
Figure 8.1, each surrogate models’ accuracy is plotted. The accuracy of the surrogate models 4, 5, 6

was higher than models 1, 2, 3, this is because the shadow dataset for the surrogate models 4, 5, 6 are
built with the same number of queries, and models 1, 2, 3 are built with the same number of queries
(Refer to Table 8.1). In short, the number of queries to generate counterfactual explanations are the
differentiating factor for the accuracy of the surrogate models.
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Figure 8.1: Accuracy of surrogate models averaged after every 10 epochs.

A substantial approximation of the original data distribution could be found in the shadow dataset
4, which was used to train the surrogate model 4. A visualization of the shadow dataset 4 is included
in the Appendix A.2.9. Compared to the other shadow datasets, the more significant query budget
and the significant number of counterfactuals generated made the shadow dataset 4 to accurately
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approximate the original data, which resulted in the accuracy of the surrogate model 4 being high
compared to the other models.

Surrogate
Model

Training It-
eration

Number of
Queries

Size of
dataset

Accuracy

1 100 20 2000 63.05
2 100 20 1000 54.74
3 100 20 400 50.35
4 100 40 4000 89.30
5 100 40 2000 76.24
6 100 40 800 66.81

Table 8.1: Comparing the accuracy of the 6 surrogate models.

In the context of a theft-motivated model extraction attack (Refer to section 4.3), the attacker
aims to construct surrogate models that are as accurate as or more precise than the target model
(black-box model). The averaged accuracy of the surrogate model 4 is 89.30, and the accuracy of
the black-box model (Stroke Prediction model) is 87.43. With a small dataset, the surrogate model
4 performed better than the black-box model. The accuracy plot of the black-box model can be
found in Appendix A.2.10. Therefore, using proximity low, diversity as high, and multiple queries, the
accuracy of the surrogate model is better than the black-box model. An adversary can exploit the
trade-off between proximity and diversity to query and generate counterfactual explanations and use
these explanations to construct strong theft-motivated model extraction attacks.
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8.2 Comparison of Results between Synthetic Models

The effectiveness of the three synthetic data models is studied using the generated data. Readers
can find the problem and how the experiments were setup in section 7.6.

DP-GAN

Algorithm 2 (DP-GAN) failed to produce samples based on the original data distribution. In Figure 8.2
two features from the generated synthetic data are plotted. The two discrete features are Private job
and formerly smoked. The generator attempts to repeatedly create just one output for the features
that seems credible to the discriminator; this phenomenon is known as mode collapse.

Readers may examine the complete results of the generated synthetic data of Algorithm 2 in
Appendix A.2.11.

Figure 8.2: Histogram of the two discrete features from the synthetic data generated from Algorithm
2. The generator generates a single output for all the instance (Mode collapse).

DP-WGAN

Compared to algorithm 2, Algorithm 3 did not suffer from mode collapse. However, the generated
synthetic data is still not good enough. The data generated for some features is in the shape of a bell
curve because of the inclusion of Gaussian noise in the discriminator’s training. It is evident that the
inclusion of Gaussian noise in the discriminator’s training has affected the generator. In Figure 8.3
two features from the generated synthetic data are plotted to understand the effect of the inclusion of
Gaussian noise in the generated synthetic data.

Readers may examine the complete results of the generated synthetic data of Algorithm 3 in
Appendix A.2.12.
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Figure 8.3: Histogram of the two discrete features from the synthetic data generated from Algorithm
3. The generator generates synthetic data in a bell shaped curve (Effect of Gaussian
Noise).

DP-CTGAN

Algorithm 4 (DP-CTGAN) is trained given the label Stroke or No Stroke hence the synthetic data
model did not suffer from mode collapse. In Figure 8.4 two discrete features from the generated
synthetic data are plotted. Inclusion of the Gaussian noise in the discriminator’s training seemed to
have less impact on the generator. Furthermore, algorithm 4 enables the generation of synthetic data
based on the labels (outcome); thus, it reduces the overhead of getting the labels (outcome) for the
generated synthetic data from the black-box model. Readers may examine the complete results of
the generated synthetic data of Algorithm 4 in Appendix A.2.13. Algorithm 4 (DP-CTGAN) is very
stable compared to the other algorithms; hence it is used in the following experiments to understand
the effect of accuracy and the quality of data for varying noise values.

Figure 8.4: Histogram of the two discrete features from the synthetic data generated from Algorithm
4.
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8.3 Effect of Noise on the Accuracy of Model and Synthetic Data

This section will study the effect of varying noise values on the accuracy of Algorithm 4 (DP-CTGAN)
and the quality of the generated data. Readers can find the problem and how the experiments were
setup in section 7.6.1.

The trade-off between noise and privacy budget would help understand the results in this section.
Smaller the noise value, the larger the privacy budget (ε); on the contrary, the larger the noise value,
the smaller the privacy budget. Different noise values used in the experiment can be read in Table
8.2.

Accuracy of the model for varying noise

The noise impacts the accuracy of the model (Algorithm 4). The model’s accuracy is high when the
Noise value is 0.5, and the accuracy for the model is 94.1. Since the accuracy was high, the data
generated is very similar to the original data. The model with Noise 0.5 is also very stable (see Figure
8.5). A Noise value of 0.7, slightly higher than the previous noise value, shows a drop in the model’s
accuracy. The model’s accuracy with a Noise of 0.7 is 91.7, and the model is less stable than the
model with a Noise of 0.5 (see Figure 8.5). A Noise of 1 further resulted in a drop in accuracy. The
accuracy for the model with Noise 1 is 75.2. A Noise value of 10 showed a very unstable training
compared to previous noise values, and the accuracy for the model with Noise 10 is 53.7. Finally,
for Noise 150, the model’s accuracy is 34.7. The results indicate that adding more noise makes the
model more unstable and results in low accuracy.

From the perspective of privacy, a smaller Noise of 0.5 results in a larger privacy budget of 476
(see Table 8.2). According to differential privacy principles, the smaller the privacy budget, the better
the privacy protection. This means less statistical information is hidden by the generated synthetic
data with Noise 0.5. On the contrary, significant Noise values 10 and 150 have a privacy budget of
2.81 and 0.1, respectively, meaning the synthetic data hides more statistical information of the original
data.

In short, achieving a smaller privacy budget for better privacy protection is simply degrading the
accuracy of the model by using significant noise values. Readers can examine the model’s accuracy
for varying noise values in Figure 8.5 and Table 8.2.

Noise value (σ2) Privacy Budget
(ε)

Training Iteration Accuracy

0.5 476 1000 94.1
0.7 143 1000 91.7
1 56.5 1000 75.2
10 2.18 1000 53.7
150 0.1 1000 34.7

Table 8.2: Averaged training accuracy to understand the effect of noise on the model’s accuracy.
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Figure 8.5: Accuracy of the Algorithm 4 (DP-CTGAN Model) for varying noise values averaged after
every 100 epochs.

Quality of the synthetic data for varying noise

The quality of the data generated for the varying noise values is visualized after compressing the
features into a smaller dimension. Readers can find the details about the data compression model
in section 7.2.4. Only the first two principal components (Dimension) are plotted in Figure 8.6 to
understand better how much variation the data showed for the noise values. Dimension 1 and Di-
mension 2 are the eigenvectors after applying Principal component analysis. More details about the
eigenvectors can be found in section A.2.7.

A small noise value (0.5) introduced into the model results in high accuracy, and the data is
of high quality, closely resembling the original data. However, as the noise increases, the data
quality deteriorates; this can be seen through the diminishing principal components, Dimension 1
and Dimension 2.

A large noise value of 150 results in low accuracy and poor data quality. To conclude, data quality
depends on the noise introduced since noise affects the model’s accuracy.
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Figure 8.6: Visualizing the quality of data generated for varying noise.
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8.4 Utility and Privacy Trade-off

This section will study the trade-off between utility and privacy when synthetic data is used to gener-
ate counterfactual explanations. Readers can find the problem and how the experiments were setup
in section 7.6.2.

Utility of Counterfactual Explanations

The utility metrics discussed in section 7.4.1 are utilized to evaluate the effectiveness of the coun-
terfactuals generated on the synthetic and original data. The utility metrics are proximity, sparsity,
and diversity. DiCE framework aims to minimize proximity, that is, the distance between the query in-
stance and the generated counterfactuals, and maximize diversity, that is, the distance between each
generated counterfactuals. The DiCE framework does not optimize sparsity. Readers can examine
the optimization function of DiCE in section 3.2.2.

Figure 8.7 demonstrates the utility on both private and non-private setting. For the non-private
setting (Baseline), the counterfactuals were generated using the original data, and for the private
setting, the counterfactuals were generated using synthetic datasets from the previous experiment.

Synthetic Data generated with Noise 0.5 closely approximated the original data because the
model’s accuracy was high (see Figure 8.6, 8.5), and the counterfactuals generated were very similar
to those generated on the original data. In addition, the metric scores, proximity, sparsity, and diver-
sity were close to the non-private setting (Baseline). Similar results were noticed for the synthetic
data with Noise 0.7.

Synthetic data generated with Noise 1 shows a degradation in the quality of data because of
the degradation of the model’s accuracy (see Table 8.2). The metric scores were different from the
baseline. There is a gap between the proximity line plot of baseline and synthetic data with Noise 1.
This indicates that the generated counterfactuals are far away from the query instance. There is also
a gap between the baseline sparsity line plot and the synthetic data with Noise 1, which indicates
that the feature changes between the query instance and counterfactual explanations are significant.
Finally, the diversity line plot for the baseline and synthetic data with Noise 1 shows a significant gap
showing that diversity between the counterfactuals has decreased.

Synthetic data generated with Noise 10 and 150 failed to approximate the original data; hence
the counterfactuals generated were very different from those generated on the original data. The
counterfactuals generated in each query were similar and repeated more often because of the data
scarcity and because only a few explanations were generated with contrastive results (outcome). The
proximity line plot showed an increasing growth; the sparsity line plot showed an increasing growth,
and the gap between baseline and synthetic data’s diversity line plot increased in comparison to other
synthetic data with Noise 0.5, 0.7, 1.

In short, smaller noise values result in counterfactual explanations similar to the non-private set-
ting. As the noise value increases, the counterfactuals generated are ineffective, and also the prox-
imity with the query instance will increase as the amount of noise in the data increases, and the
sparsity with the query instance will increase as the amount of noise in the data increases and the
diversity in the generated counterfactuals will decrease as the amount of noise in the data increases.

Readers can examine the utility metrics for the baseline and synthetic data generated with varying
noise in Figure 8.7.
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Figure 8.7: Comparing the utility of counterfactuals for varying noise values

Privacy loss due to Counterfactual Explanations

The privacy metrics discussed in section 7.4.2 are utilized to evaluate the loss of privacy due to the
counterfactuals generated on the synthetic and original data. In addition, readers can find the mem-
bership inference attack (MIA) process in section 7.2.2. The accuracy of MIA is used to understand
the privacy loss in private and non-private settings. Readers can find the setup of this experiment in
section 7.6.2.

Figure 8.8 depicts the miss classification made by the surrogate models trained on the shadow
datasets generated by the adversary when synthetic data is used to generate counterfactual expla-
nations. The distribution of the discrete labels Stroke (1) and No Stroke (0) for both the predicted
estimation by the adversary and actual estimation are smoothed to better visualize the gap between
the predicted and actual. The miss classification of the labels is minimal for the synthetic dataset with
Noise 0.5, 0.7, and a small miss classification gap can be seen when synthetic data with Noise 1 is
used to generate counterfactual explanations. As the noise to create synthetic datasets increases,
the miss classification also increases, proving that the amount of information gained by the adversary
decreases.
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Figure 8.8: Relative Entropy and Miss Classification between the adversary’s estimate (predicted)
and actual estimate.

Table 8.3 depicts the relative entropy score. Relative entropy measures how far apart the ad-
versary’s estimation of the outcome (Stroke, No Stroke) from the original (true) distribution. Data
generated with smaller noise values result in smaller entropy values which means much information
is released because of the counterfactual explanations. On the contrary, data generated with a more
considerable noise value results in a more significant entropy value resulting in less information ex-
posure. When counterfactual explanations are generated using the original data, the accuracy of
membership inference attacks is high (see Table 8.3). On the contrary, using synthetic data with
increasing noise reduces the accuracy of the membership inference attack.

Data Relative Entropy MIA Accuracy
original data (Baseline) 4.321 89.05
Noise 0.5 9.685 81.7
Noise 0.7 18.561 80.2
Noise 1 23.436 77.4
Noise 10 73.186 42.1
Noise 150 136.517 20.7

Table 8.3: Entropy Scores and Accuracy of MIA

The interpretation of the utility and privacy trade-off is that when smaller noise values are included
to generate synthetic data, the effectiveness of the counterfactual explanations is comparable to the
non-private setting; however, much information is leaked to an adversary due to multiple queries.
Conversely, if more noise is added to generate synthetic data, the counterfactuals’ effectiveness
reduces; however, the adversary gains less information through the explanations.
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Conclusion

This section discusses the results and the limitations of the work, and the conclusion followed by
future work.

9.1 Discussions

In this section, some discussion points are covered based on the the performed experiments.

Effect of Proximity Low and Diversity High

The existing counterfactual explanations (DiCE) framework relies on using the original data and set-
ting the proximity and diversity constraint. An adversary can use the trade-off between proximity and
diversity, as demonstrated in the experiments, to query and generate many counterfactual explana-
tions; these explanations tend to provide much information to the adversary. The possible counter-
measure to mitigate this risk is to use a default value to set the proximity and diversity by studying the
information exposure through the explanations and performing query auditing to differentiate between
a legitimate user and an adversary [1].

Synthetic Data Model

In this study, synthetic data were generated using Differential Privacy principles to limit the danger
of privacy loss and to generate counterfactual explanations in contrast to the original data. Three
algorithms were benchmarked, out of which DP-CTGAN (Conditional GAN) generated data with a
high approximation to the original data. An added advantage of DP-CTGAN is generating data by
specifying the labels/ outcome; this reduces the overhead of communicating with the model owner
to generate the labels for the synthetic data. Synthetic data from the DP-CTGAN can be sent to the
explanation provider to build the counterfactual explanation model.

Effect of Noise on the Accuracy of Model and Quality of Data

Noise is a significant parameter in determining privacy. According to Differential privacy principles,
larger Noise yields a smaller privacy budget and vice versa. An increase in Noise affects the model’s
accuracy [77]; therefore, to study the impact of varying Noise on the synthetic data model, different
noise values were used to generate synthetic data in the experiments. An increase in Noise impacted
the accuracy of the synthetic data model, and the quality of the data deteriorates but provides higher
privacy guarantees.

49
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Trade-off Between Utility and Privacy

The study’s findings demonstrated a trade-off between utility and privacy:

• Practical counterfactual explanations may be drawn from synthetic data with small noise levels.
However, they expose statistical information of the underlying data, enabling an adversary to
undertake attacks.

• Synthetic data generated with large noise preserves the privacy of individuals by exposing
less information through the counterfactual explanations, but the explanations provided are
ineffective.

To achieve some degree of anonymity and privacy while generating multi-objective counterfactual
explanations, considerable amounts of noise should be introduced to make synthetic data, but also
the effect of noise on the counterfactual explanations should also be studied. The ideal situation of
preserving privacy and providing effective explanations seems very challenging.

9.1.1 Limitations

The limitations and unknown factors are covered in this section.

Model

DiCE framework used to generate counterfactual explanations depends on two properties proximity
and diversity. The research of DiCE does not explain to what extent the values of the two properties
can be set; hence in this study, an iterator was used to set the values. Due to the ambiguity of the
extent to which the values can lie, the results of the experiments could vary.

The synthetic data model (Algorithm 4) failed to generate discrete data for the discrete features.
Instead, the synthetic data model converted the discrete variables into the continuous domain. In
order to turn the continuous domain into the discrete domain, thresholding was employed. The
thresholding value used could vary depending on the generated synthetic data.

Data

In this study, a single dataset (Stroke Prediction Dataset) was used to perform the experiments. The
inference of this study will remain relevant in all use cases; However, the hyperparameters used
in the experiment are data-dependent and could vary based on the criticality of the domain. For
example, the privacy budget and the noise level, depends on how sensitive the data is and how
much information can be exposed.

User Studies

The effectiveness of the counterfactual explanations was studied using metrics; however, user in-
volvement and validation were not in the scope of this study. User studies could have helped more in
understanding the effectiveness of the counterfactual explanations when generated using synthetic
data.
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9.2 Conclusion

This work seems exceptionally challenging because merging these domains, Explainable AI and
Privacy-Enhancing Technologies is not simple. Multi-objective counterfactual explanations (DiCE)
contribute to a better comprehension of the inference reached by the black-box model; Nevertheless,
doing so will make the system more transparent, resulting in the loss of individuals’ privacy. On
the other hand, it is not always simple to provide explanations while protecting individuals’ privacy.
Therefore, it is necessary to strike a balance between the explainability of the outcome and the
individual’s privacy.

Sub questions for the mentioned research question are answered based on the study. Readers
can find the research questions in section 1.4.

1.1 How vulnerable are multi-objective counterfactual explanations to membership inference at-
tack?

In the experiments, the generation of multiple counterfactuals and the deliberate selection of
low proximity and high diversity made multi-objective counterfactual explanations vulnerable
to attacks. The diversity between the counterfactual explanations helps the attacker to build
shadow datasets from the counterfactual explanations that closely approximated the original
data, thus making it easy to perform a membership inference attack. The attacker’s hypothesis
that the shadow dataset corresponded to the original data proved accurate. It was shown in
the results of MIA that utilizing original data to develop counterfactual explanations enhanced
the accuracy of the membership inference attack, indicating that multi-objective counterfactual
explanations are very vulnerable.

1.2 Given the counterfactual explanation method DiCE, how effective is Differential Privacy in pre-
serving the privacy of individuals?

Differential Privacy adds noise scaled to meet the desired level of Privacy, compromising the
model’s (system) accuracy. There are many techniques to apply when it comes to noise, but
this research focuses on generating synthetic data using differentially private algorithms. The
reason behind using synthetic data is that since the existing architecture of DiCE depends on
original data for generating explanations, the explanations are simply an individual’s instance
and therefore leak information about the individual. In the case of multiple explanations, the
explanations leak information about a group of individuals.

In contrast to original data, synthetic data will preserve an individual’s or group’s data privacy
because the synthetic data are fake data that approximates the original data, and the Privacy
of individuals can be ensured. Furthermore, the post-processing property of Differential Pri-
vacy enables generating explanations from the synthetic data that are also differentially private;
hence it is safe to perform any processing on the synthetic data. Hence, using synthetic data
with privacy guarantees ensured by Differential privacy is very effective in preserving the Pri-
vacy of individuals when used to generate counterfactual explanations.

1.3 How effective are the generated counterfactuals after applying Differential Privacy?

The synthetic data were generated in the experiments using varying Noise to study the effec-
tiveness of the generated counterfactual explanations. The effectiveness of the counterfactual
explanations depends on the quality of the data generated. The quality of the data depends
on the use of Noise to generate the synthetic data. Lower the Noise better the quality of data,
and the generated counterfactual explanations are very effective and can help the end-user
understand the feature’s relationship with the prediction made. On the contrary, using a large
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Noise value, the quality of the synthetic data degrades, affecting the effectiveness of the coun-
terfactual explanations. The reason behind ineffective counterfactual explanations is the data
scarcity and failing to provide explanations with the contrastive outcome.

RQ 1 : To what extent can we preserve privacy when generating multi-objective counterfactual
explanations?

Multi-objective Counterfactual Explanations will revolutionize the AI field by expanding the use of
AI in critical domains; however, this comes with the cost of compromising the privacy of individuals.
Preserving privacy when generating multi-objective counterfactual explanations is not a deterministic
outcome; however, it depends on the context, criticality of the domain, amount of information that
can be exposed due to the explanations, and how effective the counterfactual explanations should
be. From this study, we can infer that we can ultimately preserve the privacy of individuals by com-
promising the effectiveness of the counterfactual explanations; however, it will eventually lead to a
loss of understandability of the explanations and will not help the end-user to contest the AI decision
if considered biased. The second inference is that it is also possible to compromise privacy and gen-
erate effective explanations, and this could be ideal in a secured environment when the explanation
model is not exposed to the public. The ideal situation of preserving privacy and providing effective
explanations is not possible, but it is possible to strike a balance between privacy and explainability.

To conclude, the extent to which we can preserve privacy is domain-specific and needs a thorough
study of the domain in collaboration with using methods explained in this study to test the approach
and feasibility.

9.3 Future Work

This study utilized synthetic data in contrast to original data to generate counterfactual explanations;
the other possible way would be to use the original data to develop counterfactual explanations, after
which the counterfactual explanations would be perturbed by using noise in such a way that the
privacy of individuals can be ensured and minimum information loss can be guaranteed.

The centralized architecture was the primary emphasis of this study. In this design, the data
owner, model owner, and explanation provider are members of the same organization. However, the
architecture can be decentralized by subdividing the roles such that the data owner, model owner,
and explanation provider can all be separate parties that want to collaborate in a privacy-preserving
way to build the prediction and the counterfactual explanation model.

An additional difference to the decentralized architecture would be made when there are several
data owners, and each owner is interested in computing the prediction model and the counterfactual
explanation model without sharing the data between parties; the possible direction would be to use
secure multi-party computation.

The experiments performed in this study could also be further tested on multiple datasets with
user studies to measure the effectiveness of the counterfactual explanations when the Differential
Privacy mechanism is utilized.

Data generated from the synthetic data model claims to hide statistical information of the data,
thus proving safe for further processing. In the experiments, it was noticed that, the synthetic data
that provides high privacy guarantees were generated from synthetic data model with low accuracy
and vice versa. The possible future work is to study if it is possible to hide statistical information of
the data without degrading the accuracy of the synthetic data model.



Bibliography

[1] U. Aı̈vodji, A. Bolot, and S. Gambs, “Model extraction from counterfactual explanations,” CoRR,
vol. abs/2009.01884, 2020. [Online]. Available: https://arxiv.org/abs/2009.01884

[2] C. Warlow, “Epidemiology of stroke,” The Lancet, vol. 352, pp. S1–S4, 1998. [Online]. Available:
https://www.thelancet.com/pdfs/journals/lancet/PIIS0140673698900861.pdf

[3] M. J. O’donnell, D. Xavier, L. Liu, H. Zhang, S. L. Chin, P. Rao-Melacini, S. Rangarajan, S. Islam,
P. Pais, M. J. McQueen et al., “Risk factors for ischaemic and intracerebral haemorrhagic stroke
in 22 countries (the interstroke study): a case-control study,” The Lancet, vol. 376, no. 9735, pp.
112–123, 2010. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/20561675/

[4] A. D. Lopez, C. D. Mathers, M. Ezzati, D. T. Jamison, and C. J. Murray, “Global and
regional burden of disease and risk factors, 2001: systematic analysis of population
health data,” The lancet, vol. 367, no. 9524, pp. 1747–1757, 2006. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/16731270/

[5] V. L. Feigin, B. Norrving, M. G. George, J. L. Foltz, G. A. Roth, and G. A. Mensah, “Prevention
of stroke: a strategic global imperative,” Nature Reviews Neurology, vol. 12, no. 9, pp. 501–512,
2016. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/27448185/

[6] T. Hirsch, K. Merced, S. Narayanan, Z. E. Imel, and D. C. Atkins, “Designing
contestability: Interaction design, machine learning, and mental health,” in Proceedings
of the 2017 Conference on Designing Interactive Systems, ser. DIS ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 95–99. [Online]. Available:
https://doi.org/10.1145/3064663.3064703

[7] W. Eschenbach, “Transparency and the black box problem: Why we cannot trust
ai,” pp. 3–8, 02 2021. [Online]. Available: https://www.researchgate.net/publication/
349412290 Transparency and the Black Box Problem Why We Cannot Trust AI

[8] J. M. Durán and K. R. Jongsma, “Who is afraid of black box algorithms? on the epistemological
and ethical basis of trust in medical ai,” Journal of Medical Ethics, vol. 47, no. 5, pp. 329–335,
2021. [Online]. Available: https://jme.bmj.com/content/47/5/329

[9] D. Gunning, “Darpa’s explainable artificial intelligence (xai) program,” 03 2019, pp. 2–2.
[Online]. Available: https://doi.org/10.1002/ail2.61

[10] C. Molnar, “Interpretable machine learning,” 2022. [Online]. Available: https://christophm.github.
io/interpretable-ml-book/

[11] T. Hastie, R. Tibshirani, and J. Friedman, “The elements of statistical learning: data
mining, inference and prediction,” 2009. [Online]. Available: http://www-stat.stanford.edu/∼tibs/
ElemStatLearn/

53

https://arxiv.org/abs/2009.01884
https://www.thelancet.com/pdfs/journals/lancet/PIIS0140673698900861.pdf
https://pubmed.ncbi.nlm.nih.gov/20561675/
https://pubmed.ncbi.nlm.nih.gov/16731270/
https://pubmed.ncbi.nlm.nih.gov/27448185/
https://doi.org/10.1145/3064663.3064703
https://www.researchgate.net/publication/349412290_Transparency_and_the_Black_Box_Problem_Why_We_Cannot_Trust_AI
https://www.researchgate.net/publication/349412290_Transparency_and_the_Black_Box_Problem_Why_We_Cannot_Trust_AI
https://jme.bmj.com/content/47/5/329
https://doi.org/10.1002/ail2.61
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/


BIBLIOGRAPHY 54

[12] B. Letham, C. Rudin, T. H. McCormick, and D. Madigan, “Interpretable classifiers using rules
and bayesian analysis: Building a better stroke prediction model,” The Annals of Applied
Statistics, vol. 9, no. 3, Sep 2015. [Online]. Available: http://dx.doi.org/10.1214/15-AOAS848

[13] J. H. Friedman and B. E. Popescu, “Predictive learning via rule ensembles,” The
Annals of Applied Statistics, vol. 2, no. 3, Sep 2008. [Online]. Available: http:
//dx.doi.org/10.1214/07-AOAS148

[14] A. Adadi and M. Berrada, “Peeking inside the black-box: A survey on explainable
artificial intelligence (xai),” IEEE Access, vol. 6, pp. 8–8, 2018. [Online]. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466590

[15] U. C. for Medicare Medicaid, “E-Health General Information | CMS,” dec 1 2021. [Online].
Available: https://www.cms.gov/Medicare/E-Health/EHealthGenInfo

[16] T. Miller, “Contrastive explanation: a structural-model approach,” The Knowledge Engineering
Review, vol. 36, p. e14, 2021. [Online]. Available: https://www.cambridge.org/core/journals/
knowledge-engineering-review/article/contrastive-explanation-a-structuralmodel-approach/
69A2E32B160C2C7FB65BC88670D7AEA7

[17] R. K. Mothilal, A. Sharma, and C. Tan, “Explaining machine learning classifiers through
diverse counterfactual explanations,” CoRR, vol. abs/1905.07697, 2019. [Online]. Available:
http://arxiv.org/abs/1905.07697

[18] S. Nass, L. Levit, and L. Gostin, Beyond the HIPAA Privacy Rule: En-
hancing Privacy, Improving Health Through Research, 02 2009. [Online]. Avail-
able: https://www.researchgate.net/publication/254429594 Beyond the HIPAA Privacy Rule
Enhancing Privacy Improving Health Through Research

[19] R. Shokri, M. Stronati, and V. Shmatikov, “Membership inference attacks against
machine learning models,” CoRR, vol. abs/1610.05820, 2016. [Online]. Available: http:
//arxiv.org/abs/1610.05820

[20] J. Chen, W. Wang, and X. Shi, “Differential privacy protection against member-
ship inference attack on machine learning for genomic data,” 08 2020. [Online].
Available: https://www.researchgate.net/publication/343448976 Differential Privacy Protection
Against Membership Inference Attack on Machine Learning for Genomic Data

[21] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Foundations and
Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407, 2014. [Online].
Available: http://dx.doi.org/10.1561/0400000042

[22] M. H. Jensen, “Cracking the Black Box of Healthcare,” aug 23 2018. [Online]. Available:
https://omhu.com/publications/cracking-the-black-box-of-healthcare/

[23] I. Sample, “Computer says no: why making AIs fair, accountable
and transparent is crucial | Artificial intelligence (AI) | The Guardian,”
nov 5 2017. [Online]. Available: https://www.theguardian.com/science/2017/nov/05/
computer-says-no-why-making-ais-fair-accountable-and-transparent-is-crucial

[24] S. Wachter, B. Mittelstadt, and L. Floridi, “Why a Right to Explanation of Automated Decision-
Making Does Not Exist in the General Data Protection Regulation,” International Data Privacy
Law, vol. 7, no. 2, pp. 76–99, 06 2017. [Online]. Available: https://doi.org/10.1093/idpl/ipx005

http://dx.doi.org/10.1214/15-AOAS848
http://dx.doi.org/10.1214/07-AOAS148
http://dx.doi.org/10.1214/07-AOAS148
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466590
https://www.cms.gov/Medicare/E-Health/EHealthGenInfo
https://www.cambridge.org/core/journals/knowledge-engineering-review/article/contrastive-explanation-a-structuralmodel-approach/69A2E32B160C2C7FB65BC88670D7AEA7
https://www.cambridge.org/core/journals/knowledge-engineering-review/article/contrastive-explanation-a-structuralmodel-approach/69A2E32B160C2C7FB65BC88670D7AEA7
https://www.cambridge.org/core/journals/knowledge-engineering-review/article/contrastive-explanation-a-structuralmodel-approach/69A2E32B160C2C7FB65BC88670D7AEA7
http://arxiv.org/abs/1905.07697
https://www.researchgate.net/publication/254429594_Beyond_the_HIPAA_Privacy_Rule_Enhancing_Privacy_Improving_Health_Through_Research
https://www.researchgate.net/publication/254429594_Beyond_the_HIPAA_Privacy_Rule_Enhancing_Privacy_Improving_Health_Through_Research
http://arxiv.org/abs/1610.05820
http://arxiv.org/abs/1610.05820
https://www.researchgate.net/publication/343448976_Differential_Privacy_Protection_Against_Membership_Inference_Attack_on_Machine_Learning_for_Genomic_Data
https://www.researchgate.net/publication/343448976_Differential_Privacy_Protection_Against_Membership_Inference_Attack_on_Machine_Learning_for_Genomic_Data
http://dx.doi.org/10.1561/0400000042
https://omhu.com/publications/cracking-the-black-box-of-healthcare/
https://www.theguardian.com/science/2017/nov/05/computer-says-no-why-making-ais-fair-accountable-and-transparent-is-crucial
https://www.theguardian.com/science/2017/nov/05/computer-says-no-why-making-ais-fair-accountable-and-transparent-is-crucial
https://doi.org/10.1093/idpl/ipx005


BIBLIOGRAPHY 55

[25] N. Vollmer, “Recital 71 EU General Data Protection Regulation (EU-GDPR). Privacy/Privazy
according to plan.” jul 2 2021. [Online]. Available: https://www.privacy-regulation.eu/en/r71.htm

[26] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, “A survey of
methods for explaining black box models,” ACM Comput. Surv., vol. 51, no. 5, aug 2018.
[Online]. Available: https://doi.org/10.1145/3236009

[27] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should I trust you?”: Explaining
the predictions of any classifier,” CoRR, vol. abs/1602.04938, 2016. [Online]. Available:
http://arxiv.org/abs/1602.04938

[28] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks:
Visualising image classification models and saliency maps,” 2013. [Online]. Available:
https://arxiv.org/abs/1312.6034

[29] S. Wachter, B. D. Mittelstadt, and C. Russell, “Counterfactual explanations without opening the
black box: Automated decisions and the GDPR,” CoRR, vol. abs/1711.00399, 2017. [Online].
Available: http://arxiv.org/abs/1711.00399

[30] S. Verma, J. P. Dickerson, and K. Hines, “Counterfactual explanations for machine learning: A
review,” CoRR, vol. abs/2010.10596, 2020. [Online]. Available: https://arxiv.org/abs/2010.10596

[31] T. Miller, “Explanation in artificial intelligence: Insights from the social sciences,” Artificial
Intelligence, vol. 267, pp. 1–38, 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0004370218305988

[32] S. Dandl, C. Molnar, M. Binder, and B. Bischl, “Multi-objective counterfactual explanations,”
Lecture Notes in Computer Science, p. 448–469, 2020. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-030-58112-1 31

[33] T. Wang, “Property inference attacks on neural networks using dimension re-
duction representations,” semanticscholar, 2018. [Online]. Available: https://www.
semanticscholar.org/paper/Property-Inference-Attacks-on-Neural-Networks-using-Wang/
54232c6de4614862d3c8b0258d44209e70383c36

[34] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot, “High-fidelity
extraction of neural network models,” CoRR, vol. abs/1909.01838, 2019. [Online]. Available:
http://arxiv.org/abs/1909.01838

[35] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on homomorphic encryption schemes:
Theory and implementation,” 2017. [Online]. Available: https://arxiv.org/abs/1704.03578

[36] Y. Lindell, “Secure multiparty computation (mpc),” 2020, https://eprint.iacr.org/2020/300.
[Online]. Available: https://eprint.iacr.org/2020/300

[37] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” in Advances in Cryptology, G. R. Blakley and D. Chaum, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1985, pp. 10–18. [Online]. Available: https:
//link.springer.com/chapter/10.1007/3-540-39568-7 2#citeas

[38] M. Nassar, A. Erradi, and Q. Malluhi, “Paillier’s encryption: Implementation and cloud
applications,” pp. 1–5, 10 2015. [Online]. Available: https://ieeexplore.ieee.org/document/
7338149

https://www.privacy-regulation.eu/en/r71.htm
https://doi.org/10.1145/3236009
http://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1711.00399
https://arxiv.org/abs/2010.10596
https://www.sciencedirect.com/science/article/pii/S0004370218305988
https://www.sciencedirect.com/science/article/pii/S0004370218305988
http://dx.doi.org/10.1007/978-3-030-58112-1_31
http://dx.doi.org/10.1007/978-3-030-58112-1_31
https://www.semanticscholar.org/paper/Property-Inference-Attacks-on-Neural-Networks-using-Wang/54232c6de4614862d3c8b0258d44209e70383c36
https://www.semanticscholar.org/paper/Property-Inference-Attacks-on-Neural-Networks-using-Wang/54232c6de4614862d3c8b0258d44209e70383c36
https://www.semanticscholar.org/paper/Property-Inference-Attacks-on-Neural-Networks-using-Wang/54232c6de4614862d3c8b0258d44209e70383c36
http://arxiv.org/abs/1909.01838
https://arxiv.org/abs/1704.03578
https://eprint.iacr.org/2020/300
https://eprint.iacr.org/2020/300
https://link.springer.com/chapter/10.1007/3-540-39568-7_2#citeas
https://link.springer.com/chapter/10.1007/3-540-39568-7_2#citeas
https://ieeexplore.ieee.org/document/7338149
https://ieeexplore.ieee.org/document/7338149


BIBLIOGRAPHY 56

[39] Q. Zhu and X. Lv, “2p-dnn : Privacy-preserving deep neural networks based on
homomorphic cryptosystem,” ArXiv, vol. abs/1807.08459, 2018. [Online]. Available: https:
//arxiv.org/abs/1807.08459

[40] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in
Advances in Cryptology — EUROCRYPT ’99, J. Stern, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 223–238. [Online]. Available: https://link.springer.com/content/pdf/
10.1007%2F3-540-48910-X 16.pdf

[41] A. C.-C. Yao, “How to generate and exchange secrets,” 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), pp. 162–167, 1986. [Online]. Avail-
able: https://www.semanticscholar.org/paper/How-to-generate-and-exchange-secrets-Yao/
88645f0b1c344181a7ff705bd6c639bf515a23cf

[42] J. Choi and K. Butler, “Secure multiparty computation and trusted hard-
ware: Examining adoption challenges and opportunities,” Security and Com-
munication Networks, vol. 2019, pp. 1–28, 04 2019. [Online]. Avail-
able: https://www.researchgate.net/publication/332179471 Secure Multiparty Computation
and Trusted Hardware Examining Adoption Challenges and Opportunities
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Appendix

A.1 Data Description

The collected data (Refer to section 7.1) for this study takes into account both modifiable and non-
modifiable factors that impact cerebrovascular accident.

Cerebrovascular Accident (CVA) is defined as, ”an ischemic stroke or brain attack, is an abrupt
loss of brain function caused by an interruption in the blood flow to a specific area of the brain” [78].
Risk factors for stroke are often put into two groups: modifiable and nonmodifiable factors. High
blood pressure, obesity, heart disease, and diabetes are among the factors that can be modified
by making healthy lifestyle choices such as quitting smoking, changing one’s living situation, and
creating an improved work-life balance. Age and gender are examples of nonmodifiable factors [3].

Diastolic blood pressure of more than 90 millimeters of mercury (mmHg) and systolic pressure
of more than 140 millimeters of mercury (mmHg) constitute hypertension (high blood pressure) [79].
The pancreatic beta cells release insulin, which is an anabolic hormone. Upon ingestion of food,
insulin transports glucose from the blood to muscle, liver, and fat cells. As the insulin level rises,
abnormalities in insulin production, insulin action, or both result in diabetes mellitus [80]. Obesity is
a condition in which excess body fat has accumulated to the degree that it may have adverse health
effects. When a person’s body mass index (BMI), calculated by dividing their weight by the square of
their height, is more than 30 kg/m2, they are categorized as obese [81].

Stroke is caused because the neurons in the brain can no longer maintain aerobic respiration
because of the decreased cerebral blood flow caused by the above mentioned modifiable factors,
so the mitochondria switch to anaerobic respiration, which generates large amounts of lactic acid,
changing the pH and preventing neurons from producing enough ATP for the brain cells to continue
functioning (plaque) [82] (see Figure A.1).

Figure A.1: Cerebrovascular accident [82]
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A.2 Models, Algorithms, Results

A.2.1 Details about Dense layer, loss, activation function, gradient descent

Dense Layer

The basic operation in a node of a dense layer is given by activation(input ∗ weight + bias). This
operation is known as summation [63]. Figure A.2 is a pictorial representation of neural network
architecture. The summation operation in each layer is given below, and the activation function is
denoted by f .

Input Layer
o1 = f(w1 ∗ x1 + b1)

o2 = f(w2 ∗ x2 + b2)

o3 = f(w3 ∗ x3 + b3)

Hidden Layer
o4 = f(wo1 ∗ o1 + bo1) + f(wo2 ∗ o2 + bo2) + f(wo3 ∗ o3 + bo3)

o5 = f(wo1 ∗ o1 + bo1) + f(wo2 ∗ o2 + bo2) + f(wo3 ∗ o3 + bo3)

Output Layer
output = f(wo4 ∗ o4 + bo4) + f(wo5 ∗ o5 + bo5)

Output

Input
Layer

Hidden
layerx1

x2

x3

w1

w3

w2

b1

b2

b3

o1

o1o2

o2

o3

o3

o4

o5

Output
layer

1

2

3

4

5

6

wo1

wo1
wo2

wo2

wo3

wo3

wo4

wo5

Figure A.2: Dense Layer

ReLU activation function

The output of the summation of inputs, weights, and bias are squashed using the activation function
(f ). The rectified linear unit will squash the output of the summation to zero if it is less than zero;
otherwise, return the same value as the output [83]. Figure A.3 represents the plot of the RelU
function.
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Figure A.3: ReLU [84]

Softmax activation function

The output of the summation operation is squashed into probabilities using the Softmax activation
function [64]. The Softmax activation function is usually used in classification problems, especially in
the output layer. In Figure A.4 given some input features (x1, x2, x3) of an instance the output layer
predicts the probabilities of the instance either having Stroke or No Stroke.

Input
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layerx1
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x3
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w3
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b3

o1

o1o2

o2

o3

o3

o4

o5

1

2

3

4

5

wo1

wo1
wo2

wo2

wo3

wo3

P (Stroke)

P (No Stroke)

Figure A.4: Classification problem using Softmax as the activation function

For example, o4 = 2.6 and o5 = −1.2, the probability of Stroke = e(2.6)

e(2.6)+e(−1.2) ≈ 0.97 and No

Stroke = e(−1.2)

e(2.6)+e(−1.2) ≈ 0.03. Given the features (x1, x2, x3) probability of having Stroke is 97 percent.
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Negative log-likelihood loss

Loss functions measure the error between the predicted and actual outcome. Negative log-likelihood
loss function is often used when the Softmax activation function is used in the output layer. Minimizing
the Negative log-likelihood loss function maximizes the likelihood of predicting the correct class [85].
Equation A.1 is the Negative log-likelihood loss function, y denotes true label, ŷ denotes predicted
probabilities of the class.

l = −
n∑

i=1

(yi log ŷ + (1− yi) log(1− ŷ)) (A.1)

Reconstruction loss

The mean squared error (MSE) gives reconstruction loss for the data compression model (Autoen-
coder). Mean squared error measures the average error between the input and reconstructed data.
Equation A.2 is the reconstruction loss, where Yi is the input data to the encoder and Ŷi is the data
reconstructed by the decoder.

MSE =
1

n

n∑
i=1

(Yi − Ŷi) (A.2)

Stochastic gradient descent

Stochastic gradient descent is an optimization algorithm that updates the parameters (weights) for
each instance [86]. For example, if an instance is predicted with a higher probability of Stroke and
the actual prediction is No Stroke, the error between the predicted and actual outcome is calculated
using a loss function. Stochastic gradient descent updates the parameters (weights) by computing
the gradient (∇) of the loss function (L) with respect to the parameters (w) for each instance (xi)
given a learning rate (η) (see Equation A.3).

wi+1 ← wi − η∇iL(wi;xi, y) (A.3)

RMSProp

RMSProp makes use of the adaptive learning rate. If the learning rate (η) as specified in Equation
A.3 is a large value, the weights (w) are not effectively updated, and for a small learning rate, the
convergence to the global optimal is slow. The idea of an adaptive learning rate is that a larger
learning rate is used in the beginning, and the learning rate is decayed after every iteration using the
root mean square of the previous gradients.

The parameters are updated using Equation A.4, where i denotes the iteration, w denotes the
parameters (weights), g denotes the gradient, η denotes the learning rate, σ denotes the average of
the previous gradients and α denotes a smoothing parameter.

wi+1 ← wi −
η

σi
gi; σi =

√
α(σi−1)2 + (1− α)(gi)2 (A.4)

Adam

Adam optimizer is similar to RMSProp (Refer to section A.2.1) the only difference is, a momentum
is added [87]. Adam optimizer, in short, is RMSProp + Momentum. In Figure A.5, the movement
of the parameters (weights) is in the negative direction of the gradient to reach the global minimum
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(minima). However, often, the optimization gets stuck in the local minimum (minima); to avoid this,
momentum (velocity) is used to push the gradients.

Local
Minima

Global
Minima

Negative
direction of the

gradient

Momentum

Figure A.5: Momentum to prevent getting stuck in local minima
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A.2.2 Stroke Prediction Black-box model architecture

Model: "Stroke Prediciton Model" 
_________________________________________________________________ 
Layer (type) Output Shape Param # 
================================================================= 
dense_7 (Dense) (None, 40) 520 

re_lu_6 (ReLU) (None, 40) 0 

dense_8 (Dense) (None, 80) 3280 

re_lu_7 (ReLU) (None, 80) 0 

dense_9 (Dense) (None, 100) 8100 

re_lu_8 (ReLU) (None, 100) 0 

dense_10 (Dense) (None, 50) 5050 

re_lu_9 (ReLU) (None, 50) 0 

dense_11 (Dense) (None, 21) 1071 

re_lu_10 (ReLU) (None, 21) 0 

dense_12 (Dense) (None, 5) 110 

re_lu_11 (ReLU) (None, 5) 0 

dense_13 (Dense) (None, 2) 12 

softmax_1 (Softmax) (None, 2) 0 

================================================================= 
Total params: 18,143 
Trainable params: 18,143 
Non-trainable params: 0 
_________________________________________________________________

Figure A.6: Stroke Prediction Black-box model architecture

A.2.3 DiCE Algorithm

Algorithm 5 An algorithm for generating counterfactual explanations, DiCE

Require: λ1, parameter for proximity. λ2, parameter for diversity. f , trained black-box model. x,
query instance. T , epochs for generating counterfactuals.

Ensure: DiCE generates diverse and multiple counterfactuals.
1: Select the query instance x

2: for e = 1,...,T do
3: Select a random instance from the dataset to be the initial counterfactual.
4: Optimize the loss function using Equation 3.3.
5: Store the set of counterfactuals that minimize the loss function.
6: end for
7: Display the set of counterfactuals.

Example for DiCE

Counterfactuals are generated using random sampling from the original data, and the loss function
is optimized using gradient descent. For this example, the learning rate is set to 0.005, and the initial
hyperparameters (λ1, λ2) is set to 0.5 and 1.0 respectively. Distance function is denoted by d. Let
diversity also be a distance function that measures the distance between the counterfactuals.
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1. Query instance is predicted with high probability of having a Stroke, end-user requests expla-
nations for No-Stroke (y

′
= 0).

”Male”:1, ”Age”: 50, ”Smoking”: 0, ”Hypertension”: 0, ”Glucose”: 165.97, ”BMI”: 31, ”Stroke”: 1

2. Select random instances from the data to be the initial counterfactuals (2)
c1 = ”Male”: 1, ”Age”: 50, ”Smoking”: 0, ”Hypertension”: 0, ”Glucose”: 110.67, ”BMI”: 20,
”Stroke”: 0
c2 = ”Male”: 1, ”Age”: 50, ”Smoking”: 0, ”Hypertension”: 0, ”Glucose”: 97.97, ”BMI”: 25,
”Stroke”: 0

3. While |f(ci)− y
′ | < 0.5; moving to the opposite boundary, No-Stroke

• Optimize the loss function

L = λ1

k

∑k
i=1 d(ci, x)− λ2 dpp˙diversity(ci....ck)

L = 0.5
2 (70.15)− 1.5( 1

18.7 )

L = 17.45

• Decrease λ1 and λ2

λ1 = λ1 − η ∂L
∂λ1
≈ 0.33

λ2 = λ2 − η ∂L
∂λ2
≈ 0.99

4. Repeat the Steps 2-3

5. Return the counterfactuals that minimize the loss function
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A.2.4 Membership Inference Attack

Model: "Membership Inference Attack" 
_________________________________________________________________ 
Layer (type) Output Shape Param # 
================================================================= 
dense_64 (Dense) (None, 30) 390 

re_lu_28 (ReLU) (None, 30) 0 

dropout_40 (Dropout) (None, 30) 0 

dense_65 (Dense) (None, 50) 1550 

re_lu_29 (ReLU) (None, 50) 0 

dropout_41 (Dropout) (None, 50) 0 

dense_66 (Dense) (None, 30) 1530 

re_lu_30 (ReLU) (None, 30) 0 

dropout_42 (Dropout) (None, 30) 0 

dense_67 (Dense) (None, 20) 620 

re_lu_31 (ReLU) (None, 20) 0 

dropout_43 (Dropout) (None, 20) 0 

dense_68 (Dense) (None, 10) 210 

re_lu_32 (ReLU) (None, 10) 0 

dropout_44 (Dropout) (None, 10) 0 

dense_69 (Dense) (None, 5) 55 

re_lu_33 (ReLU) (None, 5) 0 

dropout_45 (Dropout) (None, 5) 0 

dense_70 (Dense) (None, 2) 12 

softmax_4 (Softmax) (None, 2) 0 

================================================================= 
Total params: 4,367 
Trainable params: 4,367 
Non-trainable params: 0 
_________________________________________________________________

Figure A.7: MIA Architecture
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A.2.5 General GAN Architecture

Generator Discriminator

Figure A.8: GAN Architecture
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A.2.6 Architecture of Data Compression

Model: "model_1" 
_________________________________________________________________ 
Layer (type) Output Shape Param # 
================================================================= 
input_1 (InputLayer) [(None, 12)] 0 

dense (Dense) (None, 5) 65 

================================================================= 
Total params: 65 
Trainable params: 65 
Non-trainable params: 0 
_________________________________________________________________

Figure A.9: Architecture of the Encoder

A.2.7 Principal Component Analysis

The principal component analysis is used for dimensionality reduction. In short, PCA finds the projec-
tion of the entire data space; these projections are known as principal components. These principal
components are the eigenvectors. In Figure A.10 , u and v denotes the eigenvector 1 and 2 respec-
tively.

uv

X

Y

Figure A.10: Principal Components

An example is given to understand the process of PCA,

• Suppose this is a data, Y =


0 17

2 19

3 21

4 23

6 20



• The data is mean centred and normalized using the variance, Y = 1√
5


−3 −3
−1 −1
0 1

1 −3
3 0
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• Covariance of the matrix is calculated using cov(Y ) = 1
N−1Y

TY ,

[
1 13

20
13
20 1

]

• The eigenvalues of the covariance matrix are calculated, λ1 = 33
20 , λ2 = 7

20

• Given λ1, eigenvector is calculated using, cov(Y )− λ1I; where I denotes identity matrix,

u= 1√
2

[
1

1

]
• Given λ2, eigenvector is calculated using, cov(Y )− λ2I; where I denotes identity matrix,

v= 1√
2

[
1

−1

]
• Since the covariance matrix is symmetric, the eigenvector u and v are orthogonal.

• These eigenvectors correspond to the reduced dimension of the data. Figure A.10 shows how
eigenvectors when plotted look. Data visualization of the synthetic data will also look the same
but for 7777 data points.

• Given these eigenvectors it is also possible to reconstruct back the data Y .

A.2.8 Architecture of the Surrogate Models

---------------------------------------------------------------- 
Layer (type) Output Shape Param # 
================================================================ 
Linear-1 [-1, 0, 15] 195 
ReLU-2 [-1, 0, 15] 0
Linear-3 [-1, 0, 10] 160 
ReLU-4 [-1, 0, 10] 0
Linear-5 [-1, 0, 5] 55 
ReLU-6 [-1, 0, 5] 0 
Linear-7 [-1, 0, 2] 12 
LogSoftmax-8 [-1, 0, 2] 0
================================================================

Figure A.11: Surrogate model architecture
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A.2.9 Shadow Dataset 4
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Figure A.12: Shadow Dataset 4 generated by querying

A.2.10 Accuracy of Stroke Prediction Model (Target model)
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Figure A.13: Accuracy of the Stroke prediction model averaged after every 10 epochs
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A.2.11 Algorithm 2 results
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Figure A.14: Distributions generated by Algorithm 2

A.2.12 Algorithm 3 results
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Figure A.15: Distributions generated by Algorithm 3
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A.2.13 Algorithm 4 results
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Figure A.16: Distributions generated by Algorithm 4
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