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Management summary

The International Financial Reporting Standards (IFRS) requires financial institutions (or other
companies with financial assets like loans) to estimate potential credit losses with a forward-looking
view. Most financial institutions (77%) are taking a scenario-based approach to include forward-
looking macro-economic impact in their estimations of potential credit risk losses. The weights of
the three scenarios used by most financial institutions are often quite basic where the most likely
scenario (baseline) accounts for 50% and the remaining two (upside and downside) share the other
50% equally. These weights are currently not determined by any quantitative method, hence, this
research aims to determine these weights based on a quantitative method. To meet this goal the
method should first be able to predict and identify the economic states (the economic scenarios)
correctly. We used several hidden Markov models for this purpose.

To validate if the hidden Markov models can predict the economic states, we compare the re-
cession state predicted by the hidden Markov models (HMM) with the historical recession data of
the countries United States, United Kingdom, and Japan. We validate the performance using the
performance metrics accuracy, recall, precision, and the F-score. We benchmark the performance of
the HMM against three methods:

1. Classifying all data points as no-recessions. This result in a high accuracy (average of 0.77)
with unbalanced data, however for the other performance metrics this is not the case (average
of 0.00 for all other performance metrics).

2. Classifying all data points with negative growth as a recession. A negative growth rate is a
common indicator of a recession. The average accuracy for this method is 0.78 and the average
F-score is 0.51.

3. The martingale method. In this research this results in using the current state xt as a prediction
for the next state xt+1. The assumption with the martingale is that the current state with
a probability of 1 is the next state, which is not in line with the requirements of the IFRS9,
which states that it is not allowed to have only one scenario unless there are adjustments made
to compensate for the non-linearity in the expected credit risk losses. The martingale method
does have high scores for the performance metrics, with an average accuracy of 0.97 and an
average F-score of 0.93.

Furthermore, we calculated the Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC) using the likelihood calculation of the hidden Markov model, to compare the rela-
tive performance of the different types of hidden Markov models with each other. We experimented
with the number of hidden states, the amount of historical input-data used, the initialization of
the hidden Markov model, cutoff points for extreme outliers, and the features used to predict the
economic states, to evaluate the best performance of the hidden Markov models.

In short, we can conclude that the two-state, and especially the three-state higher-order hidden
Markov models can predict economic states. The three-state model outperforms all previously dis-
cussed methods with an average accuracy of 0.85 and an average F-score of 0.68. These scores are
higher than the scores of the GDP classification method, which has an average accuracy of 0.78 and
an average F-score of 0.51. The no recession method has an average accuracy of 0.77 and an average
F-score of 0.00, which are also lower than the scores of the three-state HMM. Only the martingale
method has a better performance with an average accuracy of 0.97 and an average F-score of 0.93.
However, as previously discussed a single forward-looking scenario (i.e the most likely scenario) does
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not meet the requirements of IFRS9 unless there is an adoption of an adjustment to reflect non-
linearity in the credit loss distribution for alternative scenarios.

We also calculated the correlations between the state sequences (output of the HMM) of the coun-
tries for all models, and compared them to the correlations of the historical data, resulting in an
additional method of validation. For the three-state HMM these correlations were quite close. The
correlation between the US-UK is 0.5 for the three-state HMM and the historical correlation is 0.7.
For the US-JP this is 0.2 for the three-state HMM and 0.2 for the historical correlations. Lastly,
the correlation for the UK-JP is 0.1 for the three-state HMM and 0.2 for the historical correlation.
The closeness of the correlation values for the economic state sequences is another indication that
the three-state HMM is working properly.

We calculated the AIC and BIC for the base model, the two-state model, and the three-state model.
The two-state model had the lowest (indicating the best performance for AIC and BIC) value. There
are several reasons for the two-state model outperforming the three-state model:

1. The AIC and BIC add a complexity term, which goes up when the number of states increases,
which results in a higher score for the AIC and BIC.

2. It is easier to divide the economic periods into two states than three states. Therefore the
paths are easier to predict, which results in more likely paths and a higher log-likelihood value.

Lastly, the economic state transition probabilities (weights) calculated by the HMM are not in line
with the weight distribution currently used by most financial institutions (0.5, 0.25, 0.25). The state
transition probabilities calculated by the HMM are not close to the weight distribution currently
used for the United States, United Kingdom, and Japan. This deviation indicates that the current
method is not optimal and that it is worth to research the impact of using the weights calculated
by the HMM for the expected credit loss calculations.
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Glossary

• Correlation matrix A correlation matrix depicts the correlation between all
the possible pairs of variables.

• Exponential moving average The exponential moving average is a type of weighted
moving average that gives more weighting or importance
to recent price data.

• Gross Domestic Product Gross domestic product is the total monetary or market
to recent price data. value of all the finished goods and
services produced within a country’s borders in a specific
time period.

• Hidden Markov model The hidden Markov model is a Markov chain whose
internal state cannot be observed directly but only through
some probabilistic function.

• Inflation Inflation is the decline of purchasing power of a given
currency over time.

• Interest rate The interest rate is the amount a lender charges a
borrower and is a percentage of the principal—the amount
loaned.

• Machine learning The study of computer algorithms that can improve
automatically through experience and by the use of data.

• macroeconomics macroeconomics is the study of behavior of the economy
as a whole.

• Market index A market index is a hypothetical portfolio of investment
holdings that represents a segment of the financial market.

• Markov process A Markov chain or Markov process is a stochastic model
describing a sequence of possible events in which the
probability of each event depends only on the state
attained in the previous event.

• Observation sequence An observation sequence is assumed to be produced by a
series of hidden states.

• Observation probability The observation probabilities define the probability of
seeing certain observed variable given a certain value for
the hidden variables/states.

• Simple moving average A simple moving average is an arithmetic moving
average calculated by adding recent values and then
dividing the the summed value by the number of time
periods in the calculation average.

• Standard deviation The standard deviation is a measure of the amount of
variation or dispersion of a set of values.
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• State sequence The state sequence specifies the sequence of states that
the hidden Markov model visits.

• Transition probability The probabilities that explain the transition to/from
hidden states are transition probabilities.

• Unemployment rate The unemployment rate is the percentage of the labor
force without a job.

Acronyms and abbreviations

• CA Canada.

• CN China.

• CPB Central Planning Bureau.

• CPI Inflation.

• D&ET Digital & Emerging Technology.

• DE Germany.

• EM Expectation-Maximization.

• EMA Exponential moving average.

• ES Spain.

• EY Ernst & Young.

• FR France.

• GDP Gross Domestic Product.

• HK Hong Kong.

• HMM Hidden Markov model.

• IT Italy.

• Itr Interest rate.

• JP Japan.

• KR Korea.

• MX Mexico.

• NBER National Bureau of Economic Research.

• NL Netherlands.

• RU Russia.

• SG Singapore.
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• SMA Simple moving average.

• TW Taiwan.

• UK United Kingdom.

• UNR Unemployment rate.

• US United States.

Mathematical notations used

• αt−1(i) The previous forward path probability from the previous time step.

• αt(j) Probability of being in state j after seeing the first t observations, given λ. Also
called the forward term or forward variable.

• aij The transition probability from previous state xi to current state xj .

• A The state transition probability distribution.

• bj(Ot) The state observation likelihood of the observation symbol Ot given the current
state j.

• B The observation probability distribution.

• βt(j) Probability of being in state j at time t given everything that comes after t, given
λ. Also called the backward term or backward variable.

• EMAt Exponential moving average at time t.

• γt(j) Probability of qj at time t given an observation sequence O and the model λ.

• λ Compact notation for the HMM, λ = (A,B, π).

• µGDP Mean of a country’s GDP over the period used by the HMM.

• M The number of distinct observation symbols.

• N Total number of unobservable states.

• Ot Observable signal at time t.

• O Sequence of observations O1...OT .

• qi State i in the state space S.

• π The initial state distribution.

• σGDP Standard deviation of a country’s GDP over the period used by the HMM.

• s Smoothing factor used for the exponential moving average.

• S State space giving the distinct states of the HMM.

• SMAt Simple moving average at time t.
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• t Clock time.

• T Length of the observation and state sequence 1 ≤ t ≤ T .

• V Observable signal space giving the set of possible observations.

• ξt(i, j) Probability of state qi at time t and state qj at time t+ 1.

• xt State of the HMM at time t.

• X Sequence of states x1...xT .

• y Multiplying factor used to determine the cutoff points for the GDP feature.
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1 Introduction

In this chapter we provide background information on the company and department where this
research is conducted, we explain the impact of macroeconomics, and we discuss the definition and
causes of recessions. In addition, the aim and relevance of the research are discussed. Based on the
aim and relevance of the research, the main research question and the sub-questions are formulated.
Finally, the workflow of this research is discussed.

1.1 Introduction to the company

EY (Ernst & Young) is an internationally operating service company active in the field of accoun-
tancy, tax advice, and consultancy. Until June 30, 2013, the company was known as Ernst & Young.
The company has approximately 312,000 employees worldwide and is located in about 150 countries.
Together with PwC, KPMG, and Deloitte, EY is also referred to as one of the Big Four. In the
Netherlands, EY consists of more than 5000 employees of which around 900 are active in Consulting.
My research has been carried out within Technology Consulting, and specifically within the team
‘Digital & Emerging Technologies’ (D&ET).

D&ET provides services focused on the use of both new and existing technologies in the financial
services sector. The Digital and Emerging Technology team mainly does projects in ServiceNow,
a strategic partner of EY, financial crime, and cloud services. ServiceNow is an American soft-
ware company based in Santa Clara, California that develops a cloud computing platform to help
businesses manage digital workflows for business operations. EY’s own IT department is one of
ServiceNow’s largest customers. Furthermore, EY uses ServiceNow to deliver creative solutions to
customer problems, making the relationship beneficial for both parties. Considering the work in
financial crime; there are strict rules for banks to prevent money laundering. Banks often have great
difficulty meeting all these requirements. For instance, the Dutch bank ING was fined EUR 775
million in September 2018 for negligence in combating money laundering (ANP, 2020). EY helps
banks with projects to combat money laundering and financial crime. Next to these examples, there
is also a lot of collaboration with the other Technology Consulting teams such as Cyber Security,
Data and Analytics, and Technology Transformation, and the teams within Business Consulting.

1.2 Project context

In the past years, several events have had a significant impact on the economy. The first example
is the coronavirus. The COVID-19 crisis is expected to lead to the deepest global recession since
World War II, and the most synchronized ever, with a record number of countries posting negative
GDP per capita growth in 2020 (Buysse & Essers, 2020), Figure 1 depicts this information.
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Figure 1: Percentage of countries in a recession between 1871 and 2021. Note that the percentage
of countries in a recession is the highest during the COVID-crisis (Buysse & Essers, 2020).

Another example of an event that had a significant effect on the economy in Europe, is the United
Kingdom which left the European Union on January 31, 2020 (the so-called Brexit) (NU.nl, 2022a).
After 47 years, the UK’s membership in the EU and its predecessor, the European Communities,
came to an end. The Brexit had a significant impact on the UK itself, which lost 7400 jobs in the
financial sector in Londen after leaving the European Union (EY, 2021). In addition, the war in
Ukraine has had a major impact on the economy. The war in Ukraine not only leads to a higher
price for energy, but also a decline in world trade and investment (NU.nl, 2022b).

We analyze the state of the economy with various economic indicators that tell us about the overall
health of the economy. macroeconomics is important for consumers, firms as well as governments,
to name a few examples (Hall, 2021):

• Consumers want to know how easy it will be to find work, how much it will cost to buy goods
and services in the market, or how much it may cost to borrow money.

• Businesses use macro-economic analysis to determine whether expanding production will be
welcomed by the market. Will consumers have enough money to buy the products, or will the
products sit on shelves and collect dust?

• Governments turn to macroeconomics budgeting spending, creating taxes, deciding on interest
rates, and making policy decisions.

Machine learning can add value when predicting macro-economic outcomes. Despite the growing
interest in machine learning, little progress has been made in understanding the properties of ma-
chine learning models and procedures when they are applied to predict macro-economic outcomes
(Coulombe et al., 2020).

1.3 Background about recessions

Here we provide background information on recessions and their causes. We also make a choice on
which definition of a recession is used in this research.
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1.3.1 What is a recession?

This section defines a recession as used in this thesis. A recession is a macro-economic term that refers
to a significant decline in general economic activity in a designated region. It had been typically
recognized as two consecutive quarters of economic decline, as reflected by GDP in conjunction
with monthly indicators such as a rise in unemployment (Anderson, 2022). However, the National
Bureau of Economic Research (NBER), which officially declares recessions, says the two consecutive
quarters of decline in real GDP is not how it is defined anymore. The NBER defines a recession as a
significant decline in economic activity spread across the economy, lasting more than a few months,
visible in real GDP most of the time, income, employment, and industrial production (NBER, 2008).
As can be seen, determining a recession remains quite subjective. In this research, the definition of
the NBER is used. First, this is the agency that officially declared recessions. Second, this includes
more relevant information than just GDP.

1.3.2 What causes a recession?

There are several views and theories on what causes a recession. Some economists believe that real
changes and structural shifts in industries best explain when and how economic recessions occur, like
a sudden, sustained spike in oil prices due to a geopolitical crisis might trigger a widespread recession
(Anderson, 2022). A good example of this is the war between Russia and Ukraine mentioned earlier
in this section. Another example of the type of economic shock is the spread of the COVID-19
epidemic and the resulting public health lock-downs in the economy in 2020. A recession could also
be triggered by a revolutionary new technology that rapidly makes industries obsolete (Anderson,
2022). Some theories explain recessions as dependent on financial factors. These theories focus on
either the over-expansion of financial risk during the good economic times preceding the recession
(Anderson, 2022).

1.4 Research Purpose and relevance

The research relevance consists of the practical relevance for the company, in this case, EY, and the
theoretical relevance. We first discuss the practical research relevance for EY, which has been deter-
mined in collaboration with EY’s quantitative advisory team, after which the theoretical relevance
of the thesis is discussed.

The International Financial Reporting Standards (IFRS) standard requires financial institutions (or
other companies with financial assets like loans) to estimate potential credit losses with a forward-
looking view. Although the standard does not prescribe any specific ways of doing so, most financial
institutions (77%) are taking a scenario-based approach to include forward-looking macro-economic
impact (EBA, 2021). The weights of such scenarios are often quite basic where the most likely
scenario (baseline) accounts for 50% and the remaining two (upside and downside) share the other
50% equally. Some banks mentioned using only a single forward-looking scenario (i.e the most likely
scenario) which does not meet the requirements of IFRS9 unless there is an adoption of an adjust-
ment to reflect non-linearity in the credit loss distribution for alternative scenarios (EBA, 2021).
Figure 2 depicts the approaches used by financial institutions for evaluating the possible outcomes
in the expected credit loss amount.
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Figure 2: Approach used for evaluating the range of possible outcomes in the expected credit loss
amount (EBA, 2021). Note that most financial institutions use a scenario based approach with 3
scenarios

Figure 3 shows schematically how most financial institutions take the macro-economic impact on
expected credit losses into account. The numbers are the aforementioned weights, which are not
determined with a quantitative method. Hence, in this research, we look for a quantitative method
that can determine these probabilities.
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Figure 3: Schematic representation of the scenario weights currently used by most financial insti-
tutions to include macro-economic impact in their expected credit loss calculations. The numbers
above the arrows represent the probabilities to move to the particular scenario the arrow points to.

We now discuss the theoretical relevance; right now mostly econometric models are used to calculate
macro-economic predictions. For example, the Central Planning Bureau (CPB) in the Netherlands
uses a combination of models together called the Sapphire 3.0 which is used for macro-economic
predictions and scenario analysis (CPB, 2021). The model has a twofold purpose. First, it is used
for projections of key economic indicators in the short and medium run (one to five years). Secondly,
the model is used for simulation and evaluation of macro-economic effects of fiscal policy, like in
the assessment of election platforms of Dutch political parties. For both purposes, CPB applies
several models. Detailed results from government budget models as well as budget models and
micro-econometric simulation for the labor market are used as input for the macro model (CPB,
2021). After contacting CPB it turned out that they do not use machine learning in the calculations
made with the sapphire 3.0 model. However, they have just started using machine learning models
for the unemployment estimate. In addition, there is little to no literature on predicting economic
states through machine learning. For these reasons, the research is interesting both practically and
theoretically.

1.5 Problem definition

As mentioned in the Section 1.4, estimating the forward-looking macro-economic impact for credit
loss estimation is very difficult. Most financial institutions (including EY) use a scenario-based
approach and weights that have not been established using quantitative models. The aim of this
research is therefore to find a quantitative method to predict the economic states and to determine
the probability (weight) of the transition into an economic state, will remain in an economic state,
using the economic variables inflation, unemployment rate, GDP, market index and interest rate,
which are chosen in consultation with EY.

1.6 Research Questions

The main goal of this research is to answer to which extent machine learning can be applied in
predicting the economic state of countries. We formulate the main research question here:
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1.6.1 Main question

In what way and to what extent can machine learning be applied using the economic features infla-
tion, GDP, unemployment rate, market index, and interest rate for the prediction of the economic
state of countries over a monthly time frame defining the performance of the model by the perfor-
mance metrics accuracy, precision, recall, and the F-score?

The parts of the main question are be briefly explained here. ‘In what way’ in the main research
question is a reference to the machine learning model which is deemed most suitable for this re-
search. Furthermore, we want to take the constraint of the definition of a recession into account.
We have defined a recession with the definition of the NBER, as described in Section 1.3. To what
extent is related to the performance of the model, we want to address what has required for a
good performance of the model. For instance, what are the requirements for the use of data and
parameters. The economic features have been chosen in consultation with EY, EY would like to
see whether the economic states of countries can be predicted using these economic features. The
economic state mainly refers to the recession state. We develop models using 2, 3, and 5 states for
the hidden Markov model. This research is mainly concerned with identifying the recession state(s),
since this is the only economic state that can be validated because the other economic states do not
have historical data available.

1.6.2 Sub-questions

The first step is to find out which machine learning algorithms are best suited for the research
purpose. Based on literature research, the choice is be made. Here, the limitations of the research,
mainly related to the availability of data, must be taken into account. For example, for most coun-
tries, there are no historical recession data in line with the definition of NBER. In addition, for most
countries no data on the economic features are available and for some countries only data with a
limited time frame. We also want our machine learning algorithm to be able to indicate with what
probability it will end up in the same or a different state, for example, what is the probability that
a country will be in recession next month given the state of the country at the moment. These
considerations will determine the choice for the algorithm. Furthermore, it is interesting to see
how correlated the economic states of countries are. For example, is it true that countries within a
continent are more correlated than countries that are not in the same continent?

Then we come to the use of data. In consultation with the EY, the economic features mentioned in
the main question were chosen as inputs. However, this data have to be acquired from somewhere.
In addition, we should consider how much historical data should be used in order to acquire the best
performance of the model. Missing data must also be handled correctly. It is therefore important
that we define a way to validate the model. In this way, we can gain insight into the performance
of the model and experiment with parameters and the inclusion of the amount of past data to see if
we can improve the performance.

Furthermore, we define the performance using the performance metrics accuracy, precision, recall,
and the F-score. These performance metrics are discussed in Section 4.3. An experiment is to vary
the number of states. These are varied between 2, 3, and 5. It is interesting to see what the influence
of the number of states is on the performance of the model. We expect that increasing the number
of hidden states will increase the performance of the model, but will make the labeling of the states
more complex. The expectation is therefore that the increase in performance will be at the expense
of interpretability and explainability.
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Finally, we would like to advise on possible further research that can improve the performance
of the model. Table 1.6.2 provides an overview of the chapters in which these sub-questions are
treated.

1. Which machine learning algorithms can predict recessions according to the definition of the
NBER and can calculate the probability of transitioning between economic states?

2. What is the mathematical concept of the hidden Markov model?

3. How can we address missing data and use data pre-processing methods to increase the perfor-
mance of the model?

4. Which performance metrics can be used to validate our model?

5. What are the correlations between the economic state sequences generated by the hidden Markov
model of the countries and how do they differ between the number of economic states (2,3 and
5) that are used in this research?

6. How do the results defined by the performance metrics accuracy, precision, recall, and the
F-score differ with different number of states used for the hidden Markov model?

7. What further research can be performed to increase the performance of the hidden Markov
model?

Table 1: Overview of the treatment of sub-questions per subject
and chapter.

Sub-question Chapters Subject
1 Chapter 2 Machine learning
2 Chapter 3 Hidden Markov models
3 Chapter 4 Data preparation
4 Chapter 4 Validation
5 Chapter 5 Results
6 Chapter 6 Conclusion
7 Chapter 6 Suggestions for further research

1.7 Workflow

In this section, we discuss the steps that are taken during this research. Figure 4 visualizes these
steps. The first step is to see which machine learning methods may be suitable for answering the
main research question. When the most suitable method is chosen, the theoretical framework of this
method is discussed in detail, as well as its applications and assumptions.
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Figure 4: Chronological steps taken during this research.
.

The hidden Markov model seems to be the most suitable for this research since it meets all require-
ments for this research, this is explained in detail in Chapter 2. Therefore the next step is explaining
the theory, assumptions, types, and problems the hidden Markov model can solve in the theoretical
framework. The theoretical framework is provided in Chapter 3.

The methodology is explained in Chapter 4. We start by discussing how data is collected and
how missing data is dealt with. In addition, we explain which parameters are used and how the
model is validated. Lastly, we discuss how the correlation is calculated between the (economic) state
sequences, that are generated by the model for different countries.

In Chapter 5 we experiment with the hidden Markov model. We then start with the two-state
hidden Markov model as the base model. We start with this for the following reasons:

• The states of the model are easier to decipher than with a hidden Markov model with more
states. In this case, you most likely have a recession state and a no recession state.

• By analyzing the base model, possible areas of improvement can be found. These areas of
improvement can be experimented with to see if the performance increases.

After the results of the base model have been analyzed, it is possible to experiment with possible
improvements. After this has happened, the model can be extended to the three-state and five-state
models. Finally, in Chapter 6.1 we conclude, discuss limitations, and provide recommendations for
further research.
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2 Theoretical framework: machine learning

This chapter we want to achieve two objectives:

1. To select a machine learning algorithm that meets the goals, limitations, and restrictions of
the research. In Section 1.7 is already mentioned that we will use the hidden Markov models
during this research, in this chapter we provide the reasoning for choosing the HMM.

2. To familiarize the reader with the concept of machine learning, the different methods (super-
vised and unsupervised), and the algorithms that could potentially be used for this research.

First of all, a small recap of the aim of the research, the restrictions, and limitations. Our research
aims to accurately determine economic states. While selecting the most suitable algorithm, we also
have to take into account several limitations and restrictions. The most important of these is that
the NBER does not have historical recession data available for many countries. Secondly, there are
also only a limited number of countries with historical data on the economic features of inflation,
unemployment rate, GDP, market index, and interest rate. In addition to these limitations, we also
want the model to be able to calculate transition probabilities from moving between the economic
states and staying in the current state.

In this chapter, we first explain what machine learning entails. Then we discuss the algorithms
that have the potential for our research. Finally, we choose the most suitable method. This chosen
method is explained in detail in the next Chapter.

2.1 Machine Learning

The most suitable algorithms are discussed in this chapter. Before the algorithms are explained we
elaborate on some of the basic concepts of machine learning, to give a bit of background.

Artificial intelligence (AI) is the ability of a computer program or machine to exhibit or mimic
human-like behavior (for example, visual senses, speech recognition, decision-making, natural lan-
guage understanding, and so on) (Microsoft, 2022). However, this does not mean that all artificial
intelligence methods aim to replicate human behavior. Machine learning is a subfield of AI and is
concerned with extracting knowledge from data. It is a research field at the intersection of statistics,
artificial intelligence, and computer science and is also known as predictive analytics or statisti-
cal learning (Müller & Guido, 2016). Figure 5 gives an overview of the most common algorithms
used in machine learning. The supervised and unsupervised learning subdivisions are particularly
interesting for this research and therefore be further discussed in this chapter.

2.2 Supervised Learning

Supervised learning is the most commonly used type of machine learning (Müller & Guido, 2016).
Machine learning algorithms that learn from input/output pairs are called supervised learning algo-
rithms because a ‘teacher’ provides supervision to the algorithms in the form of the desired outputs
for each example that they learn from (Müller & Guido, 2016). For example, if we want to predict
the eye color of a group of people, and we have a data set with their actual eye colors, we can verify
the performance of our model. This is an example of what is called supervised machine learning.
While creating a data set of inputs and outputs can be a time-consuming process, supervised learn-
ing algorithms are well understood and their performance is easy to measure. If your application
can be formulated as a supervised learning problem, and there is a data set available that includes
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Figure 5: Machine Learning Algorithm Mind Map (Kumar, 2020).

the desired outcome, machine learning will likely be able to solve your problem (Müller & Guido,
2016). Some advantages of supervised learning are (Joy (2022), ODSC (2020)):

• Supervised learning is relatively easy to understand.

• If it is possible to be very specific about the definition of the classes, you can train the classifier
in a way that has a perfect decision boundary to distinguish different classes accurately.

• You do not necessarily have to store the training data. In some cases, you can just use the
decision boundary as a mathematical formula.

• Supervised learning can be very helpful in classification problems and regression problems
(predicting a numerical target value from some given data and labels).

There are of course also some disadvantages to supervised machine learning (Joy (2022), ODSC
(2020)):

• Supervised learning is limited in the sense that it is not able to handle some complex tasks
in machine learning. Suppose that what we want to predict does not have a clear label or
number, this problem cannot be solved by a supervised machine learning algorithm.

• Supervised learning can not obtain unknown information from the training data as unsuper-
vised learning can.
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• In the case of classification, supervised learning will not be able to classify an unknown class
correctly. For instance, if we trained an image classifier on cats and dogs data, the classifier
will classify other animals as a cat or dogs, which is incorrect.

• When training a classifier, a lot of data are needed from each class to get good results for your
model.

• Often training needs a lot of computation time.

There are two types of supervised machine learning methods, called classification and regression,
these methods are discussed in Sections 2.2.1 and 2.2.2.

2.2.1 Classification

In classification, the goal is to predict a class label, which is a choice from a predefined list of
possibilities (Müller & Guido, 2016). For example, suppose we want to predict whether a company
will go bankrupt. Then the outcome would be bankruptcy or no bankruptcy, with bankruptcy and
no bankruptcy as class labels. Classification is sometimes separated into binary classification, which
is the special case of distinguishing between exactly two classes, and multi-class classification, which
is a classification between more than two classes (Müller & Guido, 2016). As such, predicting the
bankruptcy of companies is an example of binary classification. Suppose we want to predict whether
the type of fruit is strawberry, lime, or apple, this would be an example of multi-class classification.
We now discuss some commonly used classification methods.

Figure 6: Visualization of the classification type of supervised learning. Note that the different
classes are separated by a decision boundary (ODSC, 2020).

2.2.2 Regression

For regression tasks, the goal is to predict a continuous number (Müller & Guido, 2016). For
example, if we want to predict the value of several commodities such as oil, gold, and grain, we are
engaged in regression.
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Figure 7: Visualization of the regression type of supervised learning. Note that the regression type
identifies a pattern in the data (ODSC, 2020).

2.2.3 Training and test sets

Often, training and test sets are used for validating a supervised machine learning model. With
training and test sets, one part of the data is used to build the machine learning model, and it is
called the training data or training set. The other part of the data is used to assess how well the
model works; this is called the test data or test set. Most of the time the training set contains
75 percent of the data and the test set contains the remaining 25 percent (Müller & Guido, 2016).
Before making the split, the data set should be shuffled using a pseudo-random number generator,
otherwise, the data points are often already clustered by features. Furthermore, we need to ensure
that we will get the same output if we run the same algorithm several times, therefore we should
provide the pseudo-random number generator with a fixed seed value.

Figure 8: Schematic representation training and test set (Joy, 2022).

2.3 Unsupervised Learning

The main goal of unsupervised learning is to discover hidden and interesting patterns in unlabeled
data. Unlike supervised learning, unsupervised learning methods cannot be directly applied to
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regression or a classification problem as one has no idea what the values for the output might be
(Škoda & Adam, 2020). Some advantages of unsupervised learning are (Gareth et al. (2021), Joy,
(2022):

• It can see what humans can not identify. It can be used to find hidden patterns in data that
supervised machine learning methods can not.

• There is often less data pre-processing to be done since it is not required (or possible) to label
the data. Labeling data often demands a lot of work and time.

• The labels can be added after the data have been classified which is often easier.

• It is easier to obtain unlabeled data most of the time.

Some disadvantages of unsupervised learning are (Joy (2022), Müller & Guido (2016), Gareth et
al. (2021):

• It is often more time-consuming than supervised machine learning as it might require human
intervention to understand the patterns and correlate them with the domain knowledge.

• It is not always certain that the obtained results will be useful since there is no label or output
measure to confirm their usefulness.

• It is often more complex to understand how the model’s output is generated and how to validate
it. There is no universally accepted mechanism for performing cross-validation or validating
results on an independent data set.

• The results often have less accuracy.

There are three main types of unsupervised machine learning methods: association rule learning,
dimensionality reduction, and clustering.

2.3.1 Association rule learning

Association rule learning is a rule-based machine learning method for discovering interesting relations
between variables in large databases. It is intended to identify strong rules discovered in databases
using some measures of how interesting the relationship is (Piatetsky-Shapiro, 1991). Association
rule learning is one often used in market basket analysis. To name an example, in a store all
vegetables are placed in the same aisle, all dairy items are placed together and cosmetics form another
set. However, the rules do not extract an individual’s preference but find relationships between a set
of elements of every distinct transaction. With this machine learning method relationships between
products can be found and the store can then act upon those relationships. These rules may find
that some products are often bought together and some are not. There are various metrics in place
to indicate the strength of association between these two (Garg, 2018):

Support =
Transactions containing both X and Y

Total number of transactions
, (1)

Confidence =
Transactions containing both X and Y

Transactions containing X
, (2)

Lift =
Confidence

Fraction of transactions containing Y
. (3)
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2.3.2 Dimensionality Reduction

Dimensionality reduction refers to techniques for reducing the number of input variables in training
data. Fewer input dimensions often mean fewer parameters or a simpler structure in the machine
learning model. A model with a complex structure is more likely to overfit the training data set
and therefore may not perform well on new data. Dimensionality reduction yields a more compact
representation of the target concept, focusing the user’s attention on the most relevant variables
(Witten et al., 2016) . For instance, images can include thousands of pixels, not all of which matter
to your analysis (Castañón, 2019), in this case, dimensionality reduction algorithms are a good
solution to make the data set manageable. The most commonly used dimensionality reduction
algorithms are t-distributed stochastic Neighbor embedding (t-SNE), principal component analysis
(PCA), latent semantic analysis (LSA), singular value decomposition (SVD), and linear discriminant
analysis (LDA).

2.3.3 Clustering methods

Clustering refers to a very broad set of techniques for finding subgroups, or clusters, in a data
set (Gareth et al., 2021) . When we cluster observations from a data set, we want to do this in
distinct groups so that the observations within each group are quite similar, but the observations
from other groups are very different. For this method to work, we must define what it means for two
or more observations to be similar or different (Gareth et al., 2021) . An application for clustering
is marketing. We may have access to a large number of features containing information about a
great number of people such as median household income, occupation, location, and so forth. For
a marketing company, it is important to target the right customers, so we want to perform market
segmentation by identifying subgroups of people who might be more receptive to a particular form
of advertising.

2.3.4 Hidden Markov Model

Before we explain the Hidden Markov Model, some background knowledge is given. We start with
the Markov Chain. A Markov Chain or Markov model is a special type of discrete stochastic process
in which the probability of an event occurring only depends on the immediately previous event. This
means, that if we know the present state of a system or feature we do not need any past information
to try to predict the future state or values. Markov chains are defined by a set of states and the
transition probabilities between each state.

A hidden Markov model (HMM) is a statistical Markov model in which the system is assumed
to be a Markov process, with unobservable (hidden) states. HMM requires that there is an observ-
able process whose outcomes are influenced by the outcomes of the unobservable process in a known
way. Our goal is to learn the unobservable process using the observable process. In this research, the
economic states (recession and no recession for the two-state model) are the unobservable processes.
These unobservable processes, according to the definition of the NBER, cannot be determined with
an exact value or class label. However, with our observable processes (inflation, unemployment rate,
GDP, market index, and interest rate) we can try to learn the unobservable process. For a detailed
explanation of the operation, assumptions, and problems that can be solved using the hidden Markov
model, we refer to Chapter 3, in that chapter the hidden Markov model is described in detail.
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2.4 Algorithm selection

In this section, we discuss the choice of which algorithm is used for this research. The research
aims to predict economic states based on economic variables and calculate economic state transition
probabilities which can be used as weights for the scenarios. Since the recession state is the only
economic state with historical data available we validate by comparing the historical recession data
with the output of the chosen model.

The definition of a recession is important for the choice of the algorithm, we therefore recap it: a
significant decline in economic activity spread across the economy, lasting more than a few months,
visible in real GDP most of the time, income, employment, and industrial production (NBER, 2008).
Because the definition of the NBER is not an exact number, we can not regression to identify the
recession periods. If the definition of a recession was only dependent on a numerical value this would
have been possible. Furthermore, the definition is not a type of exact class. In addition, the histori-
cal recession data that is in line with the definition of the NBER is only available for a few countries.
Therefore the supervised learning algorithms can not be used directly. However, it is possible to
create economic labels. This could theoretically be possible, however, since the definition is not
exact, creating the economic labels would be a difficult process and subjective process. To illustrate
this, it will be difficult and subjective to define a significant decline in economic activity, GDP, and
income. There is no theory, regarding creating recession labels, and therefore many assumptions
would have to be made. Also, a recession in Japan can have other values for economic variables
than a recession in the US. So, you would also have to take a country-specific approach to create
the labels. Take into account that all these considerations have to be done for all three economic
states and not just the recession state. It is, therefore, a lot more convenient if there are methods
available that can divide periods into economic states without having to label them.

We, therefore, have to examine the unsupervised learning methods. Association rule learning is
not applicable for research since it is not able to identify the economic periods as well as give tran-
sition probabilities between the economic periods. It could only be used to analyse the association
between the country’s state sequences and economic features. Dimensionality reduction and cluster-
ing methods are probably able to identify the economic states by clustering them. With clustering,
it would even be able to find the state transition probabilities by creating a time series and inferring
probabilities from them. However, this is one of the main problems that can be solved with a hidden
Markov model. Because of this, it is more convenient to use the hidden Markov model since we want
to use the three-state HMM for one of the fundamental problems which it can solve.

Hidden Markov models appear to be the best solution to the problem because they meet all
requirements for this research:

• The hidden Markov model can divide periods into different states (even without a label), and
should therefore be able to recognize the recession state(s) with the chosen features.

• The hidden Markov model can provide information about the transition probabilities. In other
words, the hidden Markov model can assign a probability to the change or preservation of a
state. It can therefore say how likely it is that a country will go into another state next month
(or another time frame) based on which state it is in right now. This is the true essence
in which the hidden Markov model distinguishes itself from the other unsupervised machine
learning algorithms.

• The hidden Markov model can generate state sequences (the economic states) as output based
on the observation sequences (the features). The state sequences of the countries can then
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be used to create correlation matrices. In this way, it is possible to calculate the correlations
between the state sequences of countries at the same point in time. These correlations can
provide additional inside into the macro-economic dependencies between countries and conti-
nents. Furthermore, with the use of machine learning, the missing values for the features could
be supplemented with the values of countries that have a high correlation in the economic state
sequence with the country concerned.
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3 Theoretical framework: hidden Markov models

To provide a background on hidden Markov models, we discuss several topics. First, We explain
hidden Markov models with an example about the weather. When we have provided intuition of how
the hidden Markov model works, we work out the mathematical concept of the hidden Markov model,
the assumptions on which the model is based, and the different types of model typologies. After
which we discuss the elements of the hidden Markov model with a discrete observation probability
distribution and the hidden Markov model with a continuous observation probability distribution.
Then it is time to elaborate on the problems that can be solved with the hidden Markov model and
how this is possible. Finally, we conclude the chapter by how the applications of the hidden Markov
models are used during this research.

3.1 The weather example

To familiarize the reader with the problem, we start by explaining the HMMs further with a weather
example. Consider two friends, Bob and Alice, Bob lives in Enschede and Alice in Amsterdam. They
talk over the phone daily to discuss what they did that day. Bob is interested in the following ac-
tivities: walking in the park, shopping, and cleaning his apartment. The choice of what to do is
determined exclusively by the weather on a given day. Alice does not have information about the
weather in Enschede but based on what Bob did that day she tries to guess what the weather must
have been like. Alice believes that the weather operates as a discrete Markov chain, with two states:
‘Rainy’ and ‘Sunny’, but she cannot observe them directly (they are hidden from her) (Wikipedia,
2022).

On each day, there is a certain probability that Bob will perform one of the aforementioned ac-
tivities based on the weather, these activities are the observations. The probabilities of going from
one hidden state to another are called the transition probabilities, in our example, these are the
probabilities of going from state ‘Sunny’ to ‘Rainy’ and the other way around, and the probability
of staying at a stage. The probabilities from the observations to states are called the emission prob-
abilities, the probability that the observations are emitted. The entire system is called the hidden
Markov model. Alice knows the general weather trends in the area and what Bob likes to do on
average. Figure 9 depicts the results.

A hidden Markov model consists of two stochastic processes. The first stochastic process is that of
the unobservable (hidden) states. In our weather example, this is the weather in another city. If we
live in Amsterdam, we can not observe the weather in Enschede. The other stochastic process is the
observable process, which can be observed directly, in our example these are the activities that are
undertaken: walking, shopping, or cleaning.

The transition probabilities can be summarized with the state transition matrix. The probabilistic
relation between the observations and states is given by the observation matrix. Lastly, we have
the initial state distribution which resembles the start. The matrices corresponding to our example
are given in chronological order in the Table 2. In the matrices given in Table 2, the ‘S’ stands for
‘Sunny’ and the ‘R’ for ‘Rainy’. Furthermore, the ‘W’ stands for ‘Walking’, ‘Sh’ for ‘Shopping’, and
the ‘C’ for ‘Cleaning’. The matrices are row stochastic, meaning that each element is a probability
and the elements of each row sum to 1, that is, each row is a probability distribution (Stamp, 2004).
Now that the operation of the HMM has become clearer based on the weather example, we will now
discuss the technical aspects of the HMM.
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Figure 9: Schematic representation of the HMM weather guessing game. The start indicates with
which probability the sequence starts in which state. So there is a 0.6 probability that the first
state is ‘Rainy’ and 0.4 that it is ‘Sunny’. The black lines between the states ‘Rainy’ and ‘Sunny’
indicate the state transition probabilities. The circles with ‘Walk’, ‘Shop’, and ‘Clean’ indicate the
observable processes and the dotted lines indicate the emission probabilities (Wikipedia, 2022).

Table 2: Matrices HMM weather example.
A = S R

S 0.6 0.4
R 0.3 0.7

B = W Sh C
S 0.6 0.3 0.1
R .0.1 0.4 0.5

π = S R
0.6 0.4

3.2 A general Hidden Markov model

In this section, we describe the basic elements, notations, and assumptions of a general HMM. Since
our example from the previous section is that of a discrete observation process, we first define the
notation and structure of the discrete HMM. After this, we give an extension to the hidden Markov
model with continuous observable signals.

3.2.1 Assumptions of the hidden Markov model

An HMM makes two independence assumptions (Jurafsky & Martin, (2021), Sutton & McCallum,
(2012):

1. Markov Assumption / limited history hypothesis: Each state depends only on its
predecessor. Formally: P (xt | xt−1, ..., x0) = P (xt | xt−1), where xt is the state at time t, xt−1

is the state at the preceding state and x0 is the first state in the state sequence.

2. Output Independence / stationary hypothesis: Each observation variable depends only
on the current state and not on any other states or any other observations (Xiao, Liu, &
Wang, 2005). Furthermore, the state transition function is irrelative to the time when a state
transition occurs.
Formally: P (Ot | x0, ..., xt, O0, ..., Ot) = P (Ot | xt), where Ot is the observation at time t, xt
is the state at time t.

Stationarity means that the statistical properties of a process generating a time series do not change
over time (Palachy, 2019).
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3.2.2 The hidden Markov model with a discrete observable distribution

Below the mathematical notations of the discrete hidden Markov model are given, these are the
mathematical notations used in the field of HMM and its applications. To make the reader more
familiar with these notations, they are explained using the weather example. A basic, discrete HMM
is characterized by the following elements (Stamp, 2004):

• T = length of observation and state sequence.

• O = (O0, O1, ..., OT−1) = the observation sequence.

• X = (x0, x1, ..., xT−1) = the state sequence.

• N = a finite number of unobservable states.

• M = the number of distinct observation symbols.

• S = {q0, q1, ...., qN−1} = distinct states of the Markov process.

• V = {v0, q1, ...., vM−1} = distinct observable signals of the Markov process.

• A = the state transition distribution.

• B = the observation probability distribution.

• π = p(xi = i) for i = 1...N = the initial state distribution.

An HMM models a sequence of observations O = (O0, O1, ..., OT−1) by assuming that there is
an underlying sequence of states X = (x0, x1, ..., xT−1). In our example about the weather, the
observation sequences are the activities that have been undertaken, i.e. walking, shopping, or
cleaning. The state sequences are the weather conditions, so sunny or rainy. The individual states
are elements of the state space S. A state space is the set of all possible configurations of a system
(Nykamp, 2019). A sample path is a particular realisation of the process. We can define different
sample paths based on the sample space. So in our weather example, the state space would be
S = {Sunny, Rainy}. Note that S and X are not the same, x0 and x1 can be the same value since it
represents the state that we are in given the clock time t. S on the other hand represents the possible
states that the HMM can be in, therefore q0 and q1 can not be the same. V is the set of possible
observations, in our weather example, this results in set V = {Walking, Shopping, Cleaning}. An
example of what the observation sequence and state sequence (sample paths) could be is given below:

O = (O0, O1, O2, O3, O4) = (Walking, Shopping, Shopping, Cleaning, Walking) (4)

X = (x0, x1, x2, x3, x4) = (Sunny, Sunny, Sunny, Rainy, Sunny) (5)

The length of or observation sequence and state sequence is 5 as can be seen from Equations 4
and 5 (T = 5). Equations 4 and 5 are sample paths, a sample path of a stochastic process. The
order and length of these sample paths can differ. A sample path is any set of possible values to
which the appropriate random variables might map a given point in the sample space. The number
of unobservable states in our weather example is 2 (N = 2) because the weather in Enschede can
be ‘Sunny’ or ‘Rainy’ in our example. The number of distinct observation symbols in our weather
example is 3 (M = 3), namely ‘Walking’, ‘Shopping’ or ‘Cleaning’.

The state transition distribution, the observation probability distribution, and the initial state dis-
tribution are shown in Table 2. The state transition matrix A has a length of N ∗ N where the
elements in the matrix are given by:

aij = P (xt+1 = qj | xt = qi), 1 ≤ i, j ≤ N. (6)

19



The observation probability distribution B for the discrete HMM is N ∗M , where the elements in
the matrix are given by:

bj(k) = P (Ot = vk | xt = qj), 1 ≤ j ≤ N, 1 ≤ k ≤M. (7)

Furthermore, both matrices are row stochastic which means that
∑N

j=1 aij = 1 and
∑N

j=1 bj(k) = 1
and the probabilities aij and bj(k) are independent of t. This means that the HMM assumes
that all probabilities hold at all points in time, this is also called the time-homogeneous Markov
process. In summarizing, we note that under the aforementioned assumptions the HMM requires
three probability distributions (Sutton & McCallum, 2012):

1. π: The distribution over the initial states.

2. A: The transition distribution.

3. B: The observation distribution.

Concluding, An HMM is defined by A, B, and π (and implicitly, by the dimensions N and M)
(Stamp, 2004). The HMM is denoted by: λ = (A,B, π).

3.2.3 Illustration of the hidden Markov model and types of model topologies

Figure 10 illustrates a hidden Markov model, where Xt represents the hidden state sequence and
all other notation is given above. The Markov process, which is hidden behind the dashed line, is
determined by the current state and transition probabilities A. As can be seen, we can only observe
O, which are related to the (hidden) states of the Markov process by the observation probabilities
B. There are three main types of model topologies. The first one is ergodic, in this model topology,

Figure 10: Illustration hidden Markov model (Stamp, 2004).

we allow transitions to any state at any time. The second one is the most commonly used type of
HMM for sequential modeling. The third one is the linear model topology. In this model topology,
it is not permitted to jump states. Figure 11 shows a visual representation of the three different
model topologies. The one that applies to our weather example is the ergodic one depicted in Figure
11, this is also the one that is used during our research. There are other ergodic model typologies
but this is the one that is used in our research since it is possible to transition between any economic
state at any time.

3.2.4 The hidden Markov model with a continuous observation distribution

Earlier in this chapter, the hidden Markov model with a discrete observation distribution was dis-
cussed, but there are also applications of the hidden Markov model with continuous observation
distributions. In this research, we also use a hidden Markov model with a continuous observation
distribution for the emission probabilities.
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Figure 11: Illustration model topologies of the hidden Markov model.

In a continuous hidden Markov model the observation probabilities bj(k) are replaced by a con-
tinuous density bj(x)(1 ≤ j ≤ N) , one for every state in the Markov chain), where x is some
observation vector that is being modeled. The most general probability density function for the
continuous HMM is defined as a finite Gaussian mixture distribution of the form:

bj(x) =

Mj∑
m=1

cjmN (x | µjm,
∑
jm

). (8)

Here cjm is the mixture coefficient for the mth mixture in state j, N is the Gaussian density, with
mean vector µjm and covariance matrix

∑
jm, for the mth mixture in state j. The mixture weights

satisfy the following conditions:

M∑
m=1

cjm = 1, 1 ≤ j ≤ N, cjm ≥ 0, 1 ≤ m ≤M. (9)

So that the probability density function is properly normalized, so that:∫ ∞

−∞
bj(x)dx = 1, 1 ≤ j ≤ N. (10)

The Gaussian mixture distribution given in Equation 8, can be used to approximate any finite
continuous density function. This makes it an excellent method to be applied to many problems.
Figure 12 depicts an example of a Gaussian mixture density.

Figure 12: Example of a Gaussian mixture probability density. The density consists of three normal
distributions (µ1 = 5, µ2 = 10, µ3 = 15) with equal weights.
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3.3 The three fundamental problems of the hidden Markov model

Three fundamental problems can be solved using HMMs (Stamp, (2004), Jurafsky & Martin, (2021)).
We first briefly describe the three problems, after which we give the efficient algorithms for their
solution. The three fundamental problems are:

1. Likelihood: Given λ = (A, B, π) and a sequence of observations O, find P (O | λ). Here we
want to determine a score for the observed sequence O concerning the given model λ. Problem
1 is also called the evaluation problem. It answers the following question: Given a model and
a sequence of observations, how do we compute the probability that the observed sequence
was produced by the model? An application for which the likelihood problem could be used
is to understand whether a particular sentence was written by an author. The likelihood
problem allows you to choose the best match among competing models. With the likelihood
problem, we can adjust the parameters of the hidden Markov model (think of the initial state
distribution, state transition probabilities, observation distribution and the number of states),
and compare in which model the observations are most likely.

2. Decoding: Given λ = (A, B, π) and an observation sequence O, find an optimal state
sequence for the underlying Markov process. So, what sequence of states best explains a
sequence of observations? In other words, we want to uncover the hidden part of the Hidden
Markov Model. The decoding problem is used in our weather example. Given the observations
sequence given in Equation 4, transition distribution A, observation distribution B, and initial
state distribution π, the model generates a state sequence that it considers most probable,
for example, this could be the state sequence given in Equation 5. The decoding problem
is a big part of this research. We use the economic features, i.e. the observation sequences
inflation, unemployment rate, GDP, market index, and interest rate to see what the hidden
Markov model considers the most probable economic state sequences. Normally there is no
correct solution for the decoding problem. Since the actual results are normally not known
when applying the hidden Markov model. Think of the weather example where we cannot
know the weather in the other city. However, we looked up the historical recession periods for
the countries the United States, the United Kingdom, and Japan to be able to compare these
with the state sequence output of the hidden Markov model, this way the performance of the
HMM can be validated.

3. Learning: Given an observation sequence O and the dimensions N and M, find the model λ
= (A, B, π) that maximizes the probability of O. So given a set of observation sequences how
do we learn the model probabilities that would generate them? This can be viewed as training
a model to best fit the observed data.

In the next section, the decoding problem will be discussed. This is because it contained the
most important part of the research and because we want to keep the research readable and not
overwhelmed with mathematical elaborations. The likelihood problem and learning problem are
used during this research, for the solutions to these problems are discussed in detail in Sections 7.1
and 7.2.

3.3.1 Solution to the decoding problem

Given the model λ = (A, B, π) and a sequence of observations O=(O1, O2, ...., OT ), our goal is to
find the most likely state sequence X = (x1, x2, ..., xT ). This can be done by two approaches:

1. Maximizing the individually most likely states.
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2. Maximizing the sequences of states (path) as a single entity.

In the context of this research this would be given the observation sequences inflation, unemployment
rate, GDP, market index and interest rate the model tries to find the most likely (economic) state
sequence (the second approach). In our weather example we would look for the most logical weather
(state) sequence based on the activities (observations) ‘Walking’, ‘Shopping’, and ‘Cleaning’. We
start by explaining the first approach and end with why it is not optimal. Below we explain the
second approach, which is used in this research.

Individually most likely states
Mathematically finding the most likely individual states given the model is given by the following
equation:

γt(j) = P (xt = qj | O, λ). 1 ≤ j ≤ N, 1 ≤ t ≤ T. (11)

Where γt(j) is the probability of being in state qj at time t. Remember that xt is the state of the
state sequence at time t. We can use the work we did with the forward and backward variable to
solve this question:

γt(j) = P (xt = qj | O, λ) =
P (xt = qj ,O, λ)

P (O, λ)
=

αt(j)βt(j)∑N
i=1 αt(i)βt(i)

,

N∑
j=1

γt(j) = 1. (12)

Remember that αt is the probability of everything that comes before t and βt is the probability of
everything that comes after t. We now have to search over all γt(j) to find the most likely state
sequence. We find the probability of the most likely state sequence by dividing the value of the
most likely state sequence by the sum of all possible state sequences. Figure 13 depicts this process.
Hence, we look over all the states, 1 to N , and what is the one that maximizes the probability. The
value of this state is what we call i∗t , which can be found using the following equation:

i∗t = argmax
j

[γt(j)], 1 ≤ t ≤ T, 1 ≤ j ≤ N. (13)

Figure 13: Visualization of combining the α and β to find the state sequence. We find the probability
of the most likely state sequence by dividing the most likely state sequence path, by all possible
paths (Patterson, 2020b).

This approach allows us to maximize the expected number of correct states but the result might not
be in line with the properties of the hidden Markov model. Because the hidden Markov model is

23



a model that deals specifically with sequential data, the current time t that we are in is dependent
on the previous time t − 1 that we were in. How it is now solved by using γt is to think of each
step independently. In other words, the optimal state sequence might allow for impossible state
transitions (aij = 0) for some individually optimal i, j. We explain what is meant here with an
example, which is depicted in Figure 14. Consider a robot vacuum cleaner, this vacuum cleaner is
used to vacuum the kitchen and living room. Between q1 and q2 is a door through which the vacuum
cleaner can go from the kitchen to the living room. This is the only way this is possible. The method
just discussed in this section could give a transition from q5 to q1, when it actually wasn’t possible,
the transition probability between those states is 0 (because there is no door).

Figure 14: Schematic visualization of the example of the robot vacuum cleaner. The black arrows
indicate the transitions the robot can make between the possible states qi. The red arrow indicates
an impossible transition (transition probability is equal to zero between q5 to q1) that can be returned
with the method discussed in this section.

The Viterbi algorithm
Because looking at the individually most likely states can lead to impossible state transitions, we
consider the second approach, which is looking at the sequence of states as a single entity. With this
approach, we want to find the sequence of states (path), whose conditional probability as a whole is
optimal given some observation sequence.

We want to find the path sequence that maximizes P (X | O, λ). Since we are interested in maximiz-
ing the combination of the state sequence and observation sequence we can say that this is equivalent
to the probability of a state sequence and an observation sequence given our model:

P (X | O, λ) = P ({x1, x2...xT }, {O1, O2...OT } | λ). (14)

Equation 14 can be solved using the Viterbi algorithm (Jurafsky & Martin, 2021), where δt(j),
represents the probability that the HMM is in state j after seeing the first t observations and
passing through the most probable state sequence x1, ..., xt−1, given the Hidden Markov Model λ.
The value of each cell δt(j) is calculated recursively taking the most probable path that could lead
us to this point. Each patrial most probable path expresses the probability (Jurafsky & Martin,
2021):

δt(j) = max
x1,...,xt−1

[P (x1, ....xt−1, xt = qj , O1, O2, ...Ot, | λ)]. (15)

Where δt(j) is the sequence of states that maximizes the probability of seeing that particular states
and then ending up at state qj at time t. In our weather example this would be finding the most
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probable weather sequence given the activities. If only the activities ’Shopping and ’Walking’ oc-
curred in the observation sequence, the most probable path consists probably of a lot of ’Sunny’
states. For t = 1, Equation 15 in invalid because there are no preceding states. Still this can be
solved using the probability of being in that state given that t = 1 and the observed signal O1:

δ1(j) = P (x1 = j,O1) = πjbj(O1). (16)

We now find the best sequences of states is extending them by one, so going from t to t+ 1. What
is the state that maximized δ at the previous time step i, and then considering all the ways to get
from the previous state i to the next state j. Then the step to the next state is taken by multiplying
with the state transition probability aij , the probability of moving from state i to state j. Lastly,
we multiply with the probability of seeing the next observation at the current state bj(Oj).

δt+1(j) = [max
i
δt(i)aij ] ∗ bj(Ot+1). (17)

The difference between the forward and backward algorithm and the Viterbi algorithm is that we
are now keeping track of where we came from at each time step to recreate the path. To keep track
of the states that maximize the δ′s, we are going to use a variable called ψ, which is defined by:

ψt(j) = argmax
i

[δt−1(i)aij ]. (18)

The ψ answers the question: Given that I am here, with which path did I most likely arrive?’. The
complete Viterbi algorithm is given by the following steps:

1. Initialization:

δ1(i) = πi
¯
i(O1), 1 ≤ i ≤ N ,

ψ1(i) = 0.

2. Recursion:

δt(j) = max1≤i≤N [δt−1(i)aij ]bj(Ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N ,
ψt(j) = argmax1≤i≤N [δt−1(i)aij ], 2 ≤ t ≤ T, 1 ≤ j ≤ N .

3. Termination:

P ∗ = max1≤i≤N [δT (i)],
i∗t = ψt+1(i

∗
t+1), t = T − 1, T − 2, ..., 1,

x∗T = qi
∗
T .

4. Path backtracking:

i∗t = ψt+1(I
∗
t+1), t = T − 1, T − 2, ..., 1,

x∗t = qi
∗
t .

Where, P ∗ denotes the total probability of the most likely path for some observation sequence O, i∗t
is the index of the most likely state at time t, and x∗t is the most likely state at time t of the most
likely path. The Viterbi algorithm is a lot like the forward algorithm from the likelihood problem.
The difference is that the forward algorithm takes the sum of the probabilities that could lead to that
point resulting in the probability of arriving at that specific point and the Viterbi algorithm takes
the maximum probability of arriving at that point (most likely path). This makes sense since in the
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likelihood problem we want the probability of an observation sequence occurring, so we sum over
the probabilities. With the decoding problem, we want to know which state sequence is most likely
given an observation sequence, therefore we take the path with the highest probability, therefore we
maximize with the Viterbi algorithm.

3.4 Conclusion

A hidden Markov model is a Markov model in which the system is assumed to be a Markov process,
with unobservable (hidden) states. The hidden Markov model makes 2 independence assumptions,
the first one is that each (economic) state only depends on the previous state. To give an example, if
there is a recession in January 2022, the economic state in February 2022 only depends on January
2022 and not on the economic state in the data points before. The second independence assumption
is that each observation variable depends only on the current state and not on previous states or
other observations. In the context of this study, that would mean the observable variable GDP
only depends on the value of the current economic state (recession or no recession for the two-state
model) and not on the economic state of the data points before or the values of the other features
(inflation, unemployment rate, market index, and interest rate). This is of course questionable in
practice and that is why we also use higher order hidden Markov models. With higher-order hidden
Markov models more historical data points are used than only the previous data point.

Furthermore, we discussed the three fundamental problems the HMM can solve, the first one be-
ing the likelihood problem. The likelihood problem is used to determine the probability that the
model has generated the sequence of observations. With the likelihood problem, we can adjust the
parameters of the hidden Markov model (for instance the number of states) and compare in which
model the observations are most likely. This is the application we use the likelihood problem for
in this research. The likelihood score can not be compared directly but can be used to calculate
the Akaike Information Criterion and the Bayesian Information Criterion, with which we can com-
pare the models. The second problem which can be solved using an hidden Markov model is the
decoding problem. The decoding problem calculates the optimal state sequence given sequences of
observations. It is about uncovering the hidden part of the hidden Markov model. This is probably
the most relevant application of the hidden Markov models in this research. We use the decoding
problem to find the optimal sequence of economic states. We validate this with the recession state
since this is the only economic state for which historical data is available. We want to confirm
that the hidden Markov model can identify the economic states. We validate this by comparing the
historical economic state sequences with the state sequences produced by the model. Lastly, there is
the learning problem. With the learning problem, we try to learn the parameters of the HMM given
an observation sequence and a possible set of states. We use the learning problem in our research
to calculate the initial state distribution and the economic state transition probabilities. These eco-
nomic state transition probabilities can be used as alternatives for the current scenario weights used
to incorporate macro-economic impact in credit risk calculations, given that the HMM can identify
the different economic states. In this research, the transition probabilities for the countries United
States, United Kingdom, and Japan will be calculated for the three-state hidden Markov model.
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4 Methodology

In this chapter, we discuss the methodology of this research. We start by discussing which data
are used, how they are processed, and how missing data are handled. Next, we explain how we
validate this research. Because the recession state varies per run of the model, additional steps have
to be taken to calculate the (supervised learning) performance metrics accuracy, precision, recall,
and the F-score. Furthermore, we discuss how to calculate the Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC). Finally, we discuss how to calculate the correlation of
the hidden Markov model between the state sequences of the different countries.

4.1 Data preparation

We could use monthly or yearly data for the research, we chose monthly data for the following
reasons:

• First, there are not many historical data available on the economic features of inflation, un-
employment rate, GDP, market index, and interest rate. This also applies to the historical
recession dates that are in line with the definition of the NBER. If we take annual data, this
means that we have 12 times fewer data points.

• Second, it is more interesting and challenging to forecast in a shorter time frame because the
values of economic features differ less than with annual data.

• Third, there are of course recessions that end in the middle of the year. However, you cannot
apply this nuance to an annual model and in these cases, a choice has to be made whether the
year is classified as a recession or not.

4.1.1 Observable processes used

We need input to let the hidden Markov model generate the state sequences. The following economic
features have been chosen in consultation with EY:

• Inflation rate.

• GDP return (growth rate).

• Unemployment rate.

• Market index returns.

• Interest rate return.

These economic features are therefore the observation sequences that are used for uncovering the
hidden states of the hidden Markov model. In Section 5.2.1 there is experimentation with these
features by evaluating the difference in performance when we prepare the data in different manners.
the data preparation of some features. The data of the observation sequences are collected by EY and
are obtained from the data provider Reuters. Furthermore, the following values for the parameters
explained in the previous chapter apply:

• T = depends on the number of data points available per country.

• N = 2, because there is a recession state and a no recession state.

• M = 5 (# features).
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• S = {recession, no recession}.
• V = {inflation, unemployment rate, GDP, market index, interest rate}.

As mentioned in the previous chapter T is the length of observation and state sequence, N is the
finite number of unobservable states, M is the number of distinct observation symbols, S are the
distinct states in the Markov process and V is the set of possible observations. Figure 15 depicts
a visual representation of the two-state hidden Markov model in the context of this research. We

Figure 15: Schematic representation the two-state annual HMM for the US. The black arrows begin-
ning at ‘start’ represent the initial state distribution, the black arrows originating from ‘Recession’
and ‘No Recession’ represent the state transition distribution, and the dotted lines the emission
probabilities.

.

have a continuous hidden Markov model, these are given by the dotted lines. These observation
probabilities are modeled by Gaussian mixture distributions, which are discussed in Section 3.2.4.

4.1.2 Missing data

Data collection is quite a challenge. The data for the features have been obtained per country from
the Reuters data set. There are three problems with the data:

1. Not all features have the same number of historical data. For instance, GDP could be available
from 1980 but the interest rate from 1990.

2. Some values are missing for several countries and GDP only quarterly data are available (so
two missing values every quarter because we use monthly data).

3. In many cases, the market index has been around for a shorter period.

The above issues have been resolved in the following ways:

1. The model only starts predicting when all features are available. For example, for the US this
will be from 1960, but for other countries only in 1980 or 2000.
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2. The missing values are filled by the forward filling function in Python. Forward filling means
filling missing values with previous data. The reason why we do not use interpolation is that
the hidden Markov model takes the values of the features of time t to predict t + 1 and the
moment we use interpolation the values of features of time t + 1 are already used for the
prediction of the state t + 1. The same logic applies with backward filling, where we use the
next data point to fill missing values. For GDP, our forward filling method results in three
times the same value because only quarterly data is available. The first 2 rows have also been
removed because they are missing for the GDP and because a row of data is lost during the
data processing of the market index and the interest rate (since they are converted to relative
changes).

3. The problem with the market index is solved by taking the returns or differences of the S&P500
when the market index of a particular country has less historical data available than the
historical data of the rest of the features. In reality, this solution is rarely used, because most
of the time the market index goes back further in time than the data of one of the other
features. It is important to note that no data points are missing from the market index values
of all countries.

4.2 The application of the three fundamental problems that can be solved
with the hidden Markov model

In this section, we discuss how the specific applications of the hidden Markov models are applied in
this research. We start with the first fundamental problem the hidden Markov model can solve; the
likelihood problem.

As explained in Chapter 3 the likelihood problem allows you to choose the best match among com-
peting models. With the likelihood problem, we can adjust the parameters of the hidden Markov
model (for instance the number of states) and compare for which model the observations are most
likely. This is also the application for we use the likelihood problem. We calculate the likelihood
for hidden Markov models with different parameters. However, they can not be compared directly
because the three-state model has far more parameters than the two-state model. We, therefore, use
the likelihood to calculate the Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC).

The Akaike information criterion is an estimator of out-of-sample prediction error and thereby rel-
ative quality of statistical models for a given set of data. Given a collection of models for the data,
AIC estimates the quality of each model, relative to each of the other models. Thus, AIC provides a
means for model selection (Zajic, 2019). The AIC is a number that can be used to determine which
model is most likely relative to the other models. AIC is most frequently used where it is difficult
to test the model’s performance on a test set, for instance with a small data set or time series. It
is important to note that the AIC adds a penalty term for the complexity of the model. The best
AIC is the lowest one possible, which indicates the best balance between complexity and likelihood.

The BIC is closely related to the AIC, it is also based on the likelihood function and a criterion for
model selection. The difference between the AIC and the BIC is that the penalty term of the BIC
is greater than that of the AIC (Klassen, 2020). Another difference is that BIC also considers the
number of observations in the model, which AIC does not. BIC is widely used for model identifica-
tion in time series and linear regression, but the use of the BIC is not limited to these applications
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and can be used for any set of likelihood-based models (Klassen, 2020). The formulas for calculating
the AIC and BIC for a hidden Markov model are given by:

AIC = −2 ∗ log(L) + 2 ∗ p (19)

BIC = −2 ∗ log(L) + p ∗ log(T ) (20)

In these Equations, L is the likelihood of the model, p the number of independent parameters of
the model, and T is the length of the time series. The number of independent parameters p can be
calculated as follows:

p = m2 + km− 1 (21)

In Equation 21, m denotes the number of hidden states of the model, k a numeric value representing
the number of parameters of the underlying distribution of the observation process. In our research k
will be the sum of the number of features used times 2, since we use a Gaussian mixture distribution
of 1 and a Gaussian mixture has a mean and standard deviation.

The second problem which can be solved using an hidden Markov model is the decoding prob-
lem. As explained in Chapter 3, the decoding problem calculates the optimal state sequence given
sequences of observations. It is about uncovering the hidden part of the hidden Markov model.
This probably the most relevant application of the hidden Markov models in this research. We use
the decoding problem to find the optimal sequence of economic states. We validate this with the
recession state, since this is the only economic state for which historical data is available.

Lastly, there is the learning problem. With the learning problem we try to learn the parameters of
the HMM given an observation sequence and a possible set of states. We use the learning problem in
our research to calculate the initial state distribution and the economic state transition probabilities.
These economic state transition probabilities can be used as alternatives for the current scenario
weights used to include macro-economic impact in credit risk calculations, given that the HMM is
able to identify the different economic states. In this research the transition probabilities for the
countries United States, United Kingdom, and Japan will be calculated for the three-state hidden
Markov model.

4.3 Validation method

In this section, we describe how we apply validation during this research, we use several performance
metrics in this research, which are explained in this section. The performance metrics for the
countries United States, United Kingdom, and Japan are used to compare the output of the model
with the historical recession data from the NBER, for the other countries this data is not available.
The other countries are compared to the global recession periods, the following global recessions
have occurred between 1960 and now :

• 1973 - 1975 (Kose et al., 2020).

• 1980 - beginning of 1983 (Kose et al., 2020).

• 1991 (Kose et al., 2020).

• 2008 - 2009 (Kose et al., 2020).

• 2020 (Mankiw, 2020).
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The main goal of comparing to the global recession periods is to make the process of labeling the
output of the model easier. For example, there is a greater chance that a country is in recession
during a global recession, this way we can decipher more easily the recession states for the countries
which do not have historical data available. Labeling the states is necessary for making the correla-
tion matrices.

The main problem with validating our unsupervised learning algorithm with supervised learning
performance metrics is that we do not know the recession state beforehand. If the recession state is
1, we can calculate the performance metrics the same way as with supervised learning algorithms.
These performance metrics are calculated based on a confusion matrix. In the field of machine learn-
ing and specifically the problem of statistical classification, a confusion matrix, also known as an
error matrix, is a specific table layout that allows visualization of the performance of an algorithm,
typically a supervised learning one (Stehman, 1997). The name stems from the fact that it makes it
easy to see whether the system is confusing two classes (i.e. commonly mislabeling one as another).
In Figure 16 an example of a confusion matrix is given. There are 4 important terms (Mishra, 2018):

Figure 16: Schematic representation of the confusion matrix.

• True Positives: The number of times in which the model predicted recession and the the actual
economic state in that period was also a recession.

• True Negatives: The number of times in which the model predicted no recession and the the
actual economic state in that period was also no recession.

• False Positives: The number of times in which the model predicted a recession but the actual
economic state in that period was no recession.

• False Negatives: The number of times in which the model predicted no recession but the actual
economic state in that period was a recession.

With this confusion matrix several performance metrics can be calculated (Mishra, 2018), which are
discussed in this section. Accuracy is the ratio of several correct predictions to the total number of
input samples, i.e.,

Accuracy =
TP + TN

P +N
. (22)

Precision is the number of correct positive results divided by the number of positive results predicted
by the classifier, i.e.,

Precision =
TP

TP + FP
. (23)
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Recall is the number of correct positive results divided by the number of all relevant samples (all
samples that should have been identified as positive), i.e.,

Recall =
TP

TP + FN
. (24)

The F-score is the harmonic mean of the precision and recall, i.e.,

F-score =
2 ∗ Precision ∗ Recall
Precision + Recall

. (25)

The greater the F-score, the better the performance of our model. If the recession state is 0 and not
1 we have to make adjustments to the equations. Since the state sequence is mirrored, the formulas
are different. The performance metrics can still be determined, but the performance metrics are
now given by the following equations:

Accuracy∗ =
FN + FP

P +N
= 1−Accuracy. (26)

Precision∗ =
FN

FN + TP
. (27)

Recall∗ =
FN

FN + TN
. (28)

F − score∗ =
2 ∗ Precision∗ ∗Recall∗

Precision∗ +Recall∗
. (29)

With the 3-state model there are two problems with the validation:

• First, as with the two-state model, it is not clear which state is the recession state. When the
3-state hidden Markov model is applied, it can be 0, 1, or 2, which is not the same for every
run of the model.

• Second, there is now one class more than in the historical data set, where there are only 2
classes, namely a 1 and a 0. The 1 here stands for the recessions and the 0 for the no recession
state.

We solve the first problem by calculating the performance metrics of all 3 scenarios; in case the
recession state is 0, 1, or 2. The second problem we solve by converting the 3-state model to 3
different 2-state outputs. We validate the models with the scenario that any number can be in a
recession state and then compare this with the historical recession data. In this historical recession
data frame, 0 is the no recession state and 1 is the recession state. We then calculate the performance
metrics for all scenarios, after which we choose the right model. Figure 17 schematically depicts this
process. In short, we transform the results of the model from a multi-state output to a binary state
output. This method could be extrapolated to a 4,5 or N state hidden Markov model.
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Figure 17: Schematic representation of the validation process for the 3-state hidden Markov model.
The first column indicates the output of the model. After this, the performance metrics are calculated
for all three possible recession state scenarios; In case 0, 1, or 2 is the recession state. Finally, it
must be determined based on the performance metrics and graphs what the recession state is.

4.3.1 Benchmarks

We compare the results of the hidden Markov models with three benchmarks. The first is classifying
all results as recessions, this can lead to high accuracy with unbalanced data, however for the other
performance metrics this is not the case. Note that the accuracy of this method is the same as the
initial state distribution for the two-state hidden Markov model, so when we reverse the method this
results in 1 minus the accuracy of the other method. Classifying everything as a recession would
lead to an accuracy of 0.14 for the US to name an example. The reason why we do not also include
classifying everything as no-recession follows from this. Because of the data imbalance (there are
more no recession periods than recession periods) classifying everything as no recession would lead
to lower scores for most performance metrics. The second method is to classify all data points with
a negative growth rate as a recession since negative growth rates are often associated with recessions.
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The third method we use is the martingale method. A martingale is a mathematical series in
which the best prediction for the next number is the current number (Yates, 2021). In our case, this
results in using the current state xt as a prediction for the next state xt+1. The misclassified data
points are quite intuitive to predict, namely the points that an economy moves from no recession
to recession and vice versa. Based on this logic it can already be determined that the martingale
method will lead to very high performance metrics because it will only misclassify the transitions
between the economic states.

If you wanted to include the macro-economic impact on credit risk through a forward-looking scenario
(only 6% of financial institutions (EBA, 2021) do this), the martingale method might be interesting,
given that an adjustment is applied for the non-linearity effects. However, this research focuses on a
multi-scenario approach, with a multi-scenario approach the martingale method cannot be applied.
Our goal is to determine weights for the different scenarios that are used to include macro-economic
impact in the credit risk calculations, as shown in Figure 18. However, the assumption with the
martingale is that the current state with a probability of 1 is the next, so it is not a good alternative
for calculating the scenario weights to include the macro-economic impact for the multi-scenario
approach. Figure 19 depicts schematically the martingale method with the weights that would be
used if this would be incorporated in macro-economic impact for credit risk calculations by financial
institutions.

Figure 18: Schematic representation of the scenario weights currently used by most financial insti-
tutions to include macro-economic impact in their expected credit loss calculations. The numbers
above the arrows represent the probabilities of moving to the particular scenario the arrow points
to.
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Figure 19: Schematic representation of the scenario weights used by the Martingale method. The
numbers above the arrows represent the probabilities of moving to the particular scenario the arrow
points to.

4.4 Correlation between the economic state of countries

In addition to identifying the economic states, we also want to evaluate the correlations between the
state sequences of countries. Correlation is a way to determine if two variables are related (Lutes,
2020). In data science, the ρ value, also called Pearson’s correlation coefficient is often used. This
measures how closely two sequences of numbers are (linearly) correlated. The ρ-value ranges from
-1 to 1. The closer to 1, the stronger the positive correlation, and the closer to -1, the stronger the
negative correlation. If the value is close to 0 it means that the correlation is weak. The formula for
Pearson’s correlation coefficient is given(Lutes, 2020):

ρ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(30)

Here xi and yi are the i-th variables and x̄ and ȳ are the estimates of the averages of the variables
and n is the length of the sequences. To calculate Pearson’s correlation coefficient, we compare the
state sequences created by the model in a correlation matrix. It is important to note that the user
of the model must identify himself based on the graphs, what the recession state is and what the no
recession state is. Because we have the historical recession periods of the United States, the United
Kingdom, and Japan, we can calculate the correlation and display it in a correlation matrix. This
matrix can then be compared with the correlation output of the hidden Markov model. Figure 20
depicts the correlation matrix of the historical recession periods.
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Figure 20: Correlation plot of the historical recession periods for the countries the United States,
United Kingdom, and Japan.

.

Figure 20 shows that the correlation between the countries the United States and the United King-
dom is quite high (0.65). In addition, the correlation between the historical economic states of
the United States and Japan (0.24) is higher than that of the United Kingdom and Japan (0.16).
When we compare these values with the correlation at the same point in time of the state sequences
produced by the model, this is an additional form of validation since if the model works well the
correlation should also be close to the historical correlations.

4.5 Summary

In this chapter, we discuss the methodology. We explain how data are used and how we deal with
missing values. Furthermore, we discuss how we apply the three fundamental problems that can be
solved by the hidden Markov model in this research. We elaborate on the calculation of the AIC
and the BIC, which can be used to estimate the relative quality between models. The likelihood
problem is used to calculate these scores. The decoding problem is used to find the optimal hidden
state sequence, we use this problem to find the most likely economic state sequence. Lastly, we
use the learning problem to calculate the initial state distribution and (economic) state transition
probabilities.

Next to this, we discuss how to validate the model. This is done using the performance metrics
accuracy, precision, recall, and the F-score. For the two-state model, these performance metrics can
be used in the normal way if the recession state is 1. When the recession state is 0, the economic state
sequence is mirrored and therefore some changes in the formulas are needed to use the performance
metrics. Using the three-state model, the recession state can be 0, 1, or 2. However, the recession
state of the historical data is 1 and the non-recession state is 0. We turn our three-state model into
a binary output if we want to use the performance metrics. We solve this by adjusting the output
of the three-state model to 3 binary state outputs. We then calculate the performance metrics for
all three binary state outputs. Based on the analysis of these performance metrics and the visual
output of the model we determine which state is the recession state. Figure 17 schematically depicts
this process. Finally, we discuss how to calculate the correlation at the same point of time between
the state sequences of the countries.
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5 Results

In this section, we discuss the results of this research. We start with the two-state hidden Markov
base model. Here we experiment with the initialization of the initial state distribution and state
transition distribution, and the number of Gaussian mixture distributions used for the emission
probabilities. We generate results and analyze these results and based on these analyses, conclu-
sions are drawn for possible areas for improvement.

Based on the conclusions of the base model, we experiment with possible methods that can improve
the two-state model, after which the results of these experiments are discussed, and based on this we
draw conclusions. Subse quently, the same methodology is applied to the three-state and five-state
hidden Markov model; experiment, discuss and analyze results and finally draw conclusions.

5.1 The two-state hidden Markov base model

In this section, we generate the results for the base model, based on the analysis of these results
we intend to find possible areas for improvement. We first give a recap of the parameters that are
used, then we elaborate on the initial state distribution, transition probabilities, and the amount of
Gaussian mixture distributions that are used for the base model. Next, we discuss the results of the
base model and analyze these results. Finally, conclusions are drawn based on these analyses.

5.1.1 Initialization of the two-state base model

Parameters
In this section, we discuss the parameters that are used to generate the output of the 2 state base
model. The observable processes that are used are:

• Inflation rate.

• GDP return (growth rate).

• Unemployment rate.

• Market index returns.

• Interest rate return.

The vectors which obtain the values of the economic features through time are therefore the ob-
servation sequences that are used for uncovering the hidden states of the hidden Markov model.
As mentioned before T is the length of observation and state sequence, N is the finite number of
unobservable states,M is the number of distinct observation symbols, S are the distinct states in the
Markov process, and V is the set of possible observations. The following values for the parameters
explained in the previous chapter apply:

• T = is given in Table 3.

• N = 2, because there is a recession state and a no recession state.

• M = 5, because there are 5 features used.

• S = {Recession, No Recession}.
• V = {Inflation, unemployment rate, GDP, market index, interest rate}.
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Table 3: Length of T per country.

Country US CA MX NL UK FR DE ES
T 744 277 204 228 407 211 361 322

Country IT RU CN HK JP SG KR TW
T 211 193 205 288 331 269 255 277

Initial state distribution, state transition distribution, and the number of Gaussian
mixture distributions
We start as described in Section 1.7 with the two-state base model. To give this base model the
best possible performance, we have varied the following parameters:

• The initialization of the initial state distribution and state transition distribution.

• The number of Gaussian mixture distributions.

• How the features Market index and interest rate are included in the model.

We initialize the initial state distribution by giving 1− x to a certain state. The value of x is then
equally distributed among the other states. Suppose we have three states and we give x the value
0.10, then 90 percent will be added to one state initially and 5 percent to the other states for both.
About the same applies to the state transition distribution. The transition to the same state is
given the value 1 − x and x is distributed among the transitions to other states. This is a useful
way to give the model an initial state distribution and state transition distribution because it only
needs to return the value x and not the entire matrix. This way we do not have to manually adjust
the whole matrices (containing the initial state distribution and state transition distribution), but
only the value of x if we want to experiment with the initialization of the initial state distribution
and state transition distribution. This saves a lot of time, especially as the number of hidden states
increases.

The model has been tested with 0.20, 0.10, and 0.05 as values for x, for the countries Japan,
United Kingdom, and the United States. For the above values of x, the same result was obtained for
all countries. The value of x is therefore not of great importance (in this research), since the model
converges to the same value. However, this does not mean that the value of x does not matter. In the
best case, the model converges to the true initial state distribution and state transition distribution.
We also tested this for the US and confirmed that the initial state distribution and state transition
distribution are equal to the true initial state distribution and state transition distribution.

Data can be used in different ways for the features of the Market index and interest rate. This
way you can use the levels of both features, the differences, the returns, and combinations between
the variants. For example, market index returns and the difference between interest rates. For
the countries Japan, the United Kingdom, and the United States, it was examined which of these
different ways led to the best results. This was the combination of market index return and interest
rate difference.

In conclusion, the initial state distribution and the state transition distribution will be initialized
with a value for x of 0.1 For the initial state distribution this means a 90% chance you will go to a
certain state and the other 10% will be divided equally between the remaining states. For the state
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transition distribution, this means that with a 90% chance you will remain in the same state, and
with a 10% chance, you will leave the current state. The emission probabilities (the probabilities
related to the observable processes) are constructed with one Gaussian mixture distribution. Lastly,
the features market index return and interest rate difference will be used.

5.1.2 Results of the two-state base model

In the section, we discuss the results of the basic model. We use the performance metrics discussed
in the Section 4.3.

Table 4: Results of the base model compared to classifying all
data points as no recession, classifying all data points with nega-
tive growth rate as recession, and classifying the next state as the
current state.

Method/model Country Accuracy Precision Recall F-score
Base model US 0.60 0.14 0.34 0.20

UK 0.58 0.16 0.82 0.26
JP 0.60 0.57 0.59 0.58
Average 0.59 0.29 0.58 0.35

No recession US 0.86 0.00 0.00 0.00
UK 0.91 0.00 0.00 0.00
JP 0.53 0.00 0.00 0.00
Average 0.77 0.00 0.00 0.00

Growth rate US 0.89 0.64 0.48 0.55
UK 0.90 0.47 0.68 0.56
JP 0.55 0.38 0.49 0.42
Average 0.78 0.50 0.55 0.51

Martingale US 0.98 0.91 0.91 0.91
UK 0.99 0.92 0.92 0.92
JP 0.95 0.95 0.95 0.95
Average 0.97 0.93 0.93 0.93

As can be seen in Table 4, the base model only performs better for Japan compared to the GDP
classification method. The historical recessions classification method only has a high accuracy which
makes sense, since if all data points are classified as ’no recession’ there will be no true positives,
resulting in 0 for precision, recall, and the F-score.

Results for the United States
In this section, we take a closer look at the results from the United States. Figure 29 shows when
the model predicted a recession and when the actual historical recessions took place in Figure 30
we see the value of the features over time compared to the average of the feature given the hidden
state it is in. It can be seen in Figure 29 that the model predicts most recession periods, but that
the recession periods of the model last a lot longer than the historical recession periods.

Figure 30 depicts that the model mainly bases its prediction on the unemployment rate. This
can be seen from the difference in the green lines in the individual graphs in Figure 30. So for
example in the recession state (state 1) of the model, the average unemployment rate is about 8%
for the United States while the average unemployment rate during no recession is around 5%. The
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large difference between these averages says that the impact of the economic feature on the predic-
tion of the model is significant. This could have negative effects on the model’s performance, as
the unemployment rate usually only rises once the impact of the recession becomes apparent. In
addition, the unemployment rate usually lasts longer than the recession itself, which can lead the
model to misclassify these periods. This of course leads to a lower accuracy (0.60 for the HMM
base model and 0.89 for the GDP classification method) since more data points are misclassified.
Furthermore, this also results in a low precision score (0.14 for the base model and 0.64 for the GDP
classification method) since more data points are classified as recessions due to the unemployment
rate, while these data points are not recessions, so there are many false positives.

Furthermore, it seems that the many fluctuations of the observable variables make it more diffi-
cult for the model to use them to classify the states correctly. This is also clear from Figure 30 since
the difference averages of the hidden states in the unemployment rate differ a lot more than with
the other features. Also, the pattern of the hidden states in Figure 29 almost exactly matches the
pattern of the green line of the unemployment rate in Figure 30, indicating that the unemployment
rate is seen by the model as a very important feature for determining the hidden states. However,
this does not mean that the impact of the unemployment rate is positive. As just mentioned, the
pattern of the hidden states created by the model is almost the same as the green line or the unem-
ployment rate, but the actual and predicted lines in Figure 29 are certainly not equal. This implies
that the model might work better without the unemployment rate.

Figure 21: US: Prediction of the model versus historical recession data. The blue line in the graph
shows when the historical recessions took place, if the blue line is 1, there was a recession and if it is
0 there was no recession. The black line shows when the model predicts a recession. The recession
state is 1 in this case, if the black line is 0 there was no recession.

.
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Figure 22: US: Mean of the features in state i (=0, 1) versus the actual values of the features. The
blue line here is the actual value of the feature and the green line is the average value of the feature
given the hidden state it is in.

.

Results for the United Kingdom
In this section, we take a closer look at the results for the UK. Figure 23 shows when the model
predicted a recession and when the actual historical recessions took place in Figure 24 we see the
value of the features over time compared to the average of the feature given the hidden state it is in.
We can draw the same conclusions for the UK as for the US. The recession periods are identified but
are a lot longer with the prediction of the model than the historical recession periods as can be seen
in Figure 23. This results in many false positives and therefore in a low precision score (0.16). The
recall score is a lot higher (0.82), of course, this is because the model classifies many data points as
recessions and therefore also has most recession points correct, resulting in few false negatives. The
accuracy (0.58) would be much higher if the recession periods predicted by the model were much
shorter.

In Figure 24 it can be seen that the model mainly makes its predictions based on the features
GDP and unemployment rate, since the means of the features are the furthest apart (the green line
in the graphs). As discussed earlier, however, the question is whether the unemployment rate con-
tributes positively to the model’s performance. It seems that accuracy and precision (and indirectly
the F-score) would be higher if the unemployment rate is not included, or if the other features are
seen as more important by the model. We also see again that the features with more fluctuations
are considered less important for the prediction by the model.
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Figure 23: UK: Prediction of the model versus historical recession data. The blue line in the graph
shows when the historical recessions took place, if the blue line is 1, there was a recession and if it is
0 there was no recession. The black line shows when the model predicts a recession. The recession
state is 0 in this case, if the black line is 1 there was no recession.

.

Figure 24: UK: Mean of the features in state i (=0, 1) versus the actual values of the features. The
blue line here is the actual value of the feature and the green line is the average value of the feature
given the hidden state it is in.

.

Results for Japan
In this section, we evaluate the results for Japan. Figure 25 depicts when the model predicted a
recession and when the actual historical recessions took place and the probability of the model being
in a particular hidden state throughout time according to the model. In this case, the full graph
has been used so that it is more visible when the model is in state 0 and state 1, this is clarified by
the second and third graphs in Figure 25. In Figure 26 we see the value of the features over time
relative to the average of the feature given the hidden state it is in.
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Figure 25 depicts that the results are different from the results of the US and the UK. This has
several reasons. First, Japan has had quite a turbulent recession pattern over the past decades as
can be seen in the blue lines in Figure 26. Also, the percentage of time that Japan has been in a
recession in our data is 47 percent of the time, this can also be seen from the accuracy of classifying
all data points as no recession in the Table 4.

In addition, there are differences in the magnitude of the recessions that have occurred in recent
decades. For example, you see large differences in the declines in GDP during the various recessions
that have taken place in Japan in recent decades. Furthermore, we notice in Figure 26 that for
Japan CPI and unemployment rate are seen as the most important features by the model. Again
the question remains whether it benefits the performance of HMM to base the prediction almost
exclusively on these two features, it is, therefore, a good idea to experiment with methods to de-
crease the number of fluctuations for the other features so that the model uses these features more
for making predictions. It is also striking that the performance metrics of Japan are more balanced,
with almost equal values for accuracy (0.60), precision (0.57), recall (0.59), and the F-score (0.58).
it is also noticeable that there are only a few transitions from recession to no-recession periods in
the state sequence generated by the model, some more nuance would benefit the model. This could
possibly be achieved by smoothing the features with a large number of fluctuations by using moving
average methods.

Figure 25: Prediction of the JP versus against historical recession data and probability of being in
state i (=0, 1) according to the model. The blue line in the top graph shows when the historical
recessions were. The black line shows when the model predicts a recession. At best, these two
graphs would overlap exactly, or be exactly mirrored. This is because the model sometimes gives
the recession state a 0 and the other time a 1. In this case, the recession state is 0. The other graphs
in the figures indicate the probability according to the model that a country is in a particular hidden
state at that moment.

.
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Figure 26: JP: Mean of the features in state i (=0, 1) versus the actual values of the features. The
blue line here is the actual value of the feature and the green line is the average value of the feature
given the hidden state it is in.

.

Correlation between the state sequences
The hidden Markov model can generate state sequences (the economic states) as output based on
the observation sequences (the features). The state sequences of the countries can then be used to
create correlation matrices. In this way, it is possible to calculate the correlations between the state
sequences of countries at the same point in time. These correlations can provide additional inside
in the macro-economic dependencies between countries and continents. Furthermore, with the use
of machine learning, the missing values for the features could be supplemented with the values of
countries that have a high correlation in the economic state sequence with the country concerned.

Figure 27 shows a correlation matrix created by calculating the correlation between the differ-
ent state sequences created by the model. The expectation was that there would be quite a large
correlation between the countries within a continent. However, this is not the case. There is, a
reasonable correlation between the United States, Canada, and Mexico, but in Europe and Asia,
this appears not to be the case. Another noticeable result is Germany, which is negatively correlated
with most countries. This is because the model only has two parts, the first part (1993 till 2008)
which is the recession period, and the second part (2009 to 2021) is the no recession period. Finally,
it is striking that several countries have a negative correlation of -1.
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Figure 27: Correlation plot countries state sequences created by the 2 state base model.
.

Figure 28: Correlation plot of the historical recession periods for the countries the United States,
United Kingdom, and Japan.

.

The correlation of the historical recession periods between the countries the United States, United
Kingdom, and Japan is in all cases (much) higher than the correlation between the state sequences
of these countries generated by the model, as can be seen by comparing Figures 27 and 28.
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5.1.3 Conclusions of the two-state base model

In conclusion, the model bases the state sequences logically on the values of the features (observable
processes). However, there is still room for improvement since the average accuracy for the base
model is 0.59, and the average accuracy of the GDP classification method is 0.78. Furthermore, the
average F-score of the base model is 0.35 and the average F-score of the GDP classification method
is 0.51. From analyzing the results of the base model, the following points stood out that could lead
to possible improvements:

• First, the unemployment rate is seen as the most important predictor by the HMM. This
is the case because the unemployment rate has the most pattern-like path. However, it is
questionable whether the effect of the unemployment rate has the desired effect because it is
a lagging variable. Concretely, this means that an increase in the unemployment rate is the
result of a recession. Because of the unemployment rate, data points are classified as recessions
while they are not according to the historical data, resulting in a lower score for the accuracy,
precision and the F-score. It could therefore be that the unemployment rate negatively affects
the performance of the model.

• Second, GDP does not seem to be an important predictor for the HMM. A possible reason
for this is that GDP has gigantic outliers in almost all countries in 2020 during the start of
the COVID-crisis. As a result, the difference in GDP in the rest of the years appears to be
quite small. It may therefore be a good idea to set a maximum on these outliers of the mean
plus several times the standard deviation. We evaluate the impact of the cutoff-points on the
performance of the model.

• Thirdly, it is also clear to see that the model has more difficulty with pattern recognition with
the features that have a lot of fluctuations. Examples of features with a lot of fluctuations are
inflation, market index, and interest rate. These features would probably have more added
value if we would work with a moving average of several months.

• Fourthly, the results of the correlations between the state sequences predicted by the model
are unexpected in some cases, with high negative correlations between the state sequences
of some countries (down to -1 in some cases). Furthermore, the correlations between the
model’s state sequences were compared with the correlations of the historical recession periods
of the countries the United States, the United Kingdom, and Japan. This showed that the
correlations of the historical recession periods were much higher than the correlations between
countries for the state sequences predicted by the model.

• Fifthly, one Gaussian mixture distribution results in the best performance. The value of x
does not seem to be of great importance, since the model converges to the true initial state
distribution and state transition probabilities regardless of the value of x. As mentioned before
we initialize the initial state distribution by giving 1− x to a certain state. The value of x is
then equally distributed among the other states. About the same applies to the state transition
distribution. The transition to the same state is given the value 1 − x and x is distributed
among the transitions to other states.

In the next section, we experiment with these potential areas for improvement.

5.2 Optimizing the two-state hidden Markov model

In this section, we experiment with possible improvements for the two-state hidden Markov model.
We first explain the methods which could lead to possible improvements. Next, we discuss the best
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results of the experiments and analyze these results. Finally, conclusions are drawn based on these
analyses.

5.2.1 Cutoff points, simple moving average, and exponential moving average

As discussed at the end of the previous section, there are a few points that stood out about the
results of the two-state model. Firstly, the influence on the performance is limited by the severe
outliers of the GDP feature in 2020. Therefore, here we evaluate the influence of these outliers and
look at mitigating these outliers until a better execution of the model appears. We evaluate the
influence of the outliers on the performance of the model in the following way. We are going to use
cutoff points, which are calculated in the following way:

Cutoff points = µGDP ∓ y ∗ σGDP . (31)

In this formula, y is varied to see which leads to the best performance for the countries United States,
United Kingdom, and Japan. In addition, we noticed that in many cases the unemployment rate
was dominant in determining the state sequences. This is because the unemployment rate in most
cases had by far the smoothest chart, while the other features went up and down faster. This was
especially the case with the inflation, market index, and interest rate, with GDP this was slightly
less the case. Of course, it also plays a role that GDP data points were filled because only quarterly
data was available, this leads to fewer fluctuations since the same data point occurs three times. In
addition, with the hidden Markov model, only the values of the current state are taken into account
when predicting the next state, some patterns in the features are then lost. Using moving averages
also solves this problem. The simple moving average (SMA) is the equally weighted mean of the
previous M data points (Moreno, 2020). For a sequence of values, we calculate the simple moving
average at period t as follows (Moreno, 2020):

SMAt =
Ot +Ot−1 +Ot−2 + ...+Ot−M+1

M
. (32)

We vary the equally weighted mean of the previous data points M for the features in the countries
United States, United Kingdom, and Japan to see what the impact is and whether it improves
the performance of the model. Next to experimenting with the SMA, we also experiment with
the exponential moving average (EMA). With this method the weight of each element decreases
progressively over time, meaning the exponential moving average gives greater weight to recent data
points (Moreno, 2020). Compared to the simple moving average, the exponential moving average
reacts faster to changes, since it is more sensitive to recent movements. For a sequence of values, we
calculate the exponential moving average at the period t as follows (Moreno, 2020):

EMAt

{
O0, if t = 0,

sOt + (1− s)EMAt−1 if t > 0.
(33)

Here:

• Ot is the observation at time period t.

• EMAt is the exponential moving average at time t.

• s is the smoothing factor. The smoothing factor has a value between 0 and 1 and represents
the weighting applied to the most recent period.

We experiment with different values for the smoothing factor s to see what the impact is on the
performance of the model for the countries the United States, the United Kingdom, and Japan.
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5.2.2 Results of the improved two-state model

In this section, we discuss the results of the improved 2-state hidden Markov model. We have ex-
perimented with the methods described in Section 5.2.1 as well as the number of features, Gaussian
mixture distributions, and the value of x (Section 5.1.1). The results of all experiments and the
parameters used to generate the results are given in Section 7.4. We used the performance metrics
discussed in Section 4.3 to compare the performance of the experiments. These experiments showed
that the unemployment rate for all three countries had a hurt performance. It also turned out that a
Gaussian mixture distribution led to the best result. In addition, it appears that a general approach
(the same parameters for all three countries) does not give the best results. The parameters and
the inclusion of the amount of past data must therefore be country-specific to achieve the best per-
formance for each country. Note that all results are given in Table 5 are without the unemployment
rate. The experiments could confirm that the hypothesis of the negative influence of the feature
unemployment rate was correct. Leaving out the unemployment rate feature significantly improved
the performance of the model.

We compare the results of the improved model by classifying all results as recessions, classifying
all data points with negative growth rates as recession, and the results of the base model. Table 5
depicts the results of the methods.

Table 5: Results of the improved 2 state HMM compared to clas-
sifying all data points as no recession, classifying all data points
with negative growth rate as recession, classifying the next state
as the current state, and the 2 state base model. The run defines
the experiment run, this makes it easier to find the corresponding
parameters of the results in Section 7.4.

Method/model Run Country Accuracy Precision Recall F-score
Base model N/A US 0.60 0.14 0.34 0.20

N/A UK 0.58 0.16 0.82 0.26
N/A JP 0.60 0.57 0.59 0.58
N/A Average 0.59 0.29 0.58 0.35

Two-state 9 US 0.80 0.41 0.92 0.57
21 UK 0.79 0.30 0.95 0.46
43 JP 0.80 0.90 0.64 0.75
N/A Average 0.80 0.54 0.84 0.59

No recession N/A US 0.86 0.00 0.00 0.00
N/A UK 0.91 0.00 0.00 0.00
N/A JP 0.53 0.00 0.00 0.00
N/A Average 0.77 0.00 0.00 0.00

Growth rate N/A US 0.89 0.64 0.48 0.55
N/A UK 0.90 0.47 0.68 0.56
N/A JP 0.55 0.38 0.49 0.42
N/A Average 0.78 0.50 0.55 0.51

Martingale N/A US 0.98 0.91 0.91 0.91
N/A UK 0.99 0.92 0.92 0.92
N/A JP 0.95 0.95 0.95 0.95
N/A Average 0.97 0.93 0.93 0.93
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Table 5 shows that the model with the improvements discussed in Section 5.2 has a much better
performance than the two-state base model. The average accuracy and the F-score of the two-state
improved model are higher (accuracy is 0.80 and the F-score is 0.59) than that of the two-state
base model (accuracy is 0.59 and the F-score 0.35). The two-state improved model has a much
better performance than the GDP-based method, for Japan. The accuracy of Japan is 0.80 for
the two-state improved model while it is 0.55 for the GDP classification method. Next to this, the
F-score for the two-state improved model is 0.75 and that of the GDP classification method is 0.42.
However, for the US and UK, the GDP classification method still outperforms the 2-state HMM,
with the accuracy being about 0.10 higher for the GDP classification method. The F-score for the
GDP classification method is 0.02 lower for the US and 0.10 higher for the UK.

Results for the United States
In this section, we discuss the results of the improved 2-state hidden Markov model for the United
States. In Figure 29 a timeline can be seen with the prediction of the model compared to the his-
torical recession periods, an extended version of this graph with also the probability of being at a
hidden state given the time can be seen in Figure 55. In Figure 30 we see the value of the features
over time compared to the average of the feature given the hidden state it is in. Table 5 shows that
the results for the US of the improved two-state model are better than the results of the two-state
base model for all performance metrics. The accuracy is 0.20 higher and the F-score is 0.37 higher.

In Figure 29 it can be seen that the model correctly predicts most recessions. However, there
are still two points that stand out in a negative way:

1. Even without the unemployment rate feature, the recessions of the model are of longer duration
than the historical recession periods.

2. There are also 2 recessions in the late 1980s while no historical recessions have taken place.
When we look at Figure 30 we see that in the first recession the market index has a sharp
decline and in the second recession GDP declines, which explains why the model sees these
periods as recessions.

The two aforementioned points result in a larger number of false positives and therefore a still
moderate precision score (0.41) and indirectly lower F-score (0.57).

Figure 29: US: Prediction of the model versus historical recession data. The blue line in the graph
shows when the historical recessions took place, if the blue line is 1, there was a recession and if it is
0 there was no recession. The black line shows when the model predicts a recession. The recession
state is 1 in this case, if the black line is 0 there was no recession.

.
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Figure 30: US: Mean of the features in state i (=0, 1) versus the actual values of the features for the
model. The blue line here is the actual value of the feature and the green line is the average value
of the feature given the hidden state it is in.

.

Results for the United Kingdom
In this section, we discuss the results of the three-state hidden Markov model for the United King-
dom. In Figure 31 a timeline can be seen with the prediction of the model compared to the historical
recession periods, an extended version of this graph with also the probability of being at a hidden
state given the time can be seen in Figure 56. In Figure 32 we see the value of the features over
time compared to the average of the feature given the hidden state it is in. Table 5 shows that the
results for the UK of the improved two-state model are better than the results of the two-state base
model for all performance metrics. The accuracy of the two-state improved model is 0.79 while that
of the base model is 0.58. Furthermore, the F-score of the two-state improved model is 0.46 while
that of the base model is 0.26.

In Figure 31 it can be seen that the model identifies the historical recessions, however, two points
stand out again:

1. Even without the unemployment rate feature, the recessions predicted by the model are of
longer duration than the actual historical recession periods.

2. According to the model, a recession took place in 2012 when there is no historical recession as
can be seen from Figure 31. The model seems to look at the stability of the features in the UK,
when we look at Figure 32 we see that the features show few fluctuations in the period 1993 to
2008 and the period 2013 to 2020 while in the rest of the periods there are many fluctuations.
The model, therefore, classifies the periods having a lot of fluctuations as recessions.

The two aforementioned points result in a large number of false positives and therefore a still
moderate precision score (0.30) and indirectly lower F-score (0.46).
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Figure 31: UK: Prediction of the model versus historical recession data. The blue line in the graph
shows when the historical recessions took place, if the blue line is 1, there was a recession and if it is
0 there was no recession. The black line shows when the model predicts a recession. The recession
state is 1 in this case, if the black line is 0 there was no recession.

.

Figure 32: UK: Mean of the features in state i (= 0, 1) versus the actual values of the features for
the model. The blue line here is the actual value of the feature and the green line is the average
value of the feature given the hidden state it is in.

.

Results for Japan
In this section, we take a closer look at the results for Japan. Figure 33 shows when the model
predicted a recession and when the actual historical recessions took place and the probability of the
model being in a particular hidden state throughout time according to the model. In this case, the
full Figure has been used so that it is more visible when the model is in state 0 and state 1, this is
clarified by the second and third graphs in Figure 33. In Figure 34 we see the value of the features
over time compared to the average of the feature given the hidden state it is in. Table 5 shows that
the results for Japan of the improved two-state model are better than the results of the two-state
base model for all performance metrics. The accuracy of the two-state improved model is 0.80, while
the accuracy of the base model is 0.60. Furthermore, the F-score of the two-state improved model
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is 0.75, while the F-score of the base model is 0.58.

We see in Figure 33 that many recessions occurred in Japan since the 1990s. Most of the re-
cessions are correctly predicted by the model, except the recessions in 2001 and 2004. When we
look at the features in Figure 34, we see that the decline in GDP in the recessions in 2001 and 2004
is a lot less than the decline in GDP for the other recessions. You could describe these recessions
as milder recessions and the other recessions as severe recessions. Since the data mainly contains
moderate economic periods for Japan, it becomes more difficult for the hidden Markov model to
identify all recessions, especially because they differ in magnitude.

It is striking that the recessions predicted by the model are not of a longer duration, as is the
case in the US and the UK. This results in fewer false positives and a higher precision score (0.90).
However, the recall is lower (0.64) than in the US (0.92) and UK (0.95) because the milder recessions
are not classified as recessions. As a result, there are more false negatives and the recall score is
lower than in the US and UK.

Figure 33: Prediction of the JP versus historical recession data and probability of being in state i
(=0, 1) according to the model. The blue line in the top graph shows when the historical recessions
were. The black line shows when the model predicts a recession. The other graphs in Figure
indicate the probability according to the model that a country is in the particular hidden state at
that moment.

.
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Figure 34: JP: Mean of the features in state i (= 0, 1) versus the actual values of the features for
the model. The blue line here is the actual value of the feature and the green line is the average
value of the feature given the hidden state it is in.

.

Correlation between the state sequences of the improved two-state model
Also in the improved model, the correlations between the state sequences are plotted in a correlation
matrix, which can be seen in Figure 36. These correlations can provide additional inside in the macro-
economic dependencies between countries and continents. Furthermore, with the use of machine
learning, the missing values for the features could be supplemented with the values of countries that
have a high correlation in the economic state sequence with the country concerned. Even with the
improved model, the correlations between countries within continents do not appear to be very high,
with a few exceptions. The high negative correlations (-1) have disappeared.

Figure 35: Correlation plot of the historical recession periods for the countries the United States,
United Kingdom, and Japan.

.
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Figure 36: Correlation plot countries state sequences for the improved model.
.

The correlations between the state sequences of the countries of the base model were:

• 0.3 for the United States - the United Kingdom.

• 0.1 for the United States - Japan.

• 0.1 for the United Kingdom - Japan.

It is striking that the correlations of the base model are closer to the historical correlations than the
correlations from the improved model, as can be seen by comparing Figure 36, Figure 35, and the
aforementioned correlations of the base model. This is counter-intuitive because the values for the
performance metrics are better than the base model. So you would expect that the correlations of
the two-state improved model would also be closer to the historical correlations.

5.2.3 Conclusions of the improved two-state model

From these experiments with the improved 2-state hidden Markov model we were able to draw
several conclusions:

• Table 5 shows that the results are greatly improved compared to the base model. The av-
erage accuracy of the two-state improved model is 0.80 and that of the base model is 0.59.
Furthermore, the average F-score of the two-state improved model is 0.59 and that of the
base model is 0.35. Furthermore, the two-state improved model also outperforms the GDP
classification method for Japan. The accuracy (0.80) of the two-state improved model, as well
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as the F-score (0.75), are higher than the accuracy (0.55) and the F-score (0.42) for the GDP
classification method for Japan. However, the results of the UK and US are not yet as good
as those of the GDP classification method. The accuracies of the US and UK for the two-state
improved model are lower than the accuracies of the GDP classification method (0.89 and 0.90
respectively). Additionally, the F-score of the UK is also lower for the two-state improved
model (0.46 for the two-state improved model and 0.56 for the GDP classification method).
The F-scores for the US are approximately the same for the two-state improved model and
the GDP classification method, with a score of 0.57 for the two-state improved model and
a score of 0.55 for the GDP classification method. We can conclude that the results of the
two-state improved model are a lot better than the results of the base model. Still, the GDP
classification method outperforms the HMM for two out of three countries. The two-state
model remains a binary model where there is little room for nuance, it is therefore expected
that the three-state model (adding 1 hidden state) will improve the performance.

• It is noticeable that a general approach comes at the expense of the average performance of the
countries. It is, therefore, better to take a country-specific approach in which the incorporation
of past data differs per country.

• During the experiments, it was noticed that the unemployment rate still seems to have a
(too) large impact on the performance of the model for the countries, especially in the United
Kingdom and Japan. The unemployment rate generally lasts much longer than the recession,
which results in more false positives and therefore a lower score for accuracy, precision, and
the F-score. It makes sense that the unemployment rate lasts longer than a recession since
companies do not immediately go back to the numbers of employees from before a recession.
Hiring new employees is a gradual process, where after a recession there will be cautious
optimism first and then there will be application procedures involved. The fact remains,
however, that the model predicts a longer recession period due to the feature unemployment
rate and that the performance is better without this feature for all countries.

• We experimented with the simple moving average and the exponential moving average models
to order to create smoother time series for the features. Both increase the performance and the
results between these two methods are similar, with both methods resulting in approximately
the same values for all performance metrics. However, with the exponential moving average,
there is no data loss while this is the case with the simple moving average because the first data
points can not be used with the simple moving average model. For this reason, the exponential
moving average method is used for further experimentation.

• Furthermore, as mentioned earlier, Japan has had a rather turbulent economic history in recent
years. Japan had many recessions since the 1990s, these recessions differ in magnitude. Using
the two-state model, the model only predicts relatively large recessions. This is not surprising
because the model with two states can add little nuance. It is therefore interesting to see what
the results of the model will be for several states. Next to this, because there is little growth in
the time frame available it becomes more difficult for the hidden Markov model to distinguish
all the recessions.

• The high negative correlations (-1) have disappeared, indicating a better performance for the
HMM since it does not seem realistic for countries to have a maximum negative correlation. It
is striking that the correlations of the improved model are further away from the results of the
correlations between the historical recession periods of the United States, United Kingdom,
and Japan, for the base model.
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5.3 The three-state hidden Markov model

In this section, we experiment with a hidden Markov model with 3 unobservable states. In the
weather example mentioned in Section 3.1 we had 2 unobservable (hidden) states; ‘Sunny’ and
‘Rainy’. We could also add a hidden state to this, for example, ‘Cloudy’, this would result in
a three-state model. In the previous section, we experimented with the two-state model, where
the hidden states consisted of recession and no-recession. Although the performance was adequate
for the two-state improved model, it remains a binary model that has to split the economy into
2 parts, which results in little nuance. It is therefore possible that the three-state model with an
additional hidden state will lead to a better performance, which is what we investigate in this section.

We go through the same process as with the two-state model. We experiment with the features
used and the methods discussed in Section 5.2.1. The quantitative results of all experiments can
be seen in Section 7.5.1, and the parameters used to obtain these results can be seen in Section 7.5.2.

We start by presenting the best results of the 3-state hidden Markov model and comparing these
with the aforementioned methods (GDP method and classifying everything as no recession) and the
results of the two-state hidden Markov model and the base model. Next, we take a closer look at
the results of the United States, United Kingdom, and Japan using visual results. Finally, we draw
conclusions from these results.

5.3.1 Results of the three-state model

In this section, we experiment with the higher order of the hidden Markov model (the incorporation
of past data), such as different values for the smoothing factor s of the exponential moving average
(EMA) for the different economic features. In addition, experiments were carried out with the num-
ber of features, as well as the number of Gaussian mixture distributions and the value of x. The
results of all experiments done with the 3 state hidden Markov model can be found in Section 7.5.1
and the parameters used for this can be found in Section 7.5.2.

The experiments again showed that the unemployment rate had a negative impact on the model’s
performance. In addition, one Gaussian mixture distribution again worked best, and a general
approach does not provide the best results for all three countries. Also, the parameters and the
inclusion of past data that led to the best results with the two-state HMM, do not do this for the
three-state HMM. So when we adjust the number of hidden states we have to experiment again to
see which parameters lead to the best performance.

Table 6: Results of the 3 state HMM compared to the other meth-
ods and models. The run defines the experiment run, this makes it
easier to find the corresponding parameters of the results in Section
7.5.2.

Method/model Run Country Accuracy Precision Recall F-score
Base model N/A US 0.60 0.14 0.34 0.20

N/A UK 0.58 0.16 0.82 0.26
N/A JP 0.60 0.57 0.59 0.58
N/A Average 0.59 0.29 0.58 0.35

Two-state 9 US 0.80 0.41 0.92 0.57
21 UK 0.79 0.30 0.95 0.46
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43 JP 0.80 0.90 0.64 0.75
N/A Average 0.80 0.54 0.84 0.59

Three-state 6 US 0.91 0.61 0.95 0.75
2 UK 0.87 0.43 1.00 0.60
54 JP 0.77 0.87 0.58 0.70
N/A Average 0.85 0.64 0.85 0.68

No recession N/A US 0.86 0.00 0.00 0.00
N/A UK 0.91 0.00 0.00 0.00
N/A JP 0.53 0.00 0.00 0.00
N/A Average 0.77 0.00 0.00 0.00

Growth rate N/A US 0.89 0.64 0.48 0.55
N/A UK 0.90 0.47 0.68 0.56
N/A JP 0.55 0.38 0.49 0.42
N/A Average 0.78 0.50 0.55 0.51

Martingale N/A US 0.98 0.91 0.91 0.91
N/A UK 0.99 0.92 0.92 0.92
N/A JP 0.95 0.95 0.95 0.95
N/A Average 0.97 0.93 0.93 0.93

In Table 6 it can be seen that the 3 state hidden Markov model also outperforms the GDP classifica-
tion method. The average accuracy of the three-state HMM is higher (0.85 for the three-state HMM
and 0.78 for the GDP classification method) as well as the average F-score (0.68 for the three-state
HMM and 0.51 for the GDP classification method). It is also apparent that the three-state HMM
outperforms the two-state HMM. The average accuracy of the three-state HMM is 0.85 and the
average accuracy of the two-state HMM is 0.80. Next to this, the F-score of the three-state HMM
is 0.68 and that of the two-state HMM is 0.59. Furthermore, it is striking to see that Japan has a
higher accuracy for the two-state HMM (0.80) than for the three-state HMM (0.77).

The state transition probabilities
Our goal is to calculate the weights of the scenarios of the macro-economic impact on credit risk
calculations on a quantitative basis. We have confirmed that the three-state hidden Markov model
is capable of identifying the economic states with an average accuracy of 0.85 and an average F-score
of 0.68. The next step is therefore the calculation of the weights of the economic scenarios, which
is done in the form of transition probabilities of the three-state hidden Markov model. Note, that
the current approach adopted by almost all financial institutions has a weight of 0.50 for the most
likely scenario, and 0.25 for the other two scenarios. Figure 37 depicts the transition probabilities
for transition between the economic states which are calculated for the three-state hidden Markov
model. It is noticeable that the weights are not in line with the current method used, since the
probabilities are never in line with the current weight distribution used by financial institutions (0.5,
0.25, 0.25). This result indicates that the current method might not be optimal and further research
about testing the weights of the HMM might improve the current credit risk calculations.
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Figure 37: Transition probabilities calculated by the HMM adjusted for yearly transitions between
economic states. It is noticeable that the probabilities calculated by the HMM are not in line with
the weight distribution currently used (0.5, 0.25, 0.25) by most financial institutions.

.

Results for the United States
In this section, we discuss the results of the three-state hidden Markov model for the United States.
In Figure 38 a timeline with the prediction of the model compared to the historical recession pe-
riods, an extended version of this graph with also the probability that the model assigns to being
in that state given the time can be seen in Figure 57. Figure 39 depicts the value of the features
over time compared to the average of the feature given the hidden state it is in. As can be seen in
Table 6, the three-state model has better values for all performance metrics than the two-state model.

As can be seen in Figure 38, the model predicts recessions well. An exception here is the reces-
sion that took place in 1980. When we look at the second graph in Figure 39 we see the explanation
for this; GDP has already started to fall earlier, so it is not surprising that the model also classifies
the period before 1980 as a recession. This longer recession results in false positives, and a higher
number of false positives results in a lower precision score (0.61). Apart from this long recession,
there are no noticeable things that are apparent from the performance metrics as well as the visual
validation methods.

58



Figure 38: US: Prediction of the model versus historical recession data. The blue line in the graph
shows when the historical recessions took place, if the blue line is 1, there was a recession and if it is
0 there was no recession. The black line shows when the model predicts a recession. The recession
state is 0 in this case, if the black line is 1 or 2 there was no recession.

.

Figure 39: US: Mean of the features in state i (= 0 to 2) versus the actual values of the features
for the model. The blue line here is the actual value of the feature and the green line is the average
value of the feature given the hidden state it is in.

.

Results for the United Kingdom
In this section, we discuss the results of the 3 state hidden Markov model for the United Kingdom.
In Figure 40 a timeline with the prediction of the model compared to the historical recession periods,
an extended version of this graph with also the probability that the model assigns to being in that
state given the time can be seen in Figure 58. In Figure 41 we see the value of the features over
time compared to the average of the feature given the hidden state it is in.

As can be seen in Figure 40, the recession periods predicted by the model are of longer dura-
tion than the historical recession periods. This results in more false positives and therefore a lower
precision score (0.43). Furthermore, all recessions are identified and all data points which are re-
cessions according to the historical data are also classified as recessions. This results in no false
negatives and therefore the maximum score (1.0) for recall.
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In addition, the model’s predictions show a recession in 2012, while no historical recession has
occurred there. The explanation for this is a decrease in GDP, market index, and interest rate in
2012, as can be seen in Figure 41, the model therefore also sees this period as a recession period.
This additional recession has a negative influence on the score of the performance metrics: accuracy,
precision, and the F-score.

Figure 40: UK: Prediction of the model versus historical recession data. The blue line in the graph
shows when the historical recessions took place, if the blue line is 1, there was a recession and if it is
0 there was no recession. The black line shows when the model predicts a recession. The recession
state is 2 in this case, if the black line is 0 or 1 there was no recession.

.

Figure 41: UK: Mean of the features in state i (=0 to 2) versus the actual values of the features for
the model. The blue line here is the actual value of the feature and the green line is the average
value of the feature given the hidden state it is in.

.

Results for Japan
In this section, we discuss the results of the three-state hidden Markov model for Japan. In Figure
42 a timeline with the prediction of the model compared to the historical recession periods. An
extended version of this graph with also the probability that the model assigns to being in that state
given the time can be seen in Figure 59. In Figure 43 we see the value of the features over time
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compared to the average of the feature given the hidden state it is in.

As can be seen in Figure 42, the model does not predict all recessions. Also, the exact dura-
tion of the historical recessions does not match the recession periods predicted by the model. The
reason for this is that Japan has been going through a difficult economic period since the 1990s.
This is also clearly reflected in the number of recessions Japan has had. There is a difference in
how severe these recessions are. For example, in Figure 43 you can also see that in some recessions
the inflation rises a lot more than in other recessions. Furthermore, the decline in GDP and the
decline in market index differ per recession. For instance, the increase in inflation around 2015 is
much greater than after 2004. Next to this, there is also a much steeper decline in GDP. Because of
the absence of periods of economic growth in Japan’s historical data, the model only predicts severe
recessions and not minor recessions. If more historical data from Japan, including periods of high
economic growth, Japan’s performance would probably be better.

It is also striking that Japan again has a higher recall (0.85) than precision (0.64), in contrast
to the US (recall of 0.95 and precision of 0.61) and UK (recall of 1.0 and precision of 0.43). In
addition, it is notable that Japan has a higher accuracy with the improved two-state model (0.80)
compared to the three-state model (0.77). However, the question is whether the supervised learning
performance metrics we use for this study are also applicable to Japan. As mentioned before in Sec-
tion 4.3, we transform the three-state output into a binary state output for the three-state hidden
Markov model so that the performance metrics can still be used. However, in this case, you might
also see State 1 as a mild recession state, therefore the performance metrics give a distorted picture.

Figure 42: JP: Prediction of the model versus historical recession data. The blue line in the graph
shows when the historical recessions took place, if the blue line is 1, there was a recession and if it is
0 there was no recession. The black line shows when the model predicts a recession. The recession
state is 2 in this case, if the black line is 0 or 1 there was no recession.

.
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Figure 43: JP: Mean of the features in state i (= 0 to 2) versus the actual values of the features
for the model. The blue line here is the actual value of the feature and the green line is the average
value of the feature given the hidden state it is in.

.

Correlation between the state sequences of the three-state model
In this section we discuss the correlations between the state sequences of the three-state HMM. The
correlations can provide additional inside in the macro-economic dependencies between countries
and continents. Furthermore, with the use of machine learning, the missing values for the features
could be supplemented with the values of countries that have a high correlation in the economic state
sequence with the country concerned. Furthermore, the correlations of the HMM can be compared
to the historical correlations, which results in an additional method of validation.

Not all countries can be divided into 3 states given the data length and shape of the data. With
the countries that are divided into three states, the correlations are shown in Figure 44. When we
compare the Figures 44 and 45 for the countries United States, United Kingdom, and Japan, we
see that the correlations now match quite well. However, the correlations of the model are still
somewhat lower than the correlations of the historical recession periods.
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Figure 44: Correlation plot of the countries state sequences of the three-state hidden Markov model.
.

Figure 45: Correlation plot of the historical recession periods for the countries the United States,
United Kingdom, and Japan.

.

5.3.2 Conclusions of the three-state model

From the experiments with the three-state HMM the following conclusions are drawn:

• The 3 state hidden Markov model outperforms all previously discussed methods and models.
The accuracy, as well as the F-score, are higher. The average accuracy of the three-state HMM
is 0.85 compared to 0.80 for the two-state improved HMM and 0.78 for the GDP classification
method. Next to this, the average F-score for the three state HMM is 0.68 compared to
0.59 for the improved-two state HMM and 0.51 for the GDP classification method. There is
however one exception; Japan. For Japan, the two-state hidden Markov model results in higher
accuracy (0.80 compared to 0.77 for the three-state HMM) and F-score (0.75 compared to 0.68
for the three-state HMM). This difference in performance could be explained by the fact that
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Japan has had a large number of recessions since the 90s. The economic data consists mostly
of moderate economic growth and recessions. The three-state hidden Markov model thus
distinguishes more between the smaller and bigger recessions, resulting in lower performance
metrics with the three-state model for Japan. It is important to note that the research is
about predicting economic states and not recessions. If the HMM distinguishes between two
recessions states because that is most likely this is not a problem for the scenarios and their
transition probabilities between them. The validating on recession states is only to see if the
model identifies the economic states well.

• As mentioned before, the smoothing factor is the weighting applied to the most recent period.
The smoothing factor s of the exponential moving average that is used for making the time
series of the features more smooth. The smoothing factors that led to the best results for the
2-state HMM, are not the same as those that led to the best results for the 3-state HMM.
When the number of states changes, the smoothing factors must therefore be reconsidered.

• Not all countries could be divided into three states given the length and shape of the data.
The more data, the easier it is for the hidden Markov model to divide the country into multiple
states. The same goes for the ’shape’ of the data, when a country has a fairly stable economy
and therefore also fairly stable economic features, it becomes a lot more difficult for the hidden
Markov model to divide the country into several economic states.

• The correlations between the countries United States, United Kingdom, and Japan are quite
close to the historical correlations for the three-state hidden Markov model, which is another
indication that the 3 state model performs well.

5.4 The five-state hidden Markov model

Because the three-state model led to better performance, it was interesting to see if the five-state
HMM would also lead to better performance. In this section, we, therefore, discuss the results and
mainly discuss why the five-state model does not work. The 5 state hidden Markov model does not
work properly for the following reasons:

• The main reason is that the complexity and subjectivity of the model increase considerably.
By complexity, we mean that it becomes a lot more difficult to identify the recession states
and calculate the performance metrics. Subjectivity means that the recession states are less
obvious than with a smaller number of states, it is up to the user to label the states, and an
HMM with a higher number of states results in more recession states, which makes it more
complex to label. The number of recession states is not always the same and the recession
states are not always unambiguous, hence the subjectivity.

• The five-state hidden Markov model does not find a solution for the majority of the countries
when the methods for the inclusion of past data and dealing with extreme outliers (GDP
cutoff points, EMA, SMA) are used. Only for the United States solutions are found. As can
be seen in the experiments with the two-state and three-state hidden Markov model, higher
order hidden Markov models (inclusion of more past data with the use of EMA or SMA) result
in a better performance of the model.

• Even without the use of the EMA or SMA, the 5-state hidden Markov model does not find a
solution in many countries. The reason for this is that a large number of countries only have
a limited number of data points and if we want to divide the periods into 5 states, it becomes
a challenge for the HMM.
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The correlation matrix shown in Figure 46 is because of the aforementioned reasons made without
the EMA, SMA, and GDP cutoff points. As can be seen when we compare the correlation matrices
in Figures 46 and 47 we also see that the correlations of the 5 state hidden Markov model for the
countries the US, the UK and Japan are far from the correlations of the historical recession periods,
this is another indication that the five-state HMM is not performing well. The reason why the HMM
does not find a solution is that the HMM does generate 5 states, but some of them are never visited.
This results in a division by zero, and therefore no solution.

Figure 46: Correlation matrix of the state sequences produced by the 5 state hidden Markov model.
.

Figure 47: Correlation plot of the historical recession periods for the countries the United States,
United Kingdom, and Japan.

.

5.5 AIC and BIC of the hidden Markov models

In this section, we provide the scores for the AIC and BIC for the different hidden Markov models
used in this research. In Section 4.2 we discussed the AIC and the BIC in detail, and we briefly
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recap both methods. The AIC and BIC are based on the likelihood function with the purpose to
estimate the relative quality of models. The lower the score for both methods, the better. Both the
AIC and BIC add a penalty term for the complexity of the model. Note that, the AIC and BIC are
independent of the recession identification process and the scores for the performance metrics that
come with it. They measure separate aspects of the performance of the model. Table 7 gives the
results for the AIC and the BIC for the base model, two-state model, and three-state model.

Table 7: Results of the AIC and BIC for the base model, the two-
state model, and the three-state model.

Model Country AIC BIC
Base model US 10754 10771

UK 4402 4414
JP 3586 3596
Average 6247 6260

Two-state US 2016 2033
UK 226 176
JP 1350 1360
Average 1197 1190

Three-state US 7518 7546
UK 2494 2514
JP 2112 2129
Average 4041 4063

As can be seen in Table 7 the two-state hidden Markov model has the lowest values for the AIC and
BIC, indicating the best performance. The base model has the highest scores for the AIC and BIC.
It makes sense that the two-state model performs better than the base model since the penalty term
for the complexity is not increased for the two-state model compared to the base model. The penalty
term is not increased since the number of parameters is not increased. The difference between the
base model and the two-state HMM is that more past data is included when making the predictions.

There are several reasons that the AIC and BIC of the three-state model are higher than the
two-state model:

1. The complexity goes up (there are a lot more parameters), and therefore also the penalty term
for the complexity.

2. It is easier to divide the economic periods into two states than three states. Therefore the
paths are easier to predict, which results in more likely paths and a higher log-likelihood value.

Another point that has to be taken into account is that the performance metrics of the three-state
HMM are already chosen out of three binary state outputs, as discussed in Section 4.3.

5.6 Summary

We experimented with the initialization of the initial state distribution, transition probabilities, and
the number of Gaussian mixture distributions that are used for the emission probabilities. Fur-
thermore, we experiment with the number of hidden states and higher-order of the hidden Markov
model. These experiments aimed to see which hidden Markov model leads to the best performance
metrics and why. This is with a view to the higher goal of this research; to see if the hidden Markov
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models can predict the economic states. If this is the case, the transition probabilities could be calcu-
lated. These probabilities can be used as new weights for the scenario-based approach that financial
institutions use to include macro-economic impact in expected credit risk losses. The analysis of the
experiments with the two-state base model showed that the unemployment rate and outliers of the
GDP feature might have a negative influence on the model. Furthermore, due to many fluctuations
of features, pattern recognition becomes more difficult, resulting in sub-optimal performance of the
model.

From the experiments conducted with the length of the incorporation of past data and use of fea-
tures (or absence), we conclude that the model performed better without the unemployment rate.
In addition, cutoff points for GDP’s extreme outliers improved the model’s performance. Finally,
we conclude that the simple moving average and exponential moving average applied to the features
make pattern recognition easier for the model, resulting in a better performance of the model.

Although the performance was adequate for the two-state improved model, it remains a binary
model that has to split the economy into 2 parts, which results in limited nuance. We therefore also
experimented with the three-state HMM to see whether increasing the number of hidden states with
one would increase the performance of the model. We applied the same method of experimentation
for the hidden Markov model with 3 hidden states of experimentation. Because the three-state HMM
had significantly higher performance metrics, we conclude that the three-state HMM outperformed
the two-state HMM. Because adding one hidden state led to improved performance, we evaluated
whether the five-state model also led to better performance, but this was not the case. The com-
plexity and subjectivity of the model increase considerably since it is a lot more subjective to label
the states. Furthermore, the five-state hidden Markov model is not able to find a solution for most
of the countries when the aforementioned EMA, SMA, and the cutoff points for the GDP feature
are used, while with the two-state and three-state models these methods significantly increased the
performance of the model.

We also calculated the AIC and the BIC, the purpose of the AIC and BIC is to estimate the
relative quality of the models. We calculated the AIC and BIC for the base model, the two-state
model, and the three-state model. The two-state model had the lowest (indicating the best perfor-
mance for AIC and BIC) value. There are two reasons for the two-state model outperforming the
three-state model. The first reason is that the complexity term goes up, which results in a higher
penalty term and a higher score for the AIC and BIC. The second reason is that it is easier to divide
the economic periods into two states than three states. Therefore the paths are easier to predict,
which results in more likely paths and a higher log-likelihood value.

In short, we can conclude that the two-state, and especially the three-state higher-order hidden
Markov model can predict economic states. The three-state model outperforms all viable bench-
marks and other HMMs with an average accuracy of 0.85 and an average F-score of 0.68. Compared
to an average accuracy of 0.78 and an average F-score 0.51 of for the GDP classification method and
an average accuracy of 0.77 for the no recession method and an average F-score of 0.00.

Lastly, the economic state transition probabilities calculated by the HMM are not in line with
the weight distribution currently used by most financial institutions (0.5, 0.25, 0.25). The state
transition probabilities calculated by the HMM are not close to the weight distribution currently
used for the United States, United Kingdom, and Japan.
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6 Conclusion, discussion, and further research

The goal of this research is to determine a quantitative way of predicting economic states and the
transition probabilities between them, with means of the features inflation, unemployment rate,
GDP, market index, and interest rate.

During this research, the lack of data and the definition of the NBER played a major role in choos-
ing the most suitable method. Since the NBER does not have an exact definition and only a few
countries have historical recession periods available, supervised learning was not an option. Of the
considered unsupervised learning methods, the hidden Markov model seemed to be the most suitable.

We experimented with 2, 3, and 5 hidden states and the higher order of the HMM (incorpora-
tion of past data) of the features, as well as the initialization of the initial state distribution, the
initialization of the state transition distribution, and the number of Gaussian mixtures used for the
observation distribution. We validated the performance of the models using the performance metrics
accuracy, recall, precision, and the F-score. Additionally, we used the AIC and BIC to look at the
relative performance of the different HMMs.

In addition, the correlations of the countries between the state sequences produced by the model
are also examined. For the countries United States, United Kingdom, and Japan, these have been
compared with the correlations of the historical recession periods of the NBER. The historical re-
cession periods of these countries were available and were used in this study.

In this chapter, the main research question is answered, the discussion and contribution to the-
ory and practice are given and finally, advice is given for possible further research.

6.1 Conclusion

We first briefly recap the goal of this thesis. In this thesis we analyze the prediction of economic
states on behalf of EY Technology Consulting. Our goal is to identify economic states and calculate
transition probabilities, for transitioning between these economic states. For the IFRS9 financial
institutions have to take macro-economic impact on expected credit loss into account with a forward-
looking view. The IFRS9 standard requires financial institutions (or other companies with financial
assets like loans) to estimate potential credit losses with a forward-looking view. Although the
standard does not prescribe any specific ways of doing so, most financial institutions are taking a
scenario-based approach to include forward-looking macro-economic impact. The weighting of such
scenarios is often quite basic where the most likely scenario (baseline) accounts for 50% and the
remaining two (upside and downside) share the other 50% equally. The percentages assigned to
these scenarios are not determined via a quantitative method. The aim of this thesis is therefore
to find a method that determines these weights on a quantitative basis, in order to do this it is
important that the method is able to identify the different economic scenarios. This results in the
formulation of the main research question:

”In what way and to what extent can machine learning be applied using the economic features infla-
tion, GDP, unemployment rate, market index, and interest rate for the prediction of the economic
state of countries over a monthly time frame defining the performance of the model by the perfor-
mance metrics accuracy, precision, recall, and the F-score?”
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To answer the main research question we considered different supervised and unsupervised ma-
chine learning methods, hidden Markov models seemed to be the most suitable because in addition
to being able to classify periods in economic states, it is also able to calculate transition probabilities
(the weights for the different scenarios). A hidden Markov model (HMM) is a statistical Markov
model in which the system is assumed to be a Markov process, with unobservable (hidden) states.
The HMM requires that there is an observable process whose outcomes are influenced by the out-
comes of the unobservable process in a known way. The goal is to learn the unobservable process
using the observable process. In this research, the economic states (recession and no recession for
the two-state model) are the unobservable processes. These unobservable processes, according to
the definition of the NBER, cannot be determined with an exact value or class label. However, with
our observable processes (inflation, unemployment rate, GDP, market index, and interest rate) we
can learn the unobservable process. Three fundamental problems can be solved using the HMM:

1. Likelihood: the likelihood problem allows you to choose the best match along competing
models. We use the likelihood problem to calculate the AIC and BIC of the base model, the
two-state HMM, and the three-state HMM.

2. Decoding: the decoding problem allows you to discover the hidden part of the hidden Markov
model. We use the decoding problem to find the optimal economic state sequences for the
countries. For the countries United States, United Kingdom, and Japan we validate the
economic state sequences by comparing them with the historical recession data available.

3. Learning: the learning problem allows you to find the optimal model parameters that maximize
the probability of the observation sequences. The learning problem can be viewed as training
the model to best fit the observed data. We use the learning problem to calculate the initial
state distribution and economic state transition probabilities. The economic state transition
probabilities are compared with the current weights used by financial institutions to take
macro-economic impact into account in the expected credit loss calculations.

We started with a hidden Markov model with two hidden states (recession and no recession) since the
states of the binary model are easier to decipher than a multi-state hidden Markov model. We vali-
date the performance of the models in this research by the performance metrics: accuracy, precision,
recall, and the F-score. We benchmark the performance of the HMM against three methods:

1. Classifying all results as recessions. This can lead to high accuracy (average of 0.77) with
unbalanced data, however, for the other performance metrics, this is not the case (average of
0.00 for all other performance metrics). Note that the accuracy of this method is the same as
the initial state distribution for the two-state hidden Markov model, so when we reverse the
method (classifying everything as a recession) this results in 1 minus the accuracy of classifying
everything as no recession.

2. Classifying all data points with negative growth as a recession (we call this GDP classifica-
tion method in this research). A negative growth rate is a common indicator of a recession.
Companies could use forecasted growth rates as an indicator of economic states. A forecasted
negative growth rate could be used as a predictor for a recession state. The average accuracy
for this method is 0.78 and the average F-score is 0.51.

3. The martingale method, In our case this results in the using the current state xt as a prediction
for the next state xt+1. Keep in mind that our goal is to determine weights for the different
scenarios that are used to include macro-economic impact in the credit risk calculations. How-
ever, the assumption with the martingale is that the current state with a probability of 1 is
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the next state, which is not in line with the requirements of the IFRS9, which states that it
is not allowed to have only one scenario unless there are adjustments made to compensate for
the non-linearity in the expected credit risk losses. The martingale method does score very
good on the performance metrics, with an average accuracy of 0.97 and an average F-score of
0.93.

We started with the two-state base model. The goal of this base model was to run with the features
and analyze the results for possible improvement. The average accuracy of this base model is 0.59
and the average F-score is 0.35. These scores of the performance metrics of the base model are lower
than that of the GDP classification method (accuracy of 0.78 and F-score of 0.51), which indicates
that there is room for improvement. By analyzing and experimenting with the two-state model,
possible areas of improvement were found:

1. The unemployment rate seems by far the most important feature for the predictions of the
model. This is the case because the unemployment rate has the most pattern-like path. How-
ever, it is questionable whether the effect of the unemployment rate has the desired effect
because it is a lagging variable, removing the feature unemployment rate might increase the
performance of the model.

2. GDP does not seem to influence the model much. The reason for this is that GDP has extreme
outliers for almost all countries in 2020 during the start and end of the pandemic. As a result,
the difference in GDP in the rest of the years appears to be quite small. It may therefore be
a good idea to use cutoff points for the extreme outliers.

3. It is also clear to see that the model has more difficulty with pattern recognition with the
features that have a lot of fluctuations like market index and interest rate than with the
features that do not have a lot of fluctuations like the unemployment rate. These features
would probably have more added value if we would work with a moving average of several
months.

The use of the cutoff points, moving averages (the inclusion of more past data to make the pre-
dictions), and the removal of the unemployment rate resulted in higher scores for all performance
metrics for all countries. The average accuracy of the two-state improved model is 0.80 and the
average F-score 0.59 compared to an average accuracy of 0.59 and an average F-score of 0.35 for the
base model. Although the performance was adequate for the two-state improved model, it remains a
binary model that has to split the economy into 2 parts, which results in little nuance. We therefore
also experimented with the three-state HMM (adding one hidden state). The three- state hidden
Markov model outperforms all previously discussed methods and models (except the martingale,
but this method can not be used directly as discussed). The accuracy (0.85), as well as the F-score
(0.68), are higher. There is however one exception; Japan. For Japan, the two-state hidden Markov
model results in higher accuracy (0.80 compared to 0.77 for the three-state HMM) and F-score (0.75
compared to 0.70 for the three-state HMM). This could be explained by the fact that Japan has had
an enormous amount of recessions since the 90s. The economic data consists mostly of moderate
economic growth and recessions. The three-state hidden Markov model thus distinguishes more be-
tween the smaller and bigger recessions, resulting in lower performance metrics with the three-state
model for Japan.

Since increasing the number of hidden states from two to three increased the performance of the
model we also evaluated whether the five-state HMM would again lead to better performance, which
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was not the case. The complexity and subjectivity of the model increased significantly while per-
formance lagged. Also, the model was usually unable to converge for many countries when cutoff
points or exponential moving average are used. This while these methods greatly increased the
performance of the two-state and three-state model. Even without these methods, the five-state
HMM did not find a solution for many countries. We can conclude that it is not the case that the
more states the hidden Markov model has, the better the performance.

Next to identifying the recessions state using various hidden Markov models, we also calculated
the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). We used the
hidden Markov model to calculate the log-likelihood which is used as a parameter for the calcula-
tion of the AIC and BIC. The purpose of the AIC and BIC is to estimate the relative quality of
the models, therefore the absolute values are not of great importance. The lower the score for the
AIC and BIC, the better the performance. Both the AIC and the BIC add a penalty score for the
complexity of the models. The more parameters the more complex the model, which results in a
higher penalty score which is added to the AIC and BIC. We calculated the AIC and BIC for the
base model, the two-state model, and the three-state model. The two-state model has the lowest
(indicating the best performance for AIC and BIC) value and the base model has the highest score.
There are several reasons for the two-state model outperforming the three-state model:

1. For the three-state model, the complexity term goes up, which results in a higher penalty term
and a higher score for the AIC and BIC.

2. It is easier to divide the economic periods into two states than three states. Therefore the
paths are easier to predict, which results in more likely paths and a higher log-likelihood value.

As mentioned in the research question we defined the performance using the aforementioned per-
formance metrics. In short, we can conclude that the two-state, and especially the three-state
higher-order hidden Markov model can predict economic states. The three-state model outperforms
all previously discussed methods with an average accuracy of 0.85 and an average F-score of 0.68.
Compared to an average accuracy of 0.78 and an average F-score 0.51 of for the GDP classification
method and an average accuracy of 0.77 for the no recession method and an average F-score of
0.00. Only the martingale method has a better performance with an average accuracy of 0.97 and
an average F-score of 0.93. However, as previously discussed a single forward-looking scenario (i.e
the most likely scenario) does not meet the requirements of IFRS9 unless there is an adoption of an
adjustment to reflect non-linearity in the credit loss distribution for alternative scenarios. We also
calculated the correlations between the state sequences (output of the HMM) of the countries for
all models, and compared those to the correlations of the historical data, resulting in an additional
method of validation. For the three-state HMM these correlations were quite close. The correlation
between the US-UK is 0.5 for the three-state HMM and the historical correlation is 0.7. For the
US-JP this is 0.2 for the three-state HMM and 0.2 for the historical correlations. Lastly, the corre-
lation for the UK-JP is 0.1 for the three-state HMM compared to 0.2 for the historical correlation.
The closeness of the correlation values for the economic state sequences is another indication that
the three-state HMM is working properly.

Considering the economic features, we can conclude that the unemployment rate does not work
well as an input for the HMM. The reason for this is that the unemployment rate only rises after
the recession has been going on for a while, and lasts a lot longer than the recession. For the
other economic features, the inclusion of more past data with the use of moving averages (SMA
or EMA) to create a more pattern-like path, benefits the performance of the model. Furthermore,
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the removal of extreme outliers for the GDP feature leads to higher scores for all performance metrics.

Lastly, the economic state transition probabilities calculated by the HMM are not in line with
the weight distribution currently used by most financial institutions (0.5, 0.25, 0.25). The state
transition probabilities calculated by the HMM are not close to the weight distribution currently
used for the United States, United Kingdom, and Japan. This deviation indicates that the current
method is not optimal and that it is worth to research the impact of using the weights calculated
by the HMM for the expected credit loss calculations.

6.2 Discussion

Our main limitation was the lack of data. The data for the economic features used during this
research are obtained via EY from the data provider Reuters. For many countries, there is limited
availability of historical economic data for the features inflation, unemployment rate, GDP, market
index, and interest rate. And if there is data available, the data usually did not go far back, which
in many cases results in few data points. This is one of the reasons why monthly data have been
chosen instead of annual data. In addition, the NBER has historical recession data available for a
few countries. If more data are available, a kind of supervised learning method could be used for
more countries (not only for the US, UK, and Japan), by comparing the historical recession with the
state sequences provided by the model. This lack of data does not mean that this method can not be
used right now. We have confirmed that the HMM can identify the recession states, the use of the
models is therefore not restricted anymore to countries that have recession data available consistent
with the definition of the NBER. Furthermore, with the use of machine learning, the missing values
for the features could be supplemented with the values of countries that have a high correlation in
the economic state sequences with the country concerned. Concluding, we do not have to wait until
more data becomes available before the model can be applied to other countries, it just requires
additional data pre-processing.

Another limitation of the research is that the results of the hidden Markov model do not provide a
literal classification of the economic state (like recession or no recession for the two-state HMM), but
divide the periods into numbers (0 or 1 for the two-state HMM). It is up to the user of the HMM
to decipher the state associated with this number. This can be done using the graphs that the
model gives as output and by evaluating the performance metrics of multiple scenarios, for this task
some familiarity with numbers and graphs is required. This does not mean that a lot of knowledge
is required of the user, for someone with some familiarity with graphs, the interpretation is quite
straightforward. A downside of the HMM is thus that it is more complex and time-consuming than
data that are labeled beforehand (like supervised machine learning). On the other hand, this is
also the strength of the model, since the definition according to the NBER is not exact, and for the
other economic states, no definition is available. It is therefore not possible to use a model which
exactly classifies the economic states according to this definition. Using the HMM it is therefore still
possible to predict the economic states and provide meaningful predictions for credit risk models.

6.3 Contributions to theory and practice

Our research has both a theoretical contribution and a practical one. As far as the theory goes, there
has been very little research into applying machine learning to macro-economic conditions. How-
ever, we have shown that there are applications. We have shown that economic conditions can be
predicted one month ahead, using unsupervised machine learning. The following economic features
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have been used to achieve this: inflation, GDP, market index, and interest rate. Cutoff points for the
GDP features and exponential moving average for all features were used to increase the performance
of the model. Furthermore, we have shown that supervised machine learning performance metrics
with some modifications can be used for hidden Markov models. The output of the HMM are not
clear labels, but instead, the output of the HMM are numbers (signifying an economic scenario)
depending on the number of hidden states in your HMM. Still, if historical data is available you
can calculate the performance metrics of both scenarios and decipher based on visual output and
the performance metrics what the right label is. Furthermore, we showed that higher-order hidden
Markov models (created with the use of the simple moving average and the exponential moving
average) and the removal of extreme outliers improve pattern recognition for the hidden Markov
resulting in a better performance. This could also be applied in other applications for the HMM.

Our goal is to find a method that determines the economic scenarios quantitative basis with corre-
sponding transition probabilities. We confirmed that higher-order hidden Markov models are able
to determine economic states. The three-state HMM has a particular good performance since it
outperforms all other models and viable benchmarks. Furthermore, we have transition probabilities
calculated by the HMM are not in line with the current weight distribution (0.5, 0.25, 0.25) used
by most financial institutions, as can be seen in Figure 37. The last step would be testing the
weights (transition probabilities) of the HMM on the credit risk models and comparing them with
the historical credit risk calculations which use the traditional weights, and evaluating the results.
Unfortunately, this comparison could not be done in this research because EY estimated that the
data collection and comparison would take approximately another six months. It is expected that
the method with the weights following from the HMM calculations will lead to better credit risk
calculations, because the current method has no quantitative basis. The weights of the HMM are
based on quantitative methods, and have proven to be able to correctly identify the economic states.

6.4 Recommendations for further research

Our aim was to use the hidden Markov model to see if there are quantitative ways to identify the
economic scenarios and the weights associated with arriving in a scenario. It is of course important
that the model is then able to distinguish the economic states. We have shown with this research
that this is possible, provided that a three-state higher-order hidden Markov model is used with
cutoff points for extreme outliers. Furthermore, we showed that the weights based on quantitative
bases (the ones calculated with the HMM), are not in line with the weight distribution currently
used. However, as mentioned in the previous section, given the time it was not possible to test
these weights on the expected credit risk calculations as well. The first and most important point
for further research would therefore be to test the weights (transition probabilities) of the hidden
Markov model to see what the influence of this would be on credit risk calculations. This could
be done by comparing the credit risk calculations with the weights (transition probabilities) of the
HMM with the historical credit risk calculations which are using the traditional weights where the
most likely scenario (baseline) accounts for 50% and the remaining two (upside and downside) share
the other 50% equally. The next step would be evaluating which of the credit risk amounts would
have been more sufficient.

The second point for further research has to do with data, many things could be further explored
here. The impact on the performance of the HMM with additional economic features could be evalu-
ated, even though the data collection of these will be challenging in many cases. Furthermore, other
ways of dealing with missing data could be looked into. For instance, it would be interesting to see
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if the performance of the HMM would improve is the expectation maximization technique was used
to manage the missing data. The expectation maximization technique first calculates the means,
variances, and covariances of features for which the data is complete and than uses maximum like-
lihood procedures to estimate the missing values of the features which do not have all data available.

Keeping track of the data of the features for many countries started not so long ago, another
data related point for further research would be to prolong this time frame with the use of data of
features from countries which do have a longer time frame available. This could be done by using
data from those countries which have a high correlation in the state sequences series produced by the
HMM (or historical recession data if available) and prolong the data with machine learning methods.

Lastly, it was noticeable that the martingale method had a very good performance. As mentioned
before, a martingale is a mathematical series in which the best prediction for the next number is
the current number. In our case this results in the using the current state xt as a prediction for the
next state xt+1. The martingale results in a single forward-looking scenario, which is not allowed
unless adjustments to reflect non-linearity in the credit loss distribution are used. It would be an
interesting point for further research to use the martingale method with adjustments, to validate if
the method would outperform the current method.
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7 Appendix

7.1 Solution to the likelihood problem

Let λ = (A, B, π) be a given model, O=(O0, O1, ...., OT ) be a series of observations and X =
(x0, x1, ..., xT ) be a state sequence. We want to find P (O | λ). First, we have to compute the joint
probability of a particular state sequence X generating a particular sequence O of observations. We
have (Jurafsky & Martin, 2021):

P (O,X | λ) = P (O | X , λ)P (X | λ) =
T∏

t=1

P (Ot | xt) ∗
T∏

t=1

P (xt | xt−1). (34)

Note that the one-to-one mapping in the formula is a result of the Markov assumption given in the
Assumption 1. Now that we know how to get the joint probability distribution of the observations
with a particular hidden state sequence we can compute the total probability of the observations by
summing over all possible hidden state sequences (Jurafsky & Martin, 2021). By summing over all
possible state sequences we obtain:

P (O | λ) =
∑
X
P (O,X | λ) =

∑
X
P (O | X , λ)P (X | λ). (35)

For an HMM with N hidden states and an observation sequence of T observations, there are NT

possible hidden sequences. This computation is generally infeasible since it requires too many mul-
tiplications (Stamp, 2004).

We go back to the weather example to illustrate the multiplication problem. We begin with the
calculation of the probability of the observed sequence O ={Cleaning, Shopping,Walking} given
the parameters of our HMM λ = (A,B, π), which are given in Figure 49. As such, we are looking
for the probability P (O = O1, O2, O3). To compute this we need to consider all the sequences
of hidden states that might produce this observed sequence. Take for instance the state sequence
X ={Rainy, Sunny, Sunny}. The computation for the probability of this state sequence is the
following:

π1b1(O1)a12b2(O2)a22b2(O3) = 0.6 ∗ 0.5 ∗ 0.3 ∗ 0.3 ∗ 0.6 ∗ 0.6 = 0.00972.

Figure 48 visualizes the aforementioned process.

Figure 48: Example of the calculation of the likelihood for one particular sequence of observations
and states. The first black arrow indicates with what probability the sequence starts in the ”Rainy”
state (π1), the other black arrows give the state transition probabilities (a12 and a22) and the dotted
arrows give the emission probabilities (b1(O1), b2(O2), b2(O3)).
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Figure 49: For the convenience of the reader we repeat Figure 9.

An example is given above about the calculation of the likelihood problem. However, this is just
an example of a scenario with a rather small sequence. If we calculate all likelihoods of all possible
state sequences we are already on 23 = 8 (2 possible hidden states and sequences of 3 possible state
sequences). If we calculate everything in this way, the number of multiplications becomes huge, it
would be 2TNT where T is the length of the observed sequence and N is the number of hidden
states. So, the number of multiplications grows exponentially with the number of hidden states, this
is illustrated in Figure 50.

Figure 50: Example of the growth of multiplications with the number of states N and length of the
sequence T . There can be seen that a lot of the sequences follow largely the same path, and thus
can be calculated more efficiently with the forward algorithm (Patterson, 2020a).

The forward algorithm
As mentioned in the previous section, the number of multiplications grows exponentially with the
number of hidden states. Hence a more efficient way of doing these multiplications is needed. In
Figure 50 can be seen that a large part of the sequences is the same, the forward algorithm makes use
of this. The forward algorithm or α-pass stores the results and uses them in future multiplications
(Jurafsky & Martin, 2021).

αt(j) represents the probability of being in state j after seeing the first t observations, given the
HMM λ. The value of each cell at(j) is computed by summing over the probabilities of every path
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that could lead us to this cell:

αt(j) = P (O1, O2...Ot, xt = qj | λ), 1 ≤ t ≤ T, 1 ≤ j ≤ N. (36)

Here, xt = j means the tth state in a sequence of states in state qj . We compute this probability
at(j) by summing over all extensions of all paths that lead to the current cell. For a given state xj
at time t, the value at(j) is computed as:

αt(j) =

N∑
i=1

αt−1(i)aijbj(Ot). (37)

Here:

• αt−1(i) = the previous forward path probability from the previous time step.

• aij = the transition probability from previous state xi to current state xj .

• bj(Ot) = the state observation likelihood of the observation symbol Ot given the current state
j.

Therefore, all t, j the αt(j) can be computed recursively:

1. Initial step:
α1(j) = πjbj(Oj), 1 ≤ j ≤ N. (38)

2. For 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ N :

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Ot+1). (39)

3. Termination. From the definition of αj(t), we find:

P (O | λ) =
N∑
j=1

αT (j). (40)

The backward algorithm
Where a defines what the probability is of being in a state given everything that has happened
before, β is the probability of being in a state given what is coming ahead. β is the probability we
are going to see the sequence of observations that we know is coming given that we are starting in
a state right now.

We can define the backward variable in similar fashion. Let O = (Ot+1, Ot+2, ...., OT ) be the
observation sequence from time t+ 1 until time T . Instead of moving forward step by step we will
move backward step by step. we can define the backward variable:

βt(i) = P (Ot+1, Ot+2...OT , xt = qi | λ). (41)

βt(i) =

N∑
j=1

aijbj(Ot+1)βt+1(j). (42)
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Figure 51 illustrates the calculation of the backward variables.

Figure 51: To calculate the value of the backward variable at time t, you only need the values of the
forward variables for all states at time t+1. In this figure q are the values of the distinct states, aij
is the probability of transitioning from state i to j, and β is the backward variable.

So the probability of βt(i) is the sum over all of the states that we might go to of the parameter
βt+1 and we move backwards into state j and therefore use the state observation likelihood bj(Ot)
and multiply that with the probability aij , the probability that we go from i to j. Note that this
is the opposite of the forward algorithm; given the probability of where we could possibly be, what
is the probability of having seen the observation there and what is the probability of moving there.
So the βt(i) can be calculated recursively:

1. Initial step:
βT (i) = 1, 1 ≤ i ≤ N. (43)

2. Inductive step: for t = T − 1, T − 2, ..., 1 and 1 ≤ j ≤ N ,

βt(i) =

N∑
j=1

aijbj(Ot+1)βt+1(j). (44)

It is possible to combine the forward and backward algorithm in which case we would get:

P (O | λ) =
N∑
j=1

αt(j)βt(j). (45)

7.2 Solution to the learning problem

Lastly, there is the learning problem. Given an observation sequence O=(O0, O1, ...., OT ) and a
possible set of states in the HMM S = {q0, q1, ...., qN}, learn the HMM parameters A, B and π. In
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other words, given a set of observation sequences, how do we learn the model parameters that would
generate them? Formally this is given by:

λ∗ = argmax
λ

P (O | λ). (46)

There is no method to solve for the globally optimal parameters of λ. We, therefore, search for a
locally optimal result, a result that is a good answer but is not guaranteed to be the best answer.

The input for this problem would be an unlabeled sequence of observations O and the potential
hidden states S. The standard algorithm for the HMM learning problem is the forward-backward,
or Baum-Welch algorithm, a special case of the Expectation-Maximization or EM algorithm. The
EM algorithm is iterative, computing an initial estimate for the probabilities, then using those esti-
mates to compute a better estimate, and so on, iteratively improving the probabilities that it learns
(Jurafsky & Martin, 2021). To do this we define:

ξt(i, j) = P (xt = qi, xt+1 = qj | O, λ). (47)

The variable ξ captures the probability that at time t, we are are at state qi and in time t+1 we are
in state qj given our set of observation sequences O and our model λ. For the calculation of ξ many
of the previous sections are repeated. The following equation is able to determine the value of ξ:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O | λ)
. (48)

We explain the formula below. First a recap of the parameters used in this Equation 48:

• αt(i) is the forward variable. It is the probability of being in state i after seeing the first t
observations, given the model λ.

• aij is the state transition probability from previous state xi to current state xj .

• bj(Ot+1) is the state observation likelihood of the observation symbol Ot given the current
state j.

• βt+1(j) is the backward variable. it is the probability of being in state j at time t given
everything that comes after t, given the model λ.

• P (O | λ) is the probability of an observation sequence occurring given the model λ.

Figure 52 visualizes the calculation of ξ. Note all the states we could be in q1 to qN lined up
and regardless of how we got there, ξ is capturing the probability that we end up in qi, given our
observations. For this part of the calculation the forward variable αt(i) can be used. The next step
is to transition to qj , for this transition the aijbj(Ot+1) comes in, where αij is the probability of
transitioning from i to j and we multiply this by the probability of seeing our observation in time
t+ 1 given that we are now in state j. And backward variable βt+1(j) is capturing the right half of
the transition of the path. The P (O | λ) is the normalizing factor to account for the fact that we
want to calculate a probability. We can get P (O | λ) by summing over all the probabilities of all i’s
and j’s at the given time, so therefore we sum over i and j, resulting in the following formula for ξ.

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

. (49)
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Figure 52: Visualization of the calculation of ξ.

In Equation 11 we gave the formula for γt(i), which is the probability of being in state q1 at time t.
We recap the formula for γt(i) in the equation below.

γt(j) = P (qt = xj | O, λ), 1 ≤ j ≤ N.

Note that there is a clear relationship between γ and ξ. γ is just one point in time, so if we sum over
all possible destinations of being in i and going to j, we sum over all possible j’s therefore must be
γt(i). Formally:

γt(i) =

N∑
j=1

ξt(i, j). (50)

Since ξ is the probability of transitioning from q1 to qj at time t, we could sum over all t to acquire
a number that can be treated as the expected number of times qi transitions to qj . If we sum over
all t for γt(i) we get the expected number of transtions from qi, resulting in the following equations:

E[ number of transitions from qi to qj ] =

T−1∑
t=1

ξt(i, j). (51)

E[ number of transitions from qi] =

T−1∑
t=1

γt(i). (52)

So, how can we use this to improve the model λ(A,B, π)? We start with the initial state distribution
π. π is the probability of being in state qi at time t = 1, therefore the re-estimation formula for the
initial state distribution is given by:

π∗
i = γ1(i), 1 ≤ i ≤ N. (53)

The state transition distribution aij is the expected number of transitions from qi to qj divided by
the expected total number of transitions out of qi:

a∗ij =

∑T−1
t=1 ξt(i, j)∑T−1

γt(i)
, 1 ≤ j ≤ N, 1 ≤ j ≤M. (54)

The observation probability distribution bj(k) for a discrete HMM is the expected number of visits
to state qj , where k is the observed signal, divided by the expected total number of visits to state
qj :

b∗j (k) =

∑T
t=1 I

k
t γt(i)∑T

t=1 γt(i)
. (55)
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Here,

Ikt =

{
1, if Ot = vk

0, otherwise
(56)

the numerator is subject to Ot = vk. The learning process can now be defined as follows:

1. Initialization of the model λ = (A,B, π).

2. Re-estimation of the state transition distribution A, the observation probability distribution
B, and the initial state distribution π and define the adjusted model λ∗(A∗, B∗, π∗).

3. If P (O | λ∗) > P (O | λ) then λ = λ∗ and proceed to Step 1 until a limiting point is reached.

7.3 The two-state hidden Markov base model

7.3.1 Visual results

Figure 53: Prediction of the US versus against historical recession data and probability of being in
state i (= 0 to 1) according to the model. The blue line in the top graph shows when the historical
recessions were. The black line shows when the model predicts a recession. At best, these two
graphs would overlap exactly, or be exactly mirrored. This is because the model sometimes gives
the recession state a 0 and the other time a 1. The other graphs in the Figure indicate the probability
according to the model that a country is in a particular hidden state at that moment.

.
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Figure 54: Prediction of the UK versus against historical recession data and probability of being in
state i (= 0 to 1) according to the model. The blue line in the top graph shows when the historical
recessions were. The black line shows when the model predicts a recession. At best, these two
graphs would overlap exactly, or be exactly mirrored. This is because the model sometimes gives
the recession state a 0 and the other time a 1. The other graphs in the Figure indicate the probability
according to the model that a country is in a particular hidden state at that moment.

.

84



7.4 The improved two-state hidden Markov model

7.4.1 Quantitative results of all experiments

Table 8: Results performance metrics for the experiments of the
United States, United Kingdom, and Japan for the two-state hid-
den Markov model.

Run Country Accuracy Precision Recall F-score
1 US 0.80 0.41 0.82 0.54
1 UK 0.70 0.17 0.58 0.27
1 JP 0.58 0.55 0.55 0.55
2 US 0.53 0.11 0.32 0.16
2 UK 0.77 0.29 0.95 0.44
2 JP 0.61 0.62 0.44 0.52
3 US 0.59 0.16 0.44 0.23
3 UK 0.69 0.23 0.95 0.37
3 JP 0.76 0,84 0.60 0.70
4 US 0.79 0.39 0.92 0.55
4 UK 0.41 0.13 0.92 0.23
4 JP 0.56 0.54 0.49 0.51
5 US 0.77 0.36 0.83 0.50
5 UK 0.70 0.17 0.58 0.27
5 JP 0.56 0.53 0.50 0.51
6 US 0.48 0.16 0.61 0.25
6 UK 0.60 0.19 0.97 0.31
6 JP 0.59 0.57 0.54 0.55
7 US 0.79 0.39 0.92 0.55
7 UK 0.70 0.17 0.58 0.27
7 JP 0.56 0.53 0.51 0.52
8 US 0.80 0.41 0.82 0.54
8 UK 0.68 0.21 0.87 0.34
8 JP 0.58 0.55 0.55 0.55
9 US 0.80 0.41 0.92 0.57
9 UK 0.78 0.24 0.61 0.34
9 JP 0.58 0.55 0.51 0.53
10 US 0.78 0.39 0.92 0.55
10 UK 0.87 0.35 0.45 0.40
10 JP 0.57 0.55 0.48 0.51
11 US 0.79 0.39 0.92 0.55
11 UK 0.65 0.21 1.00 0.35
11 JP 0.63 0.61 0.62 0.61
12 US 0.48 0.18 0.76 0.29
12 UK 0.60 0.13 0.58 0.21
12 JP 0.57 0.54 0.47 0.50
13 US 0.66 0.29 0.93 0.44
13 UK 0.80 0.25 0.58 0.35
13 JP 0.57 0.54 0.51 0.53
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14 US 0.77 0.37 0.94 0.54
14 UK 0.77 0.29 1.00 0.45
14 JP 0.54 0.51 0.36 0.42
15 US 0.66 0.29 0.93 0.44
15 UK 0.75 0.27 0.97 0.42
15 JP 0.57 0.54 0.51 0.53
16 US 0.66 0.29 0.93 0.44
16 UK 0.80 0.25 0.58 0.35
16 JP 0.57 0.54 0.51 0.53
17 US 0.63 0.20 0.55 0.29
17 UK 0.77 0.29 0.95 0.44
17 JP 0.64 0.63 0.58 0.61
18 US 0.75 0.34 0.80 0.48
18 UK 0.87 0.22 0.16 0.18
18 JP 0.69 0,65 0.70 0.68
19 US 0.63 0.20 0.56 0.30
19 UK 0.54 0.14 0.76 0.24
19 JP 0.57 0.56 0.40 0.47
20 US 0.44 0.20 0.96 0.33
20 UK 0.78 0.28 0.84 0.42
20 JP 0.60 0.60 0.42 0.49
21 US 0.64 0.27 0.92 0.42
21 UK 0.79 0.30 0.95 0.46
21 JP 0.60 0.57 0.61 0.59
22 US 0.63 0,27 0.92 0.42
22 UK 0.75 0.27 1.00 0.42
22 JP 0.54 0.51 0.49 0.50
23 US 0.66 0.27 0.83 0.41
23 UK 0.79 0.30 0.95 0.46
23 JP 0.54 0.52 0.28 0.36
24 US 0.66 0.28 0.93 0.43
24 UK 0.75 0.27 0.97 0.42
24 JP 0.56 0.54 0.43 0.48
25 US 0.70 0.31 0.92 0.47
25 UK 0.64 0.20 0.92 0.33
25 JP 0.67 0.63 0.71 0.67
26 US 0.64 0.27 0.92 0.42
26 UK 0.78 0.29 0.95 0.44
26 JP 0.50 0.47 0.58 0.52
27 US 0.64 0.27 0.93 0.42
27 UK 0.75 0.27 0.97 0.42
27 JP 0.62 0.59 0.64 0.61
28 US 0.66 0.10 0.17 0.13
28 UK 0.49 0.10 0.58 0.17
28 JP 0.61 0.59 0.57 0.58
29 US 0.59 0.12 0.30 0.17
29 UK 0.79 0.30 0.95 0.46
29 JP 0.52 0.49 0.49 0.49
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30 US 0.64 0.27 0.92 0.42
30 UK 0.79 0.30 0.95 0.46
30 JP 0.60 0.57 0.61 0.59
31 US 0.58 0.15 0.43 0.23
31 UK 0.68 0.22 0.95 0.36
31 JP 0.65 0.64 0.56 0.60
32 US 0.60 0.16 0.44 0.24
32 UK 0.76 0.28 0.97 0.44
32 JP 0.68 0.84 0.40 0.54
33 US 0.47 0.16 0.63 0.25
33 UK 0.68 0.22 0.95 0.36
33 JP 0.64 0.61 0.66 0.63
34 US 0.51 0.16 0.58 0.25
34 UK 0.58 0.17 0.95 0.30
34 JP 0.68 0.69 0.59 0.64
35 US 0.58 0.16 0.44 0.23
35 UK 0.68 0.22 0.95 0.36
35 JP 0.75 0.83 0.59 0.69
36 US 0.59 0.15 0.43 0.23
36 UK 0.69 0.23 0.95 0.37
36 JP 0.76 0.84 0.60 0.70
37 US 0.59 0.15 0.43 0.23
37 UK 0.69 0.23 0.95 0.37
37 JP 0.76 0.84 0.59 0.69
38 US 0.58 0.15 0.43 0.23
38 UK 0.69 0.23 0.95 0.37
38 JP 0.76 0.84 0.60 0.70
39 US 0.68 0.28 0.82 0.42
39 UK 0.69 0.23 0.95 0.37
39 JP 0.75 0.84 0.57 0.68
40 US 0.59 0.16 0.44 0.23
40 UK 0.69 0.23 0.95 0.37
40 JP 0.76 0.84 0.59 0.69
41 US 0.59 0.16 0.44 0.23
41 UK 0.69 0.23 0.95 0.37
41 JP 0.76 0.84 0.60 0.70
42 US 0.59 0.16 0.44 0.23
42 UK 0.69 0.23 0.95 0.37
42 JP 0.76 0.84 0.60 0.70
43 US 0.61 0.19 0.54 0.28
43 UK 0.75 0.26 0.95 0.41
43 JP 0.80 0.90 0.64 0.75

7.4.2 Parameters used for all experiments
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Table 9: Parameters used for all experiments of the 2 state hidden
Markov model.

Run Cutoff point CPI s= UNR s= GDP s= index s= itr diff s= # gm x
1 3SD 0.1 N/A 0.8 0.1 0.05 1 0.1
2 4SD 0.1 N/A 0.8 0.3 0.05 1 0.1
3 4SD 0.1 N/A 0.8 1 1 1 0.1
4 2SD 0.1 N/A 0.8 0.1 0.05 1 0.1
5 4SD 0.1 N/A 0.8 0.1 0.05 1 0.1
6 3.5SD 0.1 N/A 0.8 0.1 0.05 1 0.1
7 3SD 0.1 N/A 0.7 0.1 0.05 1 0.1
8 3SD 0.1 N/A 0.9 0.1 0.05 1 0.1
9 3SD 0.2 N/A 0.8 0.1 0.05 1 0.1
10 3SD 0.3 N/A 0.8 0.1 0.05 1 0.1
11 3SD 0.2 N/A 0.8 0.2 0.05 1 0.1
12 3SD 0.2 N/A 0.8 0.05 0.05 1 0.1
13 3SD 0.2 N/A 0.8 0.1 0.1 1 0.1
14 3SD 0.2 N/A 0.8 0.1 N/A 1 0.1
15 3SD 0.2 N/A 0.8 0.1 0.05 2 0.1
16 3SD 0.2 N/A 0.8 0.1 0.05 1 0.05
17 3.5SD 0.1 N/A 0.8 0.3 0.05 1 0.1
18 NVT 0.1 N/A 0.8 0.3 0.05 1 0.1
19 4SD 0.1 1 0.8 0.3 0.05 1 0.1
20 4SD N/A N/A 0.8 0.3 0.05 1 0.1
21 4SD 0.2 N/A 0.8 0.3 0.05 1 0.1
22 4SD 0.3 N/A 0.8 0.3 0.05 1 0.1
23 4SD 0.2 N/A 0.7 0.3 0.05 1 0.1
24 4SD 0.2 N/A 0.6 0.3 0.05 1 0.1
25 4SD 0.2 N/A 0.8 0.2 0.05 1 0.1
26 4SD 0.2 N/A 0.8 0.4 0.05 1 0.1
27 4SD 0.2 N/A 0.8 0.3 0.1 1 0.1
28 4SD 0.2 N/A 0.8 0.3 0.01 1 0.1
29 4SD 0.2 N/A 0.8 0.3 0.05 2 0.1
30 4SD 0.2 N/A 0.8 0.3 0.05 1 0.05
31 3SD 0.1 N/A 0.8 1 1 1 0.1
32 4SD 0.2 N/A 0.8 1 1 1 0.1
33 4SD 0.05 N/A 0.8 1 1 1 0.1
34 4SD 0.1 1 0.8 1 1 1 0.1
35 4SD 0.1 N/A 0.7 1 1 1 0.1
36 4SD 0.1 N/A 0.9 1 1 1 0.1
37 4SD 0.1 N/A 1 1 1 1 0.1
38 4SD 0.1 N/A 0.8 0.9 1 1 0.1
39 4SD 0.1 N/A 0.8 0.8 1 1
40 4SD 0.1 N/A 0.8 1 0.9 1 0.1
41 4SD 0.1 N/A 0.8 1 1 2 0.1
42 4SD 0.1 N/A 0.8 1 1 1 0.05 43
4SD 0.1 N/A 0.8 1 0.05 1 0.10
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7.4.3 Visual results of best experiments

Figure 55: Prediction of the US versus against historical recession data and probability of being in
state i (= 0 to 1) according to the model. The blue line in the top graph shows when the historical
recessions were. The black line shows when the model predicts a recession. At best, these two
graphs would overlap exactly, or be exactly mirrored. This is because the model sometimes gives
the recession state a 0 and the other time a 1. The other graphs in Figure indicate the probability
according to the model that a country is in a particular hidden state at that moment.

.
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Figure 56: Prediction of the UK versus against historical recession data and probability of being in
state i (= 0 to 1) according to the model. The blue line in the top graph shows when the historical
recessions were. The black line shows when the model predicts a recession. At best, these two
graphs would overlap exactly, or be exactly mirrored. This is because the model sometimes gives
the recession state a 0 and the other time a 1. The other graphs in Figure indicate the probability
according to the model that a country is in a particular hidden state at that moment.

.

7.5 The three-state hidden Markov model

7.5.1 Quantitative results of all experiments

Table 10: Results of all experiments for the 3 state hidden Markov
model.

Run Country Accuracy Precision Recall F-score
1 US 0.89 0.58 0.92 0.71
1 UK 0.85 0.36 0.82 0.50
1 JP 0.61 0.73 0.28 0.40
2 US 0.90 0.59 0.90 0.72
2 UK 0.87 0.43 1.0 0.60
2 JP 0.57 0.56 0.32 0,41
3 US 0.88 0.55 0.90 0.68
3 UK Does not converge
3 JP 0.58 0.56 0.55 0.55
4 US Does not converge
4 UK Does not converge
4 JP Does not converge
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5 US 0.88 0.55 0.93 0.69
5 UK 0.82 0.32 0.76 0.45
5 JP 0.59 0.63 0.29 0.39
6 US 0.91 0.61 0.95 0.75
6 UK 0.79 0.30 0.92 0.45
6 JP 0.60 0.68 0.27 0.39
7 US 0.91 0.61 0.95 0.75
7 UK 0.79 0.30 0.92 0.45
7 JP 0.60 0.68 0.27 0.39
8 US 0.89 0.57 0.91 0.71
8 UK 0.74 0.20 0.61 0.30
8 JP 0.66 0.69 0.5 0.58
9 US Does not converge
9 UK Does not converge
9 JP Does not converge
10 US 0.81 0.41 0.81 0.54
10 UK 0.75 0.24 0.76 0.36
10 JP 0.56 0.60 0.19 0.29
11 US 0.83 0.44 0.88 0.59
11 UK 0.83 0.34 0.79 0.47
11 JP 0.69 0.86 0.40 0.54
12 US 0.69 0.18 0.34 0.24
12 UK Does not converge
12 JP 0.60 0.59 0.51 0.54
13 US 0.66 0.09 0.15 0.11
13 UK 0.90 0.47 0.39 0.43
13 JP 0.62 0.60 0.56 0.58
14 US 0.63 0.25 0.82 0.39
14 UK 0.91 0.52 0.66 0.58
14 JP 0.55 0.53 0.31 0.39
15 US 0.88 0.55 0.80 0.65
15 UK Does not converge
15 JP 0.64 0.64 0.53 0.58
16 US 0.62 0.23 0.72 0.35
16 UK 0.89 0.38 0.24 0.29
16 JP 0.67 0.71 0.49 0.58
17 US 0.68 0.22 0.50 0.30
17 UK 0.74 0.22 0.68 0.33
17 JP 0.60 0.59 0.52 0.55
18 US 0.82 0.42 0.77 0.55
18 UK 0.75 0.25 0.82 0.38
18 JP 0.60 0.59 0.47 0.53
19 US 0.81 0.41 0.75 0.53
19 UK 0.77 0.21 0.53 0.30
19 JP 0.68 0.83 0.40 0.54
19 US 0.85 0.49 0.78 0.60
19 UK 0.71 0.20 0.71 0.32
19 JP 0.63 0.76 0.31 0.44
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20 US 0.83 0.45 0.84 0.58
20 UK 0.86 0.05 0.03 0.04
20 JP Does not converge
21 US 0.87 0.53 0.70 0.61
21 UK 0.88 0.25 0.16 0.19
21 JP 0.56 0.53 0.44 0.48

22 US 0.91 0.61 0.96 0.75
22 UK 0.83 0.34 0.89 0.50
22 JP 0.63 0.73 0.33 0.46
23 US 0.89 0.57 0.94 0.71
23 UK 0.70 0.19 0.66 0.29
23 JP 0.49 0.45 0.36 0.40
24 US 0.90 0.60 0.95 0.74
24 UK 0.84 0.36 0.92 0.51
24 JP 0.61 0.70 0.29 0.41
25 US 0.88 0.56 0.84 0.67
25 UK 0.86 0.29 0.32 0.30
25 JP 0.67 0.80 0.38 0.52
26 US 0.89 0.58 0.93 0.72
26 UK 0.82 0.31 0.74 0.43
26 JP 0.60 0.71 0.23 0.34
27 US 0.91 0.61 0.96 0.75
27 UK 0.82 0.33 0.87 0.48
27 JP 0.60 0.76 0.20 0.32
28 US 0.91 0.61 0.96 0.75
28 UK 0.82 0.33 0.87 0.48
28 JP 0.62 0.80 0.26 0.39
29 US 0.83 0.45 0.83 0.58
29 UK Does not converge
29 JP 0.66 0.66 0.58 0.62
30 US Does not converge
30 UK 0.84 0.31 0.58 0.40
30 JP 0.53 0.49 0.36 0.41
31 US 0.63 0.25 0.81 0.38
31 UK 0.75 0.13 0.29 0.18
31 JP 0.63 0.66 0.42 0.51
32 US Does not converge
32 UK 0.84 0.31 0.58 0.40
32 JP 0.53 0.49 0.36 0.41
33 US 0.63 0.25 0.82 0,39
33 UK 0.91 0.52 0.66 0,58
33 JP 0.55 0.52 0.41 0,46
34 US 0.63 0.25 0.82 0.39
34 UK 0.91 0.52 0.66 0.58
34 JP 0.53 0.50 0.38 0.43
35 US 0.90 0.61 0.89 0.72
35 UK 0.89 0.45 0.66 0.53
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35 JP 0.60 0.61 0.43 0.50
36 US 0.90 0.59 0.90 0.71
36 UK 0.87 0.42 0.97 0.59
36 JP 0.52 0.49 0.33 0.39
37 US Does not converge
37 UK 0.83 0.33 0.76 0.46
37 JP 0.56 0.55 0.37 0.44
38 US 0.89 0.58 0.90 0.70
38 UK 0.84 0.37 0.95 0.53
38 JP 0.53 0.50 0.23 0.32
39 US 0.85 0.46 0.51 0.49
39 UK 0.88 0.42 0.66 0.52
39 JP 0.59 0.60 0.36 0.45
40 US 0.88 0.55 0.91 0.69
40 UK 0.90 0.47 0.76 0.58
40 JP 0.60 0.59 0.43 0.50
41 US 0.88 0.55 0.90 0.69
41 UK 0.85 0.38 0.97 0.55
41 JP 0.61 0.61 0.45 0.52
42 US 0.88 0.55 0.90 0,69
42 UK 0,87 0.43 1.00 0.60
42 JP 0.53 0.50 0.36 0.42
43 US 0.82 0.42 0.77 0.55
43 UK 0.75 0.25 0.82 0.38
43 JP 0.60 0.59 0.47 0.53
44 US 0.84 0.46 0.73 0.57
44 UK Does not converge
44 JP 0.71 0.81 0.49 0.61
45 US Does not converge
45 UK 0.76 0.28 0.97 0.44
45 JP 0.66 0.76 0.39 0.52
46 US 0.87 0.52 0.90 0.66
46 UK 0.83 0.35 0.92 0.51
46 JP 0.58 0.56 0.53 0.54
47 US 0.84 0.46 0.72 0.57
47 UK 0.89 0.37 0.29 0.32
47 JP 0.57 0.54 0.53 0.54
48 US 0.81 0.40 0.72 0.52
48 UK 0.80 0.26 0.63 0.37
48 JP 0.59 0.59 0.41 0.48
49 US 0.85 0.48 0.76 0.59
49 UK Does not converge
49 JP 0.73 0.83 0.54 0.65
50 US 0.86 0.49 0.82 0.62
50 UK Does not converge
50 JP 0.73 0.83 0.53 0.65
51 US 0.88 0.55 0.96 0.70
51 UK Does not converge
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51 JP 0.72 0.82 0.51 0.63
52 US 0.87 0.51 0.82 0.63
52 UK Does not converge
52 JP 0.74 0.84 0.55 0.67
53 US 0.84 0.47 0.76 0.58
53 UK Does not converge
53 JP 0.76 0.88 0.56 0.68
54 US 0.80 0.40 0.72 0.51
54 UK 0.81 0.27 0.61 0.38
54 JP 0.77 0.87 0.58 0.70
55 US 0.84 0.45 0.76 0.57
55 UK 0.85 0.31 0.45 0.37
55 JP 0.68 0.85 0.38 0.52
56 US 0.80 0.40 0.73 0.52
56 UK 0.81 0.27 0.61 0.38
56 JP 0.74 0.86 0.53 0.65
57 US 0.80 0.40 0.73 0.51
57 UK 0.81 0.27 0.61 0.38
57 JP 0.77 0.87 0.58 0.70

7.5.2 Parameters used for all experiments

Table 11: Parameters used for all experiments of the 3 state hidden
Markov model.

Run Cutoff point CPI s= UNR s= GDP s= index s= itr diff s= # gm x
1 4SD 1 N/A 1 1 1 1 0.1
2 3SD 1 N/A 1 0.5 1 1 0.1
3 3SD 1 N/A 1 0.25 1 1 0.1
4 3SD 1 N/A 1 0.80 1 1 0.1
5 3SD 1 N/A 1 1 1 1 0.1
6 3SD 1 N/A 0.8 1 1 1 0.1
7 3SD 1 N/A 0.75 1 1 1 0.1
8 2.5SD 1 N/A 0.75 1 1 1 0.1
9 3SD N/A N/A 0.75 N/A N/A 1 0.1
10 3SD N/A N/A 0.75 1 N/A 1 0.1
11 3SD 1 N/A 0.75 1 N/A 1 0.1
12 4SD 1 1 0.8 1 1 1 0.1
13 4SD 1 1 0.8 0.75 1 1 0.1
14 4SD 0.75 1 0.8 0.75 0.75 1 0.1
15 4SD 0.5 1 0.8 0.5 0.5 1 0.1
16 4SD 0.5 1 0.8 1 0.5 1 0.1
16 N/A 0.5 1 0.8 1 0.5 1 0.1
17 N/A 0.5 N/A 0.8 1 0.5 1 0.1
18 4SD 0.5 N/A 0.8 1 0.5 1 0.1
19 4SD 0.5 N/A 0.8 1 0.5 1 0.1
20 3SD 0.5 N/A 0.8 0.05 0.05 1 0.1
21 3SD 0.05 N/A 0.5 0.05 0.05 1 0.1
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22 3SD 0.8 N/A 0.8 1 1 1 0.1
23 3SD 0.8 N/A 0.8 0.9 1 1 0.1
24 3SD 0.8 N/A 0.8 1 0.9 1 0.1
25 3SD 0.8 N/A 0.7 1 1 1 0.1
26 4SD 0.8 N/A 0.8 1 1 1 0.1
27 3SD 0.8 N/A 0.8 1 1 2 0.1
28 3SD 0.8 N/A 0.8 1 1 1 0.05
29 4SD 0.75 1 0.8 0.6 0.75 1 0.1
30 3SD 0.75 1 0.8 0.6 0.75 1 0.1
31 3SD 0.75 0.9 0.8 0.75 0.75 1 0.1
32 3SD 0.75 1 0.8 0.75 0.75 2 0.1
33 3SD 0.75 1 0.8 0.75 0.75 2 0.1
34 3SD 0.75 1 0.8 0.75 0.75 2 0.05
35 2SD 1 N/A 1 0.5 1 1 0.1
36 3SD 1 N/A 0.9 0.5 1 1 0.1
37 3SD 1 N/A 1 0.4 1 1 0.1
38 3SD 1 N/A 1 0.65 1 1 0.1
39 3SD 1 N/A 1 0.5 0.1 1 0.1
40 3SD 1 N/A 1 0.5 1 2 0.1
41 3SD 1 N/A 1 0.5 1 3 0.1
42 3SD 1 N/A 1 0.5 1 1 0.05
43 N/A 0.5 N/A 0.8 1 0.5 1 0.1
44 4SD 0.5 N/A 0.8 0.9 0.5 1 0.1
45 4SD 0.5 N/A 0.8 0.8 0.5 1 0.1
46 4SD 0.5 N/A 0.8 0.7 0.5 1 0.1
47 4SD 0.5 N/A 0.7 0.9 0.5 1 0.1
48 4SD 0.5 N/A 0.9 0.9 0.5 1 0.1
49 4SD 0.5 N/A 0.8 0.9 0.6 1 0.1
50 4SD 0.5 N/A 0.8 0.9 0.7 1 0.1
51 4SD 0.6 N/A 0.8 0.9 0.6 1 0.1
52 4SD 0.4 N/A 0.8 0.9 0.6 1 0.1
53 4SD 0.3 N/A 0.8 0.9 0.6 1 0.1
54 4SD 0.2 N/A 0.8 0.9 0.6 1 0.1
55 4SD 0.1 N/A 0.8 0.9 0.6 1 0.1
56 4SD 0.2 N/A 0.8 0.9 0.6 2 0.1
57 4SD 0.2 N/A 0.8 0.9 0.6 1 0.05
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7.5.3 Visual results of best experiments

Figure 57: Prediction of the US versus historical recession data and probability of being in state i (=
0 to 2) according to the model. The blue line in the top graph shows when the historical recessions
were. The black line shows when the model predicts a recession. The other graphs in Figure indicate
the probability according to the model that a country is in a particular hidden state at that moment.

.
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Figure 58: Prediction of the UK versus historical recession data and probability of being in state
i (= 0 to 2) according to the model. The blue line in the top graph shows when the historical
recessions were. The black line shows when the model predicts a recession. The other graphs in
Figure indicate the probability according to the model that a country is in the particular hidden
state at that moment.

.
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Figure 59: Prediction of the JP versus historical recession data and probability of being in state
i (= 0 to 2) according to the model. The blue line in the top graph shows when the historical
recessions were. The black line shows when the model predicts a recession. The other graphs in
Figure indicate the probability according to the model that a country is in the particular hidden
state at that moment.

.

98


	Management summary
	Preface
	Glossary
	Acronyms and abbreviations
	Mathematical notations used
	Introduction
	Introduction to the company 
	Project context
	Background about recessions
	What is a recession?
	What causes a recession?

	Research Purpose and relevance
	Problem definition
	Research Questions
	Main question
	Sub-questions

	Workflow

	Theoretical framework: machine learning 
	Machine Learning
	Supervised Learning
	Classification
	Regression
	Training and test sets

	Unsupervised Learning
	Association rule learning
	Dimensionality Reduction
	Clustering methods
	Hidden Markov Model

	Algorithm selection

	Theoretical framework: hidden Markov models
	The weather example
	A general Hidden Markov model
	Assumptions of the hidden Markov model
	The hidden Markov model with a discrete observable distribution
	Illustration of the hidden Markov model and types of model topologies
	The hidden Markov model with a continuous observation distribution

	The three fundamental problems of the hidden Markov model
	Solution to the decoding problem

	Conclusion

	Methodology
	Data preparation
	Observable processes used
	Missing data

	The application of the three fundamental problems that can be solved with the hidden Markov model
	Validation method
	Benchmarks

	Correlation between the economic state of countries
	Summary

	Results
	The two-state hidden Markov base model
	Initialization of the two-state base model
	Results of the two-state base model
	Conclusions of the two-state base model

	Optimizing the two-state hidden Markov model
	Cutoff points, simple moving average, and exponential moving average
	Results of the improved two-state model
	Conclusions of the improved two-state model

	The three-state hidden Markov model
	Results of the three-state model
	Conclusions of the three-state model

	The five-state hidden Markov model
	AIC and BIC of the hidden Markov models
	Summary

	Conclusion, discussion, and further research
	Conclusion
	Discussion
	Contributions to theory and practice
	Recommendations for further research

	Appendix
	Solution to the likelihood problem
	Solution to the learning problem
	The two-state hidden Markov base model
	Visual results

	The improved two-state hidden Markov model
	Quantitative results of all experiments
	Parameters used for all experiments
	Visual results of best experiments

	The three-state hidden Markov model
	Quantitative results of all experiments
	Parameters used for all experiments
	Visual results of best experiments



