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Abstract 

Wide range of remotely sensed data obtained from different sensors is currently available. This data 

requires to be analyzed to get information. One way to analyze remote sensing data is classification. 

Choosing a suitable classification algorithm is important to efficiently use this large data set. Several 

approaches have been introduced where the contextual information is one of the applicable introduced 

models in classification of remote sensing data. For characterizing contextual information Markov 

Random Field (MRF) has been found an efficient tool. Application of MRF is based on maximum a 

posterior (MAP) estimation. It is employed as prior probability density function (p.d.f.). For the 

conditional p.d.f. often Maximum Likelihood Classification (MLC) is used where assumes classes are 

normally distributed. This assumption is not always a correct assumption. This research proposed a 

new MRF-SVM model that explores Support Vector Machine (SVM) instead of MLC. Since 

Implementation of SVM presented an improved classification results compare to other classifiers like 

MLC (Foody & Mathur, 2004; Foody, et al., 2006; Huang, et al., 2002; Pal, 2006; Pal & Mathur, 

2005). The introduced model uses Simulated Annealing (SA) for energy minimization. Contribution of 

prior and conditional models was controlled by a smoothness parameter. 

 

SVM offers some flexibility choice of penalty parameter value and a kernel function. Influence of 

these choices was considered. SVM assigns label to classes while in application of SVM as conditional 

p.d.f. class probabilities are required. To compute class probabilities for SVM Plott’s theory was used. 

Using class probabilities from Plott’s theory model was implemented on image synthesized from an 

agricultural scene. The accuracy of produced results was assessed by means of kappa coefficient (κ ). 

In addition, reproducibility of results was evaluated by standard deviation of ten runs of model for ten 

different input images. Results indicate sufficient classification accuracy where the maximum κ  is 

0.95. During the procedure effect of class separability was investigated too. Also, performance of the 

model was compared to MRF based on normal distribution assumption. An illustration of MRF-SVM 

implementation on Synthetic Aperture Radar (SAR) image was presented to demonstrate applicability 

of the developed model for classification of real data. 

 

In conclusion, the experimental results prove the effectiveness of the developed model. Performance of 

the model on synthetic data in terms of accuracy and reproducibility is acceptable. The model gives 

high κ  value while use real images may reduce it. Also employed image is smooth that may 

positively affect classification accuracy. The strength of the model is observed through classification 

results of exponentially distributed classes. The results of MRF-SVM for both normally and 

exponentially distributed classes are nearly identical whereas MRF based on MLC does not behave 

similarly for data with different probability distributions. In terms of computational time, the new 

model has similar number of iteration as MRF based on MLC. The study shows that the MRF-SVM 

model is applicable for classification of remotely sensed data. 

 

Key words: Markov Random Field, Support Vector Machine, maximum a posterior, Maximum 

Likelihood, class probability, Simulated Annealing, class separability, class distribution, exponential 

distribution classes. 
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1. Introduction 

1.1. Background and problem statement 

Remote sensing is a valuable tool in many area of science which can help to study earth processes and 

solve environmental and socio-economic problems. Wide range of applicability is making it common 

in many fields. So these cause to remote sensing data become an important source and also using this 

source is considerable as well. Remote sensing provides information in the form of satellite images 

while the uses of remote sensing often require specific information on land cover. This information 

can be obtained by image classification. In fact, classification assigns label of a land cover class to 

pixels. There are two types of image classification: supervised and unsupervised classification. 

 

Supervised classification requires user to define classes and select appropriate training samples. This 

approach is available in statistical methodology that is a quantitative analysis or non-statistical, 

geometric techniques which try to separate classes by surfaces (Richards & Jia, 2006). Statistical 

supervised classification uses an assumption about distribution for labeling classes. One of the most 

common statistical supervised classifiers is Maximum Likelihood based on the normal (Gaussian)  

distribution. 

 

Maximum Likelihood classifier (MLC) based on Bayes formula calculates the probability of a pixel 

belonging to each class and assigns that pixel to the class with the highest probability. The problem of 

MLC is that uses assumption of normal distribution while some classes do not follow that distribution. 

For example radar images intensities are exponentially distributed or high resolution multispectral data 

like QuickBird image's DN values are non-normally distributed. Also multimodality of class 

distribution sometimes is a problem that causes MLC to fail. On the other hand, Gaussian distribution 

has a continuous space with an infinite range of data values while DN values in RS images are integer, 

distributed in a finite domain. 

                                                                                                                                                                                                                                                            

In recent years, more classifiers has been introduced like Support Vector Machine (SVM) which does 

not make assumptions about class distribution and are able to show a substantial improvements over 

traditional methods (Tso & Mather, 2009). Support Vector Machine classifier only uses those training 

samples that are on part of the edge of the class in feature space because it is based on fitting an 

optimal separating hyperplane between classes according to those training samples which are on 

border of classes. SVM generally uses less sample training while can get better accuracy in 

result (Foody & Mathur, 2004). 

 

In recent years, there has been a trend for modeling prior probability of classification based on the 

concept of context (Tso & Mather, 2009). By using the context the aim is to generate a smooth image 

classification pattern. In other words, concept of contextual classification is that each pixel is treated in 

relation to its neighbors. One of the useful tools for characterizing contextual information is Markov 

Random field (MRF). Use of MRF produces a smooth classification result which is more suitable for 

many applications. 
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MRF is explored for normally distributed classes while SVM performs image classification well and is 

not dependent on class distribution assumption. But the main problem is that SVM is not a contextual 

classification. Integration of SVM and MRF might improve classification results. How these two 

methods can cooperate is the aim of this research.  

 

1.2. Research objective 

To develop contextual image classification method based on SVM and MRF. 

 

1.2.1. Research questions 

 

• How can SVM be integrated in MRF based contextual classification? 

• How to compute class conditional probabilities with SVM? 

• How to estimate MRF and SVM parameters for the MRF-SVM classification? 

• How much this combination can improve accuracy of classification? 

• What is the computational time of the developed method? 

• Is the developed technique suitable for non-normally distributed class? 

 

1.3. Methodology 

The research would be start with a literature review on SVM and MRF contextual classification 

methods to know detail of characteristics, strength, and weakness of each technique in classification of 

remotely sensed data. Study will be intended to know how to compute class conditional probabilities 

from SVM technique.  

 

Next step is defining posterior probability for implementation SVM-MRF method. Maximization of 

posterior probability can be performed by minimizing energy function. Major difficulty of energy 

minimization is that energy functions have many local minimum which increase computational cost 

(Boykov, et al., 2001). Graph cuts have two most popular algorithm called the swap move algorithm 

and the expansion move algorithm which can compute a strong local minimum (Szeliski, et al., 2006). 

Also estimation of parameters for both SVM and MRF methods is part of implementation new 

technique. 

 

Then method will be tested for synthetic images which have normally and non-normally (e.g. Gamma, 

Exponential, Poisson, multimodal) distributed DN values. According to results, capability of method 

and its defects can be determined and technique can change in some parts.   

 

To apply method on real images we need to select a study area that have to two conditions: 1) DN 

value of classes does not distribute normally, 2) require contextual classification, in other words, pixel 

based classification does not produce good results for them. Also images of this study area should be 

available. 
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Last step is validation of results that can be done according to error matrix, overall accuracy and 

Kappa coefficient. 

 

1.4. Structure of the thesis 

This thesis contains seven chapters. The first chapter describes the background, problem statement, 

research objectives of the research. The second chapter discusses some related works on MRF and 

SVM separately for classification of remotely sensed data. Chapter three provides detail information 

of the model used in this research. The theory of both MRF and SVM are described in this chapter. 

Chapter four provides information about data types used for this study and the adapted model. In 

Chapter five obtained results are presented. Chapter six discusses the results and provides comparison 

analyses of the applied models. And Chapter seven concludes and provides recommendation for future 

research. 
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2. Literature Review 

This chapter reviews some works related to application of MRF and SVM in image analysis in the 

field of remote sensing. MRF and SVM are considered separately in section 2.1 and 2.2, respectively. 

Section 2.1 includes three parts that in each part application of MRF model by different researchers in 

the filed of image analysis in remote sensing is discussed and effect of this application is considered. 

In section 2.2 usages of SVM model in two parts is expressed that first part introduces study in the 

application of SVM model solely in remote sensing and second part reviews the combination of SVM 

and other methods that in recent years was pondered.  

  

2.1. Contextual classification 

Use of contextual information for image classification and segmentation became more popular in 

recent years (Tso & Mather, 2009). Markov Random Field (MRF) provides a convenient way to model 

context information. The practical use of MRF model is based on equivalence of MRF and Gibbs 

random field which was proved by Hammersley and Clifford. MRF theory often is used based on 

statistical methodology. Geman and Geman (Geman & Geman, 1984) proposed the idea to use 

maximum a priori (MAP) as statistical criterion and MRF together. Others developed the algorithm 

and many researchers applied it in different image analysis tasks (Barker & Rayner, 1997; Bruzzone & 

Prieto, 2000; Kasetkasem, et al., 2005; Solberg, et al., 1996; Tso & Mather, 1999). 

 

2.1.1. Markov Random Field for image segmentation 

Solving image segmentation problem by MRF model became popular, such as use it in other image 

analysis tasks. Supervised and unsupervised texture segmentation based on a hierarchical MRF model 

was proposed (Hu & Fahmy, 1991). The hierarchical MRF model uses the multi-level logistic model 

which is a particular Gibbs random field model for modeling region distribution, and the binomial 

model for modeling texture inside the regions. Then MAP problem stated as: the MRF model is the 

prior probability and an inhomogeneous random filed defines the conditional probability.  

 

Barker and Rayner (1997) employed unsupervised segmentation algorithm based on MRF model for 

noisy images. The model applied MRF as prior probability and Pseudo-likelihood as conditional 

probability. Pseudo-Likelihood was implemented according to normal distribution where a Gaussian 

noise model was defined for each class. Results show improvement in accuracy. 

 

MRF based on region adjacency graph (RAG) was implemented by (Sarkar, et al., 2000). The 

approach used an initially over segmented image as input image and defined MRF model over the 

RAG of the initially segmented regions. In a RAG, regions represent by nodes and arcs denote 

adjacency between regions. From the results it was expected that model can perform acceptable for 

any gray value image. So (Sarkar, et al., 2002) generated the defined model for multispectral images 

and results compared to Gaussian Maximum likelihood. There was improvement for obtained accuracy 

of proposed model compared to the maximum likelihood while no knowledge about image is 
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necessary for the proposed model. In 2007, Xia (Xia, et al., 2007) used the approach for synthetic 

aperture radar images and obtained an increased segmentation precision.  

 

2.1.2. Markov Random Fields for remote sensing image classification 

The wide range of data sets in remote sensing (RS) which differs in terms of spectral, spatial, and 

temporal resolution requires identification of suitable algorithms to use these RS data appropriately. 

Application of MRF as a contextual classification is an accepted approach in RS image classification. 

 

Melgani and Serpico (Melgani & Serpico, 2003) used MRF model for a spatio-temporal classification. 

The approach applied a mutual MRF model which reduces the risk of propagating the classification 

error from one image taken at one time to image taken at another time. To define MAP problem they 

used separate contribution of three kinds of information: spectral information, spatial contextual and 

temporal contextual information. The model instead of normal class conditional probability density 

function used sensor-specific class conditional energy function by means of multilayer perceptron 

(MLP) neural networks. Model was implemented on Landsat TM and ERS-1 SAR images and 

acceptable accuracy was obtained.  

 

Another study applied hidden MRF model for Radar images as unsupervised classification (Fjortoft, et 

al., 2003). This study used a generalized mixture estimation to determine the distribution families and 

parameters of classes. They investigated Gamma and K-distributed intensities. Results of the approach 

were remarkable but the problem was difficulty of the regularity parameter estimation.  

 

(Tso & Olsen, 2005) proposed a MRF model with multi-scale fuzzy line process. Based on (Wei & 

Gertner, 2003) work which control contribution of edge pixels and obtained enhanced results, they 

used the wavelet-based edge detection method to extract multi-scale line features. Then they 

performed edge fusion on resulting multi-scale line feature to generate combined multi-scale fuzzy 

edge patterns for MRF model. In fact, in this model contextual effect will be turned off for detected 

edge pixel but for conditional probability density function they still used Gaussian distribution 

assumption. Results of this study shows improvement in accuracy of classification. 

 

In 2005, Kasetkasem (Kasetkasem, et al., 2005) employed MRF model to generate Super-Resolution 

land (SRM) cover maps from remote sensing data. The approach assumed that super resolution map 

has MRF properties. This assumption removed a large number of misclassified pixels from obtained 

SRM. The efficiency of model was tested for Landsat ETM+ and IKONOS images and a significant 

increase in accuracies of produced SRMs was obtained while the model make normal distribution 

assumption for conditional density function.  

 

Above mentioned studies are just some illustrations of several works done using MRF based on MAP 

criteria. There are many more researchers have performed MRF model for image analysis while the 

majority of these studies made normal distribution assumption for conditional probability density 

function which is not always a valid assumption for all data.  
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2.2. Support Vector Machines 

Support vector machines (SVM) was developed by Vapnik in 1979 for image classification (Vapnik, 

1995) and in 1995, he introduced the soft margin hyperplane for non-separable data which made SVM 

more applicable. Ability and good performance of SVM in variety of research domains make it 

attractive. SVM is gaining popularity in the field of remote sensing. SVM gives improved results with 

respect to traditional classifiers like maximum likelihood. 

 

2.2.1. Apply SVM in hyperspectral remote sensing classification 

In 1998, Gualtieri applied SVM for hyperspectral remote sensing classification (Gualtieri & Cromp, 

1998). They used AVIRIS images and evaluated the performance of method for 4 and 16 classes. Due 

to ability of SVM for handling high dimensional data, study results were improved respect to 

traditional classifiers and represented potential to more works. Therefore, (Huang, et al., 2002) 

considered SVM to demonstrate the applicability of method for deriving land cover information from 

satellite images and compare it with the other classifiers like: maximum likelihood, neural network, 

and decision tree classifiers. The study investigated algorithm accuracy and stability for four methods. 

In terms of accuracy there were small differences in general, for algorithm stability SVM gave more 

stable overall accuracy with respect to other classifiers.  

 

The effectiveness performance of SVM classification caused researchers to consider this classifier. 

Melgani and Bruzzone (Melgani & Bruzzone, 2002) applied SVM for AVIRIS hyperspectral data and 

compared SVM with K-nearest neighbors (K-nn) classifier and Radial Basis Functions (RBF) neural 

network. They used the original hyper-dimensional space to employ methods and got superior results 

for SVM approach. The assessment of results was based on the classification accuracy (overall 

accuracy), the computational time, and the stability of results. All the three assessment indicators 

prove the ability of SVM approach and encourage them to improve their experiment on SVM in the 

field of hyperspectral images (Melgani & Bruzzone, 2004).  

 

Pal and Mathur (Pal & Mathur, 2005) also worked on SVM classification in remote sensing and 

considered two levels in their work; 1) they studied the effect of multi-class strategy on the 

performance of SVM and 2) compare the behavior of SVM with maximum likelihood (ML) and 

artificial neural network (ANN) on hyperspectral and multi-spectral data. First part suggested the use 

of “one against one” approach. For the second part, results reported higher accuracy for SVM 

classifier respect to ML and ANN even if the size of training dataset is small. 

 

2.2.2. SVM model combined with other methods 

When the efficiency of SVM in classification was proven through several studies, new approach was 

combined SVM with other methods. One of the first attempts was done by (Hermes, et al., 1999). The 

method was according to MAP criteria in Bayesian theorem for classifying Landsat TM images. They 

used a topological relation for prior probability and applied a method based on SVM for conditional 

probability density function. The produced results were considerably improved with small number of 

training data. 

 

Substantial results of previous studies on SVM for classification of hyperspectral data as mentioned in 

section 2.2.1 encouraged Pal (Pal, 2006) to apply SVM with a Genetic Algorithm (GA) for feature 
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selection in land cover classification. Classification of hyperspectral data has two difficulties: 1) high 

correlation between bands, 2) estimation of more parameters. In this method GA utilized some of the 

existing bounds of the generalization error for SVM as the fitness functions. Their results for 

SVM/GA method were not desirable in computation cost. 

 

Following the problem of feature selection in classification of hyperspectral data (Waske, et al., 2010) 

introduced another method using SVM. The proposed method is multiple classifier systems 

(Achlioptas, et al.) based on SVM and random feature selection (RFS), and results in terms of 

accuracy were compared with regular SVM. The MCS strategy used an RFS to perform various sets of 

feature subspaces, afterward, an individual SVM was applied on the feature subset to provide an 

individual classification result. These processes were performed based on number of classifiers and the 

classification output was combined with a majority vote. Experimental results gave significant 

improve in overall accuracy and more realistic results compared to standard SVM. 

 

Application of combined SVM with other methods was not just in field of feature selection, the 

combination of SVM was considered in high spatial resolution classification too. A method was 

proposed that used optimized SVM as basis classifier and Random Forest (RF) to promote diversity 

which includes spatial information. The construction strategy was characterized by 1) a random 

mechanism to select subsets of training samples and spatial information in addition to spectral 

information, 2) SVM as basis classifier, and 3) the final map was generated by means of a weighed 

combination of classification maps. The proposed model achieved desirable accuracy and also visual 

quality of the classification (Waske, et al., 2010). 

 

One more study was done by Bruzzone and Persello (Bruzzone & Persello, 2009) which presented a 

context-sensitive semi-supervised support vector machine (CS
4

VM) model for classification problems 

in non-reliable training set. The proposed method aimed to exploit the information of the context 

patterns to reduce the bias effect of mislabeled patterns on the definition of separating hyperplanes of 

SVM. The strategy was based on supervised learning with original training sets and classification of 

context patterns using standard SVM with a neighborhood system. Then contextual semi-supervised 

learning was performed according to both original labeled patterns and semi-labeled context patterns 

with new method (CS
4

VM). Results of standard SVM and new method classification for a very high 

resolution image (IKONOS images) and a medium resolution (Landsat) image were compared and 

robustness of new method was reported.  
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3. Methods  

3.1. Markov Random Field classification based on Support Vector Machin 

In image classification of remote sensing data estimating probability of classes is based on Bayesian 

theorem, which has had a strong and considerable influence on statistical modeling.  

 

Bayes's theorem is one of the main tools for manipulating probabilities of any kind; where image 

classification uses this theorem as Bayesian classification. Bayes theory has two parts: prior and 

conditional probability density functions (p.d.f.). To estimate probability of classes, by use of 

combining these two functions (prior and conditional p.d.f.) maximum a posteriori (MAP) is 

expressed. In practice, availability of prior information is a problem for classification issue. Using 

Markov Random Field (MRF) as prior information becomes popular where it generates a smooth 

image classification pattern. MRF uses context information that may be derived from spectral, spatial, 

and even temporal attributes. Appropriate use of this context information can increase accuracy of 

classification (Magnussen, et al., 2004). 

 

For conditional part of Bayesian theorem, the Maximum Likelihood (ML) has been widely adapted in 

remotely sensed image classification. ML assumes classes are normally distributed and then model the 

class-conditional p.d.f. while there are many image data (like QB and Radar images) in remote sensing 

with different distribution. This research uses Support Vector Machines (SVM) for conditional p.d.f. 

which makes no assumption about class distributions. In following theoretical explanation of both 

methods is described. Section  3.2 explains contextual classification and Markov Random Fields. And 

Support Vector Machine will be described in section  3.3 . 

 

3.2. Contextual image classification 

Contextual information is kind of spatial, temporal, and spectral relationship and is used for remotely 

sensed imagery interpretation in many studies. Contextual information, can be defined as how the 

probability of presence of one object (or objects) is affected by its (their) neighbors. In fact, in remote 

sensing classification, when a pixel is labeled as forest, it is likely to be surrounded by the same class 

of pixels unless that pixel is located in boundary area of that class. Markov Random Field (MRF) 

theory provides a convenient and consistent way to model this contextual information(Tso & Olsen, 

2005). Such a modeling is the one which requires the least a priori information on the world model. 

Actually the simplest statistical model for an image consists of the probabilities of classes(Berthod, et 

al., 1996). 

 

In following theoretical concepts of MRF will be expressed based on (Tso & Mather, 2009) and (Li, 

2009). 
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3.2.1. Markov Random Field 

 Let { }mdddD ,...,, 21=  be a family of random variables on the set S  with m  sites in which each 

random variable iD  takes a value id  in L . The family D  is called random field. The set S  is an 

image with m  pixels; D  is a set of pixel DN values. Also the label set L  is a set of the user-defined 

information classes, e.g., L  = {water, forest, pasture, or residential areas}. MRF is a model to describe 

dependencies of random variables. 

 

According to defined random field, the configuration { }mwwww ,...,, 21=  for the set S  is 

introduced, where ( )mrLwr ≤≤∈ 1 . And the notation w  is simplified to { }mwwww ,...,, 21= . 

Random field is satisfied the following three properties: 

 

1) Positivity: ( ) 0>wP   for all possible configuration of w , ( )wP  is the probability of configuration 

w . This can usually be satisfied in practice. 

 

2) Markovianity: ( ) ( )Nrrrsr wwPwwP || =−  

Where rS −  is  the set difference, then rSw −  indicates the set labels at the sites in rS −  and Nr  

denotes the neighbors of site r . Markovianity indicates neighborhood interaction of sites. It means 

label of site r is directly dependent only on its neighbors.  

 

3) Homogeneity: ( )Nrr wwP |  is the same for all sites r . This property states that probability for the 

label of site r does not depend on location of the site in S . 

 

To define neighborhood in image analysis there is a system which specifies some surrounding pixels 

as neighbors. This usually system defines first-order neighbors with four pixels which have one 

common side with the given pixel, it is shown in Figure  3.1a. Second-order neighbors are pixels that 

have one corner in common with the pixel of interest (Figure  3.1b). Also higher-order neighbors can 

be defined that, up to five neighborhoods is shown in Figure  3.1c. 
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(a) (b) (c) 

Figure  3.1 : neighborhood system to define neighbors for the pixel of interest, which (a) is the first-order 

neighbors with four pixels, (b) is the second-order neighbors that have a corner in common, and (c) is a higher-

order one (up to five) in a similar manner. Source: (Tso & Mather, 2009) 

 

3.2.2. Gibbs random field 

Since MRF classifies pixels based on their neighbors, then describes the local properties of an image. 

While Gibbs Random Field (GRF) is defined as global model where gives the label to a specific pixel 

affected by the labels given to all other pixels. GRF characterizes an image in a global model by 

specifies a p.d.f. in the following form: 

 

 ( ) ��

�
��

�
=

T

wU

Z
wP

)(
- exp

1
 (3.1) 

Where  

 

 � ��

�
��

�
−=

w T

wU
Z

 ofion configurat  possible all

)(
 exp  (3.2) 

 

Z  is called the partition function and is the sum of all possible configuration of w . )(wU  is called 

energy function, and T  is a constant named temperature. Based on Equation 3.1 maximization of 

( )wP  is equivalent to minimization of  )(wU . The energy function is: 

 

 �
∈

=
Cc

c wVwU )()(  (3.3) 

 

Where )(wVc  is called the potential function with respect to clique type C . Clique  C  is a subset of 

image that indicates mutual neighborhood of all pairs of sites. Clique type of first order is shown in 

Figure  3.2. 

 
Figure  3.2 : all possible cliques with the neighborhood system on the first order for pixel of interest r . 

 

According to definition of clique energy function expressed as: 
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By increasing the order of neighborhood system, the number of cliques expanded, and complexity 

grows too. 

 

3.2.3. MRF-GRF equivalence 

As mentioned above MRF describes local properties of an image and GRF is a global model. Based on 

Hammersley-Clifford theorem which describes equivalence of GRF and MRF for every MRF there is 

a unique GRF since GRF is defined in terms of cliques on neighborhood system. The proof of this 

theorem is presented in many researches for example in (Tso & Mather, 2009). This equivalence 

provides a simple way to dealing specify the MRF model by means of GRF model formulation. 

 

3.2.4. Energy minimization 

According to Equation 3.1, to get a maximum for ( )wP , the energy function has to be minimized. To 

find an optimal solution for this minimization problem some iterative search techniques is used which 

seeks for minima. But always there is local and global minimum in solution space where convexity 

analysis may be used to solve the problem. In convexity analysis, if the energy function is convex 

(bowl-shaped with one minimum), based on Bayesian formulation; maximum a posteriori (MAP) for 

MRF can be obtained using basic search approach because of one minimum point in solution space. 

For non-convex energy functions which may have many local minima, finding a global minimum 

needs to search all local minimas. Tso and Mathur (Tso & Mather, 2009) have mentioned three 

algorithms with an iterative process: Simulated Annealing (SA), Iterated Conditional Modes (ICM), 

and Maximizer of Posterior Marginals (MPM). For this research SA is used which is explained in 

following. 
  

3.2.4.1. Simulated Annealing (SA) 

Simulated annealing is a stochastic method to find a global minimum solution. This technique 

increases the temperature parameter from a higher value to a low value during the iterative 

minimization. At a high temperature, it can locate the unique minimum where energy landscape is 

convex and smooth. By tracking the minimum, the energy is gradually decreased to get a sufficient 

low value. In fact, SA simulates a physical annealing procedure in which a metal structure is melted 

and then slowly is cooled down to make sure it has enough time to be hardened. 

 

For intuition that how samples of w  distributed in D , consider a system where any w  in 

configuration space D  has following probability: 

 

 T
T wPwP

1

)]([)( =  (3.5) 

 

 

Where 0>T  is the temperature parameter. )(wPT  is concentrated on the peaks of )(wP , when 

0→T ; for ∞→T , )(wPT  is a uniform distribution on D; and as )()(  ,1 wPwPT T == . 
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Figure  3.3: the simulated annealing algorithm (SA). source:(Li, 2009) 

 

 Figure  3.3 shows description of SA algorithm where )(wΝ is the neighborhood system. The algorithm 

first set a high value for T and w  is set for a random configuration. At a fixed T , SA applies a 

sampling algorithm, such as Metropolis algorithm (Metropolis, et al., 1953) or Gibbs sampler (Geman 

& Geman, 1984) to converge to the equilibrium at the current temperature T . Then according to a 

carefully defined cooling schedule, T  is decreased. This process is continued until the system 

becomes frozen (T  is close to 0) in which energy function is near the minimum. Tuning the annealing 

schedule (cooling schedule) is very important where it has a critical effect on success of SA. Choosing 

an optimal schedule depends on the type and also on the size of the problem (Li, et al., 1997). 

 

For two mentioned convergence theorems (Geman & Geman, 1984) presents proofs. The first 

considers the convergence of Metropolis’s algorithm where state, the distribution of generated 

configuration is guaranteed to converge to the Gibbs distribution, if each configuration w  is visited 

infinitely often. The second theorem is about temperature T of SA. It states if steps of decreasing 

temperature satisfies: 

 

 0lim
k

=
∞→

kT  (3.6) 

 

and  

 
)ln(1 k

m
Tk

+

∆×
≥  (3.7) 

 

 

Where )(min)(max wUwU
ww

−=∆  , then the convergence can be guaranteed. This equation is very 

slow for practical applications, therefore faster cooling functioned may apply which is mentioned in 

(Tso & Mather, 2009) and (Li, 2009). 

 

3.3. Support Vector Machine 

Support vector machine was introduced in 1992 to generate maximal margin for non separable training 

data in feature space by hyperplanes (Vapnik, 2006). SVM was a binary classifier primitively which 

labeled classes as 1+  and 1− . The idea for this classification is separating these two classes with 

maximum margin. SVM constructs an optimal hyperplane for getting to maximized margin (Tso & 

Mather, 2009). In fact hyperplanes are decision boundaries for separating classes in feature space 

Initialize T  and w  

repeat 

randomly sample w  from )(wP  under T  ; 

decrease T  ; 

until )0( →T ; 

return w ; 
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which use training samples that lie on the edge of class distribution. Figure  3.4 shows how optimal 

hyperplane divide two classes based on maximum margin. Most materials in this section follow (Tso 

& Mather, 2009), (Cortes & Vapnik, 1995) and (Vapnik, 2006). 

 
Figure  3.4 : several hyperplanes maybe used to separate samples. 

 

3.3.1. Linear separable classification 

Suppose the training data set is represented by pairs { } { }  R  x,1,1,,...,1  ,,x d∈−∈= iiii yniy is a 

d-dimensional space, iy  is the label of class for training sample i  that represent class 1+  or 1− . A 

hyperplane in feature space is defined by following equation: 

 

 0xw =+⋅ b  (3.8) 

 

Where x  is a point lying on the hyperplane, w  is normal to the hyperplane and b  indicates bias  

Figure  3.5. Separating hyperplane is defined for two classes like this: 
 

 1xw +≥+⋅ bi     for class 1+=iy  (3.9) 

 

 1xw −≤+⋅ bi     for class 1−=iy  (3.10) 

 

All training data are supposed to satisfy two Equations 3.9 and 3.10 that are illustrated in  

Figure  3.5. These two equations can be combined to give: 

 

 ( ) 01xw ≥−+⋅ by ii      (3.11) 
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Figure  3.5 : SVM use support vectors to construct optimal hyperplane. Circled cases are support vectors. Source: 

(Foody & Mathur, 2004) 

 

Training samples lie on two hyperplanes P1 and P2 are called support vectors and are parallel to the 

optimal hyperplane. Margin between these two is 
w

2
and analysis aims to maximize this margin. The 

maximization of this margin leads to: 

 

 
�
	



�
�


2

||||
min

2ω
     (3.12) 

 

subject to the inequality constraints in Equation 3.11. Lagrange formulation of the Equation 3.11 is 

used which makes it easier to handle because of introducing, iα , positive Lagrange multipliers 

(Burges, 1998). The primal Lagrange formulation gives: 
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n
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2

1
αα      (3.13) 

 

Which should be minimized with respect to w  and b . To achieve that, derivative of pL  should be 

equal to zero: 
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Substitution of 3.14 and 3.15 into equation 3.13 gives a dual Lagrangian DL : 
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Then the decision rule that separate training samples can be written as: 

 

 ( ) ( ) �
�

�
�
�

�
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n
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ii

1

xxsgnx α      (3.17) 

 

Now DL  have to be maximized respect to iα 0≥ , subject to constraint in Equation 3.14 with solution 

given by equation 3.15. Consider that there is Lagrange multiplier iα  for every training point. Just 
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support vector points have nonzero iα , which are either exactly at the class boundaries or on the 

wrong side of the class boundaries (margin errors). 

 

Notice that Lagrange formulas have different labels (p for primal, D for dual) to emphasize on their 

difference. Both of them have the same objective function but with different constraints; and the 

solution is found by minimizing pL  or by maximizing DL .  

 

This formulation of the SVM optimization problem is called the hard margin formulation; since 

training samples are classified without any error (classes are fully separable). While information 

classes of remotely sensed data are not usually separable.   

 

3.3.2. Linear non-separable classification 

Consider the case where classes are not fully separable. In this case one may want to have classes with 

some errors. In fact, training samples can be classified with a minimal number of errors. This 

sometimes is called soft margin method (Cortes & Vapnik, 1995; Tso & Mather, 2009). For this type 

of non separable data two types of SVM is introduced: C-SVM and nu-SVM which will be explained 

in the following. 

 

C-SVM     

To treat erroneous training samples (Cortes & Vapnik, 1995) defined non-negative variables 

0≥iξ ,   ni ,...,1=  are called slack variables, indicating distance of the sample from hyperplane of 

class it belongs to Figure  3.6. In fact ξ  is introduced to classify non separable classes with a number 

of errors. Then the Equation 3.4 can be written as: 

 

 ( ) iii by ξ−≥+⋅ 1xw      (3.18) 

 

For outliers that exist in data set, a penalty term, C� =

n

i i1
ξ is added to penalize solution for very 

large �. The parameter C controls magnitude the penalty of training samples that lie on the wrong side 

of the hyperplane. Larger value of C leads to overfitting and decreases generalization capability (Tso 

& Mather, 2009). This type of SVM is usually called C_SVM. 

 

 

 

Figure  3.6: representing non-separable cases (Foody & Mathur, 2004) 
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Now, the optimal problem resolves to: 
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2

||w||
min ξ      (3.19) 

 

Subject to the inequality constraint in Equation 3.18. The first term of Equation 3.19 is for maximizing 

the margin while the second part seeks to penalize training samples on the wrong sides of class 

boundaries in the non separable cases. 

 

The above minimization is a quadratic objective function with linear constraints that is a standard 

problem in optimization theory (Belousov, et al., 2002). It can be solved by applying Lagrange theory. 

Then the primal Lagrange formulation is: 
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(3.20) 

Where, iµ  are the Lagrange multipliers to enforce positivity of slack variables iξ . Now, 

Equation 3.20 should be minimized with respect to ξ,w  and b . Using the solutions for substitution 

in Equation 3.20, maximize new equation: 
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Subject to 
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 Ci ≤≤ α0  for ni ,...,1=   

                                        

Now C is an upper bound for Lagrange multiplier iα  to enforce that any given support vector is 

allowed to exert on hyperplanes P1 or P2 . 

 

ν -SVM     

(Schölkopf, et al., 2000) introduced a new algorithm of SVM which defined parameterν . Here they 

substituted C by new parameter ν : 
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subject to 
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 ( ) iii by ξρ −≥+⋅ xw      (3.23) 

Where,  

 ,0≥iξ 0≥ρ   

 

Following the same derivation as in Subsection  0 gives: 
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This Equation 3.24 compared to Equation 3.21 has two differences. First there is an additional 

constraintν . Second, the linear term �
=

n

i

i

1

α no appears in the objective function which is now 

quadratically homogeneous inα (Schölkopf, et al., 2000). 

                          

The new parameter ν  controls support vectors and errors both as a single parameter. Controlling the 

number of support vectors has consequences for: 1) complexity of run-time, since evaluation time has 

a linear relationship with number of support vectors (Burges, 1998); 2) training time; 3) parameter ν  

is enough to train the algorithm only on the support vectors; 4) generalization error bounds.  

Note that two algorithms are not different fundamentally while (Schölkopf, et al., 2000) showed that 

for certain parameter setting, results are similar.  

 

3.3.3. Non-linear classification 

To generalize the above method for non-linear cases, support vector machine uses an implicit mapping 

function Φ  to map the input vector x
n

R∈  into a high-dimensional feature space H and constructs the 

optimal separating hyperplane in that space Figure  3.7: 

 

 HR
n →Φ :      (3.28) 

 

A vector x in the feature space is represented as ( )xΦ  in the high-dimensional space H. Since problem 

optimization of SVM only uses dot products of two vectors, the method applies kernel function such 

that: 
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 ( ) ( ) ( )( )
jijiK x,xx,x ΦΦ=  (3.29) 

 

 

 
 

Figure  3.7: kernel functions map training samples into a higher dimensional space to find an appropriate 

decision boundary. Source:(Schölkopf & Smola, 2001)  

 

Now, we can train SVM and use these kernels in a high-dimensional space. And the optimization 

problem can be written as: 
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And decision rule now generalized into: 

 

 ( ) �
�

�
�
�

�
+= �

=

bKyf
n

i

iii

1

x,xsgn)x( α  (3.31) 

 

The interesting fact of using kernel functions is that we do not need to know the explicit form of Φ  

(Cristianini & Shawe-Taylor, 2000). The kernel used must satisfy Mercer’s condition. Then any 

(conditionally) positive definite function ( )iK x,x  can be used to construct a support vector 

machine(Vapnik, 2006). 

 

3.3.3.1. Kernel functions  

Kernels make it possible to map the data into a high-dimensional space to separate training samples by 

an appropriate decision boundary. The key is finding appropriate function that can be evaluate 

efficiently. Common kernels that are used for SVM method include the following: 

 

• Linear kernel 

 

 ( )
jijiK xxx,x

T
=   

 

• The Gaussian Radial Basis Function (RBF) kernel 
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Each of these kernel functions is used in different condition for example (Karatzoglou, et al., 2006) 

mention that RBF kernel is used when there is no prior knowledge about data. 

 

Moreover, (Tso & Mather, 2009) discussed in their book impact of kernel function on SVM results 

and declared there is a close relation between choosing kernel function and performance of SVM. Also 

(Huang, et al., 2002) investigated impact of kernel function on the performance of SVM and results 

revealed that kernel type and kernel parameter can influence on shape of decision boundaries and 

subsequently on SVM performance. 
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4. Implementation 

This chapter describes applied data and the processing steps to implement the MRF-SVM model are 

given. Section 4.1 describes the data sets that are used. Section 4.2 explains software and packages 

used to implement model. Methods, their characteristics, and parameters that were performed are 

explained in section 4.3.   

 

4.1. Synthetic image 

Synthetic image is an artificial form of real data which provides a useful source to improve 

understanding the complexity of reality. It also can be employed to emphasize the desirable aspects. In 

this case, controlling the probability density function of classes and their separability are desired. 

These reasons lead the research to apply synthetic images for implementing new method and study 

different aspects of introduced model. 

 

In this study, an image with 60×60 pixels is synthesized. The image has two classes and single band. 

For each test, one image is generated which means every experiment uses new synthetic image. During 

image generation class separability was controlled. In the following, reference data and employed 

images will be explained. 

 

4.1.1. Reference image 

Reference map is a subset of real image. The image contains two homogenous classes. Figure  4.1 

shows reference data. 

 

 

 

Figure  4.1: Left picture shows Landsat image that reference data was generated based on that and in right, 

reference image is presented 
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4.1.2. Generation of pixel values 

Based on reference image pixel values were produced through random number generator using class 

parameters. Two types of image were generated. One with normally distributed classes and the other 

one with exponentially distributed classes. Throughout the thesis to simplify, image with normal 

distribution classes will be called ND image and image with exponentially distributed classes will be 

called ED image. An example of each class is shown in Figure  4.2a and b. 

 

                

(a) (b) 

Figure  4.2: (a) Image with normal distribution classes (ND image). (b) Image with exponential distribution 

classes (ED image).  

 

Class separability for images was considered too which will be in the following. For implementing the 

model JM=0.5 was used that shows big overlap for class distributions.  

 

4.2. Software  

The introduced model was performed in R software, version 2.11.1. It is a programming language for 

statistical computing. R provides a wide variety of statistical techniques. 

 

R introduced four packages to implement SVM. The first package in R for SVM was e1071. Kernlab, 

klaR and svmpath are the other packages in R which implement SVM. (Karatzoglou, et al., 2006) 

discussed these packages and compared their performance for support vector machine. This research 

uses kernlab package to implement SVM. 

 

Kernlab is an extensive and flexible package for kernel-based learning methods in R(Karatzoglou, et 

al., 2004). Kernlab package uses ksvm() function to implement SVM that includes most important 

formulations and kernels for SVM and even let the user to define kernels. This function includes the 

C-SVM and ν -SVM classification algorithm to implement SVM. The kernlab package supports 

different kernel functions include linear kernel function and the radial basis function (RBF) which is 

used in this research. The package also has the ability to estimate automatically σ  for RBF kernel 

function. In addition, kernlab package can produce class probability output instead of class labels 
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which is the main reason to select this package. In fact, to apply SVM model as conditional probability 

it is needed to use class probabilities. This package uses Platt’s a posteriori probabilities (Karatzoglou, 

et al., 2006) to compute class probability that will be explained in section  4.3.2. 

 

In addition, MRF codes were available in R and the SVM code was developed in this research. 

  

4.3. Methods 

As mentioned, methods in this research are based on Bayes formula which has two parts: prior and 

conditional probability density function (p.d.f.). To classify the input data MAP solution is adapted for 

the given dataset  d  and the class label w  (chapter 3):  

 

 )|()|()|( iiNiiii wdPwwPdwP ∝  (4.1) 

 

Due to MRF and Gibbs random field equivalence Equation 4.1 can be written as: 

 

 )|()|()|( iiNiiii wdUwwUdwU +=  (4.2)  

 

Where, )|( Nii wwU  is the prior energy function for neighborhood system Ni , )|( ii wdU denotes the 

conditional energy and )|( ii dwU  is the posterior energy for one pixel. An additional parameter λ  is 

defined to control contribution of prior and conditional energy function: 

 

 )|()1()|()|( iiNiiii wdUwwUdwU ⋅−+⋅= λλ  (4.3) 

 

The value of parameter λ  is between 0 and 1. If 0=λ  the prior model (here the prior model is 

MRF) is completely ignored and if it becomes equal to one just the prior model is considered. Since 

this research is going to study the combined models (MRF based on SVM or ML), the value of 

smoothness parameter λ  should not be equal to 0 or 1.  

 

The posterior energy for the entire image is defined as: 

 

 �
=

=
n

i

ii dwUdwU
1

)|()|(  (4.4) 

 

For the prior model MRF method is adapted and for the conditional p.d.f. (also called likelihood 

function) three methods are used to classify the image: SVM as main part of research and ML model 

with normal and exponential assumption to compare with SVM model. ML model with normal 

distribution assumption called MLC and with exponential distribution assumption called EXP. And 

these three models are named as: MRF-SVM, MRF-MLC; and MRF-EXP. Theory of methods is 

explained in chapter 3 and here implemented models are explained. 
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4.3.1. Prior energy 

MRF 

MRF model classifies image with neighborhood system Ni  that considered first-order and Second-

order neighbors of interested pixel consists of eight pixels. The contribution of neighbor pixels was 

controlled by a weighing system. Theory of these models is explained in chapter 3.  

 

4.3.2. Conditional energy 

Three adapted methods in this research for modelling conditional energy will be expressed in the 

following. 

 

SVM 

According to Section  3.3 SVM assigns class labels to image pixels based on decision function )(xf . 

Apply SVM model as likelihood function in MAP criterion needs to produce class probabilities 

instead of class labels. Class probabilities was produced based on Plott’s theory (Lin, et al., 2007) 

where a sigmoid function is used to map the SVM outputs into probabilities. This study using the 

kernlab package implemented SVM that detailed process is on Appendix 1. 

 

MLC 

In this model, classes are assumed to follow normal distribution: 
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Where, 
2

, ii δµ  are mean and variance of class iw  assigned to pixel i . According to the Equation 4.5: 
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Where a term π2ln
2

1
 is independent of ii wd ,  and can therefore be omitted.  

 

EXP 

 

EXP model is defined for classification of ED image. In the conditional part ML model assumes 

classes are exponentially distributed that is a correct assumption. Based on exponential distribution 

formula: 
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Where iγ  is the mean value of class iw  . Natural logarithm of Equation 4.7 is: 
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Then the likelihood energy is implemented according to decision rule of Equation 4.8. 

 

4.3.3. Energy minimization 

SA that was expressed in Section  3.2.4, minimizes the posterior energy function to label pixels and 

classify them into defined classes.  

 

4.3.4. Accuracy assessment 

Quality of obtained results is required to assess the performance of classification method. This 

accuracy assessment will define degree of assurance on the produced data for the objective 

application.  

 

The most common way to express classification results is a confusion matrix. To compute a confusion 

matrix the results will be assessed through check the labeled data by classifier and the reference data. 

This nn ×  matrix compares classified pixels of each class with reference data of that class where, n  

is the number of classes. 

 

This research evaluated obtained results using kappa coefficient (κ ) according to confusion matrix. 

More information about kappa coefficient is provided in (Richards & Jia, 2006).  

 

Also, the validation of obtained results considered standard deviation of kappa coefficient for 10 run. 

So the term reproducibility was defined to present how the classification results are confident and 

other performance of method can satisfy expectations.   

 

4.3.5. Class separability 

Based on distribution of classes on feature space, class probabilities are produced. These distributions 

often have overlaps which effect on classification of data. Due to this problem the concept of class 

separability is introduced. It is a indicating how well two classes are separated(Jiancheng, et al., 2010). 

It is a classical  concept in pattern recognition and independent of coordinate system(Fukunaga, 1990). 

Class separability relates to distribution of classes. There are several methods to measure class 

separability. Richards & Jia (2006) mentioned the divergence and the Jeffries-Matusita (JM) distance 

to measure class separability. In this research JM was adapted for exponential distribution. 

 

The Jeffries-Matusita (JM) distance 
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First )|( iwdp  and )|( jwdp  spectral class probability distributions are introduced that indicate the 

probability distribution of class i  and j  at the position d . Then the JM is defined as: 
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Which is the distance between the two class density functions. For exponentially distributed classes: 
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Where γ  is standard deviation. Then JM becomes: 
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JM=0 indicates classes are the same and JM=2 denotes very well separable classes.  
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5. Results 

 

First part of this chapter provides the results of application of SVM method without MRF part for a 

synthetic image described in Chapter 4. Then MRF-SVM, MRF-MLC, and MRF-EXP models were 

performed and results are expressed in the following. 

 

5.1. Application of SVM 

The SVM algorithm offers some flexibility to control some variables. The right selection of these 

variables leads to the nicer performance of SVM. In this research the effect of some variables on 

accuracy of SVM classification was investigated to get better result in the proposed method (MRF-

SVM model). Before try different variables the size of training set was selected in Section  5.1.1, then 

in Section  5.1.2 model was run for both C-SVM and ν -SVM algorithms to investigate behaviour of 

model for different kernel functions and its parameters, after that optimum value of C and ν  will be 

discussed in Section  5.1.3.  

 

5.1.1. Size of training set 

A training set is a portion of a data set used to train a model for prediction or classification of values. 

Appropriate training samples for each class helps to have a reasonable estimation of class labels. For 

each class, the training sample should fully describe the classes spectrally. (Richards & Jia, 2006) 

mentioned a recommended training set size; 10N as minimum per class and as many as 100N if it is 

possible, where N is dimension of multispectral space.  

 

Like other supervised classifiers, SVM needs to be trained. SVM separates classes by identifying the 

support vectors from training samples. For very large number of training samples, it is sometimes 

impossible for SVM to use all of them to determine support vectors (Koggalage & Halgamuge, 2004). 

Then large training set size can limit speed of SVM. Moreover training set size can impact greatly on 

classification accuracy, since increasing the number of training samples leads to more accurate 

classification (Foody, et al., 2006). These reasons cause to this research considers the size of training 

set. 

 

Since this research employs synthetic image as objective image for classification, training samples 

were produced through a random generator with the same class parameters of the objective image. In 

other words, pixels of the image were not used as training samples.   

 

Number of training set was investigated for software default parameter setting for ED image. Both 

algorithms C-SVM and ν -SVM were applied whereas kernel function was Radial Basis kernel (RBF) 

with σ  (was explained in Chapter 3) equal to 0.1 and C=1, ν =0.2. SVM Model was run 10 times in a 

wide range of number of training samples from 10 to 1000 (Figure  5.1). Figure  5.1a depicts accuracy 
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of SVM as function of training sample size and Figure 5.1b shows standard deviation of classification 

accuracy. Results for C-SVM show that select number of training samples equal 20 is not a wise 

choice, because accuracy is very small, then it can be omitted. Also it has to be notice that large 

number of training set (more that 1000 is very time consuming which software can not handle). 

 

             
(a) (b) 

Figure  5.1: (a) Results of different number of training samples for C-SVM model where Ntr is number of 

training samples, (b) standard deviation of results for 10 runs of each training size where sd is standard 

deviation. 

 

According to these results, range between 20 and 1000 is recommended. This choice leads to better 

results in accuracy and reproducibility. This research used 1000 training set because of its high 

accuracy and less standard deviation. Also (Foody & Mathur, 2004) study investigated size of training 

set and its effect on the accuracy of SVM classifier and their results showed there is a positive relation 

between number of training samples and accuracy of SVM. Moreover, acquire large training set size is 

not costly for this research while other studies may use smaller training sets. 

 

For ν -SVM, default setting in this case did not give acceptable result, then another amount for ν  was 

selected. The higher values ν =0.9 and ν =0.7 were tried that results are depicted in Figure 5.2a and b. 

Results for ν =0.7 shows number of training samples larger than 30 gives better accuracy and also less 

variety in results which means better reproducibility. Then range between 30 and 1000 is 

recommended which this research used 1000 training samples for ν -SVM too. 
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(a) (b) 

                   
(c) (d) 

Figure  5.2: (a), (b) and (c) Different number of training samples for ν =0.2, ν =0.9 and ν =0.7 respectively 

where Ntr is number of training samples. (d) Standard deviation of results for 10 runs of each training size where 

sd is standard deviation and ν =0.7. 

 

5.1.2. Kernel function 

Next step is selection of kernel function. As mentioned before kernel functions can impact on 

performance of SVM where many studies investigated behaviour of SVM with different type of kernel 

functions (Huang, et al., 2002; Scholkopf, et al., 1997; Steinwart, 2002). 

 

In non-linear cases kernels used to map input data into a high dimensional space. This transformation 

helps to separate data. The important part is to select appropriate kernel function to correctly map data 

in new space. There are several types of kernel functions which are used in remote sensing. Here we 

want to discuss two types of kernel functions: the Gaussian Radial Basis Function (RBF) and the 

linear kernel. First RBF kernel and selection of its optimum parameter is considered and then it will be 

compare to linear kernel function. 
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5.1.2.1. Radial Basis kernel Function   

Radial basis function (RBF) was described in section  3.3.3. Choosing different σ  can effect on Radial 

basis function (RBF) impact of kernel functions. This research uses different σ  to investigate changes 

in accuracy of SVM. The value of σ  is varied from 0.1 to 1000 logarithmic. Also Kernlab package in 

R has an option for implementing SVM which selects σ  automatically from the data. Both C-SVM 

and ν -SVM were run by this option and also different σ  for variation of C and ν . Results are shown 

in Figure  5.3. 

      
(a) (b) 

Figure  5.3: (a) Different σ for C-SVM, the last one is for automatic σ selection. (b) Different σ  for ν -SVM, 

the last one is for automatic σ selection. 

 

These results show that there is no special effect of  σ  in this case for SVM accuracy, also automatic 

selection is not a good option for this case compared to otherσ . Then the parameter σ  in the 

following was selected as 1. 

 

5.1.2.2. Linear kernel Function   

The formulation of Linear kernel function was described in section  3.3.3. There is no parameter for 

this kernel. Results of implantation SVM for linear kernel function and RBF is shown in Figure  5.4 for 

different C andν . 
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(a) (b) 

Figure  5.4: compare linear kernel function and RBF kernel for (a) C-SVM and (b) ν -SVM. 

 

Figure  5.4 shows that differences are very small which can be disregarded. For both SVM algorithms, 

RBF is selected to do next step. 

 

5.1.3. C and ν  

Definition of C and ν  is brought in section  3.3.2 where C is penalty parameter to control 

misclassification samples and ν  controls both errors and number of support vectors. 

 

According to results in sections  5.1.2.1 and  5.1.2.2 different values of C and ν  were selected to 

compare kernel functions, which these results can be considered to select optimum C and ν  Figure 

 5.4. Note that ν -SVM can not take ν  values less than 0.5 that may occur in some circumstances, 

more information is provided in (Perez-Cruz, et al., 2003).  

 

These results show obtained accuracy is not too sensitive to value of C and ν , even both SVM types 

(C-SVM and ν -SVM) do not show any considerable difference in accuracy. Because of these C=10 is 

selected throughout the thesis.  

 

5.1.4. Summary  

Based on obtained results, SVM model will be implemented with C=10 and RBF kernel with δ =1. 

Also it will use 1000 training set to classify the image. The assumption for the following is that these 

variables are the same for ND image. Figure  5.5 displays classification results of SVM for selected 

parameters. 
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(a) (b) 

Figure  5.5: classified image with SVM where C=10 and σ =1 was used (a) ED image, (b) ND image. 

 

5.2. Classification of ED image 

5.2.1. MRF-SVM  

According to results of Section  5.1, first experiment was performed MRF-SVM model 10 times for 

different value of parameter λ  to classify ED image ( 

Figure  5.6a). The study chose 99.0,95.0,...,55.0,5.0=λ . The obtained results presents a bell shaped 

curve that indicates the effect of λ  value on the achieved κ . The maximum observed value for maxκ  

is 0.95 where λ =0.8 and λ =0.85. Due to the steps of 0.05 for λ , identification of optimal λ  value is 

not very precise, then an optimal range for λ  value can be defined that κ  is close to maxκ . Moreover, 

this range can be considered as a range where model is less sensitive to λ  value. The criterion to 

choose this range was defined as 85.0≥κ , then optimal range of λ  value was between 0.7 and 0.9. 

In addition, standard deviation of obtained κ  values was considered, which is displayed in Figure  5.6. 

It can be observed that for larger values of  κ  standard deviation is small. 

 

Next, Table  5.1 compares results of new model with SVM model solely. It is obvious that there is a 

remarkable improvement in accuracy of results. Notice that SVM results are independent of λ  that is.  
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(a) (b) 

 

Figure  5.6: Classification results of MRF-SVM model for exponential distribution classes with different 

smoothness parameter λ  and 10 run. (a) Accuracy of model. (b) Standard deviation of 10 runs.  

 

 

 λ  
maxκ  

SVM - 0.41 ± 0.05 

MRF-SVM 0.7-0.8-0.9 0.95 ± 0.03 

 

Table  5.1: Results of C-SVM model and MRF model based on C-SVM for ED image. The underlined value is 

optimum λ . 

 

5.2.2. MRF-MLC  

This section shows the results of MRF model where conditional model is MLC (Equation 4.6). The 

conditional model (MLC) assumes classes follow normal distribution while they are exponentially 

distributed. This part investigates how this wrong assumption effect on classification accuracy. 

 

       
(a) (b) 

Figure  5.7: Classification results of MRF-MLC model for exponential distribution classes with different 

smoothness parameter λ  and 10 run. (a) Accuracy of results. (b) Standard deviation of results for 10 runs. 
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From the experiment results of this method, it can be observed that MRF model still can improve the 

results but requires a careful selection of λ  (Figure  5.7). Figure  5.7b displays standard deviations of 

results are acceptable (less than 0.03) where repetition of procedure does not strongly affected the 

results.  

 

5.2.3. MRF-EXP  

This model aims to examine how MRF-MLC behaves when class distribution is known. In fact this 

part is an ideal design of conditional model using maximum likelihood with assumption of exponential 

distribution. Figure  5.8 a and b shows the accuracy of implemented method and its standard deviation 

for different λ  and 10 runs. Figure  5.8a shows a high accuracy range of λ , where for λ  between 0.7 

and 0.9 the κ  value is more than 0.8. Consider this high accuracy; variations of results are also 

acceptable (Figure  5.8). It means MRF-EXP model results are reliable enough (less than 0.03). In fact, 

obtained κ  value reaches the highest accuracy that can be produced. 

 

        
(a) (b) 

 

Figure  5.8: Classification results of MRF-EXP model for exponential distribution classes with different 

smoothness parameter λ  and 10 run. (a) Accuracy of results. (b) Standard deviation for 10 runs. 

 

5.2.4. Performance of MRF-SVM, MRF-MLC, and MRF-EXP on ED image 

Here the results of three models are compared in one plot (Figure  5.9), from this plot it can be seen 

that MRF-SVM (new model) gives accuracy as high as MRF-EXP which is ideal model for MRF 

based on maximum likelihood. These results show MRF-SVM even has higher accuracy for some 

value of λ  like 0.85 and 0.9. For MRF-MLC maximum κ  shifts to larger value of λ  and obtaining 

sufficient accuracy is very sensitive to λ  while the other models do not present this sensitivity.  
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(a) (b) 

 

Figure  5.9: Compare results of three models: MRF-SVM, MRF-MLC, and MRF-EXP. 

 

5.3. Classification of ND image 

5.3.1. MRF-SVM 

MRF-SVM model in this section is applied on image with normally distributed classes. The 

conditional model is SVM, thus no assumption about class distributions. Parameters of the model are 

the same as MRF-SVM for exponential distribution classes. Model was run ten times and effect of 

different λ  on accuracy and standard deviation of results is displayed in Figure  5.10. From these 

results, it can be observed that MRF-SVM gives sufficient results for ND image like ED image. The 

maximum observed value of maxκ  is equal to 0.96 for 85.0=λ . Also there is a range of parameter 

λ  like ED image that model’s accuracy is higher than 0.8. For this range variation of results is less 

than 0.02. This low standard deviation is a reason for acceptable performance of MRF-SVM model. 

High accuracy for values of parameter λ  like 0.7 means silmilar contribution of both MRF and SVM 

models make the new model stronger. 
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(a) (b) 

Figure  5.10: κ values of MRF-SVM model for normal distribution classes with different smoothness parameter 

λ  and 10 run. (a) κ . (b) Standard deviation of results for 10 runs. 

 

5.3.2. MRF-MLC 

For the MRF-MLC model classification of ND image is based on MLC model as conditional part. 

MLC assumes distribution of classes is normal that is a correct assumption and it can be said that this 

is equal to MRF-EXP model in exponential distribution classes. Figure  5.11 shows the results for λ  

between range 0.65 and 0.9 is higher than 0.8 with low standard deviation. This range for λ  is wide 

enough that it can be said κ  is not too sensitive to value of λ  and also both MRF and MLC models 

have same contribution at the final decision to label classes. This means the role of MRF model to get 

high accuracy is smaller. Figure  5.11 present a similar behaviour as results of (Tolpekin & Stein, 

2009) for scale=1.  

  

 

        
(a) (b) 

Figure  5.11: κ  values of MRF-MLC model for normal distribution classes with different smoothness parameter 

λ  and 10 run. (a) κ . (b) Standard deviation of results for 10 runs. 
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5.3.3. Compare performance of two models for ND image 

To compare two models obtained accuracy of both models were depicted in one plot (Figure  5.12). It 

can be seen that MRF-MLC model gives higher accuracy than MRF-SVM but two models have the 

similar optimal range for λ  values which indicates the similar sensitivity of models to selection proper 

λ . In other words, if a confident range for λ  is defined both models obtain similar classification 

accuracy. This range is between 0.7 and 0.9 where classification accuracy is close to maxκ . In this 

range standard deviation of results are also small. It shows MRF-SVM is as accurate as MRF-MLC 

model.    

         
(a) (b) 

Figure  5.12: Compare results of MRF-SVM and MRF-MLC (a) κ values, (b) standard deviation of κ . 

 

5.4. Compare performance of MRF-SVM and MRF-MLC for two images 

In this section result of MRF-SVM model for both ED and ND images is plotted to investigate the 

behaviour of model for different class distribution (Figure  5.13). The striking point is similar 

behaviour of MRF-SVM for both images. Performance of the model for two images indicates similar 

sensitivity of model to λ  value.  Figure  5.13 presents MRF-SVM model for both distributions gives 

close κ  values, it is not just about accuracies; even standard deviations of results are very close. 

Strength of MRF-SVM model can be seen if its results are compared to results of MRF-MLC (Figure 

 5.13 and Figure  5.14). MRF-MLC model has different accuracy and standard deviation for two images 

because its conditional model is based on distribution assumption. Figure  5.14 presents different 

sensitivity of model to λ  value for two images where the MRF-MLC model in case of ED image has a 

small optimal range for λ  value.  
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(a) (b) 

Figure  5.13: MRF-SVM results for ED and ND images, (a) κ values, (b) standard deviation of κ . 

 

       

(a) (b) 

Figure  5.14: MRF-MLC results for ED and ND images, (a) κ values, (b) standard deviation of κ . 

 

5.5. Effect of class separability  

In previous sections the effect of smoothness parameter λ  on results was discussed. In this section 

variation of class separability will be considered. Here different values for class separability are 

selected from JM=0.1 (poorly separability) to JM=1.9 (excellent separability). see section  4.3.5 for 

more details. The results are displayed for ED and ND images in Figure  5.15. 

            
(a) (b) 
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(c) (d) 

 

 
(e) 

 

Figure  5.15: Results of different class separability on MRF-SVM classification accuracy for various JM distance 

as a function of λ . 

 

Experimental results from Figure  5.15 show that optimal value for parameter λ  depends on class 

separability. According to expectation increasing class separability improves the classification 

accuracy. Also results of this experiment show for higher JM values (well separable classes) 

classification accuracy improved and sensitivity to λ  value reduced. Whereas for lower class 

separability, the role of smoothness parameter λ  becomes bigger and for different value of λ  the 

accuracy is changed. However, experimental results shows for all values of JM the optimum 

smoothness parameter λ  is 0.9 except of JM=0.1 where λ  is 0.6 (Figure  5.15 e). 

 

Another observation from these results is that the MRF-SVM model gives similar results for the two 

images especially the optimum λ  value for all JM values is the same. It shows stability of model for 

different class distribution. 

 

5.6. Computation time 

In this section, performance speed of MRF-SVM model is illustrated in Table  5.2 .This time 

computation is based on number of iteration for energy minimization.  

 

 

 

 

Table  5.2: Number of iteration for MRF-SVM and MRF-MLC models.  
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From these results we see that number of iteration for both models is almost the same. Also 

MRF-SVM has similar number of iteration for ND and ED images.  

 

5.7. Implementation on real image 

To test applicability of the model for real images, it was implemented on the Envisat ASAR 

(C-band) satellite image in Single Look Complex (SLC) format. The image has an azimuth 

(along track) resolution of 4 to 5 m and range (across track) resolution of 9 to 18 m. A subset 

of image was selected which contains 145 ×  150 pixels (Figure  5.16). 
 

 
Figure  5.16: Envisat ASAR, in Single Look Complex (SLC) format with 145 ×  150 pixels. 

 

     

(a) (b) 

 

   0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99 

MRF-SVM 66 66 76 65 63 55 52 58 52 62 76 

N
D

 
im

a
g
e
 

  MRF-MLC 69 67 68 68 63 56 55 51 55 62 77 

MRF-SVM 70 73 69 67 62 53 56 51 53 62 77 

E
D

 
im

a
g
e
 

  MRF-MLC 61 62 62 66 67 65 66 55 52 50 60 
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(c) 

 

Figure  5.17: (a) SVM classified image. (b) MRF-SVM classified image with λ =0.85. (c) MRF-MLC 

classification results with λ =0.95. 

 

 

Figure  5.17a presents classified images using SVM which looks noisy and  

Figure  5.17b shows MRF-SVM results for the same image. Visual interpretation of images shows 

remarkable improvement for MRF-SVM classification results compared to SVM results. From the 

classified images it can be observed that the MRF-SVM classified image is smoother than SVM ones. 

Also,  

Figure  5.17c shows classified image produced by MRF-MLC. MRF-MLC can not classify image 

properly with respect to results of MRF-SVM where objects does not determined suficiently. 
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6. Discussion 

This thesis introduced a new method based on MAP criteria for image classification in remote sensing. 

The proposed method applies SVM to model class conditional p.d.f. and employs MRF for modelling 

the prior p.d.f. The proposed model allows the user classify image data when no information about 

class distributions is available. A smoothness parameter λ  was used to control balance between prior 

and conditional p.d.f. terms.  

 

Application of SVM was considered by setting number of training samples. Results show κ  value of 

both C-SVM and ν -SVM for number of training set equal to 30 is significantly improves compared to 

smaller number of training sets. Increasing number of training samples decreases sensitivity of 

classification accuracy of the model. Also standard deviation of results decreases which is expected. 

Due to using random generator in our case to produce training samples, the research chose 1000 

number of training samples. While study of Foody & Mathur (2004) showed SVM can perform well 

for carefully selected small number of samples. In terms of user-defined parameters for SVM, several 

studies mentioned the influence of these parameters on performance of SVM (Belousov, et al., 2002; 

Huang, et al., 2002; Pal & Mathur, 2005; Scholkopf, et al., 1997). Our case did not present 

considerable sensitivity to these parameters. But the sensitivity of SVM to these parameters should be 

considered. 

 

The performance of proposed method was tested on two synthetic images; ED image with 

exponentially distributed classes and ND image with normally distributed classes. The choice of 

synthetic image allowed controlling class distributions and class separability. Moreover, applying it 

allowed the model to use multiple input images with the same characteristics. This application of 

several input images indicates that obtained results are not limited to one image and the low values of 

standard deviations prove reproducibility of the results.  

 

Through using a group of synthetic images model was run ten times for the same class parameters, but 

different pixel DN values. Different performance of the model with same parameters helps to get more 

reliable results whereas it indicates validity of results is not restricted to one image realization. 

Selection of more than ten runs may improve reliability of the results but limitation of time was 

considered. 

 

Experimental results for ED image show acceptable performance of the new MRF-SVM model. The 

obtained results for MRF-SVM compared to standard SVM are improved significantly as Table  5.1 

illustrates. This was expected while the new model uses more information of input data. It can be 

explained based on MAP criteria that benefits from MRF. One of the difficulties in using MAP criteria 

is the lack of prior information about input data. Application of MRF can overcome this problem and 

improve the results. It should be noticed that classified image includes is smooth, which influences on 

the accuracy of MRF model positively. Also the MRF-SVM model’ results show a range for λ  value 

where the accuracy is close to maximum. Similar range is observed from results of MRF-EXP model. 
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It may occur due to suitable conditional models where the results of MRF-MLC do not show such 

wide optimal for range of λ  (Figure  5.10). From these results it can be inferred that, SVM model has 

the same effect as EXP on the accuracy of classification whereas SVM does not require knowledge of 

class distributions. This independency of SVM to class distribution information is a strength point for 

introduced model. Results show for maximum accuracies reproducibility of the model is acceptable 

too. This is another reason that makes the model attractive. 

 

Similarly to ED image, MRF-SVM model was implemented on ND image. Results of new test present 

improved accuracy respect to SVM model (Table  5.1). It can be observed from Figure  5.10 that the 

proposed model leads to high accuracy with good reproducibility. Comparison of the model with 

MRF-MLC as ideal MRF based model for ND image presented similar behaviour (Figure  5.12). 

MRF-MLC for some λ  values gives better results but the maximum classification accuracy for both 

models is similar. Better performance of the MRF-MLC model is attributed to its correct assumption 

on data distribution for ND image. 

 

In the case of comparison the results of new model for two images, we see a stable performance of 

MRF-SVM model (Figure  5.13), whereas there is no similarity for MRF-MLC model. In fact, by this 

comparison the influence of conditional model is considered. In MRF-MLC model, the likelihood part 

makes assumption based on class distribution. If this assumption is not correct or similar to the input 

data it may affect on accuracy of classification for different type of data (Figure  5.14). In spite of 

MRF-MLC or better to say MRF-ML with two different distribution assumptions, MRF-SVM model 

shows similar productions for two images. It indicates that SVM model can incorporate with MRF for 

different input data. 

 

The study also quantified the effect of class separability (was described in Section Class separability) 

on the accuracy of the proposed method. Trend of model for both images is similar (Figure  5.15). For 

small values of JM that denotes big overlap for class distributions, role of prior model is not similar to 

large JM values. In other words, for big overlap of classes except of lower accuracy the optimum value 

of parameter λ  becomes smaller. It shows conditional energy makes better estimation of class 

probability than prior energy. For each JM value one optimal λ  can be observed which is similar to 

findings of (Tolpekin & Stein, 2009). Based on their study for each class separability one optimal λ  

value exists that can be estimated to enhance quality of results. 

 

In terms of computational time, the research considered number of iteration for SA. Figure 5.12 shows 

number of iteration for both MRF-SVM and MRF-MLC model. It indicates two models require the 

same amount of iteration.  

 

Applicability of developed method on SAR image was illustrated in section  5.7. Visual interpretation 

of the image shows MRF-SVM can improve classification accuracy compared to SVM model 

MRF-MLC.   
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7. Conclusion and recommendations 

7.1. Conclusion 

The objective of this study was a MRF-MAP framework that applies SVM as conditional model. 

Before making conclusion it should be mentioned that all the research questions are properly 

answered. The results show that the SVMs can be satisfactorily incorporated into the MRF model and 

improve the accuracy of classification. The integrated model is applied in two types of synthetic 

images with normal and exponential distribution classes that are called ND and ED respectively. 

Applicability of the model was investigated in terms of class distribution and separability as a function 

of smoothness parameter λ .  

 

To apply the proposed model, first application of SVM was investigated. SVM was trained using 

training samples produced through a random generator with the same class parameters of the objective 

image. Performance of SVM is affected by some user-defined parameters. This research addressed 

them and adjusted proper parameters for the study. This adjustment considered two available 

algorithms C-SVM and ν -SVM. C-SVM with a Radial Basis kernel Function (RBF) was used for 

implementation of SVM. 

 

In terms of class distribution, the maximum κ  for ND and ED images is 0.96 and 0.95 with the same 

λ  value. Results of MRF-SVM classification for both images were almost identical. Obtained results 

were compared with MRF-MLC and MRF-EXP models. For ND image, classification accuracy of the 

new model is comparable with MRF-MLC with similar optimal range of λ . But for ED image the 

introduced model gives better result compared to MRF-MLC. In this case MRF-SVM introduced an 

extensive range for λ  with respect to MRF-MLC model. Performance of MRF-SVM was compared to 

results of MRF-EXP which using true data distribution for ED image. In this case also model has 

comparable results. 

 

Investigation the effect of class separability on the accuracy of MRF-SVM presents similar behaviour 

of the model for two images. From the results it can be concluded that there is a relation between class 

separability and the optimal λ  value. Results show that the optimum value of λ  depends on the 

separability of classes. For poorly separable classes optimum λ  and accuracy of classification are 

smaller than well separable classes. In addition, computational time of the model was compared to 

MRF-MLC model in terms of number of iterations. The comparison yields similar results. 

 

The advantage of the proposed model is that: modelling conditional probability through SVM makes 

no assumption about class distribution in contrast to MLC. Then the model needs no information about 

class distribution that empirical results prove it by high classification accuracy achieved for different 

class distributions. 
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It can be concluded from the results that MRF based on SVM model is applicable in remote sensing 

image classification. The model performed well and produced sufficient classification accuracy in 

different circumstances. An optimal range of smoothness parameter value exists for the introduced 

model for which classification accuracy is close to optimal. Even for poorly separable classes use 

proper value of this smoothness parameter can enhance the results. 

 

7.2. Recommendations 

The model introduced in this study appears as a promising technique. Undoubtedly, the model still 

needs further development. To address the limitations, the following is recommended for further 

research: 

 

1. Due to time limitations, all the characteristic of image data were not surveyed during the 

study. Therefore, the shape of object can be considered to study its effect on the results. Also, 

an increasing the number of objects to investigate how results will be affected is suggested. 

 

2. Applicability of the model for SAR images was illustrated in this research. Performance of the 

MRF-SVM on SAR or QuickBird images can be studied to investigate its capability. 

 

3. Performance of the SVM model is affected by user-defined parameters, such as kernel 

function and its parameters (Huang, et al., 2002; Pal & Mathur, 2005; Tso & Mather, 2009). 

This research adjusts SVM parameters experimentally. In further steps to improve MRF-SVM 

model, adjustment methodologies like grid search or gradient descent method can be 

considered.  

 

4. Since SA is a time consuming approach for energy minimization due to its cooling schedule 

(Tso & Mather, 2009), other algorithms maybe used instead. An alternative is use of the Graph 

base algorithms, which its application to MRF models produces good results (Karimov, 2010).  
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Apendix 1 

#*********************************************************************************

# Block 1: variable definitions, data import, preparation 

#********************************************************************************* 

 

require(MASS) 

require(mvtnorm) 

require(kernlab) 

 

# Image dimensions 

M <- 60 

N <- 60 

 

# Number of classes 

Ncl <- 2 

 

# How many runs 

Nrun <- 10 

 

# Here real window size is 2*WSize+1 

WSize <- 1 

 

# Number (maximal) of pixel neighbours 

Nn <- (WSize*2+1)^2-1 

 

x <- 1:M 

y <- 1:N  

 

# Number of bands 

Nb <- 1 

 

Path <- 'G:\\data_6oct\\exponential\\MRF_SVM_6oct\\' 

 

dir.create(Path, recursive = TRUE) 

 

Ref   <- array(0, c(M,N)) 

D     <- array(0, c(M,N)) 

F     <- array(0, c(M,N)) 

Initial <- array(0, c(M,N)) 
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Neigh_Coord  <- array(0, c(M, N, 4)) 

Weight  <- array(0, c(2*WSize+1, 2*WSize+1)) 

mu   <- array(0,c(Ncl))   # Mean values of Ncl classes 

sigma  <-  array(0,c(Ncl)) 

Cinv <- array(0,c(Ncl)) 

 

#********************************************************************************* 

# Generate neighbourhood list 

#********************************************************************************* 

# Function assigning weights in the neighbourhood 

Fw <- function(a,b){ 

  

 val <- a^2 + b^2 

 val <- 1 / val 

# val <- 1 / sqrt(Camps-Valls & Bruzzone) 

 val <- val^(0.5) 

 

 val[val==Inf]<-0 

 

 return(Camps-Valls & Bruzzone) 

} 

 

    for(k in 1:(2*WSize+1)) 

    for(l in 1:(2*WSize+1)) 

    { 

 Weight[k, l] <- Fw(k-(WSize+1),l-(WSize+1)) 

    } 

 

    Weight <- Weight/ sum(Weight) 

 

for(i in 1:M) 

for(j in 1:N) 

{ 

 

    imin <- i - WSize 

    imax <- i + WSize 

    jmin <- j - WSize 

    jmax <- j + WSize 

 

    if(imin<1)  imin <-1 

    if(imax>M) imax <-M 

    if(jmin<1)  jmin <-1 

    if(jmax>N) jmax <-N 

 

    Neigh_Coord[i, j, ] <- c(imin,imax,jmin,jmax) 
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} 

#********************************************************************************* 

# Import Reference image  

Filename <- '2classs.arr' 

 

temp <- dget(paste(Path,Filename,sep=""))  #load image array 

 

Ncl <- max(temp)      #how many colors 

 

Ref<-temp 

 

par(mfrow=c(1,2)) 

image(x,y, Ref, col=terrain.colors(Ncl), main = 'Reference',xlab='',ylab='') #display image 

plot(c(0,10),c(0,10)) 

Cl_colors<- terrain.colors(Ncl) 

legend("right",c('Class1','Class2'),fil=terrain.colors(Ncl),cex=1.2) 

 

#********************************************************************************* 

# End of Block 1: variable definitions, data import 

#********************************************************************************* 

#********************************************************************************* 

# Block 2: Define land cover classes infromation; generate the synthetic multispectral image. 

#********************************************************************************* 

# 

# Class means and covariances 

# 

# generate random numbers from exponential distribution 

rand_exp <- function(n,sigma) 

{ 

   xt <- rnorm(n,0,sqrt(0.5*sigma)) 

   yt <- rnorm(n,0,sqrt(0.5*sigma)) 

   I <- xt^2 + yt^2 

   return(I) 

} 

 

# generate random numbers from Rayleigh distribution 

rand_Ral <- function(n,sigma) 

{ 

   xt <- rnorm(n,0,sqrt(0.5*sigma)) 

   yt <- rnorm(n,0,sqrt(0.5*sigma)) 

   I <- xt^2 + yt^2 

   I <- sqrt(I) 

   return(I) 

} 

 

#Fix JM: 
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JM <- 0.5 

sigma[2] <- 50.0 

 

#temporary auxilary variable 

a <- 1-JM/2 

 

sigma[1] <- sigma[2]*(1/a-sqrt((1/a^2)-1))^2 

 

# Check JM 

i<-1 

j<-2 

 

JM  <- 2*(1-2*sqrt(sigma[i]*sigma[j])/(sigma[i]+sigma[j]))  

JM 

 

mu <- sigma 

 

for(krun in 1:Nrun) 

{ 

 

Num <- array(0,Ncl) 

 

for(k in 1:Ncl) 

{ 

   N0<-sum(Ref==k) 

 

   D[Ref==k] <- rand_exp(N0,mu[k]) 

} 

 

for(k in 1:Ncl) 

mu[k] <- mean(D[Ref==k]) 

 

for(k in 1:Ncl) 

sigma[k] <- sd(D[Ref==k]) 

 

x11() 

par(mfrow=c(1,1)) 

image(x,y, D, col=gray((0:255)/255),cex.axis=2,cex.lab=3, main = "Image", xlab='',ylab='') 

 

D <- round(D,digits=2) 

 

#hist(D) 

  

write.table(D, file = 

paste(Path,'SyntheticExpo_C_SVM_lambda=',lambda,'Run=',krun,'.txt',sep=''),append=FALSE,quote=
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TRUE,sep =" 

",eol="\n",na="NA",dec=".",row.names=FALSE,col.names=FALSE,qmethod=c("escape","double")) 

 

 

#********************************************************************************* 

# End of Block 2: Define land cover classes information; generate the synthetic multispectral image. 

#********************************************************************************* 

#********************************************************************************* 

# Block 3: SVM classification of the image D  

#********************************************************************************* 

# SVM training 

 

# SVM parameters 

sigma_SVM <- 1 

C_SVM <- 10 

nu_SVM <- 0.9 

 

Ntrset<- 1000 

 

Trainingset <- 

data.frame(z=c(rand_exp(Ntrset,mu[1]),rand_exp(Ntrset,mu[2])),class=c(rep(1,Ntrset),rep(2,Ntrset))) 

 

# Linear kernel 

#svm_model <- ksvm(class~.,data=Trainingset,type="C-

svc",kernel="vanilladot",C=C_SVM,prob.model=TRUE) 

 

# Radial Basis kernel "Gaissian" 

svm_model <- ksvm(class~.,data=Trainingset,type="C-svc",cache = 

2000,kernel="rbfdot",kpar=list(sigma=sigma_SVM),C=C_SVM,prob.model=TRUE) 

 

# nu-SVM classification 

#svm_model <- ksvm(class~.,data=Trainingset,type="nu-svc",cache = 

2000,kernel="rbfdot",kpar=list(sigma=sigma_SVM),nu=nu_SVM,prob.model=TRUE) 

 

# Apply SVM 

 

A <- data.frame(z=as.vector(D)) 

 

SVM <- array(0,c(M,N)) 

CProb <- array(0,c(Ncl,M,N)) 

Ucond <- array(0,c(Ncl,M,N)) 

 

test <- predict(svm_model, A, type="probabilities") 

 

for(k in 1:Ncl) 

CProb[k,,]<- test[,k] 
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SVM[,] <- 1 

 

SVM[CProb[1,,]<CProb[2,,]]<-2 

 

image(x,y, SVM, main = "SVM result", col=terrain.colors(Ncl), xlab="",ylab="") 

 

eps <- 1.0e-9 

 

CProb[CProb==0.0] <- eps 

 

Ucond <- -log(CProb) 

 

#x11() 

par(mfrow=c(1,2)) 

for(k in 1:Ncl) image(x,y,CProb[k,,],col=gray((0:255)/255)) 

 

# Accuracy assessment of SVM result 

 

ConfSVM <- array(0, c(Ncl,Ncl)) 

 

for(i in 1:Ncl) 

for(j in 1:Ncl) 

{ 

    ConfSVM[i,j] <- sum((SVM==i)&(Ref==j)) 

} 

 

ConfSVM 

s1<-0 

for(i in 1:Ncl) 

{ 

  s1 <- s1 + sum(ConfSVM[i,])*sum(ConfSVM[,i]) 

} 

 

kappaSVM <- (M*N*sum(diag(ConfSVM)) - s1) / ((M*N)^2 - s1) 

kappaSVM 

 

#********************************************************************************* 

# End of Block 3: SVM classification of the image D 

#********************************************************************************* 

 

 

 

 

 




