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Abstract 

The performance of the MODIS LAI/FPAR 8-day composite product and a 

physically based radiative transfer model called Soil-Leaf-Canopy (SLC) were 

compared to identify which was capable to perform a better estimation of LAI 

compared to in situ measurements. The study was carried out in the zone of rice 

production of Seville, Spain. 

 

The performances of the MODIS product and SLC model were assessed against 

LAI values collected in the field using LAI-2000 during July and August of 2008. 

MODIS LAI/FPAR coarse resolution product (MOD15A2) was compared against in 

situ measurements using a disaggregation technique to estimate the fraction cover of 

vegetation based on NDVI retrievals from LANDSAT 7 ETM+ products. LAI from 

SLC was estimated by means of the model  inversion with the aid of a look-up table 

and a iterative method of inversion (LUT). Forward modelling of the spectral 

reflectances was carried out prior to the inversion, using MODIS spectral reflectance 

product (MOD09A1) to adjust the outputs of the LUT. Estimated LAI was compared 

against in situ measurements to evaluate the performance of the inversion from SLC. 

 

MODIS LAI/FPAR values showed a Pearson’s correlation coefficient (R) of 

0.44 against in situ measurements. Estimated LAI from SLC showed a Pearson’s 

correlation coefficient of 0.50. Improvements of 10% of the estimations were 

observed in SLC’s values compared to MODIS LAI/FPAR values. The study 

concludes that despite of the complex parameters required by the model, SLC’s 

performance is better for the prediction of LAI for rice than the MODIS LAI/FPAR 

product. It was also observed that improvements in the method of inversion can 

considerable enhance the performance of SLC. 

 

Keywords: Leaf area index (LAI), MODIS LAI/FPAR, Soil-leaf-canopy (SLC), 

Radiative transfer model (RTM). 
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1. Introduction 

Thanks to the capability to characterize land surfaces with fast and non-destructive 

techniques, remote sensing has become a key method for estimate indirectly 

biophysical vegetation variables as the Leaf Area Index (LAI) (Stroppiana et al., 

2006). LAI (the total one-sided leaf area per ground surface area) is a well-known 

structural characteristic of the plant that has been widely used to monitor vegetation 

(Darvishzadeh et al., 2008b). Changes in LAI through time and space provide 

important information about land surface processes and how to model those 

processes (Qin et al., 2008).  In the field of agriculture, crop physiologists and 

modellers have used LAI to estimate foliage cover and predict crop growth and yield 

(Clevers and van Leeuwen, 1996; Haboudane et al., 2004; Jinsong et al., 2007). 

 

1.1. Methods to estimate Leaf Area Index through remote 

sensing 

Methods to estimate LAI through remote sensing can be divided roughly in four: 1) 

Development of relationships between LAI and vegetation indices (VI); 2) Use of 

lookup tables (LUT); 3) Neural networks (NN), and 4) Inversion of physically based 

canopy radiative transfer models (RTM) (Liang, 2004). All methods have their 

strengths and weaknesses. Vegetation Indices are very simple to use, but the 

relationships between VI and biophysical parameters have shown be specific to the 

type of vegetation, site and sensor; this makes them unsuitable for application at 

regional scales or seasons (Colombo et al., 2003; Gobron et al., 1997). Lookup 

tables and neural networks proved that are very useful in inversion studies (Qin et 

al., 2008). Their capability to speed up the process of inversion due to computational 

procedures is a strength of these methods (Yi et al., 2008). However, the large 

number of parameters that they require makes them difficult to generalize (Qin et al., 

2008). In addition, the performance of these methods depends on a training database 

consisting of canopy reflectance spectra and biophysical variables, which are 

difficult to retrieve for large geographic areas (Houborg and Boegh, 2008).  

Inversion of RTMs has prove its capability to predict biophysical variables in 

diverse studies with different types of vegetation (Darvishzadeh et al., 2008a; 

Kobayashi et al., 2007; Meroni et al., 2004; Yongming et al., 2004). However, the 
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inversion of RTMs also has the problem of the “ill posed process” (Combal et al., 

2003) which leads to have similar solution for completely different canopy 

structures. 

 

1.2. Radiative Transfer Models 

The radiant energy that vegetation canopy transmits to the atmosphere by reflectance 

and complicated biophysical and biochemical processes from solar energy has been 

described by the three-dimensional radiative transfer equation (Ross, 1981). The 

equation aims to determine how environmental variables (e.g. soil background) and 

canopy structure (leaves, stems) influence the relationships between absorbed, 

transmitted and reflected radiation (Huang et al., 2007). As was mentioned above, 

factors and processes controlling top-of-canopy (TOC) reflectance are too numerous 

and complex that a simple empirical equation cannot explain. For that matter, Ross’s 

three-dimensional radiative transfer equation - translated in radiative transfer models 

(RTM) - provide an explicit connection between the biophysical variables of the 

canopy, the view and illumination geometry with the canopy reflectance (Koetz et 

al., 2005). However, by nature, a RTM provides values of reflectance from 

biophysical variables, which leads us to the need of invert the model in order to 

retrieve biophysical variables from reflectance values. The inversion of RTM 

provides a method to recalibrate the model by optimization techniques using well 

known variables of the canopy (Weiss et al., 2001).  

 

One weakness of the RTMs inversion is that by nature the inversion is an “ill-posed 

process” (Combal et al., 2003). The characteristics of method may lead to similar 

solutions and reflectance values for completely different canopy structures. To 

reduce the effect of the inversion, prior information should be consider before 

modelling: a) Ancillary data measured on site or products from another sensor, b) 

Knowledge about the canopy architecture to define the class of RTM to be used and 

c) Knowledge of typical distribution of canopy biophysical variables to be used as 

an input in the RTM (Combal et al., 2003).  This prior information may lead to a 

strong process of modelling and better results of the method. 

 

Some of the most common RTMs used in research are PROSPECT (Jacquemoud 

and Baret, 1990), Scattering by Arbitrary Inclined Leaves (SAIL) (Verhoef, 1984), 

modified versions of them like 4SAIL2 (Verhoef and Bach, 2007) or the 

combination of both like PROSAIL (PROSPECT + SAIL) (Bacour et al., 2002). 

However, like any other models, PROSPECT and SAIL have their own weaknesses.  
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SAIL has a low capacity to simulate heterogeneous canopies (clumping at several 

scales) and PROSPECT requires to be combined with other RTM to applications at 

canopy level (PROSPECT development is based on leaf level applications) (Feret et 

al., 2008). 

 

1.2.1. Soil-Leaf-Canopy radiative transfer model 

A recent developed RTM model called Soil-Leaf-Canopy or SLC (Verhoef and 

Bach, 2007), integrates a modified soil bidirectional reflectance distribution function 

(BRDF) model (Hapke, 1981), a robust version of the PROSPECT leaf optical 

properties model (Jacquemoud and Baret, 1990), and the canopy radiate transfer 

model 4SAIL2 -a robust version of SAIL with hot spot effect- (Verhoef, 1984). 

Because the use of a BRDF model instead of the Lambertian soil background used in 

PROSAIL, the model is described as suitable for a broad variety of soil-vegetation 

objects. In addition, the canopy part of the model (4SAIL2) considers vertical 

heterogeneities in the form of leaf colour gradients and horizontal heterogeneities 

related to crown clumping as well, which leads to realistic results with a minimum 

number of parameters (Verhoef and Bach, 2007). The model has been validated in 

bare soil, maize and forest with CHRIS-PROBA data in Germany during 2005 and 

2006. However, a formal model inversion and accuracy assessment was not 

achieved due to the lack of ground truth data (Verhoef and Bach, 2007).  

 

The integration of the three models is what makes SLC a suitable tool for the 

evaluation of the model that NASA uses to generate the MOD15A2 product. The 

radiative transfer model used by NASA considers the soil anisotropy, non-

Lambertian surfaces and canopy 3D effects to simulate canopy spectral response of 

vegetation (Knyazikhin et al., 1998). The incorporation of the BRDF (non-

Lambertian) effect in Hapke’s model and the consideration of the vertical and 

horizontal heterogeneity in canopy of 4SAIL2 (3D effect) provide the tools to 

simulate the canopy spectral response in similar way as the NASA radiative transfer 

model does.  

 

In addition, is important to mention that SLC’s library contains information about 

spectral responses for different water-cover backgrounds, which is expected to 

improve considerably the performance of the RTM due to the particular 

characteristics of rice’s growth. 
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1.3. The MODIS LAI/FPAR product 

The launch of TERRA platform with the moderate resolution imaging 

spectroradiometer (MODIS) generated a new opportunity to develop vegetation-

based products, due to the increase of spectral radiance to be sampled from the 

sensor. One of the products that has been developed is the MODIS LAI/FPAR 

product, which is being produced operationally and is available free of charge. The 

product uses an algorithm based in a stratification of six biomes: grasses and cereal 

crops, shrubs, broadleaf crops, savannas, broadleaf forests and needle forests 

(Myneni et al., 2002). Therefore, the vegetation that could be of interest for a 

specific purpose is considered (according to the algorithm) as one of these six 

biomes. 

 

The algorithm consists of a main procedure that exploits the spectral information 

content of MODIS surface reflectance at up to seven spectral bands. Should this 

main algorithm fail, a back-up algorithm is triggered to estimate LAI and FPAR 

using vegetation indices. The algorithm requires a land cover classification that is 

compatible with the radiative transfer model used in the derivation of the product. 

Such a classification based on vegetation structure was proposed and it is expected 

to be derived from the MODIS Land Cover Product (Knyazikhin et al., 1999).  

 

 Derivation techniques and algorithm 

The algorithm for retrieving the LAI and FPAR from atmospherically corrected 

BRDF, compares observed and modelled canopy reflectance for a suite of canopy 

structures and soil patterns that represents a range of expected natural conditions. 

The algorithm is based on the formulation of the inverse problem that the sun and 

view directions, BRDFs, N spectral bands and uncertainties are given. All acceptable 

solutions are the ones where all canopy and soil patterns differ from the modelled 

and observed BRDF. This difference should be equivalent or less than the 

corresponding uncertainty to be considered as a solution. If the problem has a unique 

solution for a given set of surface reflectances, the mean LAI coincides with this 

solution and its dispersion equals zero. If the problem has multiple solutions, the 

algorithm provides a weighted mean calculated in accordance with the frequency of 

the occurrence of LAI. The dispersion magnitude indicates the reliability of the 

corresponding LAI value. The accuracy of retrievals cannot be improved if 

additional information is not available. It is important to mention that canopy 

properties, soil patterns, leaf optical properties and solutions of the inverse problem 

are stored in the form of a Look-up-Table (LUT) which then is used routinely to 
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identify patterns of canopy reflectances as a function of canopy structure and soil 

type (Myneni et al., 2003). The mentioned approach provides convergence of the 

algorithm because if more of the spectral information is available, the more reliable 

and accurate the algorithm output will be (Wang et al., 2001). 

 

In the case of a fail in the algorithm due to pixel corruption, a back-up algorithm is 

triggered to estimate LAI and FPAR using vegetation indices. Empirical MODIS 

specific NDVI-LAR and NDVI-FPAR relationships are expected to be derived from 

MODIS LAI and FPAR fields and MODIS Surface Reflectance Product (Myneni et 

al., 2003) 

 

 Applications 

There are some discrepancies concerning the quality of the information of the 

MODIS LAI/FPAR products compared to in situ measured values of LAI. A study 

of validation of the MODIS LAI/FPAR product carried out in four different sites 

indicated that because of the nature of the algorithm (non-linear), it will always  

underestimate the retrieved LAI from coarse resolution reflectance data (Tian et al., 

2002). On the other hand, a study carried out in semi-arid regions of Senegal during 

2001 and 2002, showed that the MODIS LAI product had an overestimation 

between 2 – 15% compared to in situ measurements (Fensholt et al., 2004). These 

discrepancies about the quality of the MODIS LAI/FPAR product are evident and 

related to the characteristics of the biome where the studies were carried out. 

Another cause of the discrepancies could be to the changes in land cover, which 

affects directly in the assignation of the biome. Collection 5 of the product has 

shown improvements in the algorithm, mainly in the estimation of LAI in woody 

vegetation. Some of these improvements are due to the use of the combination of the 

MODIS sensors (Terra and Aqua) (Yang et al., 2006). However, further research is 

necessary to evaluate the level of these improvements, specifically in grasslands and 

cereal crops biomes. 

 

As mentioned before, use of remote sensing for estimation of biophysical variables 

like LAI has become an alternative for the traditional destructive methods. These 

indirect methods, which measure the radiation transmitted through the canopy, are 

widely in use (Stroppiana et al., 2006). Estimations of LAI from spectral reflectance 

measurements have shown promising results, especially where the index is needed to 

model crop growth. Studies specifically on rice are yet to be done. 
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1.3.1. Indirect estimations of LAI in rice 

 

Due to its special characteristics of growing in flooded fields, the estimation of rice’s 

biophysical variables requires a modified approach. The layer of water on the soil 

modifies considerably the spectral reflectance of the soil-plant system. In addition, 

the crop stage must be considered when estimating LAI. The dynamics of the rice 

fields are characterized in three stages: a) flooding and transplanting stage; b) 

growing stage; and c) fallow stage after harvest. In the first stage, the surface is a 

mixture of water (depths between 2 and 15 cm) and rice plants. During the growing 

stage, the canopy of the crop covers most of the surface area. Before the third stage, 

the surface changes again, due to the decrease of the moisture in the crop and the 

decrease of the number of leaves (Xiao et al., 2006). These considerations are the 

ones that pose challenges for the remote sensing analysis in the crop: presences of a 

fluctuate background with the proper dynamic of the crop. 

 

In 2006, MODIS LAI/FPAR product was assessed in rice and it showed differences 

in the estimation of LAI compared to field measurements. The differences were 

bigger in booting, heading and milking stages and smaller in tiller and maturing 

stages (Wu et al., 2006). Since that time, model adjustments are still unknown. 
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2. Research approach 

2.1. Research problem 

The Leaf Area Index (LAI) is a key biophysical parameter of vegetation for the 

estimation of relationships between soil-plant-atmosphere. In the field of the 

agriculture, LAI has been used as an input in crop models to predict growth and 

yield. Before the era of remote sensing, common methods to measure LAI were 

destructive and time-consuming. Nowadays, the development of new remote sensing 

technologies provided new perspectives to estimate LAI. The MODIS LAI/FPAR 

product has been widely used at a global scale. Despite of the improvements in the 

MODIS LAI/FPAR algorithm (Collection 5), it is believed that the product still has 

a lack of quality information for specific crop modelling purposes. This lack of 

quality could obey to the implications of the use of MODIS land cover product as an 

input of the algorithm for six general biomes. Another reason for this lack of quality 

could be the coarse resolution of the pixel (approx. 1 km) which is considerably 

bigger than agricultural plots. Moreover, this lack of quality should be more evident 

in the case of rice because the floodwater where the crop growths affects the spectral 

reflectance. The estimation of rice LAI from remote sensed data, requires the study 

of a radiative transfer model, specifically Soil-Leaf-Canopy (SLC). Generate trustful 

information of rice’s LAI with more precision than MODIS LAI/FPAR product and 

in concordance with in situ measurements, will help crop modellers to predict 

growth and yield of the crop.  

 

2.2. Research objective 

Assess the use of MODIS hyper-temporal data to estimate Leaf Area Index of rice 

during the vegetative stage, using a Soil-Leaf-Canopy (SLC) radiative transfer 

model (RTM). 

 

2.3. Research questions 

 

 Are MODIS LAI/FPAR product correlated with in situ measurements of 

LAI? 
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 Can estimated LAI values present a strong correlation with in situ 

measurements? 

H0: Estimated values of LAI explain less than 75% of the variation of in 

situ measurements. 

H1: Estimated values of LAI explain more than 75% of the variation of in 

situ measurements. 

 

 Can estimated LAI values improve the estimation of the index in rice 

compared to MODIS LAI/FPAR product values? 

H0: Estimated values of LAI will improve less than 15% the performance of 

MODIS LAI/FPAR product values. 

H1: Estimated values of LAI will improve more than 15% the performance 

of MODIS LAI/FPAR product values. 
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3. Method 

3.1. Method overview 

The research’s progress could be summarized into three main procedures according 

to the flowchart presented in the Figure 1: 

 

- Quality assessment of the MODIS LAI/FPAR product based on in situ 

measurements (Figure 1a). 

- Estimation of LAI from the Soil-Canopy-Leaf radiative transfer model 

(Figure 1b), and quality assessment based on in situ measurements. 

- Comparison of the performances of the LAI from the MOD15A2 product 

and the LAI estimated from the SLC model (Figure 1c). 

 

The quality assessment of the MODIS LAI/FPAR (MOD15A2) product consisted in 

the comparison between LAI values measured in the field and LAI values from 8-

day composite images of the MOD15A2 product using correlations. A 

disaggregation method using NDVI were used to reduce the effect of the mixed 

pixel in the MOD15A2 product. 

 

The estimation of the LAI from the SLC model involved four steps: a) the 

generation of look-up tables (LUT) which contained modelled spectral signatures of 

the crop; b) the adjustment of the modelled spectral signatures of the SLC model 

with the spectral signatures of the MODIS surface reflectance product (MOD09A1); 

c) the estimation of LAI from the adjusted spectral signatures of the RTM; and d) 

the comparison between estimated LAI from SLC model against in situ 

measurements by means of the use of correlations. 

 

A final step consisted in the comparison of the performances of the MODIS 

LAI/FPAR product against the estimated LAI from the SLC. Correlation coefficients 

calculated for both procedures were compared for this purpose. 
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Figure 1 Methodology flowchart. 

 

3.2. Study area 

The study area is located in the south part of the city of Seville, capital and province 

of the autonomous community of Andalucía, Spain (Long. 5º 45’ W to 6º 17’ W, 

Lat. 36º 55’ N to 37º 15’) shown in Figure 2. Seville is located in the western part of 

Andalucía and is characterized by a Mediterranean climate, which has mild, rainy 
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winters and hot, dry summers. Seville has the highest average temperature of Spain 

with 16.7 ºC. The annual rainfall in the region is highly heterogeneous with ranges 

from a maximum of 2,000 mm to a minimum of 170 mm (Khan et al., 2010). 

 

Within Seville, the main production of rice is located in the marshes of the 

Guadalquivir River, which includes the municipalities of Isla Mayor, Puebla del Rio, 

Coria del Rio, Los Palacios and Villamanrique de la Condesa. Seville is the province 

with the highest production of rice in the entire country. In the year 2000, the 

production of the province reached 301,435 metric tons of rice (38% of the 

production of Spain). The next year the production increased in 20,000 tons, without 

the increase of the cultivated area. According to the producers, the increase was 

mainly due to good climatic conditions and a better management system of the crop. 

Oryza sativa L. var. Puntal is the main variety that it has been cultivated. This 

variety covers almost 85% of the cultivated area of the region, due to its high yield 

(Franquet, 2004).  

 

The study area was chosen for two main reasons. Firstly, homogeneous cropping 

season and agricultural management characterize the area of production of rice in 

Seville. The crop season begins between the last week of May and the first of June, 

and ends at the end of October. This uniformity in the growing stages of the crop 

provided a good framework for the study, because the LAI was be monitoring 

through the time according to the phenology of the crop. In addition, as it was 

mentioned before, 85% of the area is cultivated by one variety of rice, which also 

facilitates the monitoring of the biophysical variables of the crop. Secondly, the area 

of Seville has a minimum presence of clouds during the vegetative stage of the crop. 

By reducing the presence of cloud cover in the area, it was possible to expect better 

results in the study. 
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Figure 2 Location of Seville within Andalucía. Inset: location of the autonomous community 

of Andalucía in Spain (Khan et al., 2010). 

 

3.3. Data used 

 MODIS products 

The data used included the hyper-temporal MODIS LAI/FPAR product 

(MOD15A2) 8-day composite images at 1 km of spatial resolution and the hyper-

temporal MODIS surface reflectance product (MOD09A1) 8-day composite images 

at 500m
2
 of spatial resolution.  The images were dated from the 3

rd
 of July to the 11

th
 

of August 2008, which corresponds to the time that the fieldwork campaign was 

carried out. A total number of five 8-day composite images covered the fieldwork 

campaign. The images were obtained from the Earth Resources Observation Service 

Data Center Distributed Active Archive Center (EDC DAAC) website 

(https://lpdaac.usgs.gov/lpdaac/ and https://wist.echo.nasa.gov). The MOD15A2 and 

MOD09A1 products are projected on the Sinusoidal 10º grid, where the globe is 

divided for production and distribution purposes into 36 tiles along the east-west 

axis, and 18 tiles along the north-south axis, each approximately of 1200 x 1200 km 

(Myneni et al., 2002). 

https://lpdaac.usgs.gov/lpdaac/get_data
https://wist.echo.nasa.gov/
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The MOD15A2 product is derived from the MODAGAGG (aggregated 1km surface 

reflectance), MOD12Q1 (global 1 km quarterly land cover definition) and 

MOD15_ANC_RIx.hdf (Ancillary data). The MODAGAGG process transforms the 

250 and or 500 meter atmospherically corrected surface reflectance into a 

normalized 1 km form upon which all of the biophysical products are based. The 

LAI and FPAR products are retrieved from atmospherically corrected Bidirectional 

Reflectance Factors (MOD 09 Surface Reflectance Product) (Myneni et al., 2003).  

 

The MOD09A1 product is a composite of the MOD09GHK product. MOD09A1 

provides surface reflectance at 500 m resolution of seven spectral bands (620 - 670, 

841 – 875, 459 – 479, 545 - 565, 1230 – 1250, 1628 - 1652 and 2105 - 2155 nm). 

Each pixel contains the best possible observation during an 8-day period as selected 

on the basis of high observation coverage, low view angle, absence of clouds or 

cloud shadow and aerosol loading (Vermote, 2008). The procedure to generate 

MOD09A1 composites first eliminates pixels with a low observational coverage, 

and then selects the observation with the minimum blue band values during the 8-

day period (Xiao et al., 2006). The product is provided with reflectance values for 

bands 1 to 7, quality assessment, day of the year and solar, view and zenith angles. 

 LANDSAT 7 ETM+ 

Information from LANDSAT 7 ETM+ product was also used for the study. The 

product provides surface reflectances at 30 m resolution of seven bands (450, 530, 

630, 780, 1555, 1040, 2090 nm) and one panchromatic band of 15 m of spatial 

resolution (520 – 900 nm). The product gives geometric and atmospherically 

corrected data from the bands mentioned before. The red and NIR band of the image 

of the 3
rd

 of August of 2008 were used to calculate Normalized Difference 

Vegetation Index (NDVI) of the plots to enhance the estimation of LAI from 

MODIS LAI/FPAR product. 

 Orthophotos 

A third product used in this study, were Seville’s orthorectified aerial photographs 

(orthophotos), scale 1:20,000 at 0.50 m of spatial resolution. A mosaic was built 

with the orthophotos with the objective to improve the estimation of LAI from 

MOD15A2 together with the NDVI derived from the LANDSAT 7 ETM+ product.  
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3.4. Quality assessment of the MODIS LAI/FPAR product 

To assess the quality of the MODIS LAI/FPAR product, correlations between values 

of LAI in situ measurements and MOD15A2 product were carried out. Both datasets 

required a pre-processing stage during which the data was collected and prepared for 

the required correlations. 

3.4.1. Field data collection 

For the field measurements, LAI-2000 plant canopy analyzer (LI-COR, 1992) was 

used. LAI was measured from above and below canopy in order to determine the 

canopy light interception from five angles. In addition, information about the 

chlorophyll content was measured using the SPAD-120. The plots were 

georeferenced using a handheld GPS. 

 

Field data collection was carried out by an ITC PhD student and took place in 

Seville’s rice production region between the 3
rd

 of July and the 6
th

 of August of 

2008. The campaign coincided with the last vegetative stage of crop tillering (weeks 

6 - 10 after sowing). A random sampling method was applied, with the sampling unit 

comprising a single rice field. To capture the variability within the plot, at least 6 

subsamples were taken inside each sampled plot. The time was scheduled to sample 

each plot every week to monitor the behaviour of the LAI through time in relation 

with the phenology development of the crop. At the end of the campaign, 40 plots 

were sampled and more than 1600 subsamples were collected. The number of 

samples varied between plots and through time due to local conditions and 

difficulties that were encountered during the survey.  

 

3.4.2. Preparation of LAI from field data 

The collected data was grouped by week of collection and by plot. The grouping 

aimed to coincide to the periods of the 8-day composite MODIS product. 

Descriptive statistics were made to analyze the general behaviour of LAI. In 

addition, box plots graphs were made to check if the behaviour of the variable 

through time reflects the phenology and growing stage of the crop. Outliers were 

removed according to the information displayed in the box plots. 

 

3.4.3. Preparation of LAI dataset from MOD15A2 

MOD15A2 provides a product with six datasets (Table 1) in HDF-EOS format, 

which LAI_1km dataset was extracted for analysis. 
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Table 1 Science datasets specifications for MOD15A2 product (adapted from 

https://lpdaac.usgs.gov/)  

Data sets Units Valid range Scale factor 

FPAR_1km Percent 0 – 100 0.01 

LAI_1km m
2
plant/ m

2
ground 0 – 100 0.1 

FPARLAI_QC Class flag 0 – 254 na 

FPARExtra_QC Class flag 0 – 254 na 

 

Due to the characteristics of the HDF-EOS format, the datasets are produced in a 

“uint8” data type, which is an unsigned 8 bit integer variable whose values may 

range from 0 – 255. For the case of the FPAR and LAI datasets (including standard 

deviation datasets), the values range from 0 – 100. Their values are stored with a 

scale factor that should be applied to transform them to their biophysical values for 

analysis according to the expression that follows (Eq. 1): 

 

𝑨𝒏𝒂𝒍𝒚𝒕𝒊𝒄𝒂𝒍𝒑𝒊𝒙𝒆𝒍 = 𝒔𝒄𝒂𝒍𝒆 𝒇𝒂𝒄𝒕𝒐𝒓 ∗ (𝒅𝒊𝒈𝒊𝒕𝒂𝒍𝒑𝒊𝒙𝒆𝒍)   Equation 1 

Quality control (QC) datasets are added to the MOD15A2 at pixel level. The 

algorithm of the FPAR/LAI is executed no matter the quality of the inputs; therefore 

is necessary to consult the QC datasets to select reliable retrievals (the description of 

the codes and interpretation of the QC values can be checked in (Myneni et al., 

2003).  

 

For the quality assessment of the MODIS LAI/FPAR product, it was necessary to 

compare data with the same date of the fieldwork campaign. Therefore, five 8-day 

composite datasets of LAI were used for that purpose. The datasets were subset for 

the region of the rice’s production of Seville and stacked in a chronological order. 

 

3.4.4. Disaggregation technique for MOD15A2 product 

MODIS products are known by their capability to provide multi-temporal coarse 

resolution satellite data to monitor spatial and temporal dynamics of land cover. 

However, the scale of the satellite data is often not enough to explain the vegetation 

dynamics, especially in the case of crops. In the specific case of the MOD15A2 

product, the mixed pixel problem has a big influence on the quality of the data 

provided as LAI or FPAR To solve this problem, a disaggregation technique focused 

on the estimation of the NDVI values for different land cover classes was used 

(Busetto et al., 2008). 

https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/leaf_area_index_fraction_of_photosynthetically_active_radiation/8_day_l4_global_1km/v5/terra
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This methodology is based in the linear mixing theory, which assumes that the 

NDVI of a mixed pixel can be calculated as the sum of mean NDVI values of the 

different land cover classes within the pixel, weighted by the corresponding 

fractional cover (Settle and Drake, 1993). The general equation, referred to the 

NDVI appears below (Eq. 2): 

 

𝑵𝑫𝑽𝑰 𝒊, 𝒕 =   𝒇𝒄 𝒊, 𝒄 . 𝑵𝑫𝑽𝑰𝒊 𝒄, 𝒕  + 𝜺(𝒊, 𝒕)𝒌
𝒄=𝟏    Equation 2 

 

Where 𝑁𝐷𝑉𝐼 𝑖, 𝑡  is NDVI of pixel 𝑖 at time 𝑡, 𝑓𝑐(𝑖, 𝑐) is the fractional cover of 

land-cover class 𝑐 in pixel 𝑖, 𝑁𝐷𝑉𝐼𝑖 𝑐, 𝑡 is the mean NDVI of a land cover class 𝑐 in 

pixel 𝑖 at time 𝑡, 𝑘is the number of land cover classes in pixel 𝑖 and 𝜀(𝑖, 𝑡) the 

residual error term. One of the key issues in this formulation is that it assumes 

linearity in the composition of the signal of the various pixel components, which is 

strictly valid only for the original reflectances values (Busetto et al., 2008). 

However, it has been demonstrated that this linearity assumption only leads to minor 

inaccuracies when NDVI is used instead of reflectance (Kerdiles et al., 1996). This 

technique derives the information about the fractional cover of each class within the 

low-resolution pixels as derived from the analysis of higher spatial resolution images 

or from ancillary data. 

 

The general procedure used to address the mixed pixel problem is indicated in the 

diagram that is presented in Figure 3. For the calculation of the rice’s vegetative 

fraction cover, four main datasets were used: Orthorectified aerial photographs for 

high spatial accuracy, LAI dataset from the MOD15A2 product, georeferenced plots 

from in situ measurements and a LANDSAT 7 ETM+ product of the 3
rd

 of August 

of 2008 to extract fraction cover by pixel cropped. The sampled plots of the 

fieldwork were overlay over LAI’s dataset pixel to determine number and location 

of the pixels suitable for the comparison. 

 



23 

 
Figure 3 Overall method to solve the mixed pixel problem. 

Aerial photographs were used to digitize all rice plots contained within the selected 

pixels from MODIS. A vegetation colour composite (4,5,2) in the LANDSAT 7 

ETM+ image was used to check the areas with vegetation cover in August 2008, due 

to the time difference between the aerial photographs and the date that the fieldwork 

was carried out (Figure 4). The study area is well known by its intensive rice 

production; therefore, it was assumed that all the vegetative cover was rice. Figure 4 

shows the contour of the MODIS pixels (yellow) overlaying the area of rice. 

Sampled rice plots (yellow fill) and rice plots (black contour) contained within the 

MODIS pixel were checked using the LANDSAT image. 
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Figure 4 MOD15A2 pixels containing rice’s sampled plots. 

Digitalization produced a land cover map with two classes contained within 41 

MODIS pixels: Rice (vegetation) and non-rice (bare soil, urban, water and roads). 

Within the rice class, two subclasses were defined: Sampled plots and non-sampled 

plots. The differentiation between sampled and non-sampled plots provided the ratio 

to estimate the LAI of the sampled plot. From the LANDSAT 7 ETM+ image, the 

NDVI was calculated with the red (630 – 690 nm) and NIR (760 – 900 nm) bands, 

according to the equation 3: 

 

𝑵𝑫𝑽𝑰 =
𝑵𝑰𝑹−𝑹𝒆𝒅

𝑵𝑰𝑹+𝑹𝒆𝒅
  Equation 3 

The NDVI was calculated per classes (rice and non-rice) and per MODIS pixel. 

With the relationships between rice class and non-rice class the fraction of 

vegetation cover was calculated. In addition, relationships between the NDVI of 

sampled plots and non-sampled plots were calculated to determine the influence of 

the non-sampled plots over the value of the LAI from MODIS product. Finally, the 
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fraction of vegetation cover and the LAI dataset from MOD15A2 were compiled to 

calculate the value of LAI per plot per week. 

 

3.4.5. Comparison between measured LAI values and MOD15A2 LAI 

values 

The values of the measured LAI and the MOD15A2 LAI values were compared by a 

correlation, using Pearson’s distribution for a level of confidence of 0.95.  

 

3.5. Estimation of the LAI from the SLC radiative transfer 

model 

The modelling of the LAI from the radiative transfer model required the use of 

information from MOD09A1 product, collected data from fieldwork and knowledge 

of the canopy structure of the crop. 

 

3.5.1. Preparation of surface reflectance dataset from MOD09A1 

8-day MODIS surface reflectance product (MOD09A1) was provided in HDF-EOS 

format, with 13 datasets (Table 2). Datasets containing information of angles (solar 

zenith, view zenith, relative azimuth) were used as input for the modelling of the 

surface reflectance. In addition, datasets of bands 1 to 7, were used as reference 

spectra to check the output of the RTM during the forward modelling process 

(Figure 1b).  

 

3.5.2. SLC model software 

An academic version of the Soil-Leaf-Canopy RTM was available for the study. The 

version contained the platform for modelling spectral reflectance using the Hapke 

soil BRDF model, PROSPECT leaf model and the 4SAIL2 model. The software of 

the SLC was designed as a speed-optimized Windows DLL, which allowed the 

efficient use of computer resources (Verhoef and Bach, 2007). The interface of the 

software allowed manipulating and observing how the changes in the values of the 

parameters influenced the reflectance response of the three models. 
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Table 2 Science datasets specifications for MOD09A1 product (adapted from 

https://lpdaac.usgs.gov/)  

Data sets Wavelength (nm) Units 

500m surface reflectance - Band 1  620 – 670 Reflectance 

500m surface reflectance - Band 2 841 – 876 Reflectance 

500m surface reflectance - Band 3  459 – 479 Reflectance 

500m surface reflectance - Band 4  545 – 565 Reflectance 

500m surface reflectance - Band 5  1230 – 1250 Reflectance 

500m surface reflectance - Band 6  1628 – 1652 Reflectance 

500m surface reflectance - Band 7 2105 - 2155 Reflectance 

500 m reflectance band quality na Bit field 

Solar zenith angle na Degree 

View zenith angle na Degree 

Relative azimuth angle na Degree 

500 m state flags na Bit field 

Day of year na Julian day 

 

3.5.3. Look-up table inversion 

For the estimation of the LAI, a modified look-up table (LUT) approach used by 

Darvishzadeh et al. (2008a) was chosen.  The authors used this approach for the 

inversion of a RTM to estimate LAI in heterogeneous grasslands. This approach was 

considered for this study due to the simplicity of the method, the data collected 

during the field campaign and the characteristics of the interface of SLC. However, 

changes were made to the method in order to make it suitable for the SLC estimation 

of LAI. 

 

The LUT approach required a forward modelling of the surface’s reflectance using 

parameters based on the physical structure of the canopy, spectral properties of the 

canopy and its background, and biophysical variables of the crop. Table 3 presents a 

summary of the parameters used for the process. Modelled values of spectral 

reflectance from the RTM were adjusted using values of the MOD09A1 product 

pixels. The software of SLC provided a tool to adjust manually the estimated 

spectral reflectance to a given reflectance. Due to the nature of the method, the 

adjustment of the spectral reflectances was made between NIR bands (Meroni et al., 

2004). After the spectral reflectance was adjusted to the reflectance values of 

MOD09A1, the value of LAI retrieved for that set of parameters and adjustments 

https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/leaf_area_index_fraction_of_photosynthetically_active_radiation/8_day_l4_global_1km/v5/terra
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was annotated (. For each MOD09A1 pixel that contained a sampled plot, the 

retrieval of the LAI was made.    

 

 

Table 3 Soil, leaf and canopy parameters used for the forward modelling of the surface 

reflectance of rice. 

Model Parameter Value 

Soil Soil code (single scattering 

albedo) 

75 

Soil Hapke b 0.84 

Soil Hapke c 0.68 

Soil Hapke B0 0.30 

Soil Hapke h 0.23 

SM% 5 

Leaf 

(PROSPECT) 

N green leaves 1.5 

Cab green leaves 55  

Cw green leaves  0.02 

Cdm green leaves  0.005 

Cs green leaves 0.00 

N brown leaves --- * 

Cab brown leaves --- * 

Cw brown leaves --- * 

Cdm brown leaves --- * 

Cs brown leaves --- * 

Canopy 

(4SAIL2) 

 

LAI  1.0 – 8.0 

LIDF a - 0.5 

LIDF b - 0.5 

D 0.80 

Hotspot size Varied with LAI (0.5/LAI) 

fB 0 

Cv 100 

zeta na 

sza Varies with MODIS pixel 

vza Varies with MODIS pixel 

raa Varies with MODIS pixel 

* During the vegetative stage of the crop, is assumed that the canopy consists only of green 

leaves. 
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The parameters of Hapke’s model described in Table 3 are five: b and c which are 

the parameters of the scattering phase function described by Pinty et al. (1989).  B0 

and h describe the magnitude and half width of the hot spot peak, respectively.  SM 

% indicates the percentage of soil moisture. These parameters were set equal to the 

default values obtained for a ploughed soil (Pinty et al., 1989). 

 

Leaf parameters from PROSPECT are five, each one described twice for green and 

brown leaves. N describes the leaf structure; Cab, the content of the chlorophyll a + b 

(µg cm
-2

); Cw, as the equivalent water thickness (cm); and Cdm, the dry matter 

content (g cm
-2

) (Jacquemoud et al., 2009). The value of N was selected according to 

the one suggested for various crops by Houborg, et al. (2007) cited by Darvishzadeh 

(2008a). Chlorophyll content (Cab) was measured on the field during the campaign 

using a SPAD-120.  

 

Parameters for 4SAIL2 are eleven, describing biophysical and optical characteristics 

of the canopy. LAI refers to Leaf Area Index; LIDFa and LIDFb describe the leaf 

inclination distribution function; the parameter a controls the average leaf slope and 

the parameter b controls the distribution’s bimodality. D, describes the layer 

dissociation factor; fB, the fraction brown leaf area; Cv the vertical crown cover 

percentage and zeta the tree shape factor (which was not used for this modelling). 

Sza, vza and raa describe the sun zenith angle, vertical zenith angle and relative 

azimuth angle, respectively. Values of the LIDF parameters were selected according 

to the type of the crop and suggestions by Verhoef (2010). The soil code chosen (75) 

belonged to the single scattering albedo of a soil under a thin layer of water, which 

corresponds to the growing characteristics of rice. Values of sun zenith angle, 

vertical zenith angle and azimuth angle were selected according to the values given 

by the MOD09A1 product. Due to the lack of other leaf and canopy parameters for 

rice, values of maize used by Verhoef and Bach (2007) were kept for the modelling. 

Maize was selected due to its structural and physiological similarities with rice. 

 

3.5.4. Comparison between measured values and estimated LAI from 

SLC  

Modelled values of the measured LAI and the SLC’s LAI values were compared by 

a correlation, using Pearson’s distribution for a level of confidence of 0.95.  
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4. Results  

4.1. Quality assessment of the MODIS LAI/FPAR product 

4.1.1. Correction of LAI measurements from field 

After the analysis of the field data, it was detected that daily values of LAI were a 

function of the hour of the day. A trend of lower values of LAI was detected when 

the hour of collection was around 15:30 hours (Figure 5).  

 

According to the manual of the LAI-2000, underestimation of LAI is due to the 

effect of direct sunlight over the foliage. This underestimation is common during 

days with clear skies or when the sun is not close to the horizon. It has been reported 

that the underestimation of LAI due to direct sunlight ranges from 10% to 50%, 

especially in canopies with large gaps. For such cases it is recommended that if it is 

not possible to repeat the measurements, an interpolation over time could work well 

(LI-COR, 1992).  

 
 Figure 5 Behaviour of measured values as a function of time of the day. 

Following the recommendation, an iterative method of visual transformation was 

carried out to adjust the values. Values between 10:00 and 21:00 hours were 

adjusted, considering the variation between them and the data collected close to 

sunrise or sunset. A function explaining the behaviour of values contained within the 

range was defined (Eq. 4). The function provided information about the trend of the 
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values and their variation. This information was useful for the transformation, since 

the new values must contain the same variation as the one showed at the beginning. 

Once the function was defined, values of adjustment were estimated by mean of 

iterations. The adjustment was defined averaging values of LAI for the 

measurements made close to 10:00 and 21:00. This average provided the 

information about the pattern that the original values should follow if the collection 

of data were not carried out under direct sunlit conditions. The final equation with 

the adjustment value for the correction of the data is present as follows: 

 

𝑪𝑳𝑨𝑰𝟏𝟎−𝟐𝟏 =
𝑶𝑳𝑨𝑰𝟏𝟎−𝟐𝟏∗𝒌

𝟏𝟖.𝟗𝟐−𝟐.𝟐𝟐𝟐 𝑯+𝟎.𝟎𝟕𝟏𝟓𝟔𝑯𝟐  Equation 4 

 

Where CLAI10-21 is the corrected LAI for the measurements made between 10:00 

and 21:00. OLAI10 – 21 is the original value of LAI measured in field between 10:00 

and 21:00, and k is the adjusted coefficient. H represents the hour of the day 

(decimals) where the measurement was taken. The results of the correction with the 

general trend of the data are shown in Figure 6 .  

 

 
Figure 6 Corrected LAI values after the transformation. 

Figure 6 shows the trend of the corrected values of LAI. The underestimation 

detected between 10:00 and 21:00 was removed and now a trend with values non-

dependent of the hour of the day can be observed. Values beyond the range were left 

with their original values. In addition, is possible to observe that the variation of the 

corrected values increased following the pattern of the other values outside the 
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range. Figure 7 shows the comparison between the corrected values and the original 

values of the LAI. Trend lines were added to show that the adjustments made 

increased the values of the LAI, correcting the original underestimation. 

 

Figure 7 Comparison between corrected values and original values with their respective trend 

lines. 

 

After the correction of the dataset, a correlation analysis between observed and 

corrected data was carried out to verify the behaviour of the new dataset. Figure 8 

shows the behaviour of the scattered plot which provided a correlation coefficient of 

R = 0.8746. In the figure is possible to observe two strong patterns of behaviour 

between corrected and original values. The bottom pattern shows the values that 

were not changed (outside the range 10 – 21 hours); meanwhile the upper pattern 

shows the values that were corrected giving higher LAI values. 

 

A histogram with the corrected values of LAI was used to observe the behaviour of 

the dataset with the new values (Figure 9). The pattern showed a normal distribution, 

which was the expected pattern after the transformation. 

 

 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9 10 11 12 13 14 15 16 17 18 19 20 21 22

L
A

I

Hour of the day

Corrected LAI Original LAI



32 

 
Figure 8 Comparison between original and corrected LAI. 

 

 
Figure 9 Histogram of the corrected values of LAI measured in the field (per week). 
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4.1.2. Comparison between LAI values from the field and MOD15A2 

With the disaggregation technique based on NDVI, LAI values from the MODIS 

product were estimated for the sampled plots. Due to the nature of the product (8-

day composite), weekly values of LAI were estimated. A histogram was used to 

observe the behaviour of the variable, as is shown in Figure 10. The histogram 

showed a positive skewness, indicating that most of the values were located between 

the range of 0.50 and 2.00.  

 

 
Figure 10 Histogram of the MOD15A2 product. 

A correlation between corrected values of LAI versus MOD15A2 values of LAI was 

carried out to assess the values from the MODIS product. The dataset for the 

correlation consisted in 129 pairs of LAI values grouped by week (Appendix A).  

The Pearson’s correlation coefficient was calculated, giving a value of R = 0.447. 

Figure 11 shows the scatter plot of the compared datasets. The line symbolizes the 

pattern that the values should follow if a perfect correlation exists (1:1). 
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Figure 11 Comparison between LAI values from the field and MOD15A2 

LAI estimated from MODIS15A2 shows lower values than LAI measured in the 

field. The scatter plot shows that MOD15A2 underestimates values of LAI 

compared to values measured in the field. In addition, the scatter plot demonstrates 

that the range of values produced by MOD15A2 is smaller than the values measured 

in the field. 

 

Correlations between both datasets were calculated per week, in order to observe the 

behaviour of the data without the effect of time. Figure 12 and Figure 13 show the 

behaviour of the sixth and ninth week after sowing, respectively. In Figure 12, the 

pattern of lower LAI values from MOD15A2 compare to measured values, repeats.  

In this case, it was not possible to identify the trend that was obvious in Figure 11, 

which covered the vegetative stage. Figure 13 shows the underestimation of LAI 

from MOD15A2, but in this case, a small change in the lower values of MODIS LAI 

is evident compared to week 6. Contrary to Figure 12, the range of LAI values from 

MOD15A2 is higher. 
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Figure 12 Scatter plot of the correlation between corrected LAI from the field and MOD15A2 

LAI for the first week of the fieldwork campaign (6th week after sowing). 

 

 
Figure 13 Scatter plot of the correlation between corrected LAI from the field and MOD15A2 

LAI for the 4th week of the fieldwork campaign (9th week after sowing). 
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4.2. Estimation of LAI from SLC and quality assessment 

Values of LAI were estimated from the inversion of the SLC model. According to 

the temporal level of the study, values of LAI per week for each measured plot on 

field were calculated. Following the procedure for the evaluation of the LAI in 4.1, a 

histogram with all the estimated values of LAI was made to observe the behaviour of 

the variable as is presented in Figure 14. The histogram showed most of values 

located below 4.00 with a positive skewness. 

 

 
Figure 14 Histogram of the values of LAI estimated with SLC. 

Comparisons between estimated values from SLC and corrected values form the 

field showed a Person’s correlation coefficient of R = 0.497. The dataset used for the 

comparison consisted of 140 pairs of LAI values grouped by plot and week 

(Appendix B).  Figure 15 shows the comparison between estimated and corrected 

values. The line shows a 1:1 line that values should follow if a perfect correlation 

exists. LAI estimated from SLC shows lower values than the LAI measured in the 

field. The scatter plot also demonstrates that SLC underestimates observed values of 

LAI, when values are higher. The range of values of the estimated LAI is smaller 

than the corrected LAI. Following the same analysis that was done for the MODIS 

product, correlation between estimated values of LAI from SLC and measured 

values per week were carried out. This analysis aimed to observe the behaviour of 

the variable without the influence of time.  
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Figure 15 Comparison between LAI from field and from SLC. 

In the same way that the analysis for the MODIS LAI/FPAR product was made, 

comparisons for the week 6 and week 9 were carried out between SLC values and in 

situ measurements. Figure 16 shows the correlation for the week 6, where there SLC 

shows a slightly underestimation of LAI values compared to field data. More than 

60% of the data is located below the 1:1 line, which indicates a trend to 

underestimate LAI when the values measured in the field increase. 

 

 
Figure 16 Scatter plot of the correlation between LAI from the field and from SLC for the 

first week of the fieldwork campaign (6th week after sowing). 
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Figure 17 shows the behaviour of the values during the 9
th

 week after sowing. The 

scatter plot shows that higher values of estimated LAI increase the underestimation 

compared to in situ measurements. The pattern detected in the previous figure is 

confirmed, locating almost 100% of the date below the 1:1 line. 

 

 
Figure 17 Scatter plot of the correlation between LAI from the field and from SLC for the 4th 

week of the fieldwork campaign (9th week after sowing). 
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Estimated values from SLC and MOD15A2 values were compared using a scatter 

plot as is shown in Figure 18. Pearson’s correlation coefficient was calculated, 

obtaining a value of R = 0.546. In this case, MOD15A2 product shows lower values 

compared to estimated LAI from SLC.  The trend showed on the plot corresponds to 

the behaviour observed in the histograms of both datasets, with values of MOD15A2 

with a higher positive skewness compared to SLC values.  
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Figure 18 Scatter plot of the estimated values of LAI and MOD15A2 LAI values. 
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5. Discussion 

5.1. Quality assessment of the MODIS LAI/FPAR product 

Values of LAI from 8-day composite MODIS LAI/FPAR product (MOD15A2) 

differed with the values of LAI collected in the field. The MODIS product could 

explain only 45% of the variation of field measurements of rice. There was a 

generalized trend of the product to underestimate values of LAI compared to field 

measurements (Figure 11). According to Fensholt et al.  (2004), underestimations of 

LAI by MODIS are consequence of coarse resolution data, which increases that 

amount of radiation reflected from the background within a pixel. The magnitude of 

the underestimation of LAI increases as vegetation heterogeneity increases (Tian et 

al., 2002). The site of rice’s production in Seville is well known by its homogeneity; 

therefore, the underestimation due to the heterogeneity of the vegetation can be 

discarded. However, the coarse resolution data should be taken in account, moreover 

if the background of the coarse pixel includes water. In addition, it is important to 

consider that the coarse resolution of the data is also affected by the temporal 

dynamics of the crop. During the transplanting stage of the rice, flooded soils are 

required and after 60 days the canopy cover most of the background (Xiao et al., 

2005). This indicates that within 2 months, the environment of the crop changes in 

marked contrasts, which affects the performance of the algorithm for the retrievals 

of the LAI. The behaviour of the values of LAI from Figure 12 and Figure 13 could 

explain these changes and the problems of the algorithm to retrieve the values of 

LAI. Values of week 6 showed less variability compared to week 9, which can be 

explained by the influence of the seasonal dynamics and the effect of the growing 

canopy covering the background. In early stages, the surface is a mixture of crop 

greenness, water and mud, meanwhile close to the 60
th

 day after sowing (9 – 10 

week) the canopy covers most of the soil, providing a more uniform surface and thus 

better conditions for the estimation of the LAI. 

 

On the other hand, Hill et al. (2006) observed that the algorithm of the MODIS 

product could perform well only if the six biome land cover classification of the 

product allocates the correct class according to reality. The region that contains the 

rice zone in Seville is known to be an area of agricultural production. However, 

dynamics in agronomic systems could influence changes in land use, which could 

affect the land cover classification and thus the correct allocation of the biome. 2008 

reported a decreased in yielded rice in Seville, due to the increase of growth of other 

crops with different physiological and phonological behaviour. These issues are the 
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ones that should be considerer to understand the underestimation of the LAI from 

MODIS. 

5.2. Estimation of LAI from SLC and quality assessment 

Values of LAI from SLC model could explain 50% of the variation of the values of 

LAI measured in the field. Although the correlation coefficient did not differ much 

to the one calculated for MOD15A2, SLC retrieved less underestimated values 

(Figure 15). The 1:1 line drawn in the figure shows at least 30% of the values 

located in the upper bound, which indicated better performance compared to the 

MOD15A2 product. However, when the values of the estimated LAI were compared 

with measured LAI values per week, it was noticed that SLC underestimated LAI 

with higher values of LAI from field (week 9).  

 

One cause of the underestimation could be the use of many parameters derived from 

other types of vegetation. However, without a sensitivity analysis, the cause of the 

underestimation only can only be considered nothing more than a hypothesis. 

Nevertheless is important to consider that too many parameters for a specific type of 

vegetation in specific conditions could result in a model impossible to generalize 

(Qin et al., 2008). 

 

Another cause of the underestimation of higher values could be addressed to the 

method used for the inversion. According to Meroni et al., (2004), at least three 

bands should be used initially for the inversion of a model (red, near-infrared, and 

shortwave infrared). However, later on it was considered that the nature of the 

method and the slowness of it, would allow using only one band of MOD09A1 for 

the inversion.  Following the recommendation of Wang and Huang (2009), NIR (841 

– 875 nm) band of MOD09A1 was selected due to its  strong relation with LAI 

retrievals. The problem of retrieving values of LAI based on NIR was similar to the 

one between LAI and NDVI (saturation of NDVI for LAI higher values). This effect 

could explain the influence of the retrievals on the underestimation of LAI for higher 

values of field measurements. Many authors (Meroni et al., 2004; Darvishzadeh et 

al., 2008a; Wang and Huang, 2009) recommend the use of various bands to perform 

inversions with more precision. More bands require more computational procedures 

and combinations of parameters to perform good retrievals of biophysical variables. 
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6. Conclusions 

Correlations carried out between MODIS LAI/FPAR product (MOD15A2) and in 

situ measurements of LAI for rice showed a Person’s correlation coefficient of 

0.447. This indicates that less than 45% of the variation of in situ measurements was 

explained by MODIS LAI/FPAR product. According to stage of the crop where the 

study was carried out (vegetative stage), an increasing trend of LAI values was 

expected. MODIS LAI/FPAR product was able to detect this increasing trend but 

with a marked underestimation of the biophysical variable compared to field 

measurements. The differences between the values of LAI could be attributed to the 

coarse resolution of the MODIS product; effect of the water background on the 

spectral reflectances that the algorithm requires as input data, and the criteria of 

which the algorithm retrieves information according to a predefined biome. 

 

Estimated values of LAI from Soil-Leaf-Canopy showed a Pearson’s correlation 

coefficient of 0.497, which indicates that the model explains less than 50% of the 

variation of in situ measurements. It is important to mention that values of SLC 

showed less underestimation of LAI values compared to the MODIS LAI/FPAR 

product. The differences between the estimated values and in situ measurements 

could be attributed to the lack of precise information for the input parameters 

required by the model and the criteria used for the adjustment of the modelled 

spectral reflectances. 

 

LAI values estimate from SLC improved 10% the performance of the MODIS 

LAI/FPAR product. The main difference between the performance of the model and 

MODIS was the underestimation of LAI. Values of LAI from SLC showed stronger 

correlations with in situ measurements, estimating values close the 1:1 line assumed 

for a perfect correlation. Despite the low improvement in the performance of the 

MODIS LAI/FPAR product, SLC showed a high potential for the retrieval of 

biophysical variables.  
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7. Limitations and 

recommendations 

7.1. Limitations 

 

 Due to the historical information of the zone, uniformity in the agricultural 

management of the crop was assumed, indicating that differences between 

sowing dates, fertilization and irrigation systems were not considered. In 

addition, optimal growth conditions of the rice were considered, obviating 

the influence of external agents in the development of the crop. However, 

information about fluctuations in rice production indicates that 2008 was an 

unusual year with remarkable changes in the land use and cultivation 

patterns. 

 NDVI values from LANDSAT 7 ETM+ were consider for the 

disaggregation method to avoid the mixed pixel problem despite of the 

presence of stripes (a very well known problem of LANDSAT product). 

 The 8-day composite MOD09A1 product was considered most appropriate 

for the inversion and estimation of LAI, compared to other MODIS 

products with shorter temporal resolutions (daily). 

 Due to the lack of information of the spectral signatures of rice, the spectral 

reflectance of the MOD09A1 product was considered ground truth for the 

adjustment of spectral reflectance values modelled by the SLC. 

 For the modelling of spectral reflectance from SLC, parameters from 

ploughed soil were considered for the Hapke model, which differ from the 

soil for rice cultivation. The effect of this parameter in the spectral 

reflectance could affect notoriously the performance of the inversion. 

 A manual procedure of adjustment of spectral reflectances was carried out 

due to the lack of an inversion module for the SLC model. 

 

7.2. Recommendations 

 

 During fieldwork campaigns, measurements of LAI using LAI-2000 should 

be carried out during sunrise or sunset to avoid the sunlit from the canopy 

that affects the readings of the equipment.  



44 

 The inversion of the SLC model requires further refinement. In order to 

perform an inversion of a radiative transfer model, measurements of 

spectral reflectances from the field (with the aid of a spectroradiometer) are 

strongly recommended. In the particular case of rice, spectral 

measurements of muddy soil, flooded soil and top of canopy could improve 

considerably the inversion. If is not possible to obtain the spectral 

reflectance from field measurements, downscaling the information of SLC 

to MODIS spatial resolution (mixed pixel) can improve the model’s 

performance.  

 Perform retrievals of biophysical variables using more than one band. 

 Soil-Leaf-Canopy model requires a high number of parameters to perform 

the modelling of spectral reflectances (forward) or biophysical variables 

(inversion). However, a greater number of parameters leads to highly 

specific complex models. Balance between simplicity and an accurate 

representation of reality must be taken into account when modelling.  
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9. Appendices 

Appendix A  

Weekly values of LAI from in situ measurements and MODIS LAI/FPAR product 

 
Week 1 Week 2 Week 3 Week 4 Week 5 

Plot Field MODIS Field MODIS Field MODIS Field MODIS Field MODIS 

P01 3.02 1.68 
 

2.01 4.89 2.58 5.45 3.59 
 

2.79 

P02 3.03 
   

4.35 
 

4.73 
   

P03 2.79 1.14 
 

1.36 4.19 1.82 4.88 1.82 
 

1.93 

P04 1.11 0.48 
 

0.64 3.27 0.69 3.08 0.68 
 

0.73 

P05 2.48 0.75 
 

0.97 3.70 1.18 2.94 1.20 
 

1.53 

P06 2.37 0.91 
 

1.11 3.99 1.41 3.73 1.52 4.90 1.72 

P07 3.07 0.71 
 

1.20 4.53 1.43 4.23 1.65 
 

1.81 

P08 1.96 0.72 
 

1.24 3.80 1.65 4.15 1.96 
 

2.17 

P09 2.82 0.58 
 

0.99 4.15 1.32 4.54 1.57 
 

1.74 

P10 2.79 0.78 
 

1.34 4.29 1.78 4.63 2.12 
 

2.34 

P11 3.02 0.67 
 

0.95 3.70 1.16 4.54 1.16 
 

1.22 

P12 1.47 0.39 
 

0.67 3.65 0.87 3.58 0.87 
 

0.96 

P13 4.15 0.89 
 

1.15 4.45 1.27 4.67 1.27 4.17 1.53 

P14 3.55 0.57 
 

0.80 4.29 0.80 4.97 0.92 5.21 1.14 

P15 2.69 0.55 
 

0.91 3.32 1.06 3.53 1.06 3.22 1.42 

P16 1.46 1.45 
  

4.30 
 

4.15 
 

4.38 
 

P17 2.32 0.81 
 

1.38 3.02 1.73 3.84 1.61 3.80 2.30 

P18 1.89 0.37 
 

0.50 3.26 0.61 3.76 0.71 3.78 0.87 

P19 3.44 0.31 
 

0.49 3.73 0.60 4.15 0.61 5.17 0.85 

P20 2.47 0.72 
 

1.26 2.96 1.44 3.24 1.71 3.48 1.98 

P21 1.44 0.43 
 

0.61 3.01 0.61 3.07 0.78 2.76 0.87 

P22 2.22 0.39 
 

0.60 3.13 0.60 3.74 0.69 3.66 0.73 

P23 2.11 0.45 
 

0.66 3.54 0.74 
 

0.83 3.89 0.88 

P24 1.14 0.51 
 

0.77 3.04 0.92 
 

0.98 3.63 1.03 

P25 1.63 0.37 
 

0.49 2.76 0.49 2.70 0.69 3.31 0.86 

P26 2.02 0.45 
 

0.60 3.01 0.60 3.61 0.90 4.14 1.05 
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P27 3.22 0.32 
  

2.83 
 

3.10 
 

3.08 
 

P28 3.73 1.27 
 

1.85 3.18 2.63 3.86 2.73 3.90 3.60 

P29 3.82 0.86 
 

1.47 3.86 1.59 3.69 1.47 3.87 1.83 

P30 4.08 1.17 
 

1.73 3.78 2.53 4.43 2.78 3.96 3.64 

P31 2.49 0.88 3.88 1.40 3.46 1.85 3.61 2.32 
 

2.77 

P32 2.52 0.94 
 

1.50 3.71 1.99 4.29 2.48 
 

2.97 

P33 2.01 0.48 
 

0.73 4.57 0.85 5.87 1.03 
 

1.16 

P34 3.43 0.57 
 

0.84 4.20 1.05 4.88 1.16 
 

1.39 

P35 3.31 0.47 
 

0.62 2.96 0.77 3.55 0.88 4.96 0.88 

P36 3.59 0.50 
 

0.70 3.19 0.90 3.68 1.10 
 

1.10 

P37 3.90 1.66 2.10 1.99 3.21 2.21 3.76 2.66 
 

2.55 

P38 3.10 1.32 3.28 1.52 3.72 1.48 4.45 1.77 
 

1.71 

P39 
 

1.13 2.30 1.26 3.69 1.61 5.27 1.56 
 

1.89 

P40 
 

1.51 3.14 1.81 5.04 2.09 
 

3.10 
 

2.28 

Average 2.64 0.77 3.01 1.09 3.77 1.34 4.06 1.51 4.00 1.70 
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Appendix B 

Weekly values of LAI from in situ measurements and SLC model. 

 
Week 1 Week 2 Week 3 Week 4 Week 5 

Plot Field SLC Field SLC Field SLC Field SLC Field SLC 

P01 3.02 3.92 
  

4.89 4.56 5.45 4.24 
  

P02 3.03 3.36 
  

4.35 3.92 4.73 3.68 
  

P03 2.79 3.04 
  

4.19 3.20 4.88 3.36 
  

P04 1.11 2.24 
  

3.27 2.72 3.08 3.72 
  

P05 2.48 2.00 
  

3.70 2.24 2.94 2.56 
  

P06 2.37 2.32 
  

3.99 2.96 3.73 2.64 4.90 3.44 

P07 3.07 2.16 
  

4.53 2.88 4.23 2.88 
  

P08 1.96 2.16 
  

3.80 2.88 4.15 2.88 
  

P09 2.82 2.08 
  

4.15 2.72 4.54 2.72 
  

P10 2.79 2.08 
  

4.29 2.72 4.63 2.72 
  

P11 3.02 1.84 
  

3.70 2.88 4.54 2.96 
  

P12 1.47 1.84 
  

3.65 2.88 3.58 2.96 
  

P13 4.15 3.28 
  

4.45 3.92 4.67 3.68 4.17 4.00 

P14 3.55 3.32 
  

4.29 2.80 4.97 2.64 5.21 3.28 

P15 2.69 2.48 
  

3.32 2.80 3.53 3.20 3.22 3.44 

P16 1.46 1.60 
  

4.30 2.24 4.15 3.20 4.38 2.64 

P17 2.32 2.48 
  

3.02 2.80 3.84 3.20 3.80 3.44 

P18 1.89 2.00 
  

3.26 1.76 3.76 1.76 3.78 2.40 

P19 3.44 1.60 
  

3.73 2.24 4.15 3.20 5.17 2.64 

P20 2.47 2.24 
  

2.96 2.32 3.24 2.48 3.48 3.60 

P21 1.44 1.84 
  

3.01 2.32 3.07 2.24 2.76 3.04 

P22 2.22 2.16 
  

3.13 2.72 3.74 2.72 3.66 3.36 

P23 2.11 1.76 
  

3.54 2.16 
  

3.89 2.00 

P24 1.14 1.92 
  

3.04 2.88 
  

3.63 2.80 

P25 1.63 2.08 
  

2.76 2.08 2.70 1.84 3.31 1.76 

P26 2.02 2.00 
  

3.01 2.08 3.61 2.48 4.14 2.80 

P27 3.22 2.40 
  

2.83 2.32 3.10 2.24 3.08 2.00 

P28 3.73 2.40 
  

3.18 2.32 3.86 2.24 3.90 2.00 
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P29 3.82 2.24 
  

3.86 4.00 3.69 3.68 3.87 3.92 

P30 4.08 2.24 
  

3.78 3.12 4.43 2.96 3.96 3.84 

P31 2.49 1.68 3.88 2.32 3.46 2.88 3.61 2.72 
  

P32 2.52 2.24 
  

3.71 2.88 4.29 2.96 
  

P33 2.01 2.16 
  

4.57 3.12 5.87 2.88 
  

P34 3.43 1.84 
  

4.20 2.40 4.88 2.00 
  

P35 3.31 2.16 
  

2.96 2.96 3.55 2.56 4.96 2.96 

P36 3.59 2.16 
  

3.19 2.96 3.68 2.56 
  

P37 3.90 3.36 2.10 3.28 3.21 4.16 3.76 3.68 
  

P38 3.10 2.56 3.28 3.60 3.72 2.40 4.45 3.20 
  

P39 
  

2.30 3.12 3.69 4.00 5.27 3.84 
  

P40 
  

3.14 3.44 5.04 3.76 
    

Average 2.64 2.30 3.01 3.15 3.77 2.87 4.06 2.90 4.00 2.97 

 

 

 


