
Comparison of two physically-based spatially 
distributed hydrology models in contrasting 

geo-climatic settings

Bindhu Canjirathinkal Thomas
March, 2010



Course Title: Geo-Information Science and Earth Observation 
for Environmental Modelling and Management

Level: Master of Science (M.Sc)

Course Duration: September 2008 - March 2010

Consortium partners: University of Southampton (UK) 
Lund University (Sweden)
University of Warsaw (Poland)
University of Twente (The Netherlands)

GEM thesis number: 2010-28



Comparison of two physically-based spatially distributed hydrology models in 
contrasting geo-climatic settings

by

Bindhu Canjirathinkal Thomas

Thesis submitted to the Faculty of Geo-information Science and Earth Observation
(ITC), University of Twente in partial fulfilment of the requirements for the degree 
of Master of Science in Geo-information Science and Earth Observation for 
Environmental Modelling and Management

Thesis Assessment Board

Chairman and First Supervisor: Prof. Dr. Victor G. Jetten (ITC)
External Examiner: Dr. Petter Pilesjö (Lund University)
Second Supervisor: Dr. Dinand Alkema (ITC)



Disclaimer

This document describes work undertaken as part of a programme of study at 
the Faculty of Geo-information Science and Earth Observation (ITC), 
University of Twente. All views and opinions expressed therein remain the sole 
responsibility of the author, and do not necessarily represent those of the 
faculty.



DDedicated to 

   
My late Grandma  



i

Abstract

The relative performance of two physically-based hydrology models 
(STARWARS and STREAM) were compared based on data from two geo-
climatically contrasting environments namely Aruvikkal catchment in the Western 
Ghats of Kerala, India and Parapuños in the Extremadura province of Spain. The 
attempt was to identify the ‘best’ of the two models which could accurately predict 
discharge without losing the quality of baseflow prediction, despite subjecting it to 
calibrations targeting either baseflow or streamflow.

The seasonality and variability of the hydrological responses of the catchments 
were assessed using a time series analysis (cross-correlation). The observed 
discharge data, the baseflow component separated from it and the results of the time 
series analysis was used as orthogonal information for the calibration of the models. 
Based on this analysis the optimal time step for the simulation of the model in 
Aruvikkal was 6 hrs and in Parapuños was 3 hrs.

The models were calibrated for the observed discharge and the baseflow, 
separately. Both models performed very well for the Aruvikkal catchment. Due to 
inadequate parameterization and the sporadic nature of the rainfall and discharge, the 
performance of the models was impaired in Parapuños catchment wherein complex 
hydrological processes such as preferential flows dominate in contributing to 
discharge. The absolute error of discharge predictions (NRMSE) were as low as 0.05 
for a fit (R2) of 0.92 for the STARWARS, against 0.06 for a fit of 0.88 for the 
STREAM. The study concludes that the STARWARS, despite being a complex 
model necessitating significantly more data, is the ‘best’ of the two for the prediction 
of discharge and baseflow of the catchments and hence has the necessary potential to 
be used for further hydrological investigations in the respective catchments.
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1. Introduction

Models are fundamentally a hypothesis (van Loon, 2004). Models can be 
physical, analogue and mathematical (Clarke, 1973). Physical models are scaled 
down representations of reality (e.g. a toy car). Analogue models are ‘proxy’ 
representations of reality whereby the system dynamics of a complex reality is 
represented by a simple alternative (e.g. a pictorial model of the hydrological cycle). 
Mathematical models are those in which the behaviour of a system is represented by 
a set of equations often together with logical statements explaining the relationships 
between variables (for example the wetness index formulation proposed by Beven 
and Kirkby (1979)).

Creating physical models for studying earth surface processes such as the 
transient hydrological response of a slope to rainfall is not pragmatic. Analogue 
models sacrifice crucial details of the system and hence they can also not be used for 
understanding the influence of various parameters on the slope hydrology. 
Mathematical models in a digital environment are the most viable solution for such 
process studies as they provide the capability of ‘spatial dynamic modelling’; spatial 
refers to the geographic domain and dynamic refers to the changes over time 
(Karssenberg, 2002).

Hydrological modelling is widely used to understand various hydrologically 
induced events and their spatio-temporal behaviour. Mathematical models in 
hydrology can be heuristic, emperico-statistical or physically-based. Heuristic 
models make use of relative weighting and rating of various variables in order to 
understand the potential spatial behaviour of a hydrological component, for example 
groundwater potential mapping (Dinesh Kumar et al., 2007; Thomas et al., 2009).
The weighting and rating adopted is often based on expert opinion or simple 
statistical relationships and hence lacks objectivity. Emperico-statistical models 
consider the phenomenon observed to be deterministic with a certain degree of 
spatially uncorrelated error, having a certain empirical relationship with a set of 
measurable independent variables for example rainfall-runoff modelling using 
artificial neural networks (Dawson and Wilby, 2001).

Physically-based models are those based on the underlying physics of the 
hydrological process being modelled, for example the discharge of a catchment 
(Immerzeel et al., 2008). The parameters used in such models are most often 
measurable and are considered as state variables having a unique value for a given 
moment in time and space. Most physically-based models are dynamic in nature, 
implying that they run forward (or backward) in time constantly calculating the 
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values of the state variables (based on the equations incorporated). If in a spatial 
frame work (a GIS model) such models also calculate the changes in the values with 
time for every unit of analysis (pixel). The results of such models are thus more 
concrete and reliable than the heuristic and emperico-statistical models, given the 
white box approach used in them. They have a higher predictive capability and are 
the most suitable for quantitatively assessing the influence of individual parameters 
contributing to the hydrological response of slopes.

1.1. Problem statement

Hydrological processes are continuous in time while the measurements of such 
processes are discrete in time (Hermance, 2003). In principle physically-based
models do not need calibration because parameters should be assessable from 
catchment data. However, in practice, catchment data generally are only sufficient to 
limit many important parameters to ranges of possible values. The resulting range of 
predictions is typically large enough to make the utility of the models questionable
(Madsen, 2000). So also, parameter values derived directly from field data nearly 
always produce a poor fit to observations that raise considerable doubt about the 
ability of models to address typical hydrologic problems. This occurs mainly due to
discrepancies between the scale of measurements and model inputs (Barth et al., 
2001). Hence calibration becomes necessary. Further, the results of physically-based 
models are highly sensitive to the assumptions regarding the initial conditions of the 
state variables and are influenced by the calibration procedure.

Most researchers, when calibrating for a particular model output (for example, 
the hydrograph of an outlet) tune (one or) a selected set of parameters to derive the 
desired output. The influence of this tuning often will reflect non-linearly in other 
hydrological components of the model. For example a model used to predict 
discharge can be tuned with respect to observed baseflow which is a representative 
of the groundwater behaviour, or with respect to the observed discharge itself which 
is a lumped representative of both the groundwater behaviour and the surface runoff.
Depending on the choice, the results will vary significantly (Ferket et al., 2009).

This effect of model complexity needs to be understood for identifying a 
reliable slope hydrology model which can seamlessly predict various components of 
hydrology (such as discharge and baseflow) with minimal sacrifice in the quality of 
one output when calibrated for the other (Beven, 2006). Per say, researchers assume 
complex hydrology models (in terms of the details that it attempts to capture) to be 
better in predictive quality than simple models without evaluating the model 
complexity against the quality of predictions. This common assumption ignores the 
aspect of equifinality, as with increasing number of parameters the degrees of 
freedom of the model increases and as a consequence the magnitude of equifinality 
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increases, while on the contrary with a large number of parameters, the probability 
of equifinal predictions reduce.

These aspects of model consistency and complexity which are to be considered 
before selecting a suitable hydrology model for the prediction of discharge was 
assessed for two models, they being, a ‘complex’ one named STARWARS (Storage 
and Redistribution of Water on Agricultural and Revegetated Slopes) (van Beek, 
2002) and a ‘simple’ one named STREAM (Spatial Tools for River Basins and 
Environment and Analysis of Management Options) (Aerts et al., 1999). The 
STARWARS attempts to capture the hydrological behaviour by describing the 
physical processes involved in a detailed manner incorporating soil hydrological 
parameters and vegetation effects, while the STREAM is a simple storage model 
with ‘black box’ delay factors. Their performance in two significantly different geo-
climatic settings was assessed based on the relative change in the quality of 
discharge predictions when optimized first for the baseflow and then for the 
discharge.

1.2. Aim

Aim of the study is to assess the relative performance of two basin scale 
hydrology models for predicting discharge in contrasting geo-climatic settings.

1.2.1. Objectives

1. To assess the seasonality and variability of slope hydrological responses of 
the catchments based on available data

2. To identify which parameters in each of the models influence baseflow and 
peakflow

3. To calibrate the models with discharge as target and subsequently with
baseflow as target

4. To validate the models and identify the ‘best’ of the two models for 
predicting discharge

1.2.2. Research questions

Objective: 1
1. What are the commonalities and disparities in the geo-climatic and slope 

hydrology conditions of the two catchments?
2. Is there a periodic variation in the relationship between net precipitation and 

discharge in the two catchments?
Objective: 2

3. What are the parameters that influence baseflow and discharge predictions in 
each of the models?
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Objective: 3
4. What are the best calibration parameters for each of the models?
5. How different are the optimized values of the calibration parameters in each 

of the models given the calibration based on baseflow and the calibration 
based on discharge?

6. How different are the predictions of discharge by the models given the two 
different calibrations?

Objective: 4
7. Is there a ‘best’ model that can accurately predict discharge in both the 

catchments?

1.2.3. Research hypothesis

Model Complexity
H0: The same model calibration can provide accurate prediction of both 

discharge and baseflow
Ha: Separate calibrations have to be performed for the accurate prediction of 

discharge and baseflow

Model Performance
H0: Both the models are interchangeable for predicting discharge irrespective of 

the geo-climatic and data availability conditions
Ha: One of the models is superior to the other in predicting discharge

irrespective of the geo-climatic and data availability conditions

1.3. Research approach

In the first phase the geo-climatic settings of the catchments were compared 
and their differences identified. Thereafter, two physically-based spatial dynamic 
models (one complex and one simple) were chosen based on preceding applications 
in Indian catchments lacking long term observational data. Both the chosen models 
are capable of predicting discharge (Q) and baseflow (BF). Short term (< 5 years) 
observational data of various hydrological components are available for a catchment 
in India and a catchment in Spain. The input data was split into two mutually 
exclusive sets of which one set was for calibration and the other for validation. The 
models were run using calibration data and realistic initial conditions. Two separate 
calibrations were performed one with the target as ‘accurate prediction of Q’ and the 
second with the target as ‘accurate prediction of BF’. Calibration was performed 
based on parameter(s) to which the models are known (from literature review) to be 
sensitive. Validation of the models was performed using the respective validation 
data set. The performance of the models in the catchments was compared to one 
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Figure 1: The research schema

another and related to the quality of data available. Finally, conclusions were drawn 
regarding the model complexity and performance. The model with the least relative 

changes in parameters as well as which can accurately predict the discharge given 
the two calibrations was considered the ‘best’ of the two. Figure 1 shows the 
methodological schema.

1.4. Thesis organization

The first chapter of the thesis explains the general context in which the research 
was undertaken. The second chapter contrasts the geo-climatic setting of the two 
study areas. The third chapter introduces the materials and the methodological frame 
work used for executing the research. Relevant literature is critically reviewed in the 
necessary chapters as and when necessary. The fourth chapter compiles and provides 
a concise synthesis of the results. The fifth chapter provides a summary and the 
conclusion drawn based on the study.
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Figure 2: Location map of Aruvikkal catchment

2. Study Areas

Two study areas were chosen for the modelling, they being, a 9.35 km2 large 
catchment named Aruvikkal in the Western Ghats of Kerala, India and a 0.972 km2

Parapuños catchment in the Spanish Extremadura located near the city of Cáceres.
The catchments differ greatly in terms of their geo-climatic settings. Despite these 
differences, the level of scale and detail of data is the same for both the catchments 
and it is assumed that there are no conceptual differences in the hydrological 
behaviour of the catchments.

2.1. Aruvikkal catchment

The Aruvikkal catchment is a sub-basin of the Tikovil River, a tributary of the 
Meenachil River that flows through the state of Kerala, India. The catchment is 
administratively part of Kottayam and Idukki districts (Figure 2). The region 

experiences three distinct seasons, namely the south-west monsoon (SWM; June to 
September), the north-east monsoon (NEM; October to December) and pre monsoon
(PM; January to May). As per long period data, the hydrological year of the 
catchment begins on 1st June and ends on 31st May of the subsequent year 
(Kuriakose et al., 2009a). The average annual rainfall from 1952 to 2001 is 5261
mm. Temperature in the area ranges between 18.9 and 33.7�C.
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Anthropogenic land disturbances in the area started in the late 1880s (Victor, 
1962). The predominant land use of the region is rubber (Hevea Brasiliensis) 
plantations, covering an area of 3.9 km2. From field studies in the region it is known 
that in forested catchments 10% of the rainfall is reduced by interception and in 
anthropogenically intervened catchments potential evapotranspiration increases 
substantially (James et al., 1981). For planting rubber the slopes are terraced often 
ignoring ephemeral streams thereby obstructing natural drainage channels that act as 
conduits for the discharge of excessive surface flow during high intensity rainfall 
(Thampi et al., 1998). Underlain by Precambrian charnockites the region is 
predominantly covered with shallow frictional sandy soils over a thin layer of 
sparolite interleaved by lithomargic clay (Kuriakose et al., 2009b).

Such soils are poor in water holding capacity resulting in a rapid hydrological
response of the slope. After a storm event the water accumulating on the slopes is 
rapidly contributed to the stream discharge mainly by infiltration excess surface 
runoff. High infiltration rates, the presence of the lithomargic clay, the relatively
impermeable bed rock and complex topography results in local transient 
groundwater development. This transient nature was observed by instrumented field 
measurements (Kuriakose et al., 2008; Langsholt, 1992).

Streams in the catchment are non-perennial indicating the lack of major 
groundwater storages. Deep groundwater recharge occurs only during the south-west 
monsoon season when the region receives long term and high intensity rainfall 
(Langsholt, 1994). Thus base flow is limited to just few weeks beyond the wet 
period. However, the presence of several open wells that reach up to the bed rock 
leads to the assumption that there are local groundwater storage pockets, mostly 
centered on minor fissures and valley floors. A detailed hydrological 
characterization is provided in Chapter 4. These wells too are non-perennial. Thus 
the agriculture in the region is mostly rain fed with very little irrigation by the 
exploitation of this limited storage. Rubber, the major crop in the region is a highly
water demanding tree, especially given the fact that the latex of the plant is drawn 
twice a day. However, the latex cannot be exploited when the slopes are completely 
saturated as the consistency of the latex reduces if the tree is exposed to long wet 
periods. This limits the peak latex productivity of the area to a few months of the 
year.

The catchment being a major sub-basin of Meenachil river which passes 
through one of the most densely populated regions of Kerala is a major source of 
potable and irrigation water supply. Major towns’ downhill along the river (namely, 
Irattupetta and Pala) experiences flash floods and hydrological drought conditions. 
Thus identifying a predictive physically based distributed model capable of 
forecasting (back casting and now casting) the transient groundwater, deep 
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Figure 3: Location map of Parapunos watershed, 
Spain (Maneta Lopez et al., 2008)

groundwater and discharge in the upper catchments of Meenachil river is both 
scientifically and socially relevant.

2.2. Parapuños watershed

The Parapuños watershed is in the south western Spain in the province of 
Extremadura (Figure 3). The main channel in the catchment is a second order 

stream. The climate of 
the area is 
Mediterranean with 
continental and 
Atlantic influence. The 
area is semi arid with 
high evaporation rate. 
The average annual 
precipitation is 514 mm, 
there are only 85
average rainy days 
distributed over a year.
Temperature in the 
area ranges from 8.1�C
in the winter to 40�C
in the dry period. The 

basin is mainly used as grazing land for pigs and sheep. The main tree species are 
Holm oaks and the herbaceous species are mainly zerophytes characteristic of the 
semi arid climate. The steeper slopes are with some shrubs mainly Retama 
sphaerocarpa, Cytisusy multiflorus, Genista hirsuta and Lavandula stoechas.

The basin is a part of an undulating erosion surface formed in schist and 
greywacke with some residual pediments found in the highest parts of the basin. 
Since the erosion in the area is active, the main river channel and the tributaries of 
the channels can be categorized as gullies. The lower portion of the main channel is 
engraved approximately 1m into the alluvial sediments reaching the underlying 
schist. Shallow soils with low organic matter content and the silky texture of the area 
shows the low water holding capacity of the basin. But the pediments are 
characterized by deeper soils with high content of rock fragments. Due to the semi 
arid Mediterranean climatic setting continuous water flow can be seen only during 
the wet season from October to April. In the dry season runoff will generate if the 
rainfall is intense and result in Hortonian overland flow. The saturated excess 
overland flow will be generated in the valley bottom during the wet season with a 
continuous water flow for few weeks. A more complete description is available in 
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Maneta Lopez (2006). Most of the rain is received as high intensity events and the 
water available is not well distributed throughout the year. Hence the dry season of 
the year will have drought events in most of the years. A detailed hydrological 
characterization and the relevant topographical and pedological parameters are
provided in Chapter 4.
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3. Materials and Methods

3.1. The Data

Data for the study originated from the field research at the respective 
catchments and are publish in various articles from time to time. The Aruvikkal 
catchment was instrumented and measurements are continuing since May 2007 with 
an automated weather station (Vantage Pro2 Plus) and a stage height (SH) gauge at 
the outlet of the catchment since August 2007 alongside other instruments 
(Kuriakose et al., 2008). Data from the weather station relevant for this study were 
rainfall, potential evapotranspiration and temperature. The weather station directly 
reports the average potential evapotranspiration at the set time interval calculated 
using Penman-Monteith equation (Allen et al., 1998). A rating curve of the 
catchment available from Devkota (2008) was modified with the addition of two 
more field observations and used to compute the discharge. The land use data from 
Devkota (2008) was also updated using a Satellite Pour l'Observation de la Terre 
(SPOT) multi-spectral image of 2008 extracted from Google Earth®. All other data 
necessary were available from Kuriakose et al. (2009a; 2009b).

Parapunos catchment was gauged from 2004 to 2006. Measurements of 
discharge, rainfall, temperature and other necessary spatial data was available from 
Manet Lopez (2006) and van Schaik (2010). Potential Evapotranspiration was not 
directly available for the catchment and hence was calculated using the approach of
Thornthwaite and Mather (1957) which was less demanding in terms of data.

All data was aggregated to a 1 hr temporal resolution. The BF was separated 
from the Q observations using a master recession curve graphical filtering approach 
of USDA (Arnold et al., 1995). The method uses a three filter passing technique 
where by the maximum influx points are filtered out and the average of the three 
passes are derived with the result of the third pass being the average BF.

3.2. The Models

The STARWARS was chosen for the study as the model has already been 
successfully applied in the study area in India (Kuriakose et al., 2009a). STREAM 
has been applied in a large catchment in the northern India yielding accurate results 
and also the model is easy to parameterize and calibrate (Aerts et al., 1999).
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Figure 4: The STARWARS Model schema

3.2.1. STARWARS

STARWARS was originally designed to evaluate the effects of vegetation on 
hillslope hydrology in SE Spain. Soil hydrological properties can be assigned to 
specific land use types and the model originally included the processes of 
interception and evapotranspiration. The amount of actual evapotranspiration is 
scaled to the available storage and FAO crop factors (Doorenbos and Pruitt, 1977). It 
contains a detailed description of the unsaturated zone that is present in the soil 
mantle over a semi-impervious lithic contact. The soil profile is subdivided into 
three layers that can be interpreted as the A, B and C horizons. The version of 
STARWARS used for this study assumes a Hortonian overland flow. All rainfall in 
excess of the infiltration capacity is directly passed to the streams while any 
infiltrated water has a possibility to percolate up to the deep bed rock storage or 
laterally flow through the soil. A fraction of the water lost to the deep bed rock
storage reaches the streams as baseflow and is set using a recession constant.
Percolation is driven by gravity and depends on the soil water retention curve of 
Farrel and Larson (1972) and the unsaturated hydraulic conductivity relationship of 
Millington and Quirk (1959). At the lower end of the soil mantle, the percolation 
into the underlying bedrock is impeded and a perched water table may form. The 
resulting perched water table 
will drain laterally according to 
the gradient of the phreatic 
surface. All unsaturated fluxes 
are considered to be vertical 
only. Figure 4 shows the model 
schema. Appendix 1 explains
the abbreviations and symbols 
used. A detailed list of the data 
necessary to use STARWARS is 
available in Kuriakose et al.
(2009a).

The model works in a 
PCRaster Environmental 
Modelling language. PCRaster 
software package is relatively open database which is integrated with Cartographic 
and Dynamic modelling modules. Cartographic module consist of operators which 
will follow the Map Algebra and Cartographic modelling while the Dynamic 
modelling module is integrated with the GIS functions together with the 
Cartographic modelling. In the Dynamic modelling module extra operators are 
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Figure 5: The STREAM Model schema

incorporated for creation of iteration through time and the reading of time series
(www.pcraster.nl).

3.2.2. STREAM

STREAM was developed to model the hydrology of large river basins in a 
simplified manner with sufficient details to get insight into the major processes 
which influence the water availability of the basin. It is developed based on a simple 
rainfall-runoff model named RHINEFLOW (Kwadijk, 1993). The model functions 
in IDRISI® based raster environment. The direction of water flow is determined by a 
digital terrain model (DTM). The water balance is calculated using the Thornthwaite 
(1948) and Thornthwaite and Mather (1957) for which precipitation and temperature 
are the major inputs necessary. The model was originally developed for simulating 
runoff, groundwater storage (shallow and deep), snow cover and snow melts on a 
monthly basis. The storage 
compartments and flows of 
water that determine the water 
balance of a given grid in 
STREAM are runoff, 
precipitation, water volume 
stored in the soil, snow and 
groundwater, water loss due to 
actual evapotranspiration (AET), 
change in water volume stored, 
water stored in the soil and as 
shallow groundwater, 
groundwater stored in aquifers 
and as deep groundwater and, 
the amount of water stored in the 
snow cover. A land use map is 
used to determine the ‘Crop 
Factor; which in turn determines the AET from RPET. A soil type map is used to 
determine the soil storage capacity. The quick flow and slow flow values for each 
pixel is determined per time step and any excess water than the soil storage capacity 
of the cell is directed to the neighbouring cell according to the difference in relative 
elevation determined by the DTM. A certain fraction of the water is assumed to be 
lost to deep groundwater. STREAM does not include any physical models for 
calculating the rate of infiltration, soil fluxes and leakage to deep groundwater. 
Figure 5 shows the model schema. A detailed list of the data necessary to use 
STREAM is available in Aerts et al. (1999).
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3.3. Selection of Calibration and Validation data

Hydrological models are best calibrated and validated using data that shows 
consistency and congruence, identification of which is a daunting task given the 
large quantity of data that is derived by instrumented measurements. Commonly, 
researchers use Q observations for the calibration and validation of distributed hill 
slope hydrology models (Refsgaard, 1997; Rossi et al., 2008; Xevi et al., 1997). This 
approach ignores the possibility of equifinality as was illustrated by Beven and 
Binley (1992). An alternative is to use BF estimates which is a more consistent 
characteristic of a catchment (Ferket et al., 2009; Rouhani et al., 2007). So also it is 
necessary to identify the most appropriate time step to be used for capturing the 
temporal behaviour of the system. Larger than optimal time step usage may lead to 
the loss of capturing the extreme behaviour, while smaller than optimal time steps 
will result in unnecessary computational costs.

Within a closed catchment incoming rainfall and outgoing Q and BF are 
intrinsically and serially related. This provides the opportunity to address the data as 
a continuous series and thereby use time series analysis methods for explaining these 
relationships and the main features in the data (Cowpertwait and Metcalfe, 2009a).

One of the most widely used descriptive time series analysis is cross correlation. 
Cross correlation, �k(x,y), is a tool to measure the predictability of one series y from 
another series x and is defined as

��(�, �) =
��(�,�)
����

��

Cross-correlation (1)
where, � ��� ���� ���	
��
� 
������	� �� ����� �� ���� ���������� �	
� �k(x,y) is the 

cross-covariance function defined as
��(�, �) = �	(�
+� � ��)�
 � ������ � �

Cross-covariance (2)
where, x variable lags y variable by time k and � is the mean of each of the 

variables. If x is the input to some physical system and y is the response, the cause is 
expected to precede the effect. For conducting cross-correlation analysis, both the 
series must be sampled in equal time interval and are assumed to be stationary in the 
mean and the variance (Cowpertwait and Metcalfe, 2009b; Shumway and Stoffer, 
2006).

Cross-correlation enables to identify the most congruent and consistent period 
of data that exhibits the strongest relationship between the variables. It is such data 
that could be used to calibrate and validate the models. The peak correlation 
coefficient determines the congruence while consistency of the relationship can be 
assessed by the number of hours from this peak to the loss of significance of the 
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relationship. The longer the relationship is significant the more consistent is the 
response. Use of data sets containing extreme events (floods and drought) that does 
not represent the long period behaviour of the catchment for calibration will result in 
an erroneous understanding of the hydrological processes and parameter values 
used, especially in catchments which lacks long term data. Hence the seasonal cross-
correlations of RF vs Q and RF vs BF were derived using the R language for both 
the catchments. The period that showed high congruence and long term consistency 
was selected and randomly split into two, one for calibration and the other for 
validation, while half the lag time between RF vs BF was chosen to be the optimal 
time step for model simulations such that the peak hydrological responses are 
accurately captured by the model.

3.4. Calibration and Validation

A pre-calibration run for the models were performed for both the catchments in 
order to create a strategy for the calibration. Calibration of spatially distributed 
models is often performed automatically (Doherty and Johnston, 2003).
Identification of the parameters to which the model outputs are the most sensitive is 
the first step in this process. Most models accompany an assessment of this 
sensitivity of model outputs to individual parameters. However not all parameters to 
which the models are sensitive can be used for calibration. Thus the selection 
depends on the uncertainty of the estimates of the parameters.

A detailed sensitivity analysis of STARWARS was available from van Beek 
(2002) while those of STREAM was available from Aerts et al., (1999; 2005). A 
simple sensitivity analysis of the models in terms of the total discharge was also 
conducted with the selected parameters so as to assess the relative influence of these 
parameters on the model outputs. Once the calibration parameters were identified 
there are several automatic calibration algorithms available to search for the optimal 
values of these parameters. This is often done by reducing the difference between 
the observed values of one or more selected calibration targets and their predicted 
values. Some of the commonly used ones are the simple genetic algorithm (Reed et 
al., 2000), the shuffled complex evolution (SCE-UA) method (Duan et al., 1992), the 
multiple start simplex and local simplex methods (Gan and Biftu, 1996), simulated 
annealing (Thyer et al., 1999) and parameter estimation (PEST) algorithm (Doherty 
and Johnston, 2003).

STREAM has a built in optimization algorithm which attempts to reduce the 
difference between the observed and predicted Q. The original model script was 
modified to report BF predictions such that optimization could also be performed for
BF. Parameters selected for calibration are set to change after every time step with 
an addition or reduction of a set increment. The optimization stops once the 
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difference between the observed and predicted is equal to or less than 1% (Aerts et 
al., 2005).

PEST was selected for the calibration of STARWARS. Two separate 
calibrations were conducted on STARWARS, one with the target for optimal 
prediction as BF and the other with the target for optimal prediction as Q. The 
parameters used for the calibration was the same in both the cases such that the
relative changes in inputs vs the relative changes in outputs can be derived. PEST
algorithm implements a version of the Gauss-Marquardt-Levenberg method of 
parameter estimation. At the beginning of an iteration the relationship between 
model parameters and model-generated observations is linearised by formulating it 
as a Taylor expansion about the currently best parameter set; hence the derivatives 
of all observations with respect to all parameters must be calculated. This linearised 
problem is then solved for a better parameter set, and the new parameters tested by 
running the model again. By comparing parameter changes and objective function 
improvement achieved through the current iteration with those achieved in previous
iterations PEST can tell whether it is worth undertaking another optimisation; if so 
the whole process is repeated. The target of PEST is to find the objective function 
that minimizes the weighted sum of the squared errors between the predicted and 
observed outputs. PEST terminates the model optimization when the relative change 
in the objective function between two subsequent iterations is less than 0.01 or the 
total number of iterations has reached 30 such that it has become obvious that 
continued PEST execution will not improve the predictions any more. PEST is a 
model independent utility. PEST can communicate with the model through a series 
of instruction and control files which lets it to read the necessary outputs and write 
the values of the calibration parameters derived from the iterations. This method is 
more robust than many other methods as it can find the minimum in the parameter 
combination with lesser number of iterations than most other parameter estimation 
methods (Doherty and Johnston, 2003; Maneta Lopez, 2006). The calibrated models 
were parameterized with the validation data set and the respective prediction errors 
were quantified. Two statistical derivatives were used to assure the agreement 
between observed and predicted, they being the root mean squared error normalized 
by the observation range (NRMSE) (Hengl, 2007) and coefficient of determination 
(R2) (Nash and Sutcliffe, 1970). A higher R2 indicates a better fit between the 
observed and predicted, while a lower value of NRMSE indicate better prediction 
accuracy. The threshold for acceptance of calibration was set to be 0.5 R2 and 0.15 
NRMSE.
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4. Results and Discussion

4.1. Geomorphic setting

The DTM available for Aruvikkal was derived from a CARTOSAT 1 
stereoscopic imagery acquired on 18 November 2007. This DTM with a resolution 
of 10 m by 10 m had an overall accuracy of (RMSE) 11.8 m. A comparison of the 
descriptive statistics of this DTM and an earlier DTM (20 m by 20 m) available from
(Kuriakose et al., 2009a) is provided in Table 1.

Table 1: Comparison of the descriptive statistics of the DTMs
Alt (m) Slp (%) WI Curv Asp

C T C T C T C T C T

Mean 436 597 53.1 50.1 7.8 8.7 0.1 0 176 174

Range 60 -
1001

50 -
1114

0.12 -
200

0.3 -
184.7

2.7 -
20.9

5.6 -
20.7

-3.9 
- 3.7

-3.9 
- 3.7

0.04 -
360

0 -
360

Stdev 241 271.7 33.7 23.0 1.7 1.5 1.4 0.7 72.7 84.4
C: CARTOSAT derived DTM; T: DTM derived from 20 m contour interval (Kuriakose, 2009); WI: 
Wetness Index; Slp: Slope; Alt: Altitude above mean sealevel; Curv: Curvature; Asp: Aspect

The difference in the DTMs has also resulted in a difference in the prediction 
quality of soil depth in the catchment; the soil depth derived from the CARTOSAT 
derived DTM had a standard deviation of 0.59 m while that derived from the 20 m 
contour derived DTM had  standard deviation of 0.65 m. In order to compare the 
geo-climatic settings of the catchments irrespective of their absolute differences in 
terms of topography and climatic variables, the hypsometric curves and integrals of 
the catchments were derived. A non-absolute hypsometric curve (area-altitude 
curve) often has an s-shape and plots the proportion of total basin height against 
proportion of total basin area, both in a scale of 0 to 1. The hypsometric integral is 
equivalent to the ratio of area under the hypsometric curve to the area of the entire 
square within which it is plotted. The hypsometric curve exhibits its widest range of 
forms in the sequence of drainage basins commencing with early youth 
(inequilibrium stage), progressing through full maturity (equilibrium stage), and 
attaining temporarily the monadnock phase of old age. A high hypsometric integral 
(>0.6) indicates an inequilibrium stage of the catchment, integral values around 0.6 
indicates catchments in a transition stage from inequlibrium to equilibrium and 
lower values indicate catchments in equilibrium state (Strahler, 1952). Figure 6
shows the hypsometric curves and the respective integrals of the catchments derived 
using CalHypso (Pérez-Peña et al., 2009). From the values of the integrals it is 
evident that Parapuños watershed is in a transition stage while the Aruvikkal 
catchment is in an equilibrium stage. Figure 7 shows the topographical, pedological 
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Figure 6: Hypsometric curves of Aruvikkal and Parapuños

and land use maps used for the Aruvikkal catchment and Figure 8 shows the 
respective maps of Parapuños watershed. The land use of Aruvikkal was 
comparatively more heterogeneous than that of Parapuños. The land use map of 

Aruvikkal which was prepared using visual image interpretation of an Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery
acquired on 24 January 2007 (Devkota, 2008) (accuracy of 74%) was updated based 
on a SPOT image by mapping settlement areas not mapable from ASTER and the 
most recent rubber and mixed crop fallows. The Parapuños watershed was mainly 
composed of grass, shrubs and sheep trails. Based on the homogenous vegetation 
patterns derived from visual interpretation of the aerial photographs, the watershed 
was divided into eleven mapping units (van Schaik, 2010). The average porosity (n)
applicable to each land use unit of Aruvikkal catchment was derived in relation to 
the bulk density (�b) and the mean particle density (�s; 2.7 gm/cm3) as shown in 
Equation 3.

� = �� � ��
��
� � ���%

Porosity (3)
The n of Parapuños catchment was also derived using the same method but was 

interpolated with simple kriging (Maneta Lopez, 2006). Spatially interpolated 
(simple kriging) saturated hydraulic conductivity (Ksat) map of Aruvikkal was 
available from Devkota (2008) while that for Parapuños was available from Maneta 
Lopez (2006). The infiltration capacity of Aruvikkal catchment was set for each land 
use as proportional to the Ksat of the top soil layer estimated based on open pit 
infiltration tests conducted in the field, while for the Parapuños watershed this 
information was also available as a spatially interpolated map (Maneta Lopez, 
2006). Table 2 provides details of the geo-climatic and hydrological desparities of 
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the study areas. The table also provides details of some of the input parameters 
necessary for the models.

Table 2: Comparison of the geo-climatic settings
Parameter Statistical Property Aruvikkal Parapuños

Rainfall (mm) Average Annual 5261
(1952 - 2001) 

514
(2004-2006) 

Temperature (�C) Absolute Min –
Absolute Max

18.8 - 33.7
(2007 - 2008)

-8.0 - 40
(2004 - 2006)

Potential 
Evapotranspiration (mm) Average Annual 969.7

(2007 - 2008)
~479

(2004 - 2006)

Discharge (Mm3) Total 29.66
(2008)

0.0169
(2005)

Runoff Coefficient (-)
Rainy Period 0.8

(SWM 2008)
0.16

(Oct 2005 - April 2006)

Dry Period 0.36
(PM 2009)

0
(May 2004 - Oct 2005)

Altitude (m a.m.sl) Min – Max 44.3 - 1113.5 362 - 434
Slope (%) Min – Max 0.3 - 1084.7 0 - 19.9
Soil depth (m) Min – Max 0 - 2.72 0.18 - 1.9

Catchment Land use Area (m2) Crop 
Factor

Porosity 
(m3/m3)

Ksat
(m/hr)

hA
(m)

� of 
SWRC

Aruvikkal

Mature 
Rubber 3336111.9 0.6 0.46

Range
0.00 -
0.07

0.23 6 to 10

Young 
Rubber 410344.8 0.5 0.49

Fallow Land 551328.4 0.8 0.46
Mixed Crops 1247871.4 0.8 0.47
Rock 1000440.9 1.0 0.00
Settlement 198381.6 1.0 0.47
Degraded 
Forest 1336732.8 0.9 0.49

Grass and 
Rock 1268967.5 0.9 0.48

Forest - 0.8 0.47

Parapuños

Landuse 1 38000 0.04

Range
0.34 -
0.64

Range
11.62 -
15.65

Range 
0.041 

-
0.112; 
Param
eteriz
ed per 

soil 
type

Range 
11.6 -
15.65; 

Parameter
ized per 
soil type

Landuse 2 24800 0.03
Landuse 3 24400 0.02
Landuse 4 217600 0.22
Landuse 5 264400 0.27
Landuse 6 106000 0.11
Landuse 7 64800 0.07
Landuse 8 44400 0.05
Landuse 9 127200 0.13
Landuse 10 60800 0.06
Landuse 11 10800 0.01

All soil hydrological values as applicable to the first soil layer
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Figure 9: Rating curve of Aruvikkal catchment
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4.2. Selection of calibration and validation data

4.2.1. Aruvikkal catchment

The catchment experiences ~170 rainy days in a year. Potential 
evapotranspiration was ~20% of the total water equivalent of rainfall (rainfall 
expressed in volume) in a hydrological year. Rainfall and evapotranspiration had 
significant seasonal variability. During the monsoon seasons (SWM and NEM) the 
evapotranspiration component was as low as about 45% of the total incoming water 
equivalent of rainfall, while it was as high as 56% during the PM season. Every 
season experiences at least few days of rain (although the amount may vary 
significantly from year to year) and thus strictly speaking there is no rainless season 
in the catchment. Interception component was computed as per Kuriakose et al. 
(2006) and was insignificant as expected in tropical catchments (Calder, 2001).
Hence, the throughfall was ignored.

Figure 9 shows the rating curve applied to the stage height measurements. The 
best fitting model to 
the rating curve was a 
2nd order parabolic 
type with an R2 of 
0.94. Traditionally a 
power law 
relationship is used in 
the Indian catchments 
(DHV Consultants et 
al., 1999). But a
power law 
relationship over 
estimated the low 
flows resulting in a hydrological mismatch with the total available water (rainfall).
The overestimation by the power law relationship was as high as about 34% 
compared to the Q estimated using the parabolic curve. Given the mismatch, the Q 
derived from the parabolic rating curve was used for further study. The BF
component was separated using the algorithm mentioned earlier. Although this
separation algorithm allows fixing a minimum and maximum time interval for 
deriving the recession constant, the results did not show any sensitivity to this, 
probably owing to the fine temporal resolution of the data. However, the algorithm 
did not work when set to very small search windows of 10 to 100 hours.
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The hourly Q and BF from 29 August 2007 19:00 to 01 June 2009 0:00 (the 
entire observation period) were subjected to cross correlation analysis with respect 
to rainfall for a maximum lag of 50 hrs. The choice of this maximum lag was based 
on the empirical knowledge of rainfall to discharge response as was derived from a 
simple graphical analysis. Figure 10 shows such a simple graphical analysis of the 
hourly rainfall, PET, Q and BF during the NEM 2007, PM 2008 and SWM 2008.
Table 3 shows the time series and descriptive statistics of RF va BF and Q. Based on 
the time series analysis it was evident that the most consistent and congruent data 
from the observations were for the seasons NEM 2007, PM 2008 and SWM 2008 
and hence was selected for calibration and validation.

Table 3: Time series statistics and descriptive statistics of rainfall vs discharge and 
baseflow of Aruvikkal from 29 August 2007 19:00 to 01 June 2009 0:00

Parameter Season
Peak Cross 
Correlation 

(PCC)

Hrs of 
lag to 
PCC

Hrs to loss of 
significance 

of CC

In m3/sec

Max Avg Stdev

Discharge

Entire 
Observation 0.45 -1 49 17.65 0.85 1.25

SW 2007 0.54 -1 33 11.86 2.86 1.34
NE 2007 0.50 -1 49 12.07 0.79 1.16
PM 2008 0.50 -1 49 12.92 0.55 0.85
SW 2008 0.55 -1 49 17.65 1.82 1.57
NE 2008 0.35 -1 49 5.11 0.40 0.34
PM 2009 0.38 -1 49 8.75 0.26 0.67

Baseflow

Entire 
Observation 0.21 -17 33 4.57 0.64 0.81

SW 2007 0.19 -19 31 4.57 2.26 0.74
NE 2007 0.24 -17 33 3.30 0.60 0.73
PM 2008 0.15 -32 18 2.16 0.40 0.47
SW 2008 0.24 -16 34 4.57 1.35 0.91
NE 2008 0.06 -14 36 0.87 0.34 0.19
PM 2009 0.18 -28 22 2.36 0.18 0.40

When considering the entire observation period the BF response of the 
catchment showed a lag of around 17 (c.f Table 3) hours since the rainfall event.
Hence, the optimal time step for the model simulation was set to be 6 hrs (c.f 3.3 
above on page 13). The time series analysis also indicates that there is no significant 
seasonal variation in the relationship between rainfall and the hydrological responses 
(Q and BF) of the catchment. Any low PCC values were only owing to the lack of 
rainfall in that particular season, for example the NE 2008 (c.f Table 3) was an 
unnaturally dry season in the region and hence has a very low PCC. It could also be 
noticed that in NE 2008 despite the low PCC the Q responded with in 1 hour to the 
rainfall. Thus it is safe to state that given a rainfall, the catchment will respond 
within 1 hour or less.
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Figure 10: Rainfall, PET, Q and BF of Aruvikkal catchment
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Figure 11: Correlograms of RF vs Q and RF 
vs BF of Aruvikkal catchment from 29 August 

2007 19:00 to 01 June 2009 0:00

The selected data was 
randomly split into two – the 
PM and SWM 2008 data was 
used for calibration and the NE 
2007 data was used for 
validation. The calibration data 
covers the extreme seasons (the 
dry and the rainy) while the 
validation data represents the 
moderately rainy season of the 
region. Thus the study covers 
all the three seasons prevailing 
in the catchment. Figure 11 
shows the correlograms of RF
vs Q and RF vs BF of the 
catchment for the entire 
observation period.

4.2.2. Parapuños watershed

Unlike Aruvikkal, the stage height curve of the Parapuños was not available but 
calculated discharge per 30 m was available. Interception was assumed to be at its 
minimal of about 4% of the rainfall and maximum canopy storage was assumed to 
be 1 mm uniformly for the entire watershed and hence throughfall was assumed to
be null which is plausible as shown by (van Schaik, 2010). The lack of PET
estimates meant the use of the simplest method (Thornthwaite, 1948)) to compute it.
This was achieved by parameterizing the evapotranspiration component of the 
STREAM model using the available daily average temperature and daily rainfall 
data, details of which can be found in section 4.3. The PET calculated was about 
86% of the water equivalent of rainfall. Although a BF component can be expected,
there is a lack of clarity in deciding whether the slow flow is a consequence of 
preferential flows through pipes or actually the response of the ground water (van 
Schaik, 2010). However, for the sake of this research the BF component was 
extracted.

The time series statistics of RF vs Q and RF vs BF were computed for a period 
from 01 January 2005 01:00 to 31 December 2006 24:00 with a maximum lag of 50 
hrs. The choice of maximum lag was arbitrary and was only to match with that of 
Aruvikkal. In its strict sense, there were only two significant seasons with respect to 
Q in the catchment, they being the rainy (October to April) and non-rainy (May to 
September) seasons. During the non-rainy season there was hardly any rainfall and 
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Figure 13: Correlograms of RF vs Q and RF vs BF of Parapuños watershed 
from 01 January 2005 01:00 to 31 December 2006 24:00

hence no Q. Thus the question of seasonal variability in the relationship between 
rainfall and Q was not applicable for the Parapuños. Based on the time series 
analysis of the entire data, the optimal time step for computation was chosen to be 3 
hrs, given a lag of 6 hrs for the response of the BF component. Calibration was to be 
conducted based on the data from 01 May 2005 03:00 hrs to 01 January 2006 00:00
hrs, thus covering both the rainy and non-rainy seasons of the catchment. Figure 12 
shows the rainfall, PET, Q and BF from October to December 2005 and Figure 13 
shows the correlograms of RF vs Q and RF vs BF of the watershed.

Figure 12: Rainfall, PET, Q and BF of Parapuños watershed

The validation was conducted with the data from 01 January 2006 03:00 hrs to 
30 May 2006 00:00 hrs.
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4.3. Need for model calibration

Both the models were parameterized and a pre-calibration run was performed 
using the climatic data for the period selected for calibration and those required as 
described in Appendix 1. For the STARWARS, no depth wise decay in soil 
hydrological properties were considered as available data restrains to the top 30 cm 
of the soil. Figure 14 shows the pre-calibration run derived Q of Aruvikkal and
Parapuños from both the models.

Both STARWARS and STREAM over-predicted the overall Q of Aruvikkal. 
The STARWARS under-predicted low flows while over-predicted peak flows. On 
the contrary STREAM was more efficient in predicting the low flows of the 
catchment, but extremely over-predicted the Q. The models under predicted Q of 
Parapuños; the under prediction was more extreme with STARWARS. Thus it was 
evident that both the models needed calibration for accurate predictions. The 
calibration was more necessary for STARWARS, the complex model with much 
more number of input parameters as compared to STREAM, the simple model.

4.4. Calibration Parameters

Table 4 and Table 6 lists the calibration parameters chosen for each of the 
model based on the procedure described in section 3.5. Reasons for the choice of the 
parameters are provided below.

4.4.1. STARWARS

All soil properties available were for the first layer (top 30 cm) and were 
considered as accurate enough and hence were not used for calibration. This 
approach was not full proof as most soil hydrological properties vary significantly 
over space and the available results were based on few data points and spatial 
interpolation using some geo-statistical techniques. The interpolated soil properties 
although represents the general soil characteristics does not consider the proportion 
of boulders and cobbles entrapped in the soil. This may be a lacuna in getting the Q 
correct, as most of the contribution to Q in both the catchments was a consequence 
of infiltration excess determined mostly by the top layer hydrological properties. 
However, this deficiency was ignored in favour of reducing the number of 
parameters to be used for calibration (so as to reduce computational load) and 
thereby reduce the magnitude of any equifinality. The values of the subsequent soil 
layers were not available and hence were preferred as calibration parameters of 
STARWARS.
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The ratio of water leaking to the bed rock that eventually reaches the streams 
was also an extremely difficult value to estimate in reality. This parameter 
eventually determines the BF component. Thus it was also chosen to be a parameter 
suitable for the calibration of STARWARS. All fluxes in STARWARS are 
determined using the parameter ‘duration’ which represents the length of the time in 
which a given flux occurs (for example percolation from one layer to the other). The 
use of model layers poses a specific lower limit to the response time. With three 
model layers, for example the transfer of water from the surface to the lithic contact 
lasts at least three time steps. Depending on the duration, the response is more or 
less retarded (van Beek, 2002). The choice of appropriate duration was thus a
calibration problem.

For example, when a 6 hr time step data was used, when the duration was set to 
1, the model assumes that the percolation from one soil layer to the other occurs in 6 
hrs (1 model time step) and when it was set to 0.5 it assumes that the flux occurs in 3 
hrs. The former implies that all available water for percolation (based also on 
unsaturated hydraulic conductivity) moves in 1 time step compared to the later 
whereby available water to the lower layers in two time steps. This parameter was 
also important in ensuring the numerical stability of the model. A 6 hr and 3 hr time 
for the occurrence of soil flux would certainly be unrealistic for catchments such as 
Aruvikkal and Parapuños, respectively wherein the Q response was as rapid as 
within 1 to 3 hrs (c.f Figures 11 and 13). This being highly localized and spatially 
variable in reality and the lack of any clear estimates qualifies it to be a calibration 
parameter.

The other parameters chosen were the air entry value (hA), the slope (�) of the
Farrel and Larson (1972) SWRC, the porosity (n) and the saturated hydraulic 
conductivity (Ksat) of the B and C soil horizons. There were no estimates of these 
parameters for the B and C soil horizons and hence were chosen for the calibration. 
Laboratory estimates of hA and ������� 	�� ���������� ��� ���� ������ños watershed 
and hence these parameters were derived based on the van Genutchen (1980) SWRC 
parameters as described by Kuriakose (2006) and parameterized based on a soil type 
map available from van Schaik (2010). For Aruvikkal, a proportional value 
applicable for each land use was used to scale the Ksat of the A soil horizon to its 
respective infiltration capacity. This value greatly varies within each land use and 
hence is a suitable calibration parameter. In Parapuños a spatially interpolated map 
of infiltration capacity was directly available, but was a result of a previous 
calibration procedure conducted by Maneta Lopez (2006) and hence an uncertain 
parameter suitable for calibration. In addition, two parameters namely the KsatBC
(Ksat at the lower boundary condition which is the bed rock) and the hABC (hA at the 
lower boundary condition) were also used for the calibration of the model. These 
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two parameters can hardly be estimated in reality and hence were suitable 
calibration parameters.

4.4.2. STREAM

The parameters used for the calibration of STREAM do not have significant 
physical explanation as that for STARWARS. The STREAM was originally 
developed for the prediction of discharge in a temporal resolution of 1 day to 1 
month (Aerts et al., 1999). Hence the parameters used in the model are also suitable 
to represent the fluxes at such coarse temporal resolution. For example, PET in 
STREAM parameterized using the Thornthwaite (1948) method (Equation 4) was 
originally devised for computing the PET on a monthly basis (Fernandes et al., 
2007).

PET = ETref .CropF .Crop c
30

Thornthwaite’s (1948) PET (4)
where CropF is the crop factor, CropC is a calibration parameter and ETref is the 

reference evapotranspiration which is a function of monthly average temperature 
and H (Equation 5), a heat parameter.

H =��
Tm
5
�
1.514Dec

Jan

Thornthwaite’s (1948) heat parameter (5)
where Tm is the long term average monthly temperature from January to 

December.
The CropC enables to scale the PET estimated by the Thornthwaite’s method to 

fit to the observed water balance. Researchers (eg., (Pereira and Pruitt, 2004; 
Sepaskhah and Razzaghi, 2009)) proposed various methods, both physical and 
empirical, to scale the monthly PET to daily and hourly PET. Given the temporal 
resolution of 3 and 6 hrs data for the simulation of Aruvikkal and Parapuños
respectively, such a scale factor was introduced thereby making it a calibration 
parameter. The H is a lumped parameter and was originally devised for the 
calculation of monthly PET, hence requiring it to be scaled to fit to the water 
balance of the study areas. STREAM uses a calibration parameter C to reflect the 
slow flow, originally in months. This parameter was derived from the slope map and 
ranges from 1 to 3. In theory, the value 1 has to be assigned to steep slopes and 3 to 
shallow slopes, the division being very arbitrary (Aerts et al., 2005) and hence an 
appropriate calibration parameter. Two other parameters used for the calibration of 
STREAM were the water holding capacity and the percentage of overland flow.
Water holding capacity was assigned per land use as suggested by Aerts et al.
(2005), however has a large uncertainty given the land use based parameterization.
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Hence this parameter was also selected as a calibration parameter. The overland 
flow percentage was an unknown parameter as the percentage of water that leaks 
through every grid to the deep groundwater is unknown, making it also a suitable 
calibration parameter.

4.5. Sensitivity Analysis

The selected calibration parameters were used to conduct a local systematic 
sensitivity analysis (Foglia et al., 2009) for which the target was the total Q. Usually 
this procedure precedes model calibration and helps in the selection of calibration 
parameters (van Beek and van Asch, 2004). However, the purpose of sensitivity 
analysis in this research was not the selection of the parameters but was only to 
establish the relative usability of the selected parameters for calibration. Figure 15
shows the sensitivity analysis results of STARWARS and STREAM based on the 
data of Aruvikkal. The models were set to run with average (and for some
parameters, arbitrary) values of the parameters. Subsequently, the models were run 
with a 25% and 50% lower and higher value of one of the selected parameters at a 
given time. The selection of the increments was arbitrary and was to only serve the 
purpose of identifying the relative sensitivity of the predicted Q to the chosen 
parameters. The resultant total Q predicted each time was standardized to express 
the relative change of the predicted Q with respect to the relative change in the 
parameters. From the sensitivity analysis it was evident that not all parameters that 
can be used for the calibration of STARWARS for Aruvikkal catchment can be used 
for Parapuños. Two trial runs were also conducted to assess the sensitivity of 
STARWARS towards distributed parameterization of n and the soil water retention 
curve parameters in Aruvikkal catchment, but the results did not show significant 
differences. A distributed parameterization of more calibration parameters also 
implies a higher computation load. Hence a constant value was favoured for these 
parameters as against a distributed parameterization.

It was evident from the analysis that the Q predictions of STARWARS was the 
most sensitive to hA and Ksat. The most significant variation was noticed when hA 2nd

layer was reduced by 50% and hA 3rd layer was reduced by 25%; Q increased by 
about 3 to 2 Mm3 respectively. This was a consequence of the fact that drainage of 
the pore spaces starts earlier by lowering hA value and hence also reduces the 
amount of storage. This will reflect in the BF component. On the contrary, if the 
pores remain saturated for longer time periods (hA increase) this will result in an
increase in the surface detention and hence overland flow thereby still increasing the 
Q. Being it for the second and third layers, higher hA results in a lower amount of 
increase in the discharge in comparison to lower hA values. Another parameter that 
showed a typical response pattern was Ksat.
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When Ksat 2nd layer was reduced by 25% there was a steep decrease in the Q 
which is due to the fact that the infiltrated water that reaches the second layer was 
not draining as fast as it arrives. While this pattern was the straight opposite for Ksat

3rd layer, a decrease showed an increase in discharge which was a consequence of 
the lower storage in the 3rd layer as a result of this decrease. The � 2nd layer was the 
only parameter to which the model showed an inversely proportional response; an 
increase caused a decrease in Q and a decrease caused an increase in Q.

Figure 15: Sensitivity analysis of STARWARS and STREAM (Refer Table 4 for the 
abbreviations)

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

-50 -25 0 25 50

R
el

at
iv

e 
ch

an
ge

 in
 Q

 (M
m

3 )

Relative change in parameter

STARWARS - Sensitivity to calibration parameters

ab h2 h3 du k2 k3

n2 n3 a2 a3 kr

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

-50 -25 0 25 50

R
el

at
iv

e 
ch

an
ge

 in
 Q

 (M
m

3 )

Relative change in parameter

STREAM - Sensitivity to Calibration Parameters

PET C WATERH H QP



32

This response was due to the fact that a lower ��������� a steeper SWRC and 
��	������������
���	����������������	
���	��������������������������������������
���������
���	������������������������	�����
�	���	��������������rd layer due to 
the fact that the third layer of soil was very shallow in Aruvikkal. The model was the 
least sensitive to infiltration capacity owing to the fact that the effect of this may 
have been lumped to the high conductivity of the Ksat 1st layer. For almost all 
parameters, the Q increased or decreased with the first 25% increase but decreased 
with an additional increase of 50%. This response was owing to the non-linear
interrelationship between soil properties (Barth et al., 2001; Madsen, 2000).

The discharge prediction of STREAM was the most sensitive to the C and PET
scaling factors. The slow flow component from each cell determined by the C can be 
considered as a proportional value to determine the amount of water entering the 
groundwater storage and the amount that is available for BF. A decrease in this 
parameter implies higher groundwater storage and hence lower Q and an increase 
implies lower groundwater storage and higher BF resulting in an increase in the Q. 
Thus Q is proportional to the changes in this parameter. The PET determines the 
loss of water from the catchment and it was thus logical to notice that an increase of 
PET meant a decrease in Q and vice versa.

Thus there exists a clear optimal value for these parameters which can be 
derived using a calibration procedure. The sensitivity analysis also indicates that 
STREAM responds more linearly to the chosen calibration parameters than 
STARWARS which responds non-linearly. In general, a linear model is easy to 
calibrate compared to a non-linear one (Foglia et al., 2009). Hence STARWARS 
was optimized using PEST which is a powerful optimization algorithm, while 
STREAM was optimized using the built-in optimization module.

4.6. Calibration

4.6.1. STARWARS

The STARWARS was optimized using PEST initially for the accurate 
prediction of BF and then for the accurate prediction of SF. The PEST allows setting 
absolute limits to the range of parameter variability allowed during the optimization 
process which could be set to suite the field observed limits of parameter variability.
Appendix 2 shows the PEST control files used for Aruvikkal and Parapuños. By 
using this option, one can ensure that the parameter estimates are realistic. Such 
limits were set for every parameter used for the optimization of STARWARS. The 
initial parameter value, the parameter ranges allowed can be found in Appendix 2
(c.f Parameter Data) while the PEST derived final values and the reason for setting 
the respective parameter range for each of the study area are listed in Table 4.
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Table 4: PEST derived optimal values of calibration parameters for STARWARS
and the reason for the choice of the allowed range of variability

Aruvikkal catchment

Parameter
Optimized value for each calibration

target Reason*
Baseflow Streamflow

AlphaBR (ab) 0.4 0.917 Arbitrary

hA 2nd layer (h2) hA 1st layer (m) * 
6.5 (-)

hA 1st layer (m) * 
6.5 (-)

Assuming hA will increase with 
decrease in porosity; refer Table 2 for 
hA 1st layer. The dimensionless 
scaling factor is arbitraryhA 3rd layer (h3) hA 1st layer (m) * 

8.5 (-)
hA 1st layer (m) * 

9.69 (-)
Ksat 2nd layer (k2) Ksat 1st layer (m/hr) * 5 (-) Observed decrease in Ksat with depth; 

Ksat 1st layer is Ksat (m/hr) * 6 where 6 
represents 6 hrs. The dimensionless 
scaling factor is arbitrary

Ksat 3rd layer (k3) Ksat 1st layer (m/hr) 
* 3.86 (-)

Ksat 1st layer (m/hr) 
* 4.09 (-)

n 2nd layer (n2) 0.365 (-) 0.4 Arbitrary, but plausible decrease in n
due to the hydrological behaviour of 
the clayey soil like sandy soil (Miguel 
and Vilar, 2009). Refer Table 2 for 
Porosity of 1st layer.

n 3rd layer (n3) 0.106 (-) 0.189

���st layer (a1) 10 6 Lower and upper bounds of 
������� ��������
�����!"#$

��%nd layer (a2) ���st layer * 0.52 (-
) ���st layer * 0.5 (-) &������� ����������������
�������� �	���

due to the hydrological behaviour of 
the clayey soil like sandy soil (Miguel 
and Vilar, 2009)��&� ����������	����
faster rate of drainage

���rd layer (a3) ���st layer * 0.5 (-) ���st layer *
0.575 (-)

Duration (du) 0.581 (-) 0.807 (-) Arbitrary
Proportional value of Ksat 1st layer used to derive infiltration capacity of each land use

Mature Rubber 
(kr1) 2.399 5

Maximum limit set to the observed
maximum

Young Rubber 
(kr2) 2 2.338

Fallow Land (kr3) 2 2.482
Mixed Crops (kr4) 1 2

Rock (kr5) 0.1 Fixed and not used for calibration; 
Arbitrary low non zero value

Settlement (kr6) 1 2

Maximum limit set to the maximum 
observed

Degraded Forest 
(kr7) 2.557 5.294

Grass and Rock 
(kr8) 2.002 3.5

Parapuños watershed
Ksat 1st layer (k1) 0.5 Observed reduction in the Ksat with 

depth; Arbitrary scaling with depth; 
Top layer Ksat also considered 
uncertain

Ksat 2nd layer (k2) 0.269 0.3

Ksat 3rd layer (k3) 0.2 0.2

n 1st layer (t1) 0.692 0.6 Observed reduction in the n with 
depth; Arbitrary scaling with depth; 
Top layer n also considered uncertain

n 2nd layer (n2) 0.692 0.6
n 3rd layer (n3) 0.5 0.5
hA 1st layer (h1) 0.7 1 Plausible increase in hA with 

reduction in n; Arbitrary scaling with 
depth; Top layer hA also considered

hA 2nd layer (h2) 1.5 1.3
hA 3rd layer (h3) 2 1.5
���st layer (a1) 0.603 0.6 �����������	��������	����������
����	�

in n; Arbitrary scaling with depth; 
����� ����������	��
���
��	������	

��%nd layer (a2) 1
���rd layer (a3) 1.1
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Infiltration 
Capacity (inf)

Infiltration 
Capacity Map 

* 0.089
0.2

An infiltration capacity map derived 
based on a calibration procedure  was 
available; This map was scaled to fit 
to actual water balance of the 
catchment

Duration (du) 0.997 0.5
Arbitrary; Extremely difficult 
parameters to observe in field; Scaled 
to fit to actual water balance

Ksat BC Original Ksat * 
1 0.2

hA BC Original hA * 
6 1

* for the allowed parameter range mentioned in Appendix 2 (c.f Parameter Data)

Table 5 compiles the accuracy statistics of the two calibrations performed for 
each of the study area. The PEST was able to estimate the optimal parameter values
applicable for Aruvikkal, better than that for Parapuños. All efforts to improve the 
results of the calibration in Parapuños were in vain even after using additional 
parameters such as hABC and KsatBC for the calibration. The decision to use them 
for the calibration of the model for Parapuños and not for Aruvikkal was a 
completely opportunistic one and has no physical explanation, except the fact that 
without the use of these two parameters, the optimization process could not 
converge to meaningful results. Figure 16 shows the calibration results of 
STARWARS for Aruvikkal and Figure 17 shows the calibration results of 
STARWARS for Parapuños.

Table 5: Accuracy statistics of STARWARS calibration for the two study areas
Calibration target - Baseflow

Statistic Value
Aruvikkal Parapuños*

Streamflow (Obs 
vs Pred)

R2 0.49 0.32
RMSE 0.021 (Mm3/6 hr) 615.5 (m3/3 hr)

NRMSE (-) 0.105 0.08
Correlation 0.7 0.56

Difference in total Q 10.73 (Mm3) -0.09 (Mm3)

Baseflow (Obs vs 
Pred)

R2 0.73 0.21
RMSE 0.006 (Mm3/6 hr) 2.48 (m3/3 hr)

NRMSE (-) 0.113 0.11
Correlation 0.856 0.45

Difference in total BF 4.35 (Mm3) -0.002 (Mm3)
Calibration target – Streamflow

Streamflow (Obs 
vs Pred)

R2 0.64 0.75
RMSE 0.014 (Mm3/6 hr) 115.2 (m3/3 hr)

NRMSE (-) 0.253 0.02
Correlation 0.797 0.86

Difference in total Q 1.35 (Mm3) -0.01 (Mm3)

Baseflow (Obs vs 
Pred)

R2 0.84 0.02
RMSE 0.011 (Mm3/6 hr) 1.89 (m3/3 hr)

NRMSE (-) 0.055 0.08
Correlation 0.918 0.16

Difference in total BF -8.28 (Mm3) -0.001 (Mm3)
*R2, NRMSE, RMSE and Correlation of Parapuños were derived based only data from 27 October2005 
21:00 to 4 November 2005 9:00 hrs given this being the observed peak discharge period
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Figure 16: Calibration period - Observed vs STARWARS predicted streamflow of 
Aruvikkal from 01 January 2008 06:00 to 30 September 2008 18:00 hrs, given the 

optimizations targeting baseflow and streamflow
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Figure 17: Calibration period - Observed vs STARWARS predicted streamflow of 
Parapuños from 27 October2005 21:00 to 4 November 2005 9:00 hrs, given the 

optimizations targeting baseflow and streamflow
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Calibration of STREAM was performed using the available internal 
optimization algorithm. One of the drawbacks of the algorithm was that it could 
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et al., 2005). Table 6 shows the calibration parameters and the automatically derived 
values applicable to each of the study area.
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Table 6: Optimal values of calibration parameters for STREAM
Aruvikkal

Parameter Optimized value for
Baseflow based calibration Streamflow based calibration

PET * scale factor (-) PET * 0.0029
C * scale factor (-) C * 7.59
WATERH * scale factor (-) WATERH * 3.18
H * scale factor (-) H * 1.56
QP 0.074331564 0.5

Parapuños
PET * scale factor (-) PE * 0.5
C * scale factor (-) C * 5 C * 1
WATERH * scale factor (-) WATERH * 0.2 WATERH * 0.2
QP 0.5 0.6

For the calibration of Aruvikkal data one additional parameter (the H scaling 
factor) had to be used unlike for Parapuños. This different calibration strategy was 
used only to explore the possibility of STREAM’s optimization algorithm. It could 
be seen that by reducing the use of one parameter (H) for calibration, the related 
parameter (PET) achieves a higher value. Table 7 shows the accuracy statistics of 
the calibration of STREAM for both the study areas.

Table 7: Accuracy statistics of STREAM calibration for the two study areas
Calibration target - Baseflow

Statistic Value
Aruvikkal Parapuños

Streamflow (Obs 
vs Pred)

R2 0.46 0.92
RMSE 0.04 (Mm3/6 hr) 76.12 (m3/3 hr)

NRMSE (-) 0.21 0.01
Correlation 0.68 0.96

Difference in total Q -9.52 (Mm3) 0.0011 (Mm3)

Baseflow (Obs vs 
Pred)

R2 0.88 0.94
RMSE 0.01 (Mm3/6 hr) 30.52 (m3/3 hr)

NRMSE (-) 0.12 1.35
Correlation 0.94 0.97

Difference in total BF -5.13 (Mm3) -0.007 (Mm3)
Calibration target – Streamflow

Streamflow (Obs 
vs Pred)

R2 0.81 0.93
RMSE 0.01 (Mm3/6 hr) 52.33 (m3/3 hr)

NRMSE (-) 0.07 0.01
Correlation 0.90 0.97

Difference in total Q -9.49 (Mm3) 0.0011 (Mm3)

Baseflow (Obs vs 
Pred)

R2 0.88 0.38
RMSE 0.02 (Mm3/6 hr) 56.84 (m3/3 hr)

NRMSE (-) 0.37 2.51
Correlation 0.94 0.62

Difference in total BF -20.42 (Mm3) 0.0004 (Mm3)

As it was the case with STARWARS, the STREAM also could not accurately 
represent the hydrological response of Parapuños. Even with several attempts of 
automatic and manual calibration, the BF predictions did not improve. Figure 18
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shows the calibration results of STREAM for Aruvikkal and Figure 19 shows the 
calibration results of STREAM for Parapuños.

Figure 18: Calibration period - Observed vs STREAM predicted streamflow of 
Aruvikkal from 01 January 2008 06:00 to 30 September 2008 18:00 hrs, given the 

optimizations targeting baseflow and streamflow
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Figure 19: Calibration period - Observed vs STREAM predicted streamflow of 
Parapuños from 27 October2005 21:00 to 4 November 2005 9:00 hrs, given the 

optimizations targeting baseflow and streamflow

4.7. Validation and relative perfomance of the models

Validation of the models was conducted with the data sets kept aside for the 
purpose as described in section 4.2. Table 8 shows the accuracy statistics of the 
validation. Figure 20 and 21 shows the observed Q vs predicted Q of Aruvikkal 
based on the two optimizations for STARWARS and STREAM. Figure 22 and 23
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shows the observed Q vs predicted Q of Parapuños based on the two optimizations 
for STARWARS and STREAM, respectively.

Table 8: Accuracy statistics of STARWARS and STREAM validation for the two 
study areas

STARWARS – Calibrated for Streamflow

Statistic Value
Aruvikkal Parapuños

Streamflow (Obs vs 
Pred)

R2 0.92 0.002
RMSE 0.007  (Mm3/6 hrs) 468.6 (m3)

NRMSE (-) 0.051 0.03
Correlation 0.98 0.05

Difference in total Q 0.98 (Mm3) 0.03 (Mm3)

Baseflow (Obs vs 
Pred)

R2 0.77 0.004
RMSE 0.010 (Mm3/6 hrs) 2.16 (m3)

NRMSE (-) 0.24 0.09
Correlation 0.88 -0.06

Difference in total BF -1.31 (Mm3) 0.00001 (Mm3)
STARWARS – Calibrated for Baseflow

Streamflow (Obs vs 
Pred)

R2 0.76 0.04
RMSE 0.014 (Mm3/6 hrs) 520.25 (m3)

NRMSE (-) 0.096 0.03
Correlation 0.87 0.19

Difference in total Q 2.92 (Mm3) -0.04 (Mm3)

Baseflow (Obs vs 
Pred)

R2 0.87 0.04
RMSE 0.004  (Mm3/6 hrs) 32.84 (m3)

NRMSE (-) 0.087 1.35
Correlation 0.93 0.21

Difference in total BF 0.57 (Mm3) -0.03 (Mm3)
STREAM – Calibrated for Streamflow

Streamflow (Obs vs 
Pred)

R2 0.88 0.0034
RMSE 0.0089 (Mm3/6 hrs) 468.59 (m3)

NRMSE (-) 0.06 0.031
Correlation 0.94 0.06

Difference in total Q -1.16 (Mm3) 0.03 (Mm3)

Baseflow (Obs vs 
Pred)

R2 0.88 0.02
RMSE 0.0134 (Mm3/6 hrs) 2.05 (m3)

NRMSE (-) 0.31 0.08
Correlation 0.93 0.13

Difference in total BF -3.48 (Mm3) 0.0005 (Mm3)
STREAM – Calibrated for Baseflow

Streamflow (Obs vs 
Pred)

R2 0.42 0.003
RMSE 0.03 (Mm3/6 hrs) 468.62 (m3)

NRMSE (-) 0.23 0.031
Correlation 0.65 0.06

Difference in total Q -0.88 (Mm3) 0.003 (Mm3)

Baseflow (Obs vs 
Pred)

R2 0.86 0.01
RMSE 0.0046 (Mm3/6 hrs) 2.05 (m3)

NRMSE (-) 0.11 0.084
Correlation 0.93 0.09

Difference in total BF -0.29 (Mm3) 0.0005  (Mm3)

The analysis made it evident that both the models performed better for the 
Aruvikkal data compared to Parapuños data (Table 8). STARWARS underestimated 
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the total Q of Aruvikkal, while STREAM overestimated it. For Parapuños no such 
prediction pattern was observed. Comparing figures 21 and 22 it is evident that the 
poor performance of STREAM was not a consequence of the data but is rather a 
result of the simplified assumptions of the model. In the inset of Figure 23 is the 
graph which shows the period (25 February 2006 21:00 to 26 February 2006 18:00) 
when STREAM predicted at least some amount of discharge in the catchment.

Figure 20: Validation data - Observed vs STARWARS predicted streamflow of 
Aruvikkal from 01 October 2007 06:00 to 01 January 2008 00:00 hrs, given the 

optimizations targeting baseflow (BFCal SF) and streamflow (SFCal SF)

Figure 21: Validation period - Observed vs STREAM predicted streamflow of 
Aruvikkal from 01 October 2007 06:00 to 01 January 2008 00:00 hrs, given the 

optimizations targeting baseflow (BFCal SF) and streamflow (SFCal SF)
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Figure 22: Validation period - Observed vs STARWARS predicted streamflow of 
Parapuños 01 January 2006 03:00 to 01 June 2006 00:00 hrs, given the 
optimizations targeting baseflow (BFCal SF) and streamflow (SFCal SF)

Figure 23: Validation period - Observed vs STREAM predicted streamflow of 
Parapuños from 01 January 2006 03:00 to 01 June 2006 00:00 hrs, given the 

optimizations targeting baseflow (BFCal SF) and streamflow (SFCal SF)

The Q of Aruvikkal was dominated by slow flows and has very few peak flow 
events, while in Parapuños, much of the contribution was from above average peak 
flows. Although STARWARS (calibrated for both Q and BF) underestimated the 
frequency of low flow events in Aruvikkal, it predicted the overall pattern better 
than STREAM and did preserve the consistency in prediction for both the 
catchments. In Parapuños both STARWARS and STREAM predicted the peak flow 
frequency better than the low flow frequency.
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5. Conclusion, limitations and recommendations

5.1. Conclusion

The relative performance of two physically-based hydrology models, one 
complex named STARWARS and the other simple named STREAM were evaluated 
in order to identify the most suitable model for the prediction of discharge based on 
the data from two geo-climatically contrasting catchments. The seasonality and 
variability of the hydrological responses of the catchments (one in India named 
Aruvikkal and other in Spain named Parapuños) were assessed using a time series 
analysis (cross-correlation). Data for the study was available from previous research 
works conducted in the respective areas. The observed discharge data, the baseflow 
component separated from it and the results of the time series analysis was used as 
orthogonal information for the calibration of the models.

It was evident from the time series analysis that discharge from the catchments 
respond within an hour of a rainfall event, although the processes that leads to this 
rapid response in each catchment were different (c.f. Table 3 and section 4.2). There 
existed no significant seasonal variability in the response lags of both the 
catchments. This implies that if there was a significant amount of rainfall some 
amount of discharge can be noticed within an hour; only the absolute amount will 
vary with the amount of rainfall received. The fast response of the Indian catchment 
was a result of the poor water holding capacity of the soil (c.f. Table 2), while in the 
Spanish catchment the discharge observed was mainly contributed by water draining 
through preferential flow paths without interacting either with the soil (as matrix 
flow) or with the ground water (as true baseflow) (Maneta Lopez, 2006; van Schaik, 
2010). The period of data that showed the strongest cross-correlation was split into 
two, of which one part was used for the calibration and the other for validation of 
the models in the respective catchments. The baseflow response lag was ~17 hours 
for the Indian catchment and ~6 hours for the Spanish catchment; half of these lags 
were used as the optimal time steps for model simulations in the respective 
catchments (c.f. Figure 11 and 13).

Based on a thorough literature review, limitations of available data and an 
independent sensitivity analysis, nine parameters were chosen for the calibration of 
STARWARS, while five were chosen for STREAM. The calibration of both the 
models in Aruvikkal required lesser number of parameters as compared to that in
Parapuños (c.f section 4.4 and 4.5). The relative change in the optimal values of the 
calibration parameters of STARWARS was much lesser than that of the STREAM,
given the two separate calibrations performed for each model. The optimal 
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parameter values applicable for each model were considerably different for the two 
catchments (c.f Tables 4 and Table 6). It was also evident that STREAM was more 
prone to equifinal predictions as against STARWARS given the linear response
pattern of the model to the calibration parameters (c.f Figure 15). Thus the alternate 
hypothesis pertaining to model complexity ‘separate calibrations have to be 
performed for the accurate prediction of discharge and baseflow’ was accepted. At 
few instances during the model calibration phase, STREAM produced almost the 
same hydrographs with different parameter values, while STARWARS did not 
produce such near equifinal results at any stage of this research. This implies that a 
simple model is more prone to equifinality than a complex one.

The calibrated models were validated with the respective independent data sets 
kept aside for the purpose. Both the models performed better for the Aruvikkal
during the calibration and the validation (c.f Table 5, 7 and 8) periods. The 
STARWARS calibrated for streamflow of the Aruvikkal showed an agreement of 
0.92 (R2) between observed and predicted for the validation period, while the one 
calibrated for baseflow showed an agreement of 0.76. The STREAM could provide 
an agreement of only 0.88 from streamflow calibrated model and 0.42 for the 
baseflow calibrated model for the validation period. The absolute errors (NRMSE) 
were of the order of 0.051 for the 0.92 fit (R2), 0.096 for the 0.76 fit, 0.06 for the 
0.88 fit and 0.23 for the 0.42 fit. The performance of STARWARS for the validation 
data of Aruvikkal was much better than that of STREAM (c.f Table 8). This better 
performance of the model indicates that the optimal values achieved through the 
PEST based calibration are generic and can be used for the prediction of discharge 
and baseflow during any of the three seasons prevailing in the region, given that the 
present state of other variables does not vary significantly.

Despite an acceptable performance (c.f Table 5 and 7) by both the models for
Parapuños during the calibration period, their performance was extremely poor for 
the validation data. During the calibration STARWARS performed more 
consistently for the Parapuños as it could predict both streamflow and baseflow with 
minimal absolute error (NRMSE) compared to that of STREAM (c.f Table 5, 7 and 
8). Although the error was high, the fit of the predictions by STREAM was better 
than that by STARWARS during the calibration period. Further, STARWARS could 
accurately predict discharge without losing the quality of baseflow prediction, 
despite subjecting it to calibrations targeting either baseflow or streamflow (c.f 
Table 8).

The poor performance of the models in Parapuños can be attributed to the fact 
that this watershed is characterized with very low amounts of rainfall and has 
significantly large preferential flow paths in the soil. An accurate prediction of the 
hydrological response of Parapuños may require a more complex parameterization 
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that represents the higher rate of water conductivity of the soil due to the presence of 
macro pores. The STARWARS may be modified to accommodate such a detailed 
parameterization representing preferential flow paths (van Beek, 2002) but the 
STREAM cannot represent such complex processes given the highly simplified 
‘black-box’ delay factors of the model. Thus it was concluded that despite being a 
complex model, STARWARS was much more suitable for the prediction of the 
hydrological responses of the catchments, as against STREAM. Thus the study leads 
to accept the alternate hypothesis of model performance ‘one of the models is 
superior to the other in predicting discharge irrespective of the geo-climatic and 
data availability conditions’ was accepted.

5.2. Limitations

A major limitation was the grid resolution (20 m x 20 m) of the data pertaining 
to Parapuños. It was already known from various previous research works 
(Brasington and Richards, 2007) that physically-based models are very sensitive to 
grid resolution; this is especially the case with STARWARS as indicated by 
Kuriakose (2009a) and van Beek (2002). The Aruvikkal data had a resolution of 10 
m x 10 m and thus the prediction quality of the respective catchments may partly be 
affected by this difference in grid resolution. The lack of depth wise pedological 
information was also a limitation, although the calibration procedure may have 
partly compensated for this. Lack of high-end Windows based computational facility 
such as servers meant significantly long time for conducting model optimizations. 
This limited the possibility to test some combined optimization attempts such as the 
combined use of both baseflow and streamflow for optimization of the models.

5.3. Recommendations

� A complex physically-based model addressing the hydrological processes in 
detail must be preferred over a simple one for the predication of catchment 
hydrology, provided sufficient orthogonal data is available for its calibration

� A more extensive calibration must be attempted for STARWARS based on long 
period observational data given its potential for an accurate and comprehensive 
prediction of the hydrological responses of a given catchments.

� Effort must be made to gauge the various hydrological responses of the 
catchments for longer periods such that long term orthogonal observational data 
is available for the better calibration of physically-based models
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Appendix 1: Model inputs and outputs of STARWARS and STREAM relevant to 
the study

Inputs for STARWARS
Parameter Type Aruvikkal Parapuños

DTM (Digital Terrain 
Model, a.m.s.l)

Spatial Refer Table 2

D(z) (Soil thickness 
from bedrock)

Spatial
Refer Table 1 for the range; First layer: 30 cm, second: 50 cm 
and the third layer: rest of the depth limited to 0.5% of the soil 
depth at the given pixel

LU (Land use/Land 
cover)

Spatial Refer Table 2

�h�BC (Matric suction 
under the lithological 
contact)

Constant 3 m

�h�FC (Matric suction 
at field capacity)

Constant 1 m

Kc (Crop factor) Spatial Refer Table 2

K0 (Infiltration 
capacity)

Spatial
Proportional to Ksat 1st layer –
Refer Table 4 for the optimized 
proportion value

Interpolated Range – 0.014 
- 0.07 m/hr; Actual 
parameterization was for 3 
hrs and hence K0 1st layer is 
K0 1st layer in m/hr 
multiplied by 3

Cmax (Canopy 
storage)

Different 
for each 

catchment

Ranges between 0.9 to 4.5 mm 
(in the year 2008); Parameterized 
using the method if Kuriakose et 
al (2006)

Constant of 1 mm

tr (Throughfall ratio) Constant 0

Ksat (Saturated 
hydraulic 
conductivity) (m/hr)

Spatial

Refer Figure 7 for Ksat 1st layer in 
m/hr; Ksat B layer and Ksat C
layer proportional to Ksat 1st

layer; Actual parameterization 
was for 6 hrs and hence Ksat 1st

layer is Ksat 1st layer in m/hr 
multiplied by 6

Refer Figure 8 for Ksat 1st

layer; Ksat B layer and Ksat

C layer proportional to Ksat

1st layer; Actual 
parameterization was for 3 
hrs and hence Ksat 1st layer
is Ksat 1st layer in m/hr 
multiplied by 3

KsatBC (Saturated 
hydraulic 
conductivity 
boundary condition)
(m/hr)

Spatial
Equivalent to Ksat C layer which is proportion to Ksat 1st layer -
Refer Table 4 for the optimized proportional value

n (Porosity) (-) Spatial Refer Table 2 and Figures 7 and 8

AlphaBR (Reservoir 
constant) (-)

Constant

Refer Table 4 for the optimized value; A value of 1 implies all 
water lost to bed rock reappears as baseflow in the same time 
step, while a value of 0.5 implies only 50% of the water lost to 
bed rock reappears as baseflow within the same time step
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hA (Air entry value) 
and hABC (Air entry 
value at the 
lithological contact 
which is the boundary 
condition) (m)

Aspatial for 
Aruvikkal; 
Spatial for 
Parapuños 

Refer Table 2 for hA 1st layer; hA

B layer, hA C layer and hABC
equals hA 3rd layer which is 
proportional to hA 1st layer -
Refer Table 4 for the optimized 
proportion values

Refer Table 2 for hA 1st

layer parameterized per soil 
unit; hA B layer, hA C layer 
and hABC equals hA 3rd

layer which is proportional 
to hA 1st layer - Refer Table 
4 for the optimized 
proportion values

� (Slope of the soil 
water retention curve)

Spatial

Proportional to � 1st layer - Refer 
Table 2 for � 1st layer; � B layer, 
� C layer and �BC proportional 
to �1st layer

Proportional to � 1st layer
parameterized per soil unit -
Refer Table 2 for � 1st layer 
values of the respective soil
types; � B layer, � C layer 
and �BC proportional to �1st

layer
'�(������� �
parameter for 
Millington & Quirk)

Constant ¾ (-)

ETo (Potential 
Evapotranspiration)
(m)

Aspatial Refer Table 2 and Figures 10 and 12

P (Precipitation) Aspatial Refer Table 2 and Figures 10 and 12
WLi (Initial Water 
Level from bedrock)
(m)

Spatial

Generated by 10 spin runs using the calibration data	i (Initial Volumetric 
Soil Moisture 
Content) (-)

Spatial

Bedrock storage (m3

of water)
Spatial

Outputs relevant for the study
Streamflow time 
series (m3/time step)

Table
The version of STARWARS used for this study does not 
produce time series maps of streamflow and baseflow. Some 
other versions are capable of thisBaseflow time series 

(m3/time step)
Inputs for STREAM

Parameter Type Values
Drainage direction 
map (BPGLDD)

Spatial
(1: SW, 2: S, 3: SE, 4: W, 6: E, 9: NE, 8: N, 7: NE); Derived 
from DTM

Crop factors (-)
(CROPF)

Spatial Same values as used for STARWARS; c.f above

Water Holding 
Capacity (mm/m); 
(WATERH)

Constant

305; Based on land use ;in 
combination with table from 
(van Deursen and Kwadijk, 

1994)

114; Based on land use ;in 
combination with table from 
(van Deursen and Kwadijk, 

1994)
Heat parameter (�C) 
(H)

Constant
176; Scaling constant for the 

calculation of ETref for 
137; Scaling constant for the 

calculation of ETref for 
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temperature )�%*�+�C (A) temperature )�%*�+�C (A)

C Constant

Reflects the slow flow, originally in months. Derived from the 
slope map and ranges from 1 to 3. Value 1 assigned to steep 
slopes and 3 to shallow slopes, the division being very arbitrary 
(Aerts et al., 2005)

APWL Spatial
Accumulated potential water loss (mm of water); derived from 
long term iteration (>10)

GW Spatial
Ground water capacity (mm of water) ; derived from long term 
iteration (>10)

Runoff Percentage 
(QP)

Constant
Pre-calibration performed assuming a 50% ratio for both the 
catchments

SNOW Spatial
The initial depth (mm of snow cover) ; derived from long term 
iteration (>10)

SOILSTOR Spatial
The water storage in the soil; derived from long term iteration 
(>10)

Average temperature 
per time step in �C
(TMP)

Spatial Refer Table 2 for the range

Total precipitation in 
the time step (mm) 
(PRE)

Spatial Refer Table 2, Figure 10 and Figure 12

Outputs relevant for the study

DISQSEC
Table

Discharge in m3 per time step; Also produces time series maps of 
runoff from every pixel

SLOFL Baseflow in m3 per time step
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Appendix 2: Pest control files of Aruvikkal and Parapuños
PEST Control File for optimization of baseflow - Aruvikkal
pcf
* control data
norestart  estimation
19 1095 4     0     1
2  1 single point   1   0   0
10   2.0   0.3  0.03    10  0
0.1  2.0   1.0  0
0.3
30  0.01     4     4  0.01     4
1     1     1

* parameter groups
caltb        absolute 0.03  0.1 switch  2.0 best_fit
caltbls      relative 0.1   0.1  switch  2.0 best_fit
caltbl       relative 0.1   0.1  switch  2.0 best_fit
krelo        relative 0.1   0.1  switch  2.0 best_fit
* parameter data
ab       none   factor      0.5    0.4  1.0   caltbls         1.0        0.0      1
h2       fixed  relative    6.5    6.0  7.0   caltbl          1.0        0.0      1
h3       none   factor      8.0    7.0  10.0  caltbl          1.0        0.0      1
k2       none   relative    5.0    1.0  5.0   caltbl          1.0        0.0      1
k3       none   relative    4.0    1.0  5.0   caltbl          1.0        0.0      1
t2       none   factor      0.3    0.3  0.4   caltb           1.0        0.0      1
t3       none   factor      0.1    0.1  0.3   caltb           1.0        0.0      1
a1       none   relative    6.0  6.0 11.2   caltbls         1.0        0.0      1
a2       none   relative    0.5    0.5  1.2   caltbls         1.0        0.0      1
a3       none   relative    0.5    0.5  1.2   caltbls         1.0        0.0      1
du       none   relative    0.65   0.25  1.0  caltbl          1.0        0.0      1
kr1      none   relative    2.5    2.0  5.0   krelo           1.0        0.0      1
kr2      none   relative    2.0    2.0  3.7   krelo           1.0     0.0      1
kr3      none   relative    2.5    2.0  14.7  krelo           1.0        0.0      1
kr4      none   relative    1.0    1.0  2.0   krelo           1.0        0.0      1
kr5      fixed  relative    0.1    0.1  0.1   krelo           1.0        0.0      1
kr6      none   relative    1.0    1.0  2.0   krelo           1.0        0.0      1
kr7      none   relative    2.5    2.0  5.7   krelo           1.0        0.0      1
kr8      none   relative    2.5    2.0  3.5   krelo           1.0        0.0      1
* observation groups
obsgroup
* observation data
o1 1379.53 1.0 obsgroup
…
o1095 7161.07 1.0 obsgroup
* model command line
runner.bat
* model input/output
caltbl.tpl   caltbl.txt
krelo.tpl    krelo.txt
base.ins     results\baseflow.tss
* prior information

PEST Control File for optimization of streamflow – Parapuños
pcf
* control data
norestart  estimation
15 1960 1 0 1
1  1 single point   1   0   0
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10   2.0   0.3  0.03    10  999
0.1  2.0   1.0  0
0.3

30  0.001     4     4  0.01     4
1     1     1
* parameter groups
cal        relative  0.1   0.001    switch  2.0 parabolic
* parameter data
k1       none relative    0.5    0.5  1.0  cal         1.0        0.0      1
k2       none  relative    0.3   0.2  0.5  cal         1.0        0.0      1
k3       none  relative    0.2    0.05  0.2  cal         1.0        0.0      1
t2       none  relative    0.7    0.5   0.7  cal          1.0        0.0      1
t3       none  relative    0.5    0.3   0.5  cal          1.0        0.0      1
h1       none  relative    0.6    0.6  1.0  cal          1.0        0.0      1
h2       none  relative    1.5    1.0  1.5  cal          1.0        0.0      1
h3       none  relative    2.0    1.5  2.0  cal          1.0        0.0      1
a1       none  relative    0.6    0.5 0.8  cal          1.0        0.0      1
a2       none  relative    1.0    0.8   1.1  cal          1.0        0.0      1
a3       none  relative    1.1    1.1   1.5  cal          1.0        0.0      1
inf       none  relative    0.1    0.05  0.1  cal           1.0        0.0      1
du       none  relative    1.0    0.5  1.0  cal           1.0        0.0      1
kbc     none  relative    1.0    0.5  1.1  cal           1.0        0.0      1
hbc     none  relative    2.0    1.5  2.5  cal           1.0        0.0      1
* observation groups
obsgroup_1
* observation data
B1 0 0.01 obsgroup_1
…
B1960 0 0.01 obsgroup_1
* model command line
runner.bat
* model input/output
cal.tpl   cal.txt
stream.ins       results\streamflow.tss
* prior information
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