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Abstract

Ecological factors determining the geographic distribution of Timon lepida are
poorly known. This work modelled the potential geographic distribution of Timon
lepida at two spatial scales: 1. Landscape (Andalucia) 2. Regional (Spain) and
analyzed the degree to which this distribution is associated with different predictor
variables (e.g. temperature, solar radiation, topography, vegetation etc). The
objectives of this study are to: (1) determine the most important predictor variables
influencing the spatial distribution of Timon Iepida; (2) generate potential
geographic distribution maps for this species and (3) compare the predictive powers
of environmental variables and hyper temporal NDVI to predict this distribution.
Maxent, a presence-only distribution modelling technique was used to model
predicted ranges for Timon lepida, using a large dataset of 10*10 km UTM presence
only records collected between 1998-2002 period over Europe and a set of
biophysical variable of 1*1 km resolution. To test the average behavior of the
algorithm, 10 iterative models were produced by dividing all the presence records
into 70% for training and 30% for testing. Three sets of model scenarios were
generated: (i) models including environmental variables, (ii) models including
environmental variables and vegetation and (iii) models including vegetation
indices.

Model accuracy was measured with binomial tests of omission rates and the area
under the curve (AUC). All models were significantly better than random by the
binomial test and AUC measure. The AUC score for models built using
environmental variables was always higher indicating better discrimination of
suitable and unsuitable areas for the species. For the two spatial scales,
environmental variables models had a superior predictive ability than vegetation
models. These findings did not support our hypothesis. The results indicate that at a
landscape level, topographic variables (aspect and slope) are the most important
whereas at a regional scale, climatic variables (temperature seasonality, solar
radiation, altitude) and hyper temporal NDVI appear to have a significant effect on
this distribution pattern. The results of the present study can be an important
contribution to a better understanding of the ecological requirements of the species.
The conclusions would be more precise if the adequate precise high resolution
environmental data is included in the future application and reliable datasets of
current conditions are identified to improve results.
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1. Introduction

1.1. Background and Significance

Habitat fragmentation caused by clearing and other human-related disturbances is
one of the most serious ecological threats confronting the long-term survival of flora
and fauna in the world today (Goode e al. 1998; Myers et al. 2000; Fahrig 2003;
Bascompte and Ricard 2009). One of the most serious outcomes of environmental
degradation with regard to ecosystem transformation is the current loss of
biodiversity, which is occurring at a faster rate than at any time in human history
(Bascompte and Ricard 2009). The main factors that trigger biodiversity loss at the
global level are over-harvesting, alien species introduction, pollution, habitat
fragmentation, and habitat destruction (Barnard and Thuiller 2008; Phoebe and
Thuiller 2008). Local diversity is constrained proximally by resource abundance,
competition and predation, but it is also influenced by larger temporal and spatial
scale processes and events such as emigration and large scale disturbances (Barnard
and Thuiller 2008). Moreover, climate change is having serious repercussions on
biodiversity. As climate change intensifies, the negative effects produced are
expected to worsen, causing habitat alteration, population reduction and species
extinctions (Myers et al. 2000).

At the continental level, Europe’s biodiversity is under threat because of urban
development, industrialization and tourism increase. Of prime concern is the rapid
decline of European herpetofauna species (amphibians and reptiles) (Hamilton
2005). For example; the Mediterranean region is recognized as a biodiversity hotspot
(Myers et al. 2000). Its flora diversity is outstanding with 15,000 to 25,000 species,
60% of which are unique to the region (Baillie ef al. 2004; Stuart ef al. 2004). Spain,
the country with the highest level of biodiversity in Europe is experiencing most of
these negative effects (IUCN 2001). In Spain, reptiles account for about 15% of the
136 species that are under some degree of threat (IUCN 2001). Understanding the
effects of environmental covariates on reptiles is therefore potentially useful and can

lead to new insights into their distribution patterns.

Predictive Distribution Modelling

Species distribution modelling is becoming increasingly important in the face of
accelerated rate of biodiversity loss and limited datasets on the species, since it




informs conservation strategies and biodiversity management (Barry and Elith 2006;
Peterson et al. 2007). Species distribution models relate the occurrence of species to
environmental predictors in order to facilitate the mapping of predictions across the
landscape even into areas that have not been surveyed before (Guisan and
Zimmermann, 2003). A variety of predictive models are widely used to simulate the
spatial distribution of plant and animal species. The most commonly used are the
Generalized Linear Model (Guisan et al. 2002; Lehmann et al. 2002; Guisan and
Zimmermann 2003; Engler et al. 2004), Generalized Additive Models (GAM),
Classification and Regression Trees (CART’s), Principal Components Analysis
(PCA) and Artificial Neural Networks (ANNSs). Recently, presence only models
have become a powerful tool due to the huge datasets available in national museums
and Herbaria and the questionable value of absence data. Examples of presence only
distribution models include Ecological Niche Factor (ENFA), Genetic Algorithm for
Rule-set Production (GARP) (Stolkwell 1999; Peterson ef al. 2007) and Maximum
Entropy (Maxent) (Phillips et al. 2004; Phillips et al. 2006; Phillips and Dudik 2008;
Phillips et al. 2009). Species distribution models are especially useful in ecosystem
management for the identification and habitat suitability mapping of areas
containing high species occurrences and those species requiring attention (Graham
and Hijmans 2006). Predictive distribution of species is thus an important tool for
conservation, monitoring and assessing the possible impacts of environmental
changes on this distribution (Hernandez et al. 2006). The need for accurate
information on the distribution of species further illustrates the need for such kind of
research.

Remote Sensing and Species Distribution Modelling

Concern over the future of biodiversity has compelled conservationists to come up
with ways of determining its current status in order to predict its distribution in
response to global environmental change. This is evidenced by the recent initiative
taken by the country of Spain to devise strategies to “halt biodiversity loss before
2010 (Agency 2009). Knowing which areas are under threat is often a challenge.
With the advent of species distribution modelling and Remote Sensing tools, it is
easier to determine the factors driving the distribution patterns of species and
therefore generate the knowledge required to better conserve them (Araujo and
Williams 2000; Polasky and Solow 2001). Normalized Difference Vegetation Index
(NDVI) is the oldest and most widely used index (Sellers 1989). While it has seen
extensive use in mapping plant and animal species, its application to herpetofauna
species is relatively new (Oindo and Skidmore 2002; Leyequien et al. 2007).




Species distributions are not only affected by climatic factors such as temperature
and precipitation, but are also a result of abiotic and non-climatic factors such as
topography, geology and landuse. Since NDVI is an integration of both climatic and
biophysical variables, it may provide an index of ecosystem processes and
productivity compared to climate based models as it is spatially-explicit (de Bie et
al. 2006; Skidmore et al. 2006). Hyper temporal NDVI data can provide temporal
quantitative information on vegetation reflectance that can be used to estimate
relevant environmental factors influencing patterns of occurrence and abundance of
various kinds of species. It is believed that using NDVI may improve the accuracy
of the results since Remote Sensing provides direct measurements of vegetation
variability (Oindo and Skidmore 2002). Hyper temporal NDVI appears to be of fine
enough temporal resolution to capture the fluctuations of vegetation response in
changing environmental conditions (de Bie er al. 2006). This study used hyper
temporal classified NDVI, Corine Land Cover and a suite of other environmental
variables in order to predict the distribution of Timon lepida in Andalucia and Spain
for a better understanding of the current range of this species.

1.2. Research Problem

Accurate estimates of the spatial distribution of species assist conservation
practitioners in predicting how a species will respond to landscape alteration and
climate change. Very little is known about the critical environmental habitat
requirements of Timon lepida (ocellated lizard). This lack of knowledge on the
distribution and ecological niche requirements limits the ability to develop
conservation strategies for this species. Although previous research has focused on
modelling the distribution of many plant and animal species; For mammal species:
(Toxopeus et al. 1994; Corsi et al. 1999; Corsi et al. 2000; Oindo and Skidmore
2002; Guisan and Hofer 2003; Guisan and Zimmermann 2003; Said et al. 2003), few
papers in literature have predicted the distribution of reptiles (Owen 1989; Guisan
and Hofer 2003); (Leyequien et al. 2007). Even amongst the few papers that have
modelled the distribution of reptiles, there is still lack of literature on any case
studies on reptiles (Maurer 1994; Guisan and Hofer 2003). Therefore, lack of
adequate data on the distribution patterns of Timon lepida raise the question of what
factors potentially restrict its present day range extensions.

The population of Timon lepida, the target species of this research, is generally
threatened because of ongoing habitat loss, pesticide pollution and poisoning.
Although reasonable populations are present in Spain, human defined vegetation
patches and widespread habitat loss have led to a substantial decline of the species in
many areas (IUCN 2001). Predators might also be eating this species more due to
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the decline of rabbits (Baillie ez al. 2004). In the [UCN red list of threatened species,
Timon lepida is classified as “Near Threatened” (IUCN 2004). There is lack of
literature on case studies relating the distribution of Timon lepida to environmental
variables and vegetation (classified NDVI and Corine Land Cover). Further studies
are needed for understanding and predicting the distribution of this species in
relation to both biophysical and climatic factors in order to understand which
predictor variables are restricting its distribution.

Remote Sensing is becoming an indispensable tool in species distribution modelling.
While remotely sensed data for animal diversity assessment using habitat
characteristics is increasingly used, few studies have incorporated it in reptile
distribution modelling (Leyequien et al. 2007). It is hypothesized that species
abundance increase with ecosystem productivity and therefore NDVI can be used as
a surrogate measure of productivity (Box et al. 1989; Oindo and Skidmore 2002).
There is lack of literature on case studies relating environmental variables and
classified hyper temporal NDVI in predicting the distribution of Timon lepida in
Spain. The aim of this study was to incorporate both the conventional approach to
species distribution modelling that focuses on the use of environmental predictors
(such as precipitation, temperature) and the use of remotely sensed data (hyper
temporal classified NDVI) as a means of improving predictions of the distribution of
Timon lepida at the two spatial scales of Andalucia (landscape) and Spain (regional).
According to the scale domain of (Pearson and Dawson 2003), landscape level
characterises areas between 10-200 km and regional level characterises areas
corresponding to 200-2000 km. In the end, the results of this research may aid in
determining whether vegetation indices will be better predictors than environmental
variables, thereby acting as a guide for future research and contributing to existing
knowledge on the factors influencing the distribution of Timon lepida in Spain.

1.3. Overall Objective

The overall aim of this study was to explore the predictive power of vegetation
indices (hyper temporal classified NDVI and Corine Land Cover) and environmental
variables to predict the distribution and observed patterns of Timon lepida in
Andalucia and Spain using Maximum Entropy modelling approach (Maxent).

1.3.1. Specific Objectives
Specifically, the study sought to:

1. Generate potential geographic distribution maps for Timon lepida based on the
Maxent model output.




2. Determine the most important predictor variable (s) potentially responsible for
the distribution of Timon lepida at two different spatial scales: (i) Andalucia and (ii)
Spain.

3. Evaluate whether environmental variables or vegetation indices (classified NDVI
and Corine Land Cover) would better predict the distribution of Timon lepida at the
two spatial modelling scales.

14. Research Questions

1. Which set of predictor variables have the strongest predictive power to determine
the potential distribution of Timon lepida in (i) Andalucia and (ii) Spain?

2. Which set of predictor variables are more important at each spatial scale to model
the potential distribution of the target species?

3. Does classified NDVI and land cover variables significantly predict the
distribution of Timon lepida better than environmental variables?

1.5. Research Hypotheses

Hypothesis 1: Testing the concept that the potential distribution models for Timon
lepida generated by Maxent algorithm will perform significantly better than random.

1-Hyp:  The potential distribution models of Timon lepida will not predict the
distribution of Timon lepida significantly better than random,;

1-H;: The potential distribution models will predict the distribution of Timon lepida
significantly better than random.

Hypothesis 2: Testing the concept that vegetation indices (Classified NDVI and
Corine Land Cover) would predict the distribution of Timon lepida significantly
better than environmental variables (mean temperature of driest month, solar
radiation, etc).

2-Hp: Models that include classified NDVI and land cover variables would not
predict the distribution of Timon lepida significantly better than models that do not
include classified NDVI and land cover variables as additional variables;

2-H,: Models that include classified NDVI and land cover variables would predict
the distribution of Timon lepida significantly better than models that include
classified NDVI and land cover variables as additional variables.
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1.6.

Research Approach

Modelling was divided into 3 stages: 1. Data acquisition and preparation stage, 2.
Modelling stage, and 3. Model validation stage.
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\
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Bio
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physical

Processing
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Figure 1-1: Conceptual Framework of the Study




2. Materials and Methods

2.1. Study Area

Andalucia is the southern-most region of Spain, the bridge between two continents
(Europe and Africa) and it is located where the Mediterranean meets the Atlantic. It
is the second largest region in Spain occupying an area of about 87,300 km® and also
the largest one of the autonomous regions (Giannakopoulos et al. 2005). Andalucia
can be divided into two main areas: high Andalucia made up of the mountain ranges
and low Andalucia which is the huge depression created by the Guadalquivir River
and its numerous tributaries. These two regions are very different in terms of
climate. The lower Andalucia is comprised of huge flatlands up to 300 km wide. The
flatlands are important for their rich variety of plant and bird species, particularly the
marshlands of the Coto de Dofiana. The flatlands, being low and in the sheltered
south west, have a warmer climate than the mountainous areas. They are mild and
pleasant in winter but experience high temperatures and humidity in midsummer
(Giannakopoulos et al. 2005). Half of the Andalucia surface is mountainous, one
third on a level of more than 600 meter altitude and about 46 peaks are higher than
1000 meters. The highest mountains of the Spanish peninsula are situated in the
Sierra Nevada Mountains: the Mulhacén (3.481 meters) and Veleta (3.398 meters)
(Giannakopoulos et al. 2005).

The Andalucia landscape is varied. Besides the expanded valley of the Guadalquivir
River and its tributaries there are large forests of deciduous and cork trees in the low
mountain ranges, snow-covered alpine high mountains, over 500 miles of coastline,
the volcanic landscape of the Coto de Gata and even a half desert close to Tabernas
Almeria .Topography, elevation and soils are the most influencing factors for the
variety of biodiversity in this region. Andalucia supports a wide range of
biodiversity such as plant communities including woodlands, shrub lands, broad-
leafed forests and about 5000 different species of plants out of which 150 are unique
to the area (Bario 2006). The climate also supports a number of numerous animal
species. The dominant landuse type is agriculture (Bario 2006).

Andalucia’s weather is Mediterranean. Mainly it is mild all-year-round, with short
winters and long summer season. Rainfall is irregular; concentrating mainly in the
fall and spring, while in summertime it is dry. Average maximum temperature is
23°C and minimum temperatures range as low as 12°C (Roberts 1986). The
dominant rock type in Andalucia is limestone though crystalline rocks (granites,
schist and gneiss) are also evident. The three major soil types in Andalucia are
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peridotite soil, limestone soil, and a spectrally quenched soil. These soils influence
the vegetation and crop production in the province (Giannakopoulos et al. 2005).

Aragon
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Etremedura

Andalucia

0 50 100 200 300 A
o  ——1 L) TS

Figure 2-1: Map of the study area
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Figure 2-2: Percentage of land cover classes in Andalucia
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Spain covers a total surface area of 505,370 sq km including the Balearic and
Canary Islands. It occupies 85% of the Iberian Peninsula which it shares with
Portugal in the south-west. It is bordered to the south and east by the Mediterranean
sea, to the north by France, Andorra and the Bay of Biscay, and to the northwest and
west by the Atlantic Ocean (Bario 2006). Peninsular Spain experiences three major
climatic types: Continental, Oceanic, and Mediterranean (Bario 2006). In terms of
agriculture, Spain is a large exporter of olives which has been boosted by
agricultural subsidies since the incorporation of the country in the European Union
(Bario 2006).

2.2. Target Species

The main focus of this study is the ocellated lizard, also known as Timon lepida.
Formally known as Lacerta lepida, the ocellated lizard is the largest legged lizard in
Europe. It is found in Spain, Portugal, France and north-western Italy (Diaz and
Carrascal 1991). Large individuals can grow up to 80 cm long including the tail.
They are characterized by their large size, huge heads (for males) and blue spots on
the flanks (mainly in adult males). Their habitat consists of typical Mediterranean
scrub land, dry and often densely vegetated areas (Diaz and Carrascal 1991). In
southern Spain they can live up to 2100 m in altitude. Timon lepida prefers dry
bushy areas, such as open woodland and scrub, old olive groves and vineyards, and
is sometimes found on more open rocky or sandy areas. The lizard usually stays on
the ground, but climbs well on rocks and on trees. It can dig holes and sometimes
uses abandoned rabbit burrows. Although it can tackle prey as large as a small
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rabbit, its normal diet is insects, snails, rodents and some sweet fruits (Diaz and
Carrascal 1991).

Timon lepida is preyed upon by eagles such as Short toed (Circaetus gallicus)
(Vlachos and Papageorgiou 1994). The young ones and the juveniles are preyed
upon by large snakes such as Montpellier snake. There has been a substantial decline
of this species in many areas due to widespread habitat loss and persecution by
hunters that fear the lizard eats all of the partridge eggs and young rabbits. In the
past larger lizards were hunted and eaten as well and this might have led to the
current reduction in numbers. The subspecies Timon.lepida. oteroi is endemic to
Salvora Island in North-western Spain while the subspecies Timon.lepida.
nevadensis occupy the South-eastern region (IUCN 2001). Timon lepida prefers
temperature ranges between 24-27°C but can occasionally be seen basking at

temperatures between 30-35°C.

Figure 2-3: Timon lepida
2.3. Data Used

2.3.1. Timon lepida Presence Data

The amphibians and reptiles National Atlas of Spain (Atlas y Libro Rojo de los
Anfibios Reptiles de Espana) (Pleguezuelos et al. 2004) provided the basis for the
Maxent models used in this study. The database contains presence and absence data
for Timon lepida collected between 1998 to 2000 for the whole of Spain. Presence
only data was used for modelling. There are 5901 grids in the form of 10 km by 10
km UTM Zone 30N recorded as “presence and absence” in Spain. 718 grids fall
within Andalucia while Spain encompasses 3442 grids as “presence” of Timon
lepida. Using the Hawths sampling tools of ArcGIS 9.3, all presence records were
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extracted based on the central point of each grid cell and used to model the
distribution of Timon lepida using Maxent models.

Table 2-1: Presence and absence records for Timon lepida in Spain

Andalucia Spain
Presence 718 3442
Absence 158 2458
% Occupancy 82 58.3

24. Environmental Data Layers

Species distributions are limited to a certain time and space due to certain
environmental conditions (Barnard and Thuiller 2008). The choice of environmental
variables greatly influences the outcome of species distribution models and the
careful selection of predictor variables is therefore a central step in modelling.
Expert knowledge was used for selecting the suite of environmental variables that
was used as input data for the models. There appears to be a significant correlation
between precipitation, temperature, solar radiation and the abundance and the daily
activities of reptiles (Nicholson et al. 2005). Net Primary Production (NPP) is
related to the ecosystems and long term NDVI thus can indicate the overall
productivity of an ecosystem (Oindo and Skidmore 2002). The environmental
variables used to fit the models are known to have a major eco-physiological impact
on Timon lepida and may therefore influence its distribution (Jellinek ez al. 2004).
Many previous applications of species distribution models have used similar indices
as predictors of distribution patterns (Skidmore et al. 2006).

A total of 16 predictor variables were pre-selected for modelling. Volume of stones
was however omitted from the final modelling process since its contribution to the
overall gain of the models was very minimal.
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Table 2-2: Pre-selected Environmental Variables

Data
Category  Variable Format  Resolution Data Source
Climate Temperature Seasonality N
Mean Temperature of Driest
Quarter
Mean Temperature of Wettest
Quarter Raster 1km >WORLDCLIM
Precipitation of Driest Quarter
Precipitation of warmest
Quarter )
Potential Evapotranspiration Raster 1km CGIAR _CSI
Direct Annual Radiation
Aridity USGS/NIEHS
Cloud Cover Raster 1km
Soil Soil Type Raster 1 km ESDB
Altitude
Terrain Slope Raster 1 km USGS/SRTM
Aspect (Southness and
Westness)
SPOT
Vegetation Classified NDVI Raster 1 km Vegetation
Corine Land Cover Raster 100 m CLC 2000

2.4.1. Climatological Variables

Previous studies have indicated that there might be a causal relationship between
climatic variables and species abundance (Badgley and Fox 2000; Lennon et al.
2000). Climate data layers for this study were obtained from Worldclim bioclimatic
database (http://www.worldclim.org/). This database contains 19 climatic variables
of precipitation and temperature for the period 1950-2000 (Hijmans ef al. 2005). The

climate data layers were generated through interpolation of average monthly data
from weather stations using thin plate smoothing splines. Bioclimatic variables are
derived from the monthly temperature and rainfall values in order to generate more
biologically meaningful variables. The climatic variables were derived in ESRI Grid
Format at a resolution of 1km?” (30 arc seconds).

2.4.2. Potential Evapotranspiration Data

Potential Evapo-Transpiration (PET) is a measure of the ability of the atmosphere to
remove water through Evapo-Transpiration (ET) processes. The Global-PET was
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modelled using the data available from the WorldClim Global Climate Data
(Hijmans et al. 2005) as input parameters. Annual PET (mm) layer was obtained
from (http://csi.cgiar.org) at a spatial resolution of 30 arc-seconds (~ 1 km at tropics)
for the 1950-2000 period. PET is calculated using the Hargreaves method (described
below) with available layers of monthly average temperature parameters, available

from WorldClim database, and extra-terrestrial radiation, calculated for specific
months using a methodology presented by (Hargreaves et al. 1985; Allen et al.
1998; Hargreaves and Allen 2003). Temperature range (TD) is an effective proxy to
describe the effect of cloud cover on the quantity of extra-terrestrial radiation
reaching the land surface and, as such, it describes more complex physical processes
with easily available climate data at high resolution.

PET =0.0023 * RA * (Tmean + 17.8) * TD 0.5 (mm / day) eqn. (2-1)

Where:

RA stands for mean monthly extra-terrestrial radiation (RA, radiation on top of
atmosphere)

Tmean: mean monthly temperature

TD: mean monthly temperature range

2.4.3. Annual Aridity Data

Aridity is usually expressed as a generalized function of precipitation, temperature,
and potential Evapo-Transpiration (PET). An Aridity Index (UNEP, 1997) can be
used to quantify precipitation availability over atmospheric water demand. These
datasets have been downloaded and are available from the CGIAR-CSI GeoPortal
(http://www.csi.cgiar.org). Global mapping of mean Aridity Index from the 1950-
2000 period at 30 arc second (1km?) spatial resolution is calculated as:

MAP
Aridity Index (Al) = MAE eqn. (2-2)

Where:
MAP = Mean Annual Precipitation
MAE = Mean Annual Potential Evapo-Transpiration (PET)

Aridity Index values reported within the Global-Aridity geo dataset have been
multiplied by a factor of 10,000 to derive and distribute the data as integers (with 4
decimal accuracy). This multiplier has been used to increase the precision of the
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variable values without using decimals (real or floating values are less efficient in
terms of computing time and space compared to integer values). Global-Aridity
values need to be multiplied by 0.0001 to retrieve the values in the correct units. For
a full documentation of this dataset refer to (Trubacco et al. 2008).

2.4.4. Cloud Cover Data

Cloud Cover Data was downloaded from USGS/NIEHS at a spatial resolution of
1km. The data layer was re-projected from the initial ETRS 50 into UTM Zone 30N
and clipped using the study area boundary for conformity with other variables used
in this study.

2.4.5. Radiation Data

Radiation data was acquired from ESRA (European Solar Radiation Atlas, 2000)
through ITC. Solar radiation data are ten-year (1981-1990) averages of monthly
means of daily radiation in watt hour per square meter (Wh/m?) on flat plane.
Annual data for horizontal direct irradiation were used for this study. The data was
resampled to 0.00833 degree (roughly 1 km?® grid size for mid-latitudes). For a full
description of the dataset see ESRA publication, also available in the ITC-library
(ISBN: 2-911762-22-3).

2.4.6. Digital Elevation Model (DEM)

Altitude, slope and topographic exposure layers were derived from the Shuttle Radar
Topographic Mission dataset (SRTM; available at http://srtm.csi.cgiar.org/). The
DEM used for this study is the 1km STRM DEM which has been resampled and
significantly improved from earlier versions using new interpolation algorithms and
auxiliary DEMS. The data was derived in ASCII Info Format in geographic
coordinate system - WGS84 datum. The CGIAR-CSI version 4 provides the best
global coverage full resolution SRTM dataset which has been processed to fill in no-
data voids (Reuter et al. 2007). After mosaic, the resulting DEM was clipped with
the study area boundary. Altitude, Slope and aspect were derived using the
following pre-processing steps:

2.4.6.1. Altitude and Slope

1. All negative values were re-classified into zeros

2. The DEM was re-projected to WGS 1984 UTM_Zone 30N (to change
the measurement units from decimal degrees to meters to reduce errors
and allow easy calculation of slope). Altitude layer was derived from the
clipped DEM above.
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3. Slope and aspect were calculated using Surface Analysis tool of ArcGIS
9.3

4. The layers were converted to ASCII format coincident with other
environmental variables.

2.4.6.2. Aspect

Aspect can be defined as the direction a slope faces with respect to the sun. Aspect
identifies the down slope direction of the maximum rate of change in a value from
each cell to its neighbors. Chang et al. (2006) defined southness as the degree to
which an aspect is south, and westness as the degree to which it is west. Aspect was
transformed to linear measures of southness and westness in order to avoid identical
aspects (e.g., 0 and 360 degrees) and create two data layers with unique numerical
representation. Southness and westness are the one of the best ways to handle aspect
from an ecological perspective. Aspect was transformed into westness using the sine
function while southness was derived by transforming aspect using the cosine
function as supported by (Roberts 1986; Mollenbeck ez al. 2009; Schaller et al.
2010). All the transformations were done in ArcGIS 9.3.

2.4.7. Soil Variables

Soil data layers were all obtained from the version 2 raster library of the European
Soil Database (ESDB) at a resolution of 1:1000 000 (1km?). The database contains a
list of Soil Typological Units (STU) for the period 1998-2006 (Database 2004).
Besides the soil names they represent, these units are described by variables
(attributes) specifying the nature and properties of the soils: for instance, dominant
land use, soil type, volume of stones, and dominant parent material of the full soil
code of the Soil Typological Unit (STU) of the World Reference Base (WRB) for
Soil Resources. Only 1 variable: soil type was used for this study. The layers were
re-projected from the initial ETRS 1989 to WGS 84 UTM Zone 30 N coincident
with other environmental variables used for this study.
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Table 2-3: Description of Soil Types

Code Soil Type Code  Soil Type Code Soil Type

Rock outcrops 10 Podzol 19 Fluvisol

2 Water body 11 Planosol 20 Cryosol
Soil disturbed by man 12 Phaeozem 21 Cambisol
Town 13 Luvisol 22 Calcisol

5 Vertisol 14 Leptosol 23 Chernozem

6 Umbrisol 15 Kastanozem 24 Arenosol

7 Solonetz 16 Histosol 25 Andosol

8 Solonchak 17 Gypsisol 26 Acrisol

9 Regosol 18 Gleysol 27 Albeluvisol

2.4.8. Corine Land Cover 2000

Corine Land Cover (CLC) 2000 version 4 was obtained from the European
Environment Agency (EEA) (http://dataservice.cea.curopa.eu/dataservice/). This is
the latest available version of the dataset. The new CORINE2000 represent land
cover and land cover changes for the period 1999-2001. The nomenclature

comprises of 44 land cover classes which have been created by on-screen
interpretation and digitizing of Landsat images in a GIS environment (Neumann e?
al. 2007). The data was retrieved at a resolution of 100 m*. The accuracy of CLC
has been reported to be over 85% (Martin de Santa Olalla Manas et.a/ 2003) and
version 4 possesses the following geographic information quality label:
Completeness: Good

Logical Consistency: Excellent

Position Accuracy: Excellent

Temporal Accuracy: Excellent

Thematic Accuracy: Excellent

The raster layer was re-projected from the initial ETRS Projection to the target
projection and resampled to 1 km® resolution using bilinear interpolation. This
interpolation technique is more realistic than simply using nearest neighbour
interpolation though it does not increase the resolution of the data (Phillips et al.
2000).
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Table 2-4: Description of CLC classes

Corine code

Corine land cover

111
112
121
123
124
131
133
142
211
212
221
222
223
241
242
243
244
311
312
313
321
323
324
332
334
511
512

Continuous Urban Fabric
Discontinuous Urban Fabric
Industrial or Commercial Units
Port Areas

Airports

Mineral extraction sites
construction sites

sport and leisure facilities
Non-irrigated arable land
Permanently irrigated land
Vineyards

Fruit trees and berry plantations
Olive groves

Annual crop associated with permanent crop
Complex cultivation pattern
Land principally occupied by agriculture
Agro-forestry area
Broad-leaved forest

Coniferous forest

Mixed forest

Natural grassland
Sclerophyllous vegetation
Transitional woodland scrub
Bare rock

Burnt areas

Water courses

Water bodies

All the above predictor variables were clipped by ArcGIS 9.3 Spatial Analyst tool
using the study area boundary, re-projected to WGS 1984 UTM Zone 30 N and
converted to ASCII raster grid format to meet the data requirements of Maxent.
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2.4.9. Hyper Temporal Normalized Difference Vegetation Index

The Normalized Difference Vegetation Index (NDVI) is a greenness index derived
by dividing the divergence between near-infrared and red reflectance measurements
by their sum (Sellers 1989; Oindo and Skidmore 2002). The spatial and temporal
heterogeneity in primary productivity and photosynthetically active biomass is an
explanatory variable to assess species occurrence (Skidmore et al. 2006). The NDVI
data used for this study is the ten day composite SPOT images (S10 product)
obtained via ITC from www.VGT.vito.be at a resolution of 1 km’. The 393 NDVI
images were pre-processed in order to generate a vegetation variable that would

distinguish between the different vegetation types in the study area. The acquired
images were geo-referenced and de-clouded. De-clouded means: using by image and
pixel the supplied quality record, only pixels with a ‘good’ radiometric quality for
bands 2 (red; 0.61-0.68 pm) and 3 (near IR; 0.78-0.89 pm), and not having
‘shadow’, ‘cloud’ or ‘uncertain’, but ‘clear’ as general quality, were kept (removed
pixels were labeled as ‘missing”) (de Bie ef al. 2006).

2.4.9.1. Iterative Self-Organizing Data Analysis Technique (ISODATA)
Classification

Using the ISODATA clustering algorithm of ERDAS-Imagine software, the 10 year
(1998-2008) stack image layers were classified using unsupervised classification.
ISODATA calculates the spectral distance and iteratively classifies the pixels until a
minimum spectral distance is achieved (Tou and Gonzalez, 1974). The maximum
number of iterations was set to 50 and the convergence threshold was set to 1.0. The
pre-defined number of classes for Andalucia ranged from 10-100 while for Spain it
ranged from 10-180 classes. SPOT hyper temporal NDVI was chosen because the
images possess a fine temporal resolution and they are commonly decadal (every ten
days) ; which acts as an effective source to capture the fluctuations of vegetation in
response to changing environmental conditions (Storms and Etes 1993). To
determine the optimum number of classes, signature separability (in Divergence
distance) was calculated for the stacked image in ERDAS’ Signature Editor and
plotted in Excel. A clear, evident peak in the separability classes signifies the
optimum number of classes and these classes were chosen by visual inspection. The
optimum number of classes for Andalucia is 45 and for Spain 