
MSc Thesis Applied Mathematics

Instances with exponential
running time for strategy
iteration

M.T. Maat

Daily supervisor: dr. G. Loho
Graduation supervisor: prof. dr. M. J. Uetz
Committee member: dr. K. Proksch

August, 2022

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science
chair of Discrete Mathematics and Mathematical Programming

Acknowledgements

I would like to thank God for giving me this talent. I would like to thank my supervisor for
the input and the many discussions about the various subjects in my thesis. I would like to
thank Alexander Hopp for the discussion. I would like to thank Marnix for proofreading the
thesis. And of course, I want to thank my parents and also my friends for the gezelligheid
while working together in the educafé.

Instances with exponential
running time for strategy iteration

Matthew Maat

July 2022

Abstract

A parity game is a game played by two players on the nodes of a directed graph.
Solving a parity game consists of finding out who can win and what the winning
strategy is. Solving parity games is linked to many other mathematical problems, and
so far there is no polynomial-time algorithm for this problem. A currently often used
algorithm is strategy iteration, which iteratively improves a strategy, where decisions
are taken by a so-called improvement rule. It has been shown previously that in
some cases improvement rules for strategy iteration can be linked to pivot rules for
the simplex algorithm. This reduction is via mean payoff games and Markov decision
processes and only works for specific cases. In this thesis, an alternative relation
between strategy iteration and the simplex algorithm is presented. This relation works
for a broader class of parity games. Moreover, a framework for constructing examples
with exponential running time for strategy iteration is presented and illustrated with
some examples. Finally, a family of graphs with exponential running time for the
symmetric strategy iteration algorithm is presented. For this algorithm no class of
graphs was known before with superpolynomial running time.

1

Contents

1 Introduction 3
1.1 History and motivation . 3
1.2 Outline of the thesis . 4
1.3 Related work . 5

2 Preliminaries 7
2.1 Graphs . 7
2.2 Multisets . 7
2.3 Parity games . 7
2.4 Discrete strategy iteration . 9
2.5 Sink parity games and improvement rules 12
2.6 Linear programming and the simplex algorithm 14

3 Improvement rules for strategy iteration in parity games 16
3.1 Structure for counterexamples: binary counter 16
3.2 Lower bounds from binary counter . 21
3.3 Reverse binary counter . 24
3.4 Lower bounds from the reverse binary counter 29

4 An alternative lower bound proof technique 35
4.1 The subgame improvement algorithm . 35
4.2 Linear programming formulation . 37
4.3 Illustration of subgame iteration and simplex algorithm 39
4.4 Proof outline . 40
4.5 Uniqueness of valuation and values in reverse basis 41
4.6 Main results . 46

5 Examples: alternative lower bound proofs for classical pivot rules. 53
5.1 Construction of linear programs from parity games 55

6 Worst-case complexity of symmetric strategy iteration 59
6.1 The algorithm . 59
6.2 Gray code . 61
6.3 Family of parity games . 61
6.4 Steps of symmetric strategy iteration . 63
6.5 Possible improvement . 70

7 Conclusion and discussion 71

8 Recommendations for future research 72

A Implementation 73

B Table of symbols 73

C A playable parity game 74

D Generalized improvement rules 76

References 80

2

1 Introduction

A parity game is an infinite game played between two players on the nodes of a directed
graph. For various reasons, these games are interesting mathematical objects.

First of all, they are interesting from a complexity perspective. The task of solving a
parity game consists of finding which player can win the parity game and what the winning
strategy is. Solving parity games is a problem that lies in both complexity classes NP and
coNP, and also in UP and coUP[17]. However, it is not known yet whether there exists a
polynomial-time algorithm to solve these games.

Second of all, solving parity games is related to many other mathematical problems, and
techniques used to solve parity games can transfer to other mathematical problems as well.
Solving parity games can be reduced to mean payoff games and in some cases to Markov
decision processes, and solving parity games can also be reduced to linear programming.
Moreover, they play an important role in the field of formal verification. For example,
solving parity games is equivalent to model checking for the modal µ-calculus[8].

1.1 History and motivation

One of the algorithms to solve parity games is the discrete strategy iteration algorithm [18].
This algorithm applies the commonly used technique of strategy iteration, or sometimes
called policy iteration, to parity games. It iteratively improves a strategy, using values that
are assigned to game states, until optimality is reached. When there are multiple options
to improve a strategy, this choice is made according to some improvement rule. A number
of different improvement rules have been suggested. Despite its efficiency in practice, for
none of these rules it has been shown that it makes strategy iteration a polynomial-time
algorithm.

For the most well-known improvement rules for discrete strategy iteration, the contrary
has been shown. It was shown that for certain families of parity games, the discrete strategy
iteration algorithm (with these improvement rules) requires a(n) (sub)exponential number
of iterations [11, 15]. The main idea behind these constructions was to create a parity game
that simulates a binary counter: certain strategies correspond to a certain binary number,
and strategy iteration cycles through all the strategies corresponding to all possible binary
numbers with a certain number of bits.

Linear programming is a commonly used mathematical optimization method. It in-
volves optimizing a linear objective function subject to a number of linear inequalities. A
well-known open question regarding linear programming is whether there exists a strongly
polynomial algorithm for solving linear programs. This is the 9th question on Smales list
of problems[27]. Probably the most promising candidate for being a strongly polynomial
algorithm, and also the oldest method to solve linear programs (LPs) efficiently is the
simplex method. This method maintains a so-called basic feasible solution, and iteratively
improves this until optimality is reached. When there are multiple options to improve,
the next basic feasible solution to move to is decided by a so-called pivot rule. Like in
the case of discrete strategy iteration and improvement rules, many pivot rules have been
suggested. Moreover, for the most well-known pivot rules, families of linear programs have
been constructed for which the different pivot rules need a(n) (sub)exponential number of
iterations. For most of these families, the main idea is to use an n-dimensional perturbed
hypercube, often called Klee-Minty cube after the first use of such a cube [19]. The idea is
then that the simplex algorithm with a pivot rule traverses all vertices of the hypercube.

So there is a similarity between the current complexity status of discrete strategy iter-
ation and the simplex algorithm. Moreover, it would become apparent that this similarity

3

can be exploited. For a certain class of parity games called sink parity games, it became
apparent that they can easily be related to another class of games called mean payoff games
(MPGs). Specifically, this means that if discrete strategy iteration behaves a certain way
on a sink parity game, then we can construct a mean payoff game where another version of
strategy iteration behaves the same way. Moreover, in some cases, this mean payoff game
can also be related to a Markov decision process (MDP). In that case, if strategy iteration
behaves a certain way on the MPG, then the commonly used policy iteration algorithm
on the MDP also behaves in the same way. Finally, there is also a relation between MDPs
and linear programming, where one can construct a linear program from an MDP, where
the simplex algorithm behaves similar to policy iteration on the MDP.

So, following this chain of reductions:

parity game→ mean payoff game→ Markov decision process→ linear program

it was shown [11, 15] that the random-edge and random-facet pivot rules for the simplex
method need a (sub)exponential number of iterations for some family of linear programs.
This family was constructed by starting with a family of parity games for which discrete
strategy iteration behaves like a binary counter, and then using these reductions to create
a linear program from these.

Of course, this provides a novel way to analyze both simplex pivot rules and improve-
ment rules for discrete strategy iteration. The first and the third reduction, from a parity
game to an MPG, and from an MDP to a linear program, are simple and well-defined.
However, the second reduction from and MPG to an MDP is very tailor-made and only
works in specific cases. This motivates the question whether there exists a more general
reduction from parity games to linear programs that maintains the similarity between
strategy iteration and the simplex algorithm.

1.2 Outline of the thesis

The main research question of this thesis is the following:

Is there a structured way to construct examples with exponential running time
for strategy iteration in parity games, and, related to that, for pivot rules in
the simplex algorithm for linear programming?

Indeed, during this master thesis project, a reduction was found that works for a broader
class of parity games than the existing reduction. Also, some structures were found that
can make it easier to come up with families of parity games on which discrete strategy
iteration needs exponential running time. Now, we move to the outline of this report.

First, we discuss two structures for parity games. These are called the ‘binary counter’
and the ‘reverse binary counter.’ The idea is that for a graph with such a structure the
discrete strategy improvement algorithm behaves like a binary counter for a certain im-
provement rule, under some conditions. Both structures consist of a number of unspecified
gadgets, which can then be different for different improvement rules. The effectiveness of
these structures is illustrated by constructing gadgets for a number of logical improvement
rules. Using this, we show that there are families of parity games with this structure that
indeed show exponential running times for these improvement rules.

Next, we look at a new algorithm for solving parity games, called subgame iteration.
This algorithm has some similarities with discrete strategy iteration and the longest short-
est path problem[4]. The valuations of these algorithms are partly the same. The inter-
esting part about this algorithm is that we can show that the iterations of this algorithm

4

on any parity game can be related to the iterations of the simplex algorithm on a certain
linear program. This similarity lies in relating values of paths in the graph to values of
the inverse of the basis of the LP. So this means that we have a reduction from solving
a parity game to solving a linear program with the simplex algorithm. Although the size
of the coefficients can be large (doubly exponential), this reduction works for any parity
game.

To illustrate this reduction, we look at a number of classical pivot rules for the simplex
algorithm. We show how this new reduction can be used to construct families of linear
programs for which the simplex algorithm with these pivot rules needs an exponential
number of iterations.

Next, we look at a variant of strategy iteration called symmetric strategy iteration,
for which it was previously not known whether it solves parity games in polynomial time.
We construct a family of parity games for which this algorithm requires an exponential
number of iterations. The main idea is that the algorithm behaves like a counter in Gray
code, which is a form of binary representation of numbers.

Finally, some things can be found in the appendices. There is an implementation of the
counterexamples from Section 6; a table of the most commonly used symbols in this thesis;
an example of a parity game that is playable; and a section that describes a separate idea,
which is a generalized version of improvement rules in strategy iteration.

1.3 Related work

Klee-Minty cubes

Many pivot rules have been constructed for the simplex algorithm. The first example of
linear programs where the simplex algorithm takes an exponential number of iterations for
a pivot rule was given by Klee et al. [19] for the largest coefficient pivot rule. Their example
is a slightly perturbed version of the hypercube in n dimensions, also called the Klee-Minty
cube. This idea formed the basis of many similar proofs for most of the commonly used
pivot rules. Some of the more well-known are the proof by Jeroslow [16] for the maximum
improvement rule; the proof by Avis and Chvátal [3] for the least index rule; and the proof
by Goldfarb and Sit [13] for the steepest edge pivot rule.

Strategy iteration in parity games

A commonly used algorithm for solving parity games (finding winning strategies and de-
termining the winner) is discrete strategy iteration. This algorithm was presented by
Jurdzinski and Vöge [18], and it works as follows: if we have some player 0 strategy, then
each node receives a valuation from that strategy. If then there are some player 0 nodes
where we can choose another edge such that the successor of the node has a higher valuation
than the current successor, we call it an improving edge. Strategy iteration then, similar
to the simplex algorithm, requires an improvement rule to decide which set of improving
edges we augment the current strategy by. If there are no more improving edges after a
number of iterations, the strategy is optimal. An obvious option is to choose all improving
edges at once, this we call the switch-all improvement rule. Later, Schewe [23] presented
an efficient method to find among all possible subsets of improving edges the subset that
increases the valuation of all nodes the most. This we call the switch-best improvement
rule. Two more recent variants of strategy iteration are the snare-memorizing algorithm
by Fearnley [10], which memorizes certain actions for a player that ’trap’ the other player,
and symmetric strategy improvement by Schewe et al. [25], which maintains strategies for
both players and improves them simultaneously.

5

Polynomial-time reductions

There are many reductions between solving parity games and other mathematical problems.
First of all, parity games can be reduced to infinitary payoff games as shown by Puri [22].
Using this reduction to infinitary payoff games, Friedmann [11] and Hansen [15] showed for
a few specific classes of parity games that they can be reduced to linear programs, where
pivot rules for linear programs correspond to improvement rules for strategy iteration.
Also, Schewe [24] showed a reduction from any parity game to a linear program. These
reductions also imply that strategy iteration algorithms for infinitary payoff games (see
Puri [22], Ludwig [20] and Björklund et al. [4]) also apply to parity games.

Finally, many problems in theoretical computer science are dependent on solving parity
games. For example, solving parity games is equivalent to model checking for the modal
µ-calculus, see Emerson et al. [8].

Worst-case examples

There are some worst-case examples known for discrete strategy iteration in parity games.
Two examples were given by Friedmann [11] where the switch-all and switch-best im-
provement rules yield an exponential number of iterations. This was done by constructing
families of parity games that behave like a binary counter for their respective improvement
rules. With a similar technique, other parity games were constructed with (sub)exponential
numbers of iterations for various randomized improvement rules. This also implies a
(sub)exponential number of iterations for the simplex algorithm with the random-edge and
random-facet pivot rules. Moreover, Disser et al. [7] constructed a parity game which acts
as a binary counter for strategy iteration with the least-entered improvement rule. This
rule applies an improving switch that has been done the least amount of times. This also
implies exponential running time for the least-entered pivot rule of the simplex algorithm.
Björklund et al. [4] presented an example with exponential running time for a variant of
strategy iteration in mean payoff games. This example has a somewhat similar structure
to the examples presented in this thesis. Finally, van Dijk [28] showed exponential lower
bounds on the running time of a range of different algorithms to solve parity games. This
was done using a family of games that simulate two binary counters. Many results in this
thesis are aimed at generalizing the before mentioned worst-case examples and at creating
more widely applicable counterexamples.

Combinatorial simplex algorithms

A technique that is related to the techniques used in this thesis is tropical linear program-
ming. This is described by Allamigeon et al. [2]. Moreover, this technique can be used to
solve mean payoff games, which is described by Allamigeon et al. [1].

6

2 Preliminaries

2.1 Graphs

A directed graph G = (V,E) consists of two sets. A set of elements called vertices, which
is V , and a set of ordered pairs of vertices, which is called the edge set E. For an edge
(v1, v2) with v1, v2 ∈ V , we call v2 a successor of v1. Also, for edge (v1, v2), we call v1 the
tail and v2 the head of the edge. We call an edge of the form (v1, v1) a loop. Sometimes
multi-edges (the same edge occurring multiple times in E) are allowed, but in this thesis
we assume there are no multi-edges. We say a directed graph is complete if every edge in
the graph exists, so (v, w) ∈ E for every possible v, w ∈ V .

We call a sequence of unique vertices P = (v1, v2, v3, . . . , vk) a path in G if the
edges (v1, v2), (v2, v3), . . . , (vk−1, vk) are all in E. We call v1 the starting vertex and vk
the end vertex of the path. In this thesis specifically, we call a vertex v in path P if
v ∈ {v1, v2, . . . , vk−1}; so we do not count the end vertex as being in the path. A closed
path or cycle is the same as a path, except that v1 = vk, but all other vertices of the path
are still unique. A walk is the same as a path, except that we do not require the vertices
to be unique.

2.2 Multisets

A multiset is the same as a set, except that elements of a multiset may occur multiple
times in the multiset. By the multiplicity of an element we mean the number of times an
element occurs in the multiset. We denote the multiplicity of element a in multiset A by
mA(a). Two possible operations on multisets are the following:

• Multiset addition: if C = A⊎B, then mC(a) = mA(a) +mB(a) for every element a.

• Multiset difference: if C = A\B, then mC(a) = max(mA(a) −mB(a), 0) for every
element a.

2.3 Parity games

An infinitary payoff game is a game that is played on a directed graph G = (V,E).
Two players, called player 0 and player 1 (or player Odd and player Even), each control
part of the nodes of the graph. We say V = V0 ∪ V1 with V0 ∩ V1 = ∅ and player i
controlling Vi. Furthermore, each node v is associated with a priority p(v) ∈ N, and there
is one starting node v0, which has a pebble on it. At the start of a turn, the pebble is
always on a node v ∈ Vi, and player i then chooses one of the outgoing edges of node v.
After that, the pebble moves to the head w ∈ Vj of the chosen edge, after which the turn
is passed to player j. We assume that each node has at least one outgoing edge, so that
the game continues indefinitely. The winner of the game is determined according to some
reward function r that assigns a value or a winner to the sequence of vertices encountered
in the game. A parity game is a class of infinitary payoff games. The winner of the parity
game is determined by the highest priority among the vertices that the pebble moves onto
an infinite number of times. If that priority is even, player 0 wins, and otherwise player 1
wins.

The following results are known about parity games:

Lemma 2.1. For any starting node v, either player 0 or player 1 has a winning strategy.
Hence we can partition V into W0 and W1, where Wi is the set of nodes from where player
i has a winning strategy.

7

Lemma 2.2. There is a memoryless strategy for player 0 (i.e. the choice of edge is only
determined by the current location of the pebble) such that player 0 wins from every starting
position in W0. The same holds for player 1 and W1.

Considering Lemma 2.2, we can see that the winner of a parity game on some graph
G is the same as the winner of the following game played on the same graph:

Instead of choosing an edge every turn, we let both players choose exactly one outgoing
edge for each of the vertices that they control at the start of the game. We then let the
pebble move along the chosen edges, and end the game when the pebble enters a node for
the second time. The trajectory of the pebble the consists of a cycle and possibly some
path leading up to the cycle. We then decide the winner according to the parity of the
largest priority occurring in the cycle: player 0 winning if it is even, and player 1 winning
otherwise. For simplicity, we only consider this finite version of the game and refer to it
as a parity game for the rest of this thesis. We can then define a strategy σ for player 0 to
be a function σ : V0 → V with (v, σ(v)) ∈ E ∀v ∈ V0, and a similar definition for player 1
strategies.

Furthermore, we may without loss of generality assume that the priorities of the nodes
are unique, as otherwise, if some nodes have the same priority p, we could let one of them
have priority p and add 2 to the priorities of all other nodes with priority ≥ p. One can
easily verify that whatever strategies are played by the players, this modification does
not change which player wins. Moreover, we can assume that all priorities are between
1 and 2n, if n is the number of nodes in the graph. That is because if all priorities are
unique and the lowest priority is more than 2, we can subtract 2 from all priorities, and
if the lowest priority is 1 or 2, and the highest priority is more than 2n, then there must
be two priorities p, q with p ≤ q − 3 and no priorities in between p and q, hence we can
decrease all priorities of q and larger by 2 without changing the outcome of the game.

In the rest of this thesis, we use circles for nodes controlled by player 0, and squares
for nodes controlled by player 1. An example of a parity game is shown in Figure 1. The
reader is also invited to play the game included in Appendix C.

8

Figure 1: A parity game, with encircled the sets W0 and W1, that are winning
for player 0 and player 1, respectively. The winning strategies for player 0 in W0

and for player 1 in W1 are marked in red.

2.4 Discrete strategy iteration

The technique of strategy iteration or policy iteration is commonly used for finding optimal
strategies/policies in infinitary payoff games or Markov decision processes. The main idea
is as follows: start with some initial strategy/policy σ0. We associate with any strategy σ
some valuation Ξσ(v) for every vertex v. Then in every iteration, we check if there are any
nodes v for which we could choose another edge such that the valuation of its successor
w is higher than that of the current choice σ(v). We call such an edge an improving
edge. Then we construct strategy σi+1 from strategy σi by augmenting the strategy with
(part of) the improving edges. If the valuation function is chosen well, this yields a sequence
of strategies of which the valuation at the vertices is nondecreasing, and hence the sequence
is finite (since there are only finitely many strategies possible). Furthermore, the valuation
function should have the property that the current strategy is optimal if and only if there
are no more improving edges, hence the iterations end at an optimal strategy.

We define a valuation of a player 0 strategy σ for a parity game according to Jurdzinski
and Vöge [18]. Let Q be the set of priorities occurring in G. The valuation is a function
Ξσ : V → Q× P(Q)× Z≥0.

The idea of this valuation is to keep track of three things, in decreasing importance:
the highest priority of the nodes in the cycle we end up in, the priorities we meet when
going to the cycle, and the length of the path towards the cycle. Player 0 will first of all
try to get to a cycle with even highest priority, and the higher that priority the better.
This is because of course he wants to win, and make it difficult for player 1 to counter his
strategy. As a secondary goal, he tries to enter nodes with high even priority on the way
to the cycle, and avoid nodes with high odd priority. As a third goal, he tries to make the

9

path towards the cycle long if he is losing (trying to create other cycles) and short if he is
winning.

To compute the valuation, we find an optimal counterstrategy σ̄ for player 1 (which we
define in a moment). Note that, with the choice of any player 0 strategy σ and player 1
strategy τ , the course of the game is determined, and we get a play P = (v1, v2, v3, . . . , vl),
where vl is the only node that occurs twice in the play, since we stop if a node is en-
countered twice. Suppose vk is the node with the highest priority in the cycle part of P .
Let λ(P) = p(vk) be the highest priority occurring in the cycle part of P . We define
Prefix(P) = (v1, v2, . . . , vk−1, vk), the (possibly closed) path from the starting node to-
wards the node with highest priority. We define

π(P) = {p(vi)| vi ∈ Prefix(P) ∧ p(vi) > λ(P)},

the set of high priorities on the path towards the cycle, and #(P) = k− 1 = |Prefix(P)|,
the length of the path towards vk. We can then assign a value Θστ (v) to the strategy
pair σ, τ . This is given by Θστ (v) = (λ(P), π(P),#(P)), where the play P results from
σ and τ when the game starts in node v. The valuation Ξσ will be given by Θσσ̄, but first
we need to define what an optimal counterstrategy is.

To compare strategies, we want to compare different values of π(P) by how good
they are for player 0. To do so, we define a linear order ⪯ on P(Q), the powerset of
the priorities. If B1 = π(P1) and B2 = π(P2), then let p be the largest element of
B1△B2 = (B1\B2) ∪ (B2\B1). We then say B1 ⪯ B2 if one of the following holds:

• p is even and p ∈ B2\B1

• p is odd and p ∈ B1\B2

• p does not exist (hence B1 = B2)

Moreover, we can extend this linear order toM(Q), the set of multisets of Q. In that case,
if the elements of B1 and B2 have multiplicity at most 2, we can say B1 ⪯ B2 if and only
if
∑

p∈B1
(−3)p ≤

∑
p∈B2

(−3)p. This equivalence will be important in Section 4.
We now define a linear order ⊴ on the valuations of the nodes, following the three

previously mentioned goals of player 0. We say that (λ1, B1, n1) ⊴ (λ2, B2, n2) if the
following holds:

• λ2 is better for player 0, i.e. λ1 · (−1)λ1 < λ2 · (−1)λ2 . This happens if λ1 is odd and
λ2 even, or λ1 and λ2 are both odd and λ1 is larger, or they are both even and λ2 is
larger.

• λ1 = λ2 and B1 ≺ B2

• λ1 = λ2, B1 = B2, and one of the following holds:

– λ1(= λ2) is odd and n2 ≥ n1

– λ1 is even and n1 ≥ n2

Now we define our valuation of strategies such that the resulting value Θ of v is minimal
(according to the ⊴-ordering):

Ξσ(v) = min
⊴

(Θστ (v) : τ player 1 strategy)

We call the strategy τ an optimal counterstrategy to σ for the game starting in v if it is a
strategy for which the minimum in the above equation is attained. We have the following
result from Jurdzinski and Vöge [18]:

10

Lemma 2.3. For any strategy σ, there exists a single strategy σ̄ for player 1 that is an
optimal counterstrategy to σ for the parity game starting in any node v ∈ V . In other words,
there is a player 1 strategy σ̄ such that Θσσ̄(v) = Ξσ(v)∀v ∈ V . This counterstrategy can
be computed in polynomial time.

We call such a strategy σ̄ an optimal counterstrategy to σ. Now we can formulate the
strategy iteration algorithm more precisely. For any player 0 strategy σ we can calcu-
late the optimal counterstrategy σ̄, and from the resulting play P we get our valuation
(λ(P), π(P),#(P)). We can then construct the set of improving edges:

Iσ = {(v, w) ∈ E| v ∈ V0,Ξσ(w) ▷ Ξσ(σ(v))}

Then we view an improvement rule as a rule that selects some subset I ⊆ Iσ with no
more than 1 outgoing edge per vertex and nonempty if possible. We define the operation
SwitchI(σ) as the strategy resulting from σ when the strategy in the vertices that have
an outgoing edge in I is changed to the edge that is in I. Strategy iteration can then be
formulated as

Algorithm 1 Strategy iteration
1: start with some strategy σ and find I with improvement rule
2: while I ̸= ∅ do
3: σ ← SwitchI(σ)
4: find new I with improvement rule
5: end while

An example of an iteration of strategy iteration is given in Figure 2. There, the optimal
counterstrategy to the red strategy is given by σ̄(v1) = v1 and σ̄(v4) = v2, since this is
the only way in which player 1 can win from every starting node. The valuation of v1
is (1, ∅, 0), since the player starting from v1 with σ and σ̄ ends in the cycle with v1 as
the highest priority. The path from v1 to v1 is the trivial path (v1), and recall we do not
count the endpoint of a path as being in the path. Hence the path length is 0 for Ξσ(v1).
For the other nodes, the cycle is also the one with p(v1) as its highest priority, so the
first component of the valuation is 1. The path and the path length are given by the path
towards v1. Note that Ξσ(v3)▷Ξσ(v1), as the first component is the same and {2, 3, 4} ≻ ∅.
Hence edge (v2, v3) is improving. So Iσ = {(v2, v3)}. In the next iteration, we will have
strategy σ′ with σ′(v2) = v3 and σ′(v3) = v4.

11

Figure 2: An iteration in strategy iteration. In red: current strategy σ. In blue:
optimal counterstrategy σ̄.

The following lemmas can be derived from Jurdzinski and Vöge [18], which imply
correctness of the algorithm:

Lemma 2.4. For any valid nonempty I ⊆ Iσ, we have Ξσ(v) ⊴ ΞSwitchI(σ)(v) for all
v ∈ V and Ξσ(v) ◁ ΞSwitchI(σ)(v) in at least one node.

Lemma 2.5. If Iσ = ∅, then σ is an optimal strategy for player 0 (hence winning on every
node in W0).

2.5 Sink parity games and improvement rules

A special class of parity games that was introduced by Friedmann [11] is the class of sink
parity games.

Definition 2.6. A sink parity game is a parity game that has the following properties:

1. (sink existence) There exists a sink node ⊤ such that ⊤ has the smallest priority
in the game and ⊤ only has one outgoing edge, to itself. We assume its priority
equals 1.

2. (sink seeking) If σ is an optimal (w.r.t ⊴ for all nodes) strategy for player 0, and
σ̄ an optimal counterstrategy for player 1, then the resulting play ends up in ⊤
(i.e. the first element of Ξσ(v) is p(⊤) for all v ∈ V).

The reason that sink parity games are interesting for strategy iteration is because the
valuations are simpler than for general parity games. Recall that the valuation Ξσ(v) for
parity game strategy iteration was (λ(P), π(P),#(P)) for the play P resulting from σ and
optimal counterstrategy σ̄ starting from v. Suppose the initial strategy σ0 already ’ends up’
in the sink node ⊤, which means that the first component of Ξσ0(v), which is λ(P), equals
p(⊤) = 1 for every node v ∈ V . Then, because the optimal player 0 strategy also cannot
create better cycles than going to ⊤, every strategy encountered in strategy iteration will
have p(⊤) as the first component in the valuation of every node. So we can ignore the

12

first element of the valuation. Moreover, since ⊤ has the lowest priority in the game,
every element in the path towards ⊤ ends up in the second component of the valuation.
Therefore, if two nodes v and w have the second component π(P) of the valuations Ξσ(v)
and Ξσ(w) the same, then also the third component, the path length #(P), is the same.
So also the third component of the valuation is not relevant for these games.

Figure 3: Example of a sink parity game. An initial strategy σ0 for strategy
iteration is highlighted in red, and optimal counterstrategy σ̄0 in blue. Even though
there is a play possible that has a better cycle for player 0, namely v1− v4 and also
a play possible with the better cycle for player 1, namely v2−v3, still if both players
play optimally, the play ends in ⊤.

Sink parity games play a huge role in showing exponential lower bounds for the com-
plexity of strategy iteration with certain improvement rules. Some improvement rules that
are proposed in literature are the following:

• switch-all [18]: switch all improving edges.

• switch-best [23]: switch the subset of improving edges that has the best resulting
valuation.

• random-edge: switch an improving edge at random.

• least-entered [29]: apply, with some tiebreaker, the improving switch that has been
performed the least.

Other variants of strategy iteration (one could debate whether these are just improvement
rules or completely new algorithms) are the following:

• random-facet [21]: exclude a random edge that is not in the current strategy and
recursively solve the resulting game.

• snare-memorizing [9]: remember some winning subgames for player 0 and solve these
to choose new edges.

• symmetric strategy iteration [25]: maintain strategies σ and τ for player 0 and 1,
respectively. Switch, for both players simultaneously, the edges that are both im-
proving and in an optimal counterstrategy to the other player’s strategy.

13

For all of these rules, except the last one, (sub)exponential lower bounds for the (expected)
number of iterations have been shown (see [11, 12]). The main idea behind those is con-
structing a sink parity game that behaves like a binary counter when applying strategy
iteration.

2.6 Linear programming and the simplex algorithm

A linear program (LP) is an optimization problem that can be written in the following
form:

min cTx

subject to Ax = b

x ≥ 0

where x, c ∈ Rn, A ∈ Rm×n, m < n and b ∈ Rm. We assume A has full row rank. We call
the set {x ∈ Rn : Ax = b ∧ x ≥ 0} the feasible set. So the optimization problem is to find
the x in the feasible set with minimal cost cTx. The feasible set is a so-called polyhedron,
and can be seen as a convex set in Rn bounded by a number of hyperplanes.

We call an m×m matrix B a basis if it consists of m linearly independent columns of
A. We can then split a vector x into two parts: xB ∈ Rm, containing the m elements of the
vector corresponding to the m columns of B, and xN ∈ Rn−m, containing the remaining
elements of x. Then a vector x is called the corresponding basic variable of B if xN = 0
and BxB = b. Also, x is called basic feasible if it is basic and xB ≥ 0. A basic feasible
solution can be seen as a vertex of the feasible polyhedron.

The simplex algorithm now makes use of the fact that if an optimum exists (and if there
exist basic feasible solutions) then the optimum is attained in some basic feasible solution.
The idea is then to start with some basic feasible solution x and its associated basis B. So
we start in a vertex of the polytope. We then repeat the following: we move over an edge
of the polytope in a direction that improves the objective value, until we arrive at another
vertex. In terms of the variables, this means we choose some index i such that Ai, the i-th
column of A is not contained in the basis, and such that ci − cTBB

−1Ai < 0.

Figure 4: Visualization of the simplex method, when vertices on the top have
a better objective value than on the bottom. The simplex method keeps jumping
from a vertex to an adjacent vertex, increasing the objective value in every step.
From: [26].

14

If there are multiple options to improve, we choose i according to some pivot rule.
The pivot rule may be seen as a function with as input the matrix A and the basis B,
and as output the index of the chosen improving variable to add to the basis. We then
add Ai to the basis and remove another column such that the resulting basic variable is
still feasible. We call the variable xi that corresponds to the column that is added to the
basis the entering variable, and the variable corresponding to the column that is removed
the leaving variable. Then we have another basic feasible solution with a better objective
value. We do this by choosing the index j with the lowest nonnegative value of (B−1b)j

(B−1A)ji
,

and then the j-th variable of the basis will leave the basis. The newly obtained solution
improves the objective function. We continue this process until there is no improvement
possible. If ci− cTBB

−1Ai ≥ 0 for all indices i, we cannot improve and the current solution
is optimal.

How the simplex algorithm performs is strongly dependent on the pivot rule that is
used. Of course, one would like to use a pivot rule that leads to the optimal solution as
quickly as possible. Some natural choices are for example the steepest descent rule, that
chooses the index with the lowest (most negative) reduced cost, or the steepest edge rule,
that chooses the edge that is the ’steepest’ in Rn (see [6]). However, for many pivot rules,
it has been shown that they have an exponential worst-case performance. Moreover, it is
not known whether there even exists a pivot rule that leads to a polynomially bounded
number of iterations.

15

3 Improvement rules for strategy iteration in parity games

This section discusses the first result, which is the two structures for creating examples
with exponential running time for discrete strategy iteration. As mentioned in the previous
section, the strategy iteration algorithm requires an improvement rule to decide which
improving moves to apply. Of course, a good improvement rule leads to a small number
of iterations. However, deciding which rule is best is not trivial. With regard to worst-
case behavior, the question whether there exists an efficient improvement rule, i.e. one that
leads to a polynomial-time worst case complexity, is still open. This section adds a number
of improvement rules to the ‘list’ of rules that are known to have exponential worst-case
running time. It also provides a framework that can make proving exponential worst-
case complexity easier. For now, we focus only on deterministic memoryless single-switch
improvement rules are considered. Here deterministic means that the rule always makes
the same choice given the current strategy, memoryless means it only takes the current
strategy and game into account and not the previous iterations, and single-switch means it
only chooses to make one switch per iteration. This is for simplicity, but also because there
is often a nice connection to memoryless pivot rules in the simplex algorithm. Moreover,
we look at a number of examples of deterministic single-switch memoryless improvement
rules, and apply the frameworks presented in this section to provide lower bounds on the
complexity of strategy iteration with these rules.

We consider two structures, which we call the binary counter and the reverse binary
counter. Both these structures consist of smaller subgraphs which we call gadgets. We do
not specify these gadgets initially, and what these gadgets look like should depend on the
improvement rule. The task for someone who wants to prove exponential running time for
a certain improvement rule is then to devise a gadget that has the right properties for that
improvement rule. Initially, we define a condition under which strategy iteration needs
exponentially many iterations on graphs with such a (reverse) binary counter structure.
We first present the binary counter structure, and then use some specific gadget designs
to prove lower bounds for some specific improvement rules. As the name suggests, the
strategies that strategy iteration passes through simulate a binary counter, where the bits
are formed by the choices player 0 makes in the gadgets. Next, we look at the reverse
binary counter structure, which is similar to the binary counter, except that it ‘counts’ in
reverse. We also look at some lower bound proofs for improvement rules using the reverse
binary counter. The improvement rules in this section are of interest because most of them
are simple and logical choices, but also also because we show a connection with pivot rules
for the simplex algorithm in Section 5.

3.1 Structure for counterexamples: binary counter

The main theme of the framework of the (reverse) binary counter is, as the name suggests,
simulating a binary counter. The idea is that there are parts of the graph that represent n
bits of a binary counter. We then encode the binary representation of a number between
0 and 2n − 1 in some strategy σ. The goal is to let the strategies encountered by strategy
iteration simulate a binary counter; so we start with a strategy that encodes 0 in binary.
Then, we want strategy iteration to go to a strategy that encodes 1 in binary, then 2, and
so on, until 2n− 1. This, of course, implies exponential running time for strategy iteration
(given, of course, that the number of nodes and edges of the graph is linear in n).

The binary counter structure for a parity game Gn is given in Figure 5. It is a so-called
sink parity game (see Definition 2.6). It consists of n gadgets A1, A2, . . . , An, of n gadgets
D1, D2, . . . , Dn and of nodes an+1, dn+1, x and y. The choices of the strategy σ in gadgets

16

Ai and Di together form the i-th bit in the binary counter. Gadget Ai contains node ai
and Di contains di for i = 1, 2, . . . , n. These nodes ai and di are the nodes with the highest
priority in their respective gadgets, and therefore they determine whether it is good or bad
to move towards a gadget. The number N used in the priorities is assumed to be an integer
larger than the number of nodes in G. The node x is the sink node, where the play will
end if both players play optimally. The function of node y is to make the path second
component of the valuation better than the empty set, of which the function will become
apparent in Section 5.

Suppose we start the game from ai, player 0 plays strategy σ and player 1 plays optimal
counterstrategy σ̄, and the resulting play passes through the edge from gadget Ai to gadget
Ai+1. To ease notation, we denote this by σ(Ai) = ai+1 (or , if i = n and we pass the
edge from An to an+1, we also say σ(An) = an+1). Likewise, we say σ(Ai) = di+1 if the
play passes the edge from Ai to Di+1, or from An to dn+1 if i = n. We define σ(Dn) in
a similar manner. In short, the encoding of numbers in binary by strategies happens by
making σ(Ai) = σ(Di) if the i-th bit is 1, and σ(Ai) ̸= σ(Di) if the i-th bit is 0. A strategy
representing 0 is shown in Figure 5. The encoding of binary numbers is made more precise
later. Moreover, there are some specific properties that we want the game to have, which
are listed below:

• The priorities p(ai) and p(di) are the largest priorities out of the nodes in Ai and Di,
respectively (i = 1, 2, . . . , n).

• Player 0 cannot win the game (if player 1 plays optimally). Hence the best player 0
can do is try to force the play to pass through vertex y1, since this strategy will yield
values of Ξσ that contain N(4n + 6), a large even number, in its path component.
We assume that player 0 is able to force the play to enter y.

• If a play enters gadget Ai, say the first node of Ai encountered in the play is v, then
player 0 can force player 1 to enter ai, and cannot do better than that. The same for
Di and di. We assume that both incoming edges enter Ai or Di in the same node v.

• If the game starts from ai, then player 0 can force the play to leave Ai through either
of the two outgoing edges of Ai. Same for di and Di. Again, he cannot do better
since he cannot win the game by force.

• The above properties imply that mainly the priorities of ai and di for i = 1, 2, . . . , n+1
that are encountered throughout the game are relevant for what strategy to choose.
Clearly the optimal strategy for player 0 (the end result of strategy iteration) is to
always force the play from Ai or Di to pass the edge going to Di+1 (or to dn+1 from
An or Dn). This is since it then passes the nodes di, which are better for him than
ai.

• We start strategy iteration with σ0(Ai) = ai+1 and σ0(Di) = di+1 for
i = 1, 2, . . . , n − 1 and with σ0(An) = dn+1 and σ0(Dn) = an+1. This is clearly
not a great strategy since many choices let the play go to ai for different i, which is
never optimal.

1With forcing, we mean that player 0’s strategy choice, player 1 will have to go to y, in the sense that
trying to avoid y is either impossible or will result in player 0 winning the game.

17

Figure 5: Structure for a class of
parity games. The red and blue
shaded areas represent some sub-
graph. Each of the subgraphs Ai or Di

has exactly two outgoing edge and ex-
actly two incoming edges (except A1

and D1). In red are the edges that
the resulting play will pass through
if player 0 plays initial strategy σ0
and player 1 plays its optimal coun-
terstrategy. This encodes the number
0 in binary.

18

Note that, because of the increasing priorities of ai and di with increasing i, the right-
hand side of the game is the most important. Hence, if player 0 makes better choices in
Ai than in Di, then the play starting from ai passes through different nodes with large
priority than di. Hence the valuation of ai will then be better than that of di, regardless
of what smaller priorities the play may pass through in Ai or Di itself.

Now our goal is, for a given improvement rule of strategy iteration, to construct a
class of parity games (Gn)n∈N, for which this improvement rule has exponential running
time. To do so, we formulate a condition for the combination of a parity game Gn and an
improvement rule for strategy iteration, and show that this is enough to imply exponential
running time.

Definition 3.1. Suppose we have an improvement rule for strategy iteration that has the
following preference for improving moves in a game Gn with the structure as shown in
Figure 5:

• Any improving move in Di is preferred over any improving move in Dj if i < j.

• Any improving move in Ai is preferred over any improving move in Di for
i = 1, 2, . . . , n.

Then we call this improvement rule conservative for Gn.

Now we want to prove that conservative improvement rules have exponential running
time. To do so, we show that strategy improvement simulates a binary counter. To make
this more formal, we introduce the following notion:

Definition 3.2. Consider a player 0 strategy σ for Gn and a number B ∈ {0, 1, . . . , 2n−1}.
Let BnBn−1Bn−2 . . . B1 be the binary representation of B, with Bn ∈ {0, 1} the most
significant bit and B1 ∈ {0, 1} the least significant bit. Then we say σ is in bit state B if
the following hold:

• For i = 1, 2, . . . , n, we have that σ(Ai) = σ(Di) if and only if Bi = 1.

• For i = 1, 2, . . . , n, we have that σ forces the right choice in Ai regarding the edge
through which Ai is left in the play resulting from σ and σ̄. In other words,

Ξσ(σ(Ai)) = max
⊴

(Ξσ(ai+1),Ξσ(di+1))

.

Now we prove our result on the running time of conservative improvement rules in the
following theorem:

Theorem 3.3. Suppose we have a class of parity games (Gn)n∈N that has the binary
counter structure as in Figure 5. Suppose that an improvement rule for strategy iteration
is conservative for all the games in this class. Then strategy iteration on Gn for any n
passes through all bit states in {0, 1, . . . , 2n− 1}, hence it has worst-case running time that
is at least exponential in n.

Proof: We prove this by induction. First of all, as an induction basis, we show that the
initial strategy σ0 is in bit state 0. We have Bi = 0 and σ0(Ai) ̸= σ0(Di) for i = 1, 2, . . . , n.
Also, because for i = 1, 2, . . . , n the play starting from ai passes through dn+1, and the play
from di passes through an+1, we see that Ξσ0(ai) ▷ Ξσ0(di) for i = 1, 2, . . . , n. Therefore

Ξσ0(σ0(Ai)) = Ξσ0(ai+1) = max
⊴

(Ξσ0(ai+1),Ξσ0(di+1))

19

for i = 1, 2, . . . , n− 1, and

Ξσ0(σ0(An)) = Ξσ0(dn+1) = max
⊴

(Ξσ0(an+1),Ξσ0(dn+1))

so all conditions of being in bit state 0 are fulfilled. Next, as an induction step, we prove
that if we have a strategy σ at some point during strategy iteration with our conservative
improvement rule, and σ is in bit state B with B < 2n−1, that then we encounter another
strategy in bit state B + 1 at some later point in the algorithm. This clearly implies what
we need to prove for this theorem.

To do so, we look at strategy σ that is in bit state B. We know that there are no
significant improving moves in Ai for any i (i.e. no moves that would change σ(Ai)), since
player 0 already forces the play to leave Ai in the ’right’ way, as we are in bit state B.
We just ignore from now these non-significant improving moves that do not change any
σ(Ai) or σ(Di). Moreover, looking at any Di, we see that if Bi = 1, then σ(Di) = σ(Ai),
hence player 0 also makes the ’right’ choice in Di. Hence the only gadgets in which there
are significant improving moves possible are in Di where Bi = 0. Because we have a
conservative improvement rule, we see that we prefer to make improvements in the Di

with the lowest index i. Hence if i0 is the smallest index for which Bi0 = 0, then the next
significant improvement is when σ(Di0) changes, after which it will equal σ(Ai0).

To deduce what happens after that, we first take a closer look at σ(Ai) and σ(Di)
for i < i0. We know that σ(Ai0−1) (if i0 > 1) is the ’right’ choice, and we also know that
σ(Ai0) is ’right’ and σ(Di0)) is not, hence Ξσ(ai0) ▷ Ξσ(di0). Therefore, since Bi0−1 = 1
(if i0 > 1), we have σ(Ai0−1) = σ(Di0−1) = ai0 . Because di0−1 has higher even priority
than ai0−1, and the rest of the plays determining their values is almost equal, we get
Ξσ(ai0−1) ◁ Ξσ(di0−1). Hence with the same logic we get σ(Ai0−2) = σ(Di0−2) = di0−1

(if i0 > 2), and continuing this chain of logic, we get σ(Ai) = σ(Di) = di+1 for i ≤ i0 − 2.
See also Figure 14

Figure 6: The first part of graph Gn and in red the edges that will be used in the
plays resulting from strategy σ (that is in bit state B) and optimal counterstrategy
σ̄.

Now say the resulting strategy from making a switch in Di0 that changes σ(Di0) is σ′.
We see that the valuation Ξσ′ of di0 must be higher than than of ai0 , as the priority of di0
is higher and the rest of the plays from these vertices are similar. Hence there will now be
significant improving moves possible in Ai0−1 and in Di0−1. Because we have a conservative
improvement rule, we prefer switches in Ai0−1. Hence the next significant improving switch
occurs in Ai0−1, yielding strategy σ′′. But after that, ai0−1 has a higher valuation Ξσ′′ than
di0−1, since player 0 makes the ’right’ choice in Ai0−1 but not in Di0−1. Hence there will
be an improving move possible in Ai0−2 and in Di0−2. Again, Ai0−2 is preferred, so the
next significant improving move occurs in Ai0−2, and, with the same argument, after that

20

in Ai0−3, Ai0−4, . . . , A1. Let the resulting strategy after all those improvements be σ′′′.
We claim that σ′′′ is in bit state B + 1. Note that σ′′′ makes the ’right’ choice in Ai for
all i, since an improving move was just made in Ai0−1, Ai0−2, . . . , A1, and since nothing
changed compared to σ for Ai for i ≥ i0. Also, we have σ′′′(Ai) ̸= σ′′′(Di) for i < i0 and
σ′′′(Ai) = σ′′′(Di), and σ′′′(Ai) = σ′′′(Di) ⇔ Bi = 1 for i > i0. From that, we conclude
that σ′′′ is in bit state B + 1 (note that the binary representation of B + 1 has a 1 in
its i0-position, 0’s in the positions i < i0 and the same as B in higher positions). This
concludes the proof of the theorem. □

3.2 Lower bounds from binary counter

Now we illustrate the result of Theorem 3.3 by providing lower bounds on the complexity of
strategy iteration with various improvement rules. We look at the following improvement
rules:

• highest-priority : apply the switch on the node with the highest priority.

• highest-valuation: Perform the best improving switch from the node v that currently
has the highest valuation Ξσ(v).

• highest-difference: We only define this rule for a sink parity game (see Definition
2.6). Choose the improving switch that has the highest difference in valuations. Here
highest difference is determined according to the following: if we have an improving
move that changes σ(v) from a node with valuation (a,A, na) to one with valuation
(b, B, nb) and one that changes σ(v′) from a node with valuation (c, C, nc) to one
with (d,D, nd), we call the first difference better if (1, B ⊎ C, 1) ▷ (1, A ⊎D, 1).

• lowest-difference The opposite of highest-difference. Choose the improving switch
with the lowest difference.

There seems to be no mention of any of these in the literature, although they are logical
options. For each of these improvement rules, we describe the gadgets of Gn and show
that the improvement rule is conservative for Gn. Then it follows from Theorem 3.3 that
strategy iteration needs an exponential number of iterations.

Theorem 3.4. Strategy iteration with the highest-priority improvement rule has at least
exponential worst-case running time in the number of nodes and edges.
Proof: We can use quite simple gadgets for this:

Figure 7: Gadgets for Gn for the highest priority improvement rule.

Note that the only choice possible within Ai and Di are in choosing the outgoing edges
of the unnamed nodes. Hence the preference of the highest-priority improvement rule is
determined by the priorities of these unnamed nodes. It immediately follows that this

21

improvement rule prefers to switch in Di with the lowest i, and that it prefers switching
in Ai over Di, hence it is conservative. From Theorem 3.3 it now follows that strategy
iteration has running time exponential in n. Because the number of nodes and edges is
linear in n, the running time is also exponential in the number of nodes and edges. □

Theorem 3.5. Strategy iteration with the highest-valuation improvement rule has worst-
case running time that is at least exponential in the number of nodes and edges.
Proof: We use the following gadgets:

Figure 8: Gadgets for Gn for the highest-value improvement rule.

In principle, the idea is that the node fi will have a lower valuation than ai, so the
improvement rule is tricked into preferring switches in ai. To prove the theorem, we need
to show that in the game Gn, we prefer to switch in Di with lower index i, and that we
prefer to switch in Ai over Di with these improvement rules. Note that there is only one
node in each gadget Ai or Di where there is a choice, namely ai in Ai and fi in Di.

Suppose we have an improving move possible in both Ai and Di. This can only be the
case if player 0 currently makes the ’wrong’ choice with σ in both Ai and Di. In particular,
σ(Ai) = σ(Di) (hence σ(ai) = σ(fi)). This implies that Ξσ is higher for ai than for fi.
That is because the only difference between Ξσ(ai) and Ξσ(fi) is that the first contains
p(ai) in its path and the second p(fi). Therefore switching in Ai is preferred over switching
in Di by the highest-value improvement rule.

Next suppose we have a strategy σ, and we have an improving move possible in Di

and one in Dj , with i < j. Since there is an improving move possible in Dj , we have
Ξσ(σ(Dj)) ⊴ Ξσ(σ(Aj)), and therefore Ξσ(fj) ◁ Ξσ(aj). We know that the play starting
at fi resulting from σ and σ̄ must pass through either Aj or Dj , since it will end in x.
If the play passes through Dj , then clearly the valuation Ξσ of fi is higher than that of fj ,
since the valuation of fi contains a number of extra even priorities in its path compared
to Ξσ(fj). On the other hand, if the play from fi passes through Aj , then the valuation
of fi is also higher than that of fj since its valuation is that of aj with some extra even
numbers in its path component, and we saw before that Ξσ(fj) ◁ Ξσ(aj). Hence we now
showed that improving moves in Di are preferred over improving in Dj for i < j.

We conclude that the highest-value rule is conservative for (Gn)n∈N. Now from Theorem
3.3 it follows that strategy iteration takes at least time exponential in n for (Gn)n∈N.
Because the number of nodes and edges is linear in n, the running time is also exponential
in the number of nodes and edges. □

22

Theorem 3.6. Strategy iteration with the highest-difference improvement rule has worst-
case running time that is at least exponential in the number of nodes and edges.
Proof: We use the following gadgets:

Figure 9: Gadgets for Gn for the highest-difference improvement rule.

In short, the idea of these gadgets is that in Di, the player 1 nodes gi and hi ’hide’
to player 0 how much he can improve by switching. We first look in more detail at how
the gadget Di works. Note that in gadget Di, player 0 has a choice in node fi to move
to either gi or hi. Irrespective of the vertex player 0 chooses, player 1 will be forced to
move out of Di in one of his nodes in order to avoid creating a cycle that wins for player
0. In this manner, player 0 can force the play starting from di to either go to Ai+1 or Di+1

(or, if i = n, to an+1 or dn+1). We see that σ(fi) = gi corresponds to σ(Di) = ai+1 and
σ(fi) = hi corresponds to σ(Di) = di+1.

Now we look at the valuation Ξσ in Di. We assume first that going to ai+1 is the ’right’
choice, so Ξσ(ai+1)▷Ξσ(di+1). Suppose that σ(fi) = gi, so then we also have σ(Di) = ai+1.
Then player 1 is forced to move out of Di from gi. Player 1 will also move out of Di from
hi as this goes to di+1, which has a lower valuation than fi. This is shown on the left of
Figure 10. Suppose Ξσ(v) = (1, P (v), nv), so P (v) denotes the priorities on the path from
v. Then we have in our case P (gi) = P (ai+1) ∪ {p(gi)} and P (hi) = P (di+1) ∪ {p(hi)}.
We assumed ai+1 has a better valuation than di+1, and therefore ai+1 has a much better
valuation than di+1 since the large priorities are on the right of the game Gn. Therefore
we have Ξσ(gi) ▷ Ξσ(hi). So there are no improving moves possible in Di.

Figure 10: Left: red edges are edges chosen either by σ or σ̄ if σ(fi) = gi.
Right: red edges are edges chosen either by σ or σ̄ if σ(fi) = hi. Assumed is
Ξσ(ai+1) ▷ Ξσ(di+1).

On the other hand, now suppose σ(Di) = di+1, so player 0 makes the ’wrong’ choice.
Then we have the situation on the right of Figure 10. In particular, player 1 will decide to
move to fi from gi, since this will lead to node di+1, which is better for him. This means that
P (gi) = P (hi) ∪ {p(fi), p(gi)}, and therefore Ξσ(gi) ▷ Ξσ(hi). This means there is an

23

improving move in fi. However, the ’difference’ that the highest-difference improvement
rule looks at seems very small, as the ’difference’ between Ξσ(gi) and Ξσ(gi) consists
only of the priorities of fi and gi. Likewise, we can show that for the reversed case, if
Ξσ(ai+1)◁Ξσ(di+1) and σ(fi) = gi, then the ’difference’ of an improving move consists only
of the priorities of fi and hi. Since the priorities of fi, gi, hi decrease with i increasing, we
see that the highest ’difference’ occurs in the Di with the lowest i, so the highest-difference
rule prefers to switch in these Di. Furthermore, the ’difference’ for an improving move in
Ai is the difference in valuation between ai+1 and di+1, which is very large compared to the
small priorities of the fi, gi, hi. So we also prefer to switch in Ai over Di for any i. Hence
by Theorem 3.3, the highest-difference improvement rule is conservative for (Gn)n∈N, and
therefore has running time at least exponential in n. Because the number of nodes and
edges is linear in n, the running time is also exponential in the number of nodes and edges.
□

Theorem 3.7. Strategy iteration with the lowest-difference improvement rule has worst-
case running time that is at least exponential in the number of nodes and edges.
Proof: We use the following gadgets:

Figure 11: Gadgets for Gn with the lowest-difference improvement rule.

Note that the structure of these gadgets is exactly the same as those of Di from the
highest-difference gadget. Hence if there is an improving move in Ai or Di, then its
‘difference’ is determined by the priorities of the unnamed nodes in Figure 15. Therefore,
it is easy to see that Ai is preferred over Di, since the priorities of the unnamed nodes are
smaller, and by the same argument, Di is preferred over Dj if i < j. Hence by Theorem 3.3,
the lowest-difference improvement rule yields running time exponential in n for (Gn)n∈N.
Because the number of nodes and edges is linear in n, the running time is also exponential
in the number of nodes and edges. □

3.3 Reverse binary counter

Next, we look at a second structure which can also be used to prove exponential running
time for improvement rules for strategy iteration. We call this a reverse binary counter.
This because the underlying graph is the same as the binary counter, but the way that it
counts is reversed compared to the regular binary counter. The highest priorities are again
multiples of some number N , but unlike before we require N to be odd. As a result, the
highest priorities in the gadgets are odd instead of even. The structure can be found in
Figure 12.

Similar to before, we want the parity game and strategy iteration to have these prop-
erties:

• The priorities of the nodes in Ai and Di (i = 1, 2, . . . , n) that are not ai or di are
much smaller than p(ai) and p(di), respectively.

24

• Player 0 cannot win the game. Hence the best player 0 can do is try to force the
play to pass through vertex y, since this strategy will yield values of Ξσ that contain
p(y) = N(4n+ 6). We assume that player 0 is able to force the play to enter y.

• If a play enters gadget Ai, say the first node of Ai encountered in the play is v, then
player 0 can force player 1 to enter ai, and cannot do better than that. The same
holds for Di and di. We assume that both incoming edges enter Ai or Di in the same
node v.

• If the game starts from ai, then player 0 can force the play to leave Ai through either
of the two outgoing edges of Ai. Same for di and Di. Again, he cannot do better
since he cannot win the game by force.

• The above properties imply that only the priorities of ai and di for i = 1, 2, . . . , n+1
that are encountered throughout the game are relevant for what strategy to choose.
Here, unlike the normal binary counter, the optimal strategy for player 0 (the end
result of strategy iteration) is to always force the play from Ai or Di to pass the edge
going to Ai+1 (or to an+1 from An or Dn). This is of course because the priority of
ai is odd and lower than p(di).

• We start strategy iteration with σ0(Ai) = σ0(Di) = di+1 for i = 1, 2, . . . , n. This is
the worst possible strategy for player 0 that still goes to x, since it always passes the
largest odd numbers.

• Note that, because of the increasing priorities of ai and di with increasing i, the
right-hand side of the game is the most important. For example, if player 0 makes
better choices in Ai than in Di, the valuation of ai will be much better than that of
di, since the path element of its valuation will differ with some large priorities from
the right of the graph.

25

Figure 12: The structure of the re-
verse binary counter. The red and
blue shaded areas represent some sub-
graph. Each of the subgraphs Ai or
Di has exactly two outgoing edges and
exactly two incoming edges (except A1

and D1). In red are the edges that
the resulting play will pass through
if player 0 plays initial strategy σ0
and player 1 plays its optimal counter-
strategy σ̄0. This encodes the number
2n − 1 in binary. In this case, N is
odd.

26

Similar to the binary counter, we formulate a condition for an improvement rule that
will imply exponential running time on (Gn)n∈N.

Definition 3.8. Suppose we have an improvement rule for strategy iteration and a game
Gn with the structure as shown in Figure 12. Then we call this improvement rule counter-
conservative for Gn, if the improvement rule has the following preferences:

• Making any switch in Ai is preferred over any switch in Aj if Ξσ(ai) ◁ Ξσ(aj).

• Making any switch in Di is preferred over any switch in Dj if Ξσ(di) ◁ Ξσ(dj).

• Making any switch in Ai is preferred over any switch in Dj if Ξσ(ai) ◁ Ξσ(dj).

We show that counter-conservative improvement rules have exponential running time.
Similar to the binary counter, we have the following notion:

Definition 3.9. let σ be a player 0 strategy and let B ∈ {0, 1, . . . , 2n − 1}. Let
BnBn−1Bn−2 . . . B1 be the binary representation of B, with Bn ∈ {0, 1} the most sig-
nificant bit and B1 ∈ {0, 1} the least significant bit. We say σ is in reverse bit state B if
the following hold:

• For i = 1, 2, . . . , n, we have that σ(Ai) = σ(Di) if and only if Bi = 1.

• For i = 1, 2, . . . , n, we have that σ forces the wrong choice in Ai w. r. t. through
which edge Ai is left. In other words,

Ξσ(σ(Ai)) = min
⊴

(Ξσ(ai+1),Ξσ(di+1))

.

Now we are ready to formulate the following theorem:

Theorem 3.10. Suppose we have a class of parity games (Gn)n∈N that has the reverse
binary counter structure as described in this section. Suppose that an improvement rule
for strategy iteration is counter-conservative for all the games in this class. Then strategy
iteration on Gn for any n passes through all reverse bit states in {0, 1, . . . , 2n − 1}, hence
it has worst-case running time that is at least exponential in n.
Proof: We use induction to show that all the bit states are traversed from high to low. As
an induction basis, we show that our starting strategy σ0 is in reverse bit state 2n−1. Note
that if B = 2n − 1, then Bi = 1 for i = 1, 2, . . . , n. We also have σ0(Ai) = σ0(Bi) = di+1

for i = 1, 2, . . . , n, and this implies the first condition for being in this reverse bit state.
Also, note that for i = 1, 2, . . . , n, we have Ξσ0(ai+1) ▷ Ξσ0(di+1), as ai+1 has a lower odd
priority than di+1 and plays from ai+1 and di+1 pass through the same nodes after leaving
Ai+1 or Di+1. Therefore player 0 is making the ’wrong’ choice in Ai for i = 1, 2, . . . , n.
Therefore σ0 is in bit state 2n − 1.

Now we show as an induction step the following: if at some point in strategy iteration
with our counter-conservative improvement rule, we have strategy σ in bit state B > 0,
then at some later iteration we get another strategy in bit state B−1. Our goal is to show
that the next improving moves occur at a1, a2, . . . , ai0−1, di0 in that order, and that the
resulting strategy is in bit state B − 1.

First, we show that the ai at the left side of G have very low valuation Ξσ. Note that,
since we assume that p(ai) and p(di) are much larger than the other priorities in Ai and
Di, respectively, we get Ξσ(ai) ◁Ξσ(σ(Ai)). This is because the term on the left-hand side

27

is the same as the right-hand side, except that its path also contains p(ai), which is odd,
and some small priorities. Also, since σ is in reverse bit state B, we have

Ξσ(σ(Ai)) = min
⊴

(Ξσ(ai+1),Ξσ(di+1))

it follows that Ξσ(ai) ◁ Ξσ(σ(Ai)) ◁ Ξσ(ai),Ξσ(ai). If we apply this argument multiple
times, we see that

Ξσ(ai) ◁ Ξσ(aj),Ξσ(dj) (1)

for j > i. In particular, a1 has smaller valuation than all the other nodes, except
maybe b1.

Now we take a closer look at what strategy σ looks like. Let i0 be the smallest index for
which Bi0 = 1. We have σ(Ai0) = σ(Di0), and therefore Ξσ(di0) ◁Ξσ(ai0), since their only
signifiacant difference is that one has p(ai0) and one p(di0) in its path, and as p(di) > p(ai)
and both priorities are odd. If we look at σ(Ai0−1) (if i0 > 1), then we know player 0
makes the ’wrong’ choice in Ai0−1, because we are in bit state B. Therefore σ(Ai0−1) = di0 .
Moreover, as Bi0−1 = 0, we know σ(Di0−1) = ai0 , so player 0 makes the ’right’ choice in
gadget Di0−1. Therefore di0−1 is better valued than ai0−1, i.e. Ξσ(di0−1)▷Ξσ(ai0−1). With
the same logic, then, we derive that σ(Ai0−2) = ai0−1 and σ(Di0−2) = di0−1, and so on.
Therefore σ looks like the strategy in Figure 13.

Figure 13: The first part of reverse binary counter graph Gn. Marked in red are
the edges that are used in the plays resulting from strategy σ (that is in bit state
B) and optimal counterstrategy σ̄.

Now because the most important priorities are on the right of the graph, di0 has a
’much’ lower valuation than ai0 (as in, adding any of the priorities of the part shown in
Figure 13 will not change which valuation is lower). It is then easy to see that Ξσ is lower for
any of the nodes a1, a2, . . . , ai0−1, di0 than for any of the nodes d1, d2, . . . , di0−1, ai0 , since
plays from the first set of nodes end up in di0 and from the second end at ai0 . Now we look
at possible improving moves. Like in the proof of Theorem 3.3, we ignore all improving
moves that do not change any σ(Ai) or σ(Di). Clearly the lowest valuation of the game
is at a node of A1 (unless i0 = 1), which we know because of (1). So the next significant
improving move happens when σ(A1) becomes d2 (or a2 if i0 = 2). This connects a1 in
the resulting play to ai0 , hence the next lowest valuation after the switch is in A2 (unless
i0 ≤ 2). Likewise, this connects a2 to ai0 . After that, following the same logic, we see
that we switch in A3, A4, . . . , Ai0−1. Then, all ai and di with i < i0 are connected to ai0
(i.e. plays starting there pass through ai0). Hence di0 has a lower valuation than all
nodes in Ai, Di with i < i0. Therefore the next significant improving switch is in Di0 .
In summary, we made improving switches in a1, a2, . . . , ai0−1, di0 in that order. Let the

28

strategy that we get after the significant improving switch in Di0 be called σ′. This is
shown in Figure 14

Figure 14: The first part of graph Gn and in red the edges that will be used in
the plays resulting from strategy σ′ and optimal counterstrategy σ̄′.

We show that σ′ is in bit state B − 1. Note that for i ≤ i0 − 2, we can improve σ′(Ai)
because it is better to pass through ai+1. Also, we can improve σ′(Ai0−1) (if i0 > 1),
because di0 has a better value than ai0 (since we just improved in di0). Also, σ′(Ai) for
i ≥ i0 is still the ’wrong’ choice since the right part of the strategy did not change from
σ, and σ was in bit state B. Therefore σ′ fulfills the second condition of being in some
reverse bit state, so it must be in some reverse bit state B′. Moreover, B′

i = 1 and Bi = 0
for i < i0, Bi0 = 1, B′

i0
= 0 and B′

i = Bi for i > i0. Therefore σ′ is in bit state B− 1. This
completes the induction proof. □

3.4 Lower bounds from the reverse binary counter

We use Theorem 3.10 to prove lower bounds for some improvement rules. We do this for
the following rules:

• lowest-valuation: We prefer to make improving switches on the vertices with the
currently lowest valuation.

• highest-lexicographic: Let V AL = Q×P(Q)×Z≥0 be the space of valuations. For each
possible improving switch e, let σe be the strategy that results from σ if improving
move e is applied. We then associate a vector ξe ∈ V AL|V | to the strategy σe
containing all values of σe(v) for v ∈ V , and where ξe is ⊴-sorted from low to high.
We then choose the improving switch e with the lexicographically highest value of
ξe. In this case, we say a < b lexicographically if for the least index i with ai ̸= bi
we have ai < bi.

• lowest-valuation-shortest-path: Suppose we have an improving move from v for strat-
egy σ that switches from edge (v, v′′) to (v, v′). Say the new strategy after this switch
is σ′ Let paths(v, v′) be the set of paths from v to any w ∈ V , where we require all
the edges to be either in E1 = {(v1, v2)|v1 ∈ V1} or to be part of either σ or σ′.
Recall that we do not count the end vertex of a path as being in the path. Then, we
define Mσ(v, v

′) = min⪯ paths(v, v′), which will be the lowest-valued path from v to
any other node. (recall from Section 2.4 that whether B1 ⪯ B2 can be determined
from B1△B2 or from whether

∑
p∈B1

(−3)p ≤
∑

p∈B2
(−3)p). The improvement rule

prefers to switch in nodes with a low valuation and with a high value of M(v, v′).
More precisely, our improvement rule prefers a switch in v to v′ over a switch in w to
w′ if Ξσ(v) ⊎Mσ(w,w

′) ⊴ Ξσ(w) ⊎Mσ(v, v
′) (here we use simplified notation; with

(λ, π, n) ⊎B we mean (λ, π ⊎B,n)).

29

Again, there seems to be no mention of these in the literature. The first rule is a
logical rule, and the latter two are used in section 5 because of their connection to the
simplex algorithm. Like for the binary counter, we show for these rules that they are
counter-conservative, and then use Theorem 3.10 to show that strategy iteration requires
an exponential number of iterations. A lower bound for the first rule follows trivially:

Theorem 3.11. Strategy iteration with the lowest-valuation improvement rule has worst-
case running time that is at least exponential in the number of nodes and edges.
Proof: We use the following trivial gadgets:

Figure 15: Gadgets for Gn with the lowest-valuation improvement rule.

the result follows from Theorem 3.10. □
A lower bound for the second improvement rule is a bit more involved:

Theorem 3.12. Strategy iteration with the highest-lexicographic improvement rule has
worst-case running time that is at least exponential in the number of nodes and edges.
Proof: We use the following gadgets:

Figure 16: Gadgets for Gn with the lowest-difference improvement rule.

Recall that we want to make the improving switch e with this rule that results in
the lexicographically highest value of ξe. Note that with this improvement rule, we care
most about what happens with the nodes that have the lowest valuation; we want their
valuations to improve as much as possible. We show that this improvement rule is counter-
conservative, but we only do so for the strategies encountered in strategy iteration. Theo-
rem 3.10 will still hold in this case.

But first, we look at how an individual gadget Ai works. Suppose that ai+1 has a better
valuation than di+1 for some strategy σ. Note that player 0 can force the play starting
from ai to go to ai+1 by choosing σ(fi) = hi and σ(gi) = fi. See left of Figure 17. Player
1 must move out of Ai in hi to avoid creating a cycle with even highest priority. Player 1
also moves out of Ai in ji as di+1 has lower valuation than ai+1

30

Figure 17: Left: red edges show a strategy σ with optimal counterstrategy σ̄ that
forces the play to go to Ai+1, if it is the ’good’ option. Right: strategy σ with
counterstrategy σ̄ that forces the play to go to Ai+1, if it is the ’wrong’ option.

Now suppose on the other hand that di+1 has higher valuation than ai+1, but player 0
still makes the same choices as before, then we get the situation on the right of Figure 17,
where player 1 now chooses σ̄(ji) = fi. This implies Ξσ(ji) ▷Ξσ(fi) as Ξσ(ji) has an extra
priority of 12(n− i) + 8 in its path. So there is an improving move possible in gi, and this
is the only improving move in Ai. This results in the situation shown on the left in Figure
18.

Figure 18: Left: red edges show a strategy σ with optimal counterstrategy σ̄ after
the first improving move. Right: strategy σ with counterstrategy σ̄ after the second
improving move.

After the switch, gi becomes higher valued than fi, hence player 1 changes his choice
in ai and now picks σ̄(ai) = fi. Therefore, the valuation of ai slightly increases (priority
12(n− i) + 3 is removed from the path in Ξσ(ai)). After the first improving move we have
Ξσ(gi) ▷ Ξσ(hi), since it has three extra priorities, namely 12(n− i) + 3, 12(n− i) + 5 and
12(n− i) + 8 in its path. Therefore fi has an improving move by switching to gi. Again,
this is the only possible improving move. This new strategy forces player 1 to move out of
Ai in ji to prevent creating a cycle with even highest priority. This results in the situation
on the right of Figure 18. Note that the priority of ai now increases by a lot because of
this move because the play now ends up in di+1 instead of ai+1. In summary, changing
σ(Ai) by making improving moves occurs in two moves: the first increases Ξσ(ai) very
slightly, and the second one is significant, changing σ(Ai) by a lot. Clearly it is similar for
improving σ(Di). Moreover, after these two moves the strategy is again one that forces

31

player 1 to move out of Ai or Di towards either the ’right’ or the ’wrong’ next gadget, so
one of the situations like in Figure 17.

Now we are ready to find which improving moves the highest-lexicographic rule prefers.
We want to show that it performs an improving move in the gadget with the lowest valu-
ation of ai or di. We specify the initia strategy to be the strategy σ0 where player 0 forces
player 1 to go to σ0(Ai) or σ0(Di). This means that e.g. σ0(Ai) = ai+1 implies σ0(fi) = hi
and σ0(gi) = fi and σ0(Ai) = di+1 implies σ0(fi) = gi and σ0(gi) = ji.

Clearly for any strategy we see the node with the lowest valuation in the graph is x,
which has valuation (1, ∅, 0), while the other nodes have N(4n + 6) in their path. So the
first element of ξe is always the same. Hence we mainly look at the second element. This
is the valuation of the node with the lowest valuation besides x. This must be ai or di
for some i, as these are the nodes with large odd priority (and fi, gi and such nodes pass
through nodes with slightly larger even priority before leaving Ai, Di). For strategy σ,
call the second lowest valuation in the graph ζσ. Then our improvement rule prefers the
improving move(s) that increase ζσ the most.

Recall that improving moves keep all valuations either the same or increase them.
Suppose ai has the lowest valuation after x. Then ζσ stays the same after an improving
move, unless an improving switch improves the valuation of ai. The valuation of ai is
improved if the switch happens in any of the Aj or Dj that the play passes through that
starts from ai and results from σ and σ̄. Hence our improving move prefers a switch in one
of the gadgets that are in this play. Moreover, if the improving switch is in Aj or Dj is
the first of the two switches, then this only slightly improves the valuation aj or dj as we
saw before, as only one priority is removed from the path in the valuation, namely some
12(n − j) + k with k ∈ {3, 5, 9, 11}. And no σ(Aj) or σ(Dj) change. This results in the
same change in the valuation of ai, so one priority 12(n− j)+ k is removed from the path.
Hence, the improving move that increases σ(ai) the most is the one in the gadget where
the highest odd priority would be removed, and that is the one with the lowest j in the
play starting from ai. Obviously, that is a switch in Ai, at the start of the play and that
is exactly the gadget with the lowest valuation ai.

Moreover, after the first improving move, all valuations barely change, so ai is still the
node with the lowest valuation. Now making a second improving move in Ai will improve
Ξσ(ai) by a lot since σ(Ai) changes, and any other improving move is not significant.
Therefore, for the second improving move, also Ai is preferred, which is still the gadget
with the lowest valuation ai. Proof for when di has the lowest valuation is similar.

From this we conclude that the highest-lexicographic rule prefers an improving move
in the gadget with the lowest valued ai and di. Therefore, the rule is counter-conservative
for the strategies encountered in strategy iteration with our starting strategy. Hence it
follows from Theorem 3.10 that strategy iteration with this rule requires at least a number
of iterations exponential in n. Because the number of nodes and edges is linear in n, the
running time is also exponential in the number of nodes and edges. □

We conclude this section by showing an exponential lower bound for running time of
the last improvement rule.

Theorem 3.13. Strategy iteration with the lowest-valuation-shortest-path improvement
rule has worst-case running time that is at least exponential in the number of nodes and
edges.
Proof: Recall that this rule prefers a switch in v to v′ over a switch in w to w′ if Ξσ(v)⊎
Mσ(w,w

′) ⊴ Ξσ(w)⊎Mσ(v, v
′). Here Mσ(v, v

′) is the shortest possible path from v to any
other node in the graph Gσ ∪ {(v, v′)}. Recall that Gσ is the subgraph of G that contains
edges from σ and the edges of E1, which come from nodes in V1. We define again gadgets

32

for the reverse binary counter structure, which are shown in Figure 19. However, there
are some slight changes from the ’standard’ reverse binary counter. We split node ai into
two nodes of very similar priority, namely ai and a′i. The play is forced to go through
either ai or a′i, like in the binary counter it is forced to go through ai. Likewise, we split
di into di and d′i. Moreover, we add nodes z1 and z2 to the graph, where z1 only has an
outgoing edge towards z2 and z2 only towards x. Node z1 has two incoming edges from
every gadget.

Figure 19: Gadgets for the lowest-valuation-shortest-path rule, and the nodes z1
and z2. Nodes that do not have all their outgoing or incoming edges shown are
outlined in grey

Note that only player 1 has the choice of going to z1. However, if he goes to z1, then
the play will pass z2, which has the largest even priority in the game. Therefore, player
1 will never choose to go to z1. Moreover, the optimal strategies, improving moves and
such are still the same as in the reverse binary counter structure. For the rest, the only
difference is that we define a counter-conservative improvement rule in this context as a
rule that prefers switches in the gadget where either ai or a′i (or di or d′i) has the lowest
valuation instead of just ai (or di). Note that if there is an improving move possible in ji,
then ji (or li) points towards the lowest-valued of ai and a′i (or di and d′i). Then we could
also call an improvement rule counter-conservative if it prefers the gadget where ji (or li)
has the lowest valuation out of all other ji and li where there are improving moves. Then
we could prove analogous to Theorem 3.10 that if this improvement rule prefers to switch
in the gadget with the lowest valued ji or li like in a counter-conservative improvement
rule, then strategy iteration takes an exponential number of iterations.

Now we look at the choices of the lowest-valuation-shortest-path rule. Say we currently
have player 0 strategy σ and the improving move would yield σ′. Note that the only nodes
where player 0 has a choice are ji and li for i = 1, 2, . . . , n, so these are the nodes that can
have improving moves. First, we want to find Mσ(v, v

′) for an arbitrary node v with an
improving move towards v′. Clearly the shortest path that determines Mσ(v, v

′) is a path

33

towards z2, since only then does it contain a node with priority N(4n+ 7) (and not with
N(4n+8)). Suppose v = ji for some i. Then we are looking for the shortest ji-z2-path that
uses edges from σ, σ′ or E1. Note that two such paths are (ji, gi, z1, z2) and (ji, hi, z1, z2).

The other option to reach z2 is to go to Am or Dm for some m > i (whichever one
is reachable, depending on σ) and go from there to z1. However, then the path passes
either fm or km, which have quite large even priority. In particular, this means that
the resulting path is ⪯-longer than (ji, gi, z1, z2) and (ji, hi, z1, z2). We conclude that the
shortest ji-z2-path is (ji, hi, z1, z2), hence Mσ(v, v

′) = {ji, hi, z1}. We get a similar result
for v = li.

Now we see that Mσ(v, v
′) contains only some nodes with priority at most 6(n + 6),

and z1. So the values of Mσ(ji) and Mσ(li) are very ’close’ to each other with respect to
⪯. Their differences are in particular irrelevant compared to the priorities of ai, a′i, di,
d′i, fi and ki for any i. Hence if we compare two improving moves, one from v towards
node v′, and one from w towards w′, then we need to decide whether Ξσ(v)⊎Mσ(w,w

′) ⊴
Ξσ(w)⊎Mσ(v, v

′). This is then the case if and only if Ξσ(v) ⊴ Ξσ(w), since the difference
between Ξσ for two different nodes that have a choice is much larger than the difference
between Mσ (since they differ in which ai, a′i, di or d′i the paths contain). Note that if
there is an improving move in ji, then σ(ji) is currently the lowest valued of ai and a′i.
Therefore Ξσ(ji) is almost the same as the lowest valuation of ai and a′i. So in particular,
if ai or a′i has the lowest valuation of all ai, a′i, di, d

′
i where there is an improving move in

the same gadget, then ji is the preferred improving move by our improvement rule, so we
prefer to switch in Ai.

Likewise, if di or d′i has the lowest valuation, then we prefer to switch from li in Di.
From this, we conclude that this improvement rule behaves like a counter-conservative
improvement rule, hence strategy iteration takes a number of iterations exponential in n.
Because the number of nodes and edges is linear in n, the running time is also exponential
in the number of nodes and edges. □

34

4 An alternative lower bound proof technique

In this section we explore a link between parity games and linear programming. First, we
look at a new algorithm for solving parity games, called subgame iteration. This algorithm
is somewhat similar to strategy iteration, but it considers partial strategies instead of
strategies. We also look at a specific linear program that can be constructed for any parity
game, and we show at the end that this LP can be used to solve the parity game. The
main purpose of this section is then to show that the subgame algorithm behaves the same
as the simplex algorithm on this related linear program. We show that the intermediate
solutions of both algorithms have a one-to-one correspondence and that both algorithms
need the same amount of iterations. This may show to be very useful, as this provides a
way of translating lower bound proofs for the complexity of subgame iteration into linear
programs that exhibit the same behavior for the simplex algorithm.

First some technical assumptions. We assume in this section that all priorities occurring
are unique, and that there are n nodes in the game G, and that the priorities are at least
1 and at most 2n.

Moreover, some notation is used throughout this section. First of all we extend the
linear order ⪯ from Section 2.4 to the space M(Q) of multisets of Q (recall that Q is the
set of priorities that occur in the graph). We say B1 ≺ B2 if and only if:

• m := max((B1\B2) ∪ (B2\B1)) ∈ B1 and m is odd

• m := max((B1\B2) ∪ (B2\B1)) ∈ B2 and m is even

. For ease of notation we also compare multisets of nodes (instead of priorities) with ⪯. We
say that, if C1 and C2 are multisets of nodes, and B1 and B2 are the multisets of priorities
of the nodes in C1 and C2, respectively, then C1 ⪯ C2 if and only if B1 ⪯ B2. We even
allow comparison between multisets of nodes and of priorities, like B1 ⪯ C2 (which means
B1 ⪯ B2).

4.1 The subgame improvement algorithm

Now we define the subgame improvement algorithm. The algorithm maintains two sets: S
and T , where both are empty at the start of the algorithm. Throughout the algorithm, we
require the following of the sets:

• S ⊆ E, and if (v, w) ∈ S, then v ∈ V0, and there is no other edge (v, z) in S.

• T ⊆ V1.

The set S can be seen as a partial strategy for player 0, and set T can be seen as a
set of player 1 controlled nodes that are somewhat good for player 0. Associated with a
pair of sets S, T is the valuation function ΨS,T : V → P(Q ∪ {2n + 2}). This function
is quite similar to the second component (path component) of Ξσ for strategy iteration.
Moreover, it is also comparable to the distances in algorithm to solve the longest shortest
path problem by Björklund et al. [4]. The difference is that, as we show, the distances here
are always better than ’zero’, which is represented by the empty set for subgame iteration.
The space of valuations contains only subsets of Q, so we can compare valuations with the
linear order ⪯. The main idea of the algorithm is that it iteratively improves the valuations
of S and T by making small changes. Note that this linear order is equivalent to saying
B1 ⪯ B2 if and only if (1, B1, 0) ⊴ (1, B2, 0).

The valuation ΨS,T is calculated as follows. Let GS,T be the subgraph of G with only
edges that are either in S or come from a node in T . We then have the following:

35

• ΨS,T (v) = ∅ if v has no outgoing edges in GS,T .

• ΨS,T (v) = {2n+ 2} if from v we cannot reach any nodes that do not have outgoing
edges in GS,T .

• Else, ΨS,T (v) is equal to the value of the shortest path in GS,T towards a node without
outgoing edges. The value of a path (v, v1, v2, . . . , vk), where vk has no outgoing edges
in GS,T , is given by the set {p(v), p(v1), p(v2), . . . p(vk−1)}. The shortest path is the
path with the ⪯-smallest set. Existence of such a shortest path is proved later.

We now call S′, T ′ an improvement of S, T if S′, T ′ are created from S, T by one of the
following operations:

• For a vertex v ∈ V0 that has no outgoing edges in GS,T , add an edge (v, w) to S with
ΨS,T (w) ∪ {p(v)} ≻ ∅.

• Replace an edge (v, w) ∈ S - if v ∈ V0 and ΨS,T (v) ̸= {2n + 2} - by another edge
(v, z) such that ΨS,T (z) ≻ ΨS,T (w).

• Take a node v ∈ V1 that has the property that ΨS,T (w) ∪ {p(v)} ≻ ∅ for all edges
(v, w) ∈ E, and add it to T .

Now the algorithm works as follows:

Algorithm 2 Subgame improvement
1: start with S = T = ∅
2: repeat
3: (S, T)← (S′, T ′)
4: if an improvement to S, T exists then
5: Let S′, T ′ be an improvement to S, T
6: else
7: (S′, T ′) = (S, T)
8: end if
9: until (S, T) = (S′, T ′)

10: return S, T

Example

In the following graph G (Figure 20) with 4 nodes, suppose we currently have S = {(v2, v1)}
and T = {v4}. The graph GS,T then contains the edge that is in S and the two outgoing
edges from v4. We can find the valuations ΨS,T of the nodes of G using the subgraph GS,T .
Nodes v1 and v3 have no outgoing edges in GS,T , so ΨS,T (v1) = ΨS,T (v3) = ∅. Node v2 has
exactly one path towards a node without outgoing edges, which is the path (v2, v1). hence
its valuation is {p(v2)} = {2}. Node v4 has two possible paths towards nodes without
outgoing edges: towards v1 or v3. The shortest of the two is the one towards v3, hence
ΨS,T (v4) = {4}.

Now we can look at improving moves for this S, T . Adding node v1 to T can only
be an improving move if ΨS,T (v1) ∪ {p(v1)} ≻ ∅, since (v1, v1) is an outgoing edge
from v1. However, ∅ ∪ {1} ≺ ∅, so adding v1 is not an improving move. Replacing
edge (v2, v1) by edge (v2, v3) is improving if ΨS,T (v3) ≻ ΨS,T (v1), which is not true, as
ΨS,T (v3) = ΨS,T (v1) = ∅. Finally, adding edge (v3, v4) to S is improving if
ΨS,T (v4) ∪ {p(v3)} ≻ ∅. In this case, ΨS,T (v4) ∪ {p(v3)} = {3, 4} ≻ ∅, so this is an

36

improving move. So in this case, there is only one improving move possible, and in the
next iteration we get S = {(v2, v1), (v3, v4)} and T = {v4}.

Figure 20: The graph G with node priorities, and the resulting subgraph GS,T .

The subgame iteration algorithm has some similiarities to strategy improvement as in
[18]. Its valuation is almost the same as the second component of the valuation in strategy
improvement, except that we always have Ψ ⪰ ∅ (we prove this later) and that there is
some ’infinity’-element {2n+2}. Moreover, we see in Section 5 that under some conditions,
subgame iteration and strategy iteration behave exactly the same on sink parity games.
In the remainder of this section, we show how subgame iteration can be linked to an LP
for any parity game.

4.2 Linear programming formulation

We now introduce a linear program, on which we show later that the simplex algorithm
behaves similar to the subgame iteration algorithm on a parity game. This linear program
is constructed from an arbitrary parity game on the graph G = (V,E) where, of course
V = V0 ∪ V1. Let Ei = {(v, w) ∈ E|v ∈ Vi} for i ∈ {0, 1}. The LP contains the following
variables:

• For every node v in V1, a variable tv. The idea is that in the simplex algorithm,
tv being in the basis corresponds to v being in T for subgame iteration.

• For every edge e ∈ E0 = {(v, w) ∈ E : v ∈ V0}, we have a variable se. The idea is
that in the simplex algorithm, se being in the basis corresponds to edge e being in S
for subgame iteration.

• For every node v ∈ V , we have a variable zv. The idea is that zv being in the
basis in the simplex algorithm corresponds to v not having any outgoing edges in
graph GS,T in the subgame algorithm (so v ∈ V1\T or v ∈ V0 and there is no
edge (v, w) in S).

37

The LP has an equation for every node in V . In matrix form, it is as follows:

min 1Tz

s.t. A

zs
t

 = 1

zs
t

 ≥ 0

where Aij =


1 j corresponds to zi, s(i,i′) or ti

−b−(−3)p(i
′)

j corresponds to s(i′,i) or ti′ with (i′, i) ∈ E1

0 otherwise

Where b = n3n, and where the variables are vectors s ∈ RE0 , t ∈ RV1 and z ∈ RV . In
equation form, the LP is as follows:

min
∑
v∈V

zv

s.t.
∑

v′:(v′,v)∈E0

−b−(−3)p(v
′)
s(v′,v) +

∑
v′:(v′,v)∈E1

−b−(−3)p(v
′)
tv′

+
∑

v′:(v,v′)∈E0

s(v,v′) + zv = 1 ∀v ∈ V0

∑
v′:(v′,v)∈E0

−b−(−3)p(v
′)
s(v′,v) +

∑
v′:(v′,v)∈E1

−b−(−3)p(v
′)
tv′ (2)

+tv + zv = 1 ∀v ∈ V1

se, tv, zv′ ≥ 0 ∀e ∈ E0, v ∈ V1, v
′ ∈ V

This LP (2) can be seen as the dual of the LP described by Schewe [24]2. As an initial
solution for the simplex algorithm, we take z as a basis, leading to the basic feasible
solution zv = 1 ∀v ∈ V .

2If player 0 and player 1 are switched, and the variables in the LP described by [24] are free variables
instead of just nonnegative, as the optimum is attained for nonnegative variables, then taking the dual
yields the LP (2).

38

4.3 Illustration of subgame iteration and simplex algorithm

We use the same graph G as before (see Figure 21).

Figure 21: The graph G with node priorities, and the graph GS,T .

For this graph, we have the following linear program:

min zv1 + zv2 + zv3 + zv4

s.t. −b−9s(v2,v1) − b3tv1 + tv1 + zv1 = 1

−b−81tv4 + s(v2,v1) + s(v2,v3) + zv2 = 1

−b−9s(v2,v3) − b−81tv4 + s(v3,v4) + zv3 = 1

−b27s(v3,v4) − b3tv1 + tv4 + zv4 = 1

s, t, z ≥ 0 (3)

Suppose we currently have the basis s(v2,v1), tv4 , zv1 , zv3 in the simplex algorithm. The cor-
responding basic (feasible) solution has tv4 = 1, s(v2,v1) = zv3 = 1 + b−81 and
zv1 = 1 + b−9 + b−90. This basis corresponds to S = {(v2, v1)} and T = {v4} in sub-
game iteration (we formalize what this correspondence exactly means later). Now we want
to see what improving pivoting moves there are. If adding variable x to the basis is im-
proving, that is the same as saying that if we increase x by a little bit (and compensate
for it with the basic variables), then the objective function slightly decreases.

So, is adding variable tv1 to the basis improving? If we increase it slightly, then we
can decrease zv1 by that amount in the first equation of 3, but we also must compensate
by increasing zv1 by b3 times as much to correct in the first equation of the LP. We also
must increase tv4 in the fourth equation, because of which we must increase zv3 in the third
equation and some more variables as a result, but we ignore that part for now. From the
first equation we know that the objective function (in particular zv1) increases by b3 as
much as it decreases, so adding t1 is not improving. In particular, because of the loop on
v1 and its odd priority. In subgame iteration, adding v1 was also not improving because of
this loop.

We may also wonder if adding s(v2,v3) to the basis is improving. If we increase s(v2,v3) by
a little amount ϵ, then s(v2,v1) decreases by ϵ to make the second equation of 3 correct. Then,
zv1 decreases by b−9ϵ, while zv3 increases by b−9ϵ because of the first and third equation. So
the objective function stays the same, hence adding s(v2,v3) is not an improving pivot. Note

39

that the reason for this is that both zv1 and zv3 are basic, or in terms of subgame iteration,
we have that both v1 and v3 have no outgoing edges, so ΨS,T (v1) = ΨS,T (v3) = ∅. Recall
that also switching edge (v2, v1) for edge (v2, v3) was not improving in subgame iteration.

Finally, we may wonder if adding variable s(v3,v4) to the basis is improving. If we
increase s(v3,v4) by a small amount ϵ, then zv3 decreases by ϵ to make the third equation
of (3) correct. Because of the fourth equation, tv4 must increase by b27ϵ. Therefore in the
third equation, zv3 must increase by b27−81ϵ. Also, in the second equation, we see that
because tv4 increases by b27ϵ, the variable s(v2,v1) must increase by b27−81ϵ. Finally, for that
reason in the first equation, we must increase z1 by b27−81−9. In summary, z3 decreases by
ϵ, and z1 and z3 increase by the small amounts b27−81−9ϵ and b27−81ϵ. Hence s(v3,v4) is an
improving pivot. We could say this in a more general way: for every path P from v4 to a
node w without outgoing edges, following the train of logic along the paths we found that
zw must increase by an amount

b
−

∑
v∈P∪{v3}(−3)p(v) ϵ

In particular, if ΨS,T (v4) ∪ p(v3) ≻ 0, then P ∪ v3 ≻ 0 for every path from v4 to a node
without outgoing edges. Then the exponent in the above equation is negative, so the
increase in zw is negligible compared to the decrease in zv3 . This is the main idea of the
link between the simplex algorithm and subgame iteration: we link the question whether
a variable is improving (negative reduced cost) to the question whether a certain set of
priorities is ⪯-better than the empty set or another valuation Ψ. The remainder of this
section proves this rigorously.

4.4 Proof outline

Our goal is to show that the subgame iteration algorithm on a game on G and the simplex
algorithm on (2) can be considered the same algorithm. In each step, their options for
choosing an improving move and choosing a variable to pivot over have a one-to-one corre-
spondence. This is very useful, as this allows us to construct an example with exponential
running time for some improvement rule in the subgame iteration algorithm, which then
immediately implies that the simplex algorithm with a related pivot rule has exponential
running time. In Section 5, we construct this relation explicitly for some well-known pivot
rules.

The largest part of this section is devoted to proving that the two algorithms are ’the
same’. To do so, we first find estimates for the elements of B−1, where B is a basis that can
be encountered in the simplex algorithm. We show that there is a close relation between
elements of B−1 and ⪯-shortest paths in the graph GS,T . This is shown in Lemma 4.5.
But before that, we first prove a few lemmas that help us get to this estimate.

If we then have estimated the elements of B−1, we can explicitly calculate the reduced
costs of the linear program, the values of the basic feasible solution and the elements
of B−1A, which determine which variable would leave the basis. We can then check all
the cases one by one to see that the options for pivoting are the same as the options for
improving moves, hence showing the two algorithms are ’the same’.

Finally, we show that the subgame iteration algorithm and the simplex algorithm on
(2) both solve the parity game. This means that they find a winning strategy for player 0
and find the winning set for player 0.

Recall that GS,T is the subgraph of G which contains only the edges of S and outgoing
edges from T . Also, recall that we assumed that all priorities in the graph are unique.
Also, whenever we mention a path P , that starts at a vertex i and ends on a vertex j, we
do not count the endpoint of the path as being in the path.

40

Moreover, we use the notation

b(P) := b−
∑

v∈P (−3)p(v)

where P is a path, walk or multiset of nodes. We also use the same notation for multisets
of priorities, e.g.

b(M) := b−
∑

p∈M (−3)p

where M ∈ M(Q) is a multiset of priorities. Note that, if X and Y are both multisets or
walks where every node or priority occurs at most twice, then

b(X) ≤ b(Y)⇔ X ⪰ Y

we often use this fact to show connections between values of matrices and values of paths.

4.5 Uniqueness of valuation and values in reverse basis

We show that valuations are unique in subgame iteration and we estimate the values of
B−1. First, we prove a statement about matrices, which helps to bound error terms in
calculating B−1.

Lemma 4.1. Let A ∈ Rn×n
≥0 be a square nonnegative matrix. We view A as the matrix

of edge weights in a complete directed graph G (recall that this graph contains all possible
edges). This means Aij represents the weight of edge (j, i). Suppose the product of all the
edges in any cycle is bounded from above by some constant number c, with 0 < c < 1. More
formally, this means the following: let 1 ≤ l ≤ n, and let q1, q2, . . . , ql+1 be a sequence of
distinct elements of [n], except that q1 = ql+1. Then for any such sequence we have

l∏
m=1

Aqmqm+1 ≤ c

Suppose also that Mij is an upper bound on the product of the edge weights on any path
from j to i for all pairs i, j in [n]. Formally, this means for any sequence q1, q2, . . . , ql+1

with 0 ≤ l ≤ n−1 of distinct elements of [n] (except maybe q1 = ql+1), that satisfies q1 = i,
ql+1 = j, we have

l∏
m=1

Aqmqm+1 ≤Mij

(note that l = 0 is allowed here so Mii ≥ 1). Then we can bound the elements of powers
of A as follows:

Ap
ij ≤ np−1c⌊

p
n
⌋Mij ∀i, j ∈ [n], p ∈ N

Proof: We write p = kn+k′−1, with k = ⌊ pn⌋, and k′ ∈ N. Consider the matrix Akn+k′−1.
Note that we can explicitly write the elements of Akn+k′−1 as the following sum:

Akn+k′−1
i,j =

∑
q1,q2,...,qkn+k′∈[n]

q1=i, qkn+k′=j

kn+k′−1∏
m=1

Aqmqm+1 (4)

41

We prove the lemma by bounding this sum from above. Consider a term
kn+k′−1∏

m=1
Aqmqm+1

of this sum. We could view this as the product of the edges on a kn + k′ − 1-edge long
walk from node qkn+k′ to q1. Because the qm can only have n different values and be-
cause kn + k′ ≥ n + 1, we can find m1,m2 in {1, 2, . . . , kn + k′} with qm1 = qm2 and
0 < m2−m1 ≤ n by the pigeon hole principle, and the qm in between qm1 and qm2 unique.

Because of the assumption of the lemma, we know
m2−1∏
m=m1

|Aqmqm+1 | ≤ c. Then we can create

a sequence q′1, q
′
2, . . . , q

′
kn+1−m2+m1

by removing qm1 , qm1+1, . . . , qm2−1 from the sequence
q1, . . . , qkn+k′ . We could view this as removing a cycle from the kn+k′−1-edge long path.
This results in the following inequality:

kn+k′−1∏
m=1

Aqmqm+1 ≤ c ·
kn+k′−1−m2+m1∏

m=1

Aq′mq′m+1

We can, moreover, repeat this process of ’cutting out cycles’ from the sequence and bound-
ing the term until we cannot go any further, and then the resulting sequence has at most
n terms. Say we have as a result the sequence q′′1 , q

′′
2 , . . . , q

′′
l+1 with 0 ≤ l ≤ n − 1. Then

we have

kn+k′−1∏
m=1

Aqmqm+1 ≤ cf ·
l∏

m=1

Aq′′mq′′m+1

where f ∈ Z ≥ 0 and 0 ≤ l ≤ n − 1, and we know f ≥ k, since in each step at most n
elements are removed from the sequence and we started with kn+ k′ elements. Note that
still q1 = q′′1 and that qkn+k′ = q′′l+1, and also the elements in the sequence q′′1 . . . , q

′′
l+1 are

unique. Then, we know

kn+k′−1∏
m=1

Aqmqm+1 ≤ cf ·
l∏

m=1

Aq′′mq′′m+1
≤ ck ·Mij (5)

Finally, note that there are nkn+k′−2 sequences of length kn+ k′ where the first element is
i and the last is j if kn+ k′ ≥ 2, so the sum (4) has nkn+k′−2 terms. Then (4) yields

Akn+k′−1
i,j

(4)
≤

∑
q1,q2,...,qkn+k′∈[n]

q1=i, qkn+k′=j

kn+k′−1∏
m=1

Aqmqm+1

(5)

≤
∑

q1,q2,...,qkn+k′∈[n]

q1=i, qkn+k′=j

ck·Mij ≤ nkn+k′−2ckMij (6)

and this is exactly what we needed to prove. ■
Before we start to estimate the elements of B−1, we first need to restrict ourselves to

bases that we can actually encounter in the simplex algorithm. We introduce the notion of
nice pairs of sets and a nice basis, and we show later that all the bases that we encounter
with the simplex algorithm are nice. Thus we will only need to calculate B−1 for a nice
basis.

Definition 4.2. We call a pair of sets (S, T) nice if they satisfy the following conditions:

• S ⊆ E, and if (v, w) ∈ S, then v ∈ V0, and there is no other edge (v, z) in S.

• T ⊆ V1.

42

• In the subgraph GS,T , there is no cycle with as its highest priority an odd number.

• In the subgraph GS,T , for any path P that ends on a node without outgoing edges,
we have P ⪰ ∅.

We call a basis of the LP (2) a nice S, T -basis if (S, T) is nice and the basic variables
consist exactly of the s(v,v′) for the edges (v, v′) ∈ S, the tv for v ∈ T and the zv of the
vertices v that have no outgoing edges in GS,T . We also require the related basic solution
to be feasible for (2). We let the basis be the submatrix B of A, where the i-th column of
B corresponds to either zi, the edge in S coming from vi or ti (we can assume so since we
could just reorder the columns of A and the variables corresponding to these columns).

Next, we show that shortest paths are unique in GS,T , and that these shortest paths
are related to values of

∏l−1
m=1 |Bqmqm+1 |. Also, we show that the values of the valuation Ψ

are unique if they are not equal to ∅ or {2n+ 2}.

Lemma 4.3. (uniqueness of shortest path) Suppose we have a nice (S, T) and the corre-
sponding submatrix B of A (with those columns as defined in Definition 4.2). Then the
following statements hold:

1. For any i, j, if a path exists from i to j in GS,T , then the ⪯-shortest walk P from
i to j in the graph GS,T exists and is unique.

2. For any i, j, if a sequence q1, q2, . . . , ql+1 ∈ [n] exists such that
∏l

m=1 |Bqmqm+1 | is
nonzero, then the largest possible value of

∏l
m=1 |Bqmqm+1 | is attained for one unique

sequence q1, q2, . . . , ql+1 ∈ [n]. Moreover, the largest possible value of
∏l

m=1 |Bqmqm+1 |
is equal to

b(P) = b−
∑

v∈P (−3)p(v)

Proof: First, we prove the first statement. Since there are no cycles with an odd
number as the highest priority, any walk with cycles can be made ⪯-shorter by cutting
out cycles. Hence it is clear that if there is a path from i to j, any ⪯-shortest walk must
be a path, and as there are finitely many paths, a shortest path exists. Suppose there are
two shortest paths from i to j with the same value, say P1 and P2. Since the priorities
of all vertices are unique, the two paths must contain the exact same vertices, just in a
different order. In particular, we can say P1 = (P 1

1 , w, P
2
1) and P2 = (P 1

2 , w, P
2
2) with

{p|p ∈ P 1
1 } ≠ {p|p ∈ P 1

2 } for some vertex w.3 W. l. o. g. P 1
1 ≺ P 1

2 . This implies P 2
1 ≻ P 2

2 ,
as the value of P1 and P2 is equal. But then (P 1

1 , w, P
2
2) is an i, j-path as well, with a

shorter distance than P1 and P2, and that is a contradiction. For the second part, we see
that for two i, j-paths P1 and P2, we have P1 ⪯ P2 if and only if

b(P1) = b
−

∑
v∈P1

(−3)p(v) ≥ b
−

∑
v∈P2

(−3)p(v)
= b(P2)

and suppose Pk = (qkl+1 = i, qkl , q
k
l−1, . . . , q

k
1) with qk1 = j (recall we do not count the

endpoint of a path) for k = 1, 2. Also, recall that |Bk1k2 | for k1 ̸= k2 equals −b(−3)p(k2) if
(k2, k1) ∈ GS,T and 0 otherwise. Then we also have P1 ⪯ P2 if and only if

l∏
m=1

|Bq1mq1m+1
| = b(P1) ≥ b(P2) =

l∏
m=1

|Bq2mq2m+1
|

3For P 1
1 and P 1

2 we make an exception and do count the last vertex as being in the path to keep notation
simple.

43

hence because the ⪯-shortest i, j-path (if it exists) is unique, we also see that the sequence
that has the largest

∏l
m=1 |Bqmqm+1 | is unique. Also, if there is no i, j-path, then there is

also no sequence that yields a positive
∏l

m=1 |Bqmqm+1 |, so its largest value is 0. ■

Lemma 4.4. (uniqueness of valuation) If (S, T) is nice and we have two distinct vertices
v, w with ΨS,T (v),ΨS,T (w) ̸= ∅, ΨS,T (v),ΨS,T (w) ̸= {2n+ 2}, then ΨS,T (v) ̸= ΨS,T (w).
Proof: Suppose ΨS,T (v) = ΨS,T (w). Then let P1 be the shortest path from v to a node
without outgoing edges in GS,T , and let P2 be defined likewise for node w. We see that P1

and P2 contain the same priorities, hence by uniqueness they contain the exact same nodes,
only in a different order. We know P1 starts with v, and P2 with w, and therefore both
paths contain at least two nodes. Then we can say P1 = (P 1

1 , x, P
2
1) and P2 = (P 1

2 , x, P
2
2),

for some vertex x and with {p|p ∈ P 1
1 } ̸= {p|p ∈ P 1

2 }.4 W. l. o. g. P 1
1 ≻ P 1

2 , and that
implies P 2

1 ≺ P 2
2 . Hence (P 1

2 , x, P
2
1) is a path from w to a node without outgoing edges in

GS,T that is ⪯-shorter than P2, and that is a contradiction. ■
Now that we proved these results, we are ready to estimate the elements of B−1.

Lemma 4.5. If (S, T) is nice, then there is a corresponding nice S, T -basis B for (2).
Moreover, the inverse of B can be approximated in the following way:

1. 1 ≤ B−1
ii ≤ 1 + 2

nn for i ∈ [n].

2. If there is no cycle containing i in GS,T , then B−1
ii = 1.

3. If i ̸= j and there is no path from i to j in GS,T , then B−1
ji = 0.

4. If i ̸= j and there is a path from i to j in GS,T , then let P be the ⪯-shortest path
from i to j. then

b(P) = b−
∑

v∈P (−3)p(v) ≤ B−1
ji ≤ b(P)(1 +

2

nn
)

Proof: The proof is outlined as follows. We first show that there is a nice S, T -basis.
After that, we estimate the elements of B−1 using the terms of an infinite series.

First, we need to show that there is a nice S, T -basis. Suppose B is the submatrix of A
consisting of the columns that correspond to the s, t, z that are required to be in the basis
according to Definition 4.2. To prove that B is nice, it suffices to show that B is invertible
and the related basic solution is feasible. We assume w.l.o.g. that the i-th column of B
corresponds to either zi, s(i,j) or ti (as we could just change the order of the columns in A
and the order of the elements of s, t, z).

We introduce the matrix B̃ ∈ Rn×n, which we define as follows:

B̃ij =

{
b−(−3)p(j) (j, i) ∈ S or (j, i) ∈ E1 and j ∈ T

0 otherwise

Note that B = I − B̃. Also note that B̃ can be seen as a matrix containing priority-
dependent positive edge weights for all edges in the graph G. Now we look at the series
I + B̃ + B̃2 + B̃3 + . . . and we claim that this sequence converges elementwise to the
inverse of B. We want to use Lemma 4.1 to bound the terms of the series. Note that,
if i ̸= j, then |Bij | = |B̃ij |. Then from Lemma 4.3 it follows that the largest value
of

∏l
m=1 |B̃qmqm+1 | (where the sequence q1, q2, . . . , ql+1 is defined as in Lemma 4.3) is

unique if it is nonzero, and its value equals b(Pji) for the shortest j, i-path Pji if such
4Again we count the last vertex in P 1

1 and P 1
2 .

44

a path exists. It is 0 otherwise. Moreover, since (S, T) is nice, every cycle in GS,T has
an even number as a highest priority. Therefore if q1, q2, . . . , ql+1 corresponds to any
nontrivial i, i-walk P , we have

∏l
m=1 |B̃qmqm+1 | ≤ 1

b , since the term on the left is given
by b−

∑
v∈P (−3)p(v) and −

∑
v∈P (−3)p(v) < 0. So now we have an upper bound of 1

b on the
values of

∏l
m=1 |B̃qmqm+1 | ≤ 1

b corresponding to cycles and an upper bound of b(Pij) or 0
on the values of

∏l
m=1 |B̃qmqm+1 | ≤ 1

b corresponding to paths. Then Lemma 4.1 tells us
that

|B̃k
ij | ≤ nk−1 1

b⌊
k
n
⌋
Mij (7)

where Mij = b(Pji) if a j, i-path exists and Mij = 0 otherwise. Since b = n3n, we see that
the term on the right of (7) decreases exponentially. Also, we can drop the absolute value
notation since B̃ is a nonnegative matrix. Therefore the infinite sum

∞∑
k=0

B̃k
ij

converges for any i, j ∈ [n]. We conclude that the series I + B̃ + B̃2 + B̃3 + . . . converges
elementwise. From that, we see that

B(I+B̃+B̃2+ . . .) = (I−B̃)(I+B̃+B̃2+ . . .) = (I+B̃+B̃2)−(B̃+B̃2+B̃3) = I (8)

hence B is invertible and I + B̃ + B̃2 + B̃3 + . . . is the inverse of B. Then, as we know
all elements of B̃ are nonnegative, we know B−1 has only nonnegative elements, and the
corresponding basic solution is given by B−11, which is nonnegative hence feasible for (2).
We conclude that B is indeed nice, as it is invertible and it yields a basic feasible solution.
Now we estimate the elements of B−1.

We can immediately see that, if there is no nontrivial i, i-walk in GS,T , then∏l
m=1 B̃qmqm+1 = 0 for any sequence i = q1, q2, . . . , ql+1 = i. Therefore B̃l

ii = 0 for all
l ∈ N, since

B̃l
ii =

∑
q1=i,q2,...,ql+1=i

l∏
m=1

B̃qmqm+1 = 0

This implies B−1
ii = 1 by equation (11), so we proved the second statement of the lemma.

Equation (7) also tells us that for any i, j, we have
∞∑

k′=n

B̃k′
i,j =

∞∑
k=1

n∑
k′=1

B̃kn+k′−1
i,j

≤
∞∑
k=1

n∑
k′=1

nkn+k′−2 1

bk
Mij

≤
∞∑
k=1

n∑
k′=1

nkn+n−2 1

n3nk
Mij

=
∞∑
k=1

n−2kn+n−1Mij ≤ n−nMij (9)

Furthermore, Lemma 4.3 tells us that the largest value of
∏l

m=1 |B̃qmqm+1 | over all se-
quences that represent i, j-paths is unique if it is nonzero. Since these values are powers

45

of B, that implies that there is one value of
∏l

m=1 |Bqmqm+1 | that equals Mij , and that all
other values are at most 1

bMij . Then we get

n−1∑
k′=0

B̃k′
i,j =

n−1∑
k′=0

∑
q1,q2,...,qk′+1∈[n]

q1=i, qk′+1=j

k′∏
m=1

B̃qmqm+1 ≤

Mij + (1 + n+ n2 + . . .+ nn−1 − 1)
1

b
Mij ≤Mij + n−2nMij (10)

We conclude from, (8), (9) and (10) that

Mij ≤ B−1
ij =

∞∑
k′=0

B̃k′
ij ≤Mij +

2

nn
Mij (11)

Now, we see that Mii = 1 (Mii = b(Pii) = b(∅)) for any i, and that Mij = 0 if i ̸= j and

there is no path from j to i in GS,T . Also, Mij = b(Pji) = b
−

∑
v∈Pji

(−3)p(v) for the shortest
path Pji if it exists and i ̸= j. Using these values of Mij in (11) gives us statements 1,3
and 4 of the lemma. This completes the proof. ■

4.6 Main results

Now that we estimated B−1, we are able to calculate what happens in the simplex algo-
rithm. This allows us to prove the main result of this section, that the simplex algorithm
on (2) and the subgame iteration algorithm are, in some sense, the same algorithm. We
also show that both algorithms solve parity games.

Theorem 4.6. The following statements hold for the subgame iteration algorithm on a
parity game on G = (V,E) and for the simplex algorithm on the LP (2):

1. All (S, T)-pairs encountered in the subgame iteration are nice and all bases encoun-
tered by the simplex algorithm are S, T -nice for some S, T . This holds for any subgame
iteration improvement rule and for any simplex pivot rule.

2. For a nice S, T and corresponding nice basis, the reduced cost of any variable zv is
always nonnegative.

3. For a nice S, T and corresponding nice basis, the reduced cost of s(v,v′) is negative
if and only if adding (v, v′) to S (and possibly removing another edge from S) is an
improving move in the subgame iteration algorithm that is at (S, T).

4. For a nice S, T and corresponding nice basis, the reduced cost of tv is negative if and
only if adding v to T is an improving move in the subgame iteration algorithm.

Proof: We prove this by induction on the number of iterations done by the subgame
improvement algorithm and the simplex algorithm. As an induction basis, we look at the
initial solutions. For the subgame iteration algorithm, the initial solution is S = T = ∅.
Clearly S ⊆ E and every node of V0 has at most one outgoing edge of S, and also T ⊆ V1.
There are no cycles in GS,T with odd highest priority since there are no cycles, and the
only possible paths are trivial paths, which have value of ∅. Hence (S, T) is nice. The
initial solution of the simplex algorithm, which has z as an initial basis, is feasible, since
z = 1, and B = I is invertible, so it is a nice S, T -basis.

46

As an induction hypothesis, we assume we have some nice (S, T) and a related nice
S, T -basis that are encountered in the algorithms. We now need to prove two things as
an induction step: that the improving moves of the subgame iteration and the simplex
algorithm are related (statements 2,3,4 of the theorem), and that the sets (S, T) and the
related S, T -basis are nice in the next iteration for any pivoting/improvement choice. We
prove first statements 2,3,4 from the theorem for the current iteration, and then statement
1 for the next iteration. To ease notation, we denote Pij for the unique ⪯ shortest path
from i to j (where we still do not count the j at the end) in the graph GS,T . If there is

no i, j-path, then we say Pij = {2n + 2}. We let b(Pij) = b
−

∑
v∈Pij

(−3)p(v) if an i, j-path
exists, and b(Pij) = 0 otherwise. Now we prove the different statements for the current
iteration:

2 Recall that the reduced cost of variable i with basis B is given by ci − cTBB
−1Ai,

where cB contains the costs related to the basic variables, and Ai is the i-column of
A. For variable zi, we have czi = 1 and Azi = ei, where ei is the i-unit vector in Rn.
Note that then B−1Azi is just the i-column of B−1. Note that if zi is in the basis,
then B−1Azi = ei and czi − cTBei = czi − czi = 0. If zi is not in the basis, then recall
that B−1

ji = b(Pij)(1 + ϵij) for some 0 ≤ ϵij ≤ n−n by Lemma 4.5. Also note that
the j-component of cB is 0 if vertex j is in T or has an outgoing edge in S, and it is
equal to 1 otherwise. This yields

czi − cBB
−1Azi = 1−

∑
j∈V :(cB)j=1

B−1
ji = 1−

∑
j∈V :ΨS,T (j)=∅

b(Pij)(1 + ϵij) (12)

In the above equation, we sum over the j without outgoing edges in GS,T , so the j
with ΨS,T (j) = ∅. Now since zi was not in the basis, we know ΨS,T (i) ̸= ∅, hence
ΨS,T (i) ≻ ∅ as (S, T) is nice. Therefore, Pij ≻ ∅ for any j without outgoing edges in
GS,T , and therefore b(Pij) ≤ 1

b for the terms on the right in (12). Hence the reduced
cost of variable zi is positive if zi is not in the basis, as 1

b is very small. We conclude
that the reduced cost czi − cBB

−1Azi is always nonnegative. This completes the
induction step for part 2 of the theorem.

3 Now we look at a non-basic variable s(v,v′). Again, we look at the reduced cost
cs(v,v′) − cBB

−1As(v,v′) . We have cs(v,v′) = 0, and again the i-element of cB is 1 if
ΨS,T (i) = ∅ and 0 otherwise. Moreover, we have

(
As(v,v′)

)
i
=


1 i = v

−b−(−3)p(v) i = v′

0 else

Putting these together, we get

cs(v,v′) − cBB
−1As(v,v′) =

∑
i∈V :ΨS,T (i)=∅

(
b−(−3)p(v) ·B−1

iv′ −B−1
iv

)
=

∑
i∈V :ΨS,T (i)=∅

b(Pv′i ⊎ {v})(1 + ϵv′i)−
∑

i∈V :ΨS,T (i)=∅

b(Pvi)(1 + ϵvi) (13)

47

We distinguish two cases:

• Suppose adding (v, v′) to S (and possibly removing one edge) is an improving
move in the subgame iteration. Note that, whether v had any outgoing edge in
S before or not, we must have that ΨS,T (v

′) ⊎ {p(v)} ≻ ΨS,T (v). This implies
that Pv′i ⊎ {p(v)} ≻ ΨS,T (v) for all i with ΨS,T (i) = ∅. Say the shortest path
determining ΨS,T (v) is Pvj , then we have b(Pv′i ⊎ {v}) ≤ 1

b b(Pvj) for all i with
ΨS,T (i) = ∅. But if we look at the right side of (13), then we see that the
elements in the first summation are therefore much smaller than the largest
element in the second summation, hence we get cs(v,v′) − cBB

−1As(v,v′) < 0.
More precisely, we get

cs(v,v′) − cBB
−1As(v,v′) = −b(ΨS,T (v))(k + ϵ) (14)

where k is an integer with 1 ≤ k ≤ n, and |ϵ| ≤ 2n
nn + n

b + 2n
bnn . This is because

at least one and at most n elements of the summation equal b(ΨS,T)(1 + ϵvi),
and the other terms are at most 1

b times that (we use equation (14) later).
• Suppose on the other hand that adding (v, v′) to S is not an improving move,

which is equivalent to saying ΨS,T (v
′) ⊎ {v} ⪯ ΨS,T (v) or ΨS,T (v) = {2n+ 2}.

We have three cases:
– If ΨS,T (v

′) ⊎ {v} ≺ ΨS,T (v), then by the same argument as before we get
that cs(v,v′) − cBB

−1As(v,v′) > 0, since the rightmost sum of (13) is much
smaller in absolute value than the left sum.

– If ΨS,T (v) = {2n+2}, then b(Pvi) = 0 for all i with ΨS,T (i) = ∅. Therefore
the rightmost sum of (13) equals 0, hence the reduced cost is nonnegative.

– If ΨS,T (v
′) ⊎ {v} = ΨS,T (v), then clearly ΨS,T (v) ̸= {2n + 2} and

ΨS,T (v) ̸= ∅. If v′′ is the current successor of v in GS,T , then any (nontrivial)
path from v passes through v′′. Therefore ΨS,T (v

′′) ⊎ {v} = ΨS,T (v). This
implies ΨS,T (v

′′) = ΨS,T (v
′), hence by Lemma 4.4, ΨS,T (v

′) = ΨS,T (v
′′) = ∅

(note that ΨS,T (v
′′) ̸= {2n+ 2} as that would imply ΨS,T (v) = {2n+ 2}).

Then, we get by Lemma 4.5 that B−1
v′v′ = 1 and B−1

iv′ = 0 for i ̸= v′.
Also, as there are no paths from v to any other i in GS,T except v and
v′′, we get B−1

iv = 0 for these i. Moreover, there is only one walk possi-
ble from v to v′′, namely the path over the edge (v, v′′) hence we can use
B−1 = I+ B̃+ B̃2+ . . . to find that B−1

v′′v = b−(−3)p(v) . Filling all these into
(13) yields

cs(v,v′) − cBB
−1As(v,v′) =

∑
i∈V :ΨS,T (i)=∅

(
b−(−3)p(v) ·B−1

iv′ −B−1
iv

)
= b−(−3)p(v) ·B−1

v′v′ −B−1
v′′v = b−(−3)p(v) · 1− b−(−3)p(v) = 0

Hence we conclude that adding (v, v′) to S is an improving move if and only if the
reduced cost of s(v,v′) is negative. This completes the induction step for part 3 of the
theorem.

4 We look at the reduced cost of non-basic variable tv, with v ∈ V1. This is given by
ctv − cBB

−1Atv . We have ctv = 0, and the i-th element of cB equal to 1 if zi is in
the basis and equal to 0 if zi is not in the basis. We have

(Atv)i =


1 i = v

−b−(−3)p(v) (v, i) ∈ E

0 else

48

Moreover, since v is not in T , v has no outgoing edges in GS,T , hence by Lemma 4.5,
we get B−1

vv = 1 and B−1
iv = 0 for all i ̸= v. Then we get, similar to the other cases,

that

ctv − cBB
−1Atv =

∑
i∈V :ΨS,T (i)=∅

 ∑
v′∈V :(v,v′)∈E

b−(−3)p(v) ·B−1
iv′ −B−1

iv


(Lemma 4.5)

=
∑

i∈V :ΨS,T (i)=∅

 ∑
v′∈V :(v,v′)∈E

b(Pv′i ⊎ {v})(1 + ϵv′i)

− 1 (15)

We have two cases:

• If it is an improving move to add v to T , then this means ΨS,T (v
′) ⊎ {v} ≻ ∅

for all successors of v in G, which implies b(Pv′i ⊎ {v}) ≤ 1
b for all successors v′

of v in G and all i with ΨS,T (i) = ∅. This clearly implies that the expression
on the righthand side of (15) is negative, so the reduced cost is negative.

• If it is not an improving move to add v to T , this means that there is at least
one successor of v in G, say v′′, for which ΨS,T (v

′′) ⊎ {v} ⪯ ∅. But this implies
b(Pv′′i ⊎ {v}) ≥ 1, and hence the righthand side of (15) is nonnegative, so the
reduced cost is nonnegative.

We conclude that the reduced cost of tv is negative if and only if adding v to T is an
improving move in the subgame iteration algorithm. This completes the induction
step for statement 4 of the theorem.

1 Now we show that the sets and related basis in the next iteration are nice if the
current sets (S, T) and related basis are nice. First, we show that the sets (S′, T ′),
resulting from the improving move in subgame iteration, are nice. We do so by
contradiction, so suppose that (S′, T ′) is not nice. Clearly the first two conditions of
nice sets (Definition 4.2) are satisfied. We use a simplified notation: by A ⊎B for A
a (multi)set of priorities and B a set of nodes, we mean A ⊎B := A ⊎ {p(v)|v ∈ B}.
There are three cases left:

• Suppose adding an edge (v, v′) to S (and possibly removing another) creates a
cycle with an odd number as its highest priority. Then this cycle, say C, must
contain v, as (S, T) is nice. Note that C\{v} is a path from v′ to v in GS,T .
Then we can put C\{v} before any path from v to create a path from v′. In
particular, for any path Pvj in GS,T where j is a vertex with ΨS,T (j) = ∅, we
also know that (C\{v}, Pvj) is a path from v′ to j in GS,T . This implies that
ΨS,T (v

′) ⪯ ΨS,T (v) ⊎ C\{v}, which yields

ΨS,T (v) ≺ ΨS,T (v
′) ⊎ {v} ⪯ ΨS,T (v) ⊎ C

where the first inequality is because adding (v′, v) is improving. But that is not
possible as we assumed C has odd highest priority, and therefore
ΨS,T (v) ≻ ΨS,T (v) ⊎ C.

• Suppose adding a vertex v to T creates a cycle C with an odd highest priority.
Then this cycle contains v, and say v′ is the successor of v in the cycle. Then note
that C\{v} is a path from v′ to v in GS,T , and also v has no outgoing edges
in subgraph GS,T . Therefore ΨS,T (v

′) ⪯ C\{v}. This yields, together with

49

ΨS,T (v
′)⊎{v} ≻ ∅ (which we get because we are looking at an improving move)

the following:

∅ ≺ ΨS,T (v
′) ⊎ {v} ⪯ (C\{v}) ⊎ {v} = C

and this is a contradiction as C ≺ ∅.
• Suppose adding (v, v′) to S or adding v to T creates a path towards a node

with ΨS,T less than or equal to ∅. This is clearly not possible, since the value
of the shortest path from v to a node without outgoing edges is increased by
the improving move (as we require for example ΨS,T (v

′)⊎ {p(v)} ≻ ΨS,T (v) for
adding edge (v, v′)).

So we conclude that (S′, T ′) is also nice for any improving move.

Next, we need to prove that the simplex basis resulting from pivoting on s(v,v′) or
tv results in a nice corresponding S′, T ′-basis. We already know that the variable
that enters the basis corresponds to an improving move in subgame iteration, and
that the sets (S′, T ′) resulting from the improving move are nice. We then know
by Lemma 4.5 that there exists a nice basis B′ corresponding to (S′, T ′). We argue
that the simplex algorithm removes the ’right’ variable from B to arrive at basis B′.
Suppose w. l. o. g. we are adding variable s(v,v′) to the basis B. We slowly increase
the value of s(v,v′) and see which of the current basic variables becomes 0 first. This
variable is removed by the simplex algorithm. Note that the basic feasible solution
corresponding to B′ has value equal to (B′)−11 ≥ 1 > 0. Therefore we see that, when
we increase the value of the variable that enters the basis, the first basic variable that
becomes 0 can only be the one that has to leave the basis to get to B′. (i.e. zv if
S had no outgoing edges from v or we add a vertex to T , or otherwise s(v,v′′) when
(v, v′′) ∈ S). So the basis resulting from the pivoting step is a nice S′, T ′-basis. This
completes the proof of the induction step for statement 1 of the theorem.

Now we proved that statements 2,3,4 of the theorem hold for the current iteration if we
have a nice basis and corresponding nice basis, and that statement 1 holds for the next
iteration. Now we completed the induction step, hence this completes the proof of the
theorem. □

Corollary 4.7. The statements of Theorem 4.6 also hold if we start subgame iteration
with an arbitrary pair of nice sets (S, T), and the simplex algorithm with the basis related
to S, T .
Proof: According to Lemma 4.5, there always exists a corresponding nice basis for S, T .
This provides an induction basis. The induction step of the induction proof would be
exactly the same as for Theorem 4.6. ■

Now we have a framework for showing that a certain pivot rule on the simplex algorithm
has exponential running time: we can show that the improvement rule that makes the
same choices has exponential running time on a class of parity games. Finally, although
not needed in the context of lower bounds, we show that both these algorithms actually
solve the parity game.

Theorem 4.8. The subgame iteration algorithm terminates. The resulting set S - together
with an arbitrary choice for the nodes in V0 that do not yet have an outgoing edge - form
a strategy that is winning for the winning set of player 0 (hence, an optimal basis for (2)
forms an optimal player 0 strategy in a similar manner). The winning set is given by the
vertices with ΨS,T (v) = {2n+ 2}.

50

Proof: Note that an optimum exists for (2), since the objective value is bounded from
below by 0 and there are feasible solutions. From Theorem 4.6 it follows immediately that
both algorithms terminate, since the simplex algorithm terminates.

Now we show that S yields an optimal strategy by contradiction. Let W0 be the winning
set of player 0. Suppose that the algorithms terminate, resulting in the sets S and T , and
that S cannot be extended to a strategy that wins for player 0 on W0.

Furthermore, let σ be a strategy that wins for player 0 on W0, and let

S′ = (S ∩ {(v, w) : v ∈ V0\W0}) ∪ {(v, σ(v)) : v ∈ V0 ∩W0}

So S′ is the same as S, except in W0 its edges are determined by σ. Moreover, let
T ′ = T ∪ W0. First of all, note that in GS′,T ′ , there are no edges moving out of W0.
Otherwise, this would imply that player 0 moves out of the winning set for strategy σ, or
that player 1 can move out of W0. The first contradicts the assumption that σ is winning
in W0 and the second that W0 is the winning set.

Now the goal is to show that the value of the objective function (1Tz) is lower for the
basic feasible solution related to S′, T ′ than for S, T . This would be a contradiction with
the assumption that the basic feasible solution related to S, T was optimal. Therefore it
would prove that the assumption was wrong and imply that S, T yield a winning strategy
for W0. It is clear that (S′, T ′) is also nice, since

• There are no cycles with odd highest number in W0 in the graph GS′,T ′ (as σ is
winning there)

• There is no path from a node in W0 to a node without outgoing edges in GS′,T ′ , since
there are no such nodes in W0 and no edges leaving W0.

• The rest of the graph is the same as GS,T , which is nice.

.
Let i be a vertex without outgoing edges in V \W0. Let B′ be the basis related to

(S′, T ′) Recall that

B̃k
ij =

∑
q1=j,q2,...,ql+1=i

k∏
m=1

B̃qmqm+1 =
∑
r∈Rk

ji

b(r)

where Rk
ji is the set of k-long walks in GS,T from j to i. Supppose i has no outgoing

edges in GS′,T ′ . Now if we look at GS′,T ′ , then we see that any walk from j to i can only
contain nodes in V \W0, as i cannot lie in W0 and W0 has no outgoing edges. Hence any
walk from j to i in GS′,T ′ must also exist in GS,T . From this we conclude B̃k

ij ≥ (B̃′)kij
for all i without outgoing edges in GS′,T ′ , and for all k ≥ 0 and j ∈ V . Therefore, as
B−1 = I + B̃ + B̃2 + . . ., we have

B−1
ij ≥ (B′)−1

ij

for all i without outgoing edges and j ∈ V . Moreover, since S, T do no result in a strategy
winning on W0, there is at least one vertex j in W0 that has a path towards a node without
outgoing edges i in GS,T (since otherwise it would only be able to reach cycles with an
even highest priority, because (S, T) is nice). Hence B−1

ij > (B′)−1
ij for these i, j. Moreover,

51

note that any node without outgoing edges in GS′,T ′ has also no outgoing edges in GS,T .
Putting all these together, we find

1TzB′ =
∑
i∈V

no outgoing edge in GS′,T ′

zi =
∑
i∈V

no outgoing edge in GS′,T ′

∑
j∈V

(B′)−1
ij

<
∑
i∈V

no outgoing edge in GS′,T ′

∑
j∈V

B−1
ij

≤
∑
i∈V

no outgoing edge in GS,T

∑
j∈V

B−1
ij = 1TzB (16)

where zB, zB′ , respectively, are the variables z resulting from basis B and B′. Note that
if zi is in the basis, then its value is given by (B−11)i. From (16) we see that indeed B′

yields a better objective value, so we get a contradiction with our assumption that (S, T)
was optimal. This concludes the proof that we get a winning strategy from S, T . With
the same argument we can also see that for an optimal solution to the LP (2), all elements
of W0 ∩ V1 must be in T and all elements of W0 ∩ V0 must have an outgoing edge in
S. Otherwise, the second inequality of (16) would hold strictly as there is a vertex i in
W0 without outgoing edges (and B−1

ii = 1 > 0). Hence we conclude that for an optimal
solution, from any vertex v ∈ W0, we cannot reach a vertex without outgoing edges in
GS,T if the algorithms terminate. Hence ΨS,T (v) = {2n + 2} for v ∈ W0. Clearly there
is no node outside W0 with ΨS,T equal to {2n+ 2}, as that would imply that one cannot
reach any other cycle with odd highest priority with the induced strategy, which would
imply player 0 is winning. So the winning set of player 0 is exactly the set of nodes with
ΨS,T equal to {2n+2} when the algorithms have terminated. This completes the proof of
the theorem. □

52

5 Examples: alternative lower bound proofs for classical pivot
rules.

In this section, we make the relation between subgame iteration and the simplex algorithm
more concrete. Recall that the simplex algorithm requires a pivot rule, which chooses which
improving variable enters the basis. For four simplex pivot rules, we use this relation to
construct a lower bound for their complexity, with a relatively short proof. We construct
alternative lower bounds for the following pivot rules5:

• Least-index rule (Bland’s rule) [5]. Of the possible xi to add to the basis, choose the
one with the lowest i.

• Steepest descent rule (Dantzig’s largest coefficient rule) [6]. Add the xi to the basis
that has the lowest (most negative) reduced cost ci − cTBB

−1Ai.

• Steepest edge rule [6]. Add the xi with the lowest value of ci−cTBB−1Ai

||B−1Ai|| .

• Largest improvement rule [19]. Add the xi to the basis that will result in the largest
decrease in the objective function cTx.

It has already been shown for these rules that, in the worst case, they have exponential
running time in the input size of the LP. This was done for the first rule by Avis and
Chvátal [3], for the second one by Klee et al. [19], for the third by Goldfarb and Sit [13],
and for the last rule by Jeroslow [16]. All of these construction use the Klee-Minty cube
- a perturbed n-dimensional hypercube - as a starting point. In this section, we show
alternative constructions that prove exponential running time for these rules - at least in
the number of variables and equations of the LP. However, using the results from earlier
sections, the alternative proofs here will be relatively short.

The structure of the lower bound proofs in this section will be the same for all four
rules. First, we take an improvement rule for strategy iteration in parity games from
Section 3. We already know that these have exponential worst-case running times. Next,
we show that subgame iteration (with a certain improvement rule) behaves similar to
strategy iteration for this specific improvement rule. This similarity is made more concrete
in Lemma 5.1. So then we know that subgame iteration with some improvement rule has
exponential worst-case running time (in terms of number of nodes and edges). Finally,
we use the relation from Section 4 which says that subgame iteration and the simplex
algorithm are ’the same.’ We show that our improvement rule for subgame iteration and
the simplex pivot rule make the same choices. This implies that the simplex algorithm has
exponential worst-case running time (in terms of variables and equations). This is made
more precise in Corollaries 5.2 and 5.3.

We now make the similarity between strategy iteration and subgame iteration more
formal. We show that if in a sink parity game (see Definition 2.6) the valuations Ξσ

are high enough for current strategy σ in discrete strategy iteration, then the strategy σ
corresponds to a nice pair of sets (Sσ, Tσ) in subgame iteration (see Definition 4.2).

5These rules may need specified tiebreaks, but we ignore that, as in the proofs there will be no ties.

53

Lemma 5.1. Suppose we have a sink parity game G, and a player 0 strategy σ, such that
Ξσ(v) ⊵ (1, ∅, 0) for all v ∈ V . Let Sσ = {(v, σ(v)) : v ∈ V0\{x}} and let Tσ = V1. Then
the following hold:

1. Ξσ(v) = (1,ΨSσ ,Tσ , |ΨSσ ,Tσ |) for any v ∈ V .

2. Switching edge e1 for e2 in strategy iteration with strategy σ is improving if and only
if replacing edge e1 ∈ Sσ by edge e2 is improving in subgame iteration with Sσ, Tσ.

Proof: Because Ξσ(v) ⊵ (1, ∅, 0), every path P from v to x has P ⪰ ∅. Because we
have a sink parity game and because of our starting strategy, player 1 can only win by going
to x if player 0 plays strategy σ. Hence there are also no cycles with odd highest number
in subgraph GSσ ,Tσ . For these two reasons the pair of sets (Sσ, Tσ) is nice. Hence the
subgame iteration valuation ΨSσ ,Tσ is defined. Now it is clear that the second component
of Ξσ equals the ⪯-shortest path from v to x. Also, valuation ΨSσ ,Tσ(v) is defined as
the ⪯-shortest path towards a node without outgoing edges in GSσ ,Tσ , and the only node
without outgoing edges is x. So the second component of Ξσ is equal to ΨSσ ,Tσ . As a
result, since all priorities in a sink parity game are larger than 1, this implies the third
component of Ξσ equals |ΨSσ ,Tσ |. This proves the first statement.

Because of Lemma 4.4, the values of Ψ in the graph are unique, as there is only one node
with Ψ equal to ∅ and no nodes with Ψ equal to {2n+2}. Therefore, the third component
of Ξσ is irrelevant when comparing valuations Ξσ with each other. Therefore, obviously,
Ξσ(v) ▷ Ξσ(w) if and only if ΨSσ ,Tσ(v) ≻ ΨSσ ,Tσ(w). Note that exchanging edge (v′, w)
for (v′, v) in strategy iteration is an improving move if Ξσ(v) ▷ Ξσ(w). Also, in subgame
iteration, the only possible improving move is exchanging an edge in E0 for another edge,
as we cannot add any more edges to Sσ or nodes to Tσ. Exchanging edge (v′, w) for (v′, v)
is improving if Ξσ(v) ▷ Ξσ(w). This implies that the improving moves of both algorithms
are indeed the same. ■

Corollary 5.2. Suppose we have a sink parity game on graph G = (V,E), and initial
strategy σ0 with Ξσ0(v) ⊵ (1, ∅, 0) for all v ∈ V . Suppose strategy iteration takes an
exponential number of iterations for some improvement rule. Then if subgame iteration
starts with Sσ0 , Tσ0 (as defined in Lemma 5.1), then it also takes an exponential number
of iterations, given that it uses an improvement rule that makes the same choices as the
beforementioned one for strategy iteration.
Proof: Recall from Lemma 2.4 that the valuation of any node can only increase with
strategy iteration. Hence we can apply Lemma 5.1 to any strategy σ encountered with
strategy iteration, hence both algorithms, since they make the same choices, encounter
exactly the same strategies in σ and Sσ, so they take the same number of iterations.

Corollary 5.3. Suppose we have the conditions of Corollary 5.2. Suppose additionally
that the simplex algorithm on (2) starts with the nice basis corresponding to nice sets
(Sσ0 , Tσ0). Suppose also that a simplex pivot rule is used that makes the ’same’ choices as
the beforementioned improvement rule for subgame iteration and the improvement rule for
strategy iteration. Then the simplex algorithm requires the same number of iterations as
strategy iteration on the graph.
Proof: Note that from Corollary 4.7 we know that there is a one-to-one correspondence
between subgame iteration and the simpelx algorithm, and that this also holds if we start
with the nice sets (Sσ0 , Tσ0). It follows that the simplex algorithm needs the same number
of iterations as subgame iteration, and we know by Corollary 5.2 that subgame iteration
in turn needs the same number of iterations as strategy iteration. ■

54

5.1 Construction of linear programs from parity games

Now we are ready to make the four lower bound constructions, which we summarize in the
following four theorems.

Theorem 5.4. There is a family of linear programs such that the simplex algorithm with
the least index pivot rule needs running time that is at least exponential in the number of
variables and equations.
Proof: Recall that the highest-priority improvement rule for strategy iteration prefers to
switch edges coming from the node with the highest priority. In Theorem 3.4, we showed
that strategy iteration requires a number of iterations exponential in the number of nodes
and edges. Moreover, for the family of counterexamples used there, all the valuations are
at least as ⪯-large as (1, ∅, 0). This is because of the vertex y that has very high even
priority. It follows by Corollary 5.2 that subgame iteration with the same choices - which
means also preferring edges from nodes with a high priority - requires exponentially many
iterations. Moreover, for an arbitrary LP derived from a parity game like in Section 4, we
can order the variables corresponding to edges in E0 (recall E0 = {(v, w) ∈ E : v ∈ V0})
by the priority of their starting node, from high to low. Then, the simplex algorithm
makes the ’same’ choices as the highest-priority rule in subgame iteration. It follows from
Corollary 5.3 that the simplex algorithm with the least index pivot rule requires a number
of iterations equal to that of strategy iteration, which is exponential in the number of nodes
and edges in the original graph. From this follows what we wanted to prove. □

Theorem 5.5. There is a family of linear programs such that the simplex algorithm with
the steepest descent rule needs running time that is at least exponential in the number of
variables and equations.
Proof: First, consider the lowest-valuation improvement rule for strategy iteration on
parity games. Recall that this rule prefers to switch edges from nodes that currently
have the lowest valuation Ξσ. By Theorem 3.11, strategy iteration requires a number of
iterations that is exponential in the number of nodes and edges with this improvement
rule. Moreover, by Corollary 5.2, this also means that if we apply subgame iteration on
the same parity games and it makes the same choices, then it also requires exponentially
many iterations. From Lemma 5.1 we know for all v ∈ V that Ξσ(v) = (1,ΨSσ ,Tσ , kv) for
some kv ≥ 0. Subgame iteration makes the same choices as strategy iteration if we choose
to switch in the node with the ⪯-lowest value of ΨS,T .

Now we show that the steepest descent rule makes the same choices as when we choose
to switch on the lowest valued vertex in subgame iteration. That would imply by Corollary
5.3 that steepest descent needs exponentially many iterations. We know from (14) that
the reduced cost of s(v,v′) equals

cs(v,v′) − cBB
−1As(v,v′) = −b(ΨS,T (v))(k + ϵ)

where k is an integer with 1 ≤ k ≤ n, and |ϵ| ≤ 2n
nn + n

b + 2n
bnn . The valuation for non-sink

nodes cannot equal ∅ or {2n+2} as every non-sink node has an outgoing edge and player 1
can always reach the sink node. Then because of Lemma 4.4 we know that the valuations of
non-sink nodes are unique. Therefore b(ΨS,T (v)) differs by a factor of at least b for different
v. Moreover, the variable with the lowest reduced cost is the one corresponding to an edge
(v, v′) with the highest possible b(ΨS,T (v)), hence with the ⪯-lowest value of ΨS,T . And we
see that indeed the improving move from the node with the lowest corresponding valuation
Ψ is preferred by the simplex algorithm. It follows that the simplex algorithm requires a
number of iterations at least exponential in the number of nodes and edges of the original
graph. This completes our proof. □

55

Theorem 5.6. There is a family of linear programs such that the simplex algorithm with
the largest improvement rule needs running time that is at least exponential in the number
of variables and equations.
Proof: Recall that the highest-lexicographic rule for strategy iteration is as follows:

Let V AL = Q× P(Q)× Z≥0 be the space of valuations Ξσ. For each possible
improving switch e, let σe be the strategy that results from σ if improving
move e is applied. We then associate a vector ξe ∈ V AL|V | to the strategy σe
containing all values of σe(v) for v ∈ V , and where ξe is ⊴-sorted from low to
high. We then choose the improving switch e with the lexicographically highest
value of ξe. In this case, we say a < b lexicographically if for the least index i
with ai ̸= bi we have ai < bi.

We know from Theorem 3.12 that strategy iteration with the highest-lexicographic im-
provement rule requires a number of iterations exponential in the number of nodes and
edges. Subgame iteration makes the same choices as strategy iteration if we prefer the
improving move there that will result in the lexicographically highest sorted vector of val-
ues ΨS,T (similar to the highest-lexicographic rule). So we know by Corollary 5.2 that
subgame iteration also has exponential running time for this family of parity games. Now
our goal is to show that subgame iteration with this equivalent of the highest-lexicographic
rule makes the same choices as the simplex algorithm with the highest improvement rule.
But we only show that this holds for the class of games (Gn)n∈N from Theorem 3.12.

Note that the only basic variable in the corresponding LP (2) that has nonzero cost
is zx. That is because zv is not in the basis for any other node, since all nodes of V1 are
in T , and all other nodes of V0 have an outgoing edge in S. Therefore the cost of a basic
feasible solution corresponding to (S, T) is

cBB
−11 =

∑
j∈V

B−1
xj

Since the only node with ΨS,T (v) = ∅ is x, we get from Lemma 4.5 that B−1
xx = 1 and that

B−1
xj = b(ΨS,T (j))(1 + ϵjx) with ϵjx ≤ 2

nn . Therefore the cost of the basic feasible solution
is given by 1+

∑
j∈V b(ΨS,T (j))(1+ϵjx). Note that, as b(P) is larger for ⪯-smaller paths P ,

this cost (ignoring the 1) is dominated by the b(P) with the smallest P . Now from Lemma
4.4 we know that the valuations Ψ of the non-sink nodes are unique, hence in particular
the second lowest valuation (∅ is the lowest) is unique. Moreover, if the second lowest
valuation for sets (S1, T1) is ⪯-lower than that of sets (S2, T2), then clearly the objective
value of the basis related to (S1, T1) is higher, since it has a term b(ΨS,T (j))(1+ϵjx) that is
much higher than these occurring in the sum that makes the cost of (S2, T2). So the largest
improvement rule prefers to pivot the variable corresponding to the improving move that
improves the second lowest valuation by the most.

We know that in the proof of Theorem 3.12, highest-lexicographic also prefers to switch
such that it improves the second lowest valuation by the most. Hence strategy iteration,
subgame iteration and the simplex algorithm make the same choices for this family of
parity games. So Corollary 5.3 now implies that the simplex algorithm requires a number
of iterations exponential in the number of edges and vertices of the original graph. This
completes the proof. □

56

Theorem 5.7. There is a family of linear programs such that the simplex algorithm with
the steepest edge rule needs running time that is at least exponential in the number of
variables and equations.
Proof: Recall from Section 3.4 that the lowest-valuation-shortest-path rule is as follows:

Suppose we have an improving move from v for strategy σ that switches
from edge (v, v′′) to (v, v′). Say the new strategy after this switch is σ′ Let
paths(v, v′) be the set of paths from v to any w ∈ V , where we require all the
edges to be either in E1 = {(v1, v2)|v1 ∈ V1} or to be part of either σ or σ′.
Recall that we do not count the end vertex of a path as being in the path.
Then, we define Mσ(v, v

′) = min⪯ paths(v, v′), which will be the lowest-valued
path from v to any other node. (recall from Section 2.4 that whether B1 ⪯ B2

can be determined from B1△B2 or from whether
∑

p∈B1
(−3)p ≤

∑
p∈B2

(−3)p).
The improvement rule prefers to switch in nodes with a low valuation and with
a high value of M(v, v′). More precisely, our improvement rule prefers a switch
in v to v′ over a switch in w to w′ if Ξσ(v) ⊎Mσ(w,w

′) ⊴ Ξσ(w) ⊎Mσ(v, v
′)

(here we use simplified notation; with (λ, π, n) ⊎B we mean (λ, π ⊎B,n)).

From Theorem 3.13 we know that the lowest-valuation-shortest-path improvement rule for
strategy iteration requires running time exponential in the number of nodes and edges of
graphs (Gn)n∈N. The equivalent rule for subgame iteration in sink parity games would be
to prefer (v, v′) over (w,w′) if ΨSσ ,Tσ(v)⊎Mσ(w,w

′) ⪯ ΨSσ ,Tσ(w)⊎Mσ(v, v
′). Then, from

Corollary 5.2, we know that subgame iteration with this equivalent improvement rule takes
the same number of iterations on this class of parity games.

Next, we show that subgame iteration with this improvement rule makes the same
choices as the simplex algorithm on the related LP with the steepest edge pivot rule, at
least on the class of graphs from the proof of Theorem 3.13. Recall that this pivot rule
chooses the index with the lowest (negative) value of ci−cTBB−1Ai

||B−1Ai|| . At any point in the
simplex algorithm, the only entering variables i that can be improving are those s(v,v′)
corresponding to an improving edge (v, v′). Again, from (14) we know that

cs(v,v′) − cBB
−1As(v,v′) = −b(ΨS,T (v))(k + ϵ)

where k is an integer with 1 ≤ k ≤ n, and |ϵ| ≤ 2n
nn + n

b + 2n
bnn . This gives us an estimate

for the numerator of ci−cTBB−1Ai

||B−1Ai|| .
Next, we want to estimate the denominator, so we look at the vector B−1As(v,v′) . Recall

that As(v,v′) has a 1 in its v-position, −b−(−3)p(v) in its v′-position and 0’s everywhere else.
Now we can use Lemma 4.5 to estimate:

(B−1As(v,v′))j = B−1
jv − b−(−3)p(v)B−1

jv′

(Lemma 4.5)
= b(Pvj)(1 + ϵvj)− b(Pv′j ⊎ {v})(1 + ϵv′j)

with ϵij ≤ 2
nn . Now we know that the ⪯-shortest possible path from v towards any node in

GS,T∪{(v, v′)} is Mσ(v, v
′), and suppose that it goes from v to j0. Assume additionally that

every other path is strictly ⪯-longer than Mσ(v, v
′). This is the case in the counterexample

from Theorem 3.13. Therefore, b(P) ≤ 1
b · b(Mσ(v, v

′)) for any other path P starting from
v. Thus we know that

(B−1As(v,v′))j0 = b(Mσ(v, v
′))(1 + ϵ)

(B−1As(v,v′))j <
3
b b(Mσ(v, v

′)) ∀j ̸= j0

57

where |ϵ| < 3
nn . Now we can estimate the value of ||(B−1As(v,v′))||:

||(B−1As(v,v′))|| =
√∑

j

(B−1As(v,v′))
2
j = b(Mσ(v, v

′))(1 + ϵ)

where one could bound the small terms to show that |ϵ| < 4
nn .

Now suppose we have two possible improving moves, either adding edge (v, v′) or edge
(w,w′). Then our pivot rule prefers edge (v, v′) if

−b(ΨS,T (v))(k1 + ϵ1)

b(Mσ(v, v′))(1 + ϵ2)
=

ci − cTBB
−1As(v,v′)

||B−1As(v,v′) ||
<

ci − cTBB
−1As(w,w′)

||B−1As(w,w′) ||
=
−b(ΨS,T (w))(k2 + ϵ3)

b(Mσ(w,w′))(1 + ϵ4)

for the appropriate values of k1, k2, ϵ1, ϵ2, ϵ3, ϵ4. This can be rewritten to

b(ΨS,T (v))(k1 + ϵ1) · b(Mσ(w,w
′))(1 + ϵ4) > b(ΨS,T (w))(k2 + ϵ3) · b(Mσ(v, v

′))(1 + ϵ2)

which holds (assuming there are no ties for path lengths, which is the case for our coun-
terexamples), if and only if

ΨS,T (v) ⊎Mσ(w,w
′) ≺ ΨS,T (w) ⊎Mσ(v, v

′)

and this happens if and only if the lowest-valuation-shortest-path rule prefers switching
(v, v′) over (w,w′). So we showed that lowest-valuation-shortest-path makes the same
choices in subgame iteration on (Gn)n∈N as the simplex algorithm with the steepest-edge
pivot rule That, by Corollary 5.3, completes the proof. □

58

6 Worst-case complexity of symmetric strategy iteration

In this section we show that the worst-case complexity of symmetric strategy iteration
in parity games, which is introduced by Schewe et al. [25], is at least exponential in the
number of nodes and edges of the graph. Symmetric strategy iteration is an adaptation of
the discrete strategy iteration algorithm that is symmetric for the two players of the parity
game. For both players, it switches the edges that are both improving for themselves and
also part of an optimal counterstrategy to the other player’s strategy. The algorithm is
of particular interest because it avoids the traps of existing lower bound constructions.
It seems that there is no family of examples with superpolynomial running time for this
algorithm known in literature so far.

The main idea of the construction is that we have n pairs of vertices that simulate a
variant of a binary counter, that counts in so-called Gray code.

6.1 The algorithm

The symmetric strategy iteration algorithm maintains two strategies: a player 0 strat-
egy σ and a player 1 strategy τ . We have a valuation Ξσ : V → Q × P(Q) × Z≥0 for
player 0, like we have used throughout this whole thesis. This is based on the function
Θστ (v) = (λ(P), π(P),#(P)). Here λ(P) is the highest priority of the cycle part of play
P resulting from σ and τ , π(P) is the set of large priorities on the path towards the cycle
of P and #(P) is the length of the path towards the node with high priority in the cycle.
Recall from Section 2.4 that the valuation Ξ is defined as

Ξσ(v) = min
⊴

(Θστ (v) : τ player 1 strategy)

Recall also that we denote an optimal counterstrategy (by player 1) to σ by σ̄ such that
Ξσ = Θσσ̄. Analogously, we now also consider an optimal counterstrategy by player 0
against τ , which we call τ̄ . The play resulting from τ and τ̄ then defines a valuation for
player 1, the function Ξτ : V → Q× P(Q)× Z≥0. This is defined similar to Ξσ:

Ξτ (v) = max
⊴

(Θστ (v) : σ player 0 strategy) = Θτ̄ τ (v)

Similar to improving moves for player 0, an edge (v, v′) with v ∈ V1 is an improving
move for player 1 if Ξτ (v′) ◁ Ξτ (τ(v)). Let Iσ be the set of improving moves for player 0
for strategy σ, and Iτ be the set of improving moves for player 1 for strategy τ . Now we
are ready to define the algorithm:

Algorithm 3 Symmetric strategy iteration
1: start with some pair of strategies σ,τ
2: find an optimal counterstrategy σ̄ to σ
3: find an optimal counterstrategy τ̄ to τ
4: Let σ′ be the strategy resulting from applying all improving moves
5: from Iσ ∩ {(v, τ̄(v))|v ∈ V0} to σ.
6: Let τ ′ be the strategy resulting from by applying all improving moves
7: from Iτ ∩ {(v, σ̄(v))|v ∈ V0} to τ
8: if σ = σ′ and τ = τ ′ then return (σ, τ)
9: else

10: σ ← σ′, τ ← τ ′

11: go to 2
12: end if

59

Of course, the algorithm terminates, since any improving move improves the valuation
of the respective player, and there is a finite number of improving moves possible. The
following lemma implies that the algorithm only terminates when the resulting pair of
strategies (σ, τ) is optimal for the players. The lemma is equivalent to Lemma 3.3 of [25].

Lemma 6.1. Suppose σ is not an optimal player 0 strategy or τ is not an optimal player
1 strategy. Let σ̄ and τ̄ be optimal counterstrategies for respectively σ and τ . Then either
Iσ ∩ {(v, τ̄(v))|v ∈ V0} or Iτ ∩ {(v, σ̄(v))|v ∈ V0} is nonempty.

Example

Suppose that strategy iteration currently has strategies (σ, τ) as in Figure 22. The first
step of the symmetric strategy algorithm is then to compute The optimal counterstrategies
σ̄ and τ̄ . These are also shown in the figure.

Figure 22: Example of strategies in symmetric strategy iteration. Left: strategy σ
(red) and counterstrategy σ̄ (blue). Right: Strategy τ (purple) and counterstrategy
τ̄ (orange).

Next, we find the improving moves. For player 0, the edges (v3,⊤) and (v5,⊤) are
improving since the first element of valuation Ξτ of ⊤ is 1 and of v2 is 7. The edge
(v1, v4) is improving because the path component of Ξσ(v4) contains an extra 3 and 4
compared to Ξσ(v2). As we see, all these edges are also part of the counterstrategy σ̄.
So Iσ ∩ {(v, τ̄(v))|v ∈ V0} = {(v1, v4), (v3,⊤), (v5,⊤)}. For player 1, the edge (v4, v5)
is an improving move, since the first component of Ξτ (v5) is 1 and the first component
of Ξτ (v1) is 4. This is the only improving move for player 1. However, edge (v4, v5) is
not used by τ̄ . Therefore Iτ ∩ {(v, σ̄(v))|v ∈ V0} = ∅. The algorithm switches edges
(v1, v4), (v3,⊤), (v5,⊤), yielding strategies (σ′, τ ′) as shown in Figure 23. These are then
the start of the next iteration.

60

Figure 23: Strategies σ′ (red), and τ ′ (blue) after making the switches in an
iteration of symmetric strategy iteration.

6.2 Gray code

Now we introduce Gray code, see also [14]. Gray code is a form of binary represen-
tation of a number, where consecutive numbers differ in only one digit. For a number
B ∈ {0, 1, . . . , 2n − 1}, we denote its Gray code by gngn−1gn−2 . . . g1, where gi ∈ {0, 1} for
i = 1, 2, . . . , n. Here gn is the most significant bit and g1 the least significant bit. The
following facts are well-known about Gray code:

• If BnBn−1 . . . B1 is the binary representation of B (so B =
∑n

i=1 2
i−1Bi), then

gn = Bn and gi = Bi + Bi+1(mod 2) for i = 1, 2, . . . , n − 1. Moreover, we have
Bi =

∑n
j=i gj(mod 2) for i = 1, 2, . . . , n.

• If gngn−1 . . . g1 represents B and g′ng
′
n−1 . . . g

′
1 represents B′ = B+1, then gngn−1 . . . g1

and g′ng
′
n−1 . . . g

′
1 differ in exactly one position, say gm = 1− g′m. Moreover, m is the

smallest index for which
∑n

i=m gi is even.

6.3 Family of parity games

We show that the family of graphs (Gn)n∈Z≥2
needs a number of iterations exponential in

n with symmetric strategy iteration. Graph Gn is shown in Figure 24. It has the following
nodes and edges:

Node Player Priority Successors
a1 Player 0 3 a2, d2

ai, i = 2, . . . , n− 1 Player 0 2i+ 1 a1, ai+1, di+1

d1 Player 1 4 a2, d2
di, i = 2, . . . , n− 1 Player 1 2i+ 2 d1, ai+1, di+1

an+1 Player 0 1 x
dn+1 Player 1 2 dn+1

This family of graphs is in principle the parity game version of the counterexample from
Björklund et al. [4], with added edges back to a1 and d1. As an initial pair of strategies
we have σ0 and τ0. We have σ0(ai) = ai+1 for i = 1, 2, . . . , n− 1 and σ0(an) = an+1, and
τ0(di) = di+1 for i = 1, 2, . . . , n− 1 and τ0(dn) = dn+1.

61

Figure 24: The graph Gn with initial strategies σ0 and τ0.

62

Note that there is only one strategy for player 0 for which he can be sure to reach dn+1

from a1, a2, . . . , an whatever player 1 does. That is the strategy for which σ(ai) = ai+1

for i = 1, 2, . . . , n − 1 and σ(an) = dn+1. Similarly, player 1 has one strategy that allows
him to reach an+1 from any of the nodes d1, d2, . . . , dn. That is the strategy for which
τ(di) = di+1 for i = 1, 2, . . . , n − 1 and τ(dn) = an+1. Player 0 also cannot create any
other cycles that win for him. If he goes back to a1 from any aj (i.e. σ(aj) = a1), then
either he has to choose σ(ai) = ai+1 for i < j, which creates a winning cycle for player 1,
or choose σ(ai) = di+1 for some i < j, which allows player 1 to ’escape’ to an+1 with the
beforementioned strategy τ . From that, we conclude that the optimal strategy for player
0 is the beforementioned strategy that allows him to go to dn+1 from nodes a1, a2, . . . , an.
Likewise, the beforementioned player 1 strategy τ that allows him to go to an+1 from
d1, d2, . . . , dn is optimal for player 1.

In conclusion, both players are initially only one improving move away from their
optimal strategy. However, it will still take them exponentially many iterations to reach
their optimal strategies. The main idea is that symmetric strategy iteration simulates
counting in Gray code, where the choices at ai and di represent the bit gi for i = 1, 2, . . . , n.

We make the counting in Gray code more precise. We make sure that a bit gi being 0
corresponds to the strategies from ai and di being ’parallel’, and gi being 1 corresponds to
these strategies forming a ’cross.’ More precisely, we introduce the following notion:

Definition 6.2. Let σ be a player 0 strategy and τ a player 1 strategy for Gn. Let
B ∈ {0, 1, . . . , 2n− 1}, and let gngn−1 . . . g1 be the Gray code representation of B. We say
that (σ, τ) is in Gray bit state B if the following hold for 1 ≤ i ≤ n:

• If gi = 0, then σ(ai) = ai+1 and τ(di) = di+1.

• If gi = 1, then σ(ai) = di+1 and τ(di) = ai+1.

Note that our initial strategy is in the bit state corresponding to Gray code 000 . . . 0,
so in Gray bit state 0. Also, our pair of optimal strategies is in the bit state corresponding
to Gray code 100 . . . 0, which is Gray bit state 2n − 1.

We also introduce a slightly less strict definition of being in some bit state B.

Definition 6.3. Let j be an integer with 1 ≤ j ≤ n, let σ be a player 0 strategy and τ a
player 1 strategy. Then we say that (σ, τ) is j-bitlike if for i = j, j + 1, . . . , n the following
holds:

• Either σ(ai) = ai+1 and τ(di) = di+1

• Or σ(ai) = di+1 and τ(di) = ai+1

Less formally, we could say a pair of j-bitlike strategies is ‘parallel’ or ‘crossed’ for the
bits from j up to n. Note that if a (σ, τ) is 1-bitlike, then all bits are parallel or crossed,
so then (σ, τ) is in Gray bit state B for some B. The converse also holds: if (σ, τ) is in bit
state B, then the pair of strategies is 1-bitlike.

6.4 Steps of symmetric strategy iteration

Now the goal is to show that symmetric strategy iteration on Gn, which starts with a pair
of strategies in Gray bit state 0, passes through all 2n possible Gray bit states from low
to high. The main idea why the algorithm makes such tiny improvements is because the
backwards edges are almost always part of the optimal counterstrategies but almost never
improving. This prevents the algorithm from making many switches at a time. First, we
show that there is actually only one case in which a backwards edge is improving:

63

Lemma 6.4. For any i > 1 and any pair of strategies (σ, τ) encountered in symmetric
strategy iteration, we have the following:

1. Edge (ai, a1) is improving for player 0 only if σ(ai−1) = di and σ(aj) = aj+1 for all
j < i− 1.

2. Edge (di, d1) is not an improving move for player 1.

Proof: recall from Section 6.3 that neither player 0 nor player 1 can create winning
cycles for themselves (other than nodes an+1 and dn+1) against σ0 or τ0. So the first
component of Ξσ0 and Ξτ0 is 1 or 2. In particular, this implies that throughout the
algorithm no improving move of player 0 can allow player 1 to create a cycle with odd
highest priority except for node an+1. Otherwise, the valuation Ξσ would decrease, which
contradicts Lemma 2.4. Likewise, no player 1 improving move can allow player 0 to create
another cycle with even highest priority except for node dn+1. Using this, we prove the
two statements.

Figure 25: One case in symmetric strategy iteration in G4 where edge (a4, a1) is
an improving edge. Strategies σ, τ are marked in red.

1. We prove this by contradiction. So suppose (ai, a1) is improving but σ is different
than described in the lemma. First, suppose σ(aj) = dj+1 for some j < i− 1. Then
player 1 can play τ(dj) = dj+1 for j < i − 1 and τ(di−1) = ai. This means that
the play starting from a1 ends up in ai, so after the improving move there is a cycle
with highest priority p(ai) = 2i + 1, and that is not possible. On the other hand,
suppose σ(aj) = aj+1 for all j < i. Then applying the improving move creates the
cycle (a1, a2, . . . , ai), which has again highest priority 2i + 1. Since both cases lead
to a contradiction, the only option left is that σ(ai−1) = di and σ(aj) = aj+1 for all
j < i− 1.

64

2. Suppose (di, d1) is an improving move. Note that player 0 can play σ(ai−1) = di,
σ(ai) = a1 and σ(aj) = aj+1 for all j < i − 1. If player 1 applies the improving
move, then he cannot avoid going back to di without creating another winning cycle
for player 0. He also cannot escape the set of nodes {a1, a2, . . . , ai, d1, d2, . . . , di}. In
any case player 0 could create a cycle with even highest priority that is larger than
2, which is not possible. ■

Next, we determine where in Gn improving moves are possible.

Lemma 6.5. Let (σ, τ) be a pair of strategies encountered in strategy iteration. Suppose
that (σ, τ) is i-bitlike for some i ≤ n. Then the following statements are equivalent:

1. Ξσ(ai) ◁ Ξσ(di).

2. Ξτ (ai) ◁ Ξ
τ (di).

3. ai has an improving move towards ai+1 or di+1 for player 0.

4. di has an improving move towards ai+1 or di+1 for player 1.

5. Bi :=
∑n

j=i gj(mod 2) = 0.

Proof: Recall that our condition on the strategies σ, τ can be formulated as requiring
all the strategies to be either ’parallel’ or ’crossed’ above ai and di. Also, if (σ, τ) is in
some Gray bit state B, then (σ, τ) is i-bitlike for all i. We prove the lemma by (backwards)
induction on i. As an induction basis, we show that statements 1,2 and 5 hold for i = n+1.
Clearly (1, ∅, 0) = Ξσ(an+1) = Ξτ (an+1) ◁ Ξσ(dn+1) = Ξτ (dn+1) = (2, ∅, 0). Moreover,
Bn+1 :=

∑n
j=n+1 gj(mod 2) = 0, so that completes the induction basis. Now as an

induction hypothesis, we assume that statements 1,2 and 5 are equivalent for i + 1, for
any pair of i+1-bitlike strategies (i ≤ n). From that, we prove the three statements for i.
Note that if a pair of strategies is i-bitlike, then it is also i+1-bitlike. We distinguish two
cases:

• Suppose Bi+1 = 0. Then from the induction hypothesis we know that Ξσ(ai)◁Ξσ(di)
and Ξτ (ai) ◁ Ξτ (di). Now if gi = 0, so σ(ai) = ai+1 and σ(di) = di+1, then both
players have an improving move (edges (ai, di+1) and (di, ai+1)), and also we get
Bi = Bi+1 + gi = 0(mod 2). So statements 3,4 and 5 hold. Moreover, σ(ai) is the
worst for player 0 out of ai+1 and di+1, and also the play resulting from σ and σ̄
from di must end in ai+1 or di+1. But di has a large even priority, and can only end
in the worse of the two successors (since the play has to end at an+1 or dn+1), so the
valuation Ξσ of di can only be higher than that of ai. So statement 1 holds. With a
similar argument, we find that the valuation Ξτ of ai must be lower than that of di,
implying the second statement. So if gi = 0, then all five statements are true.

If on the other hand gi = 1, then there are no improving moves for both players
towards ai+1 or di+1. The valuations Ξσ and Ξτ of ai and di must differ in at least
some priorities larger than 2i+2 in the path. That is because for example the plays
resulting from σ and σ̄ starting from ai and di go to an+1 and dn+1, respectively.
Therefore there is no use for player 0 to make a switch back to a1 from ai, since the
play must end back at either ai, which would create a cycle winning for player 1, or
back at di, which has a much worse valuation than ai’s current successor. Likewise,
there is no use for player 1 to go back to d1. So there are no improving moves for
either player from ai and di, and also Bi = Bi+1 + gi = 1(mod 2). So in this case

65

statements 3,4 and 5 all do not hold. Moreover, player 0 is currently choosing the
highest valued out of ai+1 and di+1, while in the counterstrategy σ̄ player 1 chooses
the worst out of these two (or something else that yields an even lower valuation).
Therefore the valuation Ξσ of di must be lower than that of ai. With a similar
argument, Ξτ (ai) ▷ Ξτ (di). Hence all five statements are false. In conclusion, if
Bi+1 = 0, then statements 1-5 are equivalent.

• Suppose Bi+1 = 1. Then we know from the induction hypothesis that Ξσ(ai)▷Ξσ(di)
and Ξτ (ai)▷Ξ

τ (di). Then if gi = 1, we can argue analogous to the case Bi+1 = gi = 0
that all five statements are true for i. We could do this just by switching nodes ai+1

and di+1 in the proof. If on the other hand gi = 0, we can argue analogous to the
case Bi+1 = 0, gi = 1 than all five statements are false for i. Hence also in the case
Bi+1 = 1, statements 1-5 are equivalent.

This completes the proof of the induction step and hence of the lemma. ■
Next, we determine what the optimal counterstrategies look like for different nodes in

Gn.

Lemma 6.6. Let i be an integer such that 1 < i ≤ n, and let strategies (σ, τ) be an i-bitlike
pair of strategies encountered in symmetric strategy iteration. Suppose that the nodes ai
and di both have an improving move towards respectively ai+1 and di+1 or respectively di+1

and ai+1. Then τ̄(ai) = a1 and σ̄(di) = d1.
Proof: Suppose first that τ̄(ai) is not equal to σ(ai) but to the ’other’ out of ai+1 and di+1,
which is τ(di) (as the strategies are i-bitlike). Then player 0 could still improve the play
from ai against τ by choosing edges (ai, a1), (a1, a2), (a2, a3), . . . , (ai−2, ai−1), (ai−1, di),
since this also ends up in τ(di) but picks up an extra priority p(di) = 2i + 2 in the path.
Suppose on the other hand that τ̄(ai) = σ(ai). Since switching to τ(di) is improving, we
have Ξσ(τ(di)) ▷ Ξσ(σ(ai)). By Lemma 6.5, this implies Ξτ (τ(di)) ▷ Ξ

τ (σ(ai)). But then
τ̄(ai) cannot equal σ(ai), since player 0 could do better against τ by going to τ(di) from
ai. So the only remaining option for τ̄(ai) is a1. This proves the statement for player 0.
Proof for player 1 is similar. ■

Combining the results of the previous lemmas, we can determine what happens in
certain iterations of the algorithm:

Lemma 6.7. Suppose B ∈ {0, 1, . . . , 2n − 1} is even and (σ, τ) is in Gray bit state B.
Then the sets of switches of symmetric strategy iteration are Iσ ∩ {(v, τ̄(v))|v ∈ V0} =
{(a1, τ(d1))} and Iτ ∩ {(v, σ̄(v))|v ∈ V1} = {(d1, σ(a1))}. Moreover, after the switches of
symmetric strategy iteration, we are in Gray bit state B + 1.
Proof: Note that if B is even, then B1 = 0, so by Lemma 6.5, a1 and d1 have an improving
move. Because the first two two statements of the same lemma are equivalent, it follows
that Ξσ(σ(a1))◁Ξσ(τ(d1)) and Ξtau(σ(a1))◁Ξ

tau(τ(d1)). Therefore, these improving moves
are also in σ̄ and τ̄ , respectively. Now we need to show there are no other improving moves
in σ̄ and τ̄ . From Lemma 6.6, if the other nodes have improving moves that are also part
of σ̄ or τ̄ , they must be edges (ai, a1) or (di, d1) for some i. If g1 = 1, then these two edges
are not improving moves by Lemma 6.4. If g1 = 0, then according to Lemma 6.4, only ai
can have an improving move if g1 = g2 = . . . = gi−2 = 0 and gi−1 = 1. But that implies
Bi = 1, as we assumed B1 = 0. And then Lemma 6.5 implies that ai and di have no
improving moves. So indeed, the switches of symmetric strategy iteration are (d1, σ(a1))
and (a1, τ(d1)). The Gray code of the strategy pair after the switch is the same, except
that g1 switched, and we had B1 =

∑n
j=1 gi(mod 2) = 0, so the resulting Gray code is

that of B + 1. This completes the proof of the lemma.

66

The case where B is odd is a bit more involved than the case where B is even. We
introduce a notion to describe the strategies in the bottom part of Gn:

Definition 6.8. Consider a strategy pair (σ, τ). We call the strategy pair j-suboptimal
if the following hold:

• σ(aj) = dj+1 or σ(aj) = dn+1 if j = n.

• τ(dj) = aj+1 or τ(dj) = an+1 if j = n.

• σ(ai) = ai+1 and τ(di) = di+1 for all i < j.

Note that if (σ, τ) is in bit state B and it is also j-suboptimal, and gngn−1 . . . g1 is the
Gray code of B, then gj = 1 and gi = 0 for i < j. Now we are ready to describe what
happens for strategies in Gray bit states corresponding to odd number B:

Lemma 6.9. Suppose 1 ≤ B ≤ 2n−3 is odd and (σ, τ) is in Gray bit state B. Suppose also
that (σ, τ) is j-suboptimal. Then in the next 3 iterations, the following edges are switched:

Iteration 1: (aj+1, a1)

Iteration 2: (dj+1, σ(aj+1))

Iteration 3: (aj+1, τ(dj+1))

Moreover, the resulting pair of strategies after these three iterations is in bit state B+1.
Proof: Note that as B > 0, the Gray code of B contains a 1 and hence (σ, τ) is j-
suboptimal for some j. Since B is odd, we have B1 = 1 and therefore by Lemma 6.5
there are no improving moves in a1 and d1. By Lemma 6.6, the only possible edges to
improve in the algorithm are of the form (ai, a1) or (di, d1). By Lemma 6.4, only the edge
(aj+1, a1) of these can be improving. By Lemma 6.1 the algorithm always applies some
improving move if the strategies are not optimal yet, hence the algorithm applies exactly
one improving move, which is (aj+1, a1), in the first iteration. Let the strategy pair after
the first iteration be called (σ1, τ1) (see left of Figure 26).

67

Figure 26: Left: in red are strategies after the first iteration from (σ, τ) in bit
state B. Right: strategies after the second iteration. Note that there are different
options for strategies at the top. The only thing we know about those is that τ(dj)
has a higher valuation Ξσ and Ξτ than σ(aj).

Since this pair of strategies is still j + 2-bitlike, it follows from Lemmas 6.4, 6.5, 6.6
that symmetric strategy iteration makes no switches on ai and di for i ≥ j + 2. Moreover,
since in the first iteration there was an improving move at aj+1, Lemma 6.5 tells us that
Ξσ(σ(aj+1)) ◁ Ξσ(τ(dj+1)) and hence Ξτ (σ(aj+1)) ◁ Ξτ (τ(dj+1)). Since nothing changed
in the top part, we can derive analogous to the proof of Lemma 6.5 that Ξτ1(σ(aj+1)) ◁
Ξτ1(τ

1(dj+1)) and Ξσ1(σ(aj+1))◁Ξσ1(τ1(dj+1)). The first implies that edge (dj+1, σ(aj+1))

68

is improving, and the second tells us that σ1(dj+1) cannot equal τ1(dj+1) as in player 1’s
counterstrategy to σ1 the node τ1(dj+1) is the higher valued of the nodes aj+2 and dj+2.
Moreover, edge (dj+1, d1) is not in the counterstrategy σ1 anymore, since it would always
create a cycle with even highest priority if player 1 used this edge. Therefore σ1(dj+1) can
only be equal to σ(aj+1), and we saw that this was an improving move, so this edge is
switched by the algorithm.

Now we need to prove there are no other switches for nodes a1, a2, . . . , aj+1, d1, d2, . . . , dj .
The best player 0 can do against τ1 is to reach node τ1(dj+1), since this has the high-
est valuation Ξτ1 out of aj+2, dj+2. Moreover, the best path to get there is always
through dj+1. The only way to get there from all these player 0 controlled nodes is to
use edges (aj+1, a1), (a1, a2), (a2, a3), . . . , (aj−1, aj), (aj , dj+1), which is exactly the same
as player 0 already does with strategy σ1. The best player 1 can do against σ1 is to
reach σ(aj+1), since it has the lowest valuation Ξσ1 out of aj+2, dj+2. This is only pos-
sible by passing through dj+1 and choosing σ1(dj+1) = σ(aj+1). Moreover, there is
one strategy to let all paths from d1, d2, . . . , dj to dj+1 pass through aj+1, which has a
high odd priority. That is to use the edges (d1, d2), (d2, d3), . . . , (dj−1, dj), (dj , aj+1). But
that is, except for edge (dj+1, σ(aj+1)), the same as player 1 already plays with strat-
egy τ1. We conclude that symmetric strategy iteration makes no improving moves in the
nodes a1, a2, . . . , aj+1, d1, d2, . . . , dj , so the only improvement that it makes is the edge
(dj+1, σ(aj+1)). We call the strategy pair we get after this switch (σ2, τ2) (see right of
Figure 26).

Finally, we look at what switches are made in the third iteration on strategies (σ2, τ2).
We still have a j+2-bitlike pair of strategies. Hence we can argue in the same way as before
that still no switches will be made for ai and di with i > j+1, and also that Ξτ2(σ(aj+1)) =

Ξτ2(τ2(dj+1)) ◁ Ξτ2(τ
1(dj+1)) and Ξσ2(τ2(dj+1)) ◁ Ξσ2(τ1(dj+1)). Now we look at the

optimal counterstrategies for the nodes a1, a2, . . . , aj+1, d1, d2, . . . , dj+1. First we look at
the counterstrategy to σ2. Like before, player 1 would like to end up in σ(aj+1) = τ2(dj+1),
and pass aj+1 on the way there. The only way to do so is to play the strategy that player 1
is already playing. So symmetric strategy iteration will not find any improving moves that
are also part of σ2. Now to the counterstrategy against τ2. Player 0 would like to end up in
node τ1(dj+1). It is not possible to get here via dj+1 anymore, since player 1 switched in the
previous iteration. In fact, the only strategy to get to τ1(dj+1) from the player 0 nodes is
to play the strategy consisting of the edges (a1, a2), (a2, a3), . . . , (aj , aj+1), (aj+1, τ

1(dj+1)).
The edges (a1, a2), . . . , (aj−1, aj) are already used by player 0 in σ2. The edge (aj , aj+1) is
obviously not an improving move, since switching it creates a cycle with p(aj+1) = 2j+3 as
highest priority. So the only edge that can be switched by symmetric strategy iteration is
(aj+1, τ

1(dj+1)). By Lemma 6.1, there is always at least one edge switched if the strategies
are not optimal yet, so exactly this edge is switched by symmetric strategy iteration.

Now we proved that the three iterations indeed work as claimed in the lemma, and we
only need to prove that the result is in Gray bit state B+1. Our three iterations changed
σ(aj+1) and τ(dj+1) to the other of aj+2 and dj+2, so the result must be in some Gray bit
state B′. We know B is j-suboptimal, so gj = 1 and gi = 0 for i < j. Since B is odd, this
also means that B1 =

∑n
i=1 gi(mod 2) = 1. It follows that Bk =

∑n
i=k gi(mod 2) = 1

for k ≤ j, and Bj+1 = 0.The Gray code of B′ differs from that of B in the j+1-th bit, and
this is indeed the least significant bit k for which

∑
i=k gi is even. So from the properties of

Gray code, we know B′ = B + 1, so after three iterations of symmetric strategy iteration,
we are in Gray bit state B + 1. ■

This leads to the main result of this section, which is described in the following theorem.

69

Theorem 6.10. The worst case running time of symmetric strategy iteration is exponen-
tial in the number of nodes and edges of the graph.
Proof: From Lemma 6.7 and Lemma 6.9 we know that symmetric strategy iteration runs
through all the bit states in {0, 1, . . . , 2n − 1}. From an even bit state, it takes 1 iteration
to go to the next one, and from an odd one, it takes 3 iterations. Hence, if n ≥ 2, then
symmetric strategy iteration algorithm reaches the pair of optimal strategies for Gn after
1 · (2n−1) + 3 · (2n−1 − 1) = 2n+1 − 3 iterations. Note also that Gn has 2n+ 2 nodes and
6n edges. Finally, the worst-case number of iterations cannot be more than exponential
as the number of possible strategies is exponentially bounded in the number of nodes and
edges. This implies the result of the theorem. □

6.5 Possible improvement

Now we look at how symmetric strategy iteration may be improved such that it does not
need an exponential number of iterations on the examples presented in this section. The
main reason that symmetric strategy iteration needs an exponential number of iterations
is because it only switches the ai and di with the lowest indices. This, in turn, happens
because it is only allowed to make switches that are part of the optimal counterstrategies
σ̄ and τ̄ . This restriction is there, even though the optimal counterstrategies are not very
good strategies during symmetric strategy iteration. So it would make sense to allow the
players more freedom to make improving moves while still considering the current other
player their strategy. There are probably many ways to do so. Here, we look at one
concrete way to do so. We define the following sets:

Jσ(τ) = {(v, w) : v ∈ V0 ∧ Ξτ (w) ⊵ Ξτ (σ(v))}
Jτ (σ) = {(v, w) : v ∈ V1 ∧ Ξσ(w) ⊴ Ξσ(τ(v))}

We could view Jσ(τ) as the set of edges that are ’better’ for player 0 against τ than σ.
Note that (v, τ̄(v)) ∈ Jσ(τ) ∀v ∈ V0 (if one such edge was not in Jσ(τ), this would imply
player 0 has an even better strategy against τ than τ̄). Likewise, Jτ (σ) can be viewed as
the edges that are ’better’ for player 1 than τ against σ. Also (v, σ̄(v)) ∈ Jτ (σ) ∀v ∈ V1.
Recall that

Iτ = {(v, w) : v ∈ V1 ∧ Ξτ (w) ◁ Ξτ (σ(v))}
Iσ = {(v, w) : v ∈ V0 ∧ Ξσ(w) ▷ Ξσ(τ(v))}

Then we could, instead of letting player 0 switch the edges from Iσ ∩ {(v, τ̄(v))|v ∈ V0} to
σ, let him switch a number of edges from Iσ ∩ Jσ(τ) in symmetric strategy iteration. Of
course, there can be multiple options per node, so one would need an improvement rule
to decide which edges to switch. Likewise, player 1 can switch a number of edges from
Iτ ∩ Jτ (σ) instead of Iτ ∩ {(v, σ̄(v))|v ∈ V0}.

Correctness of this algorithm is immediately implied by Lemma 6.1, since we can still
switch edges from σ̄ and τ̄ . Moreover, if the switch-all improvement rule is used (switch
one edge from each node where there is an improving move), then the algorithm solves
graph Gn in n iterations. This is because it would make the right switches in an and dn
in the first iteration, and in an−1 and dn−1 in the next, and so on. Moreover, it likely still
does not fall for the traps from Friedmanns many counterexamples [11, 12]. This is for
the same argument as for symmetric strategy iteration: because once player 1 moves out
of a ’trap’, he will not fall for it again as it is not an improving move. Player 0 will also
not be under the illusion that player 1 will fall for the trap again as he always considers
strategy τ .

70

7 Conclusion and discussion

In this thesis, we looked at two structures that can be used to construct families of parity
games with exponential running time for discrete strategy iteration: the binary counter
and the reverse binary counter. These structures could be used to make such examples for a
number of different deterministic single-switch memoryless improvement rules. Of course,
this structure would not work for any deterministic single-switch memoryless improvement
rule, let alone for any improvement rule. But filling in a gadget makes it relatively easy
to make a counterexample. Mostly these structures can serve as a benchmark to help in
designing good improvement rules for parity games.

Secondly, we looked at a new algorithm called subgame iteration, and showed that
any run of this algorithm can be related to a run of the simplex algorithm. This means
that examples with exponential running time in parity games can be translated to a linear
program where the simplex algorithm needs an exponential number of iterations. This
holds both for discrete strategy iteration on sink parity games, and for subgame iteration.
This mostly provides a tool to analyze the combinatorial structure of LP polyhedrons more
easily. Coming up with an example with exponential running time (in terms of number of
equations and variables) can be reduced to finding the equivalent improvement rules and
constructing a gadget with the desired behavior. Although this is definitely not trivial and
takes some creativity, it is definitely possible as shown by the four examples of classical
pivot rules. A drawback of the reduction is the size of the coefficients of the linear program,
as they are doubly exponential in terms of the node priorities. Therefore, the reduction
cannot immediately be used to show exponential running time in the input size of the
linear program.

Finally, we showed that the symmetric strategy iteration algorithm has exponential
worst-case performance. This was by constructing a family of parity games where this
algorithm behaves like a counter in Gray code. This example could be used as a benchmark
for new algorithms for solving parity games.

The immediate applications of the results from this thesis lie in the new improvement
rules and the adaptation of symmetric strategy iteration. In a bit less direct way, the
tools for analyzing improvement rules for strategy iteration and pivot rules for the simplex
algorithm might lead to better rules.

To answer the main question: Is there a structured way to construct examples with
exponential running time for strategy iteration in parity games, and, related to that, for
pivot rules in the simplex algorithm for linear programming? There is definitely a struc-
tured way to construct such examples for strategy iteration in parity games. There are
even multiple ways as shown in this thesis. There is also a structured way to translate
this to the simplex algorithm, in terms of the number of variables and equations. So in
conclusion, the answer to the main question is yes for many pivot and improvement rules,
with some creativity, for one definition of exponential running time.

71

8 Recommendations for future research

Probably the most useful way in which the results of this thesis can contribute to future
research is in the tools to analyze pivot rules and improvement rules for strategy iteration.
The question whether there exists an efficient (polynomial-time) simplex pivot rule or strat-
egy iteration improvement rule is still open. It could be that trying to find deterministic
single-switch memoryless improvement rules that solve the ’hard’ parity games described
in this thesis could lead to better improvement rules. In particular the question whether
there is an improvement rule that makes the algorithm from Section 6.5 a polynomial-time
algorithm is interesting.

Moreover, in designing a potential polynomial-time improvement rule for discrete strat-
egy iteration, one would need to make a rule that switches the gadgets from Section 3
closest to the sink first. Therefore it would be interesting to see if improvement rules can
be designed that prefer nodes ’close’ to the sink, and if they perform well. Although one
should be careful that if the rule naively switches nodes with a low path value, then one
may design a parity game in which player 1 can make the most important switches look
‘far away.’

For applied purposes, one could investigate the performance in practice of the many
suggested improvement rules for discrete strategy iteration, symmetric strategy iteration
and the subgame iteration algorithm. One could compare them against currently used
algorithms, or try to combine them with these improvement rules.

About the reduction in this thesis, one could still look at the coefficients in the reduction
from parity games to linear programs. In particular, one could wonder whether the size of
these can be reduced to at most exponential in terms of the node priorities of the graph.
Then the technique described in this thesis could yield families of linear programs that
need a number of iterations exponential in terms of the input size of the LP.

Finally possible continuation could be to consider more complicated pivot rules for the
simplex algorithm, maybe even primal-dual variations of the simplex algorithm. One could
look if these rules also have a combinatorial interpretation in strategy iteration, subgame
iteration, or maybe a completely new algorithm in parity games. It may be possible to
construct a reduction from parity games to linear programs that, similar to the results of
this thesis, relates a discrete algorithm in parity games to the simplex algorithm.

72

A Implementation

A Python implementation of the symmetric strategy iteration algorithm and counterex-
amples in Section 6 can be found at https://github.com/MatthewMaat/Master-thesis.

B Table of symbols

Symbol Meaning(s) Defined in section
⪯,⊴ linear orders on paths and valuations 2.4, 4
⊎, \ Multiset addition, multiset difference 2.2
A Matrix of coefficients in simplex algorithm 2.6

ai, Ai Ai: gadget in Gn. ai: node in Ai 3
b Constant vector in linear programming 2.6

Constant equal to b = n3n 4
b(P) Function of the priorities of P 4.4
B Basis of linear program 2.6

Number between 0 and 2n − 1 3, 6
Bi i-th bit of binary representation of B 3, 6
c Cost vector of linear programming 2.6

di, Di Di: gadget in Gn. di: node in Ai 3
E Edge set of graph G 2.3

Ei, i ∈ {0, 1} Set of edges that can be used by player i 2.3
gi i-th bit of Gray code 6
G G = (V,E) is a graph 2.3

(Gn))n ∈ N Family of graphs 3
GS,T Subgraph of G defined by S and T 4.1

I, Iσ, Iτ Set of improving moves (for strategy σ or τ) 2.4, 6.1
M(Q) Set of multisets of Q 2.4

Mσ(v, v
′) Shortest path from v to any other node 3.4

n Number of nodes or gadgets in G

N large (odd) number 3
Pij (shortest) path from i to j 4
p(v) Priority of vertex v 2.3
P(Q) Powerset of Q 2.4
Q Set of priorities occurring in G 2.4
S Partial player 0 strategy 4.1
T A set of player 1 controlled nodes 4.1
V Vertex set of graph G 2.3

Vi, i ∈ {0, 1} Set of vertices controlled by player i 2.3
Wi, i ∈ {0, 1} Set of vertices from which player i has a winning strategy 2.3

ξe Lexicographically sorted vector of valuations 3.4
Ξσ Valuation for strategy iteration for player 0 strategy σ 2.4
Ξτ Valuation for strategy iteration for player 1 strategy τ 6.1
σ Strategy for player 0, σ : V0 → V 2.3
σ̄, τ̄ Optimal counterstrategy to strategy σ, τ 2.4
τ Strategy for player 1, τ : V1 → V 2.3

ΨS,T (v) Valuation of v for S, T in subgame iteration 4.1

73

https://github.com/MatthewMaat/Master-thesis

C A playable parity game

The rules of the parity game are as follows:

• The game starts in the node marked with "start"

• If you are at a circle, player "even" marks an outgoing edge of the current node, and
if you are at a square, player "odd" marks an outgoing edge from the current node.

• If marking an edge creates a cycle, the game ends. The winner of the game is
determined by the highest priority in the cycle. If it is even, the even player wins,
and if it is odd, the odd player wins.

• For example, in the game below, the even player marks the edge from the start node.
Because the next node is a square, it is player "odd" his turn. Then player "odd"
goes to the node with priority 21, then to the one with priority 11, then to the one
with 18, and back to the one with 11. The game ends since there is a cycle. The
largest number in the cycle is 18, so the even player wins.

74

Figure 27: Playable parity game

75

D Generalized improvement rules

This section describes a generalized notion of improving moves for discrete strategy itera-
tion in parity games. Every improving move in the usual strategy iteration sense is also a
generalized improving move, but generalized framework could allow moves that would not
be considered improving in the usual way. However, no procedure to find these generalized
improving moves efficiently was found during the course of the master thesis. The concepts
and notation used in this section is very similar to [18].

We let from now on n be the number of nodes in a parity game. Recall that we can as-
sume that all priorities in the game are unique and between 1 and 2n.
Let Eσ = {(v, w) ∈ E| σ(v) = w ∨ (v, w) ∈ E1} for a player 0 strategy σ and
Eτ = {(v, w) ∈ E| τ(v) = w ∨ (v, w) ∈ E0} for a player 1 strategy τ .

We introduce a linear order ⪯ on Q, given by l1 ⪯ l2 ⇔ (−1)l1 · l1 ≤ (−1)l2 · l2.
We also have the pre-order ⊴̃ on the space of valuations Q × M(Q) × Z≥0 given by
(l1, B1,m1)⊴̃(l2, B2,m2)⇔ (l1, B1,m1) ⊴ (l2, B2,m1).

We introduce a generalized version of an improvement rule. First, we introduce the ⊞
operator, which behaves similar to the ⊞ operator from [18], but formulated in a way that
will simplify the notation a bit. Let V AL be the space of possible valuations (Q×M(Q)×
Z≥0), where M(Q) is the set of multisets of Q. We define the operator ⊞ : V×V AL→ V AL
as follows:

• If p(v) ≤ l then (l, B,m)⊞ v = (l, B,m+ 1).

• If p(v) > l, then (l, B,m)⊞ v = (l, B ⊎ {p(v)},m+ 1),
where ⊎ denotes multiset addition.

For simplicity we define ⊞ also for a path R = (v1, v2, . . . , vk) by

(l, B,m)⊞R = (. . . ((l, B,m)⊞ v1)⊞ v2)⊞ . . . vk

Next, we introduce the concept of a low-progressive valuation, which generalizes the
concept of locally under-progressive valuations from [18].

Definition D.1. We call a valuation Ξ = (Λ,Π) : V → Q×(M(Q)×Z≥0) low-progressive
for a strategy σ if the following holds for the graph Gσ = (V,Eσ):

• For every vertex v ∈ V , there exists a set Xv ⊆ V such that:

1. There does not exist a play P = (v, v2, . . . , vl) in Gσ such that P ∩Xv = ∅.
2. Paths from v to Xv cannot ’skip’ the node with priority Λ(v). More precisely,

if there is a path R = (v, v1, v2, . . . , vk) which contains a vertex w ̸= v with
p(w) = Λ(v), and if (v1, v2, . . . , vk) ∩Xv = vk, then vk = w and w ∈ Xv.

3. For every (possibly closed) path R = (v, v1, v2, . . . , vk) with vk ∈ Xv, we have
the following:

(a) If Λ(v) ̸= p(v), then Ξ(v) ⊴ Ξ(vk)⊞ (v, v1, v2, . . . , vk−1).
(b) If Λ(v) = p(v), then Π(v) = (∅, 0) and Ξ(v)⊴̃Ξ(vk)⊞ (v, v1, v2, . . . , vk−1).

This then allows us to formulate the notion of a general improving switch.

Definition D.2. We call player 0 strategy σ′ a general improvement for player 0 strategy
σ if Ξσ is low-progressive for strategy σ′, and if there is at least one node v for which all
inequalities of the third condition of low-progressiveness are strict.

76

We prove the following lemma, which shows that performing a general improvement results
in a better strategy for player 0, since it implies that Ξσ′(v) ⊵ Ξσ(v) for all nodes and
Ξσ′(v) ▷ Ξσ(v) for at least one node.

Lemma D.3. If Ξ = (Λ,Π) is low-progressive for some strategy σ, then Ξ(v) ⊴ Ξσ(v) for
all v ∈ V , and Ξ(v) ◁ Ξσ(v) for at least one node v.
Proof: For the first part, it suffices to show that Ξ(v) ⊴ (λ(P), π(P),#(P)) for all v ∈ V
and for every play P that starts in v on the game on Gσ. Let P = (v1, v2, v3, . . . , vl), and
let p(vj) be the largest priority in the cycle of P .

First, we show that Λ(v1) ⪯ λ(P). To do so, it sufices to show that Λ(v) ⪯ λ(P) for all
v on the cycle of P . This is because then, we could pick a successor v11 of v1 in P that is
in Xv1 , and then a successor v21 of v11 that is in Xv11

, until we get a vk1 that is in the cycle.
If then Path(v, w) denotes the path from v to w (not including w) in P , then we get from
low-progressiveness

Ξ(v1)⊴̃Ξ(vk1)⊞ Path(vk−1
1 , vk1)⊞ . . .⊞ Path(v1, v

1
1)

Hence Λ(v1) ⪯ Λ(vk1) ⪯ λ(P) in that case.
Now suppose, on the contrary, that Λ(v0) ≻ λ(P) for some v0 on the cycle of P .

Because of low-progressiveness, there must be some vertex v1 ∈ Xv on the cycle of P with
therefore Ξ(v)⊴̃Ξ(v1)⊞ Path(v, v1). With the same argument, there is some v2 ∈ Xv1 in
the cycle, some v3 ∈ Xv2 and so on. At some point we must find some vertex twice in the
sequence v0, v1, v2, . . ., say vs = vt. This implies that

Ξ(vs)⊴̃Ξ(vs)⊞Path(vs, vs+1)⊞ . . .⊞Path(vt−1, vs) = Ξ(vs)⊞C ⊞C ⊞ . . .⊞C (17)

where C denotes the cycle of P . Note that we also have Λ(vs) ≻ λ(P), and also, because
of the inequalities along the cycle, we must have Λ(vs) = Λ(vs+1) = . . . = Λ(vt). We
distinguish a number of cases:

1. Λ(vs) is even. Then, we have two subcases:

(a) λ(P) < Λ(vs). In that case, Λ(vs) does not occur in the cycle of P , and
therefore the inequality in (17) holds for ⊴ as well (because case 3(b) of the low-
progressiveness condition does not occur). Also, adding the cycle to a valuation
only increases the third component of the valuation. So we get

Ξ(vs) ⊴ Ξ(vs)⊞ C ⊞ C ⊞ . . .⊞ C

because of low-progressiveness, where the only difference between the left and
right side is that the right side has a larger third component. But then we have
a contradiction, because

Ξ(vs) ▷ Ξ(vs)⊞ C ⊞ C ⊞ . . .⊞ C

as Λ(vs) is even, so a larger third component decreases the valuation.

(b) λ(P) > Λ(vs), which implies that λ(P) is odd, since we had λ(P) ≺ Λ(vs). But
then

Ξ(vs)▷̃Ξ(vs)⊞ C ⊞ C ⊞ . . .⊞ C

because the largest number in the cycle is odd, which contradicts (17).

77

2. Λ(vs) is odd. This implies that λ(P) > Λ(vs) and λ(P) is odd. But then again

Ξ(vs)▷̃Ξ(vs)⊞ C ⊞ C ⊞ . . .⊞ C

because the largest number in the cycle is odd, and this contradicts (17).

Since all cases lead to contradiction, we conclude Λ(vs) ⪯ λ(P), hence Λ(v0) ⪯ λ(P) for
all v0 in the cycle, hence Λ(w) ⪯ λ(P) for all nodes w in P from low-progressiveness, in
particular for the starting node v1.

Now we need to prove that Ξ(v) ⊴ (λ(P), π(P),#(P)) if Λ(v) = λ(P). We again define
v1 ∈ P to be the next node in Xv in P , and similarly v2 ∈ Xv1 , and so on. We already
proved that Λ(w) ≤ λ(P) for all nodes w in P , and as Λ(v) ⪯ Λ(v1) ⪯ Λ(v2) ⪯ . . ., we
have λ(P) = Λ(v) = Λ(v1) = Λ(v2) =

Now let v̄ be the vertex in the cycle of P such that p(v̄) = λ(P). By the second
condition of low-progressiveness, we see that the sequence v, v1, v2, . . . cannot ’skip’ v̄, and
we can say that r is the first index for which vr = v̄. Then p(vi) ̸= λ(P) for i < r, and we
have by the third condition of low-progressiveness that

Ξ(v) ⊴ Ξ(v̄)⊞ Path(v, v1)⊞ Path(v1, v2)⊞ . . .⊞ Path(vr−1, v̄)

= Ξ(v̄)⊞ Path(v, v̄)

= (λ(P), ∅, 0)⊞ Path(v, v̄)

= (λ(P), π(P),#(P))

and this completes the proof that Ξ(v) ⊴ Ξσ(v) for all v ∈ V . Next, by, low-progressiveness
we know that there is a vertex v such that the inequalities of the third condition are strict.
Consider the play resulting from strategy σ and optimal counterstrategy σ̄ when the game
is started from v, which we call Pσσ̄(v). If v1 is the next node of Xv on Pσσ̄(v), then
we see that Ξσ(v) = Ξσ(v

1) ⊞ Path(v, v1). Because of the assumption on v we also have
Ξ(v)◁Ξ(v1)⊞Path(v, v1) (note that if ◁̃ holds then also ◁ holds). Finally, because of what
we just proved about Ξ and Ξσ, we have Ξ(v1) ⊴ Ξσ(v

1). This yields

Ξ(v) ◁ Ξ(v1)⊞ Path(v, v1) ⊴ Ξσ(v
1)⊞ Path(v, v1) = Ξσ(v)

This completes the proof of Lemma D.3 ■
So now we know that applying a general improvement increases the valuation of the

nodes in the graph. Now we only need to prove that there is a general improvement if and
only if the current strategy is not optimal.

Lemma D.4. The following statements are equivalent:

1. There exists a general improvement σ′ for player 0 strategy σ.

2. σ is not optimal

3. There exists an improving move for σ, i.e. the set of improving switches I is nonempty.

Proof:
(1⇒ 2) This follows immediately from Lemma D.3.
(2⇒ 3) This follows from Lemma 5.8 from [18].
(3 ⇒ 1) Suppose there is an improving move from player 0 node v0, say σ(v0) = w,
(v0, z) ∈ E0 and Ξσ(z) ▷ Ξσ(w). Then we claim that the strategy σ′, which is the same
as σ except that σ′(v0) = z, is a general improvement to σ. If σ′ is obtained from σ by
an improving move, then Proposition 5.3 of [18] says that Ξσ = (Λ,Π) is locally under-
progressive for σ′, i.e. for any edge (v, w) in Gσ we have

78

• If Λ(v) ̸= p(v), then Ξσ(v) ⊴ Ξσ(w)⊞ v

• If Λ(v) = p(v), then Π(v) = (∅, 0) and Ξσ(v)⊴̃Ξσ(w)⊞ v

It is obvious that if Ξσ is locally under-progressive for σ′, then it is also low-progressive
for σ′, since we can just choose Xv to be the set of successors of v in Gσ′ . In particular,
choosing Xv0 = {z} we have that Ξσ(v0) ◁ Ξσ(w) ⊞ v0 so the inequalities of the third
condition of low-progressiveness hold strictly for v.6 Therefore, the improvement is also a
general improvement. ■

We conclude that from Lemma D.3 and Lemma D.4 follows that an algorithm that
applies general improvements until there are no general improvements possible solves parity
games.

6If Λ(v) = p(v) we should have Ξσ(z)▷̃Ξσ(w)

79

References

[1] Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael
Joswig. Combinatorial Simplex Algorithms Can Solve Mean Payoff Games.
http://dx.doi.org/10.1137/140953800, 24(4):2096–2117, 12 2014. ISSN 10526234.
doi:10.1137/140953800. URL https://epubs.siam.org/doi/abs/10.1137/
140953800.

[2] Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael Joswig. Tropi-
calizing the Simplex Algorithm. http://dx.doi.org/10.1137/130936464, 29(2):751–795,
4 2015. ISSN 08954801. doi:10.1137/130936464. URL https://epubs.siam.org/doi/
abs/10.1137/130936464.

[3] D. Avis and V. Chvátal. Notes on Bland’s pivoting rule. pages 24–34, 1978.
doi:10.1007/BFB0121192.

[4] Henrik Björklund, Sven Sandberg, and Sergei Vorobyov. A combinatorial strongly
subexponential strategy improvement algorithm for mean payoff games. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), 3153:673–685, 2004. ISSN 16113349.
doi:10.1007/978-3-540-28629-5_52/COVER/. URL https://link.springer.com/
chapter/10.1007/978-3-540-28629-5_52.

[5] Robert G. Bland. New Finite Pivoting Rules for the Simplex Method.
https://doi.org/10.1287/moor.2.2.103, 2(2):103–107, 5 1977. ISSN 0364-765X.
doi:10.1287/MOOR.2.2.103. URL https://pubsonline.informs.org/doi/abs/10.
1287/moor.2.2.103.

[6] George Dantzig. Linear Programming and Extensions. Linear Programming and
Extensions, 12 1963. doi:10.1515/9781400884179/HTML.

[7] Yann Disser, Oliver Friedmann, and Alexander V Hopp. An Exponential Lower Bound
for Zadeh’s pivot rule *. Technical report, 2020. URL https://doi.org/10.48550/
arXiv.1911.01074.

[8] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments of
µ-calculus. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 697 LNCS:385–396,
1993. ISSN 16113349. doi:10.1007/3-540-56922-7_32/COVER/. URL https://link.
springer.com/chapter/10.1007/3-540-56922-7_32.

[9] John Fearnley. Exponential lower bounds for policy iteration. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), 6199 LNCS(PART 2):551–562, 2010. ISSN 03029743.
doi:10.1007/978-3-642-14162-1_46.

[10] John Fearnley. Non-oblivious Strategy Improvement. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 6355 LNAI:212–230, 2010. ISSN 03029743.
doi:10.1007/978-3-642-17511-4_13. URL https://link.springer.com/chapter/10.
1007/978-3-642-17511-4_13.

[11] Oliver Friedmann. Exponential lower bounds for solving infinitary payoff games and
linear programs. 2011. URL https://edoc.ub.uni-muenchen.de/13294/.

80

https://doi.org/10.1137/140953800
https://epubs.siam.org/doi/abs/10.1137/140953800
https://epubs.siam.org/doi/abs/10.1137/140953800
https://doi.org/10.1137/130936464
https://epubs.siam.org/doi/abs/10.1137/130936464
https://epubs.siam.org/doi/abs/10.1137/130936464
https://doi.org/10.1007/BFB0121192
https://doi.org/10.1007/978-3-540-28629-5{_}52/COVER/
https://link.springer.com/chapter/10.1007/978-3-540-28629-5_52
https://link.springer.com/chapter/10.1007/978-3-540-28629-5_52
https://doi.org/10.1287/MOOR.2.2.103
https://pubsonline.informs.org/doi/abs/10.1287/moor.2.2.103
https://pubsonline.informs.org/doi/abs/10.1287/moor.2.2.103
https://doi.org/10.1515/9781400884179/HTML
https://doi.org/10.48550/arXiv.1911.01074
https://doi.org/10.48550/arXiv.1911.01074
https://doi.org/10.1007/3-540-56922-7{_}32/COVER/
https://link.springer.com/chapter/10.1007/3-540-56922-7_32
https://link.springer.com/chapter/10.1007/3-540-56922-7_32
https://doi.org/10.1007/978-3-642-14162-1{_}46
https://doi.org/10.1007/978-3-642-17511-4{_}13
https://link.springer.com/chapter/10.1007/978-3-642-17511-4_13
https://link.springer.com/chapter/10.1007/978-3-642-17511-4_13
https://edoc.ub.uni-muenchen.de/13294/

[12] Oliver Friedmann. A superpolynomial lower bound for strategy iteration based on
snare memorization. Discrete Applied Mathematics, 161(10-11):1317–1337, 7 2013.
ISSN 0166-218X. doi:10.1016/J.DAM.2013.02.007.

[13] Donald Goldfarb and William Y. Sit. Worst case behavior of the steepest edge simplex
method. Discrete Applied Mathematics, 1(4):277–285, 12 1979. ISSN 0166-218X.
doi:10.1016/0166-218X(79)90004-0.

[14] Frank Gray. Pulse code communication, 1953. URL https://www.
freepatentsonline.com/2632058.pdf.

[15] Thomas Dueholm Hansen. Worst-case analysis of strategy iteration and the simplex
method. PhD thesis, 2012. URL https://pure.au.dk/portal/files/52807524/PhD_
dissertation_Thomas_Dueholm_Hansen.pdf.

[16] R. G. Jeroslow. The simplex algorithm with the pivot rule of maximizing criterion
improvement. Elsevier. URL https://www.sciencedirect.com/science/article/
pii/0012365X73901714.

[17] Marcin Jurdziński. Deciding the winner in parity games is in UP co-UP. Informa-
tion processing letters, 68(3):119–124, 1998. URL https://www.sciencedirect.com/
science/article/pii/S0020019098001501.

[18] Marcin Jurdzinski and Jens Vöge. A Discrete Stratety Improvement Algorithm
for Solving Parity Games. BRICS, 2000. URL https://www.brics.dk/RS/00/48/
BRICS-RS-00-48.pdf.

[19] Victor Klee, George Minty, János Pach, Bruce Reed, and Yelena Yuditsky. How good
is the simplex algorithm. cgm.cs.mcgill.ca, 1970. doi:10.4230/LIPIcs.SoCG.2018.68.
URL http://cgm.cs.mcgill.ca/~avis/Kyoto/courses/te/abs_examples.pdf.

[20] Walter Ludwig. A Subexponential Randomized Algorithm for the Simple Stochastic
Game Problem. Information and Computation, 117(1):151–155, 2 1995. ISSN 0890-
5401. doi:10.1006/INCO.1995.1035.

[21] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear
programming. Algorithmica 1996 16:4, 16(4):498–516, 1996. ISSN 1432-0541.
doi:10.1007/BF01940877. URL https://link.springer.com/article/10.1007/
BF01940877.

[22] Anuj Puri. Theory of hybrid systems and discrete event systems., 1995. URL https:
//www.elibrary.ru/item.asp?id=5408583.

[23] Sven Schewe. An Optimal Strategy Improvement Algorithm for Solving Par-
ity and Payoff Games. Computer Science Logic, pages 369–384, 8 2008.
doi:10.1007/978-3-540-87531-4_27. URL https://link.springer.com/chapter/10.
1007/978-3-540-87531-4_27.

[24] Sven Schewe. From parity and payoff games to linear programming. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 5734 LNCS:675–686, 2009. ISSN 03029743.
doi:10.1007/978-3-642-03816-7_57/COVER/. URL https://link.springer.com/
chapter/10.1007/978-3-642-03816-7_57.

81

https://doi.org/10.1016/J.DAM.2013.02.007
https://doi.org/10.1016/0166-218X(79)90004-0
https://www.freepatentsonline.com/2632058.pdf
https://www.freepatentsonline.com/2632058.pdf
https://pure.au.dk/portal/files/52807524/PhD_dissertation_Thomas_Dueholm_Hansen.pdf
https://pure.au.dk/portal/files/52807524/PhD_dissertation_Thomas_Dueholm_Hansen.pdf
https://www.sciencedirect.com/science/article/pii/0012365X73901714
https://www.sciencedirect.com/science/article/pii/0012365X73901714
https://www.sciencedirect.com/science/article/pii/S0020019098001501
https://www.sciencedirect.com/science/article/pii/S0020019098001501
https://www.brics.dk/RS/00/48/BRICS-RS-00-48.pdf
https://www.brics.dk/RS/00/48/BRICS-RS-00-48.pdf
https://doi.org/10.4230/LIPIcs.SoCG.2018.68
http://cgm.cs.mcgill.ca/~avis/Kyoto/courses/te/abs_examples.pdf
https://doi.org/10.1006/INCO.1995.1035
https://doi.org/10.1007/BF01940877
https://link.springer.com/article/10.1007/BF01940877
https://link.springer.com/article/10.1007/BF01940877
https://www.elibrary.ru/item.asp?id=5408583
https://www.elibrary.ru/item.asp?id=5408583
https://doi.org/10.1007/978-3-540-87531-4{_}27
https://link.springer.com/chapter/10.1007/978-3-540-87531-4_27
https://link.springer.com/chapter/10.1007/978-3-540-87531-4_27
https://doi.org/10.1007/978-3-642-03816-7{_}57/COVER/
https://link.springer.com/chapter/10.1007/978-3-642-03816-7_57
https://link.springer.com/chapter/10.1007/978-3-642-03816-7_57

[25] Sven Schewe, Ashutosh Trivedi, and Thomas Varghese. Symmetric Strategy Improve-
ment. Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), 9135:388–400, 2015. ISSN
16113349. doi:10.1007/978-3-662-47666-6_31. URL https://link.springer.com/
chapter/10.1007/978-3-662-47666-6_31.

[26] Sdo. Polyhedron of simplex algorithm in 3D, 2006. URL https://en.wikipedia.
org/wiki/Simplex_algorithm#/media/File:Simplex-method-3-dimensions.png.

[27] Steve Smale. Mathematical problems for the next century. The Mathematical Intelli-
gencer 1998 20:2, 20(2):7–15, 1 2009. ISSN 03436993. doi:10.1007/BF03025291. URL
https://link.springer.com/article/10.1007/BF03025291.

[28] Tom van Dijk. A Parity Game Tale of Two Counters. Electronic Proceedings in The-
oretical Computer Science, EPTCS, 305:107–122, 7 2018. doi:10.4204/EPTCS.305.8.
URL http://dx.doi.org/10.4204/EPTCS.305.8.

[29] Norman Zadeh. What is the worst case behavior of the simplex algorithm. 1980.
URL https://books.google.com/books?hl=en&lr=&id=uuzf-Fy1Cj8C&oi=fnd&
pg=PA131&dq=What+is+the+worst+case+behaviour+of+the+simplex+algorithm%
3F&ots=XmZF9aFnEO&sig=3IlZmu1B86F53TKANRxKyyqWD-E.

82

https://doi.org/10.1007/978-3-662-47666-6{_}31
https://link.springer.com/chapter/10.1007/978-3-662-47666-6_31
https://link.springer.com/chapter/10.1007/978-3-662-47666-6_31
https://en.wikipedia.org/wiki/Simplex_algorithm#/media/File:Simplex-method-3-dimensions.png
https://en.wikipedia.org/wiki/Simplex_algorithm#/media/File:Simplex-method-3-dimensions.png
https://doi.org/10.1007/BF03025291
https://link.springer.com/article/10.1007/BF03025291
https://doi.org/10.4204/EPTCS.305.8
http://dx.doi.org/10.4204/EPTCS.305.8
https://books.google.com/books?hl=en&lr=&id=uuzf-Fy1Cj8C&oi=fnd&pg=PA131&dq=What+is+the+worst+case+behaviour+of+the+simplex+algorithm%3F&ots=XmZF9aFnEO&sig=3IlZmu1B86F53TKANRxKyyqWD-E
https://books.google.com/books?hl=en&lr=&id=uuzf-Fy1Cj8C&oi=fnd&pg=PA131&dq=What+is+the+worst+case+behaviour+of+the+simplex+algorithm%3F&ots=XmZF9aFnEO&sig=3IlZmu1B86F53TKANRxKyyqWD-E
https://books.google.com/books?hl=en&lr=&id=uuzf-Fy1Cj8C&oi=fnd&pg=PA131&dq=What+is+the+worst+case+behaviour+of+the+simplex+algorithm%3F&ots=XmZF9aFnEO&sig=3IlZmu1B86F53TKANRxKyyqWD-E

	Introduction
	History and motivation
	Outline of the thesis
	Related work

	Preliminaries
	Graphs
	Multisets
	Parity games
	Discrete strategy iteration
	Sink parity games and improvement rules
	Linear programming and the simplex algorithm

	Improvement rules for strategy iteration in parity games
	Structure for counterexamples: binary counter
	Lower bounds from binary counter
	Reverse binary counter
	Lower bounds from the reverse binary counter

	An alternative lower bound proof technique
	The subgame improvement algorithm
	Linear programming formulation
	Illustration of subgame iteration and simplex algorithm
	Proof outline
	Uniqueness of valuation and values in reverse basis
	Main results

	Examples: alternative lower bound proofs for classical pivot rules.
	Construction of linear programs from parity games

	Worst-case complexity of symmetric strategy iteration
	The algorithm
	Gray code
	Family of parity games
	Steps of symmetric strategy iteration
	Possible improvement

	Conclusion and discussion
	Recommendations for future research
	Implementation
	Table of symbols
	A playable parity game
	Generalized improvement rules
	References

