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Abstract 

LiDAR has proved to an effective tool for mapping terrain and studying vegetation structural 

characteristics. Past researches have pursued studies related to low vegetation and its 

disturbing influence in determining the true elevation of the terrain using LiDAR. This study 

deals with extracting the vegetation structural characteristics of low vegetation and to 

determine the DTM error of the terrain using a new improved scanner which has a better 

vertical accuracy (1.5 cm) than the scanners that were used previously by other studies. This 

is so far have been challenging task because the range of low vegetation is well within the 

noise of the scanners. The scan angle for each plot is also determined to see if there is any 

influence of scan angle on the DTM error prediction and the vegetation structural 

characteristics estimation. The main methods involved in this study are hierarchic robust 

interpolation used for filtering the terrain points from the non terrain points. Second order 

spine interpolation has been used as a tool for interpolating two surfaces such as the DTM 

surface and all the points in order to find the height of the vegetation points above terrain. 

Vegetation density is found by employing the method of Vegetation Area Index. The scan 

angle and DTM error do not show any relationship with each other. The error check for the 

GPS used for field measurements was tested on a plot of asphalt and the error was found to 

be 0.9 cm. The field data about vegetation height and laser derived height of vegetation 

points showed good correlation for points above the height of 20cm. From the regression 

analysis performed between vegetation height and shift, there is a strong correlation seen for 

vegetation height data ranging from 3 to 7 cm. and shift values between 3 to 15cm. For 

vegetation height less than 6 cm, a mathematical relationship could be established with 

corresponding DTM error. Amongst other first order statistical measures that were  found, 

only std deviation and 93rd percentile found to have a strong correlation with vegetation 

height. Skewness and kurtosis proved poor correlation.  For further research, It is 

recommended to use texture approach for extracting vegetation structural characteristics.  
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1. Introduction 

1.1. Background 

 

With the development of geographical information systems (GIS), details regarding the 

earth elevation and its terrain have become important inputs for many studies. The earth’s 

terrain is recorded as a continuous and smooth surface and represented as a model called 

Digital Terrain Models (DTM) (Podobnikar, 2002). They are used in many fields’ viz., 

geomorphology, archeology, planning and hazard assessment. DTMs are also extensively 

used for hydrological applications where details about the bare Earth gives information 

about the water runoff, to determine runoff volume and to gauge ground water levels (B. 

Gorte et al., 2005).  

Mapping topography and vegetation structure is one of the main parameters when 

dealing with vegetation studies. With the current issues on carbon cycle and climate 

change, vegetation structure and parameters related to vegetation have become an 

important criterion.Three-dimensional vegetation structure in floodplains are essential for 

ecological studies and hydrodynamic modeling of rivers (Straatsma and Middelkoop, 

2006).  

 

This study mainly deals with 

1. extracting (low)vegetation structural characteristics using LiDAR and  

2. to determine the true elevation of the terrain  

1.2. A brief introduction to LiDAR 

 

Out of the current methods that are used to map the terrain like RADAR and 

photogrammetry,  LiDAR is an up-to-date technology that offers highest accuracy in 

terrain mapping. LiDAR is being used to generate DTMs for forest structure mapping as 

well as mapping low vegetation (Oude elberink et al., 2003). High frequency laser pulses in 

the near infra red region of the spectrum are fired towards the ground from an airborne 

platform (Bradbury et al., 2005), at discontinuous instances. The backscattered echoes from 
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the targets are recorded as discrete returns. An aggregate of all the recorded echoes is 

referred to as point cloud.  

 

Known as Light Detection And Ranging (or Airborne Laser Scanning), it is composed of 3 

main components, a differential GPS – to locate the aircraft in space, an Inertial Navigation 

System (INS) which gives the orientation of the aircraft and the Laser Range Finder (LRF) 

that gives the distance between the aircraft and the target. The dGPS also has a base station 

on the ground which reduces the positioning error of the aircraft. Operationally used laser 

systems record discrete pulses. A discrete return LiDAR operates on a small footprint (20-

80cm) diameter that records one to multiple returns.  

                                                                                          

 

                                                  Figure 1-1: Point cloud of a forest  

                  

Figure1-2: Airborne laser scanning  
(John Chance Land Surveys, 2003) 
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Data from all three components are synchronized and combined to form a 3-D 

cloud of laser echoes of the target, usually the features below. The acquired data is then 

used to build high resolution LiDAR images of the ground or the forest canopy. The end 

product is almost always a high resolution DTM (Hopkinson et al., 2004). ALS data 

enables to perceive the terrain in a 3-dimensional environment thus making visualization 

easier and better, which is also why it is preferred over other conventional methods. 

LiDAR is helpful in fast data collection, little access to the site, and is less weather 

dependent compared to other survey systems. However, LiDAR is more expensive when it 

comes to data acquisition and needs complex algorithms for data handling and storage.  

 

1.3. Problem statement  

 

When LiDAR is used for terrain mapping, most of the pulses are backscattered 

from the topmost features in the terrain. In an urban or a forest scenario, it is usually 

buildings, poles or trees. These high lying points from buildings or trees can be easily 

discarded through filtering or using segmentation techniques. But when it comes to 

measuring a terrain that is covered with low vegetation(usually grassland/meadows with 

vegetation heights below 20 cm) (Gorte et al., 2005), they influence the accurate 

measurements of the terrain height since the pulses are reflected back from the top of the 

crop thus adding a small positive height to the true elevation of the terrain.(Gorte et al., 

2005). This shift in height is termed as the DTM error. 

Previous studies have shown that extracting the vegetation structural 

characteristics have proved to be efficient predictors in estimating this DTM error. 

Moreover the extraction of vegetation structural characteristics are not just used for 

determining the DTM error but also used as effective inputs for modeling floods in 

floodplains, especially in the Netherlands where floods occur during winter, when low 

vegetation consists of leafless stalks. Many studies have been undertaken in this regard. 

Related work has been more elaborately discussed in chapter 2.  

This study will thus prove helpful to the flood modelers who will be benefited by 

extracting the structural characteristics of low vegetation to determine hydrodynamic 

roughness of the floodplain and country planners by getting a more reliable DTM. Below is 
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a table explaining the previous researches done in this arena, the kind of data they used and 

the quality of results they obtained.  

Reference Footprint 
size (m) 

Point 
density 

No. of 
plots 

Vegetation 
type 

Height 
range 
(m) 

Scanner  
Used  

(Pfeifer, 
2001) 

0.2 10 24 Long grass, 
old willow 
forest and 

young 
forest 

0.5 t o 
1.8 

FLIMAP 
II 

(Straatsma 
and 

Middelkoop, 
2007) 

0.2 10 to 
75 

42 Herbaceous 
and grass 

0.2-2 FLIMAP 
II 

(Hopkinson 
et al., 2004) 

Small - 14 Acquatic 
veg, herbs, 
low shrubs 

0-1.25 - 

(Ahokas et 
al., 2003) 

Small 7 to 8 8 Grass 0.03-
0.25 

Toposys 
I 

(Hodgson 
and 

Bresnahan, 
2004) 

small 15 13 Low grass < 0.8 Optech 
1201 

(Davenport 
et al., 2000) 

0.15 – 
0.23 

- 18 Crops < 
1m 

0-0.9  

(Cobby et 
al., 2001) 

0.24 7 55 Grassland 
and crops 

 Optech 
ALTM 
1020 

      Table 1-1: Previous studies related to DTM error and vegetation height extraction 

1.4. Innovation 

 This study advances one step forward in the field of extracting low vegetation 

characteristics using LiDAR. As seen in the table (1-1), previous studies have already been 

trying with varying scanner properties and using different point densities. The scanner that 

is used for this study is fugro’s FLIMAP 400 (Fast Laser Imaging and Mapping Airborne 

Platform).The innovation in Flimap 400 is the overall accuracy of the scanner. The 

absolute vertical accuracy of the scanner is quoted at 1-1.5 cm (1 sigma). Experiences has 

shown that a 3cm (1 sigma) is achievable for hard surfaces.(fugrowaterservices.com). Since 
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the range of vegetation that this study deals with is less than 20cm, there is more 

opportunity that this study could arrive with predicting more accurate DTM errors and 

vegetation structure characteristics. More precisely, most of the plots that is considered for 

the study, range from heights 0.5cm to 3 cm, which even more stresses the need of a 

scanner with better accuracy.    

 

1.5. Research Questions 

Main research question 
� What is the potential of a high accuracy airborne laser scanner in predicting 

vegetation structural characteristics and DTM error? 
 

o Are they helpful in the reliable estimation of the disturbing influence of 
low vegetation for the DTM generation process? 

 
o Is there any influence of scan angle on the terrain model?  

 
o Is Vegetation Area Index (VAI an effective method to extract the 

vegetation density using LiDAR data? 
 

1.6. Research objectives  

 
Main objective: 
� Prediction of vegetation height and density using high accuracy LiDAR data 

 
Sub objectives: 
 
� To determine the DTM error based on the predicted vegetation height using 

LiDAR data 
� To interpret the influence of scan angle on DTM error  
� To extract vegetation density of the vegetation using VAI method  
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1.7. Study area  

 
This study was tested using the data collected on two floodplains in the netherlands: 

‘Duursche Waarden’ floodplain along the right bank of the River Ijssel and a floodplain in 

the province of noord brabant(as shown in fig). These floodplains are dominated by 

softwood forest and shrubs but mainly dominated by herbaceous vegetation. Herbaceous 

vegetation mainly consists of plant speices like sedge sedge (Carex hirta L.), sorrel (Rumex 

obtusifolius L.), nettle (Urtica dioica L.), thistle(Cirsium arvense L.) and clover (Trifolium 

repens L.) (Straatsma and Middelkoop, 2007) 

 

 

                                                            

 

  Figure1-3: two of the plots from the study sites  
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Figure:1-4 Study area  
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2. Literature review 

2.1. Introduction 

 

Airborne laser scanning is getting its recognition in the field of DTM extraction and in 

determining the structural characteristics of vegetation. Mainly used to find forest canopy 

heights, LIDAR is also being used in mapping floodplains and in extracting DTM. 

Mapping low vegetation and acquiring characteristics of the low vegetation with the use of 

an airborne laser scanner is a recent research arena. An overview of previous studies in this 

field is accounted for, in the following paragraphs. Sections 2.2 will give an overview of 

how airborne laser scanning have been used in effective DTM extraction through various 

filtering methods. Section 2.3 will discuss the previous studies done in the extraction of 

vegetation characteristics. Their subcategories deal more in detail about vegetation height 

and vegetation density respectively.  

 

2.2. DTM extraction and filtering of low vegetation sites  

 

All laser point clouds represent the ground whose continuity is broken by objects like 

buildings, vegetation and electric lines. Segmenting the laser points according to the feature 

from which they were scattered back is known as filtering. This is useful to reconstruct the 

objects in a 3D environment or to construct a faithful representation of the topography of 

the scene. There are two types of filtering methods a) point based filtering b) segment 

based filtering. In point based filtering, each point is considered individually and classified 

as terrain or non terrain analyzing slope between the adjacent points. The second type of 

filters deal with points in segments, that show some homogeneity. These types of filters 

consider the smoothness of a surface or the height difference between neighbouring 

segments and accordingly classify the points. (Tóvári and Pfeifer, 2005) 

 

Filtering methods are usually employed to separate terrain and non terrain points using 

geometry of the neighbourhoods such as slope and height differences (Geopfert and 

Soergel, 2007). The main motive in this study is to remove the high lying laser pulses from 

vegetation. These filtering methods serve different purpose but most of them aim to 

improve DTM accuracy. However in the case of low vegetation, filtering methods usually 
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fail to produce convincing results since low vegetation points are not substantially higher 

than the surrounding terrain. This may also be a potential problem when the vegetation is 

too dense for the laser pulses to hit the ground.  

 

Most filtering algorithms work by searching for the lowest point in the scene and treating 

these as terrain points, e.g. morphological filters (Kilian et al., 1996); (Vosselman, 2000) 

(Roggero, 2001) as cited by (Sithole and Vosselman, 2004). Some robust filters find points 

that is closest to a fitting surface and treat that as bare earth as explained in (Kraus and 

Pfeifer, 1998). (Brovelli, 2002) came about with another approach by treating small cluster 

of point clouds as objects (Sithole and Vosselman, 2004). (Axelsson, 1999,2000,2001) 

created a filtering algorithm mainly suitable for urban areas. He used the lowest points to 

form a TIN as the first set of ground points. For each triangle an additional unclassified 

ground point is added based on investigating the angles between the triangle face and the 

distance to the nearby facet nodes. Hence, if a point is below the threshold value it is 

classified as ground point and moves to the next triangle, the triangulation getting dense 

progressively. 

2.2.1. Robust interpolation Method  

 

A novel approach was developed by Pfeifer and Briese (2001) by combining filtering and 

interpolation procedures in a hierarchical approach. In this algorithm, a polynomial surface 

that roughly matches the terrain is constructed first. Points lying above and below this 

surface are given a weight depending on the distances between the surface and the point 

(Fig 2-1). The surface is then adjusted considering the weights of the points. A point with a 

high weight will attract the surface and similarly point with lower weight will have less 

influence towards the surface. After each iteration, if the distance is above a certain 

threshold, the point is classified as non terrain and discarded from the process. This is 

repeated until all non terrain points are eliminated or a certain number of iterations is 

exceeded. This technique has been applied in areas of dense high vegetation as used by  

(Wagner, 2006) for their research on retrieving DTM of a forested terrain. 
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2.2.2. Repetitive interpolation (REIN) 

 
Recent research on filtering methods have been done by (Kobler et al., 2007) which is 

called Repetitive interpolation (REIN). This has many advantages over other methods since 

this can be applied on steep forested areas where other algorithms have problem 

differentiating terrain and non terrain points. Though, this study does not deal with forested 

areas, this filtering method would give better results because of its expertise and innovative 

approach.  

This filter works as a two stage process. As the first stage, already existing filtering 

techniques are employed to discard negative and positive outliers (most of them, not all) 

that are non terrain points. In the next stage, REIN is introduced to estimate individual 

DTM points by interpolating from the neighbouring terrain points. These elevation 

estimates are produced from multiple individual samples taken from the previously filtered 

point samples. REIN can be applied both in a vector grid as well in a TIN (Triangular 

Irregular Network).  

 
Figure2-1 : repeated random selection of laser points used to build a set of TINs, out 
of which sets of elevation estimates are interpolated at the locations of DTM grid 
points. The remaining unfiltered vegetation points may become TIN nodes. (Kobler et 
al., 2007) 
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2.3. Structural characteristics of low vegetation 

2.3.1. Vegetation Height   

 

LiDAR have been widely used in extracting vegetation height in previous years. Initially 

profiling scanners were used but the returning signals were almost always from the top of 

the canopy. (Krabill, 1984) took into account the second return signal to find the 

topography while (Ritchie, 1996) used frequent and consistent returns from the ground for 

the same purpose. However when later saw tooth pattern or type of  scanners were used, 

they not only gave rise to lower spatial sampling rates but also lower probability of 

receiving signals from the ground since most of the signals would be intercepted by 

vegetation. Both conditions would therefore make measuring topography of the ground 

difficult to achieve. 

 

(Davenport et al., 2000) found ALS to be a useful tool to predict crop height which proved 

to be an important indicator of bird species population. Their research could achieve a 

height accuracy of better than 10 cm. Only pulses that were returned from within the crop 

were taken into account rather than those reflected from the canopy or the ground. After 

detrending the heights for topography, an algorithm to measure the variation in returned 

heights was developed. Thus, a relation between the mean crop height and the standard 

deviation of detrended return heights was used to derive the crop height of the field.   

 

The delay time between the first and the last returns of each signal were considered to 

represent vegetation canopy and ground respectively however, in densely populated areas, 

the last returns might not necessarily represent ground and hence this method is not a 

reliable one. In order to avoid exaggeration in vegetation height due to high slope areas, 

adequate filtering method was used. Te bilinear interpolation technique was employed to 

remove first order height trends. For a certain size of a plot across the field, spot heights are 

detrended and their distribution is plotted. Narrower distribution is obtained from a non-

vegetated region and the broader spread obtained from a 92 cm high crop. The spread is 

measured by calculating the standard deviation(σd) of the detrended height.  A simple 

relationship between this standard deviation and the surveyed height of the crops was 

established using a simple linear regression which resulted as follows with an r2 of 0.892. 
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  Manually surveyed height = 8.0559 x σd
 – 0.3513 

 

This produces estimates of the crop height with a mean error of 8.3 cm. Their research 

further concludes that the accuracy of this technique could be improved by giving more 

detail at the varying laser incidence angle and scan angle of the laser beam. A similar 

research was also carried out by (Cobby et al., 2001) who demonstrated that crop 

vegetation of upto 1.2 m in height could be predicted from the standard deviation of the 

detrended laser pulse returns.   

 

As an extension to this research (Hopkinson et al., 2004) worked on vegetation that ranged 

from wetland grass to plantation forests. He observed that for forest vegetation the pulse 

distribution was often bimodal whereas low vegetation tends not to display a bimodal 

distribution and this is accounted by the following reasons i) homogenous vegetation 

structure from canopy to ground (Cobby et al., 2001), ii) limitations in segregating first and 

last pulse for ranges below 1.5m (As per recent advancements). Moreover for low 

vegetation, it is highly likely that the scanner might associate some noise with the resulting 

data. As a conclusion, Hopkinson’s research proved the fact that a simple multiplication 

factor (M) could be applicable in vegetation height extraction studies where a M of 2.7 was 

suitable for low vegetation height extraction. The only potential limitation of M being 

when applying for low vegetation, the standard deviation of detrended pulses tends to 

increase with increasing slope irrespective of vegetation height resulting in positional 

inaccuracy (Hodgson and Bresnahan, 2004) 

 

2.3.2. The Contrast Texture Approach   

 

Pfiefer et al, in 2004 formulated a method where texture was used as a criterion to 

investigate any shift in height of the low vegetation. Two different approaches were 

experimented and among that, control point based approach yielded positive results. 

According to (Oude Elberink and Maas, 2000), texture is qualitatively and 

quantitatively defined by height. Hence this justifies as one of the parameters that can 

be exploited to find the height of the vegetation.  
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Texture in an image(in a raster form) is commonly defined as a regular repetition of a 

pattern in spatial phenomena (Pfeifer et al., 2004). But rasterization of the laser dataset 

would lead to loss in detail hence it is advisable to adhere to vector domain. Hence 

texture of a point (here) is always considered as a neighbourhood than a single point in 

order to get a hold of one complete pattern. Usually they are seen as local variability of 

grey levels varying spatially and thus reveal information regarding the object structure. 

Best known method to deal with textural feature extraction algorithm is Grey level 

occurrence matrix (GLCM) or Grey tone spatial dependency matrix. (Haralick, 1979) 

did extensive studies about this algorithm to deal with statistical and structural 

approaches to texture. In simple terms, he defines GLCM as, “characterizes texture by 

the co-occurence of its grey tone”.  Coarse textures are those for which there is only 

slight variation of distribution with distance and those of finer texture are characterized 

in which there is rapid change in distribution with distance.  The GLCM can be 

computed as matrix format of relative frequencies Fij with which 2 neighboring pixels 

(in this case points) situated apart by a distance d each of them with a grey level ‘i’ and 

‘j’ respectively (Haralick, 1979).  

 

Its elements are expressed by  

 

                                                             
Where  p (i, j)  -  elements of the matrix 

   P (i, j)  - Relative frequencies 

   i,j - Grey level (0-255) 

   Ng
 - Total number of grey levels 

       (Ruiz et al., 2004) 

 

The main advantage of GLCM being it can characterize the spatial 

interrelationships of the grey tones in a textural pattern but cannot significantly 

derive the shape aspects of the tonal patterns. 
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         Fig 2-2: GLCM on a point cloud texture Source: (Pfeifer et al., 2004) 
 

Now proceeding to the control point based approach, this is one of way devised by 

(Pfeifer et al., 2004) to evaluate how the heights of the control points relate to the laser 

point texture. Hence first, the accurate ‘z’ measurements of control points are obtained 

from fieldwork (type of vegetation is also noted down for future use). If the heights are 

to be obtained from the laser data, the average height of the k-nearest laser points are 

calculated but this would always mean a positive shift upwards in comparison to field 

measurements.  
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2.3.3. Vegetation density  

Hydrodynamic vegetation density (Dv) is defined as the sum of the frontal areas of all plant 

elements (A) in the direction of the water flow  (F) per unit volume. Mathematically 

defined as  

    
where Ai is the projected area of a vegetation element (m2), A is the surface area of the plot 

in side view (m2) and L is the length of the plot in the flow direction (m). The unit is m-1 

 Vegetation density can be predicted using methods like percentage index (PI), 

parallel photography and vegetation area index (VAI). Among these, the vegetation area 

index gives better results in terms of floodplain vegetation. VAI was proposed by 

(Macarthur and Horn, 1969) also compensates for occlusion which was later verified by 

(Aber, 1979) . VAI was later used by (Lefsky et al., 1999) to measure canopy height 

profiles of foliage as well as the woody vegetation of trees.  

 

Hence this results in not just a leaf area index but a vegetation area index. In VAI, it 

calculates the number of laser hits that fall within a height range of h1 to h2 that could be 

inundated with water. It is mathematically described as 

                             
Where Nh1 and Nh2 are the number of vegetation points below height 1 and height 2. The 

first section of the formula is to make the VAI independent of the height interval. This 

method holds good considering the following assumptions, i) that laser pulses hit the 

surface parallel to each other, ii) that the horizontal distribution of the floodplain vegetation 

is random, iii) and that all vegetation elements are hit at an equal angle, which strictly 

speaking, is not the case (Straatsma, 2005). 

2.3.4. Summary of Literature review 

 

Few researches have been done in investigating the disturbing influences of low vegetation 

and DTM extraction. Previous studies made by Pfiefer et al and Straatsma and Middelkoop  

show considerable work in trying to estimate the disturbing influence of low vegetation 
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using statistical measures and texture measures and thus to produce a DTM that is not 

influenced by low vegetation. 

 

 (Pfeifer et al., 2001) performed studies in an urban area, DTM accuracy was obtained as 

following after removing random errors during modeling. Around 816 check points  spread 

over a test area of 2.5 km2 were used and the results were as following, in a street without 

cars: +1.0 cm, street with parking cars: +3.7 cm, in an open area: +4.5 cm, park with light 

stock of trees: +7.8 cm, park with dense trees: +11.1 cm. there is also a systematic shift of 

the laser points above the check points exhibiting similar behavior as in the accuracies.  

 

In 2003, (Ahokas et al., 2003) investigated various land cover including asphalt, grass, 

forest ground and gravel from a flying height ranging from 400 – 550 m using roughly 

3500 points, obtained results as ±10 cm, ±11 cm, ±4 cm, and ±17 cm respectively. 

However there was not any consistent shift observed between the laser points and the check 

points. 

 

(Hodgson and Bresnahan, 2004) found that the accuracy values ranged from a low of 17 to 

19 cm (pavement, low grass, high grass, bush and  evergreen forests) to a high of 26 cm 

(deciduous forests) investigated over a laser dataset containing 654 checkpoints using an 

airborne system which flew over a height of 1207 meters. Statistical tests revealed that on 

an average, pavement elevations were over predicted (+6.0 cm) and high grass, bush, low 

trees and evergreen forests were under predicted (-3.8 to -6.0 cm). 

 

Later, (Pfeifer et al., 2004)  chooses 10 points/m2, which is very dense laser data compared 

to the previous study. The height shift was observed to be +11.6 for old willow forest, +9.4 

cm for young forests and +7.3 for long dense grass.  

 

(Straatsma and Middelkoop, 2007) analyzed ALS data obtained with varying point 

densities (10 and 75 points/m2) over 42 plots spreading 200 m2 each. Twenty one statistics 

were computed for each vegetation point and was compared with the available field data of 

vegetation height. Labeling of the laser data points was done using 3 methods and best 

results were found when using inflection method with an R2 ranging from 0.74 to 0.88. 
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 (Hopkinson et al., 2004) approaches the problem by detrending the first and last pulse with 

the terrain model. Then the standard deviations of the heights were calculated and were 

compared to average height per field. On testing it on 14 plots of low vegetation (from 

heights 0.2m to 1.3m) They found a rough estimate of vegetation height as vegetation 

height = 2.7 X standard deviation of the detrended heights, assuming that this relationship 

will hold good for all types of low vegetation.(Cobby et al., 2001) and (Davenport et al., 

2000) adopt a similar approach as that of Hopkinson et al regarding detrending and 

deriving standard deviations. They also try out bilinear interpolation techniques in texture 

measures and to extract the DTM. However such a method remains a crude estimation. 

(Hopkinson et al., 2004) figured out that there is a positive correlation between this height 

shift and texture measures. This relationship is thus exploited instead of using standard 

deviation for low vegetation (<0.2 m).  
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3. Methodology 

3.1. Field data  

In both the study areas, a number of parameters were measured. For around 35 

different plots of various vegetation types covering an area of 15mx15m, vegetation height 

and density were measured. These were measured at 25-30 dGPS checkpoints and later 

averaged to get vegetation height and density per plot. The field plots in Duursche 

Waarden were mainly grasslands and brushwood while field plots in Brabant were 

meadows and herbaceous vegetation. the type of DGPS used was LEICA 1200. The dGPS 

were then converted to the Dutch projection system. All processing was done with spatial 

data being projected to RDnew projection system. From the Brabant area, one plot was 

measured on an asphalt area (open parking space) to validate the accuracy of the GPS. 

Another plot was measured along a road to check the effect of scan angle. In each plot, the 

diameter ‘d’ of ‘N’ number of stems per m2 were measured. Vegetation density was then 

computed as a product of N and d (Straatsma, 2005) 

 

3.2. LiDAR data 

 
Flight was flown on the study area resulting in many flight strips. Laser pulses are recorded 

along the flight path. LiDAR data is usually provided in LAS (Log Ascii) format that 

makes it compatible with many processing tools and storage friendly. Below is a figure that 

shows flight strips covering many plots with their corresponding GPS checkpoints Each of 

the flight strip contains millions of laser point data with not just XYZ attributes but also 

RGB, intensity, point id and return of the pulse.     

                               
  Figure3-1: Flight strips and GPS checkpoints 



25 

3.3. Pre-processing  

 
Raw LiDAR points as given by the data provider have to undergo a series of 

preprocessing in order to be useful for further analysis. The raw LiDAR data given by 

the data provider is huge in data size, which is inconvenient for computing since it 

demands a high processing speed and memory storage. Moreover the field data is 

available only for a small plot. Therefore the LiDAR is clipped into bounding boxes 

covering the area for which field data is available. This bounding box is even more 

accurately clipped using point in polygon operation done using python.  

 

 

 

Figure3-2: General workflow  



26 

3.4. Scan angle 

The scan angle is the angle subtended between the vertical and the direction in which 

the laser pulse was fired. The importance of studying the effect of scan angle on 

vegetation structure is because, scan angle is expected to influence the prediction of 

vegetation structural characteristics, since vegetation is more easily detected when 

viewed from an angle. Not many researches have been done on the effect of scan angle 

and vegetation. To calculate the scan angle it is important to know the flight scanner 

position in time while it was deployed. Since the time stamps of the scanner are taken 

from the start of the week, while the time stamps of the laser data starts from the start 

of the day, both these time stamps have to be brought to the same baseline. Once this is 

done, the xyz of the scanner is sorted and subtracted from the nearest laser pulses xyz.     

The obtained differences in x,y,z are subjected to the following  equation: 

 

  α =  arccos(√(dz)2 /√(dx)2 +(dy)2 +(dz)2 ) 

where .., 

α   - Scan angle (degrees) 

dz   - difference in height (m) 

dx   - difference in latitude (m) 

dy   - difference in longitude (m) 

                               

Figure3-3: Range and scan angle 
       (Source: http://spinternetdev.dot.state.oh.us) 
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Figure 3-4: Scan angle workflow 
 

3.5. Filtering 

As discussed in the previous chapter, filtering plays a very crucial role in this study. 

For this study, Hierarchic robust filtering method was used. This technique is inbuilt in 

the software SCOP++ developed by Inpho.   For filtering, there is a series of process 

that is done, which has input from the preceding process and the output is fed to the 

next process. This is often called filtering strategy (Scop++ manual). The steps 

involved are mentioned briefly. 

 

� Eliminate buildings: in Eliminate buildings step, the original input data is fed, 

separating building points(if any) from other points. 

 

� Thin out: In this step, the input set of points is reduced in details, is thinned 

out. This step is helpful in making sure that a good mixture of blunders and 

ground points are delivered. 

 

� Sortout: In a sortout step points are compared to a DTM, and the residuals are 

calculated. If the residuals are beyond a certain threshold, they are rejected.  
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� Filter: this step deals with the set of points that contains gross errors. These 

gross errors are categorized as ‘off-terrain’ points and the aim is to build a 

DTM with the remaining set of ground points. The output is the points with 

gross errors, a DTM and good points.  

 

� Interpolate: interpolate step derives a model using linear prediction, where 

identifying of gross errors is not possible, unlike filter step. The output is a 

DTM. 

 

� Classify: classify forms a useful extension to the sort out step. Points are 

compared to the DTM but are given more height difference. The output is 

classified as buildings, high vegetation, medium vegetation, low vegetation, 

ground points and below ground. Height intervals and outputs depend on user 

preference. 

 

 

       Figure 3-5: Filter strategy in Scop++  
(Source: Scop++ manual, inpho.de) 

 

For filtering of low vegetation plots, LIDAR DTM default (Fig 3-4), an inbuilt 

readymade parameter settings were made use of with some minor changes in grid 

width and mean accuracy. The classify step was adjusted to suit the height interval that 

is to be categorized as low vegetation and ground points. Low vegetation was given a 

height interval from 2 cm to 20cm, medium vegetation from 20 cm to 60 cm and 60 

cm and above would be classified as high vegetation. But since most of the plots are 
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only low vegetation and medium vegetation, other categories need not be given much 

attention. 

3.6. Normalisation 

 
 LiDAR points show a digital surface model (DSM) that also contains echoes from 

trees, buildings apart from the ground points. Whereas a digital terrain model (DTM) 

describes only the ground. A normalized DSM or the nDSM is a difference between the 

DSM and the DTM(Oude Elberink and Maas, 2000).  

                

         Figure 3-6: Steps to build an nDSM (Source: (Oude Elberink and Maas, 2000) 
 

This process is often done as the first step before trying to quantify anything since the 

models until they are normalized do not give the exact local height above the terrain 

(Haala, 1999). It means that all the features are placed on a height above terrain. The 

ground points and low vegetation points obtained from the filtering process are then 

normalized.  

 

For normalization in this study, the ground points obtained from filtering are made into 

a DTM surface. All points, including the low vegetation, ground and other points (if any) 

were fed as the surface model. Using second order spline interpolation method, a 

corresponding point in DSM for every point in DTM was interpolated. This was done by 

feeding the DSM (all points of the point cloud) and the DTM (only the ground points) in 

GSTAT. A second order polynomial was fit to the DSM with a search radius of 

1(Euclidean distance). The heights of new interpolated points from the DSM are then 
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subtracted from the corresponding DTM (ground) points to find the local height above 

terrain. This height above terrain was added as an attribute to each point. 

 

3.7. DTM Error 

 In chapter 2, there is a description about the positive height shift due to the disturbing 

influences of low vegetation in deriving a DTM. Below is a method to check if this DTM 

error is dependent on the vegetation structure and scan angle. Before computing the DTM 

error, it was essential to check the accuracy of the dGPS used. In order to compute the 

accuracy of the dGPS, the asphalt (flat) plot is taken into account. Asphalt plot is filtered to 

remove of any high lying pulses like car (since it is a parking area) or poles.  The laser 

ground points after they are filtered, are then interpolated over the gps checkpoints using  

second order spline interpolation. The difference between each of the gps point with its 

corresponding laser ground point gives the error in the dGPS.  

 

                          

         Figure3-7: dGPS checkpoints and laser derived ground points of the asphalt plot 
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             Figure 3-8: Flowchart showing the process of finding DTM error 
 

Now the same procedure is repeated for other herbaceous plots to predict the DTM 

error in that particular terrain due to low vegetation. Mean DTM error is then 

subtracted from the GPS accuracy to find accurate DTM error per plot.  
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3.8. Vegetation Height extraction 

 

 

                   Figure 3-9: Flowchart showing the process of finding vegetation height 
 

Terrain points and vegetation points are fed as inputs to the GSTAT processing in 

order to undergo a second order spline interpolation. After interpolation, the heights of 

the vegetation point for every ground point are subtracted. This gives the height of a 

vegetation point above a terrain.  These normalized heights were then used to compute 

statistics against DTM error and field data. Correlation and regression analysis was 

performed to check if there was any relationship that existed between the DTM error 

of the terrain and the height of the vegetation points above the terrain. The same 

procedure were done for both the datasets.  
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3.9. Vegetation density extraction 

 

In this study, vegetation area index (VAI) is made use to predict the vegetation 

density. As described in chapter 2, VAI is mathematically described as  

                  
 

Where .., 

 

h1 – 25 percentile of the laser extracted height of the vegetation point above terrain               

h2 – 75 percentile of the laser extracted height of the vegetation point above terrain               

Nh1 – no. of points that lie below the height of h1 

Nh2 – no. of points that lie below the height of h2 

 

Since h2 and h2(h2>h1) indicates the level of inundation of water, it was decided to 

consider h2 and h1 as the 75th and 25th percentile of the predicted vegetation height 

respectively. Thus the numbers of points that fall below both these heights were calculated 

and the vegetation density for each plot was found using the above equation. 
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4. Results  

4.1. Scan angle 

The scan angle for herbaceous plots in Brabant floodplain was computed using the 

method described in chapter 3. Below is an illustration of the flight path and the 

subsequent laser pulses and how the scan angle changes with the flight path.  

The scan angle was computed for around 13 herbaceous plots in both the datasets. 

The scan angle varied from 6 degrees to 25 degrees.  

 

Figure4-1: Flight path(dots) and laser echoes of a road showing variation in scan 
angle along with the flight path  

 

                                  Figure 4-2: Mean scan angle Vs mean DTM error 
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4.2. DTM Error 

The DTM error for the Brabant floodplain for meadows and herbaceous plots was found 

to be as below (Table 2) Mean DTM error being 10.61 cm with a standard deviation of 

±4.1 cm for meadows and herbaceous plots. The DTM error for Duursche Waarden was 

not able to be computed since there was no GPS data available.  The GPS error check 

was done using the asphalt plot. The error in GPS was found to be 0.9 cm. The table 

regarding the GPS error calculation is attached in the appendix I. 

 

 

 

                  
             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Table 4-1: DTM error for low vegetation plots in Brabant 
 

4.3. Vegetation Height statistics  

As a predictor of vegetation height, many statistical measures were computed and 

correlation was used to see if there is a strong correlation found between 

vegetation height and any of the statistics.  

 

 

PLOT NR 

Mean DTM 

ERROR  

1 7.32  

2 8  

6 9.13  

9 11.13  

10 11.4  

15 5.6  

17 10.72  

18 9.69  

19 15.14  

20 19  

27 13.51  

28 10.42  

29 14.54  

32 3.06  
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4.3.1.           Mean and Standard deviation per plot 

plot no. plot type mean stddev 

1 meadow 0.035 0.012 

2 meadow 0.037 0.012 

6 herbaceous 0.054 0.03 

7 herbaceous 0.051 0.026 

9 herbaceous 0.122 0.112 

10 herbaceous 0.094 0.084 

15 meadow 0.045 0.007 

17 herbaceous 0.061 0.018 

18 herbaceous 0.056 0.029 

19 herbaceous 0.104 0.057 

20 herbaceous 0.16 0.148 

27 herbaceous 0.063 0.019 

28 herbaceous 0.052 0.022 

29 herbaceous 0.059 0.029 

32 meadow 0.034 0.011 

                           Table 4-2:mean and std deviation for Brabant plots 
 

 

                   Figure 4-3: Plot between field veg height and laser veg height 
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                 Figure 4-4: Plot between field veg height and laser veg height 
 

 

                      Figure 4-5: Plot between laser veg height and DTM error 
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Figure 4-6: Plot shown between predicted vegetation height using regression equation 
and DTM error 

4.4. Vegetation density statistics 

As discussed in the previous chapter, vegetation area index is a measure of 

estimating vegetation density. Vegetation density obtained from field and VAI calculated 

were correlated and the obtained results are as below. 

 

 

Figure 4-7: Plot drawn between field measured vegetation density and VAI 
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Unfortunately vegetation density computed using VAI shows meagre correlation with 

vegetation density measured in the field.  

 

A multiple regression analysis was done between laser derived vegetation height, VAI and 

DTM error. Regression coefficient R2 for this study was found to be 0.74 with an rmse 

value of 2.2 cm. 
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5. Discussion 

5.1. Scan angle  

 
The objective of devising the scan angle was to see if there is any correlation found 

between scan angle and the DTM error found in the calculation. . With the change in scan 

angle, the pattern of laser echoes changes(Lohani, 2008). It was assumed that the lower 

scan angle would offer contribute less to the DTM error than higher scan angles, since 

lower scan angles have a higher chance of hitting the ground.  

The scatter plot(Fig 4-2) shows that there is not notable relationship between DTM error 

and scan angle. This is again limited to other parameters such as the flying height, point 

density and pulse frequency. With the given dataset, that has a point density of 10 

points/m2 and a flying height of 400 ft, such a result is obtained. It would be interesting to 

test this by varying the above parameters. Unfortunately it was not possible to test this in 

the Duursche-waarden floodplain since there were no GPS measurements taken in order to 

find the DTM error.  

  

� Some plots could fall between 2 overlying flight strips. 

� GPS time stamps and Laser time stamps should match 

� Important to consider the projection systems of the scanner GPS and the system in 

which laser data is projected. 

� A good validation technique for scan angle and DTM error relationship was to 

check this on a plot of asphalt. Due to technical problems faced in filtering of the 

plot in SCOP++, unfortunately the results could not be found. This is 

recommended for the future researches. 
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5.2. DTM error   

State of art accuracy reached in computing the DTM error has been done by many 

researches before. For the same point density of 10points/m2
, (B. Gorte et al., 2005) 

found a positive shift of ±7.3 cm in long dense grass, ±9.4 cm in a ground of young 

forest and  ±11.6 cm in an old willow forest. The method they employed to find the 

shift was using grey level co occurrence matrix (GLCM) method that primarily uses 

texture as a parameter to find the DTM error. Various other researches and their 

findings are tabulated as below. 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5-1: Comparative study of the results obtained in previous 
studies  regarding DTM error using airborne laser scannning 

                      (As cited in AGI rijkswaterstad, Dutch ministry of public works report, 2005) 

 

Interpolation method that is deployed for finding the DTM error is very crucial. Inverse 

distance weighting that is used in this study as well the AGI rijkswaterstad report of 2005, 

remarks that averaging over a large area(in this case 25 m2) considers only few points into 

account. Since the point nearest to the centre gets the highest weight, it might be the case 

that the point is either a ground point or a vegetation point which is very difficult to judge 

in the case of low vegetation. Quantifying this kind of stochastic nature in low vegetation is 

still a challenge. The GPS that is used for calibrating DTM error had to be converted from 

ellipsoid model to the geoid model. 

Research group Findings on low 

vegetation  

Notable parameters 

(Pfeifer et al., 2001) ±4.5cm 800 terrestrial check 

points 

(Ahokas et al., 2003) ±11cm Flying height  - 550 m, 

3500 ground points 

(Bollweg and de 

Lange,2003) 

±14cm - 

(Crombaghs et al., 

2002) 

±15cm - 

(Hodgson and 

Bresnahan, 2004) 

±6cm 650 checkpoints 
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5.3  Vegetation Height characteristics 

 

As seen in fig 4-3 and 4-4, there seems a good relationship between height data 

from laser and field measurements. Similar correlation was done by (Cobby et al., 2001) 

and (Davenport et al., 2000) though they used low resolution(1 points 9m2). Since the 

density of crops was high, they were not able to efficiently demarcate ground surface 

which led them to use detrended laser heights as predictors of vegetation height. Another 

research done by (Hopkinson et al., 2004) predicted vegetation height of aquatic 

marshland. Similar to the studies done previously, they used standard deviations of laser 

heights corrected for local terrain undulations as a predictor of vegetation height. 

 

 A comparative study of the above studies is tabulated as below. 

RESEARCH 

GROUP 

TYPE OF 

VEGETATION 

R2 MAPPING 

CONDITIONS 

(Cobby et al., 

2001) 

Grass and cereal 

crops 

0.80 (log) Low point density, 

leaf on condition 

(Davenport et al., 

2000) 

Farmland 0.89 Low point density, 

leaf on condition 

(Hopkinson et al., 

2004) 

Aquatic 

marshland, 

grassland and 

herbs 

0.77 Point density 3/m2 

This study 
Meadow and 

herbaceous 

0.88 10 points/m2, 

Winter, leaf off 

Table 5-2: Comparative study showing results obtained in predicting vegetation 
height  

However, it is important to note that the previous studies were done in a dense vegetation 

area with leaf on conditions, were there is meager chance of the laser pulses getting 

reflected from the top of the canopy. This might add more bias to the shift in terrain height. 

With this study It was interesting to see how the relationship is established in winter season 



43 

leaf off conditions. Results show that point density plays a positive role in the 

establishment of a strong correlation observed between both the quantities. A regression 

analysis was performed between various statistical measures of laser derived vegetation 

height and field measured vegetation height. 

 

� Regression between field measured mean vegetation height with laser derived 

mean vegetation height  

� Multiple regression between laser derived, field measured vegetation height and 

scan angle 

� Using the first regression equation, vegetation height per plot is predicted. This is 

used to find any correlation with mean DTM error per plot.  

 

Reg  Field height data (cm) DTM error 

(cm) 

Laser Veg 

height (cm) 

R2:  0.81 

Stderr:  1.62 

Reg eq:  Laser veg h = 

0.08*Fieldheight + 3.77 

R2 
= 0.62 

DTM error = -6.2912x2 + 

67.333x - 162.99 where x = 

predicted laser hveg height 

Laser Veg 

height and 

scan angle 

R2: 0.81,  

Stderr: 1.68, 

Reg eq: Laser veg h = 

0.08*fieldheight -

0.02*scanangle+3.99 

Table 5-3: Regression results with predicting vegetation height with various 
parameters  
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Correlation with field vegetation height and laser derived statistics: 

 

Figure 5-1: graph showing strength of correlation between laser height data and 
various statistical measures  
 

As seen in the figure, the statistical measures, standard deviation and 93 percentile show 

highest correlation with the laser derived vegetation height however skewness and kurtosis 

show a negligible correlation.  

 

Type of filtering method used, grid width, interpolation method, height interval specified 

for classification of points play a key role. Two major challenges of this study being, the 

height of low vegetation is well within the noise levels of the laser scanner and the filtering 

algorithms might need justified parameters to filter low vegetation points from the ground 

points, which is still ambiguous.  

5.3. Vegetation density  

Height intervals h1 and h2 are crucial while deciding to compute VAI. It is important that h1 

does not fall under the noise that’s mixed with the ground points. In field, density was 

measured taking half of the average vegetation height into account.  

 

Also dependent on the accuracy of filtering method employed to classify points. 

VAI is very sensitive to the number of ground points. With decreasing  number of ground 

points, VAI is overestimated (Straatsma, 2005). One probable reason for VAI to fail in 
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predicting vegetation density could be the occlusion factor that VAI takes into account. 

This model proves more suitable for leaf off forest canopy where ground points could be 

better segregated than for low vegetation.  
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6. Conclusion 

 
� This paper discussed few aspects of extracting structural characteristics of 

low vegetation in Dutch floodplains using advanced airborne laser scanning 

data. 

 

� This study also effectively discussed about the DTM error in low vegetation 

areas while using LiDAR as a tool. 

 

� From the regression analysis performed between vegetation height and shift, 

there is a strong correlation seen for vegetation height data ranging from 3 to 

7 cm. and shift values between 3 to 15cm.  

 

� For vegetation height less than 6 cm, a mathematical relationship could be 

established with corresponding DTM error.  

 

� Standard deviation of vegetation height in 15 herbaceous plots were measured 

which expand to an area of 5m x 5m. 

Standard deviations in a range below 5 cm, there is a strong correlation 

between field data and laser derived std deviation of vegetation height. 

 

�     Effect of scan angle on vegetation height and DTM error  was also studied. 

No strong correlation was found to exist.  

 

�    Amongst other first order statistical measures that were  found, only std 

deviation and 93rd percentile found to have a strong correlation with vegetation 

height. Skewness and kurtosis proved poor correlation. 

 

�  Vegetation density of all the plots was computed using VAI, an index that’s 

comparable with vegetation density. When comparing with field data, VAI did 

not prove a strong predictor of vegetation density.  
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For further research  

 

�   Exploring into other tools like texture measures, spatial auto correlation could 

also be explored to predict vegetation height and DTM error. 

 

�  A major venture into this study would be to improve on the filtering methods 

and deduce a segmentation method that’s built specially for segregating low 

vegetation and ground points.  
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Appendices 

Appendix 1.1 Field data – Duursce waarden Floodplains 
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Appendix 1.2 Field data – Duursce waarden Floodplains continued  
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Appendix 1.3 Field data – Duursce waarden Floodplains continued 
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Appendix II Field data – Brabant  Floodplains 

 


