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Abstract

LiDAR has proved to an effective tool for mapping terrain and studying vegetation structural
characteristics. Past researches have pursued studies related to low vegetation and its
disturbing influence in determining the true elevation of the terrain using LiDAR. This study
deals with extracting the vegetation structural characteristics of low vegetation and to
determine the DTM error of the terrain using a new improved scanner which has a better
vertical accuracy (1.5 cm) than the scanners that were used previously by other studies. This
is so far have been challenging task because the range of low vegetation is well within the
noise of the scanners. The scan angle for each plot is also determined to see if there is any
influence of scan angle on the DTM error prediction and the vegetation structural
characteristics estimation. The main methods involved in this study are hierarchic robust
interpolation used for filtering the terrain points from the non terrain points. Second order
spine interpolation has been used as a tool for interpolating two surfaces such as the DTM
surface and all the points in order to find the height of the vegetation points above terrain.
Vegetation density is found by employing the method of Vegetation Area Index. The scan
angle and DTM error do not show any relationship with each other. The error check for the
GPS used for field measurements was tested on a plot of asphalt and the error was found to
be 0.9 cm. The field data about vegetation height and laser derived height of vegetation
points showed good correlation for points above the height of 20cm. From the regression
analysis performed between vegetation height and shift, there is a strong correlation seen for
vegetation height data ranging from 3 to 7 cm. and shift values between 3 to 15cm. For
vegetation height less than 6 cm, a mathematical relationship could be established with
corresponding DTM error. Amongst other first order statistical measures that were found,
only std deviation and 93" percentile found to have a strong correlation with vegetation
height. Skewness and kurtosis proved poor correlation. For further research, It is

recommended to use texture approach for extracting vegetation structural characteristics.
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1. Introduction

1.1. Background

With the development of geographical information systems (GIS), details regarding the
carth elevation and its terrain have become important inputs for many studies. The earth’s
terrain is recorded as a continuous and smooth surface and represented as a model called
Digital Terrain Models (DTM) (Podobnikar, 2002). They are used in many fields’ viz.,
geomorphology, archeology, planning and hazard assessment. DTMs are also extensively
used for hydrological applications where details about the bare Earth gives information
about the water runoff, to determine runoff volume and to gauge ground water levels (B.
Gorte et al., 2005).

Mapping topography and vegetation structure is one of the main parameters when
dealing with vegetation studies. With the current issues on carbon cycle and climate
change, vegetation structure and parameters related to vegetation have become an
important criterion. Three-dimensional vegetation structure in floodplains are essential for
ecological studies and hydrodynamic modeling of rivers (Straatsma and Middelkoop,

2006).

This study mainly deals with
1. extracting (low)vegetation structural characteristics using LiDAR and

2. to determine the true elevation of the terrain

1.2. A brief introduction to LIDAR

Out of the current methods that are used to map the terrain like RADAR and
photogrammetry, LiDAR is an up-to-date technology that offers highest accuracy in
terrain mapping. LiDAR is being used to generate DTMs for forest structure mapping as
well as mapping low vegetation (Oude elberink et al., 2003). High frequency laser pulses in
the near infra red region of the spectrum are fired towards the ground from an airborne

platform (Bradbury et al., 2005), at discontinuous instances. The backscattered echoes from




the targets are recorded as discrete returns. An aggregate of all the recorded echoes is

referred to as point cloud.

Known as Light Detection And Ranging (or Airborne Laser Scanning), it is composed of 3
main components, a differential GPS — to locate the aircraft in space, an Inertial Navigation
System (INS) which gives the orientation of the aircraft and the Laser Range Finder (LRF)
that gives the distance between the aircraft and the target. The dGPS also has a base station
on the ground which reduces the positioning error of the aircraft. Operationally used laser
systems record discrete pulses. A discrete return LiDAR operates on a small footprint (20-

80cm) diameter that records one to multiple returns.

Figure 1-1: Point cloud of a forest

Figurel-2: Airborne laser scanning
(John Chance Land Surveys, 2003)




Data from all three components are synchronized and combined to form a 3-D
cloud of laser echoes of the target, usually the features below. The acquired data is then
used to build high resolution LIDAR images of the ground or the forest canopy. The end
product is almost always a high resolution DTM (Hopkinson et al., 2004). ALS data
enables to perceive the terrain in a 3-dimensional environment thus making visualization
easier and better, which is also why it is preferred over other conventional methods.
LiDAR is helpful in fast data collection, little access to the site, and is less weather
dependent compared to other survey systems. However, LIDAR is more expensive when it

comes to data acquisition and needs complex algorithms for data handling and storage.

1.3. Problem statement

When LiDAR is used for terrain mapping, most of the pulses are backscattered
from the topmost features in the terrain. In an urban or a forest scenario, it is usually
buildings, poles or trees. These high lying points from buildings or trees can be easily
discarded through filtering or using segmentation techniques. But when it comes to
measuring a terrain that is covered with low vegetation(usually grassland/meadows with
vegetation heights below 20 cm) (Gorte et al.,, 2005), they influence the accurate
measurements of the terrain height since the pulses are reflected back from the top of the
crop thus adding a small positive height to the true elevation of the terrain.(Gorte et al.,
2005). This shift in height is termed as the DTM error.

Previous studies have shown that extracting the vegetation structural
characteristics have proved to be efficient predictors in estimating this DTM error.
Moreover the extraction of vegetation structural characteristics are not just used for
determining the DTM error but also used as effective inputs for modeling floods in
floodplains, especially in the Netherlands where floods occur during winter, when low
vegetation consists of leafless stalks. Many studies have been undertaken in this regard.
Related work has been more elaborately discussed in chapter 2.

This study will thus prove helpful to the flood modelers who will be benefited by
extracting the structural characteristics of low vegetation to determine hydrodynamic

roughness of the floodplain and country planners by getting a more reliable DTM. Below is




a table explaining the previous researches done in this arena, the kind of data they used and

the quality of results they obtained.

Reference Footprint | Point No. of | Vegetation | Height | Scanner
size (m) density | plots type range | Used
(m)
(Pfeifer, 0.2 10 24 Long grass, | 0.5to | FLIMAP
2001) old willow 1.8 11
forest and
young
forest
(Straatsma 0.2 10 to 42 Herbaceous | 0.2-2 | FLIMAP
and 75 and grass I
Middelkoop,
2007)
(Hopkinson Small - 14 Acquatic 0-1.25 -
et al., 2004) veg, herbs,
low shrubs
(Ahokas et Small 7to 8 8 Grass 0.03- Toposys
al., 2003) 0.25 I
(Hodgson small 15 13 Low grass <0.8 Optech
and 1201
Bresnahan,
2004)
(Davenport 0.15 - - 18 Crops < 0-0.9
et al., 2000) 0.23 Im
(Cobby et 0.24 7 55 Grassland Optech
al., 2001) and crops ALTM
1020

Table 1-1: Previous studies related to DTM error and vegetation height extraction

1.4. Innovation

This study advances one step forward in the field of extracting low vegetation
characteristics using LIDAR. As seen in the table (1-1), previous studies have already been
trying with varying scanner properties and using different point densities. The scanner that
is used for this study is fugro’s FLIMAP 400 (Fast Laser Imaging and Mapping Airborne
Platform).The innovation in Flimap 400 is the overall accuracy of the scanner. The
absolute vertical accuracy of the scanner is quoted at 1-1.5 cm (1 sigma). Experiences has

shown that a 3cm (1 sigma) is achievable for hard surfaces.(fugrowaterservices.com). Since

10



the range of vegetation that this study deals with is less than 20cm, there is more
opportunity that this study could arrive with predicting more accurate DTM errors and
vegetation structure characteristics. More precisely, most of the plots that is considered for
the study, range from heights 0.5cm to 3 cm, which even more stresses the need of a

scanner with better accuracy.

1.5. Research Questions

Main research question

e  What is the potential of a high accuracy airborne laser scanner in predicting
vegetation structural characteristics and DTM error?

o  Are they helpful in the reliable estimation of the disturbing influence of
low vegetation for the DTM generation process?

o Is there any influence of scan angle on the terrain model?

o Is Vegetation Area Index (VAI an effective method to extract the
vegetation density using LiDAR data?

1.6. Research objectives

Main objective:
e Prediction of vegetation height and density using high accuracy LiDAR data

Sub objectives:

e To determine the DTM error based on the predicted vegetation height using
LiDAR data

e To interpret the influence of scan angle on DTM error
e To extract vegetation density of the vegetation using VAI method

1"



1.7. Study area

This study was tested using the data collected on two floodplains in the netherlands:
‘Duursche Waarden’ floodplain along the right bank of the River Ijssel and a floodplain in
the province of noord brabant(as shown in fig). These floodplains are dominated by
softwood forest and shrubs but mainly dominated by herbaceous vegetation. Herbaceous
vegetation mainly consists of plant speices like sedge sedge (Carex hirta L.), sorrel (Rumex
obtusifolius L.), nettle (Urtica dioica L.), thistle(Cirsium arvense L.) and clover (Trifolium

repens L.) (Straatsma and Middelkoop, 2007)

Figurel-3: two of the plots from the study sites

12
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2. Literature review

2.1. Introduction

Airborne laser scanning is getting its recognition in the field of DTM extraction and in
determining the structural characteristics of vegetation. Mainly used to find forest canopy
heights, LIDAR is also being used in mapping floodplains and in extracting DTM.
Mapping low vegetation and acquiring characteristics of the low vegetation with the use of
an airborne laser scanner is a recent research arena. An overview of previous studies in this
field is accounted for, in the following paragraphs. Sections 2.2 will give an overview of
how airborne laser scanning have been used in effective DTM extraction through various
filtering methods. Section 2.3 will discuss the previous studies done in the extraction of
vegetation characteristics. Their subcategories deal more in detail about vegetation height

and vegetation density respectively.

2.2. DTM extraction and filtering of low vegetation sites

All laser point clouds represent the ground whose continuity is broken by objects like
buildings, vegetation and electric lines. Segmenting the laser points according to the feature
from which they were scattered back is known as filtering. This is useful to reconstruct the
objects in a 3D environment or to construct a faithful representation of the topography of
the scene. There are two types of filtering methods a) point based filtering b) segment
based filtering. In point based filtering, each point is considered individually and classified
as terrain or non terrain analyzing slope between the adjacent points. The second type of
filters deal with points in segments, that show some homogeneity. These types of filters
consider the smoothness of a surface or the height difference between neighbouring

segments and accordingly classify the points. (Tévari and Pfeifer, 2005)

Filtering methods are usually employed to separate terrain and non terrain points using
geometry of the neighbourhoods such as slope and height differences (Geopfert and
Soergel, 2007). The main motive in this study is to remove the high lying laser pulses from
vegetation. These filtering methods serve different purpose but most of them aim to

improve DTM accuracy. However in the case of low vegetation, filtering methods usually

14



fail to produce convincing results since low vegetation points are not substantially higher
than the surrounding terrain. This may also be a potential problem when the vegetation is

too dense for the laser pulses to hit the ground.

Most filtering algorithms work by searching for the lowest point in the scene and treating
these as terrain points, e.g. morphological filters (Kilian et al., 1996); (Vosselman, 2000)
(Roggero, 2001) as cited by (Sithole and Vosselman, 2004). Some robust filters find points
that is closest to a fitting surface and treat that as bare earth as explained in (Kraus and
Pfeifer, 1998). (Brovelli, 2002) came about with another approach by treating small cluster
of point clouds as objects (Sithole and Vosselman, 2004). (Axelsson, 1999,2000,2001)
created a filtering algorithm mainly suitable for urban areas. He used the lowest points to
form a TIN as the first set of ground points. For each triangle an additional unclassified
ground point is added based on investigating the angles between the triangle face and the
distance to the nearby facet nodes. Hence, if a point is below the threshold value it is
classified as ground point and moves to the next triangle, the triangulation getting dense

progressively.

2.2.1. Robust interpolation Method

A novel approach was developed by Pfeifer and Briese (2001) by combining filtering and
interpolation procedures in a hierarchical approach. In this algorithm, a polynomial surface
that roughly matches the terrain is constructed first. Points lying above and below this
surface are given a weight depending on the distances between the surface and the point
(Fig 2-1). The surface is then adjusted considering the weights of the points. A point with a
high weight will attract the surface and similarly point with lower weight will have less
influence towards the surface. After each iteration, if the distance is above a certain
threshold, the point is classified as non terrain and discarded from the process. This is
repeated until all non terrain points are eliminated or a certain number of iterations is
exceeded. This technique has been applied in areas of dense high vegetation as used by

(Wagner, 2006) for their research on retrieving DTM of a forested terrain.

15



2.2.2. Repetitive interpolation (REIN)

Recent research on filtering methods have been done by (Kobler et al., 2007) which is
called Repetitive interpolation (REIN). This has many advantages over other methods since
this can be applied on steep forested areas where other algorithms have problem
differentiating terrain and non terrain points. Though, this study does not deal with forested
areas, this filtering method would give better results because of its expertise and innovative
approach.

This filter works as a two stage process. As the first stage, already existing filtering
techniques are employed to discard negative and positive outliers (most of them, not all)
that are non terrain points. In the next stage, REIN is introduced to estimate individual
DTM points by interpolating from the neighbouring terrain points. These elevation
estimates are produced from multiple individual samples taken from the previously filtered
point samples. REIN can be applied both in a vector grid as well in a TIN (Triangular
Irregular Network).

Set of TINs ° DTM location

estimates at DTM

locations Randomly

selected Lidar

|

|

|

. |

Set of elevation I
|

|

! point as TIN

Figure2-1 : repeated random selection of laser points used to build a set of TINs, out
of which sets of elevation estimates are interpolated at the locations of DTM grid
points. The remaining unfiltered vegetation points may become TIN nodes. (Kobler et
al., 2007)
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2.3. Structural characteristics of low vegetation

2.3.1. Vegetation Height

LiDAR have been widely used in extracting vegetation height in previous years. Initially
profiling scanners were used but the returning signals were almost always from the top of
the canopy. (Krabill, 1984) took into account the second return signal to find the
topography while (Ritchie, 1996) used frequent and consistent returns from the ground for
the same purpose. However when later saw tooth pattern or type of scanners were used,
they not only gave rise to lower spatial sampling rates but also lower probability of
receiving signals from the ground since most of the signals would be intercepted by
vegetation. Both conditions would therefore make measuring topography of the ground

difficult to achieve.

(Davenport et al., 2000) found ALS to be a useful tool to predict crop height which proved
to be an important indicator of bird species population. Their research could achieve a
height accuracy of better than 10 cm. Only pulses that were returned from within the crop
were taken into account rather than those reflected from the canopy or the ground. After
detrending the heights for topography, an algorithm to measure the variation in returned
heights was developed. Thus, a relation between the mean crop height and the standard

deviation of detrended return heights was used to derive the crop height of the field.

The delay time between the first and the last returns of each signal were considered to
represent vegetation canopy and ground respectively however, in densely populated areas,
the last returns might not necessarily represent ground and hence this method is not a
reliable one. In order to avoid exaggeration in vegetation height due to high slope areas,
adequate filtering method was used. Te bilinear interpolation technique was employed to
remove first order height trends. For a certain size of a plot across the field, spot heights are
detrended and their distribution is plotted. Narrower distribution is obtained from a non-
vegetated region and the broader spread obtained from a 92 c¢m high crop. The spread is
measured by calculating the standard deviation(cg of the detrended height. A simple
relationship between this standard deviation and the surveyed height of the crops was

established using a simple linear regression which resulted as follows with an r* of 0.892.

17



Manually surveyed height = 8.0559 x 64— 0.3513

This produces estimates of the crop height with a mean error of 8.3 cm. Their research
further concludes that the accuracy of this technique could be improved by giving more
detail at the varying laser incidence angle and scan angle of the laser beam. A similar
research was also carried out by (Cobby et al., 2001) who demonstrated that crop
vegetation of upto 1.2 m in height could be predicted from the standard deviation of the

detrended laser pulse returns.

As an extension to this research (Hopkinson et al., 2004) worked on vegetation that ranged
from wetland grass to plantation forests. He observed that for forest vegetation the pulse
distribution was often bimodal whereas low vegetation tends not to display a bimodal
distribution and this is accounted by the following reasons i) homogenous vegetation
structure from canopy to ground (Cobby et al., 2001), ii) limitations in segregating first and
last pulse for ranges below 1.5m (As per recent advancements). Moreover for low
vegetation, it is highly likely that the scanner might associate some noise with the resulting
data. As a conclusion, Hopkinson’s research proved the fact that a simple multiplication
factor (M) could be applicable in vegetation height extraction studies where a M of 2.7 was
suitable for low vegetation height extraction. The only potential limitation of M being
when applying for low vegetation, the standard deviation of detrended pulses tends to
increase with increasing slope irrespective of vegetation height resulting in positional

inaccuracy (Hodgson and Bresnahan, 2004)

2.3.2. The Contrast Texture Approach

Pfiefer et al, in 2004 formulated a method where texture was used as a criterion to
investigate any shift in height of the low vegetation. Two different approaches were
experimented and among that, control point based approach yielded positive results.
According to (Oude Elberink and Maas, 2000), texture is qualitatively and
quantitatively defined by height. Hence this justifies as one of the parameters that can

be exploited to find the height of the vegetation.
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Texture in an image(in a raster form) is commonly defined as a regular repetition of a
pattern in spatial phenomena (Pfeifer et al., 2004). But rasterization of the laser dataset
would lead to loss in detail hence it is advisable to adhere to vector domain. Hence
texture of a point (here) is always considered as a neighbourhood than a single point in
order to get a hold of one complete pattern. Usually they are seen as local variability of
grey levels varying spatially and thus reveal information regarding the object structure.
Best known method to deal with textural feature extraction algorithm is Grey level
occurrence matrix (GLCM) or Grey tone spatial dependency matrix. (Haralick, 1979)
did extensive studies about this algorithm to deal with statistical and structural
approaches to texture. In simple terms, he defines GLCM as, “characterizes texture by
the co-occurence of its grey tone”. Coarse textures are those for which there is only
slight variation of distribution with distance and those of finer texture are characterized
in which there is rapid change in distribution with distance. The GLCM can be
computed as matrix format of relative frequencies F;; with which 2 neighboring pixels
(in this case points) situated apart by a distance d each of them with a grey level ‘i’ and

‘j” respectively (Haralick, 1979).

Its elements are expressed by

. P(i, j)
pli,j)= #
> > PG, j)
i=0 j=0
Where p(,j) - elements of the matrix

P@,j) - Relative frequencies

i, - Grey level (0-255)

N, - Total number of grey levels

(Ruiz et al., 2004)

The main advantage of GLCM being it can characterize the spatial
interrelationships of the grey tones in a textural pattern but cannot significantly

derive the shape aspects of the tonal patterns.
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Fig 2-2: GLCM on a point cloud texture Source: (Pfeifer et al., 2004)

Now proceeding to the control point based approach, this is one of way devised by
(Pfeifer et al., 2004) to evaluate how the heights of the control points relate to the laser
point texture. Hence first, the accurate ‘z” measurements of control points are obtained
from fieldwork (type of vegetation is also noted down for future use). If the heights are
to be obtained from the laser data, the average height of the k-nearest laser points are
calculated but this would always mean a positive shift upwards in comparison to field

measurements.

20



2.3.3. Vegetation density
Hydrodynamic vegetation density (Dv) is defined as the sum of the frontal areas of all plant

elements (4) in the direction of the water flow (F) per unit volume. Mathematically

defined as
X4
T AXI

where 4; is the projected area of a vegetation element (m?), 4 is the surface area of the plot

D,

in side view (m°) and L is the length of the plot in the flow direction (). The unit is m™
Vegetation density can be predicted using methods like percentage index (PI),
parallel photography and vegetation area index (VAI). Among these, the vegetation area
index gives better results in terms of floodplain vegetation. VAI was proposed by
(Macarthur and Horn, 1969) also compensates for occlusion which was later verified by
(Aber, 1979) . VAI was later used by (Lefsky et al., 1999) to measure canopy height

profiles of foliage as well as the woody vegetation of trees.

Hence this results in not just a leaf area index but a vegetation area index. In VAL it
calculates the number of laser hits that fall within a height range of h, to h, that could be

inundated with water. It is mathematically described as

1. (N,
VAL, _,, = I*In{j “-J

h2-h

Where Ny, and Ny, are the number of vegetation points below height 1 and height 2. The
first section of the formula is to make the VAI independent of the height interval. This
method holds good considering the following assumptions, i) that laser pulses hit the
surface parallel to each other, ii) that the horizontal distribution of the floodplain vegetation
is random, iii) and that all vegetation elements are hit at an equal angle, which strictly

speaking, is not the case (Straatsma, 2005).

2.3.4. Summary of Literature review

Few researches have been done in investigating the disturbing influences of low vegetation
and DTM extraction. Previous studies made by Pfiefer et al and Straatsma and Middelkoop

show considerable work in trying to estimate the disturbing influence of low vegetation
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using statistical measures and texture measures and thus to produce a DTM that is not

influenced by low vegetation.

(Pfeifer et al., 2001) performed studies in an urban area, DTM accuracy was obtained as
following after removing random errors during modeling. Around 816 check points spread
over a test area of 2.5 km” were used and the results were as following, in a street without
cars: +1.0 cm, street with parking cars: +3.7 cm, in an open area: +4.5 cm, park with light
stock of trees: +7.8 cm, park with dense trees: +11.1 cm. there is also a systematic shift of

the laser points above the check points exhibiting similar behavior as in the accuracies.

In 2003, (Ahokas et al., 2003) investigated various land cover including asphalt, grass,
forest ground and gravel from a flying height ranging from 400 — 550 m using roughly
3500 points, obtained results as +£10 c¢cm, £11 cm, +4 c¢m, and +17 cm respectively.
However there was not any consistent shift observed between the laser points and the check

points.

(Hodgson and Bresnahan, 2004) found that the accuracy values ranged from a low of 17 to
19 cm (pavement, low grass, high grass, bush and evergreen forests) to a high of 26 cm
(deciduous forests) investigated over a laser dataset containing 654 checkpoints using an
airborne system which flew over a height of 1207 meters. Statistical tests revealed that on
an average, pavement elevations were over predicted (+6.0 cm) and high grass, bush, low

trees and evergreen forests were under predicted (-3.8 to -6.0 cm).

Later, (Pfeifer et al., 2004) chooses 10 points/m> which is very dense laser data compared
to the previous study. The height shift was observed to be +11.6 for old willow forest, +9.4

cm for young forests and +7.3 for long dense grass.

(Straatsma and Middelkoop, 2007) analyzed ALS data obtained with varying point
densities (10 and 75 points/m?) over 42 plots spreading 200 m?” each. Twenty one statistics
were computed for each vegetation point and was compared with the available field data of
vegetation height. Labeling of the laser data points was done using 3 methods and best

results were found when using inflection method with an R* ranging from 0.74 to 0.88.
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(Hopkinson et al., 2004) approaches the problem by detrending the first and last pulse with
the terrain model. Then the standard deviations of the heights were calculated and were
compared to average height per field. On testing it on 14 plots of low vegetation (from
heights 0.2m to 1.3m) They found a rough estimate of vegetation height as vegetation
height = 2.7 X standard deviation of the detrended heights, assuming that this relationship
will hold good for all types of low vegetation.(Cobby et al., 2001) and (Davenport et al.,
2000) adopt a similar approach as that of Hopkinson et al regarding detrending and
deriving standard deviations. They also try out bilinear interpolation techniques in texture
measures and to extract the DTM. However such a method remains a crude estimation.
(Hopkinson et al., 2004) figured out that there is a positive correlation between this height
shift and texture measures. This relationship is thus exploited instead of using standard

deviation for low vegetation (<0.2 m).
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3. Methodology

3.1. Field data

In both the study areas, a number of parameters were measured. For around 35
different plots of various vegetation types covering an area of 15mx15m, vegetation height
and density were measured. These were measured at 25-30 dGPS checkpoints and later
averaged to get vegetation height and density per plot. The field plots in Duursche
Waarden were mainly grasslands and brushwood while field plots in Brabant were
meadows and herbaceous vegetation. the type of DGPS used was LEICA 1200. The dGPS
were then converted to the Dutch projection system. All processing was done with spatial
data being projected to RDnew projection system. From the Brabant area, one plot was
measured on an asphalt area (open parking space) to validate the accuracy of the GPS.
Another plot was measured along a road to check the effect of scan angle. In each plot, the
diameter ‘d’ of ‘N’ number of stems per m” were measured. Vegetation density was then

computed as a product of N and d (Straatsma, 2005)

3.2. LiDAR data

Flight was flown on the study area resulting in many flight strips. Laser pulses are recorded
along the flight path. LiDAR data is usually provided in LAS (Log Ascii) format that
makes it compatible with many processing tools and storage friendly. Below is a figure that
shows flight strips covering many plots with their corresponding GPS checkpoints Each of
the flight strip contains millions of laser point data with not just XYZ attributes but also

RGB, intensity, point id and return of the pulse.

Figure3-1: Flight strips and GPS checkpoints
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3.3.  Pre-processing

Raw LiDAR points as given by the data provider have to undergo a series of
preprocessing in order to be useful for further analysis. The raw LiDAR data given by
the data provider is huge in data size, which is inconvenient for computing since it
demands a high processing speed and memory storage. Moreover the field data is
available only for a small plot. Therefore the LiDAR is clipped into bounding boxes
covering the area for which field data is available. This bounding box is even more

accurately clipped using point in polygon operation done using python.

Pre-processing

N
LASER x, y, points for
36 plots
v
Compute scan angle
{attach as an attribute)
A Field GPS points
Filtering
{Hierarchic Robust ]
\F Interpolation)
Low vege. points Ground points Spline Interpolation
2
—> Spline Interpolation
VAI LASER ground points
v (Vege. Area Index) —GPS points
Vege. Points — Ground
points
Ht of vege pnts above DTM Error
terrain

Figure3-2: General workflow
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3.4.  Scan angle

The scan angle is the angle subtended between the vertical and the direction in which
the laser pulse was fired. The importance of studying the effect of scan angle on
vegetation structure is because, scan angle is expected to influence the prediction of
vegetation structural characteristics, since vegetation is more easily detected when
viewed from an angle. Not many researches have been done on the effect of scan angle
and vegetation. To calculate the scan angle it is important to know the flight scanner
position in time while it was deployed. Since the time stamps of the scanner are taken
from the start of the week, while the time stamps of the laser data starts from the start
of the day, both these time stamps have to be brought to the same baseline. Once this is
done, the xyz of the scanner is sorted and subtracted from the nearest laser pulses xyz.

The obtained differences in X,y,z are subjected to the following equation:

o= arccos(\(dz)? N(dx)? +(dy)* +(dz)*)

where ..,
o - Scan angle (degrees)
dz - difference in height (m)
dx - difference in latitude (m)
dy - difference in longitude (m)
X,Y,Z Position (from GPS)
Pitch (from IMU) Roll (from IMU)

Heading (from IMU) \
WL =
k —

| r-f’/i/
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/ 4l \“ ~
‘ \ ~
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Figure3-3: Range and scan angle
(Source: http://spinternetdev.dot.state.oh.us)
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3.5.

nner
36 Plots Scannel
Information
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LASER Time Scanner Time
Stamps Stamps
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]

dx= Scanner x — LASER x
dy= Scanner y— LASER y
dz= Scanner z — LASER z

l

Scan anglea =

Jid=)2
JJdx24+dy2+dz2

Figure 3-4: Scan angle workflow

Filtering
As discussed in the previous chapter, filtering plays a very crucial role in this study.
For this study, Hierarchic robust filtering method was used. This technique is inbuilt in
the software SCOP++ developed by Inpho. For filtering, there is a series of process
that is done, which has input from the preceding process and the output is fed to the
next process. This is often called filtering strategy (Scop++ manual). The steps

involved are mentioned briefly.

e Eliminate buildings: in Eliminate buildings step, the original input data is fed,

separating building points(if any) from other points.

e Thin out: In this step, the input set of points is reduced in details, is thinned
out. This step is helpful in making sure that a good mixture of blunders and

ground points are delivered.

e Sortout: In a sortout step points are compared to a DTM, and the residuals are

calculated. If the residuals are beyond a certain threshold, they are rejected.
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Filter: this step deals with the set of points that contains gross errors. These
gross errors are categorized as ‘off-terrain’ points and the aim is to build a
DTM with the remaining set of ground points. The output is the points with

gross errors, a DTM and good points.

Interpolate: interpolate step derives a model using linear prediction, where
identifying of gross errors is not possible, unlike filter step. The output is a

DTM.

Classify: classify forms a useful extension to the sort out step. Points are
compared to the DTM but are given more height difference. The output is
classified as buildings, high vegetation, medium vegetation, low vegetation,

ground points and below ground. Height intervals and outputs depend on user

preference.
Original —
: Eliminate
DF’;S-JBS‘E Buildings | | ThinOut | | SortOut Edit Filter
ata
sadi agowna| [#aci maEmng] (el sagfowno| [s%ec e jEwng] Fas g
1 T T T T

Filter
errain Cff-terrain
A‘Iints / / oM / points /
|s%esi gra jmwea] | sasiem | e |

Figure 3-5: Filter strategy in Scop++
(Source: Scop++ manual, inpho.de)

For filtering of low vegetation plots, LIDAR DTM default (Fig 3-4), an inbuilt

readymade parameter settings were made use of with some minor changes in grid

width and mean accuracy. The classify step was adjusted to suit the height interval that

is to be categorized as low vegetation and ground points. Low vegetation was given a

height interval from 2 cm to 20cm, medium vegetation from 20 cm to 60 cm and 60

cm and above would be classified as high vegetation. But since most of the plots are
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only low vegetation and medium vegetation, other categories need not be given much

attention.

3.6. Normalisation

LiDAR points show a digital surface model (DSM) that also contains echoes from
trees, buildings apart from the ground points. Whereas a digital terrain model (DTM)
describes only the ground. A normalized DSM or the nDSM is a difference between the
DSM and the DTM(Oude Elberink and Maas, 2000).

------
-----
.

‘‘‘‘‘‘
...........

DSM-DTM =
T Normalised DS M

Figure 3-6: Steps to build an nDSM (Source: (Oude Elberink and Maas, 2000)

This process is often done as the first step before trying to quantify anything since the
models until they are normalized do not give the exact local height above the terrain
(Haala, 1999). It means that all the features are placed on a height above terrain. The
ground points and low vegetation points obtained from the filtering process are then

normalized.

For normalization in this study, the ground points obtained from filtering are made into
a DTM surface. All points, including the low vegetation, ground and other points (if any)
were fed as the surface model. Using second order spline interpolation method, a
corresponding point in DSM for every point in DTM was interpolated. This was done by
feeding the DSM (all points of the point cloud) and the DTM (only the ground points) in
GSTAT. A second order polynomial was fit to the DSM with a search radius of
I(Euclidean distance). The heights of new interpolated points from the DSM are then
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subtracted from the corresponding DTM (ground) points to find the local height above

terrain. This height above terrain was added as an attribute to each point.

3.7. DTM Error

In chapter 2, there is a description about the positive height shift due to the disturbing
influences of low vegetation in deriving a DTM. Below is a method to check if this DTM
error is dependent on the vegetation structure and scan angle. Before computing the DTM
error, it was essential to check the accuracy of the dGPS used. In order to compute the
accuracy of the dGPS, the asphalt (flat) plot is taken into account. Asphalt plot is filtered to
remove of any high lying pulses like car (since it is a parking area) or poles. The laser
ground points after they are filtered, are then interpolated over the gps checkpoints using
second order spline interpolation. The difference between each of the gps point with its

corresponding laser ground point gives the error in the dGPS.

Legend

Laser ground points

®  GPS checkpoints

0051 2 4
Meters

Figure3-7: dGPS checkpoints and laser derived ground points of the asphalt plot
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Figure 3-8: Flowchart showing the process of finding DTM error

Now the same procedure is repeated for other herbaceous plots to predict the DTM

error in that particular terrain due to low vegetation. Mean DTM error is then

subtracted from the GPS accuracy to find accurate DTM error per plot.
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3.8.

Vegetation Height extraction

VEGETATION HEIGHT PREDICTION

Ground points I | Low veg points

Gstat— 2" order spline
interpolation

N

Difference in heights between

laser derived vegetation points
and laser ground points

y
Height of
vegetation

above terrain

Figure 3-9: Flowchart showing the process of finding vegetation height

Terrain points and vegetation points are fed as inputs to the GSTAT processing in
order to undergo a second order spline interpolation. After interpolation, the heights of
the vegetation point for every ground point are subtracted. This gives the height of a
vegetation point above a terrain. These normalized heights were then used to compute
statistics against DTM error and field data. Correlation and regression analysis was
performed to check if there was any relationship that existed between the DTM error
of the terrain and the height of the vegetation points above the terrain. The same

procedure were done for both the datasets.
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3.9.

Vegetation density extraction

In this study, vegetation area index (VAI) is made use to predict the vegetation

density. As described in chapter 2, VAI is mathematically described as

Where ..,

h; — 25 percentile of the laser extracted height of the vegetation point above terrain
h, — 75 percentile of the laser extracted height of the vegetation point above terrain
Nh; — no. of points that lie below the height of h;
Nh, — no. of points that lie below the height of h,

Since h2 and h2(h2>hl) indicates the level of inundation of water, it was decided to

consider h2 and hl as the 75™ and 25™ percentile of the predicted vegetation height

respectively. Thus the numbers of points that fall below both these heights were calculated

and the vegetation density for each plot was found using the above equation.
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4. Results

4.1. Scan angle

The scan angle for herbaceous plots in Brabant floodplain was computed using the
method described in chapter 3. Below is an illustration of the flight path and the
subsequent laser pulses and how the scan angle changes with the flight path.

The scan angle was computed for around 13 herbaceous plots in both the datasets.

The scan angle varied from 6 degrees to 25 degrees.

Figured4-1: Flight path(dots) and laser echoes of a road showing variation in scan
angle along with the flight path

0.2 - y =-0.002x + 0.1299
¢ R2=0.055
g 0.15 - ® L .
o
E 01 - 2 o ¢
e} . P
2 *
a 0.05 - .
L g
O T T T T 1
0 5 10 15 20 25
Scan angle (Degrees)

Figure 4-2: Mean scan angle Vs mean DTM error
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4.2. DTM Error

The DTM error for the Brabant floodplain for meadows and herbaceous plots was found
to be as below (Table 2) Mean DTM error being 10.61 cm with a standard deviation of
+4.1 cm for meadows and herbaceous plots. The DTM error for Duursche Waarden was
not able to be computed since there was no GPS data available. The GPS error check
was done using the asphalt plot. The error in GPS was found to be 0.9 cm. The table

regarding the GPS error calculation is attached in the appendix I.

Mean DTM
PLOT NR ERROR

1 7.32

2 8

6 9.13

9 11.13
10 11.4
15 5.6
17 10.72
18 9.69
19 15.14
20 19
27 13.51
28 10.42
29 14.54
32 3.06

Table 4-1: DTM error for low vegetation plots in Brabant

4.3. Vegetation Height statistics
As a predictor of vegetation height, many statistical measures were computed and
correlation was used to see if there is a strong correlation found between

vegetation height and any of the statistics.
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Mean and Standard deviation per plot

plot no. plot type mean stddev
1 | meadow 0.035 0.012
2 | meadow 0.037 0.012
6 | herbaceous 0.054 0.03
7 | herbaceous 0.051 0.026
9 | herbaceous 0.122 0.112
10 | herbaceous 0.094 0.084
15 | meadow 0.045 0.007
17 | herbaceous 0.061 0.018
18 | herbaceous 0.056 0.029
19 | herbaceous 0.104 0.057
20 | herbaceous 0.16 0.148
27 | herbaceous 0.063 0.019
28 | herbaceous 0.052 0.022
29 | herbaceous 0.059 0.029
32 | meadow 0.034 0.011

Table 4-2:mean and std deviation for Brabant plots

Measured field Veg height(Hv) Vs Laser data
Hv (cm)

= N
(6] o
1 )

Laser height data (cm)
[E=Y
o

5 .
o y =0.0872x + 3.7754
2 _
0 . R®= 0;8117 .
0.00 50.00 100.00

Field measured height data (cm)

150.00

Figure 4-3: Plot between field veg height and laser veg height
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Field heights Vs laser std dev(m)
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Figure 4-4: Plot between field veg height and laser veg height
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Figure 4-5: Plot between laser veg height and DTM error
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Predicted Veg hieght Vs DTM error
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Figure 4-6: Plot shown between predicted vegetation height using regression equation
and DTM error
4.4. Vegetation density statistics

As discussed in the previous chapter, vegetation area index is a measure of
estimating vegetation density. Vegetation density obtained from field and VAI calculated

were correlated and the obtained results are as below.

Field Vegetation desnity Vs VAI
12

10 -
* R?=0.0048

VAI
=)
1

0 0.2 0.4 0.6 0.8 1 1.2

Veg density from field

Figure 4-7: Plot drawn between field measured vegetation density and VAI
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Unfortunately vegetation density computed using VAI shows meagre correlation with

vegetation density measured in the field.

A multiple regression analysis was done between laser derived vegetation height, VAI and
DTM error. Regression coefficient R* for this study was found to be 0.74 with an rmse

value of 2.2 cm.
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5. Discussion

5.1. Scan angle

The objective of devising the scan angle was to see if there is any correlation found
between scan angle and the DTM error found in the calculation. . With the change in scan
angle, the pattern of laser echoes changes(Lohani, 2008). It was assumed that the lower
scan angle would offer contribute less to the DTM error than higher scan angles, since
lower scan angles have a higher chance of hitting the ground.

The scatter plot(Fig 4-2) shows that there is not notable relationship between DTM error
and scan angle. This is again limited to other parameters such as the flying height, point
density and pulse frequency. With the given dataset, that has a point density of 10
points/m” and a flying height of 400 ft, such a result is obtained. It would be interesting to
test this by varying the above parameters. Unfortunately it was not possible to test this in
the Duursche-waarden floodplain since there were no GPS measurements taken in order to

find the DTM error.

e Some plots could fall between 2 overlying flight strips.

e  GPS time stamps and Laser time stamps should match

e Important to consider the projection systems of the scanner GPS and the system in
which laser data is projected.

e A good validation technique for scan angle and DTM error relationship was to
check this on a plot of asphalt. Due to technical problems faced in filtering of the
plot in SCOP++, unfortunately the results could not be found. This is

recommended for the future researches.
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5.2. DTM error

State of art accuracy reached in computing the DTM error has been done by many
researches before. For the same point density of 10p0ints/m2, (B. Gorte et al., 2005)
found a positive shift of £7.3 cm in long dense grass, £9.4 cm in a ground of young
forest and £11.6 cm in an old willow forest. The method they employed to find the
shift was using grey level co occurrence matrix (GLCM) method that primarily uses
texture as a parameter to find the DTM error. Various other researches and their

findings are tabulated as below.

Research group Findings on low Notable parameters
vegetation

(Pfeifer et al., 2001) +4.5cm 800 terrestrial check
points

(Ahokas et al., 2003) +llem Flying height - 550 m,
3500 ground points

(Bollweg  and  de +14cm -

Lange,2003)

(Crombaghs et al., +15cm -

2002)

(Hodgson and +6cm 650 checkpoints

Bresnahan, 2004)

Table 5-1: Comparative study of the results obtained in previous
studies regarding DTM error using airborne laser scannning
(As cited in AGI rijkswaterstad, Dutch ministry of public works report, 2005)

Interpolation method that is deployed for finding the DTM error is very crucial. Inverse
distance weighting that is used in this study as well the AGI rijkswaterstad report of 2005,
remarks that averaging over a large area(in this case 25 m?) considers only few points into
account. Since the point nearest to the centre gets the highest weight, it might be the case
that the point is either a ground point or a vegetation point which is very difficult to judge
in the case of low vegetation. Quantifying this kind of stochastic nature in low vegetation is
still a challenge. The GPS that is used for calibrating DTM error had to be converted from

ellipsoid model to the geoid model.
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5.3 Vegetation Height characteristics

As seen in fig 4-3 and 4-4, there seems a good relationship between height data
from laser and field measurements. Similar correlation was done by (Cobby et al., 2001)
and (Davenport et al., 2000) though they used low resolution(l points 9m?). Since the
density of crops was high, they were not able to efficiently demarcate ground surface
which led them to use detrended laser heights as predictors of vegetation height. Another
research done by (Hopkinson et al., 2004) predicted vegetation height of aquatic
marshland. Similar to the studies done previously, they used standard deviations of laser

heights corrected for local terrain undulations as a predictor of vegetation height.

A comparative study of the above studies is tabulated as below.

RESEARCH TYPE OF R’ MAPPING
GROUP VEGETATION CONDITIONS
Grass and cereal | 0.80 (log) Low point density,
(Cobby et al, crops leaf on condition
2001)
Farmland 0.89 Low point density,
(Davenport et al., leaf on condition
2000)
Aquatic 0.77 Point density 3/m’
(Hopkinson et al., marshland,
2004) grassland and
herbs
Meadow and | 0.88 10 points/m’,
This study herbaceous Winter, leaf off

Table 5-2: Comparative study showing results obtained in predicting vegetation
height

However, it is important to note that the previous studies were done in a dense vegetation
area with leaf on conditions, were there is meager chance of the laser pulses getting
reflected from the top of the canopy. This might add more bias to the shift in terrain height.

With this study It was interesting to see how the relationship is established in winter season
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leaf off conditions. Results show that point density plays a positive role in the
establishment of a strong correlation observed between both the quantities. A regression
analysis was performed between various statistical measures of laser derived vegetation

height and field measured vegetation height.

e Regression between field measured mean vegetation height with laser derived
mean vegetation height

e  Multiple regression between laser derived, field measured vegetation height and
scan angle

e Using the first regression equation, vegetation height per plot is predicted. This is

used to find any correlation with mean DTM error per plot.

Reg Field height data (cm) DTM error
(cm)
R*: 0.81 R*_0.62
Laser — Veg | qiderr: 1.62 DTM error = -6.2912x> +
height (cm) Reg eq: Laser vegh = 67.333x - 162.99 where x =
0.08*Fieldheight + 3.77 predicted laser hveg height
R*: 0.81,
Laser — Veg | giderr: 1.68,
height and Reg eq: Laser veg h =
scanangle | ogsficldheight ;
0.02*scanangle+3.99

Table 5-3: Regression results with predicting vegetation height with various
parameters

43



Correlation with field vegetation height and laser derived statistics:

Correlation with Hv

0.9 -
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Mean
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skew
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Figure 5-1: graph showing strength of correlation between laser height data and
various statistical measures

As seen in the figure, the statistical measures, standard deviation and 93 percentile show
highest correlation with the laser derived vegetation height however skewness and kurtosis

show a negligible correlation.

Type of filtering method used, grid width, interpolation method, height interval specified
for classification of points play a key role. Two major challenges of this study being, the
height of low vegetation is well within the noise levels of the laser scanner and the filtering
algorithms might need justified parameters to filter low vegetation points from the ground

points, which is still ambiguous.

5.3. Vegetation density

Height intervals h; and h, are crucial while deciding to compute VAL It is important that h,
does not fall under the noise that’s mixed with the ground points. In field, density was

measured taking half of the average vegetation height into account.

Also dependent on the accuracy of filtering method employed to classify points.
VAL is very sensitive to the number of ground points. With decreasing number of ground

points, VAI is overestimated (Straatsma, 2005). One probable reason for VAI to fail in
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predicting vegetation density could be the occlusion factor that VAI takes into account.
This model proves more suitable for leaf off forest canopy where ground points could be

better segregated than for low vegetation.
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Conclusion

e This paper discussed few aspects of extracting structural characteristics of
low vegetation in Dutch floodplains using advanced airborne laser scanning

data.

e This study also effectively discussed about the DTM error in low vegetation

areas while using LiDAR as a tool.

e From the regression analysis performed between vegetation height and shift,
there is a strong correlation seen for vegetation height data ranging from 3 to

7 cm. and shift values between 3 to 15cm.

e For vegetation height less than 6 cm, a mathematical relationship could be

established with corresponding DTM error.

e Standard deviation of vegetation height in 15 herbaceous plots were measured
which expand to an area of Sm x 5m.
Standard deviations in a range below 5 cm, there is a strong correlation

between field data and laser derived std deviation of vegetation height.

e Effect of scan angle on vegetation height and DTM error was also studied.

No strong correlation was found to exist.

e Amongst other first order statistical measures that were found, only std
deviation and 93™ percentile found to have a strong correlation with vegetation

height. Skewness and kurtosis proved poor correlation.

e Vegetation density of all the plots was computed using VAI, an index that’s
comparable with vegetation density. When comparing with field data, VAI did

not prove a strong predictor of vegetation density.
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For further research

e Exploring into other tools like texture measures, spatial auto correlation could

also be explored to predict vegetation height and DTM error.

e A major venture into this study would be to improve on the filtering methods
and deduce a segmentation method that’s built specially for segregating low

vegetation and ground points.
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Appendices

Appendix 1.1 Field data — Duursce waarden Floodplains
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Appendix 1.2 Field data — Duursce waarden Floodplains continued

piket 1
X Y
202560.607  486544.236
202476.327  486490.510
202301323  486591.608
202242476 486645950
203440877 487402.81
203903.086 487615228
203751.017  4B7666.757
202192623  4B6678.635
202223722  486726.485
202141631  486851.628
202169.768 486991683
202238.972 487133874
202374840  487150.045
202478675  486981.918
202543.017  486666.144
202973616 487105379
203000.636  487119.576
202750.847  4B7313.699
202674718 4B7317.674
202540.938  487351.652
202513.993 487348314
202465765 4873349
20248531  487304.99
203023.452 487205274
203040.619  487311.868
202215928  486389.556
203899.246  486969.515
203943523  486979.473
203720661  486913.266
203722567  486938.127
203608.178  486770.895
201866.117  486414.943
201807.274  486689.718
201812657  4B6712.084
201854.848 4BG2Zo7.409

piket 2
X Y
202576.553  486540.281
202458912  486495.502
202305395  486614.668
202244970  486629.805
203449.236  487397.421
203912439  487610.064
203748.909  4B7677.44
202173106  486688.046
202211.286  486740.317
202160.168  486851.695
202183.273  4B6998.158
202254.497 487119693
202383.154  487134.663
202484811  486966.275
202543074  4B6679.312

2020871  487108.479
202999.214 487130733
202768.484 487323199
202665.011 487332576
202553122  487337.858
202525895 487331763
202448.008  487325.603
202460576  487207.034
203015363  487207.279
203047.434  487311.148
202200159  486395.249
203891.492  486973.095
203931.799  486974.333
203715593  486902.105
203733.927  486954.812
203603432  486774.702
201869.242  486415.02
201806.986  486696.024

20181486  486711.647
201849.953 486256.092

piket 3
X Y
202580.964  486558.746
202472361  486520.775
202284851  486619.075
202223614  486628.112
203462167  487396.471
203006.603  487596.117
203729.166  487670.67
202177.324  486707.111
202223702 486754595
202142212 486874.043
202185122 486083202
202265155  487129.331
202374099 487125006
202471566  486960.612
202526843  486686.903
202981.242  487125.786
202086322 487128674
202757.64  487339.549
202650.384 48732268
202561.007 487343467
202544052  487340.352
202455781  487311.509
202476.61  487281.324
203011.787  487198.751
203048.586  487317.717
202191833 486380.131
203895847  486987.502
203938514  486964.91
203698924  486905.061
203713855  486063.144
203609.701 486782491
201868688 486421288
201817.06  486697.37
201813616  486718.135
201851.434 4B86250.157

piket 4
X Y

202562.424 486565.155
202486.380  486513.106
202278.871  486596.743
202220.904 486645.160
203462.965  487401.451
203804.250  487603.518
203732.174 487661.434
202195.959  486699.384
202236.658 486744.868
202160.327 486870.020
202172.980  486979.581
202256.856 487143.423
202361.125  487139.098
202463.120 486971.184
202525.386 486672.512
202969.177 487122.256
202988.971 487116.388
202742.062  487327.081
202661.843  487308.027
202549.465  487356.908
202532.263  487355.039

2024749 487318.009
202404 468  48728B.777
203026.771 487196.43
203041.424 487319.479
202207.768 486372.894
203903.282 486984.523
203945.757  486968.138
203703.065 486915.772
203705.457 486946.646
203614.823  486778.655
201865.67 486421.297
201817.369  486689.392
201815.856  486718.126
Z01856.963  4BEZ51.062

Xaverage
202570.137
202473.495
202292.610
202232.991
203456.061
203904.097
203740.317
202184.7563
202223.842
202151.084
202177.786
202253.870
202373.305
202474.543
202534.580
202977.784
202993.786
202754.758
202662.992
202551.133
202529.051
202461.339
202481.491
203019.343
203044.516
202203.922
203897.467
203939.898
203709.561
203718.952
203609.034
201867.429
201812.172
201814.247
201853.197

Yaverage
486552.105
486504.996
486605.523
486637.281
487389.563
487606.232
487669.075
4B6693.294
486741.566
4B6861.847
486988.181
487131.580
487137.226
486969.997
486676.218
487115.475
487123.843
487325.882
487320.239
487347.471
487343.867
487322.505
487293.256
487201.934
487315.0583
486384 458
486978.659
486971.714
486909.051
486950.707
486776.686
486418.137
486693.126
486714.998
A6 253,680
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Appendix 1.3 Field data — Duursce waarden Floodplains continued

opmerkingen Veldplot Veldwaam: VeldwaarnVeldwaarn¢Veldwaameming
Nummer ondergrens bovengren: HOOGTE (DICHTHEID

tachimeter 1 0.2 25 0.0484
tachimeter 2 0.5 25 0.0089
tachimeter 3 0.5 2.5 0.0122
tachimeter 4 0.4 2.2 0.0358
NETPOS 5 0.6 24 0.1636
NETPOS 33.2 0.003
NETPOS 3
tachimeter 8 0.2 2.6 0.0308
tachimeter g 0.5 2.5 0.0137
tachimeter 10 0.4 2 0.035
tachimeter 1 0.5 2.2 0.0789
tachimeter 12 0.5 2.2 0.0263
tachimeter 13 0.5 2.5 0.075
tachimeter 14 0.3 23 0.05
tachimeter 16 0.5 23 0.0672
NETPOS 17 0.25 0.7 67 0.0527
NETPOS 18 0.25 1.5 142.7 0.0966
NETPOS 19 4.7
NETPOS 20 8.8
NETPOS 21 8.9
NETPOS 22 16.4
NETPOS 23 16
NETPOS 24 12.8
NETPOS 25 0.5 2.2 0.2608
NETPOS 26 0.9 2.1 0.3535
NETPOS 27 6.2

< NETPOS, maz 28 0.7 2.5 0.0545
NETPOS 29 0.5 25 0.2374
NETPOS 30 0.2 2.2 134.5 0.0391
NETPOS 31 229
NETPOS 32 0.4 24 0.4201
NETPOS 33 1.2 1.6 0.3077
NETPOS 34 1.2 27 0.1605
NETPOS 35 1.4 1.8 0.3686

NETPOS 36 1 2 0.1672
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Appendix II Field data — Brabant Floodplains

X
1346321
134686.8
134659.7
134628.8
134486.5
1341556.9
1341748
1341921
1320764
132082.9
135039.9

135014
136310.7
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135803.9
132633.3
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72266.02
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¥
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412802.5
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4112206
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404460.4
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405751.8
405799.2

405829
399973.6
399788.1
400644 8
400244 4
400270.1
400318.8
400285.1
397345.7
397432.5
397316.8
305835.3
403639.9
403286.5

Plot

Date
1 19-02-2009
2 19-02-2009
3 19-02-2009
4 19-02-2009
§ 19-02-2009
6 19-02-2009
7 19-02-2009
8 19-02-2009
© 19-02-2009
10 19-02-2009
11 20-02-2009
12 20-02-2009
13 20-02-2009
14 20-02-200¢
156 20-02-200¢
16 20-02-2009
17 20-02-2009
18 20-02-2008
19 28-2-2009
20 28-2-2009
21 28-2-2009
22 28-2-2009
23 28-2-2009
24 28-2-2009
25 28-2-2009
26 28-2-2009
27 1-3-2009\
28 1-3-2009\
29 1-3-2009
30 1-3-2009\
31 1-3-2009
32 1-3-2009\
33 1-3-2009
34 1-3-2009
35 1-3-2009

Vegetation type Hv (cm)

Meadow
Meadow

Maize stubs
Maize stubs
Unvegetated
Herbaceous
Herbaceous
Maize stubs
Herbaceous
Herbaceous
Heatthland
Heatthland
Unvegetated
Unvegetated
Meadow

Leak
Herbaceous
Herbaceous
Herbaceous
Herbaceous
Tidal

Tidal
Unvegetated
Agriculture, stubs
Agriculture, stubs
Step edge
Herbaceous
Herbaceous
Herbaceous
Reedland
Agriculture, aggn
Meadow
Agriculture, ploug
Roadline for scar
Grassland for sci

Manual Measurement

5.02
8.33
11.56
11.50
0.00
18.64
13.28
35.07
90.67
72.83
377
50.67
0.00
0.00
3.63
34.30
16.45
17.90
30.22

131.03

35.93
60.13

0.00
13.07
16.47

2480
58.13
33.47

150.75

0.00
3.96
0.00
0.00
9.84

Dv (m?-1)

0.15
0.16

3.08
2.22
0.12
0.15
0.05
0.82
1.03
0.00
0.00

Plot depth D

275

014

stance camera-screen Camera height Spacing

52

0.25

1.08

0.26

aialais

0.2

0.31

41

41

0.72

0.1
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