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Abstract 

 

Floodplain vegetation, its structure and growth properties, affect flow and flood wave propagation 

during flood events. To estimate the impact of vegetation on the flow resistance, flow conditions are 

determined for different conditions and properties of vegetation. Traditional methods to determine 

vegetation properties have mainly been ground based. These methods are proving to be insufficient 

because of the large spatial heterogeneity of floodplain vegetation. This study looks at remote sensing, 

specifically at hypertemporal satellite technology, as a promising resource for fast, efficient and more 

effective method of vegetation characterisation for flood hazard assessment. As a new and emerging 

field, it is still necessary to collect field data to validate the accuracy of the method, therefore Leaf 

Area Index (LAI) and landcover characterization were included as part of the study. Nineteen images 

were used over the Netherlands growing season of seven months. The two week time step between 

images was very critical not only because of possibility to miss important vegetation growth stages, 

but also because the floodplain under study has agricultural activities including cattle rearing, 

haymaking and maize farming which may have noticeable influence on landcover over a short period 

of time. A questionnaire was distributed amongst the farmers to capture these activities and it was 

found that most farmers plant their maize in May and harvest in September or October. Grass cutting 

for haymaking varied on a 4-8 week cycle between farmers, depending on the intensity of the farming 

activities in a particular farm. In all the cases the grass was left for meadow during the winter period. 

The floodplain vegetation was classified using three different methods on a 19 layer hypertemporal 

NDVI stack; Maximum Likelihood Classification (MLC), Spectral Angle Mapper (SAM) and NDVI 

Based Profile matching. All the classifications performed below expectation with SAM lowest at 

50.54% followed by MLC at 54.84%. The classification was benchmarked against the ecotope map 

which is has the accuracy of 69%. NDVI Profile matching was only assessed visually and no statistical 

evaluation was performed. The ISODATA output from the NDVI Profile classification showed the 

subtle differences within landcover that was classified as a unit in MLC and SAM showing potential to 

take advantage of the temporal dimension within the image stack. Landcover specific NDVI Profiles 

were produced with the use fieldwork data. The profiles displayed characteristic shape unique to each 

landcover type and even showed deflection points associated with cropping activities of particular 

landcover types. The study confirmed that the DMC images can produce landcover specific temporal 

profiles in the IJssel floodplain but landcover classification using these profiles is not practical.  

Field measured LAI was related to NDVI without the use transformation coefficients and performed 

poorly with a low correlation coefficient, R
2 of 0.43 for maize, and almost no correlation for 

herbaceous vegetation for forest. 

 

 

 

Keywords: Flood Hazard, Hypertemporal, NDVI, DMC, vegetation roughness. 
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1. Introduction 

1.1. Background 

1.1.1. Flood hazard model input 

Flooding has become a large environmental hazard with significant economic damage and human 

suffering. The importance of accurate predictions of flood behaviour cannot be over emphasised, it is 

essential to understand the hydrodynamic characteristics of the floodplain and their effects on flood 

modelling. In addition to surface topography, floodplain characteristics include vegetation roughness 

as a key input parameter in flood modelling (Straatsma and Baptist, 2008). But compared with 

topography, the specification of flow resistance due to vegetation is a far more ambiguous process 

(Horritt, 2006). Modern river management tries explicitly to combine flood defence with ecological 

integrity but at the same time ecological integrity leads to succession of vegetation and higher friction 

values. This succession also leads to a more spatiotemporal variation of vegetation which in turn 

requires monitoring and accurate characterization (Straatsma, 2007).  

 

 In the Netherlands, roughness mapping is based on floodplain vegetation types that were delineated 

from manual interpretation of the aerial photographs into what is termed the ecotope maps (refer 

section 2.3).  Each of the ecotopes is assigned a value for vegetation height and density using a look up 

table (LUT). Many flood models used in the Netherlands use the ecotope maps along with the LUTs 

for vegetation roughness parameterization. The IJssel river management authority bases its 

management strategy on the ecotope maps. The current accuracy of the ecotope maps is estimated at 

69% (Knotters and Brus, In press), therefore insufficient accuracy in the vegetation classification will 

result in flood modelling with large amount of uncertainty.  

 

The Dutch government maintains the highest safety levels against flooding world-wide, with flooding 

design discharge of 2015 set to risks smaller than one per 1250 years(Straatsma and Alkema, 2009). 

To guarantee safety levels, flood-risk models must be updated every five years. This requires spatially 

explicit data on vegetation to derive hydraulic roughness parameters (Straatsma and Baptist, 2008) and 

for hydrodynamic models the vegetation roughness is one of the determining factors for the computed 

water levels. 

 

1.1.2. Roughness 

 

Floodplain roughness parameterization is one of the key elements of hydrodynamic modelling of river 

flow, which is directly linked to water levels that exceed embankments of lowland fluvial areas 

(Straatsma and Baptist, 2008). The contribution to floodplain roughness is mainly by vegetation 

thereofore is critical to account for the actual properties and dynamic changes of vegetation. In the 

IJssel river floodplain, willows can shoot up more than one metre per year after taking root at a 

location where it was formerly bare ground (Silva et al., 2001). As trees grow higher the general 

density of the vegetation increases and more plant material is deposited on the ground, further 

increasing the roughness.  
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The amount of vegetation material is quantified through resistance coefficients like the Manning n, 

Chézy C and the Weisbach  f .   All the coefficients have vegetation at the centre of their operation and 

there is no clear theoretical advantage of one coefficient over the others, however Yen (2002) refers to 

study by Lopez and Garcia (1997) that Manning n increases with vegetation density. Järvelä (2004) 

showcased the impact of leaf density by comparing predicted and measured friction factors for leafless 

and leafy willows and found that the discrepancies of  f  were 18% and 61% for the leafless and leafy 

cases, respectively. These findings suggest that LAI is a key component of resistance coefficients. 

 

A number of methods to account for vegetation properties have widely been noted in research, 

however Szoszkiewicz et al. (2003) suggest that ground measurements are limited in spatial range due 

to the large spatial heterogeneity of floodplain vegetation structure. The authors further note that 

remote sensing techniques with very fast tools for large scale data acquisition promise an opportunity 

to resolve problem of data inadequacy caused by the inefficient field based methods of measuring 

vegetation properties. 

 

1.1.3. Classification of vegetation for roughness parameterization 

Remote sensing, specifically in the satellite technology, is one of the areas of development that has 

enabled researchers to efficiently and effectively collect key information about hazards and their 

associated disasters. Researchers have been able to study, characterise and to some extend predicted 

some of the phenomena with improved accuracy. Remote sensing is very sensitive to the surface 

characteristics of the object or area under investigation, resulting from the different spectral 

characteristics of different materials, and different sensors have been built that are especially suitable 

for specific surface materials (Kerle, 2009). The Disaster Monitoring Constellation (DMC) satellites 

are some of the sensors that are designed for and dedicated to monitoring of hazards and disasters 

around the world. It provides imagery for rapid response to disasters providing both medium spatial 

(32m) and high temporal (up-to 1day for specific arrangements) resolution with a swath width of 

324km. While the technological advances in remote sensing has enabled high resolution in satellite 

data trend analysis of satellite observations is subject to error, and even ecosystem change can be 

confused with inter-annual variability (Bradley and Mustard, 2008).  Szoszkiewicz et al. (2003) claims 

that the increased availability of high resolution satellite data makes the analysis of large floodplains 

possible but makes no reference as to whether high resolution also means larger swath angle for many 

satellites.  

 

1.1.4. Multitemporal RS and new application to floodplain vegetation 

The periodic acquisition of remotely sensed data at short temporal intervals is an efficient way to 

monitor the seasonal and inter annual development of land surfaces (Geerken, 2009). The author 

further asserts that the use of NDVI time series data can identify biophysical characteristics, landuse 

practices, and even recognize particular landcover types. De Bie et al. (2008) used NDVI profiles to 

identify the extent and nature of land cover units in Portugal; to monitor flooded areas and to map 

gradients in Mozambique, the Limpopo valley; to detect spatial differences in water availability in  

Garmsar, Iran; to link NDVI profiles to land use classes in Nizamabad, India, and to disaggregate 

reported agricultural crop statistics to 1x1km pixel crop maps in Andalucía, Spain. However 

throughout this work the authors depended on visual profile matching . The advantage was that the 
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variation in behaviour between profiles was considerably large (de Bie et al., 2008).  Geerken (2009) 

used an algorithm to recognize NDVI time series cycle and curve shape to classify the vegetation 

types. However the method required a reference profile on which the new classification would be 

based on.  

 

1.2. Research Problem 

Many researchers have used satellite data with high temporal properties like SPOT Vegetation and 

MODIS, but were highly limited by the spatial resolution (1km and 250m respectively) of these 

sensors. The use of these sensors in vegetation classification is very valuable but fluvial landscapes of 

medium size rivers cannot effectively be characterized at this coarse resolution.  

 

Alternative classifications using multispectral plus LiDAR data, or aerial photographs still has a 

classification error that leads to large uncertainties in flood modelling. Multitemporal spectral data at 

medium scale has proven its value in different applications, but it is not known whether it will work 

for patchy landscapes like the lowland floodplains of the Rhine distributaries. Seasonal variation and 

management allows vegetation to vary dynamically leading to a high spatiotemporal variation of 

vegetation structural characteristics including LAI and inherent roughness patterns. However ground 

based measurement of structural characteristics are limited in spatial coverage and the frequency of 

updates. 

1.3. Research Objectives 

The objective of this study is to use medium resolution multitemporal DMC satellite imagery to 

improve the classification of the IJssel floodplain vegetation from the current 69% accuracy achieved 

by Knotters et al.(In press). The long term goal is to provide efficient and effective tools for 

characterization of vegetation roughness coefficients in hydrodynamic flood modelling. 

 

Specific sub-objectives 

 

� to produce temporal NDVI profiles by landcover type using field reference data 

� to classify landcover using hypertemporal NDVI profiles  

� to predict Leaf Area Index (LAI) using hypertemporal DMC remote sensing products vis-à-vis 

field measurements 

 

1.4. Research Questions 

 

i. With respect to hypertemporal image analysis, can DMC satellite images produce temporal 

NDVI profiles that are landcover specific? 

ii. In reference to the first question, can hypertemporal NDVI profiles be used to accurately 

classify landcover? 

iii. Can DMC hypertemporal images be used to accurately predict Leaf Area Index?  

1.5. Approach 

The study entailed a reconnaissance of the area using ecotope maps and high resolution aerial 

photography of 2003 to identify suitable areas for fieldwork data collection. A purposive sampling 
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strategy was designed to distribute sampling areas evenly over the floodplain to include all landcover 

types that have been identified using the ecotope maps and classes also identified by Knotters & Brus 

(In press). DMC International Imaging (Pty) Ltd supplied imagery exclusively for this study. The 

images shall be referred to as DMC Satellite images.  The aim was to get a minimum of two cloud free 

scenes per month, to look at a two week interval landcover/landuse activity and associated 

phenological changes. The schematic in Figure 2 provides the approach used for this study. 

 

1.6. Study area 

The study area is the floodplain within the winter dyke along the river IJssel in the Netherlands. It 

stretches for approximately 40km from the City of Zwolle (N52 30 14, E06 02 45) to the city of 

Arnhem (N52 57 54, E05 57 10). The Ijssel is one of the three branches of the river Rhine which 

enters the Netherlands from Germany on the South East. 

 

The study area, as corroborated by Straatsma (2007), is generally flat with elevation differences mostly 

less than 1 metre, except for a series of wind-blown ridges, which are approximately 4 metres higher 

than the rest of the floodplain. Land cover is a combination of arable land, meadows, open water and 

nature areas that partly consisted of forests. Arable land is mainly maize and haygrass making with 

typical plot size of 200mx200m. Forests comprise softwood forest (willow, (Salix alba, Salix 

viminalis), poplar (Populus nigra, Populus x canadensis)) and hardwood forest (oak (Quercus robur), 

ash (Fraxinus excelsior)) in various stages of development, and a small mature pine stand (Pinus 

sylvestris). The typical inundation depth of these floodplains is 3 metres, but water depths may rise to 

5 metres in case of extreme flood events (Straatsma, 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

  
 
Figure 1 - Study area in the Netherlands. The landcover is characterised by forest patches, lake and river water, 

agricultural crop with occasional bare areas. (source: Addink et al. (2009) and Googleearth (2010)) 
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2. Literature Review 

2.1. Flood modelling 

The Netherlands suffered a major flood event in 1995, the highest since 1926 (Silva et al., 2001). It 

was after this flood that the government initiated a lot of water and flood management programmes 

that included expansion of flood discharge capacity. Further in 2006, the Dutch government adopted 

the Spatial Planning Key Decision Room for the River, aiming at reducing flood-water levels, together 

with restoring riverine ecosystems. To account for changes in floodplain vegetation over time, the 

government requires five-yearly updates of vegetation maps, to monitor hydraulic roughness patterns 

and ecological quality of the floodplain(Addink et al., 2009). This requirement initiated the need for 

robust models that could take advantage of latest developments in technology for extraction of 

floodplain variables for flood modeling parameterization. 

 

The modeling of the water levels is bound with uncertainty due to the complexity of the input and the 

various schematizations of the interaction between the water, the river bed and floodplain vegetation. 

Much effort has gone into parameterizing the floodplain vegetation for flood modeling, but due to this 

uncertainty in floodplain vegetation classification and errors in the used LUTs , some arbitrary choices 

still have to be made (Straatsma and Baptist, 2008). In many model applications on vegetation 

roughness the drag coefficient is set to different values for submerged and emergent vegetation, which 

also involves an arbitrary choice (Straatsma and Baptist, 2008). This is done, for example, in an effort 

to account for rough vegetation surfaces or for the leaves on the branches.  Shortcomings in the model 

scheme, computation method or model input can be compensated using roughness values that are 

physically not representative and lead to large uncertainty. The accuracy of the model input, 

calibration and sensitivity all influence the accuracy of the predicted peak water levels (Straatsma, 

2007).   

 

Some progress has been made in modelling flow around vegetative structures, however the difficulty 

of measuring vegetation biophysical properties, and their spatial and temporal variability, means that 

converting these results into a form suitable for 2-D hydraulic modelling still remain inaccurate 

(Horritt, 2006).  According to Hesselink et al. (2003), sensitivity analyses on flood models show a 

large influence of floodplain topography and hydraulic friction caused by vegetation on the 

propagation of the inundation. The spatial and temporal variation in vegetation significantly influences 

flood hazard characteristics because of changes induced in hydraulic resistance throughout the 

floodplain 

 

2.2. Vegetation characteristics 

It has been generally agreed that vegetation increases flow resistance, changes backwater profiles, and 

modifies sediment transport and deposition (Yen, 2002). Vegetation in floodplains adds more 

complexity to flow structure and velocity of the flood wave (Huai Wen-xin et al., 2008) . A number of 

vegetation properties like height, density, LAI, drag coefficient, plant spacing and orientation of rough 

patches have been tested in many models and their effects documented. For example test results on 

rigid vegetation showed that planting density and array model have enormous impact on flow 

velocity(Huai Wen-xin et al., 2008). Li and Zeng (2009) have also shown the importance of vegetation 



HYPERTEMPORAL VEGETATION CLASSIFICATION FOR FLOOD HAZARD ASSESSMENT 

 

6 

in the flow properties where decrease in vegetation density resulted in increased flow in the main 

channel and the floodplain. Järvelä (2004) studied the effect of leafy bushes or trees versus leafless 

bushes or trees on flow resistance and found that there was high significance of effect of leafed 

vegetation on flow resistance. Cotton et al. (2006) also showed that growth and die-back of in-

stream macrophytes at the reach scale have a fundamental effect on the dynamics of flow. 

 

The simplest and most practical way is to investigate the relationships between LAI and NDVI values 

is by means of regression models. Such relationships usually result in different mathematical forms 

with empirical coefficients that vary, depending primarily on vegetation type (Colombo et al., 2003). 

However Fan et al. (2009) noted that LAI measurements are problematic for low stature vegetation 

including grasslands but stress the usefulness of NDVI as a direct estimator of LAI. The authors note 

that whenever possible LAI estimation using NDVI values is also suitable for low stature vegetation 

like grass because of the downward looking properties of the satellite sensors. 

 

With field measured LAI corresponding to NDVI, backward regression analysis can be applied to 

determine LAI, from which the imagery can in turn be used to directly predict vegetation roughness 

coefficients in flood models (Jarvela, 2004). During the study, the author found that the major 

contributor to the drag of most trees is the drag of the leaves. And considering that LAI is the measure 

of leaf density then the leaf area index (LAI) is a key parameter in determining the density effects on 

coefficient of friction ( f ) caused by vegetation.  

 

2.3. Mapping 

To support the transition from traditional flood defence strategies to a flood risk management approach 

at the basin scale in Europe, the EU has adopted a new Directive (2007/60/EC) at the end of 2007. One 

of the major tasks which member states must carry out in order to comply with this Directive is to map 

flood hazards and risks in their territory (de Moel et al., 2009). Surveys of channel and floodplain 

characteristics and change have traditionally been conducted in the field (Wright et al., 2000). The 

drawback to these surveys is that they are local in extent, time consuming, relatively costly, and 

therefore, seldom carried out for more than a few years. As noted in section 1.1.1 , the Netherlands 

uses ecotope maps for parameterization of flood models and these maps are manually delineated.  

According to Knotters & Brus (In press) an ecotope is defined as a spatially bounded ecological unit, 

whose composition and development are determined by abiotic, biotic and anthropogenic aspects. 

Ecotopes are more or less homogeneous units at landscape scale, which are discernible from 

similarities and contrasts in geomorphology and hydrology, vegetation structure and land use. The 

authors further purport that ecotope maps are used as basic information for policy and management 

purposes, regarding water quantity, ecological system knowledge and  restoration and development 

projects of the Dutch water systems. (Knotters and Brus, In press).  It is evident that the accuracy 

behind the ecotope maps is highly desirable. But as Congalton & Green (1999) have already noted, a 

map accuracy depends on a great many factors, including the amount of effort, level of detail, 

classification scheme, and variability of classes being mapped. 

  

Wright et al.(2000) used airplane-based digital imagery and GIS technology to classify and map 

hydrogeomorphic stream units in two alpine streams in and adjacent to Yellowstone National Park, 

USA. They used high resolution multispectral imagery with field maps and noted the difficulty in 
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proper georectification due to the disparities between the data sources and format. They achieved an 

overall accuracy of 80% using a method they called Alternative Joint Probability (AJP) where the 

pixels on the imagery were allowed to be assigned to multiple geomorphological units.  

Remotely sensed digital imagery provides a potential means for observing and monitoring change in 

fluvial systems at reach scales across entire watersheds, while also providing a database for 

quantitative analysis that is potentially less costly on long-term basis.The latest advances in satellite 

technology provide both enhanced spatial and temporal methods that can enable fast, efficient and cost 

effective data acquisition and analysis for classification and mapping of floodplain vegetation. 

 

2.4. Remote Sensing Methods 

Over the years many different remote sensing techniques have been applied to vegetation classification 

with varying results. The most contributing factor is the different sensor properties and their 

combination in and with the classification methods. Zurita-Miller et al. (2009) have demonstrated the 

importance of balancing the temporal and spatial resolutions of sensors in studying vegetation 

dynamics. However to capture these aspects they had to downscale MERIS data with good temporal 

resolution (3days) but unsuitable spatial resolution (300m at full resolution, FR) to “Landsat like” 

properties with 30m spatial resolution but unsuitable temporal resolution (16days). The goal of this 

downscaling methodology by Zurita-Miller et al. (2009), was to take advantage of the best properties 

on either images and be able to reconstruct images with a high spatial and temporal fidelity while 

possessing the spectral properties to calculate vegetation indices. The accuracy of this method is 

limited by priori knowledge of the pixels with respect to scene composition and the number of 

components that can be unmixed is limited by the number of spectral bands of the image. The images 

need to be acquired at about the same date and co-registration of the images needs to be done perfectly 

as this alters either the geometric or the radiometric properties of the image. 

 

Airbone Laser Scanning (ALS) has proven ability to quantitatively map vegetation structural 

characteristics such as forest vegetation height, biomass, basal area, leaf area index and vegetation 

density (Straatsma and Middelkoop, 2006). It has provided good results in vegetation characteristic 

classification, however during an experimental study by Straatsma & Baptist (2008) the distinction 

between meadows and herbaceous vegetation was still difficult. This is due to the fact that ALS data 

has noise level around 4 cm (Straatsma and Baptist, 2008), and therefore vegetation differentiation at 

this level is problematic.  The other major challenge is ALS is still an expensive technology and this 

method is only suitable for static classification and not for trajectory monitoring of vegetation 

dynamics over the growing season. 

 

In recent years there has been more developments and improvements in both spatial and temporal 

characteristics of satellite products and also to directly include characterization of vegetation by 

indices. This includes MODIS 4, CBERS, SPOT Vegetation and MERIS.  Satellite imagery provides 

an opportunity to track these changes and parameterize the flood models accurately at any given point 

in time. Despite the enhanced spatial and spectral resolution of these sensors, an accurate 

characterization of heterogeneous and patchy floodplains with anthropogenic activities still requires a 

specific balance between the spectral, spatial and temporal characteristics which is hardly found in any 

one of the mentioned sensors.  

 



HYPERTEMPORAL VEGETATION CLASSIFICATION FOR FLOOD HAZARD ASSESSMENT 

 

8 

According to Townsend and Walsh (2001) researchers have not adequately been able to discriminate 

and map relevant plant communities with sufficient floristic detail using satellite imagery. Satellite 

technology and remote sensing systems have traditionally been used to map broad landcover classes 

through ‘flat’ or one-dimensional classification schemes related to differences in physiognomy and 

dominant canopy species. In complex communities such as those found in floodplain landcover, 

satellite imagery has not been used adequately to make interpretations of community structure beyond 

broad ecological generalizations. Challenges have further emerged where researchers needed to 

correlate ground measurements to satellite products as satellite sensors generalize values over a 

relatively non homogenous landscape (de Bie et al., 2008). Many models require landscape level 

parameterization but the trade-off between the spatial and temporal resolution provided by many 

sensors is huge. 

 

2.5. Image Classification 

According to Richards and Jia (2006), identification of features in remote sensing imagery by photo 

interpretation is effective at global scale, only when a few pixels are involved or the number of 

spectral bands is limited to three. When these levels are exceeded detailed procedures and algorithms 

must be used for automated and quantitative classification. In a classification, labels are attached to 

pixels in view of their spectral character. There are two broad categories of classification; 

unsupervised and supervised classification. In unsupervised classification pixels in an image are 

assigned to spectral classes without user having fore knowledge of names of the classes while in 

supervised classification the spectral classes in the image are known and grouped by the use of a 

training set. Supervised classification is more complex in its operation and depends on whether they 

are statistical or non-statistical. In some instances these categories are combined into a hybrid 

methodology (Richards and Jia, 2006). 

 

Many methods exist in classification of floodplain vegetation. In determining plant community 

composition and structure in south eastern USA, Townsend & Walsh (2001) used Landsat TM at 30m 

resolution but experienced difficulties with selection of images due to the lower temporal properties. 

The images suffered overlap with flood events and could not accurately characterize succession 

activities where recent harvesting may have occurred. However they report an overall accuracy of 92% 

with the use of hierarchical classification method, where ISODATA clustering is applied first then the 

image is segmented according to the level of the required grouping. The use of the temporal dimension 

and NDVI values as an index for ecosystem functioning provides an untapped stratification tool for 

mapping and monitoring. De Bie et al. (2008) used temporal profiles of SPOT Vegetation for crop 

mapping and change detection in West Iberia and picked the sensor’s 1km resolution as the downside.  

 

Addink et al. (2009) developed a method which combines object-based analysis of Colour InfraRed 

aerial photographs with knowledge on vegetation succession paths. The authors claim that object-

based classification produces more accurate results, because the studied objects represent vegetation 

patches at the surface better. They achieved an overall classification accuracy of 56%. Object oriented 

classification is based on fuzzy logic, to allow the integration of a broad spectrum of different object 

features such as spectral values, shape or texture for classification.  
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2.5.1. Spectral Angle Mapper (SAM) 

Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an n-D angle to 

match pixels to reference spectra. The algorithm determines the spectral similarity between two 

spectra by calculating the angle between the spectra and treating them as vectors in a space with 

dimensionality equal to the number of bands (Kruse et al., 1993). According to the authors, this 

technique, when used on calibrated reflectance data, is relatively insensitive to illumination and albedo 

effects. SAM is suitable for hyperspectral data as standard classification procedures often fail to obtain 

reliable class definition with data of high dimensionality (Richards and Jia, 2006).  

 

2.5.2. Maximum Likelihood Classification (MLC) 

This is the most common classification method used with remote sensing data. Maximum likelihood 

classification assumes that the statistics for each class in each band are normally distributed and 

calculates the probability that a given pixel belongs to a specific class (Richards and Jia, 2006).  

In a test study to classify tropical forest with airborne hyperspectral data, MLC outperformed, 

Artificial Neural Networks (ANN), Decision Tree (DT) and even SAM at 86%, 84%, 51% and 49% 

respectively (Shafri et al., 2007). 

 

2.5.3. NDVI Profile Classification 

According to Richards & Jia (2006) classification cost (processing and number of classes) increases 

with the number of features used to describe a pixel, that is the number of spectral bands. They further 

note that for maximum likelihood classification this increase is quadratic. For the NDVI image stack to 

be classified, the number of features is the number of temporal pixel stacks used to describe any pixel 

at any particular location. Therefore NDVI Profile Classification uses the temporal dimension out of 

the image stack to classify an image. This method can be looked at to what Richards and Jia (2006) 

refer to as hybrid methodology. An unsupervised classification, ISODATA, is used as a prerequisite to 

profile matching. The ISODATA clustering method uses spectral distance, as in the sequential method.  

It iteratively classifies the pixels, redefines the criteria for each class, and classifies again, so that the 

spectral distance patterns in the data gradually emerge (Khan et al., In press). Once ISODATA has 

been performed, NDVI profiles are produced from the ISODATA clusters and regrouped taking the 

temporal dimension into consideration. The set back with this method is that its techniques have not 

matured and depends on the researchers intuition for accurate classification. The classification is not as 

objective as it would be if it was algorithm based. Verbal communication with de Bie (2010) is that 

while there are advances in this field, the methods are still limited in terms of algorithms that can take 

advantage of the complex temporally influenced shapes. Many researchers still depend on visual 

interpretation.  

 

Geerken (2009) has looked at existing methods in algorithm based NDVI profile classification and 

asserts that a number of them only focus on conventional interpretations of some NDVI variable like 

NDVImax or accumulated NDVI.  The author argues that even though these methods have tried to 

exploit the information contained in the shape of the profile, they have not fully utilised the temporal 

aspects of the shape itself. The author proposed a shape classifier method based on the Fourier 

components magnitude and phase and claims that this method can differentiate and classify landcover 

types, vegetation types, crops or crop management techniques. However Evans & Geerken (2006) 

admit that this method despite having been developed and well suited for analysing time series, it has 
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not really been developed to carry out vegetation classification using NDVI data series. Geerken 

(2009) used this method on SPOT Vegetation with 10day interval composite and MODIS with 16day 

interval composite. However this methodology also depends on the data quality, the number of time 

steps defined by the compositing interval, and the temporal variations of phonological features to be 

detected (Geerken, 2009). It further requires that reference cycles to be established on which further 

classification will be based and these reference cycles should be derived from either expert opinion, 

field data or image characteristics.  

 

2.6. Leaf Area Index & NDVI 

The normalized difference vegetation index (NDVI) has been extensively used for vegetation 

monitoring. At global and regional scales, NDVI is typically computed from the data provided by the 

Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and Atmospheric 

Administration (NOAA) satellites. However, the AVHRR sensor was designed for meteorological 

applications and its radiometric and spectral performances are, therefore, not optimal for monitoring 

canopies (Zurita-Milla et al., 2009). 

 

To investigate the relationship between NDVI and LAI, field based measurements of LAI are 

necessary. The traditional method of estimating LAI is to harvest vegetation in a certain area and 

measure all the one-sided leaf areas directly(Fan et al., 2009). The method is time consuming and 

destructive. Other non destructive and rapid methods are available for estimation of LAI and the LAI-

2000 is one of the tools that provide that functionality. The LAI-2000 (Li-COR, 1992) measures light 

interception in five zenith angles simultaneously, through a fish-eye light sensor. The disadvantage of 

this indirect method is that in some cases it can underestimate the value of LAI in very dense canopies 

from 25% to 50%, as it does not account for leaves that lay on each other, and essentially act as one 

leaf according to the theoretical LAI models (Breda, 2003). This instrument is very easy to apply 

during the field research, however its spatial range is limited because of the large spatial heterogeneity 

of floodplain vegetation structures (Szoszkiewicz et al., 2003).  

 

Relationship between LAI and NDVI is specific to both vegetation physical properties and location 

characteristics. Fan et al. (2009) had to use a global model with leaf dry matter (LDM) of the area of 

interest that was developed in previous studies to access the required relation coefficients. However, 

the main disadvantages of the NDVI are the inherent nonlinearity of ratio-based indices, scaling 

problems, saturated signals over high biomass conditions, and its high sensitivity to canopy 

background variations (Huete et al., 2002). Further error sources include cloud contamination and 

insufficient atmospheric transfer corrections for atmospheric aerosols, gases, and water vapour and 

bidirectional reflectance. All these effects result in a decrease of the observed NDVI. To eliminate or 

reduce the impact of these effects, researchers use compositing methods that usually take the 

maximum NDVI value over images of some predetermined time interval. Titterbrans et al. (2009) and 

De Bie, et al. (2008) used a 16day composite for MODIS. However the method using NDVI to 

estimate LAI has a limitation in its applicability at the higher ranges of LAI, for NDVI saturates when 

the vegetation canopy tends to be closed and in this case NDVI can no longer be used to detect any 

differences in LAI (Pontailler et al., 2003). The difficulty to relate LAI to NDVI has been experienced 

by other researchers as well, the relation between the NDVI and forest LAI has been shown to fail 

when canopy cover is low and there is spatial variation in understory reflectance (Danson and 

Plummer, 1995).  
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The LAI measurements can also be related directly to the friction coefficient like the Weisbach f  

using the equation (1) as derived by Järvelä (2004).  

 

� = 4�����	 
 �
��



�
       (1) 

 

where f  is the vegetation friction coefficient 

 Cdx = species specific vegetal drag coefficient 

 LAI  = Leaf Area Index 

 X = a parameter unique to vegetation type 

 Ux = The lowest flow velocity for determining parameter
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3. Materials and Methods 

3.1. Flow diagram  
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3.2. Materials 

 

3.2.1. Images 

Images used for this research were supplied by DMCii International (Pty) Ltd, UK for research 

purposes.  DMCii supplies images in Geotiff format and in three different product levels, L0R, L1R 

and L1T; 

• L0R - raw satellite data split into the 3 spectral bands (NIR, Red and Green) with a 

radiometric correction applied to all bands 

• L1R – the 3 spectral bands from L0R product are co-registered and delivered as one product  

• L1T - Orthorectified product derived from the L1R product using manually collected GCPs 

from Landsat ETM+ data and SRTM DEM V31 data 

 

Only L1R and L1T products were used in this study. The L1T products were used as is while the L1R 

products were georeferenced (see Georeferencing and clipping section). The DMC sensor properties 

are listed below: 

Sensor type   DMC SLIM 6 

Spatial Resolution  32metres 

Temporal Resolution  daily (constellation) 

Bands    3 (NIR, Red, Green) + Pan 

Swath width   324 km 

Scanner type   Whiskbroom 

IFoV    26.62
o
 

 

The aim was to select a minimum of two images per month with a spacing of two weeks between the 

images over the 2009 growing season. The Netherlands growing season runs from April to October 

over a span of seven months but during this time it was difficult to acquire the images as was the initial 

interest. The 32 supplied images were not exactly in the required spacing and of which three images 

could not be used because they missed gain and offset values. The gain and offset values were needed 

to rescale the images from the supply DN values to radiance values as per equation (2). Eight images 

had cloud or haze artefacts prominent in many parts of the image while two images had part of the 

study area cut. The most interference was caused by haze which was less prominent in the thumbnails 

used for image selection but was evident after supply of the images. See (Figure 3) for the list and 

dates of images used. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 – The good images that remained over the 7month growth period. The period between July 15

th
 and August 

18th was    missed because of problems mentioned above. 
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3.2.2. Ecotope Maps 

Ecotope maps were used for area reconnaissance as a precondition prior to fieldwork. The ecotope 

maps were regrouped into eight distinctive classes describing the landcover types of interest (see  

Figure 4). The classification of ecotope map takes into account properties associated with its specific 

location of the landcover units.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3. Field work 

In order to assess the accuracy of the classification, field reference data was collected. A purposive 

sampling strategy was used where sampling locations were predetermined to be at specific landcover 

of interest. It was also predetermined that sampling would be done on plots that covered dimensions of 

minimum 90mx90m in line with requirements as discussed in section (3.2.4). Sampling areas were 

located at Fortmond and the area south of Deventer and north of Zutphen, see (Figure 5). These areas 

were wider parts of the floodplain and contained most of the landcover types of interest. The sampling 

strategy is non-probability in that any field measurement has a fair chance of being included in the 

sample population. The researcher made sure that the landcover classes that were predetermined were 

sampled the required number of times. The method was suitable because the landcover to be 

investigated was already known in terms of its structure and diversity from the reconnaissance maps. 

The landcover types were grouped into forest, water, herb, shrub, grass, agriculture, urban and bare in 

reference to classes established by  Knotters and Brus (in press).  The aim was to sample each 

                         
 

Figure 4- Re-grouped ecotope map with overlay of field 

sample points 

 



 

landcover type a minimum of 15 points but some landcover types like bare and shrub were not in 

abundance. A lot of shrub and herbaceous areas did not cover the required dimensions of the plot.  

 

Since the satellite imagery used with the fieldwork data was 32m resolution, the landcover areas that 

were selected for sampling were those with dimensions of at least 90x90m. This follows the 

methodology used by Townsend & Walsh (2001) that the minimum dimensions of a sample area, A, 

should be estimated as: A = P(1+2L), where P is the pixel dimension, and L is the accuracy of location 

in terms of numbers of pixels. This ensured a minimum of one cell positional error in all directions of 

the image. The field points were collected within landcover plots that were also generally 

homogeneous such that the cell value is more or less representative of the landcover within the 

90mx90 pixel dimensions. A total of 186 field samples were collected. 
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Figure 5 -  Floodplain of the IJssel river with sampling locations.  
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3.2.4. LAI Measurements 

To evaluate whether field measured LAI for this particular area will be correlated with the satellite 

imagery used for this study, LAI measurements were collected for each landcover with a vegetation 

height of greater than 30cm. Despite the claim by Li-Cor that the instrument can be used for virtually 

any canopy height, it was very difficult to record LAI measurements for canopy cover that was less 

than 30cm. For any canopy cover that was less than this threshold the results were unreliable. The 

results of the LAI measurements are given on Appendix 5. The LAI measurements were plotted 

against NDVI values of known locations from the field data. 

 

3.2.5. Questionnaire 

For the landcover type that was agriculture, a questionnaire was distributed to the farmers, see 

appendix 2. The activities associated with the landcover under observation were recorded in response 

to the questionnaire by the farmers. The farmers were asked about their farming activities including 

types of crop and times of cropping. Twelve farmers were interviewed and each farmer’s response was 

related to more than one field. A history of 28 farms was recorded. 

 

3.3. Image Processing 

 

3.3.1. Georeferencing and clipping 

The L1R products were georeferenced using image to image geometric correction without the use of a 

DEM. This is because the study area, as discussed in section 1.6,  is relatively flat and therefore effects 

of terrain on geometric correction can be ignored. The images were corrected at precision better than 

0.5 pixels root mean square error (RMSe). According to Khorram et al. (1999) an RMSe of more than 

0.5pixels may result in the identification of spurious areas of change among the datasets, caused by the 

erroneous  difference in the location of the cells being compared. Polynomial with nearest neighbour 

(NN) was used. This method resamples the cell values but ensures that the resampled values were as 

close to the original pixel value as possible while compensating for rotation, scale, skewness, and 

offset adjustment. The method preserves the radiometric and spectral information in the imagery 

(Richards and Jia, 2006) 

 

3.3.2. Radiometric Correction 

Pre-processing of multitemporal data is essential to help minimise effects that obscure links between 

the image data and the biophysical phenomena being studied (Paolini et al., 2006) . The objective is to 

remove errors associated with data acquisition including sensor effects, atmospheric and illumination 

effects and mis-registration.  Paolini et al. (2006) corroborates that pre-processing for change detection 

is more demanding than single-image cases due to the need to make equitable comparisons.  The goal 

of radiometric correction is to remove or compensate for effects that cause variation in radiance of a 

target object so that only actual changes in ground target remain. The resulting radiance values are 

used to calculate surface reflectance that simulate data acquisition under similar conditions but at 

different times steps (Du et al., 2002). 
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To compensate for changing sensor sensitivity, the satellite data vendor recommended applying gain 

and bias values to rescale the image DNs. The gain and bias are used to convert the DNs back to true 

radiance (Crowley, 2008).  All the images were rescaled using equation (2) below as provided in the 

DMC product manual. The scaling coefficients (gain and bias) are unique for every image and band 

and can be found in the metadata files that accompany every L1R and L1T product.  

 

  �������� = ��
���� +  ����         (2) 

 

    

The unit of radiance is Watts per square metre steradian micrometre (Wm-2sr-1
µm-1) 

 

Where : radiance  =  spectral radiance at the sensor’s aperture 

 DN   =  digital number, quantity of solar radiance in a given wavelength       

band reflected from the ground 

 gain   =  a sensor adjusted factor to avoid unnecessary pixel saturation 

(Wm-2sr-1
µm-1) 

 bias   =  component to compensate for shifts caused by atmospheric 

scattering that add to the actual radiation reflected from the ground 

(Wm-2sr-1µm-1) 

 

   

 

3.3.3. Radiometric and Atmospheric correction 

The goal of radiometric correction is to remove or compensate for effects that cause variation in 

radiance of a target  except for actual changes in ground target itself to retrieve surface reflectances 

(absolute correction) or to normalize the digital counts obtained under the different conditions to be on 

a common scale (relative correction) (Du et al., 2002). 

ATCOR model of ERDAS Imagine was tried but failed to run the DMC images. The model is an 

algorithm bundle that would have taken care of both absolute radiometric and atmospheric correction. 

Details of some of the encountered errors are discussed in section (5). Therefore Top of the 

Atmosphere (TOA) reflectance was calculated for  one image selected at the middle of the growing 

season and closest to the time of fieldwork. The image was also selected to have very little or no 

atmospheric artefacts. The formula (2) used for TOA calculation for this image is was suggested by 

(Crowley, 2008), in the DMC product manual. 

  

� = !�"#$
%&$ '()*+

       (3) 

 

Where   �    = top of the atmosphere reflectance for band λ 

  ,-  = exoatmospheric solar irradiance band λ [Wm-2sr-1µm-1] 

  .)   =  solar zenith angle at time of image capture in degrees [o] 

   �    = Radiance in spectral band λ [Wm-2sr-1µm-1] 

  d     =  earth-sun distance in Astronomical Units [AU] 
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The exo-atmospheric solar irradiance values and earth sun distance were accessed from the NASA 

(2010) website http://www.nasa.gov/ using the specific image dates to calculate the earth sun distance. 

The TOA equation does not take into account atmospheric effects (Crowley, 2008), but the resulting 

images can then be used for a comparative study.  

 

The TOA reflectance from this image was used as the reference image to normalise the rest of the 

images. This is relative radiometric correction and normalises images using landscape elements 

(pixels) whose reflectance values are nearly constant over time (Paolini et al., 2006).  This procedure 

assumes that pixels sampled at time 2 are linearly related to the pixels, at the same location, sampled at 

time 1, describing what is termed Pseudo Invariant Features (PIF). The PIF selection uses principal 

components analysis (PCA) as a more methodological approach to PIF selection. The PCA gives 

components on an image vector space whose correlation can be measured through the variance 

measure from the principal axis.  According to Paolini et al. (2006), the method is relatively simple, 

accurate, requires less image interpretation and offers statistical objectivity on the selection of the 

PIFs.  

 

This method was outlined by Du et al. (2002) and refined by Paolini et al. (2006) and explained in a 

step-by-step process by Galiatsatos et al. (Unpublished).  Three images were selected, one at the 

beginning of the growing season ( DC000a92p_L1T – April 15th), another around the middle of the 

growing season (DN000837t_L1T – July 2nd) and the third one around the end of the growing season 

(DU000fb6t_L1T – October 14th). With this distributed choice of images, it was assumed that pixels 

that showed non changing spectral characteristics on all images were ground objects that actually had 

little or no change over time in terms of reflectance.  

 

The images were rearranged to multitemporal per band files and restacked respectively (see Figure 6) 

to produce three image stacks each with same bands from the original images. The non-standardised 

(variance-covariance matrix) PCA was run on each stack that comprised similar bands from the three 

images. PCA-1s from the three band stacks (see Figure 7) were classified using ISODATA clustering. 

The results were classified PCA outputs with class 1 containing minimal variability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6 - PIF identification process adopted from Galiatsatos et al. (Unpublished) 

 

Paolini et al. (2006) used Eigen values to set the threshold of how far from the principal axis would 

component values be accepted. This method was too detailed in terms of determining the threshold 

value so it was decided to accept the first class of the PCA output as the class that contained features 

that have little or no change in each band. The effect of this arbitrary choice is the areas considered as 

containing PIFs may be more or less than if the threshold value was used and that the threshold values 

may not correspond with the first class of each band combination.   
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Figure 7 – RGB images of areas of no change in all the band1 (a), band 2 (b) and band 3 (c) are in green. Colours 

range from green – areas of no change to  deep purple and red – areas with highest change. 
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The PCA output was converted into a binary image with class1 of each band assigned value of 1 and 

the rest of the classes assigned value of zero to create a transparent image except for the location of the 

PIFs, see Figure 8. The binary images of the three bands groups were crossed to create the final single 

binary image file which contained common PIF areas between the three bands.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.4. Normalising Coefficients 

This final binary image was used to extract DN values of the PIFs in each one of the images to be 

normalised and for each band. The values were used to produce scatter plots (see Figure 9) of TOA 

reflectance values of PIFs for the reference image against radiance values for PIFs of each band for 

each image to be normalised. 
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Figure 8 – Overlay of PIFs final binary image (black) over 

a false colour composite image. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The resulting slope and offset from the scatter plots were used to convert each image band from 

radiance values to reflectance values using the regression equation (4) below. This slope and offset 

were the gain and bias coefficients that described the transformation from radiance to TOA reflectance 

equivalent for each subject image. 

 

/ = 01 + �          (4) 

 

Where:  y  =  normalised image,  

x  =  original image to be normalised,  

m =  the slope or gain for the image to rescale and  

c  =  the offset/bias for the image to rescale. 

 

 

   (a) 
 

y = 0.0051x + 0.0219

R² = 0.7119

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40

R
e

fe
re

n
ce

 R
e

fl
e

ct
a

n
ce

DN0008bcT_Sept8 DN Value

NIR

   (b) 
 

y = 0.0035x + 0.0034

R² = 0.7458

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40

R
e

fe
re

n
ce

 R
e

fl
e

ct
a

n
ce

DN0008bcT_Sept8 DN Value

RED

                  
     (c) 
 

Figure 9 - Scatter plots of reflectance against radiance for the PIFs of reference reflectance against 

subject images radiance for NIR (a), Red (b) and Green (c). This process was repeated for all the 

18images. 
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After the images were transformed to TOA reflectance equivalent values, the results were used to 

calculate NDVI for each image using the NIR and RED bands as illustrated in equation (5) & (6).  

 

234	 = �5676%�
�5686%�       (5) 

 

For the DMC images, the NIR band is band 1 (770nm – 900nm) while the red band is band 2 (620 – 

700). Therefore the equation translates to  

 

 234	 = 9���:79���;
9���:89���;      (6) 

 

An NDVI image stack was created from the resulting 19 layers. 

 

3.4. Image Classification and Accuracy Assessment 

 

An image stack of normalised images and another of the NDVI images were created. The two 19 layer 

stacks were used for images classification, SAM and MLC on the normalised image stacks and NDVI 

Profile Classification on the NDVI stack. The NDVI Profile classification has been explored by de 

Bie, et al. (2008) where a multivariate change detection method processes the full dimensionality of 

the multilayer image.  

 

3.4.1. Spectral Angle Mapper (SAM) 

Representative pixels of each of the classes were picked from the image to create a training set (end 

members) from the fieldwork data. The fieldwork data described the landcover as was observed at the 

time of fieldwork. The training set provided region of interest (ROI) as an average sprectra that was 

used as the reference spectra for the classification. SAM treats this dataset as having 57 spectral layers 

(3bands x19layers). Once the classification was run an accuracy assessment was run. The accuracy 

assessment used 186 fieldwork points, which excluded sugarbeet (Beta vulgaris L.) locations that 

could have been classified as either herb or agriculture. 

 

3.4.2. Maximum Likelihood Classifier (MLC) 

The ML classification was run with the training set created with the field work data. These were the 

spectral signatures that were collected in the areas that had the landcover that was known from the 

field work date. Histograms of the training set were displayed to evaluate the separability or the level 

of overlap between the classes. Again once the classification on the image stack was run, an accuracy 

assessment was performed using 186 of the field work points. 

 

3.4.3. NDVI Profile Classification 

The profile classification was performed on the NDVI stack. The number of classes used to run the 

unsupervised classification was determined using the Divergence statistics as used on similar work by 

de Bie et al.(2008) and Khan et al. (In press). This The Divergence statistics among others; the 

Euclidean, the Jeffries-Matusita (JM), Transformed Divergence, is one of the measures to quantify 
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how separable various spectral classes are within a dataset. It was chosen for its comparatively ease on 

the computational cost (Richards and Jia, 2006).  

 

ISODATA clustering was run on the NDVI image stack. The stack was classified into 10, 15, 20, 

25,…., 90, 95, 100 classes and saving associated signature files. The number of iterations was limited 

to 50 and convergence threshold set to 1 for each of the runs. As a general rule of thumb, the number 

iterations is recommended to be half of the number of classes desired (de Bie and Toxopeus, 

unpublished), therefore since the largest number of classes required is 100, fifty was kept for all the 

class numbers such that this number is constant for all the runs. 

 

For all the classification runs, minimum and average divergence values were collected from the 

associated signature file and displayed against the number of classes in a scatter plot in excel. It was 

realised that there was a clear and sudden deflection in the curve and values 50 and 65 respectively. 

Further classes, 63 and 67 were added to aid in the smoothing of the deflection. While the highest peak 

was at number of classed 65, the separability value went to an impractically huge number, 

(2,147,483,648). Therefore fifty classes were picked as the optimum number of classes because the 

peak had a definite value that was within a practical scale with the rest of the other values. 

 

The fifty classes separability and its signatures were therefore selected to be the best optimal class 

separability and considered for NDVI calculation and classification. NDVI mean was extracted to 

excel from the statistics column for each of the 50 classes in the classification.  

The NDVI values were plotted in Excel and produced a graph that showed the progression of mean 

NDVI over time. This produced a “spaghetti” graph on Figure 16. 

 

The “spaghetti”  graph was visually analysed to see which temporal class profiles looked similar, 

followed the same representative pattern and whether they could be merged under the same class. The 

general shape of the graphs was observed as well as specific behaviour at certain time locations. The 

fieldwork data was overlaid on the graph to see if there were any particular deflections in the graph 

that corresponded with field data. The ISODATA clustered images are also presented to see the effect 

of the 50 class clustering on the image categorization. 
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4. Results  

4.1. Fieldwork 

Figure 10 shows and overlay of sampling locations on ecotope maps while Figure 11 and 12 are 

temporal profiles of grass and maize respectively with an overlay of farming activity points extracted 

from field data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 11 - NDVI temporal profile of Agriculture 

(Maize) 

Figure 12 - NDVI temporal profile of grass. Grass 

include both for haymaking (black) and for meadow 

(red). 

Maize 

planting 

window 

Maize 

harvesting 

window 

Grass 

cutting 

times 

Figure 10 Sampling areas between Deventer and Zutphen (a) and in Fortmond (b) 

a b 



 

4.2. Image Classification  

4.2.1. Spectral Angle mapper 

 

The results of SAM classification showed an overall accuracy of 50.54% with the use of confusion 

matrix. The Kappa statistic is 0.4140. As shown on Figure 13 and Table 2. As can be observed SAM 

classification could not differentiate between water and urban.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

water 

    

Forest 

     

River 

     

Shrub 

     

Grass 

     

Urban 

      

Bare 

     

Maize 

      

Herb 

 Row 

Total 

---------- ---------- - ---------- ---------- ---------- ---------- ---------- ---------- ---------- 

Water         10 0 1 0 0 0 0 0 0 11 

         Forest 0 7 0 1 0 0 0 0 0 8 

          River 0 0 8 0 0 0 0 0 1 9 

          Shrub 0 1 0 11 33 2 4 3 6 60 

          Grass 0 1 0 0 29 0 1 7 6 44 

          Urban 0 1 0 1 0 7 0 0 2 11 

           Bare 0 0 0 0 1 1 5 1 1 9 

          Maize 0 0 0 0 0 0 0 11 1 12 

           Herb 0 0 0 0 13 0 2 1 6 22 

Column 

Total 10 10 9 13 76 10 12 23 23 186 

 
Overall Classification Accuracy =     50.54% 

  Overall Kappa Statistics        =     0.4140 
 

Table 1 – Confusion matrix of Spectral Angle Mapper classification. 

 
 
Figure 13 - Spectral Angle Mapper classifier shows a great 

overlap between many classes, e.g. water and urban. 

 

Producers Users 

 Accuracy Accuracy

--------- ----- 

100.00% 90.91% 

70.00% 87.50% 

88.89% 88.89% 

84.62% 18.33% 

38.16% 65.91% 

70.00% 63.64% 

41.67% 55.56% 

47.83% 91.67% 

26.09% 27.27% 

 

 

Urban 

Water 
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4.2.2. Maximum Likelihood Classification (MLC) 

MLC produced 54.54% accuracy. What is evident between MLC and SAM is that urban areas are well 

classified from water in MLC than in SAM (Figure 14). The error matrix is presented in Table 3. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 
Figure 14 - Maximum Likelihood Classifier 

 

Wat For Rv Gr Ma Shr Her Bar Urb 

Row 

total 

Water 19 0 0 0 0 0 0 0 0 19 

Forest 0 4 0 0 0 0 0 0 0 4 

River 0 0 27 5 7 0 3 1 0 43 

Grass 0 0 3 1 21 1 3 0 0 29 

Maize 0 2 5 0 26 3 8 7 2 53 

Shrub 0 4 2 0 0 8 3 0 1 18 

Herbacious 0 0 0 0 0 0 5 0 0 5 

Bare 0 0 0 0 0 0 0 4 0 4 

Urban 0 0 0 0 0 1 2 0 8 11 

Column total 19 10 37 6 54 13 24 12 11 186 

Classification Accuracy = 54.84% 

 

Producers Users 

Accuracy Accuracy 

--------- ----- 

100.00% 100.00% 

40.00% 100.00% 

72.97% 62.79% 

16.67% 3.45% 

48.15% 49.06% 

61.54% 44.44% 

20.83% 100.00% 

33.33% 100.00% 

72.73% 72.73% 

 

Water 

Urban 

Table 2 – Error matrix and accuracy assessment for MLC. 



 

4.2.3. NDVI Profile Classification 

The divergence statistics are presented in Figure 15. The deflection at class 65 was limited arbitrarily. 

Figure 16 shows overlay of fieldwork derived times with temporal profiles from ISODATA clustering.  
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Figure 15 - Average class separability plot. The value at class number 65 was given an arbitrary high value for better 

scaling, as the original value was more than one million. The peak at 50 was selected instead. Only the average 
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The 19 image stack, NDVI stack and ISODATA cluster images, with field data overlay are presented 

in Figure 17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17 - Image stack of the 19 layers  with FCC (a), NDVI Stack (b) and 

ISODATA cluster (c) of the Fortmond area with sampling points overlaid. 
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Profiles of known landcover types 

Field data was used to plot known landcover classes to observe the general behaviour of the temporal 

profiles. The results of the temporal NDVI plots against image number are found in Figure 19 to 25 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 - NDVI temporal profile of Agriculture (Maize) with 

another slightly varied curve for maize in red.  
Figure 21 - NDVI temporal profile of forest 

Figure 19 - NDVI temporal profile of herbacious. Two types of 

herb are captured for the red and black profiles respectively, 

see picture Plates 17 & 21. 

Figure 18 - NDVI temporal profile of bare and temporarily 

bare areas. The three colour profiles shows temporal state 

differences 

Figure 22 - NDVI temporal profile of water Figure 23 - NDVI temporal profile of shrub land 
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4.3. Leaf Area Index 

Despite the fact that there were no coefficients that could be used to relate field measured LAI to 

NDVI, the measurements were plotted in and their correlation assessed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 25 - NDVI temporal profile of grass. Grass include both 

for haymaking (black) and for meadow(red). 

 
Figure 24 - NDVI temporal profile of urban areas. The red shows 

an area in the upper section of the image and the black in the 

lower section 
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Figure 26 - Correlation between LAI and image calculated NDVI for Maize (A), Herbaceous 

(B) and Forest (C) 
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5. Discussion 

5.1. Fieldwork 

An overlay of the farmer responses with the known location temporal profiles for agriculture (maize) 

the graphs show a significant drop on the temporal profiles at the planting time and at harvesting 

Figure 11. The graph starts with high NDVI before planting, the values drop at plating time then a 

steady but fast increase until June where values drop again before increasing from July until 

September where the harvest is expected. For grass, the “saw tooth” response of the NDVI curve is 

evident despite not so obvious after July. It is further evident that the response is more pronounced in 

the hay making plots Figure 12 (in black lines) than in meadows (in red lines). This profile response 

corresponds well with the information provided by the farmers.  

 

For relating LAI to NDVI, the coefficients that could be used to relate each vegetation type to LAI 

values were not available. The LAI values that were measured during fieldwork were plotted against 

image extracted NDVI values with any transformation on the LAI values. The graph for maize shows 

a poor correlation at R2 = 0.42 while herbaceous vegetation and forest show almost no correlation. The 

field measurements were also not that significant in terms of population size, with 12, 10, and 13 

samples for herbaceous, forest and maize respectively. 

 

5.2. Radiometric and Atmospheric Corrections 

The atmospheric corrections were problematic, it is important to perform a proper atmospheric 

correction process that would make sure that the NDVI values are calculated on accurate reflectance 

values. The use of ATCOR for atmospheric correction was not successful. The model seemed sensitive 

to the data format of the DMC images. The model worked inconsistently and either gave errors about 

low clearline correlation values or just crashed. The model vendor, Geosystems GmbH in Germany 

also confirmed that they had no experience with the DMC sensors (email communication, November 

26th, 2009). They were unable to test the model using the DMC image within the duration of this 

study, so the errors remain unknown. The alternative to use the TOA was viable but it was noted that 

the equation used does not correct for atmospheric interference. 

 

5.3. Image Classification 

5.3.1. Spectral Angle Mapper 

SAM could not differentiate between urban and water. This could be because both areas are made up 

of very dark pixels and SAM classifies by looking at the spectral angle between the pixels in image 

space. The small angle between the pixels in the image space means that they would be classified 

together. From the analysis of the user accuracy, it shows that the shrub and herbs were the least 

accurately classified at 18.33% and 27.27% respectively and therefore highly influenced the overall 

accuracy of the results to be low. The next lowest accuracy was bare areas at 55.56%. This is to be 

expected because in reference to the ecotope maps herbaceous vegetation was found to include a 

number of different vegetation types with different leaf and stem properties.  At some locations natural 

grass (Pennesetum purpureum)  was found while at other locations broad leaved perennial vegetation 

like stinging nettle (Urtica dioica) was found. The shrubs also included a number of varying properties 
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with orchards at some places, differing levels of mixture of grass, herb, shrubs and trees. Natural 

shrubland included a complex combination of vegetation types. In general SAM performed poorly. It 

could be expected because its strength lies in the existence of varied spectral bands. In a layer stack of 

19 images with the same spectral bands, the difference in the variability of the ground objects may not 

be that significant enough to influence spectral classification in SAM. 

 

5.3.2. Maximum Likelihood Classification 

The results of MLC at 54.84% are better than that of SAM at 50.54%. It shows that despite the pixels 

for urban many of then being dark and some of the areas in the urban area being water, MLC was able 

to differentiate between water and urban.  However there seems to be confusion between grass and 

agriculture (Maize) in MLC. This could be caused by the impurities in the training set as form the 

signature histogram, it was realised that there was a lot of overlap between the classes. MLC does not 

take advantage of the temporal profile of the dataset therefore some cell value combinations may 

present themselves as similar to other combinations without looking at the order of each combination. 

 

5.3.3. NDVI Profile based 

Through visual inspection, the results of ISODATA clustering with 50classes show subtle differences 

within classes. The forest at the Fortmond area , Figure 17 (c), are 2 is a Pine forest while area 1 is an 

Oak forest. This is a result of the number of classes that are used for the clustering therefore the 

algorithm is able to separate classes that could otherwise have been grouped together under other 

classification methods. This process, corresponds with the method of Townsend and Walsh (2001) 

where they used a hierarchical classification process. Townsend and Walsh (2001) start form 

ISODATA clustering and delineate towards a finer classification whereas this methods starts from a 

detailed clustering to a broader classification. The methods could not be completed due to the 

complexity and fine differences between the floodplain vegetation studied. A comparison between the 

work by de Bie et al. (2008), Figure 27,  shows that this study is limited by the small variation in the 

phenology and landcover regime, as well as the number of images used to construct differentiable 

profiles.   
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Figure 27 – Comparison between  hypertemporal profiles produced by de Bie et al. (2008) (a) and produced from this study (b) 
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For the known  landcover types using field samples, temporal profiles were produced that evidenced 

how complex the difference is even for landcovers of the same type. The general response and shape 

of the curve was be used to evaluate the temporal profile against the landcover type. Considering the 

general shape of the profiles(Figure 18 to 21), it is observed that maize gives a distinctive signature 

profile, water gives a profile that is characteristic of minimal change over time whereas forest and 

grass give almost similar but differentiable profiles. Bare areas and herb give a mixture of profiles and 

this is to be expected because bare area regimes could have been inconsistent throughout the growing 

season while herb also included vegetation of different characteristics. However, the temporal profiles 

show a lot of deflections that may be attributed to artefacts and in general the curves do not follow a 

strictly expected growth curve for the landcovers displayed. For maize, the deflection is too much as if 

there has been a double planting. This double cropping not expected in the IJssel floodplain and none 

of the farmers expressed it with maize.  

6. Conclusions & Recommendations 

6.1. Conclusions 

 

Based on a 19 layer NDVI stack of the floodplains of the IJssel river, it was clear that NDVI approach 

is effective in characterising landcover using the temporal dimension of the NDVI stack. The profiles 

for known locations were able characterise the landcover on that site and produce landcover specific 

temporal profiles. 

 

Of the three classification methods used MLC performed better than SAM with 54.84% vs  50.54% 

while ISODATA clustering could only be assessed qualitatively pending the subsequent grouping 

method. It shows that SAM was not able to take advantage of the layer stack where MLC is known to 

have limitations (Shafri et al., 2007). The conclusion is SAM is not suitable for a layer stack of 

identical spectral bands. 

 

The overall objective of the study was not achieved, which was to attain a better classification 

accuracy than that of the ecotope map at 69%. However the study has shown that floodplain landscape 

activities can be characterised using the DMC hypertemporal imagery. 

 

 

6.2. Recommendations 

� Because of the high dynamicity of the IJssel floodplain landcover the study would be 

enhanced by collection of as many images in a month as possible to be able to use 

compositing techniques, apply filters and construct a discernible temporal profiles. Otherwise 

this confirms the need for high temporal properties of satellite imagery. 

 

� The IJssel floodplain is characterised by patchy landscape. Higher spatial resolution imagery 

would improve definition of landcover to the resolution comparable to the ecotope maps.   
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� Higher spectral resolution imagery is required for better prediction of LAI and as well as the 

use classification methods that take advantage of spectral reflectance differences of floodplain 

landscape.  

 

� The use of algorithms for NDVI Profile classification must be investigated to support the 

hypertemporal image classification. Reference profiles must be established to aid algorithm 

based classification.  

� Coefficients that relate LAI to NDVI need to be collect identified for the landcover types 

found in the IJssel floodplain. A crop calendar would also enhance the hypertemporal 

classification method. 
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Appendix 1 – Landcover Plates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Plate 1 - Maize field 

 
Plate 2 - Maize canopy 

 Plate 3 - Maize steam/leaf composition 
 

  Plate 4 - Maize understory 

 
Plate 5 - Pine forest canopy 

 
  Plate 6 - Beech forest canopy 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Plate 8 - Pine forest understory  Plate 7 - Beech forest understory 

 
Plate 10 - Mixed shrub 

 
Plate 9 - Typical Shrub height 

 
Plate 12 - Shrub with grass patch 

 
Plate 11 - Regenerating forest at shrub height 
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Plate 18 - herb of homogeneous structure (nettle) 

 
Plate 17 - herbs of different structures 

 
Plate 13 - Grass for haymaking 

 
Plate 15 - Grass classified as herb in ecotope maps  

Plate 16 - Grass mixed with herbs 

 
Plate 14 - Meadow grass with short herbs 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Plate 19 - Herb of mixed structure 

 
Plate 20 - reeds classified as herbs in ecotope maps 

 
Plate 21 - ploughed grass field 

 
 Plate 22 - Harvested maize field 
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Appendix 2 – Questionnaire 

Questionnaire (for farming community) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Record Number: Plot Number: 

Date  

GPS Coordinates              51   _ _   _ _  .  _ _    N                      06  _ _  _ _  .  _ _  E 

1.  Name of respondent :     

2.  Are you the owner of the plot?: No: 

    Yes:    Since __________(year) 

5.  What is the current crop on the field: 

Maize  making Hay         Meadow  Other ______________ 

For Hay specify harvest dates: ______________________________________________________ 

6. When was this crop planted:   

Day/week_______ Month____________   Year ____________ 

7. When is the planned harvesting  time:  

Day/week_______ Month____________   Year ____________ 

 

   

11.  Has there been any other farming activity before the ones listed above 

If yes name it ___________________________________   Year ___________________________  

Landcover/Landuse of the Plot :     Area:  

3.  Are there animals on the plot?:   No:    Yes: 

4. If Yes, what type, breed and number of animals:      

 breed  number 

Cattle   

Sheep   

Horses   

Other   

   

8.  What was the previous crop on the field: 

 Maize   Making hay       Meadow             Other 

____________ 

_________________________________________________________________________________ 

9. When was this crop planted:   

Day/week_______ Month____________   Year ____________ 

10. When was the crop harvested:  

Day/week_______ Month____________   Year ____________ 

 



 

Appendix 3 – Field data 
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Appendix 4 – Fieldwork farming activity response 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Field Area Crop Apr May Jun Jul Aug Sep Oct 

1 Fortmond Grass 1 1 1 

2 Fortmond Grass 1 1 1 

3 Fortmond Grass 1 1 1 1 

4 Fortmond Grass 1 1 1 

5 Fortmond Grass 1 1 

6 Fortmond Grass 1 1 

7 Fortmond Grass 1 1 

8 Fortmond Grass 1 1 

9 Fortmond Grass 1 1 

10 Gorssel Grass 1 1 

11 Deventer Grass 1 1 1 1 1 

12 Fortmond Grass 1 1 1 

13 Deventer Grass 1 1 1 1 1 

14 Gorssel Grass 1 1 1 1 

15 Gorssel Grass 1 1 

16 Deventer Grass 1 1 1 1 1 

17 Gorssel Grass 1 1 

18 Gorssel Grass 1 1 

19 Gorssel Grass 1 1 

20 Deventer Grass 1 1 1 1 

21 Gorssel Grass 1 1 

22 Gorssel Maize 1 1 

23 Deventer Maize 1 1 

24 Deventer Maize 1 1 

25 Deventer Maize 1 1 

26 Deventer Maize 1 1 

27 Deventer Maize 1 1 

28 Deventer Maize 1 1 

 

 
Table 3 - the table shows harvesting cycle for grass while for maize the dates are planting and 

harvesting times 
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Appendix 5 – Field LAI vs NDVI  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Item 

no. 

CLASS 

 

LANDCOVER 

 

FIELD Measured 

LAI 

 

Image generated 

NDVI 

1 Herbacious Herbacious 1.16 0.614852 

2 Shrub Shrub 1.60 0.636577 

3 Herbacious Herbs 2.27 0.470426 

4 Agriculture Maize 2.80 0.631565 

5 Shrub Mixed Vegetation 2.87 0.580491 

6 Agriculture Maize 3.03 0.598108 

7 Forest Forest 3.37 0.613880 

8 Herbacious Herbacious 3.40 0.539887 

9 Forest Forest 3.45 0.595151 

10 Agriculture herbs/sugarbeet 3.55 0.612866 

11 Forest Forest 3.88 0.542489 

12 Herbacious Herbs 3.89 0.463964 

13 Agriculture Maize 3.93 0.629530 

14 Herbacious Herbs 3.99 0.569640 

15 Agriculture Maize 4.04 0.629364 

16 Forest Forest 4.13 0.617952 

17 Forest Forest 4.26 0.594925 

18 Forest Forest 4.32 0.594925 

19 Forest Forest 4.34 0.613900 

20 Forest Forest 4.46 0.606726 

21 Agriculture Maize 4.50 0.650461 

22 Forest Forest 4.52 0.551032 

23 Herbacious Herbs 4.54 0.650461 

24 Forest Forest 4.55 0.626611 

25 Agriculture Maize 4.56 0.650685 

26 Agriculture Maize 4.73 0.619359 

27 Agriculture Maize 4.77 0.626518 

28 Agriculture Maize 4.88 0.635889 

29 Shrub Mixed vegetation 4.92 0.608762 

30 Agriculture Sugarbeet 5.00 0.662250 

31 Agriculture Sugarbeet 5.09 0.684127 

32 Herbacious Herb 5.13 0.648379 

33 Shrub Mixed vegetation 5.20 0.595701 

34 Herbacious Natural Grass 5.46 0.566411 

35 Agriculture Maize 5.62 0.650258 

36 Herbacious Herbs 5.84 0.577311 

37 Herbacious Herbs 5.99 0.659827 

38 Herbacious Herbs 6.15 0.667406 

39 Herbacious Herb 6.71 0.607692 

 

Table 4 - Field measured LAI measurements and translation to NDVI 




