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Abstract 

 

Thermal remote sensing has been used to indicate temperature increases prior-to major earthquakes in 

the vicinity of the future epicentre. These studies compared results of multi-temporal datasets which 

spanned only for days to weeks before an earthquake. Even though these results are promising, the 

scope of those studies did not allow for longer observations and it is unclear whether the temperature 

rise is unique, persistent and indeed earthquake-related. The purpose of this exploratory study is to 

verify whether significant thermal infrared anomalies were found in association with known 

earthquakes by systematically applying satellite data time series analysis to multi-year time series. An 

innovative multi-temporal satellite data approach was developed to investigate possible relations 

between thermal infrared fluctuations and the earthquake occurrence. The significance of the 

developed methodology was explored using a six year (1999- 2004) Meteosat-5 satellite dataset of the 

Bam earthquake which was later applied to a year (2009) of MSG2 dataset for the recent L’Aquila 

earthquake. Analysis of long time series of thermal imagery provides answers to whether significant 

anomalies appear prior to an earthquake event and are periodic in nature. A significant earthquake-

related anomaly was detected for Bam’s earthquake. Unlike Bam, there was no earthquake-related 

anomaly occurring in L’Aquila. 
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1. Introduction 

This introductory chapter of the research presents the overall framework of the study. It focuses on 

the background, problem definition, formulation of research objectives, research questions and 

hypotheses, and a brief overview of the outline of the research.  

1.1. Background 

Earthquakes are one of the most dangerous and destructive forms of natural hazards. They 

strike with sudden impact and very little warning. They may occur at any time of the day or on any 

day of the year. Earthquakes can devastate an entire city or a region of hundreds of square kilometres. 

The extent of damage from an earthquake is dependent on several factors, such as the magnitude of 

the earthquake, the geology of the area, distance from the epicentre, population concentration and 

structure design and construction [24]. Apart from direct losses in terms of property and lives, there 

are indirect losses such as disruption of transport networks, power supply, and communication or 

through the necessary evacuations of buildings, change in zonal plans and adverse effect on tourism. 

Society has a compelling strategic need to anticipate these earthquake events since large urban centres 

have expanded in tectonically active regions. 

  

 On December 26th, 2003 an earthquake of Mw 6.6 magnitude in the South-eastern region of 

Iran shook the city of Bam. This incident destroyed most of Bam city and the nearby villages where 

the official death toll exceeded 26,000 with more than 30,000 injuries and 75,000 left homeless. The 

fact that this earthquake occurred at 5:26am local time on a Friday morning during the Iranian 

weekend when most people were asleep in their homes provides one of the main reasons for the high 

death toll [28]. Another earthquake occurring on April 6th, 2009 of Mw 6.3 magnitude struck the 

province of L’Aquila located in Central Italy which caused extensive damage to the city and areas of 

the province just outside L’Aquila. The province is known for its medieval architecture and 

monuments of historic and artistic value which suffered damage and many of the modern buildings 

were subjects to the damage. Hundreds of people were killed, thousands were injured and tens of 

thousands were left homeless [63]. These two earthquakes will be studied in detail in this research. 

 

 Unfortunately up to date, there is no direct solution to determine when such a phenomena 

will occur. However, remote sensing applications are diverse and are widely used in earth observation 

research owing to its effective results, accessibility and time conserving methodologies. Its full 

capability is yet to be determined. Remote sensing has emerged as a potential tool in studying 

earthquake activities and may assist in providing a timely warning of the potentially damaging 

earthquakes in order to allow appropriate preparatory measures for the disaster, enabling people to 

minimize loss of life and reduce the economic losses of property and assets [47]. This research 

proposes a method to identify pre-earthquake activities for the Bam earthquake which will later be 

applied to L’Aquila. Indeed, this research may assist in reducing these effects caused by earthquake 

events. 
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1.2. Problem Definition 

  One area that may hold promise in advancing the science of short-term earthquake prediction 

is the study of earthquake precursors. The term earthquake precursor is used to describe a wide variety 

of physical phenomena that reportedly precede at least some earthquakes. During the last century, 

many precursors to the earthquake event were identified. These phenomena include induced electric 

and magnetic fields, groundwater level changes, gas emissions, temperature changes, surface 

deformations, and anomalous seismicity patterns. While each of these phenomena has been observed 

prior to certain earthquakes, such observations have been serendipitous in nature [6]. Thermal 

anomalies are one of the earthquake precursors that are gaining more attention from the scientific 

community.  

 

Earlier studies have indicated that before major earthquakes satellite retrieved temperatures 

increase in the vicinity of the future epicentre [43]. Most of the studies compared results of multi-

temporal datasets which spanned some days or weeks before and after the earthquake. These studies 

performed only visual assessments of the imagery. Even though these results are promising, the scope 

of those studies did not allow for longer observations and it is unclear in how far these anomalous 

temperatures also occur with no earthquake following (i.e. false positives). 

 

In this study, long time series of thermal imagery will be used in order to provide answers to 

whether significant anomalies appear prior to an earthquake event and are periodic in nature. The 

research is being performed to understand normal patterns within the data thus defining the term 

“thermal anomaly” in the context of earthquake research. It is most suitable to conduct this research 

with high temporal resolution satellite like the Meteosat series of satellites since long time series is 

required. The occurrence of these anomalies will be evaluated for two major earthquakes. 

Subsequently the anomalies will be assessed as to whether they are directly related to the earthquake 

or caused by non-earthquake phenomena. The probability of the predicted earthquake to occur by 

chance and to match up with the precursory anomaly shall also be evaluated. The frequency of false 

positives (similar anomalies not followed by an earthquake) and false negatives (earthquakes not 

preceded by an anomaly) should be tested. 

 

1.3. Research Objectives 

1.3.1. Main Objective 

To verify if significant thermal infrared anomalies can be found in association with known 

earthquakes by systematically applying satellite data time series analysis to multi-year time series. 

1.3.2. Specific Objectives 

i.  To determine the average surface temperatures from the time series trends and the variance 

not related to earthquake activity. 

ii. To develop a detection algorithm for anomalous surface temperatures related to earthquake 

activity by means of spatial and temporal surface temperature patterns using Meteosat-5 and MSG 

TIR imagery. 

iii. To determine which anomalous temperatures are associated with large earthquakes and also 

those anomalies which are not directly earthquake-related. 
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1.4. Research Questions and Hypotheses 

For Specific Objective 1 

i. Can time series be used to predict normal variance in surface temperatures not related to 

earthquake activities? 

 

Ho : Time series predict normal variance of land surface temperatures 

 

For Specific Objective 2 

i. Is it possible to detect a thermal anomaly prior-to large earthquakes using a time series of 

thermal images? 

 

Ho: The thermal anomaly is detectable within a 0-4 week period prior-to the event 

 

ii. How do spatial and temporal patterns of anomalous temperatures caused by earthquakes 

differ from those caused by other events (such as fires, weather-related, seasonal)? 

 

Ho: Earthquake-related anomalies appear as a uniquely identifiable event in time series 

 

For Specific Objective 3 

i. Is there anomalous change in surface temperature in the vicinity of the located epicentre or 

fault zone? 

 

Ho: The thermal anomaly appear closer to the epicentre or along a fault-line 

 

ii. How do these anomalies appear over time? 

 

Ho: Anomalies appear randomly in time 

 

iii. Is it possible to use time series to detect anomalies for different conditions (for smaller 

magnitude earthquakes, other sensors and wet conditions)? 

 

Ho: Time series is capable of detecting anomalies for different scenarios 

 

1.5. Methodology 

Data sources available include: 

� Earthquake catalogue: generated from USGS website 

� MSG and Meteosat imagery using GEONETCast Toolbox Plug-in and UMARF 

� MODIS (as a base to assess whether anomaly was visible as suggested by other researchers) 

 

Data processing includes:  

� Conversion from DN to Radiant temperatures 
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� Cloud-Masking from data 

� Detection of anomalies 

 

Data analysis includes: 

� Assessment of anomalies: earthquake- related versus false positives 

� Comparison of several years of data 

� Applied to L’Aquila 

 

1.6. Outline of thesis 

The reporting of the research is structured in five chapters. The structure of the thesis is as follows: 

Chapter 1: Introduction provides an overview of the problem definition emphasizing the reason for 

research, research objectives, research questions, hypotheses, a general description of the 

methodology and an overall outline of the thesis. 

 

Chapter 2: Literature review provides background information of earthquakes and thermal anomalies; 

the concepts of thermal remote sensing comprising satellite specifications; presents a background of 

the study area; includes the previous attempts made with regards to time series, as well as possible 

anomaly detection techniques. 

 

Chapter 3: Methodology provides the overall methodology applied for the research and its 

implementation. 

 

Chapter 4: Data Analysis and Results obtained from the methodology employed with respect to time 

series data and detection of thermal anomalies, and from statistical tests performed. 

 

Chapter 5: Discussion and Conclusion addresses the main findings from the results obtained with 

brief explanations; and the major conclusions drawn from the research despite the limitations 

involved and several recommendations.   
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2. Literature Review 

This chapter presents a review of literature on the concept and ideologies related to the present 

research. The review indicates the study areas for this research and highlights the previous studies 

performed by fellow researchers. 

2.1. Earthquakes and Thermal Anomaly 

Earthquakes are vibrations of a part of the earth’s crust caused due to internal stresses acting 

on rocks in the crust. The increasing stress will result to some extent in subsurface heat production 

rather than to generate seismic waves. The total energy from an earthquake includes energy required 

to create new cracks in rock, energy dissipated as heat through friction, and energy elastically radiated 

through the earth. The heat or temperature rise resulting from the release of energy by the earthquake 

can provide interesting observations in earthquake studies which may offer clues about future 

earthquake activities. Figure 2-1 addresses two mechanisms that generate pre-earthquake thermal 

infrared (TIR) anomalies which can be detected from satellite thermal sensors. 

 

 
Figure 2-1: Schematic diagram showing two widely accepted theories of generation of pre-earthquake TIR 

anomaly that can be detected by satellite thermal sensors [44]. 

 

Thermal anomalies are the increase in emission of the earth’s surface in TIR wavelengths. 

The enhanced emission gets recorded in the thermal sensors and can be separated from the 

surroundings with some uncertainty. It was shown that thermal anomalies appear before major 

earthquakes and can be traced through thermal sensors [35]. The mechanisms explaining the 

generation of thermal anomalies can be grouped into two categories, the first accounting atmospheric 

processes responsible for the appearance of thermal anomaly, and the second attributing rise in land 
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surface temperature (LST) due to ground related processes. Several mechanisms which lead to the 

increment in outgoing infrared (IR) radiation ahead of an impending earthquake have been linked to:  

� Gas emissions- stresses prior to these phenomena may also bring about sub-surface degassing. 

Upon their escape to the atmosphere, these gases like CO2, CH4, N2, Rn may create a localized 

greenhouse effect and increase the temperature of the region, thus creating a thermal anomaly 

in the surrounding region. Such changes detected through thermal remote sensing can provide 

important clues about future earthquakes. An abnormality in the thermal properties of the 

Earth’s surface, detected by thermal channels like Meteosat, can prove to be a valuable 

indicator of an impending earthquake [42, 44];  

� Water level changes- wells have changed the water levels and water quality prior to the 

earthquake. Microfracturing prior to large earthquakes leads to increases in ion and gas 

concentrations in the groundwater (firstly it allows trapped gases to escape from the rock 

matrix and secondly, it produces fresh silicates, which are believed to increase the rate of 

reaction of groundwater) [6];  

� Groundwater change- changes in the circulation patterns of groundwater bringing water of 

different temperature to the surface. The flow of water in the earth before an earthquake 

might allow that water to come into contact with hotter rock bodies at depth and raise the 

temperatures of near-surface groundwater [6];  

� Activating positive-hole pairs (PHPs) during rock deformation- electronic charge carriers can 

be free electrons or sites of electron-deficiency in the rock/mineral structures (3-D array of 

oxygen, which has unstable radicals) [41, 44];  

� Ground temperature change- frictional heating on fault surface could contribute to ground 

temperature changes. Because rocks have a relatively low thermal conductivity any such 

temperature –related changes that may occur at the depth in the earth would take a long time 

to reach the surface through the rock itself [6]; 

� Pore collapse- as stresses in the earth increase prior to an earthquake, the pore volume in the 

rocks collapses, thereby releasing chemical species into the groundwater, generating a 

geochemical anomaly [6]. 

 

       Numerous observations of such thermal anomalies preceding several major earthquakes are 

reported from different parts of the world. These anomalies were almost always cited to be positive 

anomalies with the exception of the studies performed in Japan and China [55]. From research, short-

lived anomalies:  

� typically appear 6-24 days before and continued for about a week after an earthquake [35, 54, 

55] ;  

� affect regions of several to tens of thousands square km  [5, 42, 53];  

� display a deviation of 2-10 °C in the vicinity of the epicentres [35, 36, 42, 54];   

�  where the size of the anomaly is ~100km in length and ~10km  in width [54]; 

� are sensitive to crustal earthquakes with  magnitudes greater than 4.5 and are normally 

attached to large faults [54].  

The rapidity with which these temperature excursions occur suggests that they cannot be due to 

thermal variations caused by a heat pulse rising from within the earth. Pre-earthquake thermal 

anomalies and their spatial and temporal variations are reportedly controlled by various factors which 

vary from earthquake to earthquake. These factors include magnitude, focal depth, geological setting, 
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topography and vegetation cover, stress-buildup and degassing [55] as well as meteorological 

conditions [35, 54]. 

 

           Thermal anomalies have been defined in different contexts regarding the researcher’s task. For 

instance, Ouzounov (2006) was studying the relationship of the thermal anomaly in a spatial context. 

He defined a thermal anomaly as “the difference between the spatial daily root mean square (RMS) 

LST value and the mean LST value of an area of M x 5 km2 ( i.e. the area of interest which is usually 

represented as 100x100 km) which is centred at the epicenter and located on the stress-released fault 

for the entire time interval of analysis” [35]. Unlike the work that was conducted by Ouzounov 

(2006), another approach was addressed statistically by Tramutoli (1998). He defined a thermal 

anomaly only after assessing the datasets using the presence/absence of anomalous space-time TIR 

transients in the presence/absence of seismic activity [53]. Later in the research, the definition of an 

anomaly will be defined for the use of the required datasets.  

 

2.2. Thermal Remote Sensing 

Satellite thermal remote sensing can be used in the detection of anomalies in LST in and 

around epicentral regions. In 1988, Gornyi et al. [17] first analysed remotely sensed images of 

National Oceanic and Atmospheric Administration- Advanced Very High Resolution Radiometer  

(NOAA-AVHRR) of the earth’s surface in the 10.5-11.3µm range who showed a stable increase of 

outgoing IR radiation over linear structures of a seismically active region in Central Asia as compared 

with adjacent areas. He indicated that outgoing IR radiation can be used as an indicator of seismic 

activity [27] and suggested that meteorological satellites be used to assess these indicators. It is first 

important to understand what the term thermal anomaly represents to know what these meteorological 

satellites actually observe.   

 

The modern operational space-borne sensors in the IR spectrum allow monitoring of the 

Earth’s thermal field with a spatial resolution of 0.5–5 km and with a temperature resolution of 0.12–

0.5 °C. Temporal coverage is every 12 hours for the wide-swath, polar orbit satellites (for e.g. 

AVHRR and MODIS), and 15 minutes for geostationary satellites. Such sensors may closely monitor 

seismic prone regions and provide information about the changes in surface temperature associated 

with an impending earthquake. Thermal observations from satellites indicate the significant change of 

the Earth’s surface temperature and near-surface atmosphere layers [54]. 
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There are three principal laws within thermal remote sensing, namely  

 Law Equation Parameters 

1 Planck’s Radiation Law- the amplitude of 

radiation emitted (i.e. spectral radiance) from 

a blackbody. It is generally provided in one 

of two forms; Lλ(λ) is the radiance per unit 

wavelength as a function of wavelength λ 

and Lv(v) is the radiance per unit frequency 

as a function of frequency v. 

By the Planck Law, all heated objects emit a 

characteristic spectrum of electromagnetic 

radiation, and this spectrum is concentrated 

in higher wavelengths for cooler bodies. 

  

 

Equation (1) 

T- temperature (°K) 

c- speed of light 

(2.99x10-8 ms-1) 

h- Planck’s constant 

(6.63x10-34 Js) 

k- Boltzmann’s constant 

(1.38x10-23 J °K-1) 

Lλ- spectral radiance 

(Wm-3sr-1) 

2 Wien’s Displacement Law- the wavelength 

(or frequency) where the spectral radiance 

has maximum value. This can be found by 

taking the derivative of Lλ with respect to 

wavelength and determining where the 

function is zero. 

Wien’s Law explains the shift to shorter 

wavelengths with increasing temperature (i.e. 

as temperature increases the total amount of 

radiant energy peak shifts to shorter 

wavelengths). 

According to Wien’s Displacement law, 

temperatures of 600°K and greater are 

associated with fire, lava flows which 

corresponds to bands around 3-to-5 µm in the 

SWIR, where the radiation maximum for 

those fires can be expected. On the contrary, 

the 8-to-14 µm band spans the radiant energy 

peak for a temperature of 300°K 

corresponding to the ambient temperature of 

the earth (LST).  

 and in the 

more common form  

 
 

Equation (2) 

λmax- peak wavelength 

(m) 

Cw –Wien’s displacement 

constant 

(2.898x10-3 m°K) 

T- temperature (°K) 

 

3 Stefan-Boltzmann Law- the total blackbody 

irradiance as a function of the temperature T. 

This law can be derives by integrating the 

spectral radiance over the entire spectrum. 

Stefan-Boltzmann’s Law is explained by the 

area under the Planck Law curve. It states 

that colder objects emit only small amounts 

of electromagnetic radiation. 

 
and in the more 

common form 

 
 

Equation (3) 

M- radiant exitance  

(Wm-2) 

L- radiance(brightness 

temperature) (Wsr-1m-2) 

σ- Stefan-Boltzmann’s 

constant  

(5.67x10-8 Wm-2°K-4) 

T- temperature (°K) 

Table 2-1: Radiation laws governing Thermal Remote Sensing [39]. 
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Kinetic temperature is an “internal” manifestation of the average translational energy of the 

molecules constituting a body. In addition to this internal manifestation, objects radiate energy as a 

function of their temperature. This emitted energy is an “external” manifestation of an object’s energy 

state. It is this external manifestation of an object’s energy state that is remotely sensed using thermal 

scanning. The emitted energy is used to determine the radiant temperature of earth surface features  , 

see Appendix A. The output from a thermal sensor is a measurement of the radiant temperature of an 

object, Trad [26]. Radiance data and the inversion of Planck function provide the Trad and the 

elimination of atmospheric effects leads to surface temperature [49]. Thermal sensors detect radiation 

from the surface (approximately the first 50 um) of ground objects. Temperature extremes, heating 

and cooling rates can often furnish significant information about the type and condition of an object. 

The extremes and rates of temperature variation of any earth surface material are determined, among 

other things, by the material’s thermal conductivity, capacity and inertia [26]. 

 

2.3. Satellite Specifications 

NOAA-AVHRR have been used to observe past earthquakes in Bhuj (India), Boumerdes 

(Algeria), Xinjiang (China), Izmit/Kocaeli (Turkey), Hindukush (Afghanistan), Kalat (Pakistan), and 

also the devastating great mega-thrust Banda-Aceh (Sumatra, Indonesia) earthquake [41]. Other TIR 

sensors such as Multi-spectral Visible and Infrared Scan Radiometer (MVISR) on the Feng Yun (FY), 

Moderate Resolution Imaging Spectroradiometer (MODIS) on board satellites Terra and Aqua, 

Advanced Spaceborne Thermal Emission  and Reflection Radiometer (ASTER) on board satellite 

Terra have been used to detect, short-term temporal pre-earthquake thermal anomalies around the 

epicentral region [41]. These polar orbiting satellites have relatively high spatial resolutions and better 

signal-to-noise ratios, but only acquire images twice during an evening thereby making trend analysis 

for monitoring diurnal LST change more difficult [35]. Depending on the latitude, NOAA-AVHRR 

has a revisit time of 2 to 14 times per day. ASTER has a temporal resolution of 5 days for the very 

near infrared (VNIR) channel. MODIS has a 1 ½ day revisit time.   

 

Unlike polar orbiting satellites, geostationary satellites guarantee for each ground location, 

although at lower spatial resolution, constant view angles with the same ground resolution cell size 

[2]. It provides a much higher temporal coverage but owing to the low spatial resolution for land-

based studies, it can be problematic. This high temporal resolution of geostationary satellites assists 

by reducing the chance for  miscalculating trends due to weather front movement or local cloud/fog 

formation [35]. 

 

Geostationary satellites such as the Meteosat series of satellites are ideal for the time series 

analysis prior to an impending earthquake owing to its high temporal resolution. Meteosat’s first 

generation of satellites is equipped with three spectral channels: a broadband channel in the visible 

(VIS) spectral region, ranging from about 0.5 to 0.9 µm showing reflected light, a thermal infrared 

channel at approximately 6.4 µm in the water vapour (WV) absorption band, ranging from 5.7 to 7.1 

µm, and a channel in the thermal infrared window region at approximately 11.5µm showing emitted 

radiation, ranging from 10.5 to 12.5 µm as seen in Appendix B part (i). The sampling distance of the 

channels at the subsatellite point is 2.5 x 2.5 km for the VIS and 4.5 x 4.5 km for TIR. The temporal 
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resolution of observations amounts to 30 minutes, that is, in each of the three channels, an image of 

Meteosat’s entire field of view is measured and sent to earth [40].  

 

MSG is a significantly enhanced follow-on system to the previous generation of Meteosat. 

Meteosat had seven successful launches since the year 1977. MSG satellite series gives significantly 

increased information as it allows the acquisition of imagery at every 15 minutes for the MSG-2, also 

referred to as Meteosat-9 and 5 minutes over Europe (MSG-RSS) as a time series in order to assess 

the earthquakes. MSG consists of 12 spectral channels, quantization with 10 bits per pixel and image 

sampling distances of 3km at nadir for all channels except the high resolution visible with 1km [46] as 

seen in Appendix B part (ii). MSG-1 was launched on August 28th, 2002 whereas MSG-2 on 

December 21st, 2005. MSG is a geosynchronous weather satellite that has eight thermal bands.  

 

Geostationary satellites as well as polar orbiting satellites used simultaneously assist in 

anomaly detection techniques. High temporal Meteosat imagery alongside with moderate spatial 

MODIS imagery can provide with a higher significance the anomalies that are related to earthquake 

events. Time series profiles can be constructed using TIR Meteosat imagery whilst any anomalous 

events or abnormal patterns within profiles can be analysed with visible imagery from MODIS. 

 

2.4. Location of Study Area 

The earthquakes that will be analysed are limited to (i) the coverage of the Meteosat series of 

satellites (i.e. Meteosat-5 and Meteosat-9), (ii) larger magnitudes, and (iii) earthquakes occurring on 

land (land-restricted and crustal earthquakes).  

 

As aforementioned Meteosat-5 and MSG2 satellite imagery will be used. The coverage for 

these geostationary satellites can be seen in the Figure 2-2. This allows us to determine the spatial 

extent and the imagery which can be extracted for future applications. 
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Figure 2-2: The approximate locations of the selected earthquakes [7] with their respective satellite geo-

coverage. 

2.4.1. Geological Settings 

The coverage of the satellite is important since this enables the selected study areas and the 

acquisition of pre- and post- satellite imagery for our study. Table 2-2 is an earthquake catalogue of 

those earthquakes that will be studied and for each their respective geological/tectonic setting. 

 
Table 2-2: Earthquake Catalogue for analysis, extracted from USGS [58]. 

 

(1) Bam Earthquake 

Saraf et al. [41] and Choudhury et al. [5] describes the tectonic and geological setting of the 

study area as having a tectonic belt of Iran which forms a linear NW–SE trending intra-continental 

fold and thrust belt between the Arabian shield and Central Iran. Furthermore, it was stated that this 

earthquake occurred as a result of stresses generated by the motion of the Arabian plate (which 
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includes Saudi Arabia, Persian Gulf and the Zagros Ranges in Iran) northward against the Eurasian 

plate at a rate of approximately 3 cm/yr. Complex folding and fault movements in the Zagros Ranges 

have resulted due to the tectonic deformation by the collision of the two plates. However, in the 

interior parts of Iran in the north of the Zagros Ranges and in the south of the Alborz Ranges, 

deformation is mainly due to strike slip movements along complexly arranged intersecting faults. The 

Gowk fault is oriented along the west of the Bam fault in a similar north–south trend. Earthquakes in 

this region occur as the result of both reverse faulting and strike-slip faulting within the zone of 

deformation. Figure 2-3 provides an overview of these faults and how they are spatially related to 

each other where the star represents the approximate epicentre of the earthquake.  

  
Figure 2-3: Main tectonics of Iran and active tectonic faults [38]. 

 

Besides its high seismicity, its relatively cloud-free and stable weather conditions during 

most parts of the year and its sparse vegetation cover make Iran a suitable study area [41]. Bam is a 

desert area. Extreme temperatures within this region can be found in Appendix C. Bam’s earthquake 

is ideal as it is a large magnitude earthquake and is restricted to land thus for identifying thermal 

anomalies it is also suitable since they will be more pronounced.  

 

(2) L’Aquila Earthquake 

       The earthquake in Central Italy occurred as a result of normal faulting on a NW-SE oriented 

structure in the central Apennines, a mountain belt that runs from the Gulf of Taranto in the south to 

the southern edge of the Po basin in northern Italy. Geologically, the Apennines are largely an 

accretionary wedge formed as a consequence of subduction. This region is tectonically and 

geologically complex, involving both subduction of the Adria micro-plate beneath the Apennines 

from east to west, continental collision between the Eurasia and Africa plates building the Alpine 

mountain belt further to the north and the opening of the Tyrrhenian basin to the west. Although Italy 

lies in a tectonically complex region, the central part of the Apennines has been characterised by 
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extensional tectonics since the Pliocene epoch, with most of the active faults being normal in type and 

NW-SE trending. [58] 

 

      Occasionally parts of Italy experience very high temperatures in summer and even autumn 

when the sirocco blows. This warm humid wind originates over North Africa and acquires its 

humidity over the Mediterranean. Summer tends to be the rainiest season and thunderstorms are 

frequent in spring, summer, and autumn [4]. The earthquake corresponds to the month of April which 

is cool and is possibly rainy. Extreme conditions occurring within this region can be seen in Appendix 

D.  

 

L’Aquila earthquake is being studied to test whether the developed methodological approach 

can be applied to an earthquake that is subjected to a lesser magnitude (< 6.5). As compared to the 

previous location, this study area is densely populated and has more vegetation cover. This earthquake 

is also restricted to land which can be used for identifying thermal anomalies.  

 

Reports were made whereby a technician, Giampaolo Giuliani claimed that he was able to 

predict this earthquake owing to the high concentrations of radon gases that were produced prior to 

L’Aquila earthquake [15, 31]. Radon gas is one of the many earthquake precursors. To verify whether 

the reported radon gas anomalies produced a rise in temperature made L’Aquila earthquake an ideal 

study location.  

 
Figure 2-4:Location of the magnitude 6.3 L'Aquila earthquake, Italy on 06th April 2009 [60]. 

 

2.5. Time Series 

Time series is a sequence of observations of well-defined data items measured typically at 

successive times, spaced at (often uniform) time intervals. The main features of many time series are 

trends and seasonal variations that can be modelled deterministically with mathematical functions of 
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time. Time series analysis has been used in many application domains and for different purposes. The 

way the data is analysed also depends on the task. Anomalies in time series data are data points that 

significantly deviate from the normal pattern of the data sequence. 

 

For earthquake research, time series of LST maps can be used to assess the temperature 

changes prior to the impending earthquake. Several studies have been performed which used short-

term prediction techniques for these types of phenomena. Short-term prediction refers to the period of 

time in which changes in the surroundings and changes in temperatures are expected to occur which is 

often identified as 6 to 24 days, before the earthquake. Other characteristics such as the length of time 

before the earthquake when the precursor initiated, the duration of the precursor, the amplitude of the 

precursory signal, the signal-to-noise ratio of the anomalous relative to  normal background noise and 

the distance from the observation point to the earthquake [6] are some factors which can be answered 

through time series analysis.  

 

For instance, the night-time and daytime NOAA-AVHRR time series LST maps for the 

earthquake in Bam, Iran showed that there was a thermal anomaly appearing before the devastating 

earthquake of 26 December, 2003. 

 
Figure 2-5: �ighttime �OAA-AVHRR LST time series map of Iran before and after the earthquake in 
Bam, Iran on 26 December 2003. The thermal anomaly in the night-time data was seen to be maximum on 
21 December 2003 (5days before the earthquake) which is indicated as the black figure around the 
epicenter [41]. 
 

In the night-time maps as shown in Figure 2-5, it was seen that on 18th December 2003 there 

was no evidence of any anomalous activity. The appearance of an intense thermal anomaly was seen 

around the earthquake epicentre on the 21st December 2003 as indicted by the black figure. This 

anomaly shows a rise in temperature of approximately 10°C.  The anomalous region in the night-time 
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data on 21 December 2003 occupied an area of about 308,000km2 [41]. However, data was 

unavailable for 19th and 20th December 2003 so there will be speculations as to the exact time the 

anomaly originated and its duration. Analysis and similar processing of night-time NOAA-AVHRR 

data of the year 2004 acquired at around the same time and on the same days as the 2003 data showed 

that there was no such abnormal behaviour of the LST on those days in that year. However, these 

results were not provided making this statement questionable. 

 
Figure 2-6: Daytime �OAA-AVHRR LST time series map of Iran before and after the earthquake in 
Bam, Iran on 26 December 2003. An intense thermal anomaly can be seen on 24 December 2003, 2 days 
before the earthquake, as indicated by the black figure. The Bam fault is placed on the map of 23 
December 2003 is responsible for the Bam earthquake [41]. 

 

Daytime LST time series maps show that the rise in temperature started on 22 December 

2003. The anomaly stayed on till 24 December 2003 (just two days before the earthquake), Figure 2-6. 

The anomalous region in the daytime LST map of 24 December 2003 covered an area of about 

328200 km2 [41]. 

 

If a short time series is used, it is difficult to define what are normal temperatures in a study 

area yet alone anomalous temperature. These anomalies as shown above can be caused by natural 

variations whereby some days are warmer than others. To ensure that these variations are not normal 

conditions, a short time series is useless thus requiring a long time series of TIR imagery.   

 

2.6. Anomaly Detection Techniques 

From Oxford dictionary, an anomaly is defined as an irregularity, deviation from the common 

order or an established trend. The anomaly can be found by detecting it. Anomaly detection refers to 

detecting these deviations or patterns in a given dataset that do not conform to an established normal 

behaviour.  
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When large data inputs are used, an automated detection mechanism is needed. A detection 

algorithm can be created to detect any anomalous behaviour within the large datasets which can show 

the time of the event. However, to differentiate events from non-events, a measure has to be 

developed. This detection algorithm can be based on temperature variations of a single pixel with time 

or on the comparison of pixel with its neighbouring pixels at a given time.  

 

2.6.1. Variation per pixel in time series data 

TIR signals measured from satellites depend on a number of natural and observational 

conditions: (e.g. atmospheric transmittance, surface temperature, spectral emissivity, topography as 

well as time of day/season, and satellite view angles, respectively. The contribution of those 

conditions to the measured signal can be so high as to completely mask the space–time fluctuations 

claimed as anomalous and connected with the seismic event under study. Space–time fluctuations of 

TIR signal cannot, therefore, be assumed as pre-seismic TIR anomaly without referring them to a 

normal TIR signal behaviour and without investigating whether or not similar space–time fluctuations 

can also be observed in the absence of seismic activity. This confutation process is difficult but a 

suitable definition of TIR anomaly (for validation purposes), are very hard to find [53]. 

 

The robust satellite techniques (RST) approach is a general satellite data analysis strategy 

which is based on a statistical definition of what “anomaly” of a signal measured from space actually 

means. The radiation, coming from Earth and measured by satellite sensors, is generally largely 

fluctuating due to many natural/environmental/observational causes, regardless of the phenomenon we 

are dealing with [37]. The RST based on the approach proposed by Tramutoli (1998) seems to offer 

both, a statistically well-founded definition of TIR anomaly and a suitable tool for assessing the actual 

potential of satellite TIR surveys in seismically active regions. He proposed a statistically-based 

method that, using only satellite data that is capable of identifying a (statistically significant) signal 

anomaly, comparing the signal at hand with previously defined and computed, expected value and 

natural level of fluctuation [37, 52].  

 

The approach has been implemented by using a validation/confutation approach, devoted to 

verifying the presence/absence of anomalous space-time TIR transients in the presence/absence of 

seismic activity [37]. In some of these test cases , for instance in Kocaeli (Đzmit) in Turkey [53], 

Irpinia-Basilicata in Italy, Gujarat in India and Umbria-Marche in Italy [3] to identify anomalous TIR 

patterns, a specific index, RETIRA was computed on the image at hand using the following equation: 

   ….Equation(4) 

where r ≡ (x,y) represents location coordinates on a satellite image, 

           t is the time of image acquisition with t ε τ where τ defines the homogeneous domain of 

satellite imagery collected in the same time-slot of the day and period of the year, 

           ∆T(r,t) refers to the difference between the punctual value of the brightness temperature T(r,t) 

at the location r and at the acquisition time t and its spatial average T(t) (i.e. ∆T(r,t) = T(r,t) – T(t) 

computed on the investigated area considering only cloud-free pixels locations, all belonging to the 

same, land or sea class, 
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           µ ∆T(r) is the time average value of ∆T(r,t) at the location r computed on cloud-free record 

belonging to the selected dataset (t ε τ), 

            σ∆T(r) is the standard deviation of ∆T(r,t) at the location r computed on cloud-free record 

belonging to the selected dataset (t ε τ) [3, 37, 53]. 

 

A ‘‘standardized” local variation index named ALICE is then defined reporting, at pixel level, 

the relative amplitude of deviations of the measured signal with respect to the reference values, 

expected for the specific considered period (temporal domain) and the selected region of interest 

(spatial domain). RETIRA belongs to the ALICE indexes [37]. ALICE assists in estimating the TIR 

anomalies in terms of signal-to-noise (S/N) ratio. The local excess [∆T(r,t) - µ∆T(r)] represents the 

signal to be investigated for its possible relation with seismic activity and is evaluated by comparison 

with the corresponding observational/natural noise represented by σ∆T(r). This way the relative 

importance of the measured TIR signal (or the intensity of anomalous TIR transients) can naturally be 

evaluated in terms of S/N ratio by the ALICE indexes. Generally, the higher (in modulus) the value of 

ALICE, the stronger (in terms of intensity) and/or larger (in terms of size) is the detected anomaly. 

 

The amplitude of a detected anomaly is given in ‘‘number of sigma’s”, to be interpreted in the 

classical statistical way. The ‘‘background reference fields” (i.e., the expected value of satellite signal 

for a specific site and time period and its natural variability, µ ∆T and σ∆T in the above equation are 

obtained, pixel by pixel, by a multi-temporal analysis of multi-year satellite records, stratified 

according to homogeneity criteria  [3, 37, 52]. 

 

However, there are two main drawbacks of such an anomaly detection approach making it 

inapplicable to the research being conducted. One reason that questions the work set out by Tramutoli 

(1998, 2005) and Aliano (2008) was the proximity of the anomaly to the epicentre or fault location. 

For instance, the outputs of the algorithm obtained for the Đzmit (Kocaeli) Mw 7.4 earthquake in 

Turkey on August 17th, 1999 at 3:02AM local time [57] is seen below. 

 
Figure 2-7: The RST approach applied to Meteosat satellite data. Results of the analysis of the daily index 

⊗⊗⊗⊗∆T((((r,t))))computation on the epicentral area of the day of Đzmit's earthquake [2]. 
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There were no geographical coordinates on these time series map layouts. Thus, in a Google 

map, these anomalies that were detected were beyond a 5° geographical coordinate radius 

(approximately 700km away) from the epicentre as shown in Figure 2-8. For a magnitude 7.4 

earthquake, the fault length is approximately 150km [61] on which the epicentre occurs. It is highly 

unlikely for thermal anomalies to be related or directly linked to an earthquake when it is occurring at 

this distance away from the epicentre. Even the author stated that problems remain in interpreting 

thermal signals in a seismogenetic region: understanding whether the observed anomalous TIR signals 

are in statistical significant relation with time and place of incoming earthquakes or they are on the 

contrary related to other natural phenomena [2]. 

 
Figure 2-8: Spatial extent of the study area on a Google map with reference to the work performed by 

Tramutoli and Aliano. 
 

The second drawback is the high number of environmental factors (independent from any 

seismic activity) which could affect the (possible) precursor signal up to completely mask it. In order 

to be interpreted, the data should be preliminarily corrected, at least for the effects of atmospheric 

absorption (mainly due to the water vapour) superficial emissivity (highly variable over land) and 

observational conditions (mainly satellite zenithal angle) [52]. Meteosat does not have any split-

window spectral channels and hence did not permit us to reduce the natural noise related to the 

variability of atmospheric water vapour so a different index is needed [2]. It is also important to note 

here that within this six day period, a few days can be warmer than the surrounding area making a 

short time series be of no use. 

 

2.6.2. Variation of pixel to neighbouring pixels in time series data 

Kuenzer et al. (2007) uses TIR satellite imagery to detect thermal anomalies which are 

influenced from sub-surface coal fires and cause extremely weak anomalies, which can by no means 

be compared with thermal applications like forest fire detection, lava flow detection or the spotting of 

large industrial heat islands. In general, in remote sensing-related coal fire research, the greatest 

challenge is the fact that the temperature difference between a coal fire-influenced pixel and a normal 

background pixel is usually very low, so thermal anomalies to be extracted are usually subtle [22]. 

Like sub-surface coal fire thermal anomalies, earthquake-related thermal anomalies are very subtle. 
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Like Tramutoli (1998), Kuenzer et al. (2007) also used a split-window approach but his 

method in determining thermal anomalies was different. This automatic approach calculates the ratio 

images between two different bands, where pixels with similar emission in the bands will show values 

of around 1, while pixels containing thermal anomalous areas with relatively greater temperatures will 

yield values greater than 1. Thus, the ratio of the two leads to a ratio image enhancing strong hotspots 

[22].  

 

The algorithm facilitates raw satellite data as inputs for a sub-image statistical analysis which 

is based on a moving window concept where each centre pixels within the window matrix is sampled 

multiple times. These pixels are compared to the surrounding background which then provides a 

probability of being represented as a thermal anomaly. This means that pixels of very different 

temperature and within a different temperature background can be declared thermally anomalous.  

[22].  

 

Certain criteria were set to remove false alarms that do not stem from coal fires. Anomalies 

were assessed spatially and if it appears within a certain cluster (based on an eight-pixel 

neighbourhood), it will be regarded as a thermal anomaly. However, it was furthermore investigated 

how many false alarms from the existing cluster can be rejected through coal fire (risk) area 

delineation. A clipping process with the delineated risk area (one time with a 500m buffer, one time 

with a 1000m buffer), and how large the resulting thermally anomalous area is [23] conducted. Any 

anomalies outside these buffer zones are regarded as false alarms. Unfortunately, it is not that simple 

to delineate an earthquake risk area and many other criteria needs to be set to overcome this difficulty.  

 
Figure 2-9: Sequence of the algorithm for automated thermal anomaly extraction [23]. 

 

A similar approach will be attempted for the detection of earthquake related anomalies. 

However, several alterations need to be made to this approach. Likewise, the criteria set for coal fire 

detection will be different to that of an earthquake.  
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3. Methodology 

This chapter describes the methods employed to achieve the objectives of the study. The results of the 

methodology are explained in the following chapter. 

3.1. Framework of Methodology 

The following is an overview of the steps taken to obtain results which are seen in the following 

chapter 

 



THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION 

21 

3.2. Data Acquisition 

The study attempted to use Meteosat-5 and MSG imagery to assess anomalous behaviour for 

two earthquakes, namely Bam and L’Aquila. The earthquake catalogue consisted of basic information 

regarding the date, time, location of epicentre and magnitude of these earthquakes which were 

extracted from USGS. The images for these phenomena were obtained from different data archives 

called U-MARF [10] which can be accessed from the following link, 

http://archive.eumetsat.org/umarf/  and GEONETCast [11] which is an extension for Ilwis 3.6 user 

interface.  

3.2.1. Meteosat-5 Satellite Data for the Bam region 

Meteosat-5 imagery was used. This satellite was launched on March 02, 1991 which provides 

timely imagery for the designated period of acquisition. It is located over 63°E longitude in support of 

the Indian Ocean Data Coverage and provides good coverage of Iran as seen in Figure 2-2.  

                         

Meteosat-5 has a single channel in the TIR window which is centred at 11.5µm wavelength 

band. Due to the fact that the Meteosat visible channel only gives information at daytime and due to 

the fact that the Meteosat water vapour channel is not situated in the thermal infrared window and 

insofar not able to provide information of the lower atmosphere, this study uses the Meteosat channel 

in the thermal infrared window. In respect to diurnal cycles, this enables a more uniform detection 

quality without discontinuities between day and night [40].  

 

Six years of Meteosat-5 TIR observations have been acquired for Bam, Iran using the U-

MARF facility. The six years of imagery ranges from January 01, 1999 to December 31, 2004 for a 

time interval of every 30 minutes which takes into account the earthquake occurring on December 26, 

2003.  

 

U-MARF provides EUMETSAT with the capability of offering users access to the Meteosat 

archive, comprising historical data from all Meteosat satellites [10]. It provides a comprehensive 

range of products to the user community to facilitate access to, and exploitation of, the > 20 year 

archive of data for which it is responsible. It is important to know what product and what sensor from 

Meteosat should be used in data retrieval [10]. 

 

Level 1.5 images is rectified in order to remove the effects of spacecraft induced perturbations 

due to orbit and attitude of the spacecraft; instrument induced perturbations (for instance, detector 

mis-registration); and correction of any radiometric or geometric instrument anomalies [9, 14]. This 

product is not corrected for atmospheric absorption.  

 

Image data is thought to be of most important, but the metadata (or “ancillary” data) 

describing the data gives details of the instrument that collected the image, including calibration 

information, and also include information date and time that the image was collected, the geographical 

location of the image corners and centre, the size of the image in terms of rows, columns and bands 

and other information such as solar azimuth and zenith angles [30]. The U-MARF facility has several 

output formats. However, still this posed a tremendous problem since the output file is a TIFF. This 

format only provides image data.  
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A two degree geographical coordinate in every direction from the epicentre was used as the 

coordinates for the area of interest. This facility uses the line/pixel as well as lat/long coordinates for 

the selection of the area. The coordinates used range from 27.000°N to 31.000°N latitude and 

56.325°E to 60.325°E longitude with a corresponding line/pixel (Upper Left: 1957, 1388 while Lower 

Right: 1828, 1316). On retrieving these large datasets, storage capacity within the computer and 

transferring of such large files to an external storage device was very time consuming. 

 

Visible imagery was also obtained from Meteosat-5 Level 1.5 for a five week period (i.e. one 

month prior to the earthquake and one week after) only for the year of the earthquake occurrence, with 

the same area of interest. 

 

 

3.2.2. MSG Satellite Data for the L’Aquila region 

Four years of MSG2 (i.e. Meteosat-9) TIR observations have been acquired for L’Aquila, 

Italy using the GEONETCast Toolbox [11]. The thermal band selected for this sensor was the 10.8µm 

channel. Of the two TIR window channels in MSG2, the 10.8 µm wavelength was selected rather than 

12.0µm to conform to similar specifications as the 11.5µm single channel in Meteosat-5. 

 

The four years of imagery ranges from December 21, 2005 (the launch date) to December 31, 

2009 for a time interval of every 15 minutes. Even though this satellite was recording imagery before, 

reliable imagery was assumed to be provided only on the said date.  The earthquake occurred on April 

06, 2009.  

 

GEONETCast is a low-cost global environmental information delivery system that transmits 

satellite and in-situ data, products and services from GEOSS to users through communication 

satellites using a multi-cast, access-controlled broadband capability. It provides near-global coverage 

for data dissemination and will contribute to revolutionising the way policy- and decision-makers will 

be making decisions on the basis of the best available scientific data [11].  

 

GEONETCast Toolbox offers flexibility to choose multiple channels in one file or multiple 

times in one file. The former allows the timestamp to be recorded on each image whilst the latter this 

is not the case. Also, original digital count (that is DN) results in 16 bits image of which only 10 bits 

are used whereas Reflectance/Temperature (K) converts these raw DN to reflectance for the visual 

band and temperature for all other bands at sensor (this results in 32 bits floating point numbers). This 

facility also has several output formats. The Reflectance/Temperature (K) were selected and the 

outputs chosen were in a GeoTIFF format and contained a lat/long projection. This output produces a 

brightness temperature of surface and cloud top temperatures. Likewise, a two degree geographical 

coordinate in every direction from the epicentre was used as the coordinates for the area of interest. 

The coordinates used range from 40.423°N to 44.423°N latitude and 11.395°E to 15.395°E longitude. 

         

Visible imagery was also obtained from MSG2 VIS 0.06µm channel for a five week period 

(i.e. one month prior to the earthquake and one week after) only for the year of the earthquake 

occurrence, with the same area of interest. 



THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION 

23 

 

3.2.3. MODIS Satellite Data 

MODIS imagery was obtained from an ftp website which was provided by the data 

administrator of ITC. The following is the link provided ftp://e4ftl01u.ecs.nasa.gov/MOLT/ . USGS 

GloVis [56] which is a quick and easy online search and order tool for selected and aerial data was 

used alongside with this link to search for the tile coordinates corresponding to the study areas. 

However, raw MODIS imagery can also be obtained through WIST which was used to determine the 

UTC times for the overpass of the sensor at the study area. This was neither provided by the link nor 

the GloVis site. WIST  [32] is a client for searching and ordering Earth science data from various 

NASA and affiliated centres. 

 

MODIS has a higher spatial resolution as compared to the Meteosat series of satellites. 

Visible images were acquired from MODIS Aqua for the five week period as was done for the visible 

imagery for both earthquake events to assess the anomalous patterns appearing in the time series. This 

satellite has a local equatorial crossing time at approximately 1:30 pm UTC in an ascending node with 

a sun-synchronous, near polar, circular orbit whereas MODIS Terra crosses at approximately 10:30 

am in a descending node [34]. MODIS Terra imagery was not available for several days for Bam, 

therefore MODIS Aqua imagery was obtained.  

 

3.3. Data Processing 

On retrieving these large datasets, storage capacity within the computer and transferring of 

such large files to an external storage device was very time consuming. Image processing software 

such as ENVI encountered software memory management issues, owing to the vast amount of data. 

IDL within ENVI also could not handle the datasets. Programming and script writing within Python 

2.6 and Perl was essential for data processing. 

3.3.1. Stacking 

A python script was created and ran on an Ubuntu Linux system in order to stack the thermal 

images as well as the visible images; Appendix E. Imagery was still missing within the datasets which 

can affect the analysis of time series. These missing images were not obtained from these facilities 

probably owing to sensor malfunctions at that time. Furthermore, from these two facilities, different 

file formats were obtained one as a GeoTIFF and one as a TIFF containing no spatial information. 

These two formats are of different data types and each type was processed and evaluated differently 

within the python script to produce a stack or a data cube of equally spaced time imagery. Another 

python script was created to view the values of one pixel within the datacube as seen in Appendix E.  

 

3.3.2. Conversion from Digital Counts to Radiances to Brightness 

temperatures 

After stacking the imagery, only the Meteosat-5 data for Bam needs to be converted into 

temperature values. The MSG2 imagery for L’Aquila was already calibrated and provided brightness 

temperature values. 
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3.3.2.1. Calibration for Meteosat-5 

Image calibration converts Level1.5 raw image counts to geophysical parameters. A raw 

image does not have any scientific or quantitative meaning value per se if not calibrated, since the 

calibration function describes the relationship between the digital count and the actual geophysical 

value of the object seen. Scientists and any other persons working with satellite images are usually 

dealing with calibrated images. Further, when dealing with time-series of images, comparisons are 

made between images acquired at very different instants. These images should be well-calibrated with 

respect to each other, in order to ensure that any variation in time is due to change in the signal 

coming from the observed target, and not from a change in calibration of the observing system [25]. 

 

For quantitative exploitation, Meteosat-5 TIR data have to be calibrated in BT and cloud-

screened. The calibration of the available raw data was performed using the calibration coefficients 

that were online obtainable from EUMETSAT website for Meteosat-5 (IODC Service) [8] and used to 

convert to radiances with the formula[18]:   ..…Equation (5) 

Where  R= Radiance, 

            α= Calibration Coefficient (W/m2/sr/count)  

            Cnt = Digital Meteosat Count,  

            Co=Space Count (radiometric offset of the instrument).  

 

The following calculation of the brightness temperature images from the calibrated radiance 

images was done by using the inverse Planck radiance formula in consideration of the different sensor 

response functions. For the derivation of BTs from Meteosat-5 radiances, the following regression 

equation is used: ....Equation (6) 

 Where  T= temperature (°K),  

 A= 6.7348,  

 B= -1272.2 (°K)  

The equation fits the relationship between BTs and radiances with and root mean square error of less 

than 0.2°K in the range between 200°K and 330°K [18]. 

 

A python script was written to automate this process, see Appendix E. A small python 

program called PyENVI was created and needed to run on the Linux operating system. 

 

3.3.3. Cloud Masking 

Good cloud detection is extremely important since clouds obscure the surface view in all solar 

and thermal channels. Surface-related products, such as SST and LST, vegetation cover, snow cover, 

and wildfire detection, can only be inferred for pixels where the surface is not obscured by clouds 

[21]. Cloud cover usually denies the generation of LST time series over large areas from TIR data 

sensed by satellites. 

 

Depending on sensor properties, clouds can especially be discriminated from cloud-free 

regions due to their spectral features (e.g. clouds are often white and bright), spatial features (e.g. 

clouds often increase the spatial variance) or characteristics in time series (e.g. clouds can introduce 
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discontinuities in radiance or brightness temperature time series) [40]. An efficient cloud mask is 

needed to remove clouds from the data. 

 

3.3.3.1. Unsuccessful Attempts for Cloud Masking 

� Using a Cloud Sky Product from U-MARF called Clear Sky Radiance 

This product provides mean brightness temperatures and radiances for cloud-free conditions. 

It is based on histogram analysis schemes [12]. However, pixels of this product are of a resolution of 

80x80 km2 at sub-satellite point, which suggests that the information of an individual pixel is not 

retained. It is too coarse for time series analysis. This product is disseminated hourly in a BUFR 

format. This format is the World Meteorological Organization (WMO) standard binary code for the 

representation and exchange of meteorological data. The BUFR representation is not suitable for data 

visualization without computer interpretation [50]. In other words, a detailed description is contained 

in lookup tables which need to be decoded to get the desired parameters out. 

 

Furthermore, observing the data of this product, BT values of 236K were regarded to be 

cloud-free temperatures whilst in the Meteosat-5 TIR data these values appeared to be that of a cloud. 

 

� Using HANTS Algorithm 

Harmonic Analysis of Time Series (HANTS) [33] calculates a Fourier series which models a 

time series of pixel-wise observations. It simultaneously identifies outliers within the time series. 

When an outlier is found, HANTS replaces these values with values from the Fourier series. In 

HANTS, options of a negative outlier or a positive outlier can be removed. In my case, negative 

outliers represent clouds and these are the values needed to be removed. To help identify errors, user 

can specify thresholds. It uses a curve fitting which is applied iteratively. Any value falling under this 

curve will be removed and a new time series cure is plotted. Once again, values that fall under the 

curve will be removed. This is repeated until a smooth curve is formulated [33]. For the use of 

HANTS, certain requirements are needed as seen in Table 3-1. 

 Requirements of HA�TS 

1 Input images are in a so-called binary format with no header information included 

2 Images must be in an 8 or 16 bits/integer data type 

3 Maximum of 1200 images can be processed 

4 There must be no missing mages within the time series 

5 Processing of time series in HANTS is executed on a single-interleaves image file (BIL).  

Table 3-1: Requirements for HA�TS algorithm. 
 

Cloud free images are the outputs from HANTS as seen in Figure 3-1. The steps taken to 

obtain cloud free images for the Bam dataset, from the HANTS algorithm is found in Appendix F. 

However, the time series profiles corresponding to these images cannot be used. When observing 

these profiles, it was found that for a certain period (365 days), there was a pattern repeating as seen 

in Figure 3-2. 



THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION 

 

26 

 
Figure 3-1: Comparison of the original cloud-contaminated image to the cloud-free output image from 

HA�TS. 
 

 
Figure 3-2: Comparison of the time series profiles (per pixel) of an original image to that of a HA�TS 

cloud-free image. 
 

3.3.3.2. Cloud Masking Method Chosen  

� Thresholding within TIR scenes  

Several cloud masking algorithms were created by other researchers and described by Masika 

(2007) [29]. Reuter et al (2009) stated that these techniques can be divided by (simple) radiance 

threshold methods, spatial variance methods, temporal variance methods and methods using an 

independent dataset to estimate clear sky radiances [40]. These algorithms use multispectral 

thresholding techniques, histogram-based scene analysis with multiple bands [29]. This suggests that 

data for more than one wavelength band should be available.  Reuter (2009) developed a cloud 

detection algorithm for a single band, however this method requires additional datasets such as 

forecast data and a radiative transfer model to predict clear sky temperatures [40]. As mentioned 

earlier, only one band was acquired from the data archives. Therefore, a simple cloud masking 

algorithm based on scenes analysis will be developed for the study areas. 
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 The developed cloud masking algorithm should take into account the extreme conditions as 

well as natural temperature variations in the study area. Extreme temperatures are derived from 

historical data concerning temperatures in Bam and were acquired from the Bam Meteorological 

Organization which states that the lowest temperature recorded was -9 °C (264°K) and temperatures 

between 38-44 °C (311-317°K) was said to be common for summer [1]. From exploring the data, 

temperatures of 260°K were recorded in December for a clear sky period. The lowest value that will 

be assigned as cloud-free is 260°K. This is a static threshold, a hard value in the algorithm: all 

temperatures below are masked as containing clouds. A dynamic threshold was also used, depending 

on the natural variation in a scene. The natural variation is estimated from the acquired data based on 

histogram analysis of differing forms (i.e. clear-sky hot summer days versus clear-sky cold winter 

nights). This natural variation is taken into consideration because a relatively large area is chosen 

(73x80pixels ~ 329x360km) and climatological variations and weather patterns can influence the 

thresholds to be chosen.  The observed variation within an image ranged between ~15°K to ~25°K so 

20°K, which is the average was selected. This dynamic range is subtracted from the maximum 

observed temperature in the image. However, positive outliers could possibly influence the threshold 

for clouds (lift it to undesired high values resulting in masking of non-cloud covered pixels). To 

reduce the effect of possible outliers appearing in the dataset, for calculations only 95% of the 

maximum observed temperatures were used.  So the dynamic cut-off value for the removal of clouds 

was to set a temperature threshold, where every temperature of that value and lower in a scene would 

be removed. This cut-off value is calculated using the following formula:  

Cut-off = (0.95*Maximum temperature) – 5atural Variation in the study area.  

 

If temperatures are < = 260°K, these values are always removed as clouds. Temperatures 

above this hard, static threshold are matched against the dynamic threshold. If the observed 

temperature is below the dynamic threshold, the pixel is masked as cloud. Computational aspects have 

to be considered in algorithm design because of the large number of scenes each day, the process is 

therefore automated by a PERL script as seen in Appendix E.  The outputs of the cloud masking 

algorithm were compared to a cloud-masked scene created manually within ENVI to confirm the 

accuracy of the algorithm.  

 

3.3.4. Creation of Algorithm for Anomaly Detection 

3.3.4.1. Definition of anomaly 

Researchers have often defined what an anomaly or anomalous behaviour can be with regard 

to their purpose, often with respect to what is considered a “normal condition”. It is important to 

understand and observe patterns in the data, as this makes it easier to differentiate normal and 

abnormal conditions. 

 

The underlying assumption is that the normal behaviour of a time-series follows a predefined 

pattern. A subsequence within the long sequence which does not conform to this pattern is regarded as 

an anomaly. However, any deviation from the normal pattern is an anomaly so additional criteria are 

used to distinguish between thermal earthquake-related anomalies and those not related to any 

earthquake activities (i.e. “false positives”). Any sudden, unusual temperature rise within a region as 

compared to the surrounding area which appears within a month of the earthquake and lasts for at 
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least six hours can be defined as a “thermal earthquake-related anomaly”.  Figure 3-3 describes the 

framework used to assess anomalies and their relation to earthquake events. 

 
Figure 3-3: Conceptual Framework for earthquake-related anomalies. 

 
 

3.3.4.2. Method for normalizing pixel values for diurnal and seasonal 

variations 

Earthquake related temperature increases are weak anomalies. To enhance the anomaly and 

reduce the effect of temporal variation not related to the occurrence of earthquakes a normalization 

approach is sought. A moving ring approach has been chosen. One of the main reasons for selecting a 

moving ring approach as shown in Figure 3-4, is to avoid anomalous temperature values from 

neighbouring pixels that may influence a normal background temperature. It is assumed that if the 

central pixel is an anomalous pixel, the adjacent pixels are possibly influenced by the anomaly and 

have similar temperatures. A 10 pixel buffer around the central pixel will be excluded from 

background temperature determination. This 10 pixel radius (~ 50 km) was selected to remove any 

diurnal and annual patterns which may contribute to meteorological and weather patterns occurring 

between these locations.  

 

The ratio between the anomalous pixel and the normalized background temperature is 

calculated. In this way, strongly contrary to an overall threshold, the thermal anomalies extracted 

represent variation of the pixel with respect to the surrounding area. This means that pixels of very 

different temperature and within a different temperature background can be declared thermally 

anomalous [23]. An automatic algorithm was written in PERL can be seen in Appendix E. It is applied 

over the time series stack of cloud-free images.  
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Figure 3-4: Moving ring concept applied over the entire stack of cloud-free images. 

 

 Figure 3-4 illustrates the normalization process when using a moving-ring approach over an 

image. A 10 pixel radius from the central pixel is used as the ring to obtain an averaged background 

temperature, B. The temperature of the central pixel is regarded as the anomalous pixel, A.  A ratio is 

then calculated between A and B producing a time series plot which is used for anomaly detection.  

 

3.3.4.3. Identifying Earthquake-related Anomaly 

As mentioned in Section 2.1, anomalies were mainly positive with the exception of negative 

anomalies in Japan and China. Even though this paper identified negative anomalies, there was no 

valid or credible explanation to describe what mechanism caused a negative anomaly within their 

study. Based on the findings of other researchers, and only positive anomalies will be addressed 

throughout this research. 

 

Statistical post-processing on the background normalized ratios was performed for a time 

series stack of images, per year. Observations above standard deviations of ±1σ, ±2σ, and ±3σ from 

the mean ratio of one year were calculated. The ±2σ of the mean was used as 95% of the observations 

are assumed normal and any anomalous values that fall outside are significant values not fitting, with 

95% confidence, the average value for that pixel. All observations in the time series that appeared 

above a +2σ of the mean were flagged as anomalies. The anomalies that have a duration of a week 

within the time series are counted. For an earthquake-related anomaly, the flagged anomalies should 

appear within a six day period and occur within a month before the earthquake phenomena. However, 

the exact location of the epicentre as well as the time of the impending earthquake is unknown.  

 

To ensure that the anomalies detected are indeed related to an earthquake event, previous 

years (that followed the same method as aforementioned) were examined. This is important to assess 

whether and how often the anomalies caused are earthquake-related, false positives and/or false 

negatives.   
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4. Data Analysis and Results 

Analysis of time series in tectonically active regions for the detection of earthquake anomalies is one 

of the objectives of this study. This chapter analyses two study areas with different conditions: large 

versus moderate magnitude earthquakes, climatic conditions, and population density. Moreover, this 

chapter includes the attempts made to differentiate earthquake-related anomalies from false positives 

and to quantify these anomalies including false negatives.[62] 

 

4.1. Results from Anomaly Detection for Bam 

Each step in the conceptual framework of the developed methodology produced its own 

output which will be assessed in a sequential manner. Figure 4-1 (a) shows a raw unprocessed 

Meteosat-5 TIR image obtained from the U-MARF data archive. These images are converted into 

brightness temperatures (BTs) and used as inputs for the cloud masking algorithm. Figure 4-1 (b) 

provides an output of the same scene after the algorithm was applied. As compared to the raw image 

of the same scene, this result proved efficient as cloud cover was removed. In the raw unprocessed 

image, the yellow feature represents thick clouds, whereas the pink feature represents thin clouds and 

cloud shadow. In the cloud free image, the green area represents clouds that were masked. 

 
Figure 4-1: A comparison between the same scene recorded in July 20th 2003 for (a) which show a raw, 
unprocessed Meteosat-5 TIR image; and (b) which shows the output from the cloud detection algorithm 

for the same scene. 
 

Time series of Meteosat-5 cloud-free images were then created per pixel. In the time series 

profile, there were regions with large dropouts. These dropouts correspond to the time when clouds 

appeared, and were masked out by the cloud detection algorithm. Figure 4-2 represents a time series 

profile for Pixel 35,44 in the year 2003. This pixel is in close proximity to the epicentre of the 

earthquake. Even though the epicentre was analysed, this pixel was selected based on the theory that 

the epicentre is not the region where the most stress is emanating, the fault trace is the point where the 

maximum stress is being released and the highest temperature is recorded, Appendix G. The time 

series profile showed a normal trend whereby warmer temperatures occur in the summer period 
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whereas colder temperatures appear in winter seasons. However, this is another reason why a long 

time series is needed to assess fully if the trend appears to be normal in other years or deviated. 

 

The normalization algorithm generates background normalized temperature ratios for a 

certain pixel as seen in (Figure 4-3). From observing the output of this algorithm in its pure form, not 

much can be said about the anomaly and its relation to the impending earthquake event thus further 

analysis is required. In order to detect anomalies, the sample mean of the ratios was used over the 

entire series to assess the normal conditions of Pixel 35,44. In this case, the average ratio for one year 

was calculated as 0.977. In science, researchers commonly report the standard deviation of 

experimental data, and only the effects that fall far outside the range of standard deviation are 

considered statistically significant- normal random error /variation on the measurements is in this way 

distinguished from causal variation. Standard deviations from the calculated mean of ±1σ, ±2σ and 

±3σ were observed. If the data distribution is approximately normal then about 68% of the values are 

within ±1σ of the mean of the temperature ratios (mathematically, µ±σ, where µ is the arithmetic 

mean), about 95% are within 2σ (µ±2σ), and about 99.7% lie within 3σ (µ±3σ) [62].  

 

As one can see, there are several ratios occurring that are above a ±1σ standard deviation as 

indicated by the orange lines in Figure 4-3. However, normalized background temperature ratios 

above a ±2σ (green lines) and ±3σ (pink lines) standard deviation were taken as extreme conditions 

within the time series. A ±1σ deviation introduces noise within the data and alters the extreme 

anomalous values from being highlighted giving a false interpretation. Likewise the ratios appearing 

above a +3σ deviation, are for very extreme anomalies in which only a 0.3% chance of the 

observations to be statistically significant (anomalous). As mentioned in Section 3.3.4.3, ratios 

appearing above a +2σ deviation are flagged as anomalies. 

 

The anomalies lasting within a seven day time window were counted. This fits one criterion 

for an earthquake-related anomaly. The output of this count provides the percentage of images being 

significantly different within that week in the time series, for a certain pixel. Figure 4-4 shows the 

counts of anomalous images for pixel 35,44 for each of the three calculated standard deviations 

indicating the appearance and duration of the anomaly for the year 2003. The number of anomalies 

counted within a week was most prevalent for a +1σ. However, for a +1σ, 32% of the observations are 

regarded statistically significant thus increasing the number of anomalies within the counts. Even 

though +3σ shows a smaller number of anomalies counted within a week, it is more significant to very 

extreme anomalies occurring in the ratios. If a 3σ deviation is used, some anomalies that may be 

related to an earthquake event are excluded. Further in this paper only the +2σ deviation will be used. 

The counts showed that prior to the earthquake, for all standard deviations there was a distinct 

anomaly in December as compared to other months in the time series profile.  
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4.1.1. Time Series Analysis for earthquake precursory detection in Bam 

Six years of data were investigated and compared to draw conclusions of the multi-temporal 

dynamics of the study area. These profiles whereby anomalies were counted above a +2σ deviation 

will be compared to several years of data to ensure that the anomaly that were claimed to be detected 

is indeed an earthquake-related anomaly and not a false positive within the dataset. To assist in 

determining false positives and false negatives in the dataset, the National Earthquake Information 

Centre (NEIC) disseminates information regarding the magnitude and location which is compiled in a 

global seismic database for earth science research. The following link provides access to the NEIC 

archive: http://earthquake.usgs.gov/earthquakes/eqarchives/epic/. This information for the Bam area 

assists in determining where false positives as well as false negatives are within the profiles, 

Appendix H. The NEIC earthquake catalogue provides the user with the distance and magnitudes of 

earthquakes occurring in a certain study area. The NEIC search results in Appendix H provide the 

proximity of other earthquakes in relation to the Pixel 35,44.  

 

On observing the year of earthquake occurrence for Bam, Figure 4-6, a smaller magnitude 

earthquake of 5.9 was identified in the summer period on August 21, 2003. This earthquake called 

Kerman’s earthquake was located 141km away from the Bam’s earthquake epicentre. It was seen that 

a significant anomalous signal lasting for a week period appeared in December. Approximately 45% 

of the images contained anomalies. This anomaly showed a distinct peak which lasted for almost a 10 

day period (2003/12/11 at 05:30 UTC to 2003/12/21 at 22:00 UTC). This significant anomalous pixel 

appeared during a month prior-to an earthquake and lasted for a week, which fit the criteria for an 

earthquake-related anomaly. However, during the year there were signs where anomalies lasting for a 

week were also detected. Dual peaks in November showed that only 10% of the images within the 

series were shown to have anomalies with duration of one week, which are insignificant and were 

avoided. If 10% or less of the images showed anomalous activity within a week were regarded 

insignificant and excluded for relating to an earthquake-related anomaly.  

 

Central Pixel Background Temperature RESULT 

Anomaly No Anomaly Anomaly No Anomaly 

Y  Y  Not Detectable 

Y   Y Increase in Ratio (Detectable) 

 Y Y  Decrease in Ratio (Detectable 

 Y  Y False Positive within Ratio 

 

Where Y- Yes 

Table 4-1: The effects of anomaly detection in a time series. 
 

Table 4-1 describes the effects of how anomalies can be detected within a time series. False 

positives and false negatives are judged on the distance of a pixel to the epicentre as well as the 

magnitude of the earthquake event. A false negative can be defined as earthquakes of magnitude >= 

5.0 that do not show any anomalous activity within a duration of 1 week and do not appear 1 month 

prior to the phenomena. A false positive is defined then as the anomalous signals that last a week and 

is not influenced by any earthquake. Another criteria set for false positives and false negatives within 

the data is the relationship between the magnitude and the fault length. For a magnitude 6.6 
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earthquake, the fault length is roughly 50-70 km on which the epicentre occurs. It is around this region 

that anomalous activity should appear, so if a signal is recorded 200km away, it is likely that it is not 

an earthquake-related anomaly but a false positive within the dataset.  For an earthquake-related 

anomaly of magnitude 6.6, anomalies appearing within a 70km distance from the fault or epicentre 

that appear within one month of the earthquake, and the number of images appearing with a duration 

of 1 week that show anomalous activity of at least 15% is ideal.  

 

In order to draw conclusions other years were compared. Figure 4-5 to Figure 4-10 shows the 

profiles for the six years of data. For instance, in Figure 4-8, a magnitude 5.0 event occurring on 

November 25th 2001, with a distance of 110km away from pixel 35,44 showed anomalies lasting for a 

week prior to the event. This explains 30% of the number of images in the series being anomalous. 

This is significant but still it is not regarded as an earthquake-related anomaly since it falls outside a 

70 km range. All other anomalies appearing within the time series were insignificant and regarded as 

false positives.  

 

Similarly, for Figure 4-5 there was an earthquake of the same magnitude occurring on 

December 8th 2004, but it is also regarded as a false positive as described for Figure 4-8. However, a 

false negative appeared in Figure 4-5 for the magnitude 5.2 earthquake occurring October 6th 2004 

which was 30km away from the studied site.  In Figure 4-7, there was a false positive also occurring 

in the same region in December that was relatively insignificant. In January 2002, a sudden 

anomalous signal appeared, this peak was also regarded as a false positive. Figure 4-9 and Figure 4-10 

had false positives as the number of images within a week which are influenced by anomalies are 

relatively insignificant. 
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 In almost all the years studied, false positives appeared and a trend in the winter period 

(November-December months) was seen either with a distinct peak or dual peak of lower chance of 

being earthquake-related. There were similar trends for the summer period (July-August months). The 

anomaly appearing in Figure 4-6 seems to be 15% stronger as compared to the other years within the 

same time frame, but relatively throughout the year it is at least 50 % and in some cases even 100% 

stronger. It is then safe to assume that this occurrence in Figure 4-6 is an earthquake-related anomaly. 

 

4.1.2. Spatial Extent Analysis on earthquake precursory detection in Bam 

In order to validate the theory which describes a pixel in close proximity of the epicentre as 

having the highest temperature rise, a pixel located far from the epicentral distance is analysed. As 

suggested, pixels occurring far from the epicentre should not be influenced by the thermal anomalies 

and have a greater chance of not being related to the impending earthquake event. Pixel 20,15 which 

is located on the periphery of the study area was used in this case (see Figure 4-11), other profiles can 

be seen in Appendix I .   

 

The proximity of Pixel 20,15 to the epicenter is 232 km away. The approximate fault length 

for a 6.6 magnitude earthquake event is 50 -70 km [61]. The highest temperatures are recorded near 

the epicentre and around the fault zones so to relate an anomaly, occurring at this pixel to Bam’s 

earthquake is unjustifiable. An assessment of the time series was performed for the year of the 

earthquake occurrence, 2003. Figure 4-11 confirmed that anomalous signals within a pixel located far 

from the epicentral region are not influenced by any earthquake-related anomaly. As mentioned 

earlier, only significant anomalous signals appearing within a week are assessed suggesting that if 

10% or less of the images showed anomalous activity the signal will be regarded as insignificant and 

excluded for relating to an earthquake-related anomaly. All the anomalies within this year were 

relatively insignificant as the number of images within that week were all under 5%, suggesting false 

positives within the time series. These false positives were a result of the large distance away from the 

selected pixel. 

 

Figure 4-12 describes the spatial extent to which anomalous values were found by using the 

normalized background temperature ratio profiles. These anomalous values were based on the 

observations above a +2σ, only for 2003. Owing to the lack of time, other years were not assessed. It 

may be valuable though to analyse those anomalies appearing in a 7 day period spatially. The Google 

map was shown to provide some knowledge about the proximity between data points being studied.  
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4.1.3. Robustness Testing of Detection Algorithm 

Several tests were performed on the profiles for Pixel 35,44, namely: 

(i)  Adjusting the size of the time window: Initially the profiles used was for a week period (i.e. 

3.5 days before and 3.5 days after) which counted the number of anomalies present in images for one 

week. Shifting this time window might have an impact on the number of anomalies appearing and can 

either have a stronger relation to earthquakes or not. This parameter has been shifted from a week 

period to a two week period (i.e. 7 days before and 7 days after) and compared. 

 

On increasing the time window as seen in Figure 4-13, it was seen that the number of anomalies 

has decreased from a 45% to an approximate 25%. The large peak that appeared in November has 

decreased to about 12%. The outcome of this action was similar to applying a smoothing filter over 

the data, which enhanced the significant anomalies and reduced the noise.  However, from observing 

the 2003 profile alone, the 25% anomaly in December provides reason to believe that this can be 

caused by the Bam’s earthquake.  

 

(ii) Altering the threshold and the natural variation: The variables are changed within the cloud-

masking algorithm and owing to the long processing time, it was attempted only once. The threshold 

value for cloud masking was originally set to 260°K and is changed to 265°K. The original natural 

variation used was 20°K which was also changed to 15°K.  It was observed that by decreasing the 

natural variability within the study area, the temperature cut-off value for the removal of clouds was 

increased.  This increase removed many observations which took into account clouds that remained in 

the dataset. On increasing the threshold, even fewer observations will be analysed.  

 

From Figure 4-14, it was seen that the number of anomalies counted within a week were 

increased. These anomalies increased almost by 5% with minor reductions. However, two extreme 

conditions in the winter period which showed the existing anomaly almost doubled, for a period in 

November and in late December. However, it is more certain that these anomalies are not related or 

impacted upon by clouds within the background, when ratios are calculated (i.e. the anomaly 

detection algorithm).  Owing to the lack of time, the original profiles with a threshold value of 260°K 

and a natural variation of 20°K were used; even though the new conditions provide outputs that are 

more justifiable. 

 

Table 4-2 provides an overview of the anomalies detected within each pixel that was analysed. 

The table illustrates whether anomalies are detected within each profile. 
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4.2. Results from Anomaly Detection for L’Aquila 

 

Time series analysis of MSG2 thermal images have been analysed also using the developed 

methodology. As described in Section 3.3.3.2, the natural variability in a study area as well as extreme climatic 

conditions is needed for a good cloud removal. The natural temperature variation occurring in L’Aquila ranged 

from~10°K to ~18°K. The estimated variation chosen was 15°K. Also, the threshold set for cloud masking was 

255°K from the extreme temperatures occurring in close proximity to L’Aquila, as shown in Appendix D. All 

anomalies detected over a 2σ of the mean will be used and if these anomalies last for a week period only then 

they are analysed for L’Aquila. Owing to the lack of time and the processing speed to run the scripts for 

L’Aquila only one year will be analysed owing to a higher spatial resolution as well as temporal resolution is 

doubled. Within the NEIC earthquake results for L’Aquila as seen in Appendix H, only in 2009 there were 

significant earthquakes. Slope aspects will be studied in detail in this section. 

 

4.2.1. Spatial Extent Analysis on earthquake precursory detection in L’Aquila 

Pixel 60,49 as well as Pixel 15,59 were analysed in detail. Other profile observed were placed in 

Appendix I. Figure 4-15 (b) and (c) which show the distribution of the points. Pixel 60,49 was roughly 23 km 

away from the epicentre and oriented on a north-eastern slope whereas Pixel 15,59 was located in a water body 

approximately 124km away from the epicentre. As seen in Figure 4-16, Pixel 60,49 which is land restricted 

shows a very weak anomaly lasting for 7 days and within a month prior to L’Aquila earthquake. It is regarded 

as a false positive. Even though this pixel is within a 23km radius of the epicentre the anomalous signal in the 

profiles are insignificant. 

 

As seen in Figure 4-17, for Pixel 15,59 which is located in a waterbody there were no earthquake 

related anomaly. This pixel is 124km away from the epicentre and can be considered as a background pixel. 

This pixel will have different climatic conditions owing to the extent from the epicentre.  

 

4.2.2. False Positives versus Earthquake-related anomalies 

Table 4-3 provides an overview of the anomalies detected within Pixels 60,49 and Pixel 15,59. It gives 

an idea of how anomalies appear within the time series profile and whether they can be regarded as earthquake-

related, false positives or false negatives.  The NEIC result for L’Aquila as seen in Appendix H, provided two 

smaller magnitude earthquakes occurring around the epicentre. To assess fully whether these anomalies are 

false negatives, the distance from the pixel studied within a specified radius to the epicentre is observed.  

 

 

PIXEL 

YEAR 

2009 

Feature Earthquake 

Related 

False 

Positive 

False 

Negative 

60,49 North-east slope N Y N 

15,59 Waterbody N Y N 

Table 4-3: Assessment of slope aspect and a water body and their relation to anomalies detected within certain 
pixels of the study area. 

 



T
H
E
R
M
A
L
 I
N
F
R
A
R
E
D
 T
IM
E
 S
E
R
IE
S
 A
N
A
L
Y
S
IS
 F
O
R
 E
A
R
T
H
Q
U
A
K
E
 P
R
E
C
U
R
S
O
R
Y
 D
E
T
E
C
T
IO
N
 

 5
0
 

 

 
F

ig
u

re
 4

-1
5:

 C
om

p
ri

se
d

 o
f 

th
re

e 
p

ar
ts

: 
(a

) 
A

 M
S

G
2 

im
ag

e 
sh

ow
in

g 
th

e 
ex

te
n

t 
of

 t
h

e 
st

u
d

y 
ar

ea
; 

(b
) 

T
h

e 
st

u
d

y 
ar

ea
 i

n
 a

 G
oo

gl
e 

m
ap

 w
h

er
e 

th
e 

re
d

 b
ou

n
d

in
g 

b
ox

 
il

lu
st

ra
te

s 
th

e 
d

is
tr

ib
u

ti
on

 o
f 

p
oi

n
ts

; 
an

d
 (

c)
 D

et
ai

le
d

 v
ie

w
 o

f 
th

e 
p

oi
n

ts
 s

el
ec

te
d

 a
n

d
 a

n
al

ys
ed

 a
s 

se
en

 i
n

 a
 G

oo
gl

e 
m

ap
 w

h
er

e 
th

e 
b

ou
n

d
in

g 
b

ox
 il

lu
st

ra
te

s 
th

e 
d

is
tr

ib
u

ti
on

 o
f 

p
oi

n
ts

; 
an

d
 (

c)
 D

et
ai

le
d

 v
ie

w
 o

f 
th

e 
p

oi
n

ts
 s

el
ec

te
d

 a
n

d
 a

n
al

ys
ed

 a
s 

se
en

 in
 a

 G
oo

gl
e 

m
ap

.  
 



T
H
E
R
M
A
L
 I
N
F
R
A
R
E
D
 T
IM
E
 S
E
R
IE
S
 A
N
A
L
Y
S
IS
 F
O
R
 E
A
R
T
H
Q
U
A
K
E
 P
R
E
C
U
R
S
O
R
Y
 D
E
T
E
C
T
IO
N
 

5
1
 

 

 
F

ig
u

re
 4

-1
6:

 �
u

m
b

er
 o

f 
an

om
al

ie
s 

ap
p

ea
ri

n
g 

w
it

h
in

 a
 w

ee
k

 p
er

io
d

 f
or

 P
ix

el
 6

0,
 4

9 
in

 t
h

e 
ye

ar
 2

00
9.

 T
h

is
 a

n
om

al
ou

s 
si

gn
al

 l
as

ti
n

g 
w

it
h

in
 a

 w
ee

k
 i

s 
in

si
gn

if
ic

an
t 

an
d

 r
eg

ar
d

ed
 a

s 
a 

fa
ls

e 
p

os
it

iv
e 

w
it

h
in

 t
h

e 
p

ro
fi

le
. T

h
es

e 
an

om
al

ie
s 

w
er

e 
re

ga
rd

ed
 i

n
si

gn
if

ic
an

t 
b

ec
au

se
 f

or
 a

n
 e

ar
th

q
u

ak
e-

re
la

te
d

 a
n

om
al

y,
 t

h
e 

as
su

m
p

ti
on

 w
as

 t
h

at
 a

t 
le

as
t 

15
%

 o
f 

th
e 

n
u

m
b

er
 o

f 
im

ag
es

 c
on

ta
in

ed
 a

n
om

al
ie

s 
w

it
h

 a
 d

u
ra

ti
on

 o
f 

on
e 

w
ee

k
.  

 

 



T
H
E
R
M
A
L
 I
N
F
R
A
R
E
D
 T
IM
E
 S
E
R
IE
S
 A
N
A
L
Y
S
IS
 F
O
R
 E
A
R
T
H
Q
U
A
K
E
 P
R
E
C
U
R
S
O
R
Y
 D
E
T
E
C
T
IO
N
 

 5
2
 

 
F

ig
u

re
 4

-1
7:

 �
u

m
b

er
 o

f 
an

om
al

ie
s 

ap
p

ea
ri

n
g 

w
it

h
in

 a
 w

ee
k

 p
er

io
d

 f
or

 P
ix

el
 1

5,
59

 in
 t

h
e 

ye
ar

 2
00

9.
 A

s 
su

gg
es

te
d

, t
h

er
e 

is
 s

o 
si

gn
if

ic
an

t 
an

om
al

y 
ap

p
ea

ri
n

g 
in

 t
h

is
 p

ix
el

 o
w

in
g 

to
 i

ts
 

p
ro

xi
m

it
y 

to
 t

h
e 

ea
rt

h
q

u
ak

e 
ep

ic
en

te
r.

 
.



THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION 

53 

4.3. Anomaly Detection Reliability 

Bam and L’Aquila have totally different conditions and need to be analysed separately. Bam 

is a relatively dry, desert-like region with little vegetation and regarded as being cloud free. The 

images were obtained by the Meteosat-5 satellite which has a different orientation than the sensor 

being used for L’Aquila. The sensor has a much coarser spatial resolution and the temporal resolution 

is 30 minutes.  Unlike Bam, L’Aquila is densely populated, vegetated, and topography-driven and has 

a stronger influence by clouds. MSG2 images were acquired for the L’Aquila study area. 

 

Both study areas show that thermal anomalies can be detected; however relating it to an 

earthquake phenomenon is very challenging. To assess whether it is an earthquake-related anomaly, 

the year of the earthquake is studied after which the anomaly findings will be compared to other years. 

If a significant anomaly is detected within a month before the earthquake, lasts for a week and is in 

close proximity to the epicentre or fault zone, only then anomalies can be compared as earthquake-

related. Many false positives appeared within the profiles.  
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5. Discussion and Conclusion  

One of the objectives of this study is to verify whether significant thermal infrared anomalies can be 

found in association with known earthquake events by systematically applying satellite data time 

series analysis to multi-year time series. The framework for this was applied to Bam and L’Aquila by 

developing a method to detect anomalies. The goal of this chapter is to interpret and assess potential 

reasons for the findings obtained from this study. 

 

5.1. Discussion 

A rather straightforward but simple cloud removal algorithm was developed based on 

recurring temperatures in the images. Clouds act as powerful reflectors to solar radiation, sending 

much energy straight back into space. Thin high clouds absorb thermal radiation from the surface and 

radiate much of it back down , contributing to the natural greenhouse effect which makes global cloud 

cover a major factor in the distribution of thermal energy in the atmosphere [51]. In order to remove 

the clouds, selection of parameters is based on the extreme temperatures as well as the natural 

variation over a study area. The main problem is that thresholds for cloud masking  are functions of 

many variables such as; surface type (land, ocean, ice), surface conditions (vegetation, soil moisture), 

recent weather (which changes surface temperature and reflectance significantly), atmospheric 

conditions (temperature inversions, haze, fog), season, time of day and even satellite-earth-sun 

geometry (hence bidirectional reflectance and sun glint). These factors may play a role in the 

simplified cloud masking algorithm. Further studies are needed to fully assess the impact of these 

factors on the derived anomalies. It is believed that the impact is rather small and only in very specific 

cases might result on false positive anomalies. This is based on the rather stable and constant 

normalized time series that was found for each pixel over multiple years indicating a proper removal 

of clouds throughout the images. 

 

For the normalization, a window size was set based on common knowledge rather than 

scientifically proven facts. A moving ring approach was applied over a time series stack in the 

normalization algorithm where a 10 pixel buffer radius around the pixel under investigation was 

selected as described in Section 3.3.4.2. This size was based on the fact that if a too small ring size (of 

less than 10 pixels) is used adjacent anomalous pixels can influence the background temperatures. A 

too large ring size would make the variation between pixels possibly too large; it is well possible that 

over a distance of > 200km varying meteorological conditions occurring in different region can 

impact on the temperature ratios. The smaller the area, the more likely it is that weather conditions in 

the normalizing ring are similar to those in the pixel under investigation. This ~ 50km ring size 

provided suitable results but a more thorough analysis should be performed to study the most optimal 

ring size.  
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In the anomaly detection process, any ratio appearing above a ±2σ was flagged as anomalous. 

To assess how many anomalous images are actually occurring within a certain time frame (i.e. an 

indication for the strength and persistence of an anomalous feature), a running cumulative moving 

window of  one week length was applied as this was the period stated in literature where an 

earthquake-related anomaly could probably last. The higher the percentage of anomalous images, the 

stronger is the anomaly. As seen in Figure 4-6, a significant earthquake anomaly (45%) occurred prior 

to Bam. A long time series was then used to assess the chance of this earthquake-related anomaly 

appearing in the year of the earthquake occurrence to indeed be caused by the earthquake or another 

phenomenon. On comparing Figures 4-5 to Figure 4-10, this anomaly occurring in Figure 4-6 is 50-

200% stronger than any other anomaly appearing in 6 years time and therefore significantly 

earthquake-related. There is, however, a trend of occurring anomalies in December. The source of 

these anomalies is unclear but might be related to snow cover in mountainous regions covered by the 

normalization ring. This is only speculative till now and needs further investigation of individual 

pixels in the normalization ring. 

 

For L’Aquila the anomaly is less strong (it was also a less strong earthquake) and only one 

year of data is available for analysis. Similar analysis as done for Bam is therefore not possible for 

now but should be done in future work. 

 

5.1.1. Significant Findings Associated with Earthquakes 

5.1.1.1. Earthquake Cloud 

There was an unusual cloud emerging exactly from the epicentre of the December 26th Bam 

earthquake. This was likely because its hot vapour condensed into a cloud immediately due to very 

cold surroundings at night during the winter. However, in many cases the vapour released at the 

epicentre does not immediately encounter atmospheric conditions suitable for condensation into a 

cloud. Since the cloud’s travel time and direction are not well known, this greatly reduces the 

precision, or specificity of a prediction. First, an earthquake cloud appearing in satellite images can 

pinpoint an impending epicentre from an earthquake cloud only when it condenses at the epicentre in 

cold surroundings, as it did in Bam [48]. 

 

5.2. Limitations/Challenges 

Several limitations were encountered within this research as described below: 

� U-MARF facility for data acquisition of Meteosat-5 TIR images:  

The outputs required for this research, from this facility provided only image data thus no 

georeferencing was applied. Even though there are options for subsetting an area of interest from a 

full disc image preview, outputs after retrieval tends to be shifted. In other words, it provides you with 

an inaccurate study area. Owing to the projection of an ellipsoidal earth on a two dimensional image, 

the spatial resolution is not constant for all Meteosat image pixels. At sub-satellite point, the pixel 

distance amounts to 4.5 km in both directions for Meteosat-5. At high latitudes, the pixel distances 

can exceed the grid sizes [40] and spatial resolution at these distances tends to be too coarse. By trial 

and error, the correct coordinates were provided, to get the epicentral location in the centre of the 
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image. This is important since there is no spatial information attached to the image the epicentre can 

be located much simpler. 

 

� Atmospheric corrections were not applied: 

Meteosat has a single channel in the TIR window, which implies that split-window 

techniques cannot be used. This channel is slightly influenced by absorption of gaseous atmospheric 

constituents. Neglecting atmospheric effects, the measured BTs of a target is equal to the target 

temperature. In order to determine LST, the influence of the atmosphere on measured BTs has to be 

accounted for. This can be achieved by using split window techniques[40, 45] .  

 

In order to atmospherically correct its historically valuable time series of BTs, Schädlich et 

al. (2001) used a previous version of the model of the diurnal temperature cycle proposed by Reuter 

(1994) to temporally interpolate atmospheric corrections for Meteosat single channel [45]. Additional 

data is required such as forecast data based on humidity and temperature profiles to temporally 

interpolate atmospheric corrections for Meteosat.  

 

Brightness temperature is an alternate measure of intensity which gives the temperature of a 

black body with the specified radiance, at that wavelength. It is used because it has linear correlations 

with atmospheric temperature parameters, easing statistical analysis [51]. Due to computational 

limitations associated with the single channel method, the results presented in the research are based 

on BTs and not LST.  

 

� Uncertainties within time series: 

It is important to note that there were uncertainties within the datasets that can influence the 

anomalies. These uncertainties were not corrected for and thus some anomalies were even increased 

owing to this. Such uncertainties include shifts in the sensor, a wobble effect of the sensor (at least 

one pixel off), line striping, and missing data (either for entire image or part of an image) as seen in 

Figure 5-1. These uncertainties will produce inaccurate normalized background temperature ratios and 

may appear as a peak above a +2σ as a different study area is observed, for a shift in the sensor. 

Wobbling effects appear as a sudden spike within the normalization process as a different pixel will 

be analysed.  

 

 
Figure 5-1: Errors appearing in time series profiles for the year 2004, in the study area of Bam. Similar 

errors were seen in the L’Aquila region. 
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5.3. Conclusion 

Based on the results, it was found that the developed methodology in terms of its 

applicability for detecting significant thermal infrared anomalies in relation to earthquakes by 

systematically applying satellite data time series analysis to multi-year time series was reasonable. 

The study confirms that time series is an important component in any earthquake anomaly detection 

study. The main conclusion drawn from this study is a short time series is not justifiable for detection 

of earthquake anomalies.  

Even though anomalies were detected in order to relate to an earthquake event, a shortened 

time series cannot be used.  Long time series has shown that thermal anomalies are influenced by 

topography, and seasonality and defining a normal condition which encompasses every possible 

normal behaviour is very difficult. Often the data contains noise which tends to be similar to the 

actual anomalies and hence is difficult to be distinguished. A long time series can assist in 

overcoming these difficulties to identify earthquake-related anomalies. The answers of the research 

questions will be addressed and discussed in order to fulfil the objectives set forth within this 

research. 

 

5.4. Recommendations 

Recommendations for future work are as follows: 

� Determining how accurate and with what degree of error this method achieves by testing other 

earthquake. An attempt for earthquake anomaly detection should be made for higher 

magnitude earthquakes such as the recent Chile and Haiti earthquakes.   

� Incorporate in the methodology, atmospheric correction to obtain LSTs instead of using BTs. 

� Aid of ancillary datasets such as a DEM, to assess the impact of elevation on earthquake-

related anomalies. 

� Assessment of earthquake-related anomalies in a spatial context. 

� Apply methodology to non-crustal earthquakes (i.e. earthquakes originating in the ocean). 
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Appendix A: Radiation Definitions 

Definitions and relationship associated with radiation measurements, extracted from Lillesand 

(2008) [26]:  

Terms & Definition Symbol Unit 

Radiant energy- the energy carried by an electromagnetic wave and a 

measure of the capacity of the wave to do work 

Q J 

Radiant flux- the amount of radiant energy emitted, transmitted, or 

received per unit time 

φ W (=Js-1) 

Radiant flux density- the radiant flux at a surface divided by the area of the 

surface. 

Irradiance- the density for flux incident upon a surface 

Radiant exitance- the density for flux leaving a surface 

 

 

E 

M 

 

 

Wm-2 

Radiant spectral flux density- the radiant flux density per unit wavelength 

interval 

Spectral irradiance 

Spectral radiant exitance 

 

 

Eλ 

Mλ 

 

 

Wm-2µm-1 

Radiant intensity-t he flux emanating from a point source per unit solid 

angle in the direction considered 

I Wsr-1 

Radiance- the radiant flux per unit solid angle emanating from a surface in 

a given direction per unit of projected surface in the direction considered 

L Wm-2sr-1 

Spectral radiance per wavelength interval Lλ Wm-2sr-1 µm-1 

Radiant Energy (J)

Radiant Flux (Js-1 = W)

Radiant Flux Density (Wm-2) Radiant Intensity (Wsr-1)

Radiance (Wm-2sr-1)

Spectral Radiance (Wm-2sr-1)

Spectral Irradiance [incident] 
Spectral Radiant Exitance [emitted] 

(Wm-2sr-1)

Radiant Spectral Flux Density (Wm-2µm-1)

Irradiance [incident] 
Radiant Exitance [emitted] (Wm-2sr-1)

add time

add 
area

add 
direction

add 
wavelength

add 
wavelength

add area

DirectionalHemispherical
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Appendix B- Satellite Specifications 

Part (i) 
Satellite Specifications (i) 

  

Channel 
ID 

Absorption 
Band Channel 
Type 

Spectral 
Band width 
(µm) 

Central 
Wavelength (µm) 

Sub-satellite 
sampling 
(km) 

VIS 0.7 High Visible 
Resolution 

0.50 to 0.90 0.700 2.5 

IR 6.4 Water Vapor 
Absorption 

5.70 to 7.10 6.40 4.5 

IR  11.5 
 

IR/ Window 
Imager 

 

10.50 to 12.50 11.500 4.5 

Radiometric Resolution: 8 bits Temporal Resolution: 30 minutes 

Launch Date:  2nd March 1991 Orbital Longitude: 63°E 

End of Launch: 26th April 2007  

Table 5-1: Meteosat-5 Spectral Channels [10, 40]. 
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Part (ii) 

Satellite Specifications (ii) 

 

Channel 
ID 

Absorption 
Band 
Channel Type 

Spectral Band 
width (µm) 

Central 
Wavelength 
(µm) 

Sub-satellite 
sampling 
(km) 

�oise 

HRV High Visible 
Resolution 

0.60 to 0.90 0.750 1 S/N > 4.3 for target of 
1% of max dynamic 
range 

VIS 0.6 VNIR Core 
Imager 

0.56 to 0.71 0.635 3 S/N > 10.1 for target of 
1% of max dynamic 
range 

VIS 0.8 VNIR Core 
Imager 

0.74 to 0.87 0.810 3 S/N > 7.28 for target of 
1% of max dynamic 
range 

IR 1.6 VNIR Core 
Imager 

1.50 to 1.78 1.640 3 S/N > 3 for target of 1% 
of max dynamic range 

IR 3.9 IR/ Window 
Core Imager 

3.48 to 4.36 3.920 3 0.35 K @ 300 K 

IR 6.2 Water Vapor 
Core Imager 

5.35 to 7.15 6.250 3 0.75 K @ 250 K 

IR 7.3 Water Vapor 
Pseudo-
Sounding 

6.85 to 7.85 7.350 3 0.75 K @ 250 K 

IR 8.7 IR/ Window 
Core Imager 

8.30 to 9.10 8.700 3 0.28 K @ 300 K 

IR 9.7 IR/Ozone  
Pseudo-
Sounding 

9.38 to 9.94 9.660 3 1.50 K @ 255 K 

IR 10.8 IR/ Window 
Core Imager 

9.80 to 11.80 10.800 3 0.25 K @ 300 K 

IR 12.0 IR/ Window 
Core Imager 

11.00 to 13.00 12.000 3 0.37 K @ 300 K 

IR 13.4 IR/Carbon 
Dioxide  
Pseudo-
Sounding 

12.40 to 14.40 13.400 3 1.80 K @ 270 K 

Radiometric Resolution: 10 bits Temporal Resolution: 15 minutes 

Launch Date (Meteosat-8):  28th August 2002 Orbital Longitude: 0°E 

Launch Date (Meteosat-9): 21th December 2005   

  
Table 5-2: MSG SEVIRI (Spinning Enhanced Visible and Infrared Imager) Spectral Channel [13]. 
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Appendix C: Weather conditions in Bam 

Weather Conditions for Bam 

 
World Health Organization / Iran-Bam 
 
 
Official report on Bam Climate by Bam Meteorological Center 
 

Desert Climate; Altitude: 1067 m 

 

Temperature information: 

Absolute highest temperature recorded in the past 30 years: 47 °C 
Absolute lowest temperature recorded in the past 30 years: -9 °C 
Increase in temperature is usually from February and temperatures between 38-
44 °C is common in summer 
 
Wind: 
Approximately all through the year; max recorded: 133 km/hr; less severe 
storms are common more at the end of winters and beginning of spring. 
 

Humidity: 

Low because of the desert climate 
 

Rain: 

Low; average annual precipitation is 61 mm. Some years 10-20 mm has also 
been recorded. Max recorded: 147 mm 
 
Mr. Massoud Ahmadi 
Bam Meteorological Center 
13th January 2004 
 
 
�ote: Especial report and forecasts of weather (8 days and 16 days) for Bam can 
be found at: 
- www.accuweather.com (Select “World” then search “Bam”)     [1] 



THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION 

 

66 

Appendix D: Weather conditions in L’Aquila 

Weather Conditions for Italy 
 

ITALY 
Rome City          -8.2  42 
Rome Ciampino Air.  -11  40.6 
Rome Fiumicino Air.-7.8  38.6 
Milan City        -17.3  41.1 
Turin City          -21  41.6 
Turin Airport     -21.8  37.4 
Florence City     -12.9  42 
Florence Airport  -23.2  42.6 
Venice            -13.5* 36.6    * -17.5C was also recorded in January 1709 
Genoa                -8  37.8 
Bologna           -18.8  39.8 
Perugia             -17  40 
Naples               -5* 40      * a dubious -5.6C also recorded in January 
1981 
Bari               -5.9  45.6 
Palermo Observatory-0.5  44.6*   * a questioned 45.5C also recorded in 
August 1885 
Cagliari           -4.8  43.7 
Catenanuova              48.5 
Lampedusa Island    2.2  39.9 
Plateau Rosa      -34.6  17.2 
Mount Rose          -41  7.3*    * a record of 8.3C in August 2008 is 
likely to be faulty 
Livigno             -38  29 
Gran Gioves         -42 
Busa di Manna     -43.8*         * recorded in a frost hollow 

 
Lowest temperature in L’Aquila region ~ -17 °C (255K) 

 

Extracted from Maximiliano Herrera web-page [19] 

 

As seen in an updated version of the Wikipedia encyclopaedia for “L’Aquila”, the following climatic 

data for this region was observed. It has been said that the city enjoys each year eleven cold months 

and one cool one . This data was extracted on the 6th December 2008 by the Meteorological Station in 

L’Aquila, CETEMPS webpage. 

 
 Obtained from Wikipedia webpage [66] 
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Appendix E: Scripts 

Python Script 

 

� Stacking 
# import standard modules 

import os 

import glob 

import sys 

 

# import image and array support 

import Image 

import numpy 

 

# the envi2 module for writing ENVI format images 

import envi2 

import envi2.constants 

 

# Here comes trouble! 

import datetime 

 

# define a generic time zone object 

class UTC(datetime.tzinfo): 

    def __init__(self, offset): 

        self.offset = offset 

    def utcoffset(self, dt): 

        return datetime.timedelta(hours=self.offset) 

    def dst(self, dt): 

        return datetime.timedelta(0) 

    def tzname(self, dt): 

        return "UTC%+d" % (self.offset,) 

 

# set time zone to UTC+0 

tzUTC0 = UTC(0) 

 

pattern = r'I:\copy_data_italy\italyLTS\LTS_2009\LST_2009*_IR_108.tif' 

output = r'I:\copy_data_italy\italyLTS\LTS_2009\stack' 

 

def to_linear_time(dt): 

    ''' takes a datetime object 

returns prolectic Gregorian ordinal (=days since 01-01-0001) 

plus a fraction of the day 

''' 

    return dt.toordinal() + 

(((dt.second/60.0)+dt.minute)/60.0+dt.hour)/24.0 

 

def from_linear_time(lt): 

    '''takes a prolectic Gregorian ordinal plus fraction of day 

returns a datetime object 

''' 

    return datetime.datetime.fromordinal(int(lt)) + 

datetime.timedelta(lt%1) 
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# test to read a TIFF 

 

fnames = sorted(glob.glob(pattern)) 

 

bands = len(fnames) 

 

print "Found %d files" % (bands,) 

 

# open one image to get info 

im = Image.open(fnames[0]) 

 

samples, lines = im.size 

 

# assuming 16-bit data 

if im.mode == 'I;16': 

    data_type = 'H' # 'h' is signed, 'H' is unsigned 16 bit 

else: 

##    raise ValueError('Unsupported image mode') 

    data_type = 'u1' 

    print 'Assuming 8-bit data' 

     

# figure out byte order of the machine 

if sys.byteorder == 'little': 

    byte_order = 0 

else: 

    byte_order = 1 

 

# map info obtained from GeoTIFF tags (don't ask!) 

try: 

    map_info = ['Arbitrary', 1.0, 1.0, im.ifd[33922][3], im.ifd[33922][4], 

                im.ifd[33550][0], im.ifd[33550][1], 0, 'units=Degrees'] 

except: 

    map_info = None 

 

print map_info 

 

#raise IOError 

 

del im 

 

# loop over file names to get time stamps of images 

wavelength = [] 

band_names = [] 

for fname in fnames: 

##    print fname 

    base = os.path.basename(fname) 

##    t = base.split('_')[1] 

    t = base.split('-')[-1][:12] 

    band_names.append(t) 

##    print t 

    year, month, day, hour, minute = map(int, (t[:4], t[4:6], t[6:8], 

t[8:10], t[10:])) 
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    dt = datetime.datetime(year, month, day, hour, minute, 0, 0, 

tzinfo=tzUTC0) 

 

    ltime = to_linear_time(dt) 

##    print ltime 

##    print from_linear_time(ltime) 

     

    # add linear time to the list of 'wavelengths' 

    wavelength.append(ltime) 

 

# open the output image 

im2 = envi2.New(output, file_type=envi2.constants.ENVI_Standard, 

                data_type=data_type, interleave='bsq', 

byte_order=byte_order, 

                lines=lines, samples=samples, bands=bands, 

                wavelength=wavelength, descripion=['GeoTIFF to ENVI 

stacker'], 

                wavelength_units='Gregorian day', z_plot_titles=['time', 

'value'], 

                map_info=map_info, band_names=band_names) 

 

# and here we go... 

band = 0 

for fname in fnames: 

##    print fname 

#    fp = open(fname) 

    try: 

        im = Image.open(fname) 

    except IOError: 

        print band 

        raise 

    im.load() 

##    im2[band] = numpy.asarray(im.getdata()) 

    # again, DON'T ASK!!! 

    im2[band] = numpy.array(im.getdata()).reshape(im.size[::-1]) 

#    fp.close() 

    del im 

    band = band + 1 

 

del im2 

 

� Conversion of DN to Radiances to BT (comprises two scripts namely, calibration.py and 

meteosat.py) 

(i) calibration.py:  
from gregorian import * 

from numpy import array 

 

YEARS = [1999, 2000, 2001, 2002, 2003, 2004] 

 

cname = 'Meteosat/IR_Calibration_info_' 

 

mon2mon = {'Jan':1, 

           'Feb':2, 

           'Mar':3, 
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           'Apr':4, 

           'May':5, 

           'Jun':6, 

           'Jul':7, 

           'Aug':8, 

           'Sep':9, 

           'Oct':10, 

           'Nov':11, 

           'Dec':12} 

 

def read_calibration(year, name): 

    f = open(name) 

    data = f.readlines() 

    f.close() 

 

    calib = [] 

    for line in data: 

        dayofyear, daymonth, slot, coeff, spacecount = 

line.strip().split() 

        day, month = daymonth.split('-') 

        day = int(day) 

        month = mon2mon[month] 

        hour = (int(slot)-1)/2.0    # does it include the slot or not? 

        minute = int(hour%1 * 60) 

        hour = int(hour) 

        coeff = float(coeff) 

        spacecount = float(spacecount) 

 

        # Proleptic Gregorian time... 

        ltime = to_linear_time(year, month, day, hour, minute) 

         

        calib.append((ltime, year, month, day, hour, minute, coeff, 

spacecount)) 

    return calib 

 

calibration = [] 

for year in YEARS: 

    name = cname + str(year) + '.txt' 

    calibration.extend(read_calibration(year, name)) 

 

calibration_index = array([x[0] for x in calibration]) 

 

def get_coeffs(year, month, day, hour, minute): 

    # Proleptic Gregorian time... 

    ltime = to_linear_time(year, month, day, hour, minute) 

 

    # add 4 minutes to be sure to fall inside a slot 

    index = calibration_index.searchsorted(ltime+0.003) 

 

    if index > 0: 

        index = index - 1 

    return calibration[index] 

 

 

if __name__=='__main__': 
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    print get_coeffs(2003, 2, 1, 11, 0) 

    #(731246.0625, 2003, 1, 31, 1, 30, 0.074721999999999997, 5.0) 

 

(ii) meteosat.py  
# import standard modules 

import os 

import glob 

import sys 

 

# import image and array support 

import Image 

import numpy 

 

# the envi2 module for writing ENVI format images 

import envi2 

import envi2.constants 

 

# local modules 

import gregorian 

import timestr 

import calibration 

 

def message(s): 

    print s 

 

def convert_meteosat(pattern, output, message=message): 

    # figure out input files from the pattern 

 

    fnames = sorted(glob.glob(pattern)) 

 

    bands = len(fnames) 

 

    message("Found %d files" % (bands,)) 

 

    if not bands: 

        return 

 

    # open one image to get info 

    im = Image.open(fnames[0]) 

 

    samples, lines = im.size 

 

    # assuming 16-bit data 

    if im.mode == 'I;16': 

        data_type = 'H' # 'h' is signed, 'H' is unsigned 16 bit 

        message("Data type: 2-byte") 

        is_calibrated = True 

    elif im.mode.startswith('F'): 

        data_type = 'single' 

        message("Data type: 4-byte single float") 

        is_calibrated = True 

    else: 

        data_type = 'u1' # cross your fingers here... 

        message("Data type: assuming 1-byte") 
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        is_calibrated = False 

    ##    raise ValueError('Unsupported image mode') 

 

    # figure out byte order of the machine 

    if sys.byteorder == 'little': 

        byte_order = 0 

    else: 

        byte_order = 1 

 

    try: 

        # map info obtained from GeoTIFF tags (don't ask!) 

        map_info = ['Arbitrary', 1.0, 1.0, im.ifd[33922][3], 

im.ifd[33922][4], 

                    im.ifd[33550][0], im.ifd[33550][1], 0, 'units=Degrees'] 

    except KeyError: 

        map_info = None 

         

    message("Map info: %s" % (str(map_info),)) 

 

    del im 

 

    # loop over file names to get time stamps of images 

    wavelength = [] 

    band_names = [] 

    for fname in fnames: 

        base = os.path.basename(fname) 

        message("Inspecting '%s'" % (base,)) 

 

        year, month, day, hour, minute = timestr.time_from_string(base) 

        band_names.append("%4d%02d%02d%02d%02d" % (year, month, day, hour, 

minute)) 

 

        ltime = gregorian.to_linear_time(year, month, day, hour, minute) 

        message("Linear time: %f" % (ltime,)) 

##        print gregorian.from_linear_time(ltime) 

         

        # add linear time to the list of 'wavelengths' 

        wavelength.append(ltime) 

 

    # open the output image 

    im2 = envi2.New(output, file_type=envi2.constants.ENVI_Standard, 

                    data_type='single', interleave='bsq', 

byte_order=byte_order, 

                    lines=lines, samples=samples, bands=bands, 

                    wavelength=wavelength, descripion=['GeoTIFF to ENVI 

stacker'], 

                    wavelength_units='Gregorian day', 

z_plot_titles=['time', 'value'], 

                    map_info=map_info, band_names=band_names) 

 

    # and here we go... 

    band = 0 

    for fname in fnames: 

        try: 

            im = Image.open(fname) 
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        except IOError, errtext: 

            raise IOError('%s on file %s band %d' % (errtext, fname, band)) 

 

        base = os.path.basename(fname) 

 

        if is_calibrated: 

            message("Convering: %s" % (base,)) 

            message('Calibration SKIPPED') 

             

            im.load() 

            # again, DON'T ASK!!! 

            BT = numpy.array(im.getdata()).reshape(im.size[::-1]) 

        else: 

            year, month, day, hour, minute = timestr.time_from_string(base) 

            calib = calibration.get_coeffs(year, month, day, hour, minute) 

 

            alpha = calib[-2] 

            space_count = calib[-1] 

 

            message("Calibrating: %s" % (base,)) 

            message('Calibration data: %f %f' % (alpha, space_count)) 

             

            im.load() 

            # again, DON'T ASK!!! 

            data = numpy.array(im.getdata()).reshape(im.size[::-1]) 

 

            # convert to radiance 

            radiance = alpha * (data - space_count) 

 

            # convert to brightness temperature 

            A = 6.7348 

            B = -1272.2 

            BT = B / (numpy.log(radiance) - A) 

 

        message("Average scene brightness temperature: %.1f Kelvin" % 

(BT.mean())) 

         

        im2[band] = BT 

 

        del im 

        band = band + 1 

 

    del im2 

 

if __name__=='__main__': 

    pattern = r'/data/Data/Nadira/format1/*.tif' 

    output = r'/data/Data/Nadira/format1/stack' 

 

    convert_meteosat(pattern, output) 
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� Time Series for one pixel 
import envi2 

import timeutil 

import gregorian 

 

#### INPUT PARAMETERS 

 

im = envi2.Open(r'K:\Bam_1999\images\stack1999') 

#im = envi2.Open(r'K:\sample\italy\stack2006') 

 

Y = 20 

X = 20 

 

#### ANALYSE DATA 

 

# get the band names as strings (from envi2 they come out as longs) 

band_names = [str(bn) for bn in im.band_names] 

 

has_quarters = False 

for band in range(im.bands): 

    bname = band_names[band] 

    year, month, day, hour, minute = timeutil.time_unpack(bname) 

    # check if this data has quarters in it 

    if minute==15 or minute==45: 

        has_quarters = True 

##    print "%s;%f;%f" % (bname, im.wavelength[band], series[band]) 

     

if has_quarters: 

##    print "15 minute data" 

    delta = 15 

else: 

##    print "30 minute data" 

    delta = 30 

 

#### REPLACE MISSING VALUES 

 

# get the complete time range 

timerange = 

timeutil.time_pack_seq(timeutil.timerange(timeutil.time_unpack(band_names[0

]), 

                               timeutil.time_unpack(band_names[-1]), 

delta)) 

##print timerange 

 

result = [] 

for t in timerange: 

    # check if this time is in the data 

    try: 

        band = band_names.index(t) 

        value = im[Y, X, band] 

    # otherwise give it a NaN value 

    except ValueError: 

        value = float('nan') 
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    # append value to the result list 

    result.append(value) 

 

    # get the proleptic gregorian day 

    gt = gregorian.to_linear_time(*timeutil.time_unpack(t)) 

 

    # print everything 

    print "%s;%f;%f" % (t, gt, value) 

 

### OR, print in 'yyyy-mm-dd hh:mm' format 

##    year, month, day, hour, minute = timeutil.time_unpack(t) 

##    print "%4d-%02d-%02d %02d:%02d;%f;%f" % (year, month, day, hour, 

minute, gt, value) 

 

### OR do something with the result list 

##print result 

 

 

PERL Script 

 

� Cloud Masking 
######################################################################## 

#Cloud removal algorithm. Will remove anything that is below min+(0.95*max-

min)-20 (abs min + range - allowed variation) 

# applied per image. pxls per time are extracted from pxl files and 

corrected before being written away in CLOUDREMOVED folder 

sub CLOUD { 

 

#$nr_images = 0; 

$nr_pixels = 0; 

$min_temp = 260; 

$variation = 20; 

 

# create array of files to be opened, can be called through indexing 

open (PIXELS, "test.lst") || die "can't open file data.lst: $!"; # open 

list with all files to be processed 

while (defined (my $pixels = <PIXELS>)){ # go through list and open every 

file in sequence 

 $nr_pixels++; 

 chomp ($pixels); 

 push (@location, $pixels); 

} 

close (PIXELS); 

print "nr of pixels is, $nr_pixels\n"; 

 

################################################################ 

############# LOOP 1 

# create matrix of all files 

for ($p=0; $p<=$nr_pixels-1; $p++) { 

 open (PIXEL, "$location[$p]") || die "can't open file pixel file 

$location[$i] : $!";  

 print "opened file $location[$p]\n"; 

 $i=0; 
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 while (defined (my $pixel = <PIXEL>)){  # go through every file and 

use counter p for location of value in matrix 

   

#  my @pixel = split (/,/, $pixel); 

  if ($i <= 4303){ 

   chomp ($pixel); 

   $m_value[$p][$i] = $pixel; 

  } 

  $i++; 

 } 

 close (PIXEL); 

} 

 

$nr_images = 4304; 

print "nr of images is, $nr_images\n"; 

   

#calculate min and max for each image and add treshold to matrix   

for ($i=0; $i<=$nr_images-1; $i++) { #take every line from each file as 

part of the image it belonged to. 

 $min = 1000; $max = 0; 

 

print "calculate min/max for image $i\n"; 

 

 for  ($p=0; $p<=$nr_pixels-1; $p++) { #loop over all pixels in image 

  if ($m_value[$p][$i] > $max){$max = $m_value[$p][$i];} 

  if ($m_value[$p][$i] < $min){$min = $m_value[$p][$i];} 

 } 

 # put treshold at last position of matrix for studied image 

 $m_value[$nr_pixels][$i] = $min + (0.95*$max - $min) - $variation;        

 print "for image $i min,max,treshold is: $min, $max, 

$m_value[$nr_pixels][$i]\n"; 

} 

 

#remove clouds based in treshold 

for ($i=0; $i<=$nr_images-1; $i++) { #take every line from each file as 

part of the image it belonged to. 

 

print "calculate cloudremoval for image $i\n"; 

 

 for  ($p=0; $p<=$nr_pixels-1; $p++) { 

  if ($m_value[$p][$i] < $m_value[$nr_pixels][$i] || 

$m_value[$p][$i] < $min_temp){ 

   print "pixel is $m_value[$p][$i], treshold is 

$m_value[$nr_pixels][$i]\n"; 

   $m_value[$p][$i] = "NaN"; 

  }  

 } 

} 

 

#write data back to file  

print "write back to files started\n";  

for ($p=0; $p<=$nr_pixels-1; $p++) { 

 open (OUT, ">>$location[$p]_CR_20_$min_temp") || die "can't open file 

pixel file $location[$i] : $!";  
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 for ($i=0; $i<=$nr_images-1; $i++) { #take every line from each file 

as part of the image it belonged to. 

#  print OUT "$m_time[$p][$i], $m_value[$p][$i]\n"; 

  print OUT "$m_value[$p][$i]\n"; 

 } 

 close (OUT); 

} 

 

 

############################################################### 

########### LOOP 2 

# create matrix of all files 

for ($p=0; $p<=$nr_pixels-1; $p++) { 

 open (PIXEL, "$location[$p]") || die "can't open file pixel file 

$location[$i] : $!";  

 print "opened file $location[$p]\n"; 

 $i=0; 

 while (defined (my $pixel = <PIXEL>)){  # go through every file and 

use counter p for location of value in matrix 

 

#  my @pixel = split (/,/, $pixel); 

  if ($i > 4303 && $i <=8607){ 

   $j= $i-4304; 

   chomp ($pixel); 

   $m_value[$p][$j] = $pixel; 

  } 

 

#  $m_time[$p][$i] = $pixel[0]; 

  $i++; 

 } 

 close (PIXEL); 

} 

$nr_images = 4304; 

print "nr of images is, $nr_images\n"; 

   

#calculate min and max for each image and add treshold to matrix   

for ($i=0; $i<=$nr_images-1; $i++) { #take every line from each file as 

part of the image it belonged to. 

 $min = 1000; $max = 0; 

 

print "calculate min/max for image $i\n"; 

 

 for  ($p=0; $p<=$nr_pixels-1; $p++) { #loop over all pixels in image 

  if ($m_value[$p][$i] > $max){$max = $m_value[$p][$i];} 

  if ($m_value[$p][$i] < $min){$min = $m_value[$p][$i];} 

 } 

 # put treshold at last position of matrix for studied image 

 $m_value[$nr_pixels][$i] = $min + (0.95*$max - $min) - $variation;       

### ADJUST HERE YOUR ALLOWED VARIATION IN TEMP!!!! 

 print "for image $i min,max,treshold is: $min, $max, 

$m_value[$nr_pixels][$i]\n"; 

} 

 

#remove clouds based in treshold 
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for ($i=0; $i<=$nr_images-1; $i++) { #take every line from each file as 

part of the image it belonged to. 

 

print "calculate cloudremoval for image $i\n"; 

 

 for  ($p=0; $p<=$nr_pixels-1; $p++) { 

  if ($m_value[$p][$i] < $m_value[$nr_pixels][$i] || 

$m_value[$p][$i] < $min_temp){ 

#   print "pixel is $m_value[$p][$i], treshold is 

$m_value[$nr_pixels][$i]\n"; 

   $m_value[$p][$i] = "NaN"; 

  }  

 } 

} 

 

#write data back to file  

print "write back to files started\n";  

for ($p=0; $p<=$nr_pixels-1; $p++) { 

 open (OUT, ">>$location[$p]_CR_20_$min_temp") || die "can't open file 

pixel file $location[$i] : $!";  

 for ($i=0; $i<=$nr_images-1; $i++) { #take every line from each file 

as part of the image it belonged to. 

#  print OUT "$m_time[$p][$i], $m_value[$p][$i]\n"; 

  print OUT "$m_value[$p][$i]\n"; 

 } 

 close (OUT); 

} 

 

 

 

############################################################### 

########### LOOP 3 

# create matrix of all files 

for ($p=0; $p<=$nr_pixels-1; $p++) { 

 open (PIXEL, "$location[$p]") || die "can't open file pixel file 

$location[$i] : $!";  

 print "opened file $location[$p]\n"; 

 $i=0; 

 while (defined (my $pixel = <PIXEL>)){  # go through every file and 

use counter p for location of value in matrix 

#  my @pixel = split (/,/, $pixel); 

  

  if ($i > 8607 && $i <= 12911){ 

   $j= $i-8608; 

   chomp ($pixel); 

   $m_value[$p][$j] = $pixel; 

  } 

 

#  $m_time[$p][$i] = $pixel[0]; 

  $i++; 

 } 

 close (PIXEL); 

} 

$nr_images = 4304; 

print "nr of images is, $nr_images\n"; 
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#calculate min and max for each image and add treshold to matrix   

for ($i=0; $i<=$nr_images-1; $i++) { #take every line from each file as 

part of the image it belonged to. 

 $min = 1000; $max = 0; 

 

print "calculate min/max for image $i\n"; 

 

 for  ($p=0; $p<=$nr_pixels-1; $p++) { #loop over all pixels in image 

  if ($m_value[$p][$i] > $max){$max = $m_value[$p][$i];} 

  if ($m_value[$p][$i] < $min){$min = $m_value[$p][$i];} 

 } 

 # put treshold at last position of matrix for studied image 

 $m_value[$nr_pixels][$i] = $min + (0.95*$max - $min) - $variation;       

### ADJUST HERE YOUR ALLOWED VARIATION IN TEMP!!!! 

 print "for image $i min,max,treshold is: $min, $max, 

$m_value[$nr_pixels][$i]\n"; 

} 

 

#remove clouds based in treshold 

for ($i=0; $i<=$nr_images-1; $i++) { #take every line from each file as 

part of the image it belonged to. 

 

print "calculate cloudremoval for image $i\n"; 

 

 for  ($p=0; $p<=$nr_pixels-1; $p++) { 

  if ($m_value[$p][$i] < $m_value[$nr_pixels][$i] || 

$m_value[$p][$i] < $min_temp){ 

#   print "pixel is $m_value[$p][$i], treshold is 

$m_value[$nr_pixels][$i]\n"; 

   $m_value[$p][$i] = "NaN"; 

  }  

 } 

} 

 

#write data back to file  

print "write back to files started\n";  

for ($p=0; $p<=$nr_pixels-1; $p++) { 

 open (OUT, ">>$location[$p]_CR_20_$min_temp") || die "can't open file 

pixel file $location[$i] : $!";  

 for ($i=0; $i<=$nr_images-1; $i++) { #take every line from each file 

as part of the image it belonged to. 

#  print OUT "$m_time[$p][$i], $m_value[$p][$i]\n"; 

  print OUT "$m_value[$p][$i]\n"; 

 } 

 close (OUT); 

} 

 

############################################################### 

########### LOOP 4 

# create matrix of all files 

for ($p=0; $p<=$nr_pixels-1; $p++) { 

 open (PIXEL, "$location[$p]") || die "can't open file pixel file 

$location[$i] : $!";  

 print "opened file $location[$p]\n"; 
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 $i=0; 

 while (defined (my $pixel = <PIXEL>)){  # go through every file and 

use counter p for location of value in matrix 

   

#  my @pixel = split (/,/, $pixel); 

  

  if ($i > 12911 && $i <= 17215){ 

   $j= $i-12912; 

   chomp ($pixel); 

   $m_value[$p][$j] = $pixel; 

  } 

 

#  $m_time[$p][$i] = $pixel[0]; 

  $i++; 

 } 

 close (PIXEL); 

} 

$nr_images = 4304; 

print "nr of images is, $nr_images\n"; 

   

#calculate min and max for each image and add treshold to matrix   

for ($i=0; $i<=$nr_images-1; $i++) { #take every line from each file as 

part of the image it belonged to. 

 $min = 1000; $max = 0; 

 

print "calculate min/max for image $i\n"; 

 

 for  ($p=0; $p<=$nr_pixels-1; $p++) { #loop over all pixels in image 

  if ($m_value[$p][$i] > $max){$max = $m_value[$p][$i];} 

  if ($m_value[$p][$i] < $min){$min = $m_value[$p][$i];} 

 } 

 # put treshold at last position of matrix for studied image 

 $m_value[$nr_pixels][$i] = $min + (0.95*$max - $min) - $variation;       

### ADJUST HERE YOUR ALLOWED VARIATION IN TEMP!!!! 

 print "for image $i min,max,treshold is: $min, $max, 

$m_value[$nr_pixels][$i]\n"; 

} 

 

#remove clouds based in treshold 

for ($i=0; $i<=$nr_images-1; $i++) { #take every line from each file as 

part of the image it belonged to. 

 

print "calculate cloudremoval for image $i\n"; 

 

 for  ($p=0; $p<=$nr_pixels-1; $p++) { 

  if ($m_value[$p][$i] < $m_value[$nr_pixels][$i] || 

$m_value[$p][$i] < $min_temp){ 

#   print "pixel is $m_value[$p][$i], treshold is 

$m_value[$nr_pixels][$i]\n"; 

   $m_value[$p][$i] = "NaN"; 

  }  

 } 

} 

 

#write data back to file  



THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION 

81 

print "write back to files started\n";  

for ($p=0; $p<=$nr_pixels-1; $p++) { 

 open (OUT, ">>$location[$p]_CR_20_$min_temp") || die "can't open file 

pixel file $location[$i] : $!";  

 for ($i=0; $i<=$nr_images-1; $i++) { #take every line from each file 

as part of the image it belonged to. 

#  print OUT "$m_time[$p][$i], $m_value[$p][$i]\n"; 

  print OUT "$m_value[$p][$i]\n"; 

 } 

 close (OUT); 

} 

 

############################################################### 

########### LOOP 5 

# create matrix of all files 

for ($p=0; $p<=$nr_pixels-1; $p++) { 

 open (PIXEL, "$location[$p]") || die "can't open file pixel file 

$location[$i] : $!";  

 print "opened file $location[$p]\n"; 

 $i=0; 

 while (defined (my $pixel = <PIXEL>)){  # go through every file and 

use counter p for location of value in matrix 

   

#  my @pixel = split (/,/, $pixel); 

  

  if ($i > 17215 && $i <= 17226){ 

   $j= $i-17215; 

   chomp ($pixel); 

   $m_value[$p][$j] = $pixel; 

  } 

 

#  $m_time[$p][$i] = $pixel[0]; 

  $i++; 

 } 

 close (PIXEL); 

} 

$nr_images = 12; 

print "nr of images is, $nr_images\n"; 

   

#calculate min and max for each image and add treshold to matrix   

for ($i=0; $i<=$nr_images-1; $i++) { #take every line from each file as 

part of the image it belonged to. 

 $min = 1000; $max = 0; 

 

print "calculate min/max for image $i\n"; 

 

 for  ($p=0; $p<=$nr_pixels-1; $p++) { #loop over all pixels in image 

  if ($m_value[$p][$i] > $max){$max = $m_value[$p][$i];} 

  if ($m_value[$p][$i] < $min){$min = $m_value[$p][$i];} 

 } 

 # put treshold at last position of matrix for studied image 

 $m_value[$nr_pixels][$i] = $min + (0.95*$max - $min) - $variation;       

### ADJUST HERE YOUR ALLOWED VARIATION IN TEMP!!!! 

 print "for image $i min,max,treshold is: $min, $max, 

$m_value[$nr_pixels][$i]\n"; 
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} 

 

#remove clouds based in treshold 

for ($i=0; $i<=$nr_images-1; $i++) { #take every line from each file as 

part of the image it belonged to. 

 

print "calculate cloudremoval for image $i\n"; 

 

 for  ($p=0; $p<=$nr_pixels-1; $p++) { 

  if ($m_value[$p][$i] < $m_value[$nr_pixels][$i] || 

$m_value[$p][$i] < $min_temp){ 

#   print "pixel is $m_value[$p][$i], treshold is 

$m_value[$nr_pixels][$i]\n"; 

   $m_value[$p][$i] = "NaN"; 

  }  

 } 

} 

 

#write data back to file  

print "write back to files started\n";  

for ($p=0; $p<=$nr_pixels-1; $p++) { 

 open (OUT, ">>$location[$p]_CR_20_$min_temp") || die "can't open file 

pixel file $location[$i] : $!";  

 for ($i=0; $i<=$nr_images-1; $i++) { #take every line from each file 

as part of the image it belonged to. 

#  print OUT "$m_time[$p][$i], $m_value[$p][$i]\n"; 

  print OUT "$m_value[$p][$i]\n"; 

 } 

 close (OUT); 

} 

 

  

} # end of subroutine 

 

� Anomaly Detection 

 

######################anomaly detection algorithm###################### 

 

sub ANOMALY { 

 

$kernel = 10; 

$nr_l = 80; 

$nr_c = 73; 

 

#$kernel = 1; 

#$nr_l = 2; 

#$nr_c = 2; 

 

for ($l=1; $l <= $nr_l; $l++){ 

 for ($c=1; $c <= $nr_c; $c++){ 

  $i=0;         

          

 #PIXEL COUNTER 
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  print " working on pixel $l,$c\n"; 

   

  open (OUT, ">ANOMALY/2001L$l\C$c\_CR_20_260_ANOM") || die 

"can't open anomaly output file: $!";  

   

  open (PIXEL, "DATA_TIME/2001L$l\C$c\_CR_20_260") || die "can't 

open file pixel file: $!"; 

  $j=0; 

  while (defined (my $pixel = <PIXEL>)){    

 #add central pxl to matrix at (0,0) 

   chomp ($pixel); 

   my @pixel = split (/,/, $pixel); 

   $matrix[$i][$j] = $pixel[1]; 

   $time[$j] = $pixel[0]; 

   $j++; 

  } 

  $max_times = $j; 

  close (PIXEL); 

   

#upper part 

  $l_k = $l - $kernel;      # 

shift to upper line and check if exists 

  if ($l_k >= 1) { 

   print "working on upper part\n"; 

   $i++; 

    

   open (PIXEL, "DATA_TIME/2001L$l_k\C$c\_CR_20_260") || 

die "can't open file pixel file: $!"; 

   $j=0; 

   while (defined (my $pixel = <PIXEL>)){   

  #add central pxl to matrix at (0,0) 

    chomp ($pixel); 

    my @pixel = split (/,/, $pixel); 

    $matrix[$i][$j] = $pixel[1]; 

    $j++; 

   } 

   close (PIXEL);   

   

    # if line exists, shift columns and check if 

exists 

   for ($k=1; $k <= $kernel; $k++){ 

     

    $c_k = $c - $k; 

    if ($c_k >= 1) { 

     $i++; 

     open (PIXEL, 

"DATA_TIME/2001L$l_k\C$c_k\_CR_20_260") || die "can't open file pixel file: 

$!";  #CHECK IF NAME WILL WORK 

     $j=0; 

     while (defined (my $pixel = <PIXEL>)){ 

    

      chomp ($pixel); 

      my @pixel = split (/,/, $pixel); 

      $matrix[$i][$j] = $pixel[1]; 

      $j++; 
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     } 

     close (PIXEL); 

    } 

     

    $c_k = $c + $k; 

    if ($c_k <= $nr_c) { 

     $i++; 

     open (PIXEL, 

"DATA_TIME/2001L$l_k\C$c_k\_CR_20_260") || die "can't open file pixel file: 

$!";  #CHECK IF NAME WILL WORK 

     $j=0; 

     while (defined (my $pixel = <PIXEL>)){ 

    

      chomp ($pixel); 

      my @pixel = split (/,/, $pixel); 

      $matrix[$i][$j] = $pixel[1]; 

      $j++; 

     } 

     close (PIXEL); 

    } 

   } 

  } 

   

 

#lower part 

  $l_k = $l + $kernel;      # 

shift to upper line and check if exists 

  if ($l_k <= $nr_l) { 

   $i++;    

   print "working on lower part\n"; 

    

   open (PIXEL, "DATA_TIME/2001L$l_k\C$c\_CR_20_260") || 

die "can't open file pixel file: $!"; 

   $j=0; 

   while (defined (my $pixel = <PIXEL>)){   

  #add central pxl to matrix at (0,0) 

    chomp ($pixel); 

    my @pixel = split (/,/, $pixel); 

    $matrix[$i][$j] = $pixel[1]; 

    $j++; 

   } 

   close (PIXEL); 

     

    # if line exists, shift columns and check if 

exists 

   for ($k=1; $k <= $kernel; $k++){ 

     

    $c_k = $c - $k; 

    if ($c_k >= 1) { 

     $i++; 

     open (PIXEL, 

"DATA_TIME/2001L$l_k\C$c_k\_CR_20_260") || die "can't open file pixel file: 

$!";  #CHECK IF NAME WILL WORK 

     $j=0; 
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     while (defined (my $pixel = <PIXEL>)){ 

    

      chomp ($pixel); 

      my @pixel = split (/,/, $pixel); 

      $matrix[$i][$j] = $pixel[1]; 

      $j++; 

     } 

     close (PIXEL); 

    } 

     

    $c_k = $c + $k; 

    if ($c_k <= $nr_c) { 

     $i++; 

     open (PIXEL, 

"DATA_TIME/2001L$l_k\C$c_k\_CR_20_260") || die "can't open file pixel file: 

$!";  #CHECK IF NAME WILL WORK 

     $j=0; 

     while (defined (my $pixel = <PIXEL>)){ 

    

      chomp ($pixel); 

      my @pixel = split (/,/, $pixel); 

      $matrix[$i][$j] = $pixel[1]; 

      $j++; 

     } 

     close (PIXEL); 

    } 

   } 

  }  

 

#left part 

  $c_k = $c - $kernel;      # 

shift to upper line and check if exists 

  if ($c_k >= 1) { 

   print "working on left part\n"; 

   $i++; 

    

   open (PIXEL, "DATA_TIME/2001L$l\C$c_k\_CR_20_260") || 

die "can't open file pixel file: $!"; 

   $j=0; 

   while (defined (my $pixel = <PIXEL>)){   

  #add central pxl to matrix at (0,0) 

    chomp ($pixel); 

    my @pixel = split (/,/, $pixel); 

    $matrix[$i][$j] = $pixel[1]; 

    $j++; 

   } 

   close (PIXEL); 

     

    # if line exists, shift columns and check if 

exists 

   for ($k=1; $k <= $kernel-1; $k++){ 

     

    $l_k = $l - $k; 

    if ($l_k >= 1) { 

     $i++; 
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     open (PIXEL, 

"DATA_TIME/2001L$l_k\C$c_k\_CR_20_260") || die "can't open file pixel file: 

$!";  #CHECK IF NAME WILL WORK 

     $j=0; 

     while (defined (my $pixel = <PIXEL>)){ 

    

      chomp ($pixel); 

      my @pixel = split (/,/, $pixel); 

      $matrix[$i][$j] = $pixel[1]; 

      $j++; 

     } 

     close (PIXEL); 

    } 

      

    $l_k = $l + $k; 

    if ($l_k <= $nr_l) { 

     $i++; 

     open (PIXEL, 

"DATA_TIME/2001L$l_k\C$c_k\_CR_20_260") || die "can't open file pixel file: 

$!";  #CHECK IF NAME WILL WORK 

     $j=0; 

     while (defined (my $pixel = <PIXEL>)){ 

    

      chomp ($pixel); 

      my @pixel = split (/,/, $pixel); 

      $matrix[$i][$j] = $pixel[1]; 

      $j++; 

     } 

     close (PIXEL); 

    } 

   } 

  } 

 

#right part 

  $c_k = $c + $kernel;      # 

shift to upper line and check if exists 

  if ($c_k <= $nr_c) { 

   print "working on right part\n"; 

   $i++; 

    

   open (PIXEL, "DATA_TIME/2001L$l\C$c_k\_CR_20_260") || 

die "can't open file pixel file: $!"; 

   $j=0; 

   while (defined (my $pixel = <PIXEL>)){   

  #add central pxl to matrix at (0,0) 

    chomp ($pixel); 

    my @pixel = split (/,/, $pixel); 

    $matrix[$i][$j] = $pixel[1]; 

    $j++; 

   } 

   close (PIXEL); 

     

    # if line exists, shift columns and check if 

exists 

   for ($k=1; $k <= $kernel-1; $k++){ 
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    $l_k = $l - $k; 

    if ($l_k >= 1) { 

     $i++; 

     open (PIXEL, 

"DATA_TIME/2001L$l_k\C$c_k\_CR_20_260") || die "can't open file pixel file: 

$!";  #CHECK IF NAME WILL WORK 

     $j=0; 

     while (defined (my $pixel = <PIXEL>)){ 

    

      chomp ($pixel); 

      my @pixel = split (/,/, $pixel); 

      $matrix[$i][$j] = $pixel[1]; 

      $j++; 

     } 

     close (PIXEL); 

    } 

      

     $l_k = $l + $k; 

    if ($l_k <= $nr_l) { 

     $i++; 

     open (PIXEL, 

"DATA_TIME/2001L$l_k\C$c_k\_CR_20_260") || die "can't open file pixel file: 

$!";  #CHECK IF NAME WILL WORK 

     $j=0; 

     while (defined (my $pixel = <PIXEL>)){ 

    

      chomp ($pixel); 

      my @pixel = split (/,/, $pixel); 

      $matrix[$i][$j] = $pixel[1]; 

      $j++; 

     } 

     close (PIXEL); 

    } 

   } 

  } 

  $max_images = $i; 

   

  print "used $max_images pixels for background with $max_times 

timestamps each\n"; 

 

### ANOMALY CALCULATION   

  for ($j = 0; $j <= $max_times-1; $j++) { 

   $sum = 0; $image_used = 0; 

   for ($i = 1; $i <= $max_images; $i++) { 

#    print "matrix value = $matrix[$i][$j]\n"; 

    if ($matrix[$i][$j] != NaN) { 

     $image_used++; 

     $sum = $sum + $matrix[$i][$j]; 

    } 

   } 

#   print "sum is $sum for $image_used images used\n"; 

   if ($sum == NaN) { 

    $anomaly = "NaN"; 

   } else { 
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#    $background  = $sum/$image_used; 

    $anomaly = ($matrix[0][$j] / $sum) * $image_used;

   #replace original value with anomaly 

   } 

   print OUT "$time[$j], $anomaly\n"; 

  } 

  close (OUT); 

 } 

} 

         

} # end of subroutine 
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Appendix F: HANTS cloud removal 

 

Procedure taken in HANTS to obtain cloud free images 

 

(1) Meteosat-5 TIR images are of data type, floating point. This data type needs to be converted into 

an integer type [fix((b1-273.15)*100)] to be used in HANTS. 

 

(2) Processing of time series imagery in HANTS is executed on a single-interleaved image file (BIL). 

Input of Meteosat-5 are in band sequential format(BSQ) so a conversion from BSQ to BIL is 

needed (NB: The header files were edited, so for an image of Sample 73, Line 80 and Bands 

17078, the new header information contains Sample 5840, Line 17078 and Bands 1). 

 

(3) Output is a single image file in BIL without cloud contaminated observations.  

 

(4) This final image was converted back into a BSQ format (Sample 73, Line 80 and Bands 17520). 

The number of bands in this output took into account those missing images. 

 

(5) The BSQ image was then converted into the original datatype, floating point using the following 

formula: [float((b1/100)+273.15)]. 
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Appendix G: Earthquake Definitions 

Diagram and Terminologies for Earthquake events 

 

 
Figure 5-2: Diagram showing the features involved in an earthquake event [59]. 

 

 

Focus/hypocenter: is the point within the earth where an earthquake rupture starts. 

 

Epicentre: is the point on the earth’s surface directly above the hypocenter at the surface of the earth. 

 

Fault plane: is the planar (flat) surface along which there is slip during an earthquake. 

 

Fault trace: is the intersection of a fault with the ground surface.  

 

Fault scarp: is the feature on the surface of the earth that looks like a step caused by slip on the fault. 
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Appendix H: Earthquake scales and NEIC results 

Earthquake Scales and Brief Description for NEIC Earthquake Search Results 

Scale T (sec) λmax (km) Related scales 

ML 0.1 ~ 3 10 mbLg 
MS ~ 20 70 MGR, MR, MD, MZ, MV, MJMA 
mB 0.5 ~ 12 70  
mb ~ 1 10 mbLg 
Moment magnitude (MW) 10 ~ ∝ ∝ MM, MW, ME, Mt 

MC - -  
MI - - MK 

Table 5-3: Different Magnitude Scales [20]. 
where 
T  Period 
λMAX  Maximum wavelength 
ML  Local magnitude, Richter (1935) 
MS  Surface-wave magnitude, Gutenberg (1945a) 
mB Body-wave magnitude, Gutenberg (1945b), Gutenberg and Richter (1956) 
mb Short-period body-wave magnitude reported in “Earthquake Data Reports” and “Bulletin of 
International Seismological Center” 
mbLg Lg-wave magnitude, e.g., Nuttli (1973) 
MGR  Magnitude used in Gutenberg and Richter (1954) 
MR  Magnitude used in and Richter (1958) 
MD  Magnitude used in and Duda (1965) 
MZ  Surface-wave magnitude determined from the vertical-component seismograms (e.g. Earthquake Data 
Reports) 
MV  Surface-wave magnitude defined by Vanêk et al. (1962) 
MJMA  Magnitude scale used by the Japan Meteorological Agency 
MM  Moment magnitude by Brune and Engen (1969) 
MW  Kanamori (1977) 
ME  Purcaru and Berckhemer (1978) 
Mt  Tsunami magnitude regressed against MW, Abe (1979) 
MC  Coda (or duration magnitude), e.g., Bisztricsány (1959), Tsumura (1967), Real and Teng (1973) 
MI  Magnitude determined from intensity data and macro-seismic data, e.g., Nuttli and Zollweg (1974), 
Nuttli et al., (1979), Utsu (1979) 
MK  Kawasumi (1951)        [20] 
 

 

Surface-wave magnitude MS: although this scale suffers from the saturation at MS ≥ 8, it can be 

determined very easily, and is a useful scale for most events larger than MS =5. Surface waves are analogous to 

water waves and travel along the Earth’s surface [20]. They travel slower than body waves. Because of their low 

fequency, long duration and large amplitude, they can be the most destructive type of seismic wave. There are 

two types of surface waves: Rayleigh waves and Love waves. This scale can be used for moderate to large 

earthquake and for shallow earthquakes wih depths less than 70 km. Also it is suitable to detect earthquakes a 

distance greater than 1000km from the epicenter.  

 

Body-wave magnitude mB: the body-wave magnitude which is determined from the maximum 

amplitude of various body-wave phases, here denoted by mB. is useful to represent the source spectrum at a 

period from 1 to 10 seconds. Many recent studies on the amplitude attenuation curves and their regional 

variations will hopefully make inter-regional comparisons of mB more meaningful than in the past [20]. Body 

waves travel through the interior of the Earth. They follow raypaths refracted by the varying density and modulus 
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(stiffness)  of the Earth’s interior. The density and modulus, in turn, vary according to temperature, composition 

and phase.  

 

Body-wave magnitude mb: this scale, which is determined from the first few seconds of short-period P 

waves, represents the size of an earthquake at its beginning. Because of this, for earthquakes with a large fault 

dimension and complex rupture mechanism, the usefulness if this scale is limited. However, for relatively small 

events (e.g.,  mb ≤ 5.5), this scale approximately represents the source spectrum at the period of 1 second and is 

useful for quantification of earthquakes at short periods [20]. It is ideal to locat earthquakes up to a distance of 5° 

geographical coordinates away from the epicenter. 

 

Moment magnitude: the moment magnitude is made (longer than 100 seconds for very large events) 

more directly than the conventional scales. If the energy-moment relation is correct, the moment magnitude can 

be determined from the seismic moment by using the formula [MW = (log MO -16.1)/1.5] for both shallow and 

deep earthquakes. Since the determination of the seismic moment is becoming a relatively routine practice, the 

moment magnitude is a very useful parameter for earthquake quantification [20]. 

 

Local and regional scales: local magnitude ML, the JMA magnitude MJMA, Lg magnitude mbLg, the coda 

(duration) magnitude MC and the intensity magnitude MI. Since the types of the data used in these scales are very 

different from region to region, it is often difficult to relate one scale to another [20]. This magnitude sclae 

systems were developed for shallow and local earthquakes. 

 

The problem of the magnitude scale became very complex as many different scales were 

introduced to accomodate different situations such as use of teleseismic surface and body waves, 

extension of the scale to intermediate and deep earthquakes, change in the seismic instrumentation, 

extension of the scale to very small and very large earthquakes and introduction of new seismological 

concepts. 

 

Most magnitude scales currently in use are empirical[1]. Usually a magnitude M is determined 

from the amplitude A and the period T of a certain type of seismic waves through a formula which 

contains several constants. These constants are determined in such a way that the magnitudes on the 

new scale agree with those of an existing one, at least over a certain magnitude range. In some case, 

the duration of seismogram, macro-seismic data (e.g., intensity, tsunami source area) and geodetic 

data are used for the determination of magnitude. In this case too, the new scale is regressed against 

existing ones.  

 

Earthquakes can be quantified with respect to various physical parameters such as the fault 

length, fault area, fault displacement, particle velocity and acceleration of fault motion and a 

combination of these. It is impossible to represent all of these parameters by a single number, the 

magnitude. Obviously there is a limitation in the use of the magnitude scale for quantification of 

earthquakes. The main purpose of the magnitude scale is to provide a parameter which can be used for 

the first-cut reconnaissance analysis of earthquake data (catalogue) for various geophysical and 

engineering investigations; special caution should be exercised in using the magnitude beyond the 

reconnaissance purposes [20].  
 

 

[1] Empirical denotes information gained by means of observation, experience, or experiment. A certain concept in science and the 

scientific method is that all evidence must be empirical that is dependent on evidence or consequences that are observable by the 

senses. It refers to the use of working hypotheses that are testable using observation or experiment [65].  
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�EIC EARTHQUAKE RESULTS FOR BAM as extracted from USGS for Pixel 35,44 
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�EIC EARTHQUAKE RESULTS FOR L’AQUILA 
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Appendix I: Time series profiles of points analysed 

Topography and Slope Aspects of points on Google map with Elevation Exaggeration of 3 

  

Shade, slope, aspect and cloudiness play a dominant part in the spatial distribution of solar 

energy at a given elevation, to the extent that solar energy input can easily vary by a factor of 100 

from a permanently shaded valley bottom to a well exposed slope [16]. Aspect controls solar radiation 

to hill-slopes: north facing slopes are more shaded in the northern hemisphere, while south facing 

slopes are not. South facing slopes are more directed to the sunlight, winds and snow becoming 

warmer and dryer (due to higher levels of evapotranspiration) than a north-facing slope. The aspect of 

a slope can make very significant influences on its local climate. The sun illumination also plays a 

significant role as it describes how much radiation an object will get throughout the day. For example, 

because the sun’s rays are in the west at the hottest time of day in the afternoon, in most cases a west-

facing slope will be warmer than a sheltered east-facing slope [64].  

 
Figure 5-3: Amount of energy received by a sloping surface compared with a horizontal surface (�orthern 
Hemisphere, 45º latitude). The abscissa indicates the slope in degrees, varying from 0º (horizontal) to 90º 

(vertical), while the different curves show the effect of aspect, i.e. the direction in which a perpendicular to 
the surface points, e.g. East and West indicates the energy received by surfaces that face the East and 

those that face the West [16]. 
 

As seen in Figure 5-3, the amount of energy received by sloping surfaces in the Northern 

hemisphere is illustrated so if a pixel in the image is located on a south facing slope it receives most 

energy. In the Southern Hemisphere, the N and S sky directions are inverted, i.e. the curve standing 

for North becomes South, South-East and South-West becomes North-East and North-West, etc... 

Also note that the curves go through a maximum at the slope that corresponds to the latitude, i.e. the 

closer the station is to the equator, the "flatter" the curves get: near the equator, steep slopes receive 

relatively less energy than gentle slopes.  

 
BAM EARTHQUAKE: Located in the �orthern Hemisphere 

Condition (i): Pixel 37,40- which is the epicentre is oriented on a gently facing North-Eastern slope 

which is relatively flat in the region. 
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Condition (ii): Pixel 35,44- oriented on a North-Eastern slope and is in a close proximity to the 

epicentre is explained within this study. 

 
Condition (iii): Pixel 20,15- oriented on an Eastern slope and is far from the epicentral region. 
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Condition (iv): Pixel 32,45- oriented on a South-Western slope. 
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As seen from the 2003 profile, there is no significant earthquake-related anomaly generated 

for a month period before and a week after the Bam’s earthquake event. Anomalies appear in summer 

whereby an approximate 20% count of anomalies last for a week period. This may be a result of 

another earthquake occurring in the summer period of the same year called Kerman’s earthquake on 

August 21st 2003 with a lower magnitude of 5.9. This may lead us to understand that perhaps sporadic 

release of energy from stressed rocks leads to a reduction on magnitude of the main shock. Also, there 

was a 10% count of anomalies appearing in April which is regarded as a false positive since no 

earthquake (above magnitude 5.0) was recorded. This is half the number of anomalies appearing 

before the Kerman’s earthquake which offers much uncertainty for the developed method. When 

analysed visually it was seen that there were still clouds affecting some of the background pixels 

within the ring. This uncertainty can be limited by the long time series dataset, as patterns can be used 

to draw conclusions about the anomalous behaviour. In comparison with other years, many of the 

false positives from 2003 appeared in other years. For instance, observing the Kerman’s earthquake 

for a one month period prior to the event, it will suggest that the anomaly is a result of the earthquake. 

However, a distinct pattern or trend is still evident within each profile for the summer period (July-

August months) suggesting that the anomaly within 2003 is not an earthquake-related anomaly but an 

anomaly caused by some other factor. Likewise, for the Bam earthquake in December, there was no 

sign of any anomalous activity for all the years including that of 2003. 

 

 

Condition (iv) for 2003: 

  

To assess topography and aspect, a different facing slope from condition (ii) is studied. By 

just observing 2003, there was a relatively significant earthquake-related anomaly of 25% in 

December. Early January of that same year, a smaller anomaly was seen and had a relation of 10% to 

an earthquake occurrence. This was regarded as a false positive within the series. There was no 

evidence which supported that an earthquake anomaly was apparent before the Kerman’s earthquake, 

in this profile. In the year 2000, the maximum chance for an earthquake-related anomaly was 20% in 

November. Even though this value was decreasing, this anomalous behaviour lasted beyond 

November into December. Likewise, in 1999, a dual peak is prominent with maximum amplitudes of 

approximately 27% and 18%. Whilst comparing the other years, it was found that several false 

positives (especially in the month of January) as well as false negatives are within the profiles. This 

profile is comparable to that of the profiles in condition (ii). Watching these profiles not much can be 

said about the time the anomalies were detected. The time of day plays a significant role in the 

amount of heat transferred to an object. The original outputs from the anomaly detection algorithm 

were used which provided the times the anomaly was most prevalent within a 1σ, 2σ and 3σ profile. 

They were found to be common at the evening-night-time period.  
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Condition (iii) which is a pixel (20,15) located far from the epicentre. This pixel is oriented on 

an eastern slope. In Section 4.1.2, describes the evnt taking place in the year of the earthquake 

occurrence as observed in this pixel. The other years are shown in figures below. 

 

As suggested, pixels occurring far from the epicentre should not be influenced by the 

thermal anomalies and have a greater chance of not being related to the impending earthquake 

event. For 2003, there were no earthquake-related anomalies for Bam neither for Kerman. All 

the anomalies within this year were relatively insignificant as they were all under a 5% chance 

of being related to the earthquake phenomena. As compared to other years, the maximum 

relation for any sort of an earthquake anomaly was 10%. In 2001, a magnitude 5.0 earthquake 

produced an approximate 10% chance of being earthquake-related. Even though there was an 

earthquake in 2001, a similar pattern in 2002 appeared suggesting that, this cannot be caused 

by the earthquake but by another component such as seasonality within the dataset. False 

positives continuously emerge within the dataset.  
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L’AQUILA EARTHQUAKE: Also located in the �orthern Hemisphere 

Condition (i): Pixel 58,55- which is the epicentre and is oriented on a steep South slope.  

 
Condition (ii): Pixel 43,25- oriented on a gently facing south slope 

 
Condition (iii): Pixel 21, 32- which is oriented on a west-facing slope.  

 
Condition (iv): Pixel 55, 62- which is oriented on a south-western slope.  
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Condition (v): Pixel 60,49 and Pixel 60,50 - which is oriented on a north-eastern slope and on an 

eastern slope respectively.  

 
Condition (vi): Pixel 54,66- which is oriented on a south-eastern slope.  
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Condition (vii): Pixel 55,64- which is oriented on a north-western slope.  

 
Condition (viii): Pixel 15,59- which is located in a waterbody. 
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Condition (i) at epicentre (Pixel 58,55) and is oriented on a steep South slope. There was a significant anomaly 

in December with an approximation of 55% being related to an earthquake. However, NEIC results showed that 

this peak cannot be caused by any earthquake, since no earthquake was recorded at this time. Throughout the 

year, anomalous activity was seen but it was not significant to be regarded as an earthquake-related thermal 

anomaly.   

 
Condition (ii) at Pixel 43,25 and is oriented on a gently facing south slope. The topography also influences the 

amount of anomalies manifesting itself in an area. On a steep slope, which is open to the direct solar radiation 

will be heated faster and will take a long time for the temperatures to be reduced as compared to a gentle facing 

slope. The intensity of anomalies appearing on a steep slope will be greater than that of a gentle slope but even 

this is subjected to the time of the day. If the sun is positioned over a gentle slope, the temperature will be 

higher than those on a steep elevated slope. This is probably one reason which explains the 15% anomalies in 

September. 
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Condition (iii) at Pixel 21,32 and is oriented on a west-facing slope. All anomalies on this slope are relatively 

insignificant. 

 
 

Condition (iv) at Pixel 55,62 and is oriented on a south-western slope. 
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Condition (vi) at Pixel 60,50 and is oriented on an eastern slope. 

 
 

Condition (vii) at Pixel 54,66 and is oriented on a south-eastern slope 
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Condition (viii) at Pixel 55,64 and is oriented on a north-western slope. 
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Appendix J: Frequency of Earthquakes 

Average frequency of occurrence of earthquakes  

Earthquakes are classified in categories ranging from imperceptible to great, depending on their 

magnitude. The earthquakes under study fell within the description of large earthquake events. 

 

DESCRIPTION MAGNITUDE OCCURRENCE/year AVERAGE/day 

Great 8.0 + 1  

Major 7.0-7.9 18  

Large (destructive) 6.0-6.9 120 0.5 

Moderate (damaging) 5.0-5.9 1000 4 

Minor (damage slight) 4.0-4.9 6000 36 

Generally felt 3.0-3.9 49000 360 (every 4 minutes) 

Potentially perceptible 2.0-2.9 300000 3600 (every 24 seconds) 

Imperceptible less than 2.0 600000+ > 3600 (every 24 seconds) 

 

Extracted from SEVGĐ [47]. 

 

 




