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Abstract

Thermal remote sensing has been used to indicate temperature increases prior-to major earthquakes in
the vicinity of the future epicentre. These studies compared results of multi-temporal datasets which
spanned only for days to weeks before an earthquake. Even though these results are promising, the
scope of those studies did not allow for longer observations and it is unclear whether the temperature
rise is unique, persistent and indeed earthquake-related. The purpose of this exploratory study is to
verify whether significant thermal infrared anomalies were found in association with known
earthquakes by systematically applying satellite data time series analysis to multi-year time series. An
innovative multi-temporal satellite data approach was developed to investigate possible relations
between thermal infrared fluctuations and the earthquake occurrence. The significance of the
developed methodology was explored using a six year (1999- 2004) Meteosat-5 satellite dataset of the
Bam earthquake which was later applied to a year (2009) of MSG2 dataset for the recent L’Aquila
earthquake. Analysis of long time series of thermal imagery provides answers to whether significant
anomalies appear prior to an earthquake event and are periodic in nature. A significant earthquake-
related anomaly was detected for Bam’s earthquake. Unlike Bam, there was no earthquake-related
anomaly occurring in L’ Aquila.
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THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION

1. Introduction

This introductory chapter of the research presents the overall framework of the study. It focuses on
the background, problem definition, formulation of research objectives, research questions and
hypotheses, and a brief overview of the outline of the research.

1.1. Background

Earthquakes are one of the most dangerous and destructive forms of natural hazards. They
strike with sudden impact and very little warning. They may occur at any time of the day or on any
day of the year. Earthquakes can devastate an entire city or a region of hundreds of square kilometres.
The extent of damage from an earthquake is dependent on several factors, such as the magnitude of
the earthquake, the geology of the area, distance from the epicentre, population concentration and
structure design and construction [24]. Apart from direct losses in terms of property and lives, there
are indirect losses such as disruption of transport networks, power supply, and communication or
through the necessary evacuations of buildings, change in zonal plans and adverse effect on tourism.
Society has a compelling strategic need to anticipate these earthquake events since large urban centres
have expanded in tectonically active regions.

On December 26", 2003 an earthquake of M,, 6.6 magnitude in the South-eastern region of
Iran shook the city of Bam. This incident destroyed most of Bam city and the nearby villages where
the official death toll exceeded 26,000 with more than 30,000 injuries and 75,000 left homeless. The
fact that this earthquake occurred at 5:26am local time on a Friday morning during the Iranian
weekend when most people were asleep in their homes provides one of the main reasons for the high
death toll [28]. Another earthquake occurring on April 6™, 2009 of M,, 6.3 magnitude struck the
province of L’Aquila located in Central Italy which caused extensive damage to the city and areas of
the province just outside L’Aquila. The province is known for its medieval architecture and
monuments of historic and artistic value which suffered damage and many of the modern buildings
were subjects to the damage. Hundreds of people were killed, thousands were injured and tens of
thousands were left homeless [63]. These two earthquakes will be studied in detail in this research.

Unfortunately up to date, there is no direct solution to determine when such a phenomena
will occur. However, remote sensing applications are diverse and are widely used in earth observation
research owing to its effective results, accessibility and time conserving methodologies. Its full
capability is yet to be determined. Remote sensing has emerged as a potential tool in studying
earthquake activities and may assist in providing a timely warning of the potentially damaging
earthquakes in order to allow appropriate preparatory measures for the disaster, enabling people to
minimize loss of life and reduce the economic losses of property and assets [47]. This research
proposes a method to identify pre-earthquake activities for the Bam earthquake which will later be
applied to L’Aquila. Indeed, this research may assist in reducing these effects caused by earthquake
events.




THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION

1.2. Problem Definition

One area that may hold promise in advancing the science of short-term earthquake prediction
is the study of earthquake precursors. The term earthquake precursor is used to describe a wide variety
of physical phenomena that reportedly precede at least some earthquakes. During the last century,
many precursors to the earthquake event were identified. These phenomena include induced electric
and magnetic fields, groundwater level changes, gas emissions, temperature changes, surface
deformations, and anomalous seismicity patterns. While each of these phenomena has been observed
prior to certain earthquakes, such observations have been serendipitous in nature [6]. Thermal
anomalies are one of the earthquake precursors that are gaining more attention from the scientific

community.

Earlier studies have indicated that before major earthquakes satellite retrieved temperatures
increase in the vicinity of the future epicentre [43]. Most of the studies compared results of multi-
temporal datasets which spanned some days or weeks before and after the earthquake. These studies
performed only visual assessments of the imagery. Even though these results are promising, the scope
of those studies did not allow for longer observations and it is unclear in how far these anomalous
temperatures also occur with no earthquake following (i.e. false positives).

In this study, long time series of thermal imagery will be used in order to provide answers to
whether significant anomalies appear prior to an earthquake event and are periodic in nature. The
research is being performed to understand normal patterns within the data thus defining the term
“thermal anomaly” in the context of earthquake research. It is most suitable to conduct this research
with high temporal resolution satellite like the Meteosat series of satellites since long time series is
required. The occurrence of these anomalies will be evaluated for two major earthquakes.
Subsequently the anomalies will be assessed as to whether they are directly related to the earthquake
or caused by non-earthquake phenomena. The probability of the predicted earthquake to occur by
chance and to match up with the precursory anomaly shall also be evaluated. The frequency of false
positives (similar anomalies not followed by an earthquake) and false negatives (earthquakes not
preceded by an anomaly) should be tested.

1.3. Research Objectives

1.3.1. Main Objective

To verify if significant thermal infrared anomalies can be found in association with known
earthquakes by systematically applying satellite data time series analysis to multi-year time series.

1.3.2. Specific Objectives

1. To determine the average surface temperatures from the time series trends and the variance
not related to earthquake activity.

il. To develop a detection algorithm for anomalous surface temperatures related to earthquake
activity by means of spatial and temporal surface temperature patterns using Meteosat-5 and MSG
TIR imagery.

iii. To determine which anomalous temperatures are associated with large earthquakes and also

those anomalies which are not directly earthquake-related.

2
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1.4. Research Questions and Hypotheses

For Specific Objective 1

1. Can time series be used to predict normal variance in surface temperatures not related to
earthquake activities?

Ho : Time series predict normal variance of land surface temperatures

For Specific Objective 2

1. Is it possible to detect a thermal anomaly prior-to large earthquakes using a time series of
thermal images?

Ho: The thermal anomaly is detectable within a 0-4 week period prior-to the event

ii. How do spatial and temporal patterns of anomalous temperatures caused by earthquakes
differ from those caused by other events (such as fires, weather-related, seasonal)?

Ho: Earthquake-related anomalies appear as a uniquely identifiable event in time series

For Specific Objective 3

1. Is there anomalous change in surface temperature in the vicinity of the located epicentre or
fault zone?

Ho: The thermal anomaly appear closer to the epicentre or along a fault-line

il. How do these anomalies appear over time?

Ho: Anomalies appear randomly in time

iii. Is it possible to use time series to detect anomalies for different conditions (for smaller
magnitude earthquakes, other sensors and wet conditions)?

Ho: Time series is capable of detecting anomalies for different scenarios

1.5. Methodology

Data sources available include:
» Earthquake catalogue: generated from USGS website
» MSG and Meteosat imagery using GEONETCast Toolbox Plug-in and UMARF
» MODIS (as a base to assess whether anomaly was visible as suggested by other researchers)

Data processing includes:
» Conversion from DN to Radiant temperatures
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» Cloud-Masking from data
» Detection of anomalies

Data analysis includes:
» Assessment of anomalies: earthquake- related versus false positives
» Comparison of several years of data
» Applied to L’ Aquila

1.6. Outline of thesis

The reporting of the research is structured in five chapters. The structure of the thesis is as follows:
Chapter 1: Introduction provides an overview of the problem definition emphasizing the reason for
research, research objectives, research questions, hypotheses, a general description of the
methodology and an overall outline of the thesis.

Chapter 2: Literature review provides background information of earthquakes and thermal anomalies;
the concepts of thermal remote sensing comprising satellite specifications; presents a background of
the study area; includes the previous attempts made with regards to time series, as well as possible
anomaly detection techniques.

Chapter 3: Methodology provides the overall methodology applied for the research and its
implementation.

Chapter 4: Data Analysis and Results obtained from the methodology employed with respect to time
series data and detection of thermal anomalies, and from statistical tests performed.

Chapter 5: Discussion and Conclusion addresses the main findings from the results obtained with
brief explanations; and the major conclusions drawn from the research despite the limitations
involved and several recommendations.
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2. Literature Review

This chapter presents a review of literature on the concept and ideologies related to the present
research. The review indicates the study areas for this research and highlights the previous studies
performed by fellow researchers.

21. Earthquakes and Thermal Anomaly

Earthquakes are vibrations of a part of the earth’s crust caused due to internal stresses acting
on rocks in the crust. The increasing stress will result to some extent in subsurface heat production
rather than to generate seismic waves. The total energy from an earthquake includes energy required
to create new cracks in rock, energy dissipated as heat through friction, and energy elastically radiated
through the earth. The heat or temperature rise resulting from the release of energy by the earthquake
can provide interesting observations in earthquake studies which may offer clues about future
earthquake activities. Figure 2-1 addresses two mechanisms that generate pre-earthquake thermal
infrared (TIR) anomalies which can be detected from satellite thermal sensors.

DETECTION BY SATELLITE THERMAL SENSORS

. Thermometer
N sheltered
/ N in meterological
4 i station

__________________

\
Local
Greenhouse
effect

Thermal
Energy released
by PHPs

Rock rupture
causing
earthquake

Stress
built-up

Figure 2-1: Schematic diagram showing two widely accepted theories of generation of pre-earthquake TIR
anomaly that can be detected by satellite thermal sensors [44].

Thermal anomalies are the increase in emission of the earth’s surface in TIR wavelengths.
The enhanced emission gets recorded in the thermal sensors and can be separated from the
surroundings with some uncertainty. It was shown that thermal anomalies appear before major
earthquakes and can be traced through thermal sensors [35]. The mechanisms explaining the
generation of thermal anomalies can be grouped into two categories, the first accounting atmospheric
processes responsible for the appearance of thermal anomaly, and the second attributing rise in land
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surface temperature (LST) due to ground related processes. Several mechanisms which lead to the

increment in outgoing infrared (IR) radiation ahead of an impending earthquake have been linked to:

>

Gas emissions- stresses prior to these phenomena may also bring about sub-surface degassing.
Upon their escape to the atmosphere, these gases like CO,, CHy, N,, Rn may create a localized
greenhouse effect and increase the temperature of the region, thus creating a thermal anomaly
in the surrounding region. Such changes detected through thermal remote sensing can provide
important clues about future earthquakes. An abnormality in the thermal properties of the
Earth’s surface, detected by thermal channels like Meteosat, can prove to be a valuable
indicator of an impending earthquake [42, 44];

Water level changes- wells have changed the water levels and water quality prior to the
earthquake. Microfracturing prior to large earthquakes leads to increases in ion and gas
concentrations in the groundwater (firstly it allows trapped gases to escape from the rock
matrix and secondly, it produces fresh silicates, which are believed to increase the rate of
reaction of groundwater) [6];

Groundwater change- changes in the circulation patterns of groundwater bringing water of
different temperature to the surface. The flow of water in the earth before an earthquake
might allow that water to come into contact with hotter rock bodies at depth and raise the
temperatures of near-surface groundwater [6];

Activating positive-hole pairs (PHPs) during rock deformation- electronic charge carriers can
be free electrons or sites of electron-deficiency in the rock/mineral structures (3-D array of
oxygen, which has unstable radicals) [41, 44];

Ground temperature change- frictional heating on fault surface could contribute to ground
temperature changes. Because rocks have a relatively low thermal conductivity any such
temperature —related changes that may occur at the depth in the earth would take a long time
to reach the surface through the rock itself [6];

Pore collapse- as stresses in the earth increase prior to an earthquake, the pore volume in the
rocks collapses, thereby releasing chemical species into the groundwater, generating a
geochemical anomaly [6].

Numerous observations of such thermal anomalies preceding several major earthquakes are

reported from different parts of the world. These anomalies were almost always cited to be positive

anomalies with the exception of the studies performed in Japan and China [55]. From research, short-

lived anomalies:

>

Y V V VY

typically appear 6-24 days before and continued for about a week after an earthquake [35, 54,
55];

affect regions of several to tens of thousands square km [5, 42, 53];

display a deviation of 2-10 °C in the vicinity of the epicentres [35, 36, 42, 54];

where the size of the anomaly is ~100km in length and ~10km 1in width [54];

are sensitive to crustal earthquakes with magnitudes greater than 4.5 and are normally
attached to large faults [54].

The rapidity with which these temperature excursions occur suggests that they cannot be due to

thermal variations caused by a heat pulse rising from within the earth. Pre-earthquake thermal

anomalies and their spatial and temporal variations are reportedly controlled by various factors which

vary from earthquake to earthquake. These factors include magnitude, focal depth, geological setting,
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topography and vegetation cover, stress-buildup and degassing [55] as well as meteorological
conditions [35, 54].

Thermal anomalies have been defined in different contexts regarding the researcher’s task. For
instance, Ouzounov (2006) was studying the relationship of the thermal anomaly in a spatial context.
He defined a thermal anomaly as “the difference between the spatial daily root mean square (RMS)
LST value and the mean LST value of an area of M x N km’ ( i.e. the area of interest which is usually
represented as 100x100 km) which is centred at the epicenter and located on the stress-released fault
for the entire time interval of analysis” [35]. Unlike the work that was conducted by Ouzounov
(2006), another approach was addressed statistically by Tramutoli (1998). He defined a thermal
anomaly only after assessing the datasets using the presence/absence of anomalous space-time TIR
transients in the presence/absence of seismic activity [53]. Later in the research, the definition of an
anomaly will be defined for the use of the required datasets.

2.2, Thermal Remote Sensing

Satellite thermal remote sensing can be used in the detection of anomalies in LST in and
around epicentral regions. In 1988, Gornyi et al. [17] first analysed remotely sensed images of
National Oceanic and Atmospheric Administration- Advanced Very High Resolution Radiometer
(NOAA-AVHRR) of the earth’s surface in the 10.5-11.3um range who showed a stable increase of
outgoing IR radiation over linear structures of a seismically active region in Central Asia as compared
with adjacent areas. He indicated that outgoing IR radiation can be used as an indicator of seismic
activity [27] and suggested that meteorological satellites be used to assess these indicators. It is first
important to understand what the term thermal anomaly represents to know what these meteorological
satellites actually observe.

The modern operational space-borne sensors in the IR spectrum allow monitoring of the
Earth’s thermal field with a spatial resolution of 0.5-5 km and with a temperature resolution of 0.12—
0.5 °C. Temporal coverage is every 12 hours for the wide-swath, polar orbit satellites (for e.g.
AVHRR and MODIS), and 15 minutes for geostationary satellites. Such sensors may closely monitor
seismic prone regions and provide information about the changes in surface temperature associated
with an impending earthquake. Thermal observations from satellites indicate the significant change of
the Earth’s surface temperature and near-surface atmosphere layers [54].
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—

There are three principal laws within thermal remote sensing, namely

Law
Planck’s Radiation Law- the amplitude of
radiation emitted (i.e. spectral radiance) from
a blackbody. It is generally provided in one
of two forms; L,(1) is the radiance per unit

Equation

. 2he? ] 1
L,(A)= —,{e’,\p e l]
A 57 AT

A

Parameters
T- temperature (°K)
c- speed of light
(2.99x10® ms™)
h- Planck’s constant

has maximum value. This can be found by
taking the derivative of L, with respect to
wavelength and determining where the
function is zero.

Wien’s Law explains the shift to shorter
wavelengths with increasing temperature (i.e.
as temperature increases the total amount of
radiant energy peak shifts to shorter
wavelengths).

According to Wien’s Displacement law,
temperatures of 600°K and greater are
associated with fire, lava flows which
corresponds to bands around 3-to-5 pum in the
SWIR, where the radiation maximum for
those fires can be expected. On the contrary,
the 8-to-14 um band spans the radiant energy
peak for a temperature of 300°K
corresponding to the ambient temperature of

the earth (LST).

max and in the
more common form

Appe= CIT

max

Equation (2)

wavelength as a function of wavelength 4 | Equation (1) (6.63x107 Js)
and L,(v) is the radiance per unit frequency k- Boltzmann’s constant
as a function of frequency v. (1.38x10-23 J °K™")
By the Planck Law, all heated objects emit a L;- spectral radiance
characteristic spectrum of electromagnetic (Wm st
radiation, and this spectrum is concentrated
in higher wavelengths for cooler bodies.

2| Wien’s Displacement Law- the wavelength __hc Amax- peak wavelength
(or frequency) where the spectral radiance kT A,

(m)

C,,—Wien’s displacement
constant

(2.898x10° m°K)

T- temperature (°K)

Stefan-Boltzmann Law- the total blackbody
irradiance as a function of the temperature T.
This law can be derives by integrating the
spectral radiance over the entire spectrum.
Stefan-Boltzmann’s Law is explained by the
area under the Planck Law curve. It states
that colder objects emit only small amounts
of electromagnetic radiation.

b - 5\_4
L:JLidA:‘Ef‘ s
15¢°h°

the
common form

M=nlL =6 T4

and iIn more

Equation (3)

M- radiant exitance
(Wm*)

L- radiance(brightness
temperature) (Wsr''m™)
o- Stefan-Boltzmann’s
constant

(5.67x10-8 Wm™°K™*)
T- temperature (°K)

Table 2-1: Radiation laws governing Thermal Remote Sensing [39].
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Kinetic temperature is an “internal” manifestation of the average translational energy of the
molecules constituting a body. In addition to this internal manifestation, objects radiate energy as a
function of their temperature. This emitted energy is an “external” manifestation of an object’s energy
state. It is this external manifestation of an object’s energy state that is remotely sensed using thermal
scanning. The emitted energy is used to determine the radiant temperature of earth surface features ,
see Appendix A. The output from a thermal sensor is a measurement of the radiant temperature of an
object, T, [26]. Radiance data and the inversion of Planck function provide the T.4 and the
elimination of atmospheric effects leads to surface temperature [49]. Thermal sensors detect radiation
from the surface (approximately the first 50 um) of ground objects. Temperature extremes, heating
and cooling rates can often furnish significant information about the type and condition of an object.
The extremes and rates of temperature variation of any earth surface material are determined, among
other things, by the material’s thermal conductivity, capacity and inertia [26].

2.3. Satellite Specifications

NOAA-AVHRR have been used to observe past earthquakes in Bhuj (India), Boumerdes
(Algeria), Xinjiang (China), Izmit/Kocaeli (Turkey), Hindukush (Afghanistan), Kalat (Pakistan), and
also the devastating great mega-thrust Banda-Aceh (Sumatra, Indonesia) earthquake [41]. Other TIR
sensors such as Multi-spectral Visible and Infrared Scan Radiometer (MVISR) on the Feng Yun (FY),
Moderate Resolution Imaging Spectroradiometer (MODIS) on board satellites Terra and Aqua,
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on board satellite
Terra have been used to detect, short-term temporal pre-earthquake thermal anomalies around the
epicentral region [41]. These polar orbiting satellites have relatively high spatial resolutions and better
signal-to-noise ratios, but only acquire images twice during an evening thereby making trend analysis
for monitoring diurnal LST change more difficult [35]. Depending on the latitude, NOAA-AVHRR
has a revisit time of 2 to 14 times per day. ASTER has a temporal resolution of 5 days for the very
near infrared (VNIR) channel. MODIS has a 1 % day revisit time.

Unlike polar orbiting satellites, geostationary satellites guarantee for each ground location,
although at lower spatial resolution, constant view angles with the same ground resolution cell size
[2]. Tt provides a much higher temporal coverage but owing to the low spatial resolution for land-
based studies, it can be problematic. This high temporal resolution of geostationary satellites assists
by reducing the chance for miscalculating trends due to weather front movement or local cloud/fog
formation [35].

Geostationary satellites such as the Meteosat series of satellites are ideal for the time series
analysis prior to an impending earthquake owing to its high temporal resolution. Meteosat’s first
generation of satellites is equipped with three spectral channels: a broadband channel in the visible
(VIS) spectral region, ranging from about 0.5 to 0.9 um showing reflected light, a thermal infrared
channel at approximately 6.4 pm in the water vapour (WV) absorption band, ranging from 5.7 to 7.1
um, and a channel in the thermal infrared window region at approximately 11.5um showing emitted
radiation, ranging from 10.5 to 12.5 pm as seen in Appendix B part (i). The sampling distance of the
channels at the subsatellite point is 2.5 x 2.5 km for the VIS and 4.5 x 4.5 km for TIR. The temporal
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resolution of observations amounts to 30 minutes, that is, in each of the three channels, an image of
Meteosat’s entire field of view is measured and sent to earth [40].

MSG is a significantly enhanced follow-on system to the previous generation of Meteosat.
Meteosat had seven successful launches since the year 1977. MSG satellite series gives significantly
increased information as it allows the acquisition of imagery at every 15 minutes for the MSG-2, also
referred to as Meteosat-9 and 5 minutes over Europe (MSG-RSS) as a time series in order to assess
the earthquakes. MSG consists of 12 spectral channels, quantization with 10 bits per pixel and image
sampling distances of 3km at nadir for all channels except the high resolution visible with 1km [46] as
seen in Appendix B part (ii). MSG-1 was launched on August 28" 2002 whereas MSG-2 on
December 21%, 2005. MSG is a geosynchronous weather satellite that has eight thermal bands.

Geostationary satellites as well as polar orbiting satellites used simultaneously assist in
anomaly detection techniques. High temporal Meteosat imagery alongside with moderate spatial
MODIS imagery can provide with a higher significance the anomalies that are related to earthquake
events. Time series profiles can be constructed using TIR Meteosat imagery whilst any anomalous
events or abnormal patterns within profiles can be analysed with visible imagery from MODIS.

24. Location of Study Area

The earthquakes that will be analysed are limited to (i) the coverage of the Meteosat series of
satellites (i.e. Meteosat-5 and Meteosat-9), (ii) larger magnitudes, and (iii) earthquakes occurring on
land (land-restricted and crustal earthquakes).

As aforementioned Meteosat-5 and MSG2 satellite imagery will be used. The coverage for
these geostationary satellites can be seen in the Figure 2-2. This allows us to determine the spatial
extent and the imagery which can be extracted for future applications.
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Figure 2-2: The approximate locations of the selected earthquakes [7] with their respective satellite geo-
coverage.

241. Geological Settings

The coverage of the satellite is important since this enables the selected study areas and the
acquisition of pre- and post- satellite imagery for our study. Table 2-2 is an earthquake catalogue of
those earthquakes that will be studied and for each their respective geological/tectonic setting.

Earthquake Catalogue
Mumber| Earthquake Origin Location Country  |Magnitude| Focal Focal mechanism
Date Time | Latitude |Longitude (USGS) depth
(UTC) N(°) E(%) My, (km)
1|Bam 26-Dec-03 01:56 29.00] 58.325|Iran (S.E.) 6.6 10]|Reverse faulting, Strike-slip(Right-lateral)
2|L'Aquila 06-Apr-09 01:32] 42423 13.395|1taly (Central) 6.3 10|Mormal Fault

Table 2-2: Earthquake Catalogue for analysis, extracted from USGS [58].

(1) Bam Earthquake
Saraf et al. [41] and Choudhury et al. [5] describes the tectonic and geological setting of the
study area as having a tectonic belt of Iran which forms a linear NW-SE trending intra-continental
fold and thrust belt between the Arabian shield and Central Iran. Furthermore, it was stated that this
earthquake occurred as a result of stresses generated by the motion of the Arabian plate (which
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includes Saudi Arabia, Persian Gulf and the Zagros Ranges in Iran) northward against the Eurasian
plate at a rate of approximately 3 cm/yr. Complex folding and fault movements in the Zagros Ranges
have resulted due to the tectonic deformation by the collision of the two plates. However, in the
interior parts of Iran in the north of the Zagros Ranges and in the south of the Alborz Ranges,
deformation is mainly due to strike slip movements along complexly arranged intersecting faults. The
Gowk fault is oriented along the west of the Bam fault in a similar north—south trend. Earthquakes in
this region occur as the result of both reverse faulting and strike-slip faulting within the zone of
deformation. Figure 2-3 provides an overview of these faults and how they are spatially related to
each other where the star represents the approximate epicentre of the earthquake.
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Figure 2-3: Main tectonics of Iran and active tectonic faults [38].

Besides its high seismicity, its relatively cloud-free and stable weather conditions during
most parts of the year and its sparse vegetation cover make Iran a suitable study area [41]. Bam is a
desert area. Extreme temperatures within this region can be found in Appendix C. Bam’s earthquake
is ideal as it is a large magnitude earthquake and is restricted to land thus for identifying thermal
anomalies it is also suitable since they will be more pronounced.

(2) L’Aquila Earthquake

The earthquake in Central Italy occurred as a result of normal faulting on a NW-SE oriented
structure in the central Apennines, a mountain belt that runs from the Gulf of Taranto in the south to
the southern edge of the Po basin in northern Italy. Geologically, the Apennines are largely an
accretionary wedge formed as a consequence of subduction. This region is tectonically and
geologically complex, involving both subduction of the Adria micro-plate beneath the Apennines
from east to west, continental collision between the Eurasia and Africa plates building the Alpine
mountain belt further to the north and the opening of the Tyrrhenian basin to the west. Although Italy
lies in a tectonically complex region, the central part of the Apennines has been characterised by
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extensional tectonics since the Pliocene epoch, with most of the active faults being normal in type and
NW-SE trending. [58]

Occasionally parts of Italy experience very high temperatures in summer and even autumn
when the sirocco blows. This warm humid wind originates over North Africa and acquires its
humidity over the Mediterranean. Summer tends to be the rainiest season and thunderstorms are
frequent in spring, summer, and autumn [4]. The earthquake corresponds to the month of April which
is cool and is possibly rainy. Extreme conditions occurring within this region can be seen in Appendix
D.

L’Aquila earthquake is being studied to test whether the developed methodological approach
can be applied to an earthquake that is subjected to a lesser magnitude (< 6.5). As compared to the
previous location, this study area is densely populated and has more vegetation cover. This earthquake
is also restricted to land which can be used for identifying thermal anomalies.

Reports were made whereby a technician, Giampaolo Giuliani claimed that he was able to
predict this earthquake owing to the high concentrations of radon gases that were produced prior to
L’Aquila earthquake [15, 31]. Radon gas is one of the many earthquake precursors. To verify whether
the reported radon gas anomalies produced a rise in temperature made L’Aquila earthquake an ideal

study location.
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Figure 2-4:Location of the magnitude 6.3 L'Aquila earthquake, Italy on 06™ April 2009 [60].

2.5. Time Series

Time series is a sequence of observations of well-defined data items measured typically at
successive times, spaced at (often uniform) time intervals. The main features of many time series are
trends and seasonal variations that can be modelled deterministically with mathematical functions of
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time. Time series analysis has been used in many application domains and for different purposes. The
way the data is analysed also depends on the task. Anomalies in time series data are data points that
significantly deviate from the normal pattern of the data sequence.

For earthquake research, time series of LST maps can be used to assess the temperature
changes prior to the impending earthquake. Several studies have been performed which used short-
term prediction techniques for these types of phenomena. Short-term prediction refers to the period of
time in which changes in the surroundings and changes in temperatures are expected to occur which is
often identified as 6 to 24 days, before the earthquake. Other characteristics such as the length of time
before the earthquake when the precursor initiated, the duration of the precursor, the amplitude of the
precursory signal, the signal-to-noise ratio of the anomalous relative to normal background noise and
the distance from the observation point to the earthquake [6] are some factors which can be answered
through time series analysis.

For instance, the night-time and daytime NOAA-AVHRR time series LST maps for the
earthquake in Bam, Iran showed that there was a thermal anomaly appearing before the devastating

3 Dec 03
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Figure 2-5: Nighttime NOAA-AVHRR LST time series map of Iran before and after the earthquake in
Bam, Iran on 26 December 2003. The thermal anomaly in the night-time data was seen to be maximum on
21 December 2003 (Sdays before the earthquake) which is indicated as the black figure around the
epicenter [41].

In the night-time maps as shown in Figure 2-5, it was seen that on 18" December 2003 there
was no evidence of any anomalous activity. The appearance of an intense thermal anomaly was seen
around the earthquake epicentre on the 21* December 2003 as indicted by the black figure. This
anomaly shows a rise in temperature of approximately 10°C. The anomalous region in the night-time
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data on 21 December 2003 occupied an area of about 308,000km’ [41]. However, data was
unavailable for 19" and 20" December 2003 so there will be speculations as to the exact time the
anomaly originated and its duration. Analysis and similar processing of night-time NOAA-AVHRR
data of the year 2004 acquired at around the same time and on the same days as the 2003 data showed
that there was no such abnormal behaviour of the LST on those days in that year. However, these
results were not provided making this statement questionable.
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Figure 2-6: Daytime NOAA-AVHRR LST time series map of Iran before and after the earthquake in
Bam, Iran on 26 December 2003. An intense thermal anomaly can be seen on 24 December 2003, 2 days
before the earthquake, as indicated by the black figure. The Bam fault is placed on the map of 23
December 2003 is responsible for the Bam earthquake [41].

Daytime LST time series maps show that the rise in temperature started on 22 December
2003. The anomaly stayed on till 24 December 2003 (just two days before the earthquake), Figure 2-6.
The anomalous region in the daytime LST map of 24 December 2003 covered an area of about
328200 km® [41].

If a short time series is used, it is difficult to define what are normal temperatures in a study
area yet alone anomalous temperature. These anomalies as shown above can be caused by natural
variations whereby some days are warmer than others. To ensure that these variations are not normal
conditions, a short time series is useless thus requiring a long time series of TIR imagery.

2.6. Anomaly Detection Techniques

From Oxford dictionary, an anomaly is defined as an irregularity, deviation from the common
order or an established trend. The anomaly can be found by detecting it. Anomaly detection refers to
detecting these deviations or patterns in a given dataset that do not conform to an established normal
behaviour.
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When large data inputs are used, an automated detection mechanism is needed. A detection
algorithm can be created to detect any anomalous behaviour within the large datasets which can show
the time of the event. However, to differentiate events from non-events, a measure has to be
developed. This detection algorithm can be based on temperature variations of a single pixel with time
or on the comparison of pixel with its neighbouring pixels at a given time.

2.6.1. Variation per pixel in time series data

TIR signals measured from satellites depend on a number of natural and observational
conditions: (e.g. atmospheric transmittance, surface temperature, spectral emissivity, topography as
well as time of day/season, and satellite view angles, respectively. The contribution of those
conditions to the measured signal can be so high as to completely mask the space—time fluctuations
claimed as anomalous and connected with the seismic event under study. Space—time fluctuations of
TIR signal cannot, therefore, be assumed as pre-seismic TIR anomaly without referring them to a
normal TIR signal behaviour and without investigating whether or not similar space—time fluctuations
can also be observed in the absence of seismic activity. This confutation process is difficult but a
suitable definition of TIR anomaly (for validation purposes), are very hard to find [53].

The robust satellite techniques (RST) approach is a general satellite data analysis strategy
which is based on a statistical definition of what “anomaly” of a signal measured from space actually
means. The radiation, coming from Earth and measured by satellite sensors, is generally largely
fluctuating due to many natural/environmental/observational causes, regardless of the phenomenon we
are dealing with [37]. The RST based on the approach proposed by Tramutoli (1998) seems to offer
both, a statistically well-founded definition of TIR anomaly and a suitable tool for assessing the actual
potential of satellite TIR surveys in seismically active regions. He proposed a statistically-based
method that, using only satellite data that is capable of identifying a (statistically significant) signal
anomaly, comparing the signal at hand with previously defined and computed, expected value and
natural level of fluctuation [37, 52].

The approach has been implemented by using a validation/confutation approach, devoted to
verifying the presence/absence of anomalous space-time TIR transients in the presence/absence of
seismic activity [37]. In some of these test cases , for instance in Kocaeli (izmit) in Turkey [53],
Irpinia-Basilicata in Italy, Gujarat in India and Umbria-Marche in Italy [3] to identify anomalous TIR
patterns, a specific index, RETIRA was computed on the image at hand using the following equation:

@AT(rt) = [AT(1) - par(r)]

oar(r) ....Equation(4)

where 7 = (X,y) represents location coordinates on a satellite image,

t is the time of image acquisition with t € T where T defines the homogeneous domain of
satellite imagery collected in the same time-slot of the day and period of the year,

AT(r,t) refers to the difference between the punctual value of the brightness temperature T(r,t)
at the location r and at the acquisition time t and its spatial average T(t) (i.e. AT(r,t) = T(r,t) — T(?)
computed on the investigated area considering only cloud-free pixels locations, all belonging to the
same, land or sea class,
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I 47(r) is the time average value of AT(r,¢) at the location r computed on cloud-free record
belonging to the selected dataset (t € 1),

our(r) is the standard deviation of AT(r¢) at the location r computed on cloud-free record
belonging to the selected dataset (t € 1) [3, 37, 53].

A “‘standardized” local variation index named ALICE is then defined reporting, at pixel level,
the relative amplitude of deviations of the measured signal with respect to the reference values,
expected for the specific considered period (temporal domain) and the selected region of interest
(spatial domain). RETIRA belongs to the ALICE indexes [37]. ALICE assists in estimating the TIR
anomalies in terms of signal-to-noise (S/N) ratio. The local excess [AT(r,t) - usr(r)] represents the
signal to be investigated for its possible relation with seismic activity and is evaluated by comparison
with the corresponding observational/natural noise represented by o,r(r). This way the relative
importance of the measured TIR signal (or the intensity of anomalous TIR transients) can naturally be
evaluated in terms of S/N ratio by the ALICE indexes. Generally, the higher (in modulus) the value of
ALICE, the stronger (in terms of intensity) and/or larger (in terms of size) is the detected anomaly.

The amplitude of a detected anomaly is given in ‘‘number of sigma’s”, to be interpreted in the
classical statistical way. The ‘‘background reference fields” (i.e., the expected value of satellite signal
for a specific site and time period and its natural variability, p ar and ot in the above equation are
obtained, pixel by pixel, by a multi-temporal analysis of multi-year satellite records, stratified
according to homogeneity criteria [3, 37, 52].

However, there are two main drawbacks of such an anomaly detection approach making it
inapplicable to the research being conducted. One reason that questions the work set out by Tramutoli
(1998, 2005) and Aliano (2008) was the proximity of the anomaly to the epicentre or fault location.
For instance, the outputs of the algorithm obtained for the Izmit (Kocaeli) M,, 7.4 earthquake in

elow.

17 August 1999 19 August 1999 20 August 1999

(lzmit eart hquake)
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] Clouds Seismic
o epicentre \ NAF |
Figure 2-7: The RST approach applied to Meteosat satellite data. Results of the analysis of the daily index
®ar(r,t)computation on the epicentral area of the day of izmit's earthquake [2].
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There were no geographical coordinates on these time series map layouts. Thus, in a Google
map, these anomalies that were detected were beyond a 5° geographical coordinate radius
(approximately 700km away) from the epicentre as shown in Figure 2-8. For a magnitude 7.4
earthquake, the fault length is approximately 150km [61] on which the epicentre occurs. It is highly
unlikely for thermal anomalies to be related or directly linked to an earthquake when it is occurring at
this distance away from the epicentre. Even the author stated that problems remain in interpreting
thermal signals in a seismogenetic region: understanding whether the observed anomalous TIR signals
are in statistical significant relation with time and place of incoming earthquakes or they are on the

contrary related to other natural phenomena [2].
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Figure 2-8: Spatial extent of the study area on Googl ap wit reference to the work performed by
Tramutoli and Aliano.

The second drawback is the high number of environmental factors (independent from any
seismic activity) which could affect the (possible) precursor signal up to completely mask it. In order
to be interpreted, the data should be preliminarily corrected, at least for the effects of atmospheric
absorption (mainly due to the water vapour) superficial emissivity (highly variable over land) and
observational conditions (mainly satellite zenithal angle) [52]. Meteosat does not have any split-
window spectral channels and hence did not permit us to reduce the natural noise related to the
variability of atmospheric water vapour so a different index is needed [2]. It is also important to note
here that within this six day period, a few days can be warmer than the surrounding area making a
short time series be of no use.

2.6.2. Variation of pixel to neighbouring pixels in time series data

Kuenzer et al. (2007) uses TIR satellite imagery to detect thermal anomalies which are
influenced from sub-surface coal fires and cause extremely weak anomalies, which can by no means
be compared with thermal applications like forest fire detection, lava flow detection or the spotting of
large industrial heat islands. In general, in remote sensing-related coal fire research, the greatest
challenge is the fact that the temperature difference between a coal fire-influenced pixel and a normal
background pixel is usually very low, so thermal anomalies to be extracted are usually subtle [22].
Like sub-surface coal fire thermal anomalies, earthquake-related thermal anomalies are very subtle.
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Like Tramutoli (1998), Kuenzer et al. (2007) also used a split-window approach but his
method in determining thermal anomalies was different. This automatic approach calculates the ratio
images between two different bands, where pixels with similar emission in the bands will show values
of around 1, while pixels containing thermal anomalous areas with relatively greater temperatures will
yield values greater than 1. Thus, the ratio of the two leads to a ratio image enhancing strong hotspots
[22].

The algorithm facilitates raw satellite data as inputs for a sub-image statistical analysis which
is based on a moving window concept where each centre pixels within the window matrix is sampled
multiple times. These pixels are compared to the surrounding background which then provides a
probability of being represented as a thermal anomaly. This means that pixels of very different
temperature and within a different temperature background can be declared thermally anomalous.
[22].

Certain criteria were set to remove false alarms that do not stem from coal fires. Anomalies
were assessed spatially and if it appears within a certain cluster (based on an eight-pixel
neighbourhood), it will be regarded as a thermal anomaly. However, it was furthermore investigated
how many false alarms from the existing cluster can be rejected through coal fire (risk) area
delineation. A clipping process with the delineated risk area (one time with a S00m buffer, one time
with a 1000m buffer), and how large the resulting thermally anomalous area is [23] conducted. Any
anomalies outside these buffer zones are regarded as false alarms. Unfortunately, it is not that simple
to delineate an earthquake risk area and many other criteria needs to be set to overcome this difficulty.

Input thermal Thermal alogorithm First Clustering arladjacant
i anomalies
oo moving window extraction Anomalies

Clustered Statistical analyses of
anomalies clustars

Remaining
anomalies

Coal fire risk area
dalineation

Rejeclion of remaining
anomalies outside the nsk
areas

Coal fire risk
areas

Final thermal
anomalies

Figure 2-9: Sequence of the algorithm for automated thermal anomaly extraction [23].

A similar approach will be attempted for the detection of earthquake related anomalies.
However, several alterations need to be made to this approach. Likewise, the criteria set for coal fire
detection will be different to that of an earthquake.
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3. Methodology

This chapter describes the methods employed to achieve the objectives of the study. The results of the
methodology are explained in the following chapter.

3.1. Framework of Methodology

The following is an overview of the steps taken to obtain results which are seen in the following
chapter

of MOL
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3.2 Data Acquisition

The study attempted to use Meteosat-5 and MSG imagery to assess anomalous behaviour for
two earthquakes, namely Bam and L’ Aquila. The earthquake catalogue consisted of basic information
regarding the date, time, location of epicentre and magnitude of these earthquakes which were
extracted from USGS. The images for these phenomena were obtained from different data archives
called U-MARF [10] which can be accessed from the following link,
http://archive.eumetsat.org/umarf/ and GEONETCast [11] which is an extension for Ilwis 3.6 user
interface.

3.21. Meteosat-5 Satellite Data for the Bam region

Meteosat-5 imagery was used. This satellite was launched on March 02, 1991 which provides
timely imagery for the designated period of acquisition. It is located over 63°E longitude in support of
the Indian Ocean Data Coverage and provides good coverage of Iran as seen in Figure 2-2.

Meteosat-5 has a single channel in the TIR window which is centred at 11.5um wavelength
band. Due to the fact that the Meteosat visible channel only gives information at daytime and due to
the fact that the Meteosat water vapour channel is not situated in the thermal infrared window and
insofar not able to provide information of the lower atmosphere, this study uses the Meteosat channel
in the thermal infrared window. In respect to diurnal cycles, this enables a more uniform detection
quality without discontinuities between day and night [40].

Six years of Meteosat-5 TIR observations have been acquired for Bam, Iran using the U-
MAREF facility. The six years of imagery ranges from January 01, 1999 to December 31, 2004 for a
time interval of every 30 minutes which takes into account the earthquake occurring on December 26,
2003.

U-MAREF provides EUMETSAT with the capability of offering users access to the Meteosat
archive, comprising historical data from all Meteosat satellites [10]. It provides a comprehensive
range of products to the user community to facilitate access to, and exploitation of, the > 20 year
archive of data for which it is responsible. It is important to know what product and what sensor from
Meteosat should be used in data retrieval [10].

Level 1.5 images is rectified in order to remove the effects of spacecraft induced perturbations
due to orbit and attitude of the spacecraft; instrument induced perturbations (for instance, detector
mis-registration); and correction of any radiometric or geometric instrument anomalies [9, 14]. This
product is not corrected for atmospheric absorption.

Image data is thought to be of most important, but the metadata (or “ancillary” data)
describing the data gives details of the instrument that collected the image, including calibration
information, and also include information date and time that the image was collected, the geographical
location of the image corners and centre, the size of the image in terms of rows, columns and bands
and other information such as solar azimuth and zenith angles [30]. The U-MARF facility has several
output formats. However, still this posed a tremendous problem since the output file is a TIFF. This
format only provides image data.
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A two degree geographical coordinate in every direction from the epicentre was used as the
coordinates for the area of interest. This facility uses the line/pixel as well as lat/long coordinates for
the selection of the area. The coordinates used range from 27.000°N to 31.000°N latitude and
56.325°E to 60.325°E longitude with a corresponding line/pixel (Upper Left: 1957, 1388 while Lower
Right: 1828, 1316). On retrieving these large datasets, storage capacity within the computer and
transferring of such large files to an external storage device was very time consuming.

Visible imagery was also obtained from Meteosat-5 Level 1.5 for a five week period (i.e. one
month prior to the earthquake and one week after) only for the year of the earthquake occurrence, with
the same area of interest.

3.2.2. MSG Satellite Data for the L’Aquila region

Four years of MSG2 (i.e. Meteosat-9) TIR observations have been acquired for L’Aquila,
Italy using the GEONETCast Toolbox [11]. The thermal band selected for this sensor was the 10.8um
channel. Of the two TIR window channels in MSG2, the 10.8 um wavelength was selected rather than
12.0um to conform to similar specifications as the 11.5um single channel in Meteosat-5.

The four years of imagery ranges from December 21, 2005 (the launch date) to December 31,
2009 for a time interval of every 15 minutes. Even though this satellite was recording imagery before,
reliable imagery was assumed to be provided only on the said date. The earthquake occurred on April
06, 2009.

GEONETCast is a low-cost global environmental information delivery system that transmits
satellite and in-situ data, products and services from GEOSS to users through communication
satellites using a multi-cast, access-controlled broadband capability. It provides near-global coverage
for data dissemination and will contribute to revolutionising the way policy- and decision-makers will
be making decisions on the basis of the best available scientific data [11].

GEONETCast Toolbox offers flexibility to choose multiple channels in one file or multiple
times in one file. The former allows the timestamp to be recorded on each image whilst the latter this
is not the case. Also, original digital count (that is DN) results in 16 bits image of which only 10 bits
are used whereas Reflectance/Temperature (K) converts these raw DN to reflectance for the visual
band and temperature for all other bands at sensor (this results in 32 bits floating point numbers). This
facility also has several output formats. The Reflectance/Temperature (K) were selected and the
outputs chosen were in a GeoTIFF format and contained a lat/long projection. This output produces a
brightness temperature of surface and cloud top temperatures. Likewise, a two degree geographical
coordinate in every direction from the epicentre was used as the coordinates for the area of interest.
The coordinates used range from 40.423°N to 44.423°N latitude and 11.395°E to 15.395°E longitude.

Visible imagery was also obtained from MSG2 VIS 0.06pum channel for a five week period
(i.e. one month prior to the earthquake and one week after) only for the year of the earthquake
occurrence, with the same area of interest.
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3.2.3. MODIS Satellite Data

MODIS imagery was obtained from an ftp website which was provided by the data
administrator of ITC. The following is the link provided ftp://e4ftl01u.ecs.nasa.gov/MOLT/ . USGS
GloVis [56] which is a quick and easy online search and order tool for selected and aerial data was

used alongside with this link to search for the tile coordinates corresponding to the study areas.
However, raw MODIS imagery can also be obtained through WIST which was used to determine the
UTC times for the overpass of the sensor at the study area. This was neither provided by the link nor
the GloVis site. WIST [32] is a client for searching and ordering Earth science data from various
NASA and affiliated centres.

MODIS has a higher spatial resolution as compared to the Meteosat series of satellites.
Visible images were acquired from MODIS Aqua for the five week period as was done for the visible
imagery for both earthquake events to assess the anomalous patterns appearing in the time series. This
satellite has a local equatorial crossing time at approximately 1:30 pm UTC in an ascending node with
a sun-synchronous, near polar, circular orbit whereas MODIS Terra crosses at approximately 10:30
am in a descending node [34]. MODIS Terra imagery was not available for several days for Bam,
therefore MODIS Aqua imagery was obtained.

3.3. Data Processing

On retrieving these large datasets, storage capacity within the computer and transferring of
such large files to an external storage device was very time consuming. Image processing software
such as ENVI encountered software memory management issues, owing to the vast amount of data.
IDL within ENVI also could not handle the datasets. Programming and script writing within Python
2.6 and Perl was essential for data processing.

3.3.1. Stacking

A python script was created and ran on an Ubuntu Linux system in order to stack the thermal
images as well as the visible images; Appendix E. Imagery was still missing within the datasets which
can affect the analysis of time series. These missing images were not obtained from these facilities
probably owing to sensor malfunctions at that time. Furthermore, from these two facilities, different
file formats were obtained one as a GeoTIFF and one as a TIFF containing no spatial information.
These two formats are of different data types and each type was processed and evaluated differently
within the python script to produce a stack or a data cube of equally spaced time imagery. Another
python script was created to view the values of one pixel within the datacube as seen in Appendix E.

3.3.2. Conversion from Digital Counts to Radiances to Brightness
temperatures
After stacking the imagery, only the Meteosat-5 data for Bam needs to be converted into
temperature values. The MSG2 imagery for L’Aquila was already calibrated and provided brightness

temperature values.
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3.3.2.1. Calibration for Meteosat-5

Image calibration converts Levell.5 raw image counts to geophysical parameters. A raw
image does not have any scientific or quantitative meaning value per se if not calibrated, since the
calibration function describes the relationship between the digital count and the actual geophysical
value of the object seen. Scientists and any other persons working with satellite images are usually
dealing with calibrated images. Further, when dealing with time-series of images, comparisons are
made between images acquired at very different instants. These images should be well-calibrated with
respect to each other, in order to ensure that any variation in time is due to change in the signal
coming from the observed target, and not from a change in calibration of the observing system [25].

For quantitative exploitation, Meteosat-5 TIR data have to be calibrated in BT and cloud-
screened. The calibration of the available raw data was performed using the calibration coefficients
that were online obtainable from EUMETSAT website for Meteosat-5 (IODC Service) [8] and used to
convert to radiances with the formula[18]: B = &(Ca: —Co) . .Equation (5)

Where R= Radiance,

o= Calibration Coefficient (W/m2/sr/count)
C,, = Digital Meteosat Count,
C,=Space Count (radiometric offset of the instrument).

The following calculation of the brightness temperature images from the calibrated radiance
images was done by using the inverse Planck radiance formula in consideration of the different sensor
response functions. For the derivation of BTs from Meteosat-5 radiances, the following regression
equation is used: R(T) = exp (A+B/T) _ Equation (6)

Where 7= temperature (°K),

A= 6.7348,

B=-1272.2 (°K)
The equation fits the relationship between BTs and radiances with and root mean square error of less
than 0.2°K in the range between 200°K and 330°K [18].

A python script was written to automate this process, see Appendix E. A small python
program called PyENVI was created and needed to run on the Linux operating system.

3.3.3. Cloud Masking

Good cloud detection is extremely important since clouds obscure the surface view in all solar
and thermal channels. Surface-related products, such as SST and LST, vegetation cover, snow cover,
and wildfire detection, can only be inferred for pixels where the surface is not obscured by clouds
[21]. Cloud cover usually denies the generation of LST time series over large areas from TIR data
sensed by satellites.

Depending on sensor properties, clouds can especially be discriminated from cloud-free
regions due to their spectral features (e.g. clouds are often white and bright), spatial features (e.g.
clouds often increase the spatial variance) or characteristics in time series (e.g. clouds can introduce
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discontinuities in radiance or brightness temperature time series) [40]. An efficient cloud mask is
needed to remove clouds from the data.

3.3.3.1. Unsuccessful Attempts for Cloud Masking

» Using a Cloud Sky Product from U-MAREF called Clear Sky Radiance

This product provides mean brightness temperatures and radiances for cloud-free conditions.
It is based on histogram analysis schemes [12]. However, pixels of this product are of a resolution of
80x80 km’ at sub-satellite point, which suggests that the information of an individual pixel is not
retained. It is too coarse for time series analysis. This product is disseminated hourly in a BUFR
format. This format is the World Meteorological Organization (WMO) standard binary code for the
representation and exchange of meteorological data. The BUFR representation is not suitable for data
visualization without computer interpretation [50]. In other words, a detailed description is contained
in lookup tables which need to be decoded to get the desired parameters out.

Furthermore, observing the data of this product, BT values of 236K were regarded to be
cloud-free temperatures whilst in the Meteosat-5 TIR data these values appeared to be that of a cloud.

» Using HANTS Algorithm

Harmonic Analysis of Time Series (HANTS) [33] calculates a Fourier series which models a
time series of pixel-wise observations. It simultaneously identifies outliers within the time series.
When an outlier is found, HANTS replaces these values with values from the Fourier series. In
HANTS, options of a negative outlier or a positive outlier can be removed. In my case, negative
outliers represent clouds and these are the values needed to be removed. To help identify errors, user
can specify thresholds. It uses a curve fitting which is applied iteratively. Any value falling under this
curve will be removed and a new time series cure is plotted. Once again, values that fall under the
curve will be removed. This is repeated until a smooth curve is formulated [33]. For the use of
HANTS, certain requirements are needed as seen in Table 3-1.

Requirements of HANTS

Input images are in a so-called binary format with no header information included

Images must be in an 8 or 16 bits/integer data type

There must be no missing mages within the time series

1
2
3| Maximum of 1200 images can be processed
4
5

Processing of time series in HANTS is executed on a single-interleaves image file (BIL).

Table 3-1: Requirements for HANTS algorithm.

Cloud free images are the outputs from HANTS as seen in Figure 3-1. The steps taken to
obtain cloud free images for the Bam dataset, from the HANTS algorithm is found in Appendix F.
However, the time series profiles corresponding to these images cannot be used. When observing
these profiles, it was found that for a certain period (365 days), there was a pattern repeating as seen
in Figure 3-2.
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Figure 3-1: Comparison of the original cloud-contaminated image to the cloud-free output image from
HANTS.

Spaciral Prafile
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Figure 3-2: Comparison of the time series profiles (per pixel) of an original image to that of a HANTS
cloud-free image.

3.3.3.2. Cloud Masking Method Chosen

» Thresholding within TIR scenes

Several cloud masking algorithms were created by other researchers and described by Masika
(2007) [29]. Reuter et al (2009) stated that these techniques can be divided by (simple) radiance
threshold methods, spatial variance methods, temporal variance methods and methods using an
independent dataset to estimate clear sky radiances [40]. These algorithms use multispectral
thresholding techniques, histogram-based scene analysis with multiple bands [29]. This suggests that
data for more than one wavelength band should be available. Reuter (2009) developed a cloud
detection algorithm for a single band, however this method requires additional datasets such as
forecast data and a radiative transfer model to predict clear sky temperatures [40]. As mentioned
earlier, only one band was acquired from the data archives. Therefore, a simple cloud masking
algorithm based on scenes analysis will be developed for the study areas.
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The developed cloud masking algorithm should take into account the extreme conditions as
well as natural temperature variations in the study area. Extreme temperatures are derived from
historical data concerning temperatures in Bam and were acquired from the Bam Meteorological
Organization which states that the lowest temperature recorded was -9 °C (264°K) and temperatures
between 38-44 °C (311-317°K) was said to be common for summer [1]. From exploring the data,
temperatures of 260°K were recorded in December for a clear sky period. The lowest value that will
be assigned as cloud-free is 260°K. This is a static threshold, a hard value in the algorithm: all
temperatures below are masked as containing clouds. A dynamic threshold was also used, depending
on the natural variation in a scene. The natural variation is estimated from the acquired data based on
histogram analysis of differing forms (i.e. clear-sky hot summer days versus clear-sky cold winter
nights). This natural variation is taken into consideration because a relatively large area is chosen
(73x80pixels ~ 329x360km) and climatological variations and weather patterns can influence the
thresholds to be chosen. The observed variation within an image ranged between ~15°K to ~25°K so
20°K, which is the average was selected. This dynamic range is subtracted from the maximum
observed temperature in the image. However, positive outliers could possibly influence the threshold
for clouds (lift it to undesired high values resulting in masking of non-cloud covered pixels). To
reduce the effect of possible outliers appearing in the dataset, for calculations only 95% of the
maximum observed temperatures were used. So the dynamic cut-off value for the removal of clouds
was to set a temperature threshold, where every temperature of that value and lower in a scene would
be removed. This cut-off value is calculated using the following formula:

Cut-off = (0.95*Maximum temperature) — Natural Variation in the study area.

If temperatures are < = 260°K, these values are always removed as clouds. Temperatures
above this hard, static threshold are matched against the dynamic threshold. If the observed
temperature is below the dynamic threshold, the pixel is masked as cloud. Computational aspects have
to be considered in algorithm design because of the large number of scenes each day, the process is
therefore automated by a PERL script as seen in Appendix E. The outputs of the cloud masking
algorithm were compared to a cloud-masked scene created manually within ENVI to confirm the
accuracy of the algorithm.

3.34. Creation of Algorithm for Anomaly Detection

3.34.1. Definition of anomaly

Researchers have often defined what an anomaly or anomalous behaviour can be with regard
to their purpose, often with respect to what is considered a “normal condition”. It is important to
understand and observe patterns in the data, as this makes it easier to differentiate normal and
abnormal conditions.

The underlying assumption is that the normal behaviour of a time-series follows a predefined
pattern. A subsequence within the long sequence which does not conform to this pattern is regarded as
an anomaly. However, any deviation from the normal pattern is an anomaly so additional criteria are
used to distinguish between thermal earthquake-related anomalies and those not related to any
earthquake activities (i.e. “false positives”). Any sudden, unusual temperature rise within a region as
compared to the surrounding area which appears within a month of the earthquake and lasts for at
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least six hours can be defined as a “thermal earthquake-related anomaly”. Figure 3-3 describes the
framework used to assess anomalies and their relation to earthquake events.

Cloud-free thermal Thermal algorithm: Background | Statistical
LaRes Moving-ring extraction ~ normalized ratios Postprocessing

ﬁr_toma!ics th Anomalies Observations above
wiliin a month | inel Thermal Anomalies 26 of the mean
of impending Eing onge
£ for one year
earthquake than 6 days ye

l

Compared to
Previous years

Earthquake-related
Anomalies

Assessment of anomalies: Earthquake
telated/False positives/False negatives

Figure 3-3: Conceptual Framework for earthquake-related anomalies.

3.3.4.2. Method for normalizing pixel values for diurnal and seasonal

variations

Earthquake related temperature increases are weak anomalies. To enhance the anomaly and

reduce the effect of temporal variation not related to the occurrence of earthquakes a normalization

approach is sought. A moving ring approach has been chosen. One of the main reasons for selecting a

moving ring approach as shown in Figure 3-4, is to avoid anomalous temperature values from

neighbouring pixels that may influence a normal background temperature. It is assumed that if the

central pixel is an anomalous pixel, the adjacent pixels are possibly influenced by the anomaly and

have similar temperatures. A 10 pixel buffer around the central pixel will be excluded from

background temperature determination. This 10 pixel radius (~ 50 km) was selected to remove any

diurnal and annual patterns which may contribute to meteorological and weather patterns occurring
between these locations.

The ratio between the anomalous pixel and the normalized background temperature is
calculated. In this way, strongly contrary to an overall threshold, the thermal anomalies extracted
represent variation of the pixel with respect to the surrounding area. This means that pixels of very
different temperature and within a different temperature background can be declared thermally
anomalous [23]. An automatic algorithm was written in PERL can be seen in Appendix E. It is applied
over the time series stack of cloud-free images.
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Figure 3-4: Moving ring concept applied over the entire stack of cloud-free images.

Figure 3-4 illustrates the normalization process when using a moving-ring approach over an
image. A 10 pixel radius from the central pixel is used as the ring to obtain an averaged background
temperature, B. The temperature of the central pixel is regarded as the anomalous pixel, 4. A ratio is
then calculated between 4 and B producing a time series plot which is used for anomaly detection.

3.34.3. Identifying Earthquake-related Anomaly

As mentioned in Section 2.1, anomalies were mainly positive with the exception of negative
anomalies in Japan and China. Even though this paper identified negative anomalies, there was no
valid or credible explanation to describe what mechanism caused a negative anomaly within their
study. Based on the findings of other researchers, and only positive anomalies will be addressed

throughout this research.

Statistical post-processing on the background normalized ratios was performed for a time
series stack of images, per year. Observations above standard deviations of +1c6, +26, and +3c from
the mean ratio of one year were calculated. The £2¢ of the mean was used as 95% of the observations
are assumed normal and any anomalous values that fall outside are significant values not fitting, with
95% confidence, the average value for that pixel. All observations in the time series that appeared
above a +2¢ of the mean were flagged as anomalies. The anomalies that have a duration of a week
within the time series are counted. For an earthquake-related anomaly, the flagged anomalies should
appear within a six day period and occur within a month before the earthquake phenomena. However,
the exact location of the epicentre as well as the time of the impending earthquake is unknown.

To ensure that the anomalies detected are indeed related to an earthquake event, previous
years (that followed the same method as aforementioned) were examined. This is important to assess
whether and how often the anomalies caused are earthquake-related, false positives and/or false

negatives.
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4. Data Analysis and Results

Analysis of time series in tectonically active regions for the detection of earthquake anomalies is one
of the objectives of this study. This chapter analyses two study areas with different conditions: large
versus moderate magnitude earthquakes, climatic conditions, and population density. Moreover, this
chapter includes the attempts made to differentiate earthquake-related anomalies from false positives
and to quantify these anomalies including false negatives.[62]

4.1. Results from Anomaly Detection for Bam

Each step in the conceptual framework of the developed methodology produced its own
output which will be assessed in a sequential manner. Figure 4-1 (a) shows a raw unprocessed
Meteosat-5 TIR image obtained from the U-MARF data archive. These images are converted into
brightness temperatures (BTs) and used as inputs for the cloud masking algorithm. Figure 4-1 (b)
provides an output of the same scene after the algorithm was applied. As compared to the raw image
of the same scene, this result proved efficient as cloud cover was removed. In the raw unprocessed
image, the yellow feature represents thick clouds, whereas the pink feature represents thin clouds and

cloud shadow. In the cloud free image, the green area represents clouds that were masked.

Clo u'd Free Image

(b)

Original Image

()

(St | s

Figure 4-1: A comparison between the same scene recorded in July 20™ 2003 for (a) which show a raw,
unprocessed Meteosat-5 TIR image; and (b) which shows the output from the cloud detection algorithm
for the same scene.

Time series of Meteosat-5 cloud-free images were then created per pixel. In the time series
profile, there were regions with large dropouts. These dropouts correspond to the time when clouds
appeared, and were masked out by the cloud detection algorithm. Figure 4-2 represents a time series
profile for Pixel 35,44 in the year 2003. This pixel is in close proximity to the epicentre of the
earthquake. Even though the epicentre was analysed, this pixel was selected based on the theory that
the epicentre is not the region where the most stress is emanating, the fault trace is the point where the
maximum stress is being released and the highest temperature is recorded, Appendix G. The time
series profile showed a normal trend whereby warmer temperatures occur in the summer period
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whereas colder temperatures appear in winter seasons. However, this is another reason why a long
time series is needed to assess fully if the trend appears to be normal in other years or deviated.

The normalization algorithm generates background normalized temperature ratios for a
certain pixel as seen in (Figure 4-3). From observing the output of this algorithm in its pure form, not
much can be said about the anomaly and its relation to the impending earthquake event thus further
analysis is required. In order to detect anomalies, the sample mean of the ratios was used over the
entire series to assess the normal conditions of Pixel 35,44. In this case, the average ratio for one year
was calculated as 0.977. In science, researchers commonly report the standard deviation of
experimental data, and only the effects that fall far outside the range of standard deviation are
considered statistically significant- normal random error /variation on the measurements is in this way
distinguished from causal variation. Standard deviations from the calculated mean of +1o, +26 and
+30 were observed. If the data distribution is approximately normal then about 68% of the values are
within +1c of the mean of the temperature ratios (mathematically, p+c, where p is the arithmetic
mean), about 95% are within 26 (u£26), and about 99.7% lie within 3¢ (u+3c) [62].

As one can see, there are several ratios occurring that are above a £1¢ standard deviation as
indicated by the orange lines in Figure 4-3. However, normalized background temperature ratios
above a £2¢6 (green lines) and +3c (pink lines) standard deviation were taken as extreme conditions
within the time series. A +lc deviation introduces noise within the data and alters the extreme
anomalous values from being highlighted giving a false interpretation. Likewise the ratios appearing
above a +3c deviation, are for very extreme anomalies in which only a 0.3% chance of the
observations to be statistically significant (anomalous). As mentioned in Section 3.3.4.3, ratios
appearing above a +2c deviation are flagged as anomalies.

The anomalies lasting within a seven day time window were counted. This fits one criterion
for an earthquake-related anomaly. The output of this count provides the percentage of images being
significantly different within that week in the time series, for a certain pixel. Figure 4-4 shows the
counts of anomalous images for pixel 35,44 for each of the three calculated standard deviations
indicating the appearance and duration of the anomaly for the year 2003. The number of anomalies
counted within a week was most prevalent for a +1c. However, for a +16, 32% of the observations are
regarded statistically significant thus increasing the number of anomalies within the counts. Even
though +3c shows a smaller number of anomalies counted within a week, it is more significant to very
extreme anomalies occurring in the ratios. If a 3o deviation is used, some anomalies that may be
related to an earthquake event are excluded. Further in this paper only the +2c deviation will be used.
The counts showed that prior to the earthquake, for all standard deviations there was a distinct
anomaly in December as compared to other months in the time series profile.
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Time Series Profile of Pixel 35,44 after the cloud masking algorithm is applied
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41.1. Time Series Analysis for earthquake precursory detection in Bam

Six years of data were investigated and compared to draw conclusions of the multi-temporal
dynamics of the study area. These profiles whereby anomalies were counted above a +2c deviation
will be compared to several years of data to ensure that the anomaly that were claimed to be detected
is indeed an earthquake-related anomaly and not a false positive within the dataset. To assist in
determining false positives and false negatives in the dataset, the National Earthquake Information
Centre (NEIC) disseminates information regarding the magnitude and location which is compiled in a
global seismic database for earth science research. The following link provides access to the NEIC
archive: http://earthquake.usgs.gov/earthquakes/eqarchives/epic/. This information for the Bam area

assists in determining where false positives as well as false negatives are within the profiles,
Appendix H. The NEIC earthquake catalogue provides the user with the distance and magnitudes of
earthquakes occurring in a certain study area. The NEIC search results in Appendix H provide the
proximity of other earthquakes in relation to the Pixel 35,44.

On observing the year of earthquake occurrence for Bam, Figure 4-6, a smaller magnitude
earthquake of 5.9 was identified in the summer period on August 21, 2003. This earthquake called
Kerman’s earthquake was located 141km away from the Bam’s earthquake epicentre. It was seen that
a significant anomalous signal lasting for a week period appeared in December. Approximately 45%
of the images contained anomalies. This anomaly showed a distinct peak which lasted for almost a 10
day period (2003/12/11 at 05:30 UTC to 2003/12/21 at 22:00 UTC). This significant anomalous pixel
appeared during a month prior-to an earthquake and lasted for a week, which fit the criteria for an
earthquake-related anomaly. However, during the year there were signs where anomalies lasting for a
week were also detected. Dual peaks in November showed that only 10% of the images within the
series were shown to have anomalies with duration of one week, which are insignificant and were
avoided. If 10% or less of the images showed anomalous activity within a week were regarded
insignificant and excluded for relating to an earthquake-related anomaly.

Anomaly No Anomaly Anomaly No Anomaly
Y Y Not Detectable
Y Y Increase in Ratio (Detectable)
Y Y Decrease in Ratio (Detectable
Y Y False Positive within Ratio
Where Y- Yes

Table 4-1: The effects of anomaly detection in a time series.

Table 4-1 describes the effects of how anomalies can be detected within a time series. False
positives and false negatives are judged on the distance of a pixel to the epicentre as well as the
magnitude of the earthquake event. A false negative can be defined as earthquakes of magnitude >=
5.0 that do not show any anomalous activity within a duration of 1 week and do not appear 1 month
prior to the phenomena. A false positive is defined then as the anomalous signals that last a week and
is not influenced by any earthquake. Another criteria set for false positives and false negatives within
the data is the relationship between the magnitude and the fault length. For a magnitude 6.6
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earthquake, the fault length is roughly 50-70 km on which the epicentre occurs. It is around this region
that anomalous activity should appear, so if a signal is recorded 200km away, it is likely that it is not
an earthquake-related anomaly but a false positive within the dataset. For an earthquake-related
anomaly of magnitude 6.6, anomalies appearing within a 70km distance from the fault or epicentre
that appear within one month of the earthquake, and the number of images appearing with a duration
of 1 week that show anomalous activity of at least 15% is ideal.

In order to draw conclusions other years were compared. Figure 4-5 to Figure 4-10 shows the
profiles for the six years of data. For instance, in Figure 4-8, a magnitude 5.0 event occurring on
November 25" 2001, with a distance of 110km away from pixel 35,44 showed anomalies lasting for a
week prior to the event. This explains 30% of the number of images in the series being anomalous.
This is significant but still it is not regarded as an earthquake-related anomaly since it falls outside a
70 km range. All other anomalies appearing within the time series were insignificant and regarded as
false positives.

Similarly, for Figure 4-5 there was an earthquake of the same magnitude occurring on
December 8" 2004, but it is also regarded as a false positive as described for Figure 4-8. However, a
false negative appeared in Figure 4-5 for the magnitude 5.2 earthquake occurring October 6" 2004
which was 30km away from the studied site. In Figure 4-7, there was a false positive also occurring
in the same region in December that was relatively insignificant. In January 2002, a sudden
anomalous signal appeared, this peak was also regarded as a false positive. Figure 4-9 and Figure 4-10
had false positives as the number of images within a week which are influenced by anomalies are
relatively insignificant.
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In almost all the years studied, false positives appeared and a trend in the winter period
(November-December months) was seen either with a distinct peak or dual peak of lower chance of
being earthquake-related. There were similar trends for the summer period (July-August months). The
anomaly appearing in Figure 4-6 seems to be 15% stronger as compared to the other years within the
same time frame, but relatively throughout the year it is at least 50 % and in some cases even 100%
stronger. It is then safe to assume that this occurrence in Figure 4-6 is an earthquake-related anomaly.

4.1.2. Spatial Extent Analysis on earthquake precursory detection in Bam

In order to validate the theory which describes a pixel in close proximity of the epicentre as
having the highest temperature rise, a pixel located far from the epicentral distance is analysed. As
suggested, pixels occurring far from the epicentre should not be influenced by the thermal anomalies
and have a greater chance of not being related to the impending earthquake event. Pixel 20,15 which
is located on the periphery of the study area was used in this case (see Figure 4-11), other profiles can
be seen in Appendix I .

The proximity of Pixel 20,15 to the epicenter is 232 km away. The approximate fault length
for a 6.6 magnitude earthquake event is 50 -70 km [61]. The highest temperatures are recorded near
the epicentre and around the fault zones so to relate an anomaly, occurring at this pixel to Bam’s
earthquake is unjustifiable. An assessment of the time series was performed for the year of the
earthquake occurrence, 2003. Figure 4-11 confirmed that anomalous signals within a pixel located far
from the epicentral region are not influenced by any earthquake-related anomaly. As mentioned
earlier, only significant anomalous signals appearing within a week are assessed suggesting that if
10% or less of the images showed anomalous activity the signal will be regarded as insignificant and
excluded for relating to an earthquake-related anomaly. All the anomalies within this year were
relatively insignificant as the number of images within that week were all under 5%, suggesting false
positives within the time series. These false positives were a result of the large distance away from the
selected pixel.

Figure 4-12 describes the spatial extent to which anomalous values were found by using the
normalized background temperature ratio profiles. These anomalous values were based on the
observations above a +2c, only for 2003. Owing to the lack of time, other years were not assessed. It
may be valuable though to analyse those anomalies appearing in a 7 day period spatially. The Google
map was shown to provide some knowledge about the proximity between data points being studied.
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THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION

4.1.3. Robustness Testing of Detection Algorithm

Several tests were performed on the profiles for Pixel 35,44, namely:

(1) Adjusting the size of the time window: Initially the profiles used was for a week period (i.e.
3.5 days before and 3.5 days after) which counted the number of anomalies present in images for one
week. Shifting this time window might have an impact on the number of anomalies appearing and can
either have a stronger relation to earthquakes or not. This parameter has been shifted from a week
period to a two week period (i.e. 7 days before and 7 days after) and compared.

On increasing the time window as seen in Figure 4-13, it was seen that the number of anomalies
has decreased from a 45% to an approximate 25%. The large peak that appeared in November has
decreased to about 12%. The outcome of this action was similar to applying a smoothing filter over
the data, which enhanced the significant anomalies and reduced the noise. However, from observing
the 2003 profile alone, the 25% anomaly in December provides reason to believe that this can be
caused by the Bam’s earthquake.

(i1) Altering the threshold and the natural variation: The variables are changed within the cloud-
masking algorithm and owing to the long processing time, it was attempted only once. The threshold
value for cloud masking was originally set to 260°K and is changed to 265°K. The original natural
variation used was 20°K which was also changed to 15°K. It was observed that by decreasing the
natural variability within the study area, the temperature cut-off value for the removal of clouds was
increased. This increase removed many observations which took into account clouds that remained in
the dataset. On increasing the threshold, even fewer observations will be analysed.

From Figure 4-14, it was seen that the number of anomalies counted within a week were
increased. These anomalies increased almost by 5% with minor reductions. However, two extreme
conditions in the winter period which showed the existing anomaly almost doubled, for a period in
November and in late December. However, it is more certain that these anomalies are not related or
impacted upon by clouds within the background, when ratios are calculated (i.e. the anomaly
detection algorithm). Owing to the lack of time, the original profiles with a threshold value of 260°K
and a natural variation of 20°K were used; even though the new conditions provide outputs that are
more justifiable.

Table 4-2 provides an overview of the anomalies detected within each pixel that was analysed.
The table illustrates whether anomalies are detected within each profile.
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THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION

4.2. Results from Anomaly Detection for L’Aquila

Time series analysis of MSG2 thermal images have been analysed also using the developed
methodology. As described in Section 3.3.3.2, the natural variability in a study area as well as extreme climatic
conditions is needed for a good cloud removal. The natural temperature variation occurring in L’ Aquila ranged
from~10°K to ~18°K. The estimated variation chosen was 15°K. Also, the threshold set for cloud masking was
255°K from the extreme temperatures occurring in close proximity to L’Aquila, as shown in Appendix D. All
anomalies detected over a 2¢ of the mean will be used and if these anomalies last for a week period only then
they are analysed for L’Aquila. Owing to the lack of time and the processing speed to run the scripts for
L’Aquila only one year will be analysed owing to a higher spatial resolution as well as temporal resolution is
doubled. Within the NEIC earthquake results for L’Aquila as seen in Appendix H, only in 2009 there were
significant earthquakes. Slope aspects will be studied in detail in this section.

4.2.1. Spatial Extent Analysis on earthquake precursory detection in L’Aquila

Pixel 60,49 as well as Pixel 15,59 were analysed in detail. Other profile observed were placed in
Appendix I. Figure 4-15 (b) and (c) which show the distribution of the points. Pixel 60,49 was roughly 23 km
away from the epicentre and oriented on a north-eastern slope whereas Pixel 15,59 was located in a water body
approximately 124km away from the epicentre. As seen in Figure 4-16, Pixel 60,49 which is land restricted
shows a very weak anomaly lasting for 7 days and within a month prior to L’ Aquila earthquake. It is regarded
as a false positive. Even though this pixel is within a 23km radius of the epicentre the anomalous signal in the
profiles are insignificant.

As seen in Figure 4-17, for Pixel 15,59 which is located in a waterbody there were no earthquake
related anomaly. This pixel is 124km away from the epicentre and can be considered as a background pixel.
This pixel will have different climatic conditions owing to the extent from the epicentre.

4.2.2. False Positives versus Earthquake-related anomalies

Table 4-3 provides an overview of the anomalies detected within Pixels 60,49 and Pixel 15,59. It gives
an idea of how anomalies appear within the time series profile and whether they can be regarded as earthquake-
related, false positives or false negatives. The NEIC result for L’ Aquila as seen in Appendix H, provided two
smaller magnitude earthquakes occurring around the epicentre. To assess fully whether these anomalies are
false negatives, the distance from the pixel studied within a specified radius to the epicentre is observed.

AR

P 2009
Feature Earthquake False False
Related Positive Negative
60,49 North-east slope | N Y N
15,59 Waterbody N Y N

Table 4-3: Assessment of slope aspect and a water body and their relation to anomalies detected within certain
pixels of the study area.
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43. Anomaly Detection Reliability

Bam and L’Aquila have totally different conditions and need to be analysed separately. Bam
is a relatively dry, desert-like region with little vegetation and regarded as being cloud free. The
images were obtained by the Meteosat-5 satellite which has a different orientation than the sensor
being used for L’ Aquila. The sensor has a much coarser spatial resolution and the temporal resolution
is 30 minutes. Unlike Bam, L’Aquila is densely populated, vegetated, and topography-driven and has
a stronger influence by clouds. MSG2 images were acquired for the L’ Aquila study area.

Both study areas show that thermal anomalies can be detected; however relating it to an
earthquake phenomenon is very challenging. To assess whether it is an earthquake-related anomaly,
the year of the earthquake is studied after which the anomaly findings will be compared to other years.
If a significant anomaly is detected within a month before the earthquake, lasts for a week and is in
close proximity to the epicentre or fault zone, only then anomalies can be compared as earthquake-
related. Many false positives appeared within the profiles.
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5. Discussion and Conclusion

One of the objectives of this study is to verify whether significant thermal infrared anomalies can be
found in association with known earthquake events by systematically applying satellite data time
series analysis to multi-year time series. The framework for this was applied to Bam and L’Aquila by
developing a method to detect anomalies. The goal of this chapter is to interpret and assess potential
reasons for the findings obtained from this study.

5.1. Discussion

A rather straightforward but simple cloud removal algorithm was developed based on
recurring temperatures in the images. Clouds act as powerful reflectors to solar radiation, sending
much energy straight back into space. Thin high clouds absorb thermal radiation from the surface and
radiate much of it back down , contributing to the natural greenhouse effect which makes global cloud
cover a major factor in the distribution of thermal energy in the atmosphere [51]. In order to remove
the clouds, selection of parameters is based on the extreme temperatures as well as the natural
variation over a study area. The main problem is that thresholds for cloud masking are functions of
many variables such as; surface type (land, ocean, ice), surface conditions (vegetation, soil moisture),
recent weather (which changes surface temperature and reflectance significantly), atmospheric
conditions (temperature inversions, haze, fog), season, time of day and even satellite-earth-sun
geometry (hence bidirectional reflectance and sun glint). These factors may play a role in the
simplified cloud masking algorithm. Further studies are needed to fully assess the impact of these
factors on the derived anomalies. It is believed that the impact is rather small and only in very specific
cases might result on false positive anomalies. This is based on the rather stable and constant
normalized time series that was found for each pixel over multiple years indicating a proper removal
of clouds throughout the images.

For the normalization, a window size was set based on common knowledge rather than
scientifically proven facts. A moving ring approach was applied over a time series stack in the
normalization algorithm where a 10 pixel buffer radius around the pixel under investigation was
selected as described in Section 3.3.4.2. This size was based on the fact that if a too small ring size (of
less than 10 pixels) is used adjacent anomalous pixels can influence the background temperatures. A
too large ring size would make the variation between pixels possibly too large; it is well possible that
over a distance of > 200km varying meteorological conditions occurring in different region can
impact on the temperature ratios. The smaller the area, the more likely it is that weather conditions in
the normalizing ring are similar to those in the pixel under investigation. This ~ 50km ring size
provided suitable results but a more thorough analysis should be performed to study the most optimal
ring size.
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In the anomaly detection process, any ratio appearing above a =2¢ was flagged as anomalous.
To assess how many anomalous images are actually occurring within a certain time frame (i.e. an
indication for the strength and persistence of an anomalous feature), a running cumulative moving
window of one week length was applied as this was the period stated in literature where an
earthquake-related anomaly could probably last. The higher the percentage of anomalous images, the
stronger is the anomaly. As seen in Figure 4-6, a significant earthquake anomaly (45%) occurred prior
to Bam. A long time series was then used to assess the chance of this earthquake-related anomaly
appearing in the year of the earthquake occurrence to indeed be caused by the earthquake or another
phenomenon. On comparing Figures 4-5 to Figure 4-10, this anomaly occurring in Figure 4-6 is 50-
200% stronger than any other anomaly appearing in 6 years time and therefore significantly
earthquake-related. There is, however, a trend of occurring anomalies in December. The source of
these anomalies is unclear but might be related to snow cover in mountainous regions covered by the
normalization ring. This is only speculative till now and needs further investigation of individual
pixels in the normalization ring.

For L’Aquila the anomaly is less strong (it was also a less strong earthquake) and only one
year of data is available for analysis. Similar analysis as done for Bam is therefore not possible for
now but should be done in future work.

5.1.1. Significant Findings Associated with Earthquakes

51.1.1. Earthquake Cloud

There was an unusual cloud emerging exactly from the epicentre of the December 26" Bam
earthquake. This was likely because its hot vapour condensed into a cloud immediately due to very
cold surroundings at night during the winter. However, in many cases the vapour released at the
epicentre does not immediately encounter atmospheric conditions suitable for condensation into a
cloud. Since the cloud’s travel time and direction are not well known, this greatly reduces the
precision, or specificity of a prediction. First, an earthquake cloud appearing in satellite images can
pinpoint an impending epicentre from an earthquake cloud only when it condenses at the epicentre in
cold surroundings, as it did in Bam [48].

5.2. Limitations/Challenges

Several limitations were encountered within this research as described below:
» U-MARF facility for data acquisition of Meteosat-5 TIR images:

The outputs required for this research, from this facility provided only image data thus no
georeferencing was applied. Even though there are options for subsetting an area of interest from a
full disc image preview, outputs after retrieval tends to be shifted. In other words, it provides you with
an inaccurate study area. Owing to the projection of an ellipsoidal earth on a two dimensional image,
the spatial resolution is not constant for all Meteosat image pixels. At sub-satellite point, the pixel
distance amounts to 4.5 km in both directions for Meteosat-5. At high latitudes, the pixel distances
can exceed the grid sizes [40] and spatial resolution at these distances tends to be too coarse. By trial
and error, the correct coordinates were provided, to get the epicentral location in the centre of the
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image. This is important since there is no spatial information attached to the image the epicentre can
be located much simpler.

» Atmospheric corrections were not applied:

Meteosat has a single channel in the TIR window, which implies that split-window
techniques cannot be used. This channel is slightly influenced by absorption of gaseous atmospheric
constituents. Neglecting atmospheric effects, the measured BTs of a target is equal to the target
temperature. In order to determine LST, the influence of the atmosphere on measured BTs has to be
accounted for. This can be achieved by using split window techniques[40, 45] .

In order to atmospherically correct its historically valuable time series of BTs, Schédlich et
al. (2001) used a previous version of the model of the diurnal temperature cycle proposed by Reuter
(1994) to temporally interpolate atmospheric corrections for Meteosat single channel [45]. Additional
data is required such as forecast data based on humidity and temperature profiles to temporally
interpolate atmospheric corrections for Meteosat.

Brightness temperature is an alternate measure of intensity which gives the temperature of a
black body with the specified radiance, at that wavelength. It is used because it has linear correlations
with atmospheric temperature parameters, easing statistical analysis [51]. Due to computational
limitations associated with the single channel method, the results presented in the research are based
on BTs and not LST.

» Uncertainties within time series:

It is important to note that there were uncertainties within the datasets that can influence the
anomalies. These uncertainties were not corrected for and thus some anomalies were even increased
owing to this. Such uncertainties include shifts in the sensor, a wobble effect of the sensor (at least
one pixel off), line striping, and missing data (either for entire image or part of an image) as seen in
Figure 5-1. These uncertainties will produce inaccurate normalized background temperature ratios and
may appear as a peak above a +2c as a different study area is observed, for a shift in the sensor.
Wobbling effects appear as a sudden spike within the normalization process as a different pixel will
be analysed.

: : 1‘ I

200405190030 200405190100 . 200405190130 . 200405190200 - 200405190230

Figure 5-1: Errors appearing in time series profiles for the year 2004, in the study area of Bam. Similar
errors were seen in the L’ Aquila region.
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5.3. Conclusion

Based on the results, it was found that the developed methodology in terms of its
applicability for detecting significant thermal infrared anomalies in relation to earthquakes by
systematically applying satellite data time series analysis to multi-year time series was reasonable.
The study confirms that time series is an important component in any earthquake anomaly detection
study. The main conclusion drawn from this study is a short time series is not justifiable for detection
of earthquake anomalies.

Even though anomalies were detected in order to relate to an earthquake event, a shortened
time series cannot be used. Long time series has shown that thermal anomalies are influenced by
topography, and seasonality and defining a normal condition which encompasses every possible
normal behaviour is very difficult. Often the data contains noise which tends to be similar to the
actual anomalies and hence is difficult to be distinguished. A long time series can assist in
overcoming these difficulties to identify earthquake-related anomalies. The answers of the research
questions will be addressed and discussed in order to fulfil the objectives set forth within this
research.

5.4. Recommendations

Recommendations for future work are as follows:

» Determining how accurate and with what degree of error this method achieves by testing other
earthquake. An attempt for earthquake anomaly detection should be made for higher
magnitude earthquakes such as the recent Chile and Haiti earthquakes.

» Incorporate in the methodology, atmospheric correction to obtain LSTs instead of using BTs.

» Aid of ancillary datasets such as a DEM, to assess the impact of elevation on earthquake-
related anomalies.

> Assessment of earthquake-related anomalies in a spatial context.

> Apply methodology to non-crustal earthquakes (i.e. earthquakes originating in the ocean).
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Appendix A: Radiation Definitions

Definitions and relationship associated with radiation measurements, extracted from Lillesand

(2008) [26]:
Terms & Definition

Symbeol = Unit

Radiant energy- the energy carried by an electromagnetic wave and a Q J
measure of the capacity of the wave to do work

Radiant flux- the amount of radiant energy emitted, transmitted, or [0} W (=Js™)
received per unit time

Radiant flux density- the radiant flux at a surface divided by the area of the

surface.

Irradiance- the density for flux incident upon a surface E Wm™
Radiant exitance- the density for flux leaving a surface M

Radiant spectral flux density- the radiant flux density per unit wavelength

interval

Spectral irradiance E, Wm pm'!
Spectral radiant exitance M,

Radiant intensity-t he flux emanating from a point source per unit solid I Wsr!
angle in the direction considered

Radiance- the radiant flux per unit solid angle emanating from a surface in L Wm st
a given direction per unit of projected surface in the direction considered

Spectral radiance per wavelength interval L, Wm™ st pm’”

Radiant Energy (J)

the various terms in
hemispherical and add time

directional radiation

q_measurement 5 Radiant Flux (Js' = W)

Hemispherical Directional
add add

direction

Radiant Flux Density (Wm™>)

Irradiance [incident]
Radiant Exitance [emitted] (Wm™sr™)

add

wavelength Radiance

Radiant Spectral Flux Density (Wm?um™)

Spectral Irradiance [incident]
Spectral Radiant Exitance [emitted]

~

~

4

Radiant Intensity (Wsr™)

add area

(Wmsr™)

add
wavelength

(Wmst™) Spectral Radiance (Wm™sr'")
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Appendix B- Satellite Specifications

Part (1)

Satellite Specifications (i)

Channel Absorption Spectral Central Sub-satellite

1D Band Channel Band width Wavelength (um) | sampling
Type (nm) (km)

VIS 0.7 High Visible 0.50 t0 0.90 0.700 2.5
Resolution

IR 6.4 Water Vapor 5.70 to 7.10 6.40 4.5
Absorption

IR 11.5 | IR/ Window 10.50 to 12.50 11.500 4.5
Imager

Radiometric Resolution: 8 bits

Temporal Resolution: 30 minutes

Launch Date: 2" March 1991

Orbital Longitude: 63°E

End of Launch: 26™ April 2007

Table 5-1: Meteosat-5 Spectral Channels [10, 40].
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Channel

1))

Part (i1)

Satellite Specifications (ii)

Absorption
Band
Channel Type

Spectral Band
width (um)

Central
Wavelength
(um)

Sub-satellite
sampling
(km)

Noise

HRV High Visible 0.60 to 0.90 0.750 1 | S/N > 4.3 for target of
Resolution 1% of max dynamic
range
VIS 0.6 VNIR Core 0.56 t0 0.71 0.635 3 | S/N>10.1 for target of
Imager 1% of max dynamic
range
VIS 0.8 VNIR Core 0.74 t0 0.87 0.810 3 | S/N > 7.28 for target of
Imager 1% of max dynamic
range
IR 1.6 VNIR Core 1.50 to 1.78 1.640 3 | S/N > 3 for target of 1%
Imager of max dynamic range
IR 3.9 IR/ Window 3.48 t0 4.36 3.920 3 035K @300K
Core Imager
IR 6.2 Water Vapor 535t0 7.15 6.250 3 075 K@250K
Core Imager
IR7.3 Water Vapor 6.85 to 7.85 7.350 3 0.75K@250K
Pseudo-
Sounding
IR 8.7 IR/ Window 8.30t09.10 8.700 3 028K @300 K
Core Imager
IR 9.7 IR/Ozone 9.38t0 9.94 9.660 3 1.50 K @ 255K
Pseudo-
Sounding
IR 10.8 IR/ Window 9.80to 11.80 10.800 3 025K @300 K
Core Imager
IR 12.0 IR/ Window 11.00 to 13.00 12.000 3 037K @ 300K
Core Imager
IR 13.4 IR/Carbon 12.40 to 14.40 13.400 3 1.80 K @270 K
Dioxide
Pseudo-
Sounding

Radiometric Resolution: 10 bits

Temporal Resolution: 15 minutes

Launch Date (Meteosat-8): 28" August 2002

Orbital Longitude: 0°E

Launch Date (Meteosat-9): 21™ December 2005

Table 5-2: MSG SEVIRI (Spinning Enhanced Visible and Infrared Imager) Spectral Channel [13].
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Appendix C: Weather conditions in Bam

Weather Conditions for Bam

W7 AN

p—

World Health Organization / Iran-Bam

Official report on Bam Climate by Bam Meteorological Center
Desert Climate; Altitude: 1067 m

Temperature information:

Absolute highest temperature recorded in the past 30 years: 47 °C

Absolute lowest temperature recorded in the past 30 years: -9 °C

Increase in temperature is usually from February and temperatures between 38-
44 °C is common in summer

Wind:
Approximately all through the year; max recorded: 133 km/hr; less severe
storms are common more at the end of winters and beginning of spring.

Humidity:
Low because of the desert climate

Rain:
Low; average annual precipitation is 61 mm. Some years 10-20 mm has also
been recorded. Max recorded: 147 mm

Mr. Massoud Ahmadi
Bam Meteorological Center
13th January 2004

Note: Especial report and forecasts of weather (8 days and 16 days) for Bam can
be found at:
- www.accuweather.com (Select “World” then search “Bam”) [1]
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Appendix D: Weather conditions in L’Aquila

Weather Conditions for Italy

ITALY

Rome City -8.2 42

Rome Ciampino Air. -11 40.6

Rome Fiumicino Air.-7.8 38.6

Milan City -17.3 41.1

Turin City -21 41.¢6

Turin Airport -21.8 37.4

Florence City -12.9 42

Florence Airport -23.2 42.6

Venice -13.5* 36.6 * -17.5C was also recorded in January 1709
Genoa -8 37.8

Bologna -18.8 39.8

Perugia -17 40

Naples -5* 40 * a dubious -5.6C also recorded in January
1981

Bari -5.9 45.6

Palermo Observatory-0.5 44.6%* * a questioned 45.5C also recorded in
August 1885

Cagliari -4.8 43.7

Catenanuova 48.5

Lampedusa Island 2.2 39.9

Plateau Rosa -34.6 17.2

Mount Rose -41  7.3% * a record of 8.3C in August 2008 is
likely to be faulty

Livigno -38 29

Gran Gioves -42

Busa di Manna -43.8%* * recorded in a frost hollow

Lowest temperature in L’Aquila region ~ -17 °C (255K)
Extracted from Maximiliano Herrera web-page [19]

As seen in an updated version of the Wikipedia encyclopaedia for “L’Aquila”, the following climatic
data for this region was observed. It has been said that the city enjoys each year eleven cold months
and one cool one . This data was extracted on the 6™ December 2008 by the Meteorological Station in
L’Aquila, CETEMPS webpage.

Climate data for L'Aquila
Month Jan Feb Mar Apr May Jun

Record high °C (°F) :; -

" ee 83 1.9 151
Average high °C (°F) (44) 7) 53) (59)

176 11.4

&4) (53)

- o po! 25 a7 86 26 143 17.9 122 7.0
Daily mean °C (°F) ey 39 (44) (49) (58) e4) ©2) (54) (45}
o o 18 -1.0 12 40 81 11.4 13.6 138 10.7 8.8 28

aerage JowpC L} 29) (20) 34) 9 (&7) (£3) L) (58) 1) (#4) (27)
e o -17.0 -15.0 -11.7 -7.3 1.0 8.0 40 e.o0 0.0 =30 8.0

LES LR, (0) ® i) (19) 0) 43) 29) ) @2) en | ue

Obtained from Wikipedia webpage [66]
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Appendix E: Scripts

Python Script

» Stacking
# import standard modules
import os
import glob
import sys

# import image and array support
import Image
import numpy

# the envi2 module for writing ENVI format images
import envi?2
import envi2.constants

# Here comes trouble!
import datetime

# define a generic time zone object
class UTC (datetime.tzinfo) :
def init (self, offset):
self.offset = offset
def utcoffset(self, dt):
return datetime.timedelta (hours=self.offset)
def dst(self, dt):
return datetime.timedelta (0)
def tzname (self, dt):
return "UTC%+d" % (self.offset,)

# set time zone to UTC+0
tzUTCO = UTC(0)

pattern = r'I:\copy data italy\italyLTS\LTS 2009\LST 2009* IR 108.tif'
output = r'I:\copy data italy\italyLTS\LTS 2009\stack'

def to linear time(dt):
'''" takes a datetime object
returns prolectic Gregorian ordinal (=days since 01-01-0001)
plus a fraction of the day
Tva
return dt.toordinal () +
(((dt.second/60.0)+dt.minute) /60.0+dt.hour)/24.0

def from linear time(1lt):

'''takes a prolectic Gregorian ordinal plus fraction of day
returns a datetime object
T

return datetime.datetime.fromordinal (int (1lt)) +
datetime.timedelta (1t%1)
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# test to read a TIFF
fnames = sorted(glob.glob (pattern))
bands = len (fnames)

print "Found %d files" % (bands,)

# open one image to get info
im = Image.open (fnames[0])

samples, lines = im.size

# assuming 16-bit data

if im.mode == 'I;16"':
data type = 'H' # 'h' is signed
else:
## raise ValueError ('Unsupported
data type = 'ul'

print 'Assuming 8-bit data'’

# figure out byte order of the mach
if sys.byteorder == 'little':

byte order = 0
else:

|
=

byte order =

# map info obtained from GeoTIFF ta
try:
map info = ['Arbitrary', 1.0, 1
im.i£fd[33550][0]
except:
map_info

None

print map_info

#raise IOError

del im

# loop over file names to get time

wavelength = []
[1

for fname in fnames:

band names

## print fname
base = os.path.basename (fname)
4 t = base.split (' ") [1]
t = base.split('-")[-1][:12]
band names.append (t)
## print t

year, month, day, hour, minute
t[8:10], t[10:1))

, 'H' is unsigned 16 bit

image mode')

ine

gs (don't ask!)

.0, im.1£d[33922][3],
, im.1£d[33550][1], O,

stamps of images

= map (int, (t[:4],

t[4:6],

im.ifd[33922][4
'units=Degrees']

t[o6:8],

1,
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dt = datetime.datetime (year, month, day, hour, minute, 0, O,
tzinfo=tzUTCO)

ltime = to linear time (dt)
## print ltime
## print from linear time(ltime)

# add linear time to the list of 'wavelengths'
wavelength.append (ltime)

# open the output image
im2 = envi2.New (output, file type=enviZ.constants.ENVI Standard,
data type=data type, interleave='bsq',
byte order=byte order,
lines=lines, samples=samples, bands=bands,
wavelength=wavelength, descripion=['GeoTIFF to ENVI
stacker'],
wavelength units='Gregorian day', z plot titles=['time',
'value'],
map_info=map info, band names=band names)

# and here we go...
band = 0
for fname in fnames:
## print fname
# fp = open (fname)
try:
im = Image.open (fname)
except IOError:
print band
raise
im.load()
## im2 [band] = numpy.asarray(im.getdata())
# again, DON'T ASK!!!
im2 [band] = numpy.array(im.getdata()) .reshape(im.size[::-11])
# fp.close ()
del im
band = band + 1

del im2

» Conversion of DN to Radiances to BT (comprises two scripts namely, calibration.py and
meteosat.py)

(1) calibration.py:

from gregorian import *

from numpy import array

YEARS = [1999, 2000, 2001, 2002, 2003, 2004]
cname = 'Meteosat/IR Calibration info '
mon2mon = {'Jan':1,

'Feb':2,

'Mar':3,
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'Apr':4,
'May':5,
'Jun':6,
'Jul':7,
'Aug':8,
'Sep':9,
'Oct':10,
'Nov':11,
'Dec':12}

def read calibration(year, name):
f = open (name)
data = f.readlines|()
f.close()

calib = []
for line in data:
dayofyear, daymonth, slot, coeff, spacecount =
line.strip() .split ()
day, month = daymonth.split('-")

day = int (day)

month = mon2mon [month]

hour = (int(slot)-1)/2.0 # does it include the slot or not?
minute = int (hour%l * 60)

hour = int (hour)

coeff = float (coeff)

spacecount = float (spacecount)

# Proleptic Gregorian time...
ltime = to linear time(year, month, day, hour, minute)

calib.append((ltime, year, month, day, hour, minute, coeff,
spacecount) )
return calib

calibration = []

for year in YEARS:
name = cname + str(year) + '.txt'
calibration.extend(read calibration(year, name))

calibration_index = array([x[0] for x in calibration])
def get coeffs(year, month, day, hour, minute):
# Proleptic Gregorian time...

ltime = to_linear time(year, month, day, hour, minute)

# add 4 minutes to be sure to fall inside a slot
index = calibration index.searchsorted(ltime+0.003)

if index > 0:

index = index - 1
return calibration[index]

if name ==' main ':
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print get coeffs (2003, 2, 1, 11, 0)
#(731246.0625, 2003, 1, 31, 1, 30, 0.074721999999999997,

(i) meteosat.py

# import standard modules
import os

import glob

import sys

# import image and array support
import Image
import numpy

# the envi2 module for writing ENVI format images
import envi?2

import envi2.constants

# local modules

import gregorian

import timestr
import calibration

def

def

message (s) :
print s

convert meteosat (pattern, output, message=message):
# figure out input files from the pattern

fnames = sorted(glob.glob (pattern))
bands = len (fnames)
message ("Found %d files" % (bands,))

if not bands:
return

# open one image to get info
im = Image.open (fnames[0])

samples, lines = im.size

# assuming 16-bit data
if im.mode == 'I;16"':
data type = 'H' # 'h' is signed, 'H' is unsigned 16 bit
message ("Data type: 2-byte")
is calibrated = True
elif im.mode.startswith('F"'):
data type = 'single'
message ("Data type: 4-byte single float")
is _calibrated = True
else:
data type = 'ul' # cross your fingers here...
message ("Data type: assuming l-byte")

5

.0)
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is _calibrated = False
## raise ValueError ('Unsupported image mode')

# figure out byte order of the machine
if sys.byteorder == 'little':

byte order = 0
else:

byte order =1

try:
# map info obtained from GeoTIFF tags (don't ask!)
map_info = ['Arbitrary', 1.0, 1.0, im.ifd[33922][3],
im.1£d[33922][4],

im.ifd[33550][0], im.ifd[33550][1], 0, 'units=Degrees']

except KeyError:
map_info = None

message ("Map info: %$s" % (str(map_info),))
del im
# loop over file names to get time stamps of images

wavelength = []
[]

for fname in fnames:

band names

base = os.path.basename (fname)
message ("Inspecting '$s'" $ (base,))

year, month, day, hour, minute = timestr.time from string(base)

band names.append ("%4d%02d%02d%02d%02d" % (year, month, day, hour,

minute))

ltime = gregorian.to linear time(year, month, day, hour, minute)
message ("Linear time: %$f" % (ltime,))
#4 print gregorian.from linear time (ltime)

# add linear time to the list of 'wavelengths'
wavelength.append (ltime)

# open the output image
im2 = envi2.New (output, file type=envi2.constants.ENVI Standard,
data type='single', interleave='bsq',
byte order=byte order,
lines=lines, samples=samples, bands=bands,
wavelength=wavelength, descripion=['GeoTIFF to ENVI
stacker'],
wavelength units='Gregorian day',
z plot titles=['time', 'value'],
map_info=map info, band names=band names)

# and here we go...
band = 0
for fname in fnames:
try:
im = Image.open (fname)
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except IOError, errtext:
raise IOError('%s on file %s band %d' % (errtext, fname, band))

base = os.path.basename (fname)

if is _calibrated:

o)

message ("Convering: %s" % (base,))
message ('Calibration SKIPPED')

im.load()
# again, DON'T ASK!!!
BT = numpy.array(im.getdata()).reshape(im.size[::-1])
else:
year, month, day, hour, minute = timestr.time from string(base)

calib = calibration.get coeffs(year, month, day, hour, minute)

alpha = calib[-2]
space _count = calib[-1]

message ("Calibrating: %$s" % (base,))

message ('Calibration data: %f %f' % (alpha, space_ count))
im.load()

# again, DON'T ASK!!!

data = numpy.array(im.getdata()) .reshape(im.size[::-1])

# convert to radiance

radiance = alpha * (data - space_count)

# convert to brightness temperature

A = 6.7348
B = -1272.2
BT = B / (numpy.log(radiance) - A)

Q

message ("Average scene brightness temperature: $.1f Kelvin" %
(BT.mean()))

im2 [band] = BT

del im
band = band + 1

del im2
if name ==' main ':
pattern = r'/data/Data/Nadira/formatl/*.tif'

output = r'/data/Data/Nadira/formatl/stack'

convert meteosat (pattern, output)
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» Time Series for one pixel
import envi?2
import timeutil
import gregorian

#### INPUT PARAMETERS

im = envi2.Open(r'K:\Bam 1999\images\stackl1999")
#im = envi2.Open(r'K:\sample\italy\stack2006")

Y = 20
X 20

#### ANALYSE DATA

# get the band names as strings (from envi2 they come out as longs)
band names = [str(bn) for bn in im.band names]

has quarters = False
for band in range (im.bands) :
bname = band names [band]
year, month, day, hour, minute = timeutil.time unpack (bname)
# check if this data has quarters in it
if minute==15 or minute==45:

has quarters = True
## print "%s;%f;%f" % (bname, im.wavelength[band], series[band])

if has quarters:

## print "15 minute data"
delta = 15

else:

## print "30 minute data"
delta = 30

#### REPLACE MISSING VALUES

# get the complete time range
timerange =
timeutil.time pack seqg(timeutil.timerange (timeutil.time unpack (band names [0
1)y

timeutil.time unpack(band names[-1]),
delta))
##print timerange

result = []
for t in timerange:
# check if this time is in the data
try:
band = band names.index(t)
value = im[Y, X, band]
# otherwise give it a NaN value
except ValueError:
value = float('nan')
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# append value to the result list
result.append(value)

# get the proleptic gregorian day
gt = gregorian.to linear time (*timeutil.time unpack(t))

# print everything

o)

print "$s;%f;%f" % (t, gt, value)

### OR, print in 'yyyy-mm-dd hh:mm' format

#H year, month, day, hour, minute = timeutil.time unpack(t)
#4# print "%4d-%02d-%02d %02d:%02d;%f;%f" % (year, month, day, hour,

minute, gt, wvalue)

### OR do something with the result list
##print result

PERL Script

» Cloud Masking
S i i
#Cloud removal algorithm. Will remove anything that is below min+ (0.95*max-
min)-20 (abs min + range - allowed variation)
# applied per image. pxls per time are extracted from pxl files and
corrected before being written away in CLOUDREMOVED folder
sub CLOUD {

#Snr images = 0;
Snr_pixels = 0;
Smin temp = 260;
Svariation = 20;

# create array of files to be opened, can be called through indexing

open (PIXELS, "test.lst") || die "can't open file data.lst: $!"; # open
list with all files to be processed
while (defined (my $pixels = <PIXELS>)){ # go through list and open every

file in sequence
Snr_pixels++;
chomp (S$pixels);
push (Q@location, Spixels);
}
close (PIXELS);
print "nr of pixels is, S$Snr pixels\n";

E
#HAEEHHHH4HEHS LOOP 1

# create matrix of all files

for (Sp=0; $p<=Snr pixels-1; S$p++) {

open (PIXEL, "S$location[$pl]l") || die "can't open file pixel file
Slocation[$i] : s!";

print "opened file $location[$p]l\n";

$1i=0;
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while (defined (my $pixel = <PIXEL>)){ # go through every file and

use counter p for location of value in matrix

# my Qpixel = split (/,/, S$pixel);
if ($1i <= 4303){
chomp ($pixel);
Sm _value[$p] [$i] = Spixel;
}
Si++;
}
close (PIXEL);

Snr_images = 4304;
print "nr of images is, S$nr images\n";

#calculate min and max for each image and add treshold to matrix
for ($i=0; $i<=Snr images-1; $i++) { #take every line from each file as

part of the image it belonged to.
Smin = 1000; $max = 0;

print "calculate min/max for image $i\n";

for ($p=0; Sp<=Snr pixels-1; Sp++) { #loop over all pixels in image
if (Sm_value[$p]l[$i] > $max) {$max = $m value[$p]l[$i];}
if (Sm_value[$p]l[$i] < $min) {$min = $m value([$p][$i];}

}

# put treshold at last position of matrix for studied image
$min) - S$variation;

Sm value[$nr pixels][$i] = Smin + (0.95*$max -
print "for image $i min,max,treshold is: $min,
Sm_value[$nr pixels][$i]l\n";

}

#remove clouds based in treshold

Smax,

for ($i=0; $i<=Snr images-1; $i++) { #take every line from each file as

part of the image it belonged to.
print "calculate cloudremoval for image $i\n";

for ($p=0; Sp<=$nr pixels-1; S$p++) {

if ($m_value[$p] [$i] < $m value[$nr pixels][$i] ||

Sm_value[Sp]l[$i] < Smin temp) {

print "pixel is Sm value[$p][$i], treshold is

Sm_value[$nr pixels][$i]l\n";
Sm_value[Sp]l [$i] = "NaN";

#write data back to file
print "write back to files started\n";
for (Sp=0; $p<=Snr pixels-1; S$p++) {
open (OUT, ">>$location[$p] CR 20 Smin temp")
pixel file $location[$i] : S!I";

die "can't open file
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for ($i=0; $i<=Snr images-1; $i++) { #take every line from each file
as part of the image it belonged to.
# print OUT "$m time[S$p][$i], $m value[S$Sp] [$il\n";
print OUT "$m value[S$p][$il\n";
}
close (OUT);

FHEAHH AR AR AR AR A R R
#H#HEHFHESSE LOOP 2
# create matrix of all files
for (Sp=0; $p<=Snr pixels-1; S$p++) {

open (PIXEL, "S$location[$p]") || die "can't open file pixel file
Slocation[$i] : S$!'";

print "opened file $location([$p]l\n";

$1=0;

while (defined (my $pixel = <PIXEL>)){ # go through every file and
use counter p for location of value in matrix

# my @pixel = split (/,/, Spixel);
if ($1 > 4303 && $i <=8607) {
$9= $i-4304;
chomp ($pixel);
s$m_value[$p] [$]] = Spixel;

# S$m_time[$p] [$i] = Spixel[0];
Si++;
}
close (PIXEL);
}
Snr_images = 4304;
print "nr of images is, Snr images\n";

#calculate min and max for each image and add treshold to matrix
for ($i=0; $i<=Snr images-1; $i++) { #take every line from each file as
part of the image it belonged to.

Smin = 1000; $max = O;

print "calculate min/max for image $i\n";

for ($p=0; $p<=$nr pixels-1; S$p++) { #loop over all pixels in image
if (Sm_value[$p][$i] > Smax) {Smax = Sm value[Spl[$i];}
if (Sm_value[$p][$i] < Smin) {Smin = Sm value[Spl[$i];}
}
# put treshold at last position of matrix for studied image
Sm value[Snr pixels][$i] = Smin + (0.95*$max - $min) - $variation;
### ADJUST HERE YOUR ALLOWED VARIATION IN TEMP!!!!
print "for image $i min,max,treshold is: $min, $max,
S$m_value[$nr pixels] [$i]\n";

}

#remove clouds based in treshold
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for ($i=0; $i<=Snr images-1; $i++) { #take every line from each file as
part of the image it belonged to.

print "calculate cloudremoval for image $i\n";

for ($p=0; S$p<=$nr pixels-1; S$p++) {
if ($m_value[$p] [$i] < $m value[$nr pixels][$i] ||
Sm value[$p] [$1i] < Smin temp) {
# print "pixel is Sm value[$p][$1i], treshold is
Sm _value[$nr_ pixels] [$i]\n";
Sm_value[Sp]l[$i] = "NaN";

#write data back to file
print "write back to files started\n";
for (Sp=0; $p<=$nr pixels-1; Sp++) {

open (OUT, ">>$location[Sp] CR 20 $min temp") || die "can't open file
pixel file $location[$i] : S!";

for ($i=0; $i<=$nr images-1; $i++) { #take every line from each file
as part of the image it belonged to.
# print OUT "$m time[$p]l[$i], Sm value[$Spl[$il\n";

print OUT "$m value[Sp] [$i]\n";
}
close (OUT);

FHHHE A A AR AR A
#H####4#4#E LOOP 3
# create matrix of all files
for (Sp=0; $p<=Snr pixels-1; S$p++) {

open (PIXEL, "S$location[$pl") || die "can't open file pixel file
Slocation[$i] : S$!™;

print "opened file $location[$p]l\n";

$1=0;

while (defined (my $pixel = <PIXEL>)){ # go through every file and
use counter p for location of value in matrix
# my @pixel = split (/,/, Spixel);

if ($1 > 8607 && S$i <= 12911) {
$j= $i-8608;
chomp ($pixel);
Sm _value[Spl [$]] = Spixel;

# $m_time[$p] [$1] = $pixel([0];
Si++;
}
close (PIXEL);
}
Snr_images = 4304;
print "nr of images is, Snr images\n";

78



THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION

#calculate min and max for each image and add treshold to matrix
for ($i=0; $i<=Snr images-1; $i++) { #take every line from each file as
part of the image it belonged to.

Smin = 1000; $max = 0;

print "calculate min/max for image $i\n";

for ($p=0; $p<=$nr pixels-1; S$p++) { #loop over all pixels in image
if (Sm_value[$p][$i] > Smax) {Smax = Sm value[Spl[$i];}
if (Sm_value[$p]l[$i] < Smin) {Smin = Sm value[Spl[$i];}
}
# put treshold at last position of matrix for studied image
Sm value[Snr pixels][$i] = Smin + (0.95*$max - $min) - $variation;
### ADJUST HERE YOUR ALLOWED VARIATION IN TEMP!!!!
print "for image $i min,max,treshold is: $min, $max,
S$m_value[$nr pixels] [$i]\n";

}

#remove clouds based in treshold
for ($1i=0; $i<=Snr images-1; $i++) { #take every line from each file as
part of the image it belonged to.

print "calculate cloudremoval for image $i\n";
for (Sp=0; S$p<=$nr pixels-1; Sp++) {

if ($m value([$p] [$i] < $m value[S$nr pixels][$i] ||
Sm_value[$p] [$i] < $min temp) {

# print "pixel is $m value[$p][$i], treshold is
$m_value[$nr pixels] [$i]\n";
$m_value[Sp] [$i] = "NaN";

#write data back to file
print "write back to files started\n";
for ($p=0; $p<=Snr pixels-1; Sp++) {

open (OUT, ">>$location[Sp] CR 20 Smin temp") || die "can't open file
pixel file $location[$i] : $!";

for ($i=0; $i<=Snr images-1; $i++) { #take every line from each file
as part of the image it belonged to.
# print OUT "$m time[Sp][S$i], $m value[$Sp] [Si]l\n";

print OUT "$m value[$p] [$i]\n";
}
close (OUT);

FHASHFH AR A A
#HHfHHHHEHE LOOP 4
# create matrix of all files
for (Sp=0; $p<=Snr pixels-1; S$p++) {

open (PIXEL, "S$location[$pl]l") || die "can't open file pixel file
Slocation[$i] : $!";

print "opened file $location[$p]l\n";
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$i=0;
while (defined (my $pixel = <PIXEL>)){ # go through every file and
use counter p for location of value in matrix

# my Qpixel = split (/,/, S$pixel);

if ($1 > 12911 && S$1i <= 17215)¢{
$j= $1-12912;
chomp ($Spixel);
Sm _value[Spl [$]] = Spixel;

# Sm_time[$p][$i] = Spixell0];
Si++;
}
close (PIXEL);
}
Snr_images = 4304;
print "nr of images is, S$nr images\n";

#calculate min and max for each image and add treshold to matrix
for ($i=0; $i<=Snr images-1; $i++) { #take every line from each file as
part of the image it belonged to.

Smin = 1000; $max = 0;

print "calculate min/max for image $i\n";

for ($p=0; Sp<=$nr pixels-1; $p++) { #loop over all pixels in image
if (Sm_value[$p]l [$i] > $max) {$max = $m value[$p]l[$i];}
if ($m _value[$p]l[$i] < $min) {Smin = Sm value[$p]l[$i];}
}
# put treshold at last position of matrix for studied image
Sm_value[$nr pixels][$i] = Smin + (0.95*Smax - $Smin) - Svariation;
### ADJUST HERE YOUR ALLOWED VARIATION IN TEMP!!!!
print "for image $i min,max,treshold is: $min, $max,
$m value[$nr pixels] [$i]\n";

}

#remove clouds based in treshold
for ($i=0; $i<=Snr images-1; $i++) { #take every line from each file as
part of the image it belonged to.

print "calculate cloudremoval for image $i\n";
for ($p=0; Sp<=Snr pixels-1; Sp++) {

if (Sm_value[Spl[$i] < Sm value[$nr pixels][$i] ||
Sm value[$p] [$1i] < Smin temp) {

# print "pixel is $m value[Sp][$i], treshold is
$m value[$nr pixels] [$i]\n";
Sm_value[$p] [$i] = "NaN";

#write data back to file
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print "write back to files started\n";
for (Sp=0; $p<=Snr pixels-1; S$p++) {

open (OUT, ">>$location[$Sp] CR 20 S$min temp") || die "can't open fil
pixel file $location[$i] : $!";

for ($i=0; $i<=Snr images-1; $i++) { #take every line from each file
as part of the image it belonged to.
# print OUT "$m time[S$p][$i], $m value[S$Sp] [$Sil\n";

print OUT "$m value[S$p] [$il\n";
}
close (OUT);

FHEAHH AR AR AR AR A R R
#HHHE#EHESSE LOOP 5
# create matrix of all files
for ($p=0; $p<=Snr pixels-1; Sp++) {

open (PIXEL, "S$location[$p]") || die "can't open file pixel file
Slocation[$i] : S$!'";

print "opened file $location[$p]l\n";

$1i=0;

while (defined (my $pixel = <PIXEL>)){ # go through every file and
use counter p for location of value in matrix

# my @pixel = split (/,/, Spixel);

if ($1 > 17215 && $1i <= 17226){
$j= $1-17215;
chomp ($pixel);
sm_value[$p] [$]] = Spixel;

# $m_time[$p] [$1i] = Spixel[0];
Si++;
}
close (PIXEL);
}
Snr_images = 12;
print "nr of images is, S$nr images\n";

#calculate min and max for each image and add treshold to matrix
for ($i=0; $i<=S%nr images-1; $i++) { #take every line from each file as
part of the image it belonged to.

Smin = 1000; $max = 0;

print "calculate min/max for image $i\n";
for (Sp=0; S$p<=$nr pixels-1; $p++) { #loop over all pixels in image

if ($m value[$p] [$i] > Smax) {Smax Sm value([Sp]l [$i];}
if ($m value[$p] [$i] < $min) {S$Smin = S$m value[Sp][$i];}

}

# put treshold at last position of matrix for studied image
Sm_value[Snr pixels][$i] = Smin + (0.95*Smax - $min) - $Svariation;
### ADJUST HERE YOUR ALLOWED VARIATION IN TEMP!!!!
print "for image $i min,max,treshold is: $min, $max,
Sm_value[$nr pixels][$i]l\n";

e
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#remove clouds based in treshold
for ($i=0; $i<=Snr images-1; $i++) { #take every line from each file as
part of the image it belonged to.

print "calculate cloudremoval for image $i\n";

for ($p=0; Sp<=Snr pixels-1; Sp++) {
if (Sm_value[Spl[$i] < Sm value[$nr pixels][$i] ||
Sm_value[Sp]l[$i] < Smin temp) {
# print "pixel is Sm value[$p][$i], treshold is
Sm _value[$nr_ pixels] [$i]\n";
Sm_value[$p] [$i] = "NaN";

#write data back to file
print "write back to files started\n";
for (Sp=0; $p<=Snr pixels-1; S$p++) {

open (OUT, ">>Slocation[$p] CR 20 $min temp") || die "can't open file
pixel file $location[$i] : S!";

for ($i=0; $i<=$nr images-1; $i++) { #take every line from each file
as part of the image it belonged to.
# print OUT "$m time[$p][$i], Sm value[Sp][$i]l\n";

print OUT "$m value[$p] [$i]\n";
}
close (OUT);

} # end of subroutine

» Anomaly Detection

#4444 ##fanomaly detection algorithm##########f4444FH##444
sub ANOMALY {

Skernel = 10;
Snr_1 = 80;
$Snr c = 73;

#Skernel = 1;
#snr 1 =
#snr c =

for ($1=1; $1 <= $nr 1; S$1l++){
for ($c=1; $c <= $nr c; Sc++){

$1=0;

#PIXEL COUNTER
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print " working on pixel $1,S$c\n";

open (OUT, ">ANOMALY/2001L$1\C$c\ CR 20 260 ANOM") || die
"can't open anomaly output file: $!";

open (PIXEL, "DATA TIME/2001L$1\C$c\_CR 20 _260") || die "can't
open file pixel file: $!";
$3=0;
while (defined (my S$pixel = <PIXEL>)) {
#add central pxl to matrix at (0,0)
chomp ($pixel);
my @pixel = split (/,/, Spixel);
Smatrix[$i]1[$]] = Spixel[1l];
Stime[$]j] = Spixel[0];
Sj++;
}
$max_times = $j;
close (PIXEL);
#upper part
$1 k = $1 - skernel; #

shift to upper line and check if exists
if (S1_ k >= 1) |
print "working on upper part\n";
Si++;

open (PIXEL, "DATA TIME/2001L$1 k\C$c\ CR 20 260") |
die "can't open file pixel file: $!";
$3=0;
while (defined (my $pixel = <PIXEL>)) {
#add central pxl to matrix at (0,0)
chomp (S$Spixel);
my @pixel = split (/,/, S$Spixel);
Smatrix[$i][$3] = Spixell[l];
S$I++;

}
close (PIXEL);

# 1if line exists, shift columns and check if

exists
for (Sk=1; $k <= Skernel; Sk++){
$c_k = $c - Sk;
if ($c_k >= 1) {
Sit++;
open (PIXEL,
"DATA TIME/2001L$1 k\C$c k\ CR 20 260") || die "can't open file pixel file:
s, #CHECK IF NAME WILL WORK
$9=0;

while (defined (my S$pixel = <PIXEL>)) {

chomp ($pixel);

my @pixel = split (/,/, Spixel);
Smatrix[$1i][$]] = $Spixell[l];
Si++;
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}
close (PIXEL);

$c_k = Sc + Sk;
if (Sc_k <= S$nr c) {

Si++;
open (PIXEL,
"DATA TIME/2001LS1 k\CSc_k\ CR 20 260") || die "can't open file pixel file:
Sty #CHECK IF NAME WILL WORK
$3=0;

while (defined (my $pixel = <PIXEL>)) {

chomp ($pixel);

my @pixel = split (/,/, $pixel);
Smatrix[$i] [$7] = Spixel[l];
$I++;

close (PIXEL);

#lower part
$1 k = $1 + S$Skernel; #
shift to upper line and check if exists
if ($1 k <= $nr 1) {
Si++;
print "working on lower part\n";

open (PIXEL, "DATA TIME/2001LS$1 k\CS$c\ CR 20 260") ||
die "can't open file pixel file: $!";
$3=0;
while (defined (my S$pixel = <PIXEL>)) {
#add central pxl to matrix at (0,0)

chomp ($pixel);
my Q@pixel = split (/,/, S$pixel);
S$matrix[$i][$]] = Spixel[1l];
Sj++;

}

close (PIXEL);

# if line exists, shift columns and check if

exists
for ($k=1; $k <= Skernel; S$Sk++){
$c_k = $c - Sk;
if ($c k >= 1) {
Sit++;
open (PIXEL,
"DATA TIME/2001LS1 k\CSc_k\ CR 20 260") || die "can't open file pixel file:
Sty #CHECK IF NAME WILL WORK
$3=0;
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while (defined (my S$pixel = <PIXEL>)) {

chomp ($pixel);
my @pixel = split (/,/, $pixel);
Smatrix[$i][$]] = Spixel[1l];
$J++;

}

close (PIXEL);

$c_k = Sc + Sk;
if ($c_k <= $nr _c) {
Si++;
open (PIXEL,
"DATA TIME/2001L$1 k\C$c k\ CR 20 260") || die "can't open file pixel file:
S!"; #CHECK IF NAME WILL WORK
$3=0;
while (defined (my S$pixel = <PIXEL>)) {

chomp ($pixel);

my @pixel = split (/,/, Spixel);
Smatrix[$1i][$]] = Spixell[l];
$y++;

close (PIXEL);

#left part
$c_k = $c - Skernel;
shift to upper line and check if exists
if (Sc k >= 1) {
print "working on left part\n";
Si++;

open (PIXEL, "DATA TIME/2001L$1\C$c k\ CR 20 260")
die "can't open file pixel file: $!";
$3=0;
while (defined (my $pixel = <PIXEL>)) {
#add central pxl to matrix at (0,0)
chomp (S$Spixel);
my @pixel = split (/,/, Spixel);
$matrix[$i][$]] = Spixel[l];
$y++;

}
close (PIXEL);

# 1if line exists, shift columns and check if
exists

for ($k=1; Sk <= S$kernel-1; Sk++) {

$1_k = $1 - Sk;
if ($1 k >= 1) {
Si++;
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open (PIXEL,

"DATA TIME/2001LS1 k\CSc_k\ CR 20 260") || die "can't open file pixel file:
Sty #CHECK IF NAME WILL WORK

$3=0;

while (defined (my $pixel = <PIXEL>)) {

chomp ($pixel);

my @pixel = split (/,/, $pixel);
Smatrix[$i][$3] = Spixell[l];
S$I++;

close (PIXEL);

$1 k = $1 + $k;
if ($1 k <= $nr 1) |
Si++;
open (PIXEL,
"DATA TIME/2001L$1 k\C$c k\ CR 20 260") || die "can't open file pixel file:
Sty #CHECK IF NAME WILL WORK
$3=0;
while (defined (my $pixel = <PIXEL>)) {

chomp (Spixel);

my @pixel = split (/,/, $pixel);
Smatrix[$1]1[$3] = Spixel[l];
S$I++;

close (PIXEL);

#right part
Sc_k = $c + S$kernel;

shift to upper line and check if exists
if ($c_k <= Snr _c) {

print "working on right part\n";
Si++;

open (PIXEL, "DATA TIME/2001LS$1\CS$c k\ CR 20 260") ||
die "can't open file pixel file: S$!";
$3=0;
while (defined (my S$pixel = <PIXEL>)) {
#add central pxl to matrix at (0,0)
chomp ($pixel);
my @pixel = split (/,/, $pixel);
S$matrix[$i][$]] = Spixel[1l];
Sj++;
}
close (PIXEL);

# if line exists, shift columns and check if
exists

for ($k=1; Sk <= Skernel-1; Sk++){

86



THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION

$1_k = $1 - Sk;
if ($1 k >= 1) {

Si++;

open (PIXEL,
"DATA TIME/2001L$1 k\C$c k\ CR 20 260") || die "can't open file pixel file:
S!"; #CHECK IF NAME WILL WORK

$3=0;

while (defined (my S$pixel = <PIXEL>)) {

chomp ($pixel);

my @pixel = split (/,/, S$Spixel);
Smatrix[$1i][$]] = Spixell[l];
$J++;

close (PIXEL);

$1 k = $1 + $k;
if ($1 k <= $nr_1) {

Si++;
open (PIXEL,
"DATA TIME/2001LS1 k\CSc_k\ CR 20 260") || die "can't open file pixel file:
ste; #CHECK IF NAME WILL WORK
$3=0;

while (defined (my S$pixel = <PIXEL>)) {

chomp ($pixel);

my @pixel = split (/,/, $pixel);
Smatrix[$1][$7] = $pixel([l];
$y++;

close (PIXEL);
1
$max_ images = $i;

print "used $max images pixels for background with Smax times
timestamps each\n";

### ANOMALY CALCULATION
for ($j = 0; $j <= S$max_times-1; $j++) {

$sum = 0; S$image used = 0;
for ($1i = 1; $i <= Smax_images; S$i++) {
# print "matrix value = Smatrix[$i][$3]1\n";
if (Smatrix[$1]1[S$j] != NaN) {
Simage used++;
Ssum = $sum + Smatrix[$i][S$3];
}
}
# print "sum is $sum for Simage used images used\n";
if ($sum == NaN) {
Sanomaly = "NaN";
} else {
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$background = $sum/Simage used;

$anomaly = ($Smatrix[0][$3] / $sum)

#replace original value with anomaly

}
print OUT "S$time[$7],

* Simage used;

Sanomaly\n";

}
close (OUT);

} # end of subroutine
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Appendix F: HANTS cloud removal

Procedure taken in HANTS to obtain cloud free images

(1) Meteosat-5 TIR images are of data type, floating point. This data type needs to be converted into
an integer type [fix((b1-273.15)*100)] to be used in HANTS.

(2) Processing of time series imagery in HANTS is executed on a single-interleaved image file (BIL).
Input of Meteosat-5 are in band sequential format(BSQ) so a conversion from BSQ to BIL is
needed (NB: The header files were edited, so for an image of Sample 73, Line 80 and Bands
17078, the new header information contains Sample 5840, Line 17078 and Bands 1).

(3) Output is a single image file in BIL without cloud contaminated observations.

(4) This final image was converted back into a BSQ format (Sample 73, Line 80 and Bands 17520).
The number of bands in this output took into account those missing images.

(5) The BSQ image was then converted into the original datatype, floating point using the following
formula: [float((b1/100)+273.15)].
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Appendix G: Earthquake Definitions

Diagram and Terminologies for Earthquake events

Fault scarp
! Faull
A trace

X

Fault j'___._ P

plana
Figure 5-2: Diagram showing the features involved in an earthquake event [S9].

Focus/hypocenter: is the point within the earth where an earthquake rupture starts.

Epicentre: is the point on the earth’s surface directly above the hypocenter at the surface of the earth.

Fault plane: is the planar (flat) surface along which there is slip during an earthquake.

Fault trace: is the intersection of a fault with the ground surface.

Fault scarp: is the feature on the surface of the earth that looks like a step caused by slip on the fault.
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Appendix H: Earthquake scales and NEIC results

Earthquake Scales and Brief Description for NEIC Earthquake Search Results

Scale T (sec) 1) Related scales
M 0.1~3 10 My,
Mg ~20 70 Mgr, Mg, Mp Mz, My, Mjva
mg 0.5~12 70
my, ~1 10 My,
Moment magnitude (My) 10 ~ o oc Mp, My, Mg M,
Mc - -
M; - - Mg
Table 5-3: Different Magnitude Scales [20].
where
T Period
Avax Maximum wavelength
M Local magnitude, Richter (1935)
My Surface-wave magnitude, Gutenberg (1945a)
mp Body-wave magnitude, Gutenberg (1945b), Gutenberg and Richter (1956)
my Short-period body-wave magnitude reported in “Earthquake Data Reports” and “Bulletin of

International Seismological Center”
Mprg Lg-wave magnitude, e.g., Nuttli (1973)
Mg Magnitude used in Gutenberg and Richter (1954)

Mp Magnitude used in and Richter (1958)

Mp Magnitude used in and Duda (1965)

My Surface-wave magnitude determined from the vertical-component seismograms (e.g. Earthquake Data
Reports)

My Surface-wave magnitude defined by Vanék et al. (1962)

My, Magnitude scale used by the Japan Meteorological Agency
M)y, Moment magnitude by Brune and Engen (1969)
My Kanamori (1977)

Mg Purcaru and Berckhemer (1978)

M, Tsunami magnitude regressed against MW, Abe (1979)

Mc Coda (or duration magnitude), e.g., Bisztricsany (1959), Tsumura (1967), Real and Teng (1973)
M, Magnitude determined from intensity data and macro-seismic data, e.g., Nuttli and Zollweg (1974),
Nuttli et al., (1979), Utsu (1979)

My Kawasumi (1951) [20]

Surface-wave magnitude Mg: although this scale suffers from the saturation at Mg > 8, it can be
determined very easily, and is a useful scale for most events larger than Mg =5. Surface waves are analogous to
water waves and travel along the Earth’s surface [20]. They travel slower than body waves. Because of their low
fequency, long duration and large amplitude, they can be the most destructive type of seismic wave. There are
two types of surface waves: Rayleigh waves and Love waves. This scale can be used for moderate to large
earthquake and for shallow earthquakes wih depths less than 70 km. Also it is suitable to detect earthquakes a
distance greater than 1000km from the epicenter.

Body-wave magnitude mg: the body-wave magnitude which is determined from the maximum
amplitude of various body-wave phases, here denoted by mg. is useful to represent the source spectrum at a
period from 1 to 10 seconds. Many recent studies on the amplitude attenuation curves and their regional
variations will hopefully make inter-regional comparisons of mg more meaningful than in the past [20]. Body
waves travel through the interior of the Earth. They follow raypaths refracted by the varying density and modulus
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(stiffness) of the Earth’s interior. The density and modulus, in turn, vary according to temperature, composition
and phase.

Body-wave magnitude my: this scale, which is determined from the first few seconds of short-period P
waves, represents the size of an earthquake at its beginning. Because of this, for earthquakes with a large fault
dimension and complex rupture mechanism, the usefulness if this scale is limited. However, for relatively small
events (e.g., my < 5.5), this scale approximately represents the source spectrum at the period of 1 second and is
useful for quantification of earthquakes at short periods [20]. It is ideal to locat earthquakes up to a distance of 5°
geographical coordinates away from the epicenter.

Moment magnitude: the moment magnitude is made (longer than 100 seconds for very large events)
more directly than the conventional scales. If the energy-moment relation is correct, the moment magnitude can
be determined from the seismic moment by using the formula [My = (log Mg -16.1)/1.5] for both shallow and
deep earthquakes. Since the determination of the seismic moment is becoming a relatively routine practice, the
moment magnitude is a very useful parameter for earthquake quantification [20].

Local and regional scales: local magnitude My, the JMA magnitude Mjya, Lg magnitude my,, the coda
(duration) magnitude M¢ and the intensity magnitude M;. Since the types of the data used in these scales are very
different from region to region, it is often difficult to relate one scale to another [20]. This magnitude sclae
systems were developed for shallow and local earthquakes.

The problem of the magnitude scale became very complex as many different scales were
introduced to accomodate different situations such as use of teleseismic surface and body waves,
extension of the scale to intermediate and deep earthquakes, change in the seismic instrumentation,
extension of the scale to very small and very large earthquakes and introduction of new seismological
concepts.

Most magnitude scales currently in use are empirical’. Usually a magnitude M is determined
from the amplitude A and the period T of a certain type of seismic waves through a formula which
contains several constants. These constants are determined in such a way that the magnitudes on the
new scale agree with those of an existing one, at least over a certain magnitude range. In some case,
the duration of seismogram, macro-seismic data (e.g., intensity, tsunami source area) and geodetic
data are used for the determination of magnitude. In this case too, the new scale is regressed against
existing ones.

Earthquakes can be quantified with respect to various physical parameters such as the fault
length, fault area, fault displacement, particle velocity and acceleration of fault motion and a
combination of these. It is impossible to represent all of these parameters by a single number, the
magnitude. Obviously there is a limitation in the use of the magnitude scale for quantification of
earthquakes. The main purpose of the magnitude scale is to provide a parameter which can be used for
the first-cut reconnaissance analysis of earthquake data (catalogue) for various geophysical and
engineering investigations; special caution should be exercised in using the magnitude beyond the
reconnaissance purposes [20].

I Empirical denotes information gained by means of observation, experience, or experiment. A certain concept in science and the
scientific method is that all evidence must be empirical that is dependent on evidence or consequences that are observable by the
senses. It refers to the use of working hypotheses that are testable using observation or experiment [65].
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NEIC EARTHQUAKE RESULTS FOR BAM as extracted from USGS for Pixel 35,44

a USGS

science for a changing world

NEIC: Earthquake Search Results

U. 3. GEOQLOGICAL 3URVET

ERRTHQUAREKEE DATE EBEERAIE

FILE CEEATED: 3Jat Mar 13 21:01:55 2010

Circle Ssarch Earthguakes= SE

Circle Center Foint Latitude: 28.840F Longitude: S58.240E
Radius: 200,000 Em

Catalog Used: FLE

Dace Pange: 1383 to 2004

Hagnitude Range: 4.0 - a.0

Data Jelection: Historical & Preliminary Data

CAT YE& O DA ORIG TIME LT LOKE DEF MRGHITUDE IEMW DTSVHWG DIST
HEQ km
IF
ELE 1938 01 02 032302.25% 30.23 57.44 33 4.4 mbG3 0 ... L. .. ... 177
FDE 1998 01 14 22124%.22 25.15 S€.35 33 5.0 MwHBW odil cococos 186
ETE 19939 01 25 OO5351.09 23.71 S7.492 33 3.2 mbE3 0 .. .. .. ... 106
FDE 1988 02 04 053826.52 28.34 57.1% 33 €£.& MwHBW B 116
ECE 18559 03 0% 059735.51 Z2H.32 s7.15 33 5.6 mbEI L. ... 121
FLE 18935 03 04 055028.33 28.41 57.10 33 5.1 mbG3 @ ... ....... 121
FLE 1935 03 04 0€2151.24 28.34 57.08 33 4.€ mbG3I @ ... ....... 125
ELE 1853 03 04 071€3€.23 23.5 57.08 33 5.0 mb&3 @ ... ....... 11%
FLE 1935 03 04 071%18.24 28.13 37.11 33 5.3 mbGE @ ... ....... 135
FLE 1938 03 04 072€04.41 28.47 S€.%4 33 5.2 mbG3E @ ... ....... 133
ELCE 1998 03 04 051%3€.30 28.48 57.01 33 4.5 mb&3 @ ... ....... 132¢
FLE 1955 03 04 055203.02 23.5 57.21 33 5.3 mbGE ... ....... 106
FLE 1855 03 04 111255.11 57.08% 33 4.% mbG3I @ ... ....... 122
ELCE 1993 03 04 152554.858 S€.85 33 4.% mb&3 @ ... ....... 137
FLE 1853 03 05 01l02354.73 57.12 33 4.6 mbG3 @ ... ....... 114
FLE 1853 03 05 120808.3%5 S€.58 81 4.5 mbG3 ... ....... 161
ELCE 18998 02 10 074542.47 SE.€3 84 4.3 mbGI @ ... ....... 1E0
FLE 1855 03 L2 075%32.34 57.40 33 4.4 mbG3 @ ... ....... 133
FLE 1855 03 15 1530354.53 S€.5% 33 4.0 mbG3I @ ... ....... 126
ELCE 18898 0« 02 57.11 233 4.2 mbkG&G3I @ ... ....... 126
FLE 1355 02 11 57.17 €1 4.5 mbG3 ... ....... 115
FLE 1853 05 25 57.€5 33 4.7 mbG3I @ ... ....... Tl
ELCE 1998 05 28 57.€7 233 4.1 mb&3 @ ... ....... El
FLE 1853 08 l& SE.€5% 33 4.3 mbG3I @ ... ....... leg
FLE 1933 08 28 S€.46 33 4.4 mbGI @ ... ....... 150
FLE 1353 10 15 57.€1 33 4.7 mbG3I @ ... ....... 150
FLE Z0oo 0z 285 S7.€1 33 4.0 mbG3 @ ... ....... 187
FDE Z000 0z 285 57.14 120 4.5 mbG3 ... .. .. ... 126
FDE 2000 02 05 054006.06 27.55 S€.47 33 5.4 MwHBW odil cococos 189
ECE 200007 28 Z229338.0% 2Z8.10 7.007 33 3.3 b3 L. ... 136




THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION

2000 0B 20 222020.08 28.0% §7.22 33 4.5 mbG&3 . 130
2000 0B 27 204455.24 28.0€ 57.17 33 4.1 nmb&3 . 136
2000 11 07 18442€.41 28.20 S€.%3 33 4.0 mb&3 . 146
2000 11 11 131€Q2.€£3 28.32 S7.€3 23 4.5 xbEE 0 ... ... 82
2000 11 24 0%1320.38 28.15 57.64 82 4.4 mbE3 @ ... ....... 56
2001 02 13 034240.21 28.3z2 S€.34 33 4.€ mbEE @ ... ....... 154
2001 05 08 234815.03 27.82 58.21 23 4.2 mbG3 @ ... L...... 101
2001 0B 12 110325%.01 27.&2 S7.€5% 33 4.€ mbEE @ ... ....... 145
2001 0B 25 232522.11 30.43 57.45 33 4.4 nbEE3 @ ... ....... 151
2001 11 01 15543€.5%3 28.24 57.47 23 4.€ mbG3 ... ....... 101
2001 11 22 170002.€1 27.381 57.52 33 4.4 nbEE3 @ ... ....... 133
2001 11 23 171547.835% 23.35 % - ﬁ
2002 01 04 050€18.32 28.41 57.24 33 4.0 mb&3 . 108
2002 04 11 0E€0548_€3 2770 SE.E7 23 4.8 mbE3 0 ... . 168

2002 05 28 1%0532.08% 27.72 S€.74 S50 4.7 mbG3 ... ... .... 162
2002 06 02 200822.6€ 27.352 S7.€7 2% 4.7 mbEE @ ... ....... 116
2002 06 02 201725.€2 27.350 37.73 233 4.4 nbEE 0 ... L...... 115
2002 12 13 003E€20.5% 254583 57.45 & 4.2 mbG3

2002 023 08 0%2803.73 27.3%3 S€.7"€ 33 4.7 mbk&3 -
2002 04 1& 110€05.0€ 30.20 57.42 32 4.5 mbE3 . 170
2003 08 13 025544.4€ 27.5% 57.85 33 4.0 mb

2002 10 01 071403.27 28.28 57.30 233 4.8 mbEE @ ... ....... 111
2003 12 03 072706.78 28.08 SE.55 33 4.3 mb{&E3 14z
20023 12 26§ 035325.18 283.75 58.12 10 4.5 mbE3 @ ... ....... 13
20023 12 26 05%1€35.34 25.01 58.28 10 4.0 mbE3 @ ... ....... 1z
2002 12 2§ 0555%58.%3 25.01 S$8.32 10 4.0 mb&3 @ ... ....... 1=
20023 12 26 1408l1€.02 25.08 58.20 10 4.€ mbE3 @ ... ....... 4
20023 12 28 05%2422.%2 25.21 58.55 10 4.1 mb&3 ... ....... 50
2002 12 2/ 150212.01 25.01 58.3% 10 4.2 mbG3 @ ... ....... 4
2004 01 11 0S0€04.75 25.15 58.55 10 4.1 mb&3 ... ....... 48
2004 01 21 13233€.33 25.17 58.24 10 4.3 mb&E3 @ ... ....... 36
2004 01 28 1725%31.57 25.01 $8.33 10 4.1 mb&3 ... ....... 20
2004 01 231 0555%12.01 28.€1 57.81 55 4.1 mbE3 @ ... ....... 45
2004 02 18 132120.74 28.41 S€6.57 50 4.5 mbE3 @ ... ....... 13z
2004 04 08 142304.03 28.357 s8.20 10 4.0 mb&E3@ @ ... ....... 14
2004 04 11 072730.€0 28.38 57.84 25 4.5 mbG3 . 41
2004 04 21 144522.25 28.45 57.14 55 4.€ mbG3 . 114
2004 05 25 023348.27 25.11 58.35 10 4.2 xb&3 . 31
2004 07 03 222222.1€ 28.38 SE6.50 50 4.2 mb&3 . 177
2004 07 13 055005.35 25.23 57.0% 25 4.2 mb&3 . 11%
2004 07 22 04513€.01 25.11 58.31 10 4.9 HMwHRV EMoL Ll 31
2004 08 05 1€2521.27 23.3€ 57.22 10 4.1 mb{&3 e .. 4]
ELE 2004 10 07 125501.04 28.33 57.31 S5€ 5.0 MwHRV WHoL L 108
ELCE 2004 10 09 0E€082€.43 28.30 57.13 €3 4.5 mbG&3 . 123

FOE 2002 10 10 1e2750.15 28.22 57.27 21 4.7 -
FOE 2002 11 11 203€44.30 28.4a7 SE.SE 55 4.E mb&3 e e 131
ELCE 2004 11 12 003034.5€ 28.€0 SE€.81 5 4.3

@ G (el s 6

ELE 2004 12 23 110110.14 28.14 57.1% 35 4.5 mb&3 . 128
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NEIC EARTHQUAKE RESULTS FOR L’AQUILA

a USGS

science for a changing world

NEIC: Earthquake Search Results

U. 3. GEQLOEGEICAL 3UTRVETY

ERRTHQUAREKEE DATE ERIE

FILE CREATED: Thu Feb 18 1€:2€:55% 2010
Circle Search Earthgquakes= 53z

Circle Center Foint Latitude: 42.423¢ Longitude: 13.3BiE
Radius: 250.000 Ekm

Catalog Used: FDE

Date PRange: 2005 to 2010

Data Jelection: Historical & Preliminary Data

CAT YEAR MO DA ORIG TIME LET LORE DEF MREHITUDE IEMW DTSVHWG DIST
HEO km
TF
005 01 08 234538.1€ 43.18 1s.1€ 10 L. LLL.... 1E7
Z005 0L 0B 235310.5€ 423.04 15.36 10 Ll ... 174
2005 0L 05 034512.30 43.08 15.3€ 10 3.1 MLLDE ... ....... 176
2005 01 12 071538.8% 43.1S5 .30 10 3.8 MLZEMG ... _._.._.. 175
2005 0L 22 033418.87 43.15 5.2% 10 3.0 MLLDE ... ....... 174
Z005 02 02 020€1%5.40 42.82 13.36 25 2.5 MOBOM ... ....... 44
2005 02 02 02091€ 43.1€ 5.43 10 4.2 MLZEMG ... _._.... 185
2005 0Z 023 053305.80 423.45 .85 10 3.5 MLERF ... ....... 230
2005 02 023 2Z017357.50 4Z.57 13.24 10 2.6 MOBOM ... ....... 20
2005 02 023 231717.50 4Z.3¢€ 13.22 1€ 2.€ MOBOM ... ....... 1&
005 02 02 053011.50 494.22 11.82 4 2.5 MDBOM ... ....... 236
2005 02 0§ 235117 42.35 13.22 10 2.8 MOBOM ... ....... 1E
2005 02 07 224315 43.17 5.17 10 3.5 MLZEMG ... ....... 1&g
005 02 08 02231€ 43.148 12.61 10 2.5 MOBROM ... ....... 105
Z00S5 0Z 08 113€02.5 41.2%5 5.595 4 2.6 MDBOM ... ....... 248
Z005 02 11 1€2310.10 43.32 13.27 10 2.5 MOBOM ... ....... 100
2005 02 11 234228.€0 4l1.a7 14.€3 € 2.6 MDBROM ... ....... 147
Z005 02 123 110%2€.30 41.€7 14.82 13 2.7 MOBOM ... ....... 144
2005 02 123 111534.20 41.€7 14.82 10 3.1 MOBOM ... ....... 144
2005 02 13 215727.%5 43.50 11.53 T 2.5 MDBOM ... ....... 202
2005 0Z 1§ 023€38.5 43.23 S.1€ 10 3.3 MLEEMG ... ....... 170
005 02 16 0494522.30 41.72 13.€8 d 3.0 MDBOM ... ....... gl
005 02 16 125442.20 41.71 13.€8 3 2.5 MDBOM ... ....... B2
Z005 0Z 146 144548.10 41.73 13.70 4 2.7 MDROM ... ....... 80
2005 02 17 170%30.40 41.7¢€ 5.15 S 2.5 MDBOM ... ....... 1&g
2005 02 17 200525.47 43.15 5.40 10 3.2 MLEZEMG ... ....... 183
2005 02 22 112151.10 43.€5 13.48 S 2.7 MDROM ... ....... 136
2005 02 22 1€4320.10 423.11 12.8% €% 2.€ MOBOM @ ... ....... B6
2005 02 24 041437 43.12 14.5%5% 10 3.€ MLERMG ... ....... 151
2005 02 27 031€33.50 41.€€ 14.84 12 2.5 MOROM ... ....... 146
ao 02 27 180338 41.84 .71 14 2.7 MDBROM ... ....... 202
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ECE 2005 02 01 054137.40 41.€7 14.87 § 2.4 MDROM ... ....... 14z
ELE 2005 03 02 005407.20 43.17 13.€2 3 2.6 MDBOM ... ....... B4
ELE 2005 03 02 1l00€23.€0 422.53 13.01 10 2.6 MOBOM ... ....... 33
ELCE 2005 02 02 02503%.50 41.73 14.82 § 3.1 MDROM ... ... ... 138
ELE 2005 02 03 225357.%5 42.24 13.%3 1€ 2.5 MOBOM ... ....... 46
ELE 2005 03 12 033545.20 42.42 12.34 T 2.8 MDBOM ... ....... B6
ELCE 2005 02 12 174815.5 42 _52 13.28 10 3.€ MDPDG ... ....... 14
ELE Z005 03 15 000303.€0 41.542 S.85 28 3.1 MDROM ... ....... 205
FLDE Z00S5 03 17 113427.€0 423.0€ 13.51 10 2.5 MOBOM ... ....... Tl
ELE 2005 03 21 0041a7.70 41.57 14.35 1% 2.7 MOBOM ... ....... 123
ELE Z0os 03 2= 41.87 S.62 3 3.1 MDBROM ... ....... 153

Z00s 03 2= 41.7€ 12.57 15 2.6 MDBOM e, 100

Z00s 03 24 43.07 13.48 10 2.7 MOBOM ... ....... T2

Z00s 03 24 43.02 10.52 5 2.5 MDROM ... ....... Z13

Z00s 03 285 42.€4 13.06 10 2.€ MOROM ... ....... 36

Z00s 03 285 42.€4 13.06 14 2.6 MOBOM ... ....... 36

2005 03 26 041502 42.41 12.33 S 3.4 MDBOM ... ....... 87

Z005 03 246 042145.30 42.41 12.3z2 S 2.5 MDBROM ... ....... B8

Z005 03 26 134207.20 4Z.43 12.33 S 3.0 MDBOM ... ....... 87
ELE 2005 03 27 003806 42.15 12.%5 13 2.7 MOBOM ... ....... 47
ELCE 2005 03 28 910500.10 41.7 14.48€ T 2.5 MDROM ... ....... 145
ELE 2005 03 28 102414.20 4Z.50 12.€8 5 2.6 MDROM ... ....... 58
ELE Z005 03 28 120€17.80 42.357 10.51 F 2.7 MLLDE ... ....... Z1z2
ELCE Z00s 03 28 201108 43.87 11.3€ 10 2.€ MOROM ... ....... 230
ELE 2005 03 30 071437.10 421.7¢€ S5.7% 1€ 2.6 MDROM ... ....... Z11
ELE 2005 02 02 110511.%5 44.15 11.55 10 2.7 MLLDE ... ....... 246
ELCE 2005 0« 02 212522.30 44.18 11.81 S 2. MDBOM ... ....... 233
ELE 2005 02 02 232533 41.03 14.55 S 3.0 MDBOM ... ....... 121
ELE 2005 02 04 22213€.10 41.83 13.57 10 3.1 MOBOM ... ....... &7
ECE 2005 0« 05 024554.80 42.8%5 12.51 233 2.5 MOROM ... ....... 172
ELE 2005 02 05 133327.70 42.33 12.66 10 2.8 MOBOM ... ....... £l
ELE 2005 02 06 033115.20 40.73 14.6€6 10 2.€ MOBOM ... ....... Z13
ECE 2005 0« 06 231158.40 42.14 12.35 § 2.7 MDROM ... ....... Il
ELE Z00s 02 07 200155 43.15 11.4a7 4 2.6 MDBOM ... ....... 207
FLDE Z00S 02 07 214424.80 4Z.€8 11.77 S 2.8 MDBROM ... ....... 136
ELCE 200S a0 43.0% 13.35 10 2.6 MDROM ... . __.... T3
ELE Z0os S0 43.08 13.34 4 3.3 MDBROM ... ....... T2
FLDE Z0os 20 43.74 12.03 2 2.7 MDBOM ... ....... 184
ELCE 200S 20 43.72 12 .00 4 2.5 MDROM ... _._.._.. 182
ELE Z0os 10 42.53 10.87 € 2.5 MLLDE ... ....... Z13
ELE Z0os 80 42.35 10.34 d 3.2 MLLDE ... .oenncn. 205
ELE Z0os 20 42.85 10.54 T 3.1 MLLDE ... ....... 205
ELE Z0os 10 44.3¢€ 12.33 S 2.7 MDBOM ... ....... 232
ELE Z0os a0 4z.a3 12.65 14 2.5 MOROM ... ....... g1
ELE Z0os €0 43.0%5 13.38 4 3.5 MDBOM ... ....... T4
ELE Z0os 41.51 13.77 10 2.6 MOBOM ... ....... 106
ELCE Z005 02 14 154123.40 43.0€ 13.58 S 2.5 MDROM ... ....... 85
ELE Z005 02 22 234728.75% 44.135 11.75 10 3.4 MLEREMG ... ....... 233
ELE Z005 02 26 201522.35 43.08 13.23 10 2.5 MLEREMG ... ....... T4
ELCE 2005 02 27 130810.47 423.27 12.73 10 3.8 MLEEMG ... ....... 108
ELE Z00s 05 023 Z24004.80 423.835 11.%2 10 2.5 MLLDG . 158
ELE Z00s 05 05 l3azlz23.€2 4l.s52 13.€4 10 2.5 MLLDG . 58
ELCE Z00s 05 21 155520.70 41.43 14.38 S 3.€ HMDPD& B . 175
ELE Z005 05 22 114015.€€ 44.18 11.7€ 4 2.7 HMLLD& . 235
ELE Z005 06 06 220305.83 43.28 12.85% 10 2.7 MLLDG . 103
ECE 2005 0& 12 052147.80 41.€3 1€.0€ & 2.7 HMDROM . 237
ELE 2005 0& 12 155%45.50 44.01 12.5%7 14 2.7 MOROM . 180
ELE Z005 06 13 013338.10 41.5¢€ 14.72 17 2.7 MOROM . 145
ECE Z00S 0& 12 223334 41.71 S.82 27 2.7 HMLROM . 215
ELE 2005 0& 18 025€05.20 40.8€ 5.13 14 2.5 HMLROM . 226
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2005 0& 21 0J00€3€.10 4J3.02 13.28 € 2.% MLROM ... _._.._. 67
2005 0& 21 1%35535.€0 33.02 13.01 1€ 2.5 MDROM ... ....... T2
2005 0& 23 025515.€0 423.85 11.73 10 2.3 MLERME ... ....... 211
2005 0§ 27 02430€.40 432.€5 12.55 10 2.3 MLROM Fo oo T8
2005 07 11 070541.30 44.00 11.€6 23 2.3 MLBOM ... ....... 224
2005 07 15 150524 44 .20 12.08% 1% 3.0 MLEEME ... ....... 224
2005 07 15 151718 44.21 12.12 22 4.2 mbG3 B . 223
2005 07 15 152347.30 4a4.:22 12.10 22 4.0 MLERME ... ....... 225
2005 07 1S5 171501.50 44.20 12.0% 21 3.0 MLEZEMGE ... ....... 224
2005 07 30 0O05€23.€0 33.73 12.70 3% 3.0 MDLDG e e 156
2005 07 30 0l0728.€0 43.38 12.5€ 4 2.5 MDROM e e 126
2005 07 31 Z25337.50 34.0€ 1l3.52 30 2.3 MLLDG e e 182
2005 08 02 201345.53 44.25 12.11 10 3.0 MLERME ... ....... 228
2005 08 02 0€315€.52 a0.72 13.55 352 4.0 mbG3 e e 128
2005 08 08 0%3148.01 432.0€ 13.26 10 3.0 HMLLDG e e 11
2005 08 13 213223.50 32.4€ 13.02 22 2.5 MDROM e e 31
2005 08 17 025405.04 33.a2 12.85 10 3.5 ML3TIR e e 115
2005 08 22 120208.€0 41.47 12.53 10 4.3 MwiRWV 4TH ....... 127
2005 08 31 150444.5€ 44.34 12.1% 10 3.2 MLERME ... ....... 233
2005 03 02 123043.70 41.:53 14.52 12 2.5 MDROM e e 136
2005 09 L1 032554.€0 423.4€ 12.75 44 2.5 HMDROM e e 12€
2005 03 13 1%0318.80 43.08 13.3a7 4 2.3 MDROM e e T3
2005 03 15 084750.20 423.0€ 12.5%1 20 2.5 MLROM e e g1
2005 09 18 152701.50 42.75 12.43 15 2.5 MLROM e e 171
2005 03 18 215420.50 43.80 12.43 1% 3.1 MLROM e e 171
2005 03 20 074€33.€3 422.433 13.10 10 3.3 MLLDG e e 24
2005 09 20 0%5005.230 42.80 12.43 20 2.5 MLROM e e 171
2005 0% 20 100101.50 42.50 13.1% 14 2.3 MLROM e e 18
2005 03 22 134720.80 41.37 12.76€ 1% 2.5 MLROM e e T2
2005 09 22 135135%.50 41.9€ 12.77 18 2.5 MLROM e e T2
2005 03 22 141222.35 41.57 12.76€ 20 2.5 MLROM e e T3
2005 03 22 0lo0034.50 33.81 13.35 § 2.5 MDROM e e 153
2005 09 25 S.€0 43.a80 12.44 21 2.5 MOROM e e 171
2005 03 25 g 44.08 11.45 5 2.5 MDROM e e 240
2005 03 20 1.55 43.85 12.43 10 3.€ MLGRT e e 176
2005 1o o0z 2 43.81 12.43 17 2.5 MDROM e e 173
2005 1o o0z 1.40 41.88 S.67 1% 2.8 MLROM e e 157
2005 1o 03 1.40 41.60 14.34 1% 2.3 MLROM e e 115
2005 1o 0=z 7 41 .66 12.585 5 2.6 MLROM e e B2
Z00s Lo a7 54.30 43.75 12.43 7T 3.2 MLROM e e 171
2005 10 07 175205.10 43.81 12.43 4 2.7 MDROM e e 172
2005 10 07 173740.70 433.08 13.4¢€ 5 2.& MDROM e e T2
2005 10 08 123415.35 42 .85 13.15 1€ 2.5 MDROM e e 51
2005 10 03 0l425€.40 433.a80 12.43 1€ 2.5 MLLDG e e 172
2008 134841.30 432.57 13.15 3 3.1 HMLROM e e 23
2008 034158 42 .65 13.53 21 2.&€ MLROM e e 31
2008 JESS0L 42.53 13.0% 1€ 2.7 HMLROM e e £l
2008 1€2325.50 43.21 13.€7 1 2.7 MLLDG e e 3]
2008 0%5011.70 42.04 13.81 5 2.7 MLROM e e 54
2008 21102€.50 44.15 12.25 1% 3.% MLGRF e e 213
2008 034534.20 44.1€ 12.25 21 2.3 MLLDG e e 214
2008 132628 44.17 12.23 21 3.0 MLLDG e e 213
2008 0321408.70 44.21 12.20 12 2.3 MLLDG e e 221
2008 050704.40 432.74 13.20 13 3.1 MLROM e e 38
2008 140715.70 41.10 5.35 18 2.7 MLROM e e 218
2008 13244210 42.08 11.01 % 2_& MLLDG e e 208
2008 2no43z 43.15 5.52 12 3.€ MLEOR e e 151
2008 015121.80 42.75 12.77 7T 2.€ MLROM e e 63
2008 071212 _80 42.75 12.76€ 10 3.0 MLROM e e 63
2008 122335.50 42.€5 13.18 5 2.6 MLROM e e 34
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EDE 2005 12 15 0€0032.80 42.75 12.77 1% 2.3 MLROM e e 62
ELE Z00s 12 15 132835.50 42.74 12.76 13 4.3 mbi3 . 62
ELE Z00s 12 15 175714.20 42.73 12.74 21 2.&€ MLROM . £l
ELE 2005 12 16 201238.78 42.€€ 12.70 10 3.4 MLLDG . 62
ELE 2005 12 17 040340.50 42.74 12.7€ T 2.€ HMDROM . 63
FLDE 2005 12 18 040€48.30 42.74 12.75 5 3.6 MLLDG . 63
ELE 2005 12 21 170708.4€ 43.21 11.33 10 2.&€ MLROM . 187
ELE 2005 12 23 042510.40 4l1.50 15.30 23 2.7 MLROM . 167
FLDE 2005 12 23 213g§z21.20 41.88 $.31 12 2.5 MLROM . 165
ELE 2005 12 24 211€44.80 42.53 12.85% 17 2.3 MLROM . T4
ELE Z0oog 1 05 173035.80 42.7€ 12.83 10 3.3 MDPD& . 56
ELE Z006é 01l 08 00485%.70 42.74 12.77 € 2.7 MDROM . 62
ELE Z0oog 1 08 011844 43.80 12.00 T 2.5 MLLD& . 150
ELE Z0oog 1 13 102010.50 42.47 13.28 § 3.4 MLLD: . 10
ELE Z0oog 1 15 054718.50 43.04 la.33 € 2.5 MDROM . g
ELE Z0oog 1 17 153530.50 43.35 13.53 20 3.1 MLLD&: . 108
ELE Z0oog 1 22 1€1858.40 40.54 13.34 10 2.5 MLROM . 208
ELCE Z0oog 2 02 104757.70 43.54 11.51 T 2.7 HMLROM . 207
ELE Z0oog 2 02 145554.20 42.52 13.23 10 2.5 MLROM . 17
ELE Z0oog 2 02 150822.%5 42.248 13.26 10 2.&€ MLROM . 15
ELCE Z0oog 2 05 170255.50 40.75 $.22 10 3.2 MLROM . 236
ELE Z0oog 2 06 211553.80 42.0€ .71 10 3.0 HMLROM . 185
ELE Z0oog 2 08 0101 42.77 12.78 d 3.1 HMLROM . 63
ELCE zZ0oos 2 09 055548.30 42.7€ 12.80 T 2.% HMLROM . £l
ELE Z0oog 2 13 230307.30 42.€0 13.2€ S 3.0 HMLROM . 22
ELE Z0oog 2 14 1€5054.30 43.77 13.03 34 2.5 MLROM . 152
ELCE zZ0oos 2 19 034348.10 42.4%5 13.31 F 2.5 MLROM . 7
ELE Z0oog 2 19 0€1804.70 42.4€ 13.31 10 2.5 MLROM . 7
ELE Z0oog 2 189 0€5727.50 42.45 13.32 10 2.5 MDROM . 7
ECE Z00g 2 24 004804.10 42.73 12.7& S 2.5 HMLROM . €2
ELE Z0oog 2 26 110727.80 42.€0 13.06 10 2.5 MLROM . 33
ELE Z0oog Z 27 41.77 5.5%3 24 2.7 HMLROM . 221
ECE Zoos 02 02 43.21 S.€0 10 2.8 MLROM . 200
ELE Z00g 03 08 . 41.€5 12.88 5 3.0 MLROM . 56
ELE 2006 03 14 031503.€0 40.80 5.3z d 2.7 HMLROM . 241
EDE Z00& 02 14 133343 40.75% 5.3z 4 2.5 MLROM e e 242
ELE Z00& 03 25 052244.€0 41.73 13.5%0 10 3.1 MLROM . 87
FLDE Z00& 03 31 zz24808 42.74 12.77 4 3.2 MLLD&: .

EDE Z00& 0« 04 023€44.80 43.02 12.51 4 3.3 MLROM e e

ELE Z00& 02 10 15033€.€0 423.40 13.45% 33 4.1 mbi3 5F. ...,

FLDE 2006 02 12 001137.70 42.04 5.45 S 2.5 HMDROM .

ELE 2008 02 13 030254.50 42.40 5.5%5 10 2.7 HMLROM .

ELE 2006 02 14 012155.40 41.71 1€.02 25 3.3 MLROM .

ELE 2006 0% 16 Z11502.70 43.5€ 11.80 27 4.2 mb&3 5. e

ELE 2006 04 24 234858.20 42.€2 12.5€ 5 2.5 HMLROM . 7
ELE 2008 02 27 185318.40 423.47 12.€3 € 2.2 HMLROM B . 85
ELE Z00d 02 30 Z10757.10 41.47 S.70 € 3.3 MDFD& . Z1E
ELE Z00& 05 01 155%14.80 42.€2 12.56 10 2.5 MLLDG . 72
ELE 2008 05 02 1l€2024.5 41.72 14.784 21 2.7 MLROM . 138
ELCE Z00d 05 05 045s05.30 42.73 12.56 10 2.5 MDROM . 76
ELE Z00é 05 05 13as0a3l.z20 4z2.3z2 S.5% 10 2.5 MLROM . Z11
ELE Z00& 05 06 224235.€0 423.04 12.57 5 3.2 HMLROM . 56
ELCE 2006 05 0§ 2250494.5 43.06€ 12.5€ 4 3.0 HMLROM . 87
ELE Z00& 05 06 231438.10 43.03 12.58 € 2.7 HMDROM . 56
ELE Z00& 05 08 235724.20 4Z.€2 12.57 7 2.8 HMDROM . 71
ELCE 2006 05 08 010807.40 41.85 S.€3 S 2.7 HDROM . 155
ELE 2008 05 11 125422.20 43.3¢€ 12.57 2 2.7 HMLROM . 123
ELE 2008 05 13 1E205€.5 44.14 12.0€ 2 2.8 HMLLD& . Z1B
ELCE 2008 05 12 1€2218 44.13 12.04 1 3.5 HML3TR . Z18
ELE 2008 05 15 020817.50 43.0€ 12.5€ T 2.5 HMDROM . 57
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goE 05 15 0215532 43.0%5 12.48 4 2.& HMDROM e e T3
2008 05 16 210252.€1 42.55 12.5€ 10 3.€ MLROM B . 71
2008 05 20 070523.€0 42.45 13.12 5 2.& MLEOM e e 55
Z00& 05 20 051%08.50 43.70 12_.€2 40 2.8 MDROM e e 154
20068 05 20 111517.80 40.7€ S5.26 4 2.€ MDROM e e 241
2008 05 23 032€57.40 43.08 13.a7 3 2.5 MLROM e e T2
2006 05 24 020355.€0 42.15 5.83 § 2.5 MLROM e e 203
o0g 05 26 0026€41.20 43.74 11.32 3 3.€ ML3TR e e 128
Z00& 05 27 214843.€0 41.a87 13.02 8 2.€ MDROM e e 68
o0Dg 05 29 02200€.20 41.40 S.50 31 4.7 HMwHRV EMoL Ll 218
Z00d 05 25 024235.20 41.78 5.87 18 2.8 MDROM e e 217
Z00& 05 25 0549433.70 41.84 S5.8€ 22 2.5 MDROM e e 213
Z008 05 30 232€47.20 41.81 5.83 23 2.€ MLROM e e 212
Z00d 05 31 124835.10 42.350 1€.27 10 3.2 MDPDG e e 241
Z00d 05 31 12512€.70 42.51 1€.04 10 3.5 MLLDG e e 223
2008 0& 01 02433€ 42.57 1€.15 10 2.8 MLROM e e 233
2008 0& 01 0€2532.50 43.380 11.5€ 5 2.5 MLROM e e 152
Z00d 0& 02 102€50.50 43.11 12.54 T 2.5 MLLDG e e 103
Z008 0& 023 184433.€0 4l1.32 5.88 25 2.7 MLROM e e 216
2008 0& 04 15503€.€0 41.381 S.8€ 24 2.5 MLROM e e 214
2006 0& 05 J00750.20 41.32 13.a48 5 2.7 HMLROM e e TE
Z00& 0& 05 203755.80 43.15 13.32 2€ 2.5 MLROM e e 51
2006 0& 0B 154€0€.40 41.381 S.5%0 283 2.8 MLROM e e 218
2008 06 L0 142535.30 42.84 1€.33 10 2.7 HMLROM e e 245
2006 0& 10 143824.€0 42.55 1€.32 10 2.5 MLROM e e 246
2006 0& 11 020513.5 42.85 1€.28 10 2.5 MLROM e e 243
2006 0& 11 0€0825.40 43.13 $.31 10 2.5 HMLROM e e 175
Z008 0& 12 211835.5 41.8%5 S.E5 S 2.€ MLROM e e 158
o0Dg 06 17 002142.€0 43.38 12.57 2 2.€ MDROM e e 125
2006 0& 22 003200.2% 42.€2 12.5€ 4 3.0 MLROM e e T2
2008 0& 22 074442.10 44.23 13.33 5 3.4 MLLDG e e 200
0§ 0& 23 152137.5 42.€3 12.55 2 2.3 MLROM e e T2
2008 0& 24 0E3504.5 42.€2 12.55 2 3.2 MLROM 4F. ..., T2
2006 0& 24 071€3€.30 42.60 12.58 10 3.1 MLROM e e 65
ong 7T 04 215112.33 42.83 5.58 0 3.3 MDFDG e e 216
Z00& 7 05 030254.40 42.%7 1€.14 10 2.7 HMLROM e e 232
ang 7 06 214731.€0 42.€5 12.0€ 3 3.2 MLROM 5F. ceenn... 112
og 7 06 21551€.30 42.€5 12.05 S 2.7 MLROM e e 113
Z00& T 0B 022724.20 42.€1 12.57 g4 2.8 MLROM e e 10
Z0og 7 0B 125525.€0 42.38 12.5%3 1€ 2.5 MLROM e e T2
Zoog T 08 0l2€28 41.€4 13.%3 1% 2.5 MDROM e e 59
Z0og 7 13 184101 43. €€ 11.33 5 3.1 MLEDM e e 187
Z00§ 08 06 153330.85 41.485 5.34 10 4.0 MLFDG e e 171
o0& 08 08 154330 43.47 12.47 10 2.7 MLLD& e e 138
Z00d 08 17 034€SE 43.2€ 13.38 5 2.8 MLLDG 4F. ... ..., 53
Z008 08 15 073330.20 42.45 13.24 10 2.5 MLROM e e 12
2006 08 22 1€5549.€0 43.14 12.75 5% 2.5 MDROM e e 85
o0DE 0B 24 0356€01.20 42.78 13.35 4 2.3 MLROM e e 35
o0DE 08 29 211€10.30 43.7€ 12.14 4 2.5 MLROM e e 180
0§ 08 28 225403.70 43.7€ 12.15 S 3.1 MLLDG e e 180
Z00g 08 25 Z23a0a3l.70 43.77 12.1€ 3 2.7 MLLDG e e 180
Z008 08 30 080745.40 43.7€ 12.15 5 2.5 MLROM e e 178
o0& 08 20 100151.40 43.7€ 12.15 4 3.5 MDPDG 4F. ... 178
0§ 08 30 112047.€0 43.73 12.08% 15 2.€ MLROM e e 178
2006 0B 31 011221.10 41.352 5.35 5 2.5 MLROM e e 174
2006 09 01 014322.40 43.€2 12.04 10 2.7 HLLD: e e 172
o0g 08 01 151241 42.24 13.25% 10 3.0 MLLDG e e 21
ong 08 03 1503%25.80 43.88 12.05 € 2.€ MLROM e e 155
08§ 09 02 215438 43.88 12.04 2 2.5 MLLDG e e 165
o0g 09 08 073151.€0 41.480 5.8% 24 3.0 MLROM e e 217




THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION

Z00& 0% 11 110€&24 43.43 12.50 2 2.5 HMDROM . 123
Z00& 05 11 110815.5 42.0%5 13.342 € 2.3 MLROM . 27
2008 05 14 113114.20 43.04 13.51 11 2.7 MLROM . 65
Z00& 0% 25 151312.30 42.14 5.53 S 3.5 MLROM e e 211
Z008 05 2§ 223435.20 42.44 13.25 € 2.5 MLROM . -]
Z00& 10 02 033€07.€0 41.83 13.74 12 2.& MDROM . T1
Z00& 10 02 1€1133.40 43.08 13.33 22 2.7 MLRCM e e T3
Z008 10 04 173420.5 42.07 5.75 3€ 4.5 MLTHE . 157
Z00& 10 08 152158.30 42.8%5 13.40 23 2.€ MLROM . 47
Z00& 10 03 113€542.30 41.77 5.87 27 3.0 HMLROM . Z1E
2006 10 12 133001.30 43.01 13.26 20 3.2 MLROM . 65
Z006 10 14 15154€.50 40.€3 12.%3 10 2.7 MLEROM . 187
Z008 10 14 1€1315.5 40.€5 12.5%1 10 2.3 MLROM . 200
2006 10 14 1€153€.80 40.73 12.5%4 10 2.3 MLROM . 151
2006 10 16 202001.30 43.05 13.50 11 2.5 MLROM . TO
Z008 10 17 212231.53 42.35 12.5%4 10 2.5 MLROM . 27
2006 10 21 070410.€0 43.€5 13.00 3€ 4.0 mbE3 . 138
2006 10 21 085517.70 43.60 12.%6 32 3.4 ML3TR . 135
2006 10 21 142215%.30 42.2€ 12.55 11 3.0 MLROM . 41
2006 10 22 110€02.40 42.27 12.54 5 2.& MDROM . 41
2006 10 24 055457.80 43.30 10.51 4 2.5 HMDROM . 2235
Z008 10 25 133414.20 41.55 13.75 3 3.5 MDPFDG . 102
2008 10 27 030513.10 43.0%5 13.55 32 2.€ MLROM . T0
2008 10 27 14533€.50 43.0€ 13.55 23 2.5 MLROM . 71
Z008 10 27 135054¢€ 43.0€ 13.54 34 2.5 MLROM . T1
20068 10 23 031€15.20 43.0€ 13.52 22 2.5 MLLDG . T1
2008 11 01 071824.30 42.€&0 13.a7 € 2.0 HMLROM . 22
Z0og 01 145353.5%0 42.55 13.08 S 2.7 HMLROM . 31
20068 11 02 1127383.30 42.74 12.76€ 10 2.& MLROM . 62
2008 11 0<¢ 100417.€0 41.858 132.0€ 7 2.& HMDROM . 56
200§ 11 05 1€5735.10 42.74 12.7€ 3 2.€ MLROM . 62
Z00g 11 13 233347 43.88 12.30 22 2.3 MLROM . 124
Z00& 11 14 15535€.20 43.10 12_€4 S 2.5 MLROM e e &7
Z00§ 12 05 0€z0l7 41.08 5.27 15 2.5 HMLROM . Z13
Z00&8 12 05 0830734.80 43.44 12.€5 S€ 2.5 MDROM . 128
Z00& 12 09 221512 42 €4 12.01 7 2.7 HMLROM e e 116
Z008 12 10 110342 41.54 1€.20 35 4.€ mbG3 . 237
2006 12 16 14351%5.40 43.3€ 12.37 €3 2.5 MODROM . 133
2008 12 22 17503€.30 41.54 14.13 d 2.3 MLROM . g1
2008 12 27 221341.€0 41.31 14.21 10 3.7 MDPDG 3F. ..., 140
2006 1Z 28 013053.30 41.3z2 14.20 10 2.7 MLROM . 138
2006 12 29 021401.10 44.22 13.55 10 3.4 MLGRFE . 188
2006 12 29 0€2331.€0 41.78 5.50 3 2.3 MLROM . 188
2006 12 23 070727.30 41.15 14.7€ % 2.& MDROM . 177
2006 12 30 010508.€0 42.77 12.76€ 10 2.5 MDROM . 64
Z007 01 05 014328.70 42.51 10.57 10 2.5 MLLDG . 237
2007 01 05 1le0548 43.04 13.11 S€ 3.0 UKROM . T2
2007 01 12 073302.20 42.78 12.75 5 2.& MDROM . 1]
2007 01 16 103308.80 42.08 5. 64 T 2.€ MLROM . 1g8
2007 01 21 032€3€.40 41.8% 12.78 g8 2.5 HMLROM . T7
Z007 01 22 0€5555.10 42.88 12.€€ € 2.& MDROM . T8
Z007 01 23 235328.€0 43.1z2 13.41 23 2.5 MLEOM . T7
2007 01 24 220131.30 41.85 12.80 g8 2.5 HMLROM . TE
Z007 01 25 213€05.5 43.58 13.53 10 3.3 MLLDG . 128
Z007 02 05 131023.5 43.05 13.52 10 3.2 MLLDG . T0
2007 02 08 012€2€.3% 42.80 13.21 € 3.2 MLROM e e 44
Z007 0Z 08 01325€.5 42.75 13.13 10 4.2 mbi3 . 44
Z007 02 08 014724.40 42.75 13.21 5 2.5 MLROM . 43
2007 02 09 0Q03€07.80 41.%2 S_€4 2 2.7 HMLROM e e 154
Z007 02 03 1735103 43.7€ 13.26€ 10 2.€ MLROM . 145
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THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION

ELCE zoa7 073€18.€0 42.38 12.5% 8 2.8 HMLROM e e 33
ELE Zoo7 073858 42 .35 12.5% § 2.5 MLROM e e 33
ELE Zoo7 051547.70 42.35 12.5% T 2.5 MLROM e e 33
ECE zoa7 14484€ 43.85 11.8% 7 2.8 HMLROM e e Og
ELE Zoo7 002557.20 41.38 12.25 T 2.5 HMLROM e e 145
ELE Zoo7 220840.70 43.28 10.87 5 3.2 HMLLDG e e 227
ECE zoa7 155313, 42.75 12.41 § 2.3 MLROM e e 40
ELE Zoo7 082701 43.15 11.02 11 2.€ MLROM e e Z11
ELE Zoo7 050724.30 42.€4 12.71 10 2.5 MLROM e e £l
ELCE 2007 123€2€.20 42.00 132.71 17 2.7 MLROM e e 54
ELE Zoo7 0€0722.10 41.388 12.53 d 2.5 MLROM e e T2
ELE Zoo7 l3as4az 41.45 14.25 10 2.5 MLROM e e 125
ELE 2007 12 06 21252€.30 40.38%5 5.18 10 2.3 MLROM e e 228
ELE 2007 12 17 131404.5%3 44.02 14.50 10 3.8 MLPDG I Z13
EFLDE 2007 12 20 175705.1% 43.55 S5.67 2% 3.3 MLIRG e e 226
ELE 2007 12 24 013584¢€ 41.88 5.38 T 2.5 MLROM e e 174
ELE Z008 01 02 050447 42.38 1z2.848 d 2.5 MLROM e e 4z
ELE Z008 0L 08 155245.10 43.45 12.56 54 2.€ MDROM e e 136
ELE Z008 01 12 233%48.50 41.35 14.50 S 2.8 MLROM e e 146
ELE 2008 01 18 051031.50 41.387 12.53 d 2.7 HMLROM e e T2
ELE Z008 01 19 151145.50 41.7€ 1€.26 24 3.2 MLROM e e 247
ELE Z008 01 22 113045.75% 42.33 13.5% 15 3.1 MLRIM e e B
ELE Z008 01 23 11042€.50 42.33 13.€2 23 2.8 MLRIM e e 45
ELCE 2008 01 22 131138.480 42.44 13.€1 22 2.5 MLROM e e £ 1]
ELE 2008 01 24 144302.€0 41.45 14.€0 12 2.7 MLEROM e e 144
ELE Z008 01 22 204857 42 .50 13.42 1€ 2.€ MLROM e e -]
ELCE 2008 0L 25 053320.50 494.12 12.15 12 2.7 HMLLD: e e Z13
ELE Z008 01 23 082%21.30 41.55 13.77 d 2.5 MLROM e e 87
ELE 2008 02 06 052812.70 43.10 10.77 3 2.€& MLLDG e e 227
ELCE 2008 02 06 183417.5%% 41.25 13.%€ 10 3.1 HMLROM e e 133
ELE Z008 02 11 13033€ 41.71 14.5%4 1€ 2.€ MLROM e e 150
ELE 2008 02 16 22121€.80 43.11 10.77 1€ 3.1 MLLDG 4F. ....... 228
ECE 2008 02 19 215845 43.51 12.00 234 2.8 MLLDG: e e 124
ELE 2008 02 20 080€15.10 41.58 13.748 8 4.€& mb&3 4F. ....... S8
ELE Z008 02 20 201242.10 43.432 12.€7 €4 2.€ MOROM e e 126
ECE 2008 02 24 121&58 42.a7 14.10 10 2.€ MLROM e e To
ELE Z008 02 26 033715.20 41.7%5 S.20 17 3.3 MLFDG 3F. ....... 167
EFLDE 2008 02 26 0€2%31.80 41.77 5.1% 14 2.5 MLROM e e 165
ELCE 2Z0o0e 02 27 110740.€0 44.0% 11.70¢ 2% 3.0 MLLDG e e 230
ELE Z008 03 07 150434.5 42 . €5 13.25 T 2.& MLROM e e 27
EFLDE Z008 03 15 042844.40 423.7¢€ 5.37 10 3.7 MLGRF e e Z1E
ELE 2008 03 18 050118.€0 41.37 5.70 3 2.7 HMLROM e e 224
ELE Z008 03 13 143857.70 41.350 S5.86€ 31 4.3 mbi3 4F. ....... Z11
ELE Z008 03 13 170215.30 41.45 5.74 1€ 2Z.€ MLROM e e 202
ELE Z008 03 20 175025.€0 41.55 5.78 d 2.5 MLROM e e Z1E
ELE 2008 03 24 17042€.10 43.1€ 5.35 10 3.0 MLZIRG e e 178
ELCE Z008 03 25 05513g8.20 44.02 11.74 3§ 3.0 MLLDG e e 223
ELE Z008 03 25 1€0714 44.03 11.73 € 2.5 MLROM e e 224
ELE Z008 03 23 144542 44.13 12.34 T 3.3 HMLLDG 4F. ....... 208
ELCE Z008 0% 03 153753.€0 41.51 S.5%0 32 2.7 MLROM e e Z14
ELE 2008 04 12 054442.20 41.78 4 14 3.7 MLROM 4F. ....... 87
ELE Z008 0= 12 05358 41.80 12.58 10 2.2 MLROM I 56
ELCE 2008 0% 12 OE205€ 44 .53 12.5%1 27 2.5 MLROM e e 237
ELE 2008 04 14 080€0€.30 43.71 5.37 10 2.€ MLROM e e Z13
ELE 2008 04 21 101733.20 41.€8 S.7€ 23 2.8 MLROM e e Z1z2
ECE 2008 0£ 22 04071€.5%3 44.10 5.21 10 2.€& MLZIRG e e 237
ELE Z008 02 22 055353€ 42 .12 12.€48 § 2.3 MLROM 4F. ....... 67
ELE 2008 04 23 104824.70 41.31 1€.00 22 2.7 MLROM e e 226
ECE 2008 02 27 074&27 42.85 12.01 7 2.7 HMLLDG e e 158
ELE Z008 05 02 232821 43.11 13.42 3 3.3 HMLLDG e e T6
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2008 05 05 181351.81 az2.80 1€.30 2 3.7 MLEZRG .
2008 05 20 080811 41.€5 14.86 138 2.3 MLROM . 142
2008 05 2§ 002453.30 33.20 13.4a7 1 2.8 MLLDG B . B
2008 05 27 1€1533.350 30.7€ 15.3z2 d 2.7 MLROM . 244
2008 05 30 1l€0413.€0 41.55 13.28 T 2.€ HMLROM . 53
2008 05 30 172253.7% 40.57 14.88 30% 4.4 mbi3 . 240
2008 0€ 0L 121855.20 43.45 12.70¢ 3&€ 2.& HODROM . 130
2008 0& 0L 122433.40 33.45 12.71 3& 2.3 MDROM . 130
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Appendix I: Time series profiles of points analysed

Topography and Slope Aspects of points on Google map with Elevation Exaggeration of 3

Shade, slope, aspect and cloudiness play a dominant part in the spatial distribution of solar
energy at a given elevation, to the extent that solar energy input can easily vary by a factor of 100
from a permanently shaded valley bottom to a well exposed slope [16]. Aspect controls solar radiation
to hill-slopes: north facing slopes are more shaded in the northern hemisphere, while south facing
slopes are not. South facing slopes are more directed to the sunlight, winds and snow becoming
warmer and dryer (due to higher levels of evapotranspiration) than a north-facing slope. The aspect of
a slope can make very significant influences on its local climate. The sun illumination also plays a
significant role as it describes how much radiation an object will get throughout the day. For example,
because the sun’s rays are in the west at the hottest time of day in the afternoon, in most cases a west-
facing slope will be warmer than a sheltered east-facing slope [64].

160 - [<——south |

140 _ O 0=Ona SE and SW
——EandW
——NE and NW
—0—=N
Horizontal

Percent of energy compared with horizontal
surface

Slope in degrees

Figure 5-3: Amount of energy received by a sloping surface compared with a horizontal surface (Northern
Hemisphere, 45° latitude). The abscissa indicates the slope in degrees, varying from 0° (horizontal) to 90°
(vertical), while the different curves show the effect of aspect, i.e. the direction in which a perpendicular to
the surface points, e.g. East and West indicates the energy received by surfaces that face the East and
those that face the West [16].

As seen in Figure 5-3, the amount of energy received by sloping surfaces in the Northern
hemisphere is illustrated so if a pixel in the image is located on a south facing slope it receives most
energy. In the Southern Hemisphere, the N and S sky directions are inverted, i.e. the curve standing
for North becomes South, South-East and South-West becomes North-East and North-West, etc...
Also note that the curves go through a maximum at the slope that corresponds to the latitude, i.e. the
closer the station is to the equator, the "flatter" the curves get: near the equator, steep slopes receive
relatively less energy than gentle slopes.

BAM EARTHQUAKE: Located in the Northern Hemisphere
Condition (i): Pixel 37,40- which is the epicentre is oriented on a gently facing North-Eastern slope
which is relatively flat in the region.
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Condition (ii): Pixel 35,44- oriented on a North-Eastern slope and is in a close proximity to the
epicentre is explained within this study.

GOo0gle

8]
C

Condition (iii): Pixel 20,15- oriented on an Eastern slope and is far from the epicentral region.
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THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION
20°K and a threshold of 260°K)
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As seen from the 2003 profile, there is no significant earthquake-related anomaly generated
for a month period before and a week after the Bam’s earthquake event. Anomalies appear in summer
whereby an approximate 20% count of anomalies last for a week period. This may be a result of
another earthquake occurring in the summer period of the same year called Kerman’s earthquake on
August 21* 2003 with a lower magnitude of 5.9. This may lead us to understand that perhaps sporadic
release of energy from stressed rocks leads to a reduction on magnitude of the main shock. Also, there
was a 10% count of anomalies appearing in April which is regarded as a false positive since no
earthquake (above magnitude 5.0) was recorded. This is half the number of anomalies appearing
before the Kerman’s earthquake which offers much uncertainty for the developed method. When
analysed visually it was seen that there were still clouds affecting some of the background pixels
within the ring. This uncertainty can be limited by the long time series dataset, as patterns can be used
to draw conclusions about the anomalous behaviour. In comparison with other years, many of the
false positives from 2003 appeared in other years. For instance, observing the Kerman’s earthquake
for a one month period prior to the event, it will suggest that the anomaly is a result of the earthquake.
However, a distinct pattern or trend is still evident within each profile for the summer period (July-
August months) suggesting that the anomaly within 2003 is not an earthquake-related anomaly but an
anomaly caused by some other factor. Likewise, for the Bam earthquake in December, there was no
sign of any anomalous activity for all the years including that of 2003.

Condition (iv) for 2003:

To assess topography and aspect, a different facing slope from condition (ii) is studied. By
just observing 2003, there was a relatively significant earthquake-related anomaly of 25% in
December. Early January of that same year, a smaller anomaly was seen and had a relation of 10% to
an earthquake occurrence. This was regarded as a false positive within the series. There was no
evidence which supported that an earthquake anomaly was apparent before the Kerman’s earthquake,
in this profile. In the year 2000, the maximum chance for an earthquake-related anomaly was 20% in
November. Even though this value was decreasing, this anomalous behaviour lasted beyond
November into December. Likewise, in 1999, a dual peak is prominent with maximum amplitudes of
approximately 27% and 18%. Whilst comparing the other years, it was found that several false
positives (especially in the month of January) as well as false negatives are within the profiles. This
profile is comparable to that of the profiles in condition (ii). Watching these profiles not much can be
said about the time the anomalies were detected. The time of day plays a significant role in the
amount of heat transferred to an object. The original outputs from the anomaly detection algorithm
were used which provided the times the anomaly was most prevalent within a 1o, 26 and 36 profile.
They were found to be common at the evening-night-time period.
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Number of anomalies appearing within a week over a 2o (for the year 2002 with a natural variation of

20°K and a threshold of 260°K)

OEE00EZ 2002
0EBIEZZIZ00Z
0E60LL24 2002
0E0041212002
OEGIYOZ1 2002
0E908C) 12002
OELZ 21 Z00E
0EZ6HL 12002
OEE00L | 2002
0£81.20 12002
006042012002
0000}204Z002
00174012002
00308004 Z002
006110012002
DELDGZENZO0E
0E5081.60Z002
000}1LB0Z00Z
0E¥ 170802002
006182802002
00LOZZB0Z00Z
006081802002
0000G0B0Z00Z
005120802002
00802407002
004202402002
00ZLYL 202002
0EC080£02002
062110402002
0EA0GZANZO0E
0ELZ8190Z002
0EZLZLANZO0E
00E09090Z002
0081 0ES0Z00E
006072502002
00003502002
003441902002
009050502002
00LZRCHOZO0E
002422P0Z002
00E03LPOZO0E
008}60P0Z00C
00GOEDPOZO0Z
006} 42602002
0EZ0}ZE0Z00Z
0090YLENZ00E
009020602002
00Z08220Z002
080412202002
0EBIPLE0Z002
O0B0BOZ0Z00Z
00EZ} 0202002
OEELBZLOZ00C
0EKO0Z0Z00Z
OEGLELLOZO0C
0E60.010Z002

0LDZ00Z

ion of

k over a 20 (for the year 2001 with a natural vari

in a weel

with

ies appearing

Number of anomal

20°K and a threshold of 260°K)

10

O0EVDEZ H00Z
OESOVEZHLO0Z
000081244002
OELLLLZHLO0Z
00LLS0Z 44002
OEPDRCHHLODZ
00ZZZEHHLD0Z
0ESLSLLLLODZ
0080044002
[
006162014002
OEZIZZOH00T
009091014002
OEEZE00}400Z
00SLE00}L00Z
001022604002
008002601002
0051E160100C
OEEZ90601002
0E901£801002
OEEWZI0L00C
020081801002
0E21 11804002
00LLS080L00Z
OEPODELOLODZ
O0ZZEZL0L00Z
0051 21-L0L00C
0EBDLLLOLODZ
00209004002
OEBLBZA0L00Z
ODELZZA0L00Z
0ES09190L00Z
000001904002
OELLE0SOLO0Z
OEDLBZI0L00Z
OEZOZZG0L00Z
00615101002
0EZHE0S0100C
0090E0504002
O0EZSCYOL00T
OESLOZYOLO0Z
000MP 01002
OEE0RODL00C
0261 10K0L00C
009092E04002
ODELBLEOLDDZ
00212101002
0EZZS0E0100C
0EZ0LTZ0L00C
00LLOZZOL00Z
ODEZELZOLO0Z
0E81 20204002
0001 LOZ0L00Z
OEEDSZLOLO0Z
000Z64L0L0DZ
OEELELLOLODZ
002020104002

0EODLOLOLODZ

112



THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION

ion of

k over a 2o (for the year 2000 with a natural variati

in a weel

withi

ies appearing

Number of anomal

20°K and a threshold of 260°K)

OEHBEZI0002
0E900221000C
00L0¥LZL000C
000220240002
OEP|LOZ10002
02609241000
0CPOBLLLO00E
OEEZZH 10002
0E819041000
0EEHE0L000C
0EB0SZ0L000C
OEE0GH0I0002
0E22210L000C
00419004000
005006500002
OEEIEZ600002
0E£291 60000
008004600002
OESIEDSO000E
002082800002
00244280000
0E505180000
OED0GORO000E
06120800002
0EH 142400000
0E30LZ20000C
01054200002
0E0Z80/00002
00$120/0000
000452900002
005002800002

[ 0000800002

006+£090000
007440900002
006082500002
00700250000
00EZE1 50000
0ELL£0500002
OEZHH0500002
0CL092/0000
0CZ061¥0000
00LZZ40000E
008160£00002
00/01££0000
00L¥2£00000
00Z081£0000C
00.0k1£00002
004 1¥0£0000
008162200002
002002200002
0081€1200002
0E2H£0200000
0080L0Z0000C
000082400002
006161100002
00ZI€1400002
00202040000

001010100002

iation of

k over a 2o (for the year 1999 with a natural vari

inaweel

ithi

s appearing wi

Number of anoma

20°K and a threshold of 260°K)

e il

a0

20

051 00EZ4666L
0E0ZECCHGaa)
0eY| 21218661
0E60LLZ46AAL
OEE0G0Z 6661
000Z8Z) 666
OEEVZC416AAL
O0EZGH) 666
002460416661
02010416661
DESORZOLGGGL
000022046661
006061016651
00} 280046664
008020016651
069} GTE0BE5H
00Z06LG06GGL
0001160666}
0081 5080865
00Z00EB0GAGL
002 £2808651
0E5071B0GAAL
00£701 808651
001 #0BOBEEH
0ED|GZL0GGAL
0E| 0ET20865)
006181 L0865H
0ER00LZ0666L
0EZ0k0L0BEE)
0ER| /2906661
0EE} 1280865
0EL0G|80865H
00206090666}
001720808651
0eY| LTG0865H
005042906661
OEECh| 50865
0521 B0S06GGL
00212090666}
DEADSZYOGGGL
004002+06661
000ZE #0565
0061 L0pOBGEH
OEE0IObOBEEH
OEZ} GTEOBEE
0061 BLE0GAAL
OB} T HEOBGE
00Z0S0ENGGGL
064192206661
0E000ZZ0865H
0081 £420666L
00€} 20208651
0EL0L0Z0BEEH
00005Z406GGL
OELIBHL0865H
00Z1E4L0GGGL
0ES0/040666L

0E004 040565
o

113



THERMAL INFRARED TIME SERIES ANALYSIS FOR EARTHQUAKE PRECURSORY DETECTION

Condition (iii) which is a pixel (20,15) located far from the epicentre. This pixel is oriented on
an eastern slope. In Section 4.1.2, describes the evnt taking place in the year of the earthquake
occurrence as observed in this pixel. The other years are shown in figures below.

As suggested, pixels occurring far from the epicentre should not be influenced by the
thermal anomalies and have a greater chance of not being related to the impending earthquake
event. For 2003, there were no earthquake-related anomalies for Bam neither for Kerman. All
the anomalies within this year were relatively insignificant as they were all under a 5% chance
of being related to the earthquake phenomena. As compared to other years, the maximum
relation for any sort of an earthquake anomaly was 10%. In 2001, a magnitude 5.0 earthquake
produced an approximate 10% chance of being earthquake-related. Even though there was an
earthquake in 2001, a similar pattern in 2002 appeared suggesting that, this cannot be caused
by the earthquake but by another component such as seasonality within the dataset. False
positives continuously emerge within the dataset.

Number of anomalies appearing within a week over a 20 (for the year 2004 with a natural variation of
20°K and a threshold of 260°K)
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L’AQUILA EARTHQUAKE: Also located in the Northern Hemisphere
Condition (i): Pixel 58,55- which is the epicentre and is oriented on a steep South slope.

Condition (iv): Pixel 55, 62- which is oriented on a south-western slope.
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Condition (v): Pixel 60,49 and Pixel 60,50 - which is oriented on a north-eastern slope and on an
eastern slope respectively.
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Condition (vii): Pixel 55,64- which is oriented on a north-western slope.
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Condition (i) at epicentre (Pixel 58,55) and is oriented on a steep South slope. There was a significant anomaly
in December with an approximation of 55% being related to an earthquake. However, NEIC results showed that
this peak cannot be caused by any earthquake, since no earthquake was recorded at this time. Throughout the
year, anomalous activity was seen but it was not significant to be regarded as an earthquake-related thermal

Number of anomalies appearing within a week over a 2o (for the year 2009 with a natural variation of
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Condition (ii) at Pixel 43,25 and is oriented on a gently facing south slope. The topography also influences the

amount of anomalies manifesting itself in an area. On a steep slope, which is open to the direct solar radiation

will be heated faster and will take a long time for the temperatures to be reduced as compared to a gentle facing

slope. The intensity of anomalies appearing on a steep slope will be greater than that of a gentle slope but even

this is subjected to the time of the day. If the sun is positioned over a gentle slope, the temperature will be

higher than those on a steep elevated slope. This is probably one reason which explains the 15% anomalies in
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Appendix J: Frequency of Earthquakes

Average frequency of occurrence of earthquakes
Earthquakes are classified in categories ranging from imperceptible to great, depending on their
magnitude. The earthquakes under study fell within the description of large earthquake events.

DESCRIPTION MAGNITUDE OCCURRENCE/year AVERAGE/day
Great 8.0 + 1

Major 7.0-7.9 18

Large (destructive) 6.0-6.9 120 0.5

Moderate (damaging) 5.0-5.9 1000 4

Minor (damage slight) 4.0-4.9 6000 36

Generally felt 3.0-3.9 49000 360 (every 4 minutes)
Potentially perceptible 2.0-2.9 300000 3600 (every 24 seconds)
Imperceptible less than 2.0 600000+ > 3600 (every 24 seconds)

Extracted from SEVGI [47].
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