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Abstract 
Coal is being mined in several districts in the state of Meghalaya, India with the highest 

production coming from the Jaiñtia Hills district. Due to Constitutional rights allowing the indigenous 
tribal population to have the complete ownership of their land, including its subsurface resources, coal 
mining in the State has been carried out by many individuals at a cottage scale level. Coal is extracted 
using an artisanal method of underground mining which is called as “rat-hole” mining. The mining of 
coal in this district has brought about several environmental changes including degradation in surface 
water quality due to acid mine drainage (AMD) as reported in literature. AMD is caused by the 
oxidation and hydrolysis of metal sulphides, particularly pyrites, found in coal, deposit over-burden 
and in the waste dumps releasing large quantities of sulphates and protons, thereby lowering the pH of 
the water bodies. Highly acidic water leaches metals from surrounding rocks and soils adding to the 
deterioration of water quality in the mining areas. Metals stay in solution till the pH rises further 
downstream in a water course through dilution from incoming non-polluted tributaries and they 
precipitate out or get adsorbed by water colloidal particles and stream bed sediments. This creates 
another environmental problem with stream beds coated with amorphous iron oxide/hydroxide 
precipitates and high metal concentrations in the sediments which make the streams toxic.  

 
The main objectives of this study are: (1) to use remote sensing to identify and map the extent 

of artisanal coal mines in the Umiurem-Umtarang watershed in the central Jaiñtia Hills district, (2) to 
carry out an object based classification for semi-automatic identification and mapping of the coal 
mines, (3) to determine the hydro-chemical characteristics of AMD in surface water by field survey, 
sampling and analysis, (4) to assess the presence of undesirably high heavy metal concentrations in 
water samples and sediments in the watershed, and (5) to map the spatial variability of concentrations 
of different pollutants along the streams in the watershed. 

 
Visual analysis of the merged CARTOSAT-1 and RESOURCESAT-1 (IRS-P6) LISS-IV 

image shows high density of coal mines in the southern portion of the study area comprising of Tura 
sandstones of Jaiñtia Group. This map, when compared with that interpreted from a pan-sharpened 
QuickBird (PAN – spatial resolution 0.61m at nadir and multi-spectral – spatial resolution 2.44m at 
nadir) image, yielded an accuracy of 46% by polygon count and 59% by area comparison. The lower 
accuracy is primarily because of the lower spatial resolution of the merged                    
CARTOSAT-1/RESOURCESAT-1 image whereby clusters of many mines seen on the QuickBird 
image appeared as a single big mine. Further, several older mines with darker overburden signatures 
due to overgrowth merged with the background vegetation or barren land and their identification was 
missed out in the visual interpretation of merged CARTOSAT-1/RESOURCESAT-1 image. 

 
An algorithm is developed to semi-automatically classify the coal mines through an object 

oriented classification (OOC) approach using the Definiens Developer 7 software. OOC results are 
found to be much superior over pixel-based supervised classification using Maximum Likelihood 
Classifier (MXL) since OOC approach considers spectral, textural and shape characters of each 
segmented image object for classification. While MXL produced inconclusive results, the OOC 
approach produced an overall accuracy of 67% when compared with the visually interpreted merged 
CARTOSAT-1/RESOURCESAT-1 image. The error of omission is 33% but the error of commission 
is quite high at 54%. The high error of commission is mainly because of the misclassification of many 
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objects of roads and settlements as they had similar spectral, textural and shape (due to quadtree 
method of segmentation) characteristics as that of coal mines. These were the main reasons for a high 
error of commission. The OOC algorithm developed on CARTOSAT-1/RESOURCESAT-1 data is 
also tested on pan-sharpened QuickBird data in a small subset of the study area. The overall accuracy 
of OOC based output on QuickBird data is found as 72% with commission and omission errors of 15% 
and 28% respectively. 

 
Field sampling and analysis of streamwater samples during the monsoon and post-monsoon 

periods reveal that at many locations in proximity to coal mines, water quality is affected by AMD. 
While water is generally of acidic nature (pH ranging between 2.74 and 7.4) throughout the study area 
because of intense leaching, the effect of AMD is observed in the southern portion of the watershed 
where there is high density of coal mines, as seen through remote sensing data. It is also observed that 
at locations affected by AMD (characterized by low pH and high acidity) streamwaters also contain 
high concentration of sulphate, iron and manganese. Concentrations of heavy metals in streamwaters 
and sediments, on the other hand, have not reached alarming levels in the study area. These results 
show that oxidation and dissolution of pyrites associated with coal and overburden material is the 
primary reason for AMD in the study area. It is also concluded that the coal/coal bearing formations do 
not contain appreciable amounts of trace metals in the sulphide minerals. The evidence of AMD is also 
seen in the form of presence of iron oxide/hydroxide precipitates on the stream beds downstream of 
coal mining activity. Such precipitates can also be seen through pan-sharpened QuickBird image (true 
color composite) and color ratio composites of Landsat ETM+. 

 
Heavy metals, barring iron and manganese, are found to be within permissible limits in water 

samples. In the stream sediments, except for cadmium, they are also found to be less than the 
Threshold Effect Concentrations (TEC’s), below which harmful effects on sediment-dwelling 
organisms are not expected. However, in no cases are the heavy metals or other metals higher than the 
Probable Effect Concentrations (PEC’s), above which harmful effects on sediment-dwelling organisms 
are expected to occur frequently. The predicted incidence of toxicity in the stream sediments during 
monsoon varies from 9% to 23% and during post-monsoon varies from 4% to 32%, indicating low 
impact on sediment-dwelling organisms.  
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1. Introduction 

1.1. Introduction 

The mining and use of coal has been in existence for ages. Though it is not clear who first 
discovered the uses of coal, but its history can be traced back several centuries before the birth of 
Christ. Theophrastus, a pupil of Aristotle, who lived nearly three hundred years before Christ, was 
perhaps the first ancient author to have mentioned about coal (Bank, 1883). Bank (1883) also wrote 
that the Romans knew about the uses of coal since the time of Julius Caesar’s invasion of Great Britain 
(55 – 54 BC) and that the coalfields of Great Britain were, perhaps, the first to be opened during the 
time of the Roman occupation (AD 43 till AD 410). The Encyclopædia Britannica Online (2009) 
reported that the Hopi Indians of the present day’s south-western United States of America used coal 
for heating, cooking and in ceremonial chambers since the 12th century AD. Marco Polo wrote in his 
memoirs that there was widespread use of coal by the Chinese in the 13th century AD (Britannica, 
2009).  
 

Initially, coal was mined for domestic purpose only. It was not till the Industrial Revolution 
that the mining of coal was carried out on a large and commercial scale. Coal mines were opened up in 
several parts of Europe and America to feed the steam powered engines and machines of the time. 
Along with industrialization came development. Railroads were laid and steamboats were used to 
transport coal from the mines to the trading centres. Bank (1883) wrote that the first railroads in 
America were made for the sole purpose of coal transportation. The large scale mining of coal as the 
primary fuel was carried out till the mid 1950s, after which alternative fuels like oil, electricity, 
nuclear power and renewable energy sources started becoming popular. By the 1970s, environmental 
concerns over coal mining slowed down its extraction in the West. However, coal still remains an 
important fuel, especially for generation of electricity. 
 

Coal mining in India was started by the British in the late 18th century. Production remained 
minimal due to want of demand. It was till the introduction of steam locomotives in the mid 19th 
century that production started steadily rising. After attaining Independence in 1947, the Government 
made 5-year plans for the development of the coal industry and to make it more scientific and 
systematic. By the mid 1950s the Government had two coal mining companies with the collieries 
owned by the Railways as the main hub. With the burgeoning steel industry, the requirement of coal 
increased manifold. However, the private companies were not able to cope with the demand. The 
unscientific practices and poor working conditions that these mines presented prompted the 
Government to nationalize coal production in the country. Taking over of the private coal mines was 
carried out in phases with enactment of, firstly, the Coking Coal Mines (Emergency Provisions) Act, 
1971 followed by the Coking Coal Mines (Nationalisation) Act, 1972 and the Coal Mines (Taking 
Over of Management) Act, 1973 wherein the coking coal mines and the coke oven plants, except those 
of the Tata Iron & Steel Company Limited and Indian Iron & Steel Company Limited, were 
nationalized on 1st May 1972 and brought under the Bharat Coking Coal Limited (BCCL), a new 
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Central Government Undertaking. The enactment of the Coal Mines (Nationalisation) Act, 1973 
finally brought about the nationalization of all mines on 1st May 1973. This Act has remained the main 
Central legislation determining the eligibility of coal mining in India (Ministry of Coal, Government 
of India website). 
 

The state of Meghalaya, located in North-eastern India, is rich in natural resources like coal, 
limestone, uranium, kaolin, clay, etc. The most widely exploited of these is coal. The occurrence of 
coal was first reported by H. B. Medlicott in 1869 (GSI, 1974; NEC 1991). Its subsequent mining, 
initially confined to the Khasi Hills only, was carried out at a very small scale level for domestic 
consumption. The thickness of the coal seams range between 30cms and 200cms (Sarma, 2005) and 
were highly inconsistent for large scale mining. The commercial extraction of coal started to increase 
only after 1978-79 (De, 2007). From the Khasi Hills, mining slowly started in the other districts also. 
Presently, mining is being actively carried out in various places in the Jaiñtia Hills District and as 
much as 74% of the total production of the state is presently generated from this district (Sarma, 
2005).  
  

After Independence, Jaiñtia Hills became a part of the United Khasi and Jaiñtia Hills 
Autonomous District under the Sixth Schedule of the Indian Constitution (Payal, 2002). Under Clause 
3 of the Schedule, the District Council can make laws for management and allotment of land in the 
district (Payal, 2002). However, land is solely owned by the people, either individually or by the clans. 
Neither the Central nor the State Governments have any control on the land (Das Gupta et al. 2002) 
except by acquisition or lease from the land owners. This land holding system allowed the owners to 
exploit their land, including underground resources, in whatever way they deemed fit and profitable. 
Thus, thousands of private mines exist in all the coal and limestone rich areas of the state.  
 

Coal in Jaiñtia Hills is extracted by an artisanal method of underground mining that differs 
from that in the rest of the country. This method is called as “rat-hole” mining. In this type of mining, 
wherever the land owner suspects that coal is present, the forest cover is cleared and a shaft of 
diameter varying from 3m to 10m is sunk. Holes are then dug into the coal seam and the holes go 
deeper and deeper with coal extraction. These holes are just big enough to accommodate a man to 
crawl in with his tools and a basket or wheeled cart on which he transports the coal to the outside 
(Fig.1.1). These holes or “burrows” go in all directions and for several kilometres following the coal 
seam (Wangdi, 2004). When the coal is brought to the surface, it is collected near the mine or loaded 
directly onto trucks which carry it to the depots located near the main roads. These road side depots 
are a major source of air, water and soil pollution and, coupled with the off-road movement of heavy 
vehicles, the ecological balance of the area has been adversely affected (Swer and Singh, 2003). 
 

As mentioned earlier, because of the peculiar land holding system and coal seams not 
profitable for large scale mining, the Government has turned a blind eye to the unplanned and 
unscientific coal mining in Meghalaya and has not imposed any of the provisions of the Acts of 
Parliament which are enforced in other parts of the country. Mining in Meghalaya, be it coal or 
limestone, has been left entirely to the individuals to carry out while the State Government sat back 
and collected revenue in the form of royalty and transportation taxes from the mine owners. 
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             Figure 1.1: The "rat-hole" mines of Jaiñtia Hills. 
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1.2. Environmental problems associated with coal mining 

Without a doubt, coal mining has brought about development and employment opportunities 
(Swer and Singh, 2003; 2004) and immense wealth to the few who can afford large land holdings and 
sink many mines. However, it has brought about gross changes demographically and environmentally. 
Cheap labor from Nepal and Bangladesh form the core group of miners who live in the most 
despicable conditions in the labor camps. Inter-racial and inter-religion marital alliances have resulted 
in demographical changes in the district. The landscape of Jaiñtia Hills has been completely changed 
due to coal mining. Mine shafts have been dug almost everywhere from forests, agricultural fields and 
grasslands. All types of land uses can be seen around the coal mining areas with mine shafts and mine 
spoils mixed with agricultural fields, pine groves and human habitation (Das Gupta et al. 2002) 
(Fig.1.2). Sarma (2005) reports a loss of 40% of forest area in a span of 26 years while, at the same 
time, mining area increased at the rate of 1.2 sq.km. per annum (Fig.1.3). Abandoned and exhausted 
mines are never backfilled and this has led to submergence and landslides at several places (Fig.1.4). It 
is common practice to never refill an abandoned mine as that would cost money (Fig.1.4). These have 
become a big danger to humans and life stock, especially after they become overgrown with 
vegetation (Fig.1.4(c)). The mine shafts are also never refilled after work is completed and this makes 
it very dangerous to walk around in the coal mining areas of Jaiñtia Hills. 

 

 
Figure 1.2: Mixed land use around a mine at 
Khlieh Myntang Village. 

 

 
Figure 1.3: Forests cut down to make way for a 
coal depot. 

 

 
Figure 1.4: Photographs of abandoned mines. 
(a) near Khlieh Mynthang (b) at Khloo Kynring (c) at a road side in Byrwai. 
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On the contrary, Shankar et al. (1993) opined that rat-hole type artisanal mining has proved 
to be a big success in the Jaiñtia Hills and other parts of Meghalaya because of the close proximity of 
the coal seam to the surface. They argued that this type of mining was not only cost-effective and did 
not require skilled man-power, but also caused less land degradation as the direct soil structure 
damage from it was limited to only the size of the mine shaft, the overburden heaps and spoils. 
However, they also found that the two major problems associated with this type of mining were (i) the 
formation of colliery spoils with no structure due to the upside down change of the soil horizons and 
mixing with coal particles and (ii) deposition of coal particles though water seepage and wind action 
during wet and dry seasons respectively, thereby affecting areas which were not under the direct 
influence of coal mining. 
 

But, on the whole, coal mining, especially if carried out as in Meghalaya, leads to all round 
environmental degradation (Fig. 1.5 and 1.6). The common impacts include land degradation, loss of 
forest cover, topsoil and agricultural land, changes in topography and hydrologic conditions, pollution 
of surface and ground waters, retarded vegetation growth, destruction of ecological balance; and land 
subsidence, temperature rise and loss of coal resources in places where there are mine fires (Chatterjee 
et al. 1994). Underground coal mines are particularly damaging to water quality because they get 
flooded easily and water has to be continuously pumped to the surface bringing along with it various 
pollutants, especially dissolved minerals from the rocks it comes in contact with (Ghose and Sinha, 
1990). 

 

 
Figure 1.5: Environmental degradation at 
Sohkynphor Village. 

 

 
Figure 1.6: A coal depot near Mynska Village. 

 

1.3. Acid Mine Drainage (AMD) 

Coal mining is associated with Acid Mine Dainage (AMD) which is caused by the oxidation 
and hydrolysis of metal sulphides found in coal, over-burdens and in the waste dumps (Gray, 1996). 
The oxidation of iron pyrites releasing sulphuric acid from coal mines can be represented by the 
following equations (Singer and Stumm, 1970): 
FeS2 (s) + 7/2 O2 (aq) + H2O = Fe2+, Fe3+ + 2SO4

2- + 2H+  (1) 
Fe2+ + ¼ O2 (aq) + H+  = Fe3+ + ½ H2O   (2) 
Fe3+ + 3H2O    =  Fe(OH)3 (s) + 3H+  (3) 
FeS2 (s) + 14Fe3+ + 8H2O  = 15Fe2+ + 2SO4

2- + 16H+  (4) 



IDENTIFICATION OF THE EXTENT OF ARTISANAL COAL MINING AND RELATED ACID MINE WATER HAZARDS USING REMOTE 
SENSING AND FIELD SAMPLING: A CASE STUDY IN JAIÑTIA HILLS OF NORTH-EASTERN INDIA 

 

6 

The oxidation of pyrite is generally accelerated by the presence of bacteria such as 
Thiobacillus ferrooxidans in waters of low pH (Kim and Chon, 2001).  The presence of high acidity in 
the water causes the degradation of surface water quality and impacts stream aquatic biota (Chon and 
Hwang, 2000). Further, iron hydroxide/sulphate minerals forms a yellowish coating at the bottom of 
streams and makes it difficult for aquatic life to survive in streams affected by acid mine drainage 
(Kim and Chon, 2001).  
 

The leaching of AMD leads to surface water contamination by soluble heavy metals present 
in the coal deposits and other acid soluble weathered materials which add to the deterioration of water 
quality in the mining areas (Singh, 1987). Heavy metals such as lead, zinc, copper, arsenic, selenium, 
mercury and cadmium are released into the surface water (da Silva et al., 2006) which becomes 
unsuitable for aquatic life, destroys mining equipment and render the water unfit for drinking and 
recreation (Singh, 1987).  

 
Metals are necessary not only for the development of a society but are also essential in life 

functions. One of the pathways by which metals enter into the environment is through mining 
activities. These activities may affect relatively small areas but they may have larger impacts on the 
environment as a whole (Salem and El-Fouly, 2000). Metal contamination of water can persist for 
many years even after the source has been eliminated. Boult et al. (1994) stated that metal 
contamination of the Afon Goch stream flowing through a mining site at Anglesey, U.K. persisted 
even after mining operations stopped almost a century ago.  
 

AMD has been a major cause of concern in various parts of the world where mining has been 
carried out for several decades and centuries now. The full extent of the environmental pollution 
caused by mine water discharges is difficult to assess accurately, however, in 1989, an estimate was 
made that about 19,300 km of streams and rivers, and about 72,000 ha of lakes and reservoirs 
worldwide had been seriously damaged by mine effluents (Johnson and Hallberg, 2005). Robb and 
Robinson (1995) reported that as per the National Rivers Authority report in 1994, there were 96 
discharges from abandoned mines into the rivers of England and Wales which, when combined with 
discharges from working mines, altogether cause significant pollution to 198 km of natural water 
courses. 
 

1.4. Research Motivation 

In the Jaiñtia Hills, coal mining has left its once beautiful landscape scarred and deformed 
forever (Fig.1.7). Artisanal rat-hole mines dot the whole district making it look like a bad case of 
chicken pox. Forests have slowly dwindled. Even agricultural land and fruit orchards have not been 
spared. One can catch a glimpse of lush green paddy fields or an orchard of citrus fruits with a gaping 
black hole right in their midst (Fig.1.8). Mining is usually carried out in the dry winter months upto 
around May, before the monsoon sets in. During monsoon, the mine shafts and burrows fill up with 
water. When work resumes after the monsoon, huge quantities of water are pumped out and 
discharged into the nearest surface water-body thus, contributing to AMD contamination of the water-
body. Water that percolates into the soil during monsoon enters into the mines and comes in contact 
with the metals, oxidizing them. Cliff adits spew this red colored acidic water which eventually end up 
in a water body nearby (Fig.1.9). It is commonly seen that coal laden trucks are washed on the river 
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banks adding acidic water into the rivers and streams (MSPCB, 1997). Rain water leaching through 
the coal dumps at the road-side depots also generates highly acidic leachate which flows into the 
water-bodies. 
 

 
Figure 1.7: Jaiñtia Hills scarred forever. 

 

 
Figure 1.8: Mine in the middle of a paddy field at 
Khloo Kynring. 

 

 
Figure 1.9: Cliff adits spewing acidic mine water 
into the river below. 

 

 
Figure 1.10: The red colored Chyrmang River. 

 
AMD has caused untold deterioration to the water quality of many streams and rivers of 

Jaiñtia Hills District (Fig.1.10). Swer and Singh (2003; 2004) report pH value as low as 2.31 recorded 
in one of the streams in the coal mining areas. Water with pH as low as this leads to weathering and 
dissolution of silicate and other rock minerals causing the release of trace elements like aluminium, 
manganese, copper, cadmium, lead, etc. into the water (Gray, 1996; Swer and Singh, 2003; 2004). The 
iron hydroxide precipitate makes the water very turbid and changes its color to reddish brown or 
brownish orange thereby affecting aquatic life by blocking out the sunlight (Swer and Singh, 2003; 
2004). The overall impact of AMD on the ecology is the elimination of species, simplification of the 
food chain and reduction in ecological stability (Gray, 1997). Swer and Singh (2003; 2004) have 
reported that the rivers in the coal mining areas lack commonly found aquatic life-forms like fish, 
frogs and crustaceans. 
 

The Meghalaya State Pollution Control Board, Shillong (MSPCB, 2007) reported a case of 
massive fish death along the Lukha River, on the eastern border of Jaiñtia Hills, and its waters turning 
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into a deep blue color, a white precipitate covering the entire river bed and all aquatic life coming to 
an end (Fig.1.11). This phenomenon was attributed to AMD brought into this river by its tributary, 
Lunar River. Low pH and high acidity were recorded from their point of confluence and downstream. 
The changing of color of the river from green to blue color indicated the presence of metals. This can 
be seen from the higher content of metals found in the sediments than in the water samples collected at 
the same locations. 
  

Shankar et al. (1993) have found that mining has brought about decrease in soil fertility 
because of lower pH, carbon, nitrogen and phosphorus content and higher manganese, zinc, iron and 
sulphur concentrations. The physico-chemical properties of coal mine spoils have been completely 
altered and their ability to sustain plant growth has diminished due to low soil moisture, organic 
carbon and nutrients (Das Gupta et al., 2002). Sarma (2005) observed that the number of trees and 
shrubs have decreased and forest cover upto 40.5 sq.km. (40%) lost in 26 years while at the same time, 
mining has been steadily increasing at the rate of 1.2 sq.km. per annum. The Meghalaya State 
Pollution Control Board, Shillong (MSPSB, 1997) has observed that the pH of water from rivers, 
streams, mine drains and even drinking water from taps and hand pumps exceeded the permissible 
limit for drinking water prescribed by the Bureau of Indian Standards (BIS). The movement of heavy 
vehicles overloaded with coal and coal dust flying about from the depots has caused tremendous air 
pollution along the roads (MSPCB, 1997).   

 

 
Figure 1.11: The blue Lukha River. 
(courtesy: Meghalaya State Pollution Control Board) 

 

 
Figure 1.12: The red colored Umbon River  
(Station R13). 

 
Thus, unregulated and unplanned mining of coal has led to widespread environmental 

problems, particularly of AMD contamination which has resulted in the deterioration of the quality of 
many water bodies in Jaiñtia Hills District rendering them to almost dead rivers and streams with 
absolutely no signs of aquatic life (Fig1.12). The primary reason why this study is being taken up is to 
find upto what extent remote sensing, coupled with field sampling, can help in locating AMD affected 
areas and to serve as an eye-opener to the state’s decision makers. 
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1.5. Research Objectives 

To carry out the study, the following objectives have been framed: 
• To identify and map spatial extent of rat-hole type coal mines in relation to geological setting 

using RESOURCESAT-1 (IRS-P6) LISS-IV, CARTOSAT-1, Landsat ETM+ and ASTER 
images. 

• To identify mines through object oriented classification (OOC) 
• To determine the hydro-chemical characteristics of AMD in surface water in the watershed by 

field survey, sampling and analysis. 
• To assess the presence of undesirably high heavy metal concentrations in water samples and 

sediments in the watershed. 
• To map the spatial variability of concentrations of different pollutants along the rivers in the 

watershed. 
 

1.6. Research Questions 

To meet the aforementioned objectives, the following research questions have been framed: 
• Can the rat-hole mines be identified and mapped through RESOURCESAT-1 (IRS-P6) LISS-

IV, CARTOSAT-1, ETM+ and ASTER images? 
• Can the mines be identified using OOC? 
• What are the hydro-chemical characteristics of AMD in the watershed? 
• Are the mines the main cause of AMD in the watershed or are there other plausible causes? 
• What is the extent of the presence of heavy metals in the watershed? 

 

1.7. Thesis outline 

This thesis consists of six chapters, a brief outline of which is given below: 
Chapter 1 : This chapter gives an introduction to the study including the background of the 

problem, research motivation and the research objectives and questions. 
Chapter 2 : This chapter deals with a review of literature relevant to the study and it includes 

literature on AMD problems, band ratio calculation, object oriented image 
classification and previous studies conducted in the Jaiñtia Hills district. 

Chapter 3 : This chapter describes the study area in terms of location, geology, physiography, etc. 
and it also gives an idea about the coal belt of the Jaiñtia Hills district. 

Chapter 4 : In this chapter, the materials used, i.e. software, satellite imagery and instruments, 
have been enumerated and the methodology of every step of the study have been 
discussed. 

Chapter 5 : This chapter displays the results attained, through image interpretation, image 
processing and from field sampling and analysis, and discusses the outcome of these 
results. 

Chapter 6 : In this chapter, conclusions are drawn from the attained results and discusses if the 
research questions have been answered and research objectives met. 
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2. Literature Review 

2.1. Acid Mine Drainage 

The problem of acid mine drainage (AMD) is a widely studied and documented subject. 
Almost all the industrialized nations have been through a phase of unplanned and unorganized coal 
mining to meet the ever increasing demand for fuel to power their development and have all been 
victims to AMD. AMD is a persistent problem, the effects of which can be seen long after mining 
activities have ceased.   The presence of AMD can still be observed in mining areas of Europe that 
were opened by ancient Romans prior to A.D. 476 (CSS, 2000).  
 

AMD is basically the outflow of acidic water from metal or coal mines. Metal mines 
associated with sulphide minerals often generate highly acidic discharges which can cause a lot of 
environmental damage. Acid rock drainage (ARD) is a naturally occurring phenomenon within rocks 
containing sulphide minerals as part of the rock weathering process which is increased by large scale 
earth disturbances like mining activities and large constructions (Wikipedia). Sulphide ores are widely 
used as raw materials in several industrial processes. Common sulphide ores are pyrite and marcasite, 
which are also constituents of coal; and pyrrhotite. In the former two, iron and sulphur are in reduced 
forms and other metals, such as cobalt, nickel and copper, may partially replace iron and arsenic can 
replace sulphur to some extent (Murad and Rojik, 2004). Iron is contained as an “essential” element in 
numerous sulphides like chalcopyrite, pentlandite and arsenopyrite (Murad and Rojik, 2004). 
Exposure of iron bearing sulphide ores to the atmosphere results in the oxidation of both iron and 
sulphide releasing large quantities of sulphuric acid and the formation of ochreous ferric oxyhydroxide 
precipitates. In areas affected by AMD, the most common end products of ferrous sulphide oxidation 
have been observed to be jarosite, schwertmannite, goethite and ferrihydrite (Murad and Rojik, 2004). 
Sediments in acidic waters mainly contained schwertmannite and goethite while those of near neutral 
waters contained ferrihydrite (Williams et al. 2002).  

 
The United Kingdom (U.K.) has a long track record of mining activities dating back several 

centuries. The standard method for treating mine drainage has been to pump out the water, treat it with 
lime to precipitate the iron before discharging it into water courses. The impact of AMD is being felt 
more acutely now that many mines are closing and pumping of water has reduced. Another problem 
being faced is the breach of sealed adits and sudden release of acid water laden with metals into water 
courses. An important example of such an accident happened in 1992 when the flooded Wheal Jane 
metal mine, an ancient mine worked since the 18th century producing copper, zinc, tin and lead, 
breached its seal and released high levels of zinc, cadmium and iron into the adjoining estuary turning 
it orange with iron deposits (McGinness, 1999). AMD is one of the biggest liabilities of the British 
Government. In 1998-99, the Government through the Coal Authority spent £3 million in tackling the 
problem of water pollution from abandoned mines and this has been projected to rise in years to come 
(McGinness, 1999). An important law enacted in the U.K. in this regard is the Water Resources Act 
(1991) which provides for the prosecution of river polluters, and allows the National Rivers Authority 
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(NRA) to recover from the polluter the cost of cleaning up. A working mine is the responsibility of the 
owners, and if pollution is taking place then the NRA can make the owner deal with the pollution. 
However, abandoned mines have been exempted from the purview of this law with the Coal Authority 
assuming ownership of such mines to undertake monitoring of and to deal with mine water and other 
emissions (McGinness, 1999). 
 

In western U.S.A., small abandoned mines that were worked long before modern 
environmental control machineries were established still cause devastating effects to 8,000 to 16,000 
kms. of streams (Jennings, 2008). The U.S. Environmental Protection Agency (USEPA) has identified 
188 sites where human health and environmental damages are caused by mining and mineral 
processing waste management activities (EPA, 1995a). Several laws have been enacted to check 
environmental pollution caused by the mining industry. One of the most significant enactments is the 
Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 which 
is commonly known as Superfund. This law authorizes the EPA to respond to releases, or threatened 
releases, of hazardous substances that may endanger public health, welfare or the environment. EPA 
can also force parties responsible for environmental contamination to clean it up or to reimburse the 
Superfund for response costs incurred by EPA (EPA, 1995b).  
 

Australia has a large number of historic mines scattered all over its length and breadth. There 
are about 83,000 mines, including abandoned, “small scrapings” and large scale operating mines 
recorded in New South Wales, Tasmania and Queensland alone, and it is estimated that between 10% 
to 30% of these mines are potential generators of acidic wastes (Harries, 1997). It has now become a 
priority to characterize and manage mine wastes for their acid generating potential. The Australian and 
New Zealand Mineral and Energy Council (ANZMEC) in 1995, issued baseline environmental 
guidelines considered to be the minimum appropriate for operating mines in Australia. These 
guidelines stipulated the prediction of development of acid generating processes and resultant drainage 
water quality for evaluating long term environmental impacts of waste dumps, tailings impoundment 
structures and mine excavations, and to use the information obtained for developing appropriate mine 
closure structures (Harries, 1997). 
 

The Canadian mining industry has identified AMD as its single largest environmental 
problem. The Mine Environment Neutral Drainage (MEND) programme was established in 1989 with 
a view to tackle this nagging problem. MEND is a cooperative programme financed and administered 
by the Canadian mining industry, the Canadian government and provincial governments with an 
estimate of C$18 million for its first phase ending in 1997 (Harries, 1997).  
 

India, too, has a long history of mining with the first recorded coal mine opened in 1774. 
Now, more than two centuries later, there is a realization that for environmentally sustainable 
development, unplanned exploitation of mineral resources should be curbed and a system put into 
place whereby progress is achieved through eco-friendly methods (ENVIS, 2003). The Constitution of 
India has made it a Directive for the State (Article 48A) and a Fundamental Duty for every citizen 
(Article 51A) to protect and improve the environment and to safeguard forests and wildlife (COI, 
2007). Several laws regulating mining activities and providing for environment preservation and 
protection have been put into place by the Government. Notable amongst these are the Mines and 
Minerals (Development & Regulation) Act, 1957, amended in 1994; Mineral Concession Rules, 1960; 
and the Mineral Conservation and Development Rules, 1988 which regulate mining of minerals other 
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than coal, lignite, natural gas and petroleum. Besides these, the mining industry is also covered by the 
environmental Acts like the Water (Prevention and Control of Pollution) Act, 1974 (amended in 
1988), the Air (Prevention and Control of Pollution) Act, 1981 (amended in 1988), the Environment 
(Protection) Act, 1986 (with Rules 1986 and 1987), the Forest (Conservation) Act, 1980 (amended in 
1988) and the Wildlife (Protection) Act, 1972 (amended in 1991) (ENVIS, 2003). 
 

However, the Constitutional machinery for mining does not apply to Meghalaya, as it falls 
under the provision of the Sixth Schedule of the Constitution, which provides for the administration of 
Tribal Areas in the States of Assam, Meghalaya, Tripura and Mizoram. An official note on coal 
mining activities in Meghalaya obtained from the Directorate of Mineral Resources, Government of 
Meghalaya, states that “the peculiar land tenure system existing in the state has encouraged the local 
people that mining of minerals occurring in their land is their customary right. Land to the local tribals 
does not construe to mean only the surface, but it includes everything on and under it. Land, in the 
state, does not belong to the Government except by acquisition or lease from the land owners”. Due to 
this reason, mining in the state is being carried out by individuals in their own private premises on a 
cottage scale level and in a very unplanned and unorganized setting which has proved to be 
detrimental to the environment. 
 

Gray (1997) has recognized AMD as a multi-factor pollutant which affects aquatic eco-
systems in several direct and indirect pathways; and because of its complexity, its impact on riverine 
systems is difficult to quantify and predict. He has categorized the major effects of AMD on a riverine 
system as chemical, physical, biological and ecological (Fig. 2.1). 
 

Cotter and Bridgen (2006) have attributed the environmental and ecological effects of AMD 
to: 
Acidity and metal toxicity: high acidity and the high concentrations of dissolved heavy metals make 
acid mine drainage extremely toxic to most organisms which is why AMD affected streams are largely 
devoid of life for a long way downstream. 
Sedimentation: precipitation of iron oxides and hydroxides, called ochre, covers the river bed with a 
very fine silt preventing benthic organisms from feeding, thus, leading to their disappearance. This has 
a domino effect on the organisms higher on the food chain. Ochre also affects fish breeding by 
reducing the amount of gravel for them to lay their eggs.  
 

The detrimental effects of AMD on the environment, particularly on river systems, have been 
studied and documented all over the world. The effects of AMD can be felt long after mining 
operations have ceased at a particular place. Gray (1996, 1997, 1998) has extensively studied the 
AMD draining from the abandoned copper and sulphur mines at Avoca, Ireland and its impact on the 
surroundings. He has come up with a comprehensive management approach for remediation of the 
affected area for successful rehabilitation of affected sites and long term protection of the 
environment. Boult et al. (1994) have found that the Afon Goch in Anglesey, U.K., which rises from 
the metal mining area of Parys Mountain, carries metal concentration that is much higher than other 
Welsh rivers of similar size and have called the stream as one of the most metal and acid contaminated 
streams in the U.K. In Scotland, one of the world’s first industrialized countries and one of the first to 
face post-industrial dereliction, AMD due to abandoned coal mines is second only to sewage as the 
main source of fresh water pollution; and in catchments within coal mining areas, it stands first 
(Younger, 2001). 



IDENTIFICATION OF THE EXTENT OF ARTISANAL COAL MINING AND RELATED ACID MINE WATER HAZARDS USING REMOTE 
SENSING AND FIELD SAMPLING: A CASE STUDY IN JAIÑTIA HILLS OF NORTH-EASTERN INDIA 

 

13 

 

 
Figure 2.1: The major effects of AMD on a riverine system. 

(after Gray, 1997) 
 

Ezeigbo and Ezeanyim (1993) reported that AMD caused by coal mining in Enugu, Nigeria, 
which has been mined since 1916, has caused a major problem to supply of drinking water to the city 
with the continuous pumping out of mine water into the nearby streams and rivers, including the Ekulu 
River, the water of which is used to partly supply drinking water to the city. In South Africa, mining 
has caused a lot of environmental problems at several places. An old abandoned metalliferrous mine, 
the working of which ceased in the 1980s, continues to release a considerable amount of dark, reddish-
brown water with pH values as low as 2.5 into the surface environment and surface sinkholes resulting 
from the collapse of old coal mines have affected groundwater and surface water quality (Akcil and 
Koldas, 2006). AMD is responsible for an environmental problem at the Loubert coal mine, in the 
eastern Transvaal. Water from the mine is collected in three pollution control reservoirs. However, 
spillage and seepage from these reservoirs flow into the Human Spruit, a nearby river, and have 
considerably affected the soils around and the water quality in the stream (Geldenhuis and Bell, 1998). 
The water quality in and around Johannesburg, South Africa has been impacted by AMD from gold 
mine tailings dumps that are disused or are undergoing retreatment to extract remaining gold in the 
Witwatersrand gold mines which have been worked since 1886 (Tutu et al., 2008).  
 

Lottermoser et al. (1999) have reported that AMD from a relic copper mine in New South 
Wales, Australia, worked between 1894 and 1912 is still causing environmental problems with its low 
pH and metal rich waters. Stream sediments have metal concentration exceeding background values 
by one or two orders of magnitude. Bioaccumulation and biomagnification processes have been 
observed at the mine and smelter sites and algae growing in the polluted streams in the vicinity have 
been found to display bioaccumulation of metals. Harris et al. (2003) studied the Montalbion silver 
mining area in north Queensland, Australia, which has been abandoned since 1922, and have observed 
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that water sampling during their study period in 2002 showed the release of AMD from the waste 
dumps which have affected the receiving stream by making it acidic and coating its bed with a layer of 
ochre or “yellow boy”.  
 

The estuary of the Tinto and Odiel Rivers in south west Spain has been badly affected by 
AMD from one the most important sulphur deposits in Europe which has been worked for at least 
4500 years. The problem has been intensified since 1966 after the establishment of paper and fertilizer 
industries along the banks which add to the pollution in the estuary making it one of the most polluted 
locations in Western Europe (Borrego et al., 2002; Grande et al., 2003; Sainz et al., 2003; Chica-Olmo 
et al., 2004; Olías et al., 2004; Sainz et al., 2005; Sarmiento et al. 2009). Elsewhere in Europe, 
Rukezo (2003) has studied AMD due to mining of volcanogenic sulphide ore deposits in the Recsk-
Lahoca mining area in the Matra Mountains, Hungary. da Silva et al. (2006) investigated the 
geochemical characteristics of the AMD discharged from the abandoned mine and tailing piles of the 
polymetallic massive sulphide Lousal Mine in southern Portugal. Gemici (2008) evaluated the 
environmental effects of metal pollution in the water, mine wastes and stream sediments around the 
Alaşehir mercury mine in Turkey. 
 

Korea has been having its share of AMD problems with mining having been going on for 
several decades now. Chon and Hwang (2000) have cited a report by the Coal Industry Promotion 
Board which states that 41 coal mines discharged AMD in Korea with a total discharge of over 
141,000m3 per day. Their study in the vicinity of the Dogye coal mine shows a definite AMD problem 
which gets diluted downstream by mixing with inflow waters of higher pH and precipitation of metals. 
Lee et al. (2001) found high levels of cadmium, copper, lead and zinc in the soils sampled in the 
paddy fields and in the forest area around the abandoned polymetallic Daduk Mine. Similarly high 
levels of metals was observed in plants sampled in their study area vis-à-vis those in a control site. 
High concentration of metals was also seen in the stream sediments and water samples which they 
concluded was due to the mine tailings in the vicinity. Similar reports of positive AMD contamination 
from improperly disposed mineral waste piles and untreated mine drainage have been given by Lee 
and Lee (2001) and Kim and Chon (2001). 
 

In India, Rawat and Singh (1982) and Singh (1987) have reported AMD problems in the 
coalfields of Assam in the North-eastern part of India where the mine water has been severely 
affected. The Damodar river basin contains 46% of India’s coal reserve, but due to the low sulphur 
content of the coal, this area does not have an acute AMD problem, as observed by Tiwary and Dhar 
(1994). The main problem here is the bacterial contamination of the Damodar River, which is the main 
source of water supply, and lowering of groundwater table due to underground coal mining. Tiwary 
(2001) carried out a study of water quality of different mines of major Indian coalfields, selecting both 
acidic and non-acidic mines. He found that mines of the Western, Northern and North-eastern 
coalfields are the prime contributors of AMD to the surrounding water bodies. However, the waters 
around non-acidic mines of Central India suffer most from bacterial contamination through 
anthropogenic sources. Pandey et al. (2007) conducted a comprehensive study of contamination 
caused by toxic mine drainage from Asia’s biggest copper mine at Malanjkhand, Central India. They 
studied the AMD affected water bodies, stream sediments and metal accumulation in plants. They also 
conducted bio-monitoring of the affected areas with the help of benthic macro-invertebrates. Their 
result proves a very significant impact on environmental health.  
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An interesting study on environmental degradation due to coal mining has been conducted by 
Sharma et al. (2009) wherein an attempt was made to determine environment liability directly in terms 
of economy. They have classified the main pollutants due to mining and processing of coal as green 
house gases, coal dust and acid mine drainage and the financial liabilities due to these as greenhouse 
liabilities, coal dust liability and sulphur liability respectively. Their study found that greenhouse 
liabilities accounted for US$12.07, coal dust liability US$5.0 and sulphur liability US$101.97. When 
the total liabilities are compared with the annual coal production in India, which is US $5,000 million, 
2.4% of the total economic gain is lost to environmental pollution. Though this is a significant amount, 
it remains unaccounted for and unnoticed in India.  
 

2.2. Remote Sensing and its use in mining related studies 

Surface mining has been seen to be the cause of several environmental problems like land 
degradation, erosion, land subsidence, loss of forest cover and agricultural land, increased acidity of 
soil, AMD causing pollution to surface and ground waters and destruction of ecological balance 
(Chatterjee et al., 1994), to cite a few. To remediate these areas, continuous monitoring is required so 
as to come up with suitable solutions for reclamation and environmental management (Rathore and 
Wright, 1993). Remote sensing, with its advantages of having a synoptic view of the Earth, ability to 
collect data from even inaccessible locations, relatively cheap, rapid and repetitive data acquisition, 
and ease to manipulate and integrate in a Geographical Information System (GIS), has been 
extensively used to study mining related environmental degradation. Rathore and Wright (1993) have 
made an extensive review of the integration of remote sensing in monitoring environmental impacts of 
surface coal mining. They have reviewed various studies which have used remote sensing for 
monitoring land disruption in coal mining areas, for detection of mine fires, for monitoring of mine 
revegetation and reclamation, for water pollution assessment and for detection of subsidence.  
 

Repic et al. (1991) used multispectral videography in the yellow-green, red and near infrared 
regions to study selected water quality parameters in two abandoned coal mine lakes affected by 
AMD. Water samples from 14 locations were also collected simultaneously with the acquisition of the 
video imagery. They found that the yellow-green band had the highest positive and the highest 
negative correlation with iron ion content and pH respectively. High correlation with iron was 
attributed to the presence of “yellow boy” Fe(OH)3 flocs in the lakes and that with pH was because of 
increased iron in solution caused by increased acidity. The authors, thus, demonstrated that water color 
induced by presence of iron ions significantly influenced the spectral values of the lakes. 
 

Chatterjee et al. (1994) used a Landsat TM data to construct a model to assess the 
environmental impacts of opencast and underground coal mining at Jharia coalfield, Jharkhand 
(eastern India). Digital image processing was carried out to generate a standard False Color Composite 
FCC 432 (R-G-B) and hybrid FCC’s 742 and 754 (R-G-B). They also generated a TM band 6 density 
sliced image to identify areas with thermal anomalies. TM band 7 data was edge enhanced, using a 
Laplacian operator, and a second hybrid FCC 754 was generated using this enhanced data. NDVI was 
also calculated for delineating and differentiating vegetation classes and, finally, a supervised land use 
classification using Maximum Likelihood Classifier (MLC) was prepared and verified through field 
investigations. From the standard FCC, the authors could not identify many features. However, from 
the hybrid FCC 742, the authors were able to distinguish coal from water bodies as the former 
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appeared in darker shades of purple and the latter in blue. Linear features and drainage lines became 
prominent in this hybrid. The authors succeeded in showing that different combinations of landsat TM 
bands could yield hybrid FCCs that can be very useful for studying the various environmental impacts 
of coal mining. 
 

Saha et al. (2005) opined that land cover classification on the basis of spectral remote sensing 
data, in high mountainous regions, like the Himalayas, is fraught with difficulties because of the 
presence of shadows due to high altitude of the terrain, cloud cover, deep narrow valleys and ravines, 
low sun angles, steep slopes and differential vegetation cover. To overcome these difficulties, they 
have come up with an approach which incorporates data from other sources, along with remote 
sensing data, to make their classification more accurate. For their study in Rudraprayag and Chamoli 
districts of Uttarakhand (north India), in addition to IRS LISS-3 data, they have used an NDVI 
(Normalized Difference Vegetation Index) layer and a DEM (Digital Elevation Model). The authors 
used several five-band combinations to find which combination gave the highest separability so as to 
be appropriate for classification. They found that all the five-band combinations and also the complete 
data set were equally good, but the best combination was that of the four LISS-3 bands and the DEM. 
The overall accuracy of classification using LISS-3 bands only turned out to be 86.94% and it 
increased to 91% when the whole data set was used. The best accuracy of 92.06% was achieved for a 
combination of LISS-3 bands 1, 2 and 4, NDVI and DEM. This proved that the use of ancillary data, 
in addition to remote sensing data, had improved the classification accuracy by reducing the number of 
misclassified classes and the shadow effect. 
 

Sometimes topographic slope and aspect, shadows or seasonal variations in sunlight 
illumination angle and intensity cause differences in brightness values from identical surface materials 
which can cause misclassification of features. In such situations, Jensen (1996) writes that band ratio 
calculation may be applied to reduce these differences. Lillesand and Kiefer (2000) have defined band 
ratio calculation as an image enhancement resulting from the division of DN (digital number) values in 
one spectral band by the corresponding values in another band. Ratio images have an added advantage 
by conveying the spectral or color characteristics of image features regardless of variations in scene 
illumination conditions (Lillesand and Kiefer, 2000). Ratios also provide unique information that may 
not be discernable in any single band but is useful in classification (Jensen, 1996). Ratio images can be 
used to produce a color composite by combining any three and assigning each image with a separate 
primary color (Sabins, 1987).  
 

Band ratio calculation has been considered to be a relatively rapid method for carrying out 
land use and land cover studies (Rahman, 1997). Several studies have been carried out using band 
ratios for land use land cover classification and also for mineral exploration. Sabins (1987) found that 
ratio image of Landsat Thematic Mapper (TM) bands 3 and 1 enhanced places with high content of 
iron oxide, which have maximum reflectance in band 3. 
 

Rahman (1997) used a Landsat TM image for classification into various LULC classes by 
selecting ten band ratios from the total of thirty possible ratios using Landsat TM. The discernable 
LULC features using the various band ratios were described in detail. The author also found that in the 
color composites of (i) TM5/TM7, TM4/TM3, TM3/TM2 (RGB), (ii) TM4/TM3, TM3/TM2, 
TM3/TM4 (RGB) and (iii) TM3/TM2, TM5/TM3, TM5/TM6 (RGB), the LULC features were 
revealed in different colors uniquely. The author concluded by saying that although band ratio 
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calculation was an effective and rapid method to identify LULC features, by enhancing or subduing 
the brightness values of pixels of different classes, especially in the fields of mineral identification, 
drought, vegetation canopy change, etc, it fell short by not being able to assign the pixels into classes. 

 
Salem and El-Fouly (2000) have used the band ratios of Landsat TM bands 5/7 and 3/1 to 

enhance the spectral reflectance of hydrothermal alteration and iron enrichment respectively, in their 
study of mineral reconnaissance in Egypt. Iron oxide has been successfully detected along the coast of 
south Myanmar by using band ratios of VNIR (Visible Near Infra Red) B2/B1 in ASTER (Advanced 
Space-borne Thermal Emission Reflection Radiometer) and VNIR B3/B1 and SWIR (Short Wave 
Infra Red) B5/B4 in Landsat TM images (Soe et al., 2005). Trinh et al. (2005) have successfully used 
band ratios, particularly the ratio red/near infrared, of Landsat MSS (Multispectral Scanner System) 
and Landsat TM images to map the land use and soil degradation in a district in Vietnam. 
 

Rajendran and Thirunavukkarasu (2007) in their analysis of uncertainties in visualizing 
remote sensing data have found that Landsat TM band ratio of band 5/band 4 and IRS-P6 LISS-IV 
band ratio of band 3/band 2 yield good results in indicating the outcrop of iron bearing silicates in 
their study area. Nasipuri and Chatterjee (2009) have used the popular band ratios Normalized 
Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) and Normalized 
Difference Bareness Index (NDBI) to classify land use around the Maithon reservoir in east India. 
 

With the advent of high spatial resolution imagery in the past decade, there has been a 
growing consensus that traditional pixel-based classification methods have inherent drawbacks 
(Devereux et al., 2004; Song et al., 2005; Yan et al., 2006; Barille and Bilotta, 2008; Durieux et al., 
2008; Moine et al., 2009). As these classifiers basically depend on the spectral reflectance of the 
features, they often “produce maps that lack spatial coherence because of spectral heterogeneity and 
spatial variance that lead to the well-known salt and pepper effect” (Durieux et al., 2008). With high 
spatial resolution, each pixel gets classified uniquely from the surrounding area and homogeneous 
regions are not generated, except by using filters (Durieux et al., 2008). Further, each pixel of high 
resolution images may contain several land cover types, i.e. the mixed pixel problem, which is 
difficult to solve with pixel-based classification (Song et al., 2005). Due to such drawbacks, the trend 
has now shifted towards object oriented image analysis (OOIA) which is based on image 
segmentation.  
 

Object-oriented classification (OOC) has been introduced to remote sensing only recently 
(Song et al., 2005). This has been made possible with the advent of high resolution imagery and the 
availability of powerful software that can handle both image processing and GIS functionalities in an 
object based environment (Blaschke, 2009). The first step of OOC involves image segmentation which 
partitions the image into non-intersecting, homogeneous regions or objects, with all contiguous 
regions being dissimilar, and this is followed by classification of these objects based on spectral, 
spatial and contextual information using common classifiers (Song et al., 2005). Thus, OOC does not 
operate directly on single pixels, but objects consisting of many pixels that have been grouped 
together in a certain way by the user using image segmentation (Yan et al., 2006). This helps OOC 
attain higher classification accuracy vis-à-vis pixel-cased classification.  
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Generally, image segmentation is carried out by one of the following techniques: clustering, 
edge detection and region growing (Song et al., 2005; Yan et al., 2006). The accuracy of image 
segmentation directly affects the performance of OOC (Yan et al., 2006).   
 

Barlow et al. (2003, 2006) have used OOC on an input of a number of layers, like 
multispectral and panchromatic images, a DEM and its derivatives and NDVI of the study area, to 
identify landslide scars and classify them into different types of slides by using a step-wise elimination 
of the undesired land use and land cover. Yan et al. (2006) compared the pixel-based and OOIA 
approaches in studying a coal fire area in China and found that the OOC scored a much higher 
accuracy than the pixel-based classification. Song et al. (2005) used a “competitive pixel-object 
classification approach” using Bayesian neural network to classify an area into nine land cover classes 
and found that their approach had the highest accuracy as compared to both pixel-based and object-
based approaches using Bayesian neural networks. Barille and Bilotta (2008) classified burnt 
vegetation by using OOC on very high resolution IKONOS images. Durieux et al. (2008) used OOIA 
to extract buildings and monitor urban sprawl change detection. Moine et al. (2009) have used an 
OOC based semi-automatic method to detect landslides using high resolution satellite imagery.  
 

Song et al. (2005) write that despite its increasing use as a classification tool, OOC has its 
disadvantages which they have listed as:  
• Classification accuracy depends on the quality of image segmentation. 
• Classification error accumulates due to the error in both image segmentation and classification 

process. 
• A misclassified object will lead to all pixels in that object being misclassified.  
 
 In recent years, hyperspectral remote sensing and ground based spectroscopy have been 
successfully used to estimate the extent of AMD by assessing the mineralogy of the stream sediments. 
The typical yellow to reddish-brown color of the precipitates make them very obvious and they can 
even be observed in aerial or satellite imagery. Williams et al. (2002) observed that the sediments 
occurring at each pH mode were spectrally separable and they have successfully used spectral angle 
difference mapping to correlate sediment color with stream water pH. Choe et al. (2008) tested the 
possibility of using spectral indicators obtained from a field sample in estimating heavy metals and 
also to extend their use in mapping heavy metal distributions. The parameters derived from the spectra 
of sediment samples were linked to heavy metals and extended to hyperspectral remote sensing using 
HyMap images. Montero et al. (2005) have used a digital mapping system in combination with a 
portable reflectance spectrometer to characterize abandoned mines in order to assess their potential for 
AMD discharge. They mapped minerals occurring on the surface of waste-rock piles and their 
surroundings, stressing on minerals that are indicators of sub-aerial oxidation of pyrite and the 
subsequent formation of AMD. The mineral maps enabled the generation of remediation-priority 
maps, in which the piles that contained high concentrations of low-pH minerals are assumed to have 
the highest potential to release AMD and more priority can be given for necessary remediation. 
 

2.3.  Previous studies conducted in Jaiñtia Hills District 

Shankar et al. (1993) conducted a study in Bapung and Sutnga to quantify the impact of coal 
mining on soil fertility through assessment of the chemical characteristics of soil under different land 
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uses in both an un-mined control area and mine affected area. They also determined the physical and 
chemical properties of an undisturbed native forest soil, pre-mined over-burden and an age series of 
colliery spoils in order to be able to predict the natural pattern of nutrient recovery with time. They 
found that the soil in mine affected areas had lower pH, carbon, nitrogen and phosphorus and higher 
manganese, zinc, iron and sulphur vis-à-vis the un-mined control area. They also found that the 
physical and chemical properties of colliery spoils showed partial recovery over a period of 20 years. 
Nutrients and pH increased with age, while, at the same time, concentrations of calcium, manganese, 
iron, and sulphur decreased. 
 

Lyngdoh (1995) studied the edaphic changes and community characteristics of naturally 
recovering coal mine spoils in the Jaraiñ area of Jaiñtia Hills. The main observations were that soil 
was acidic in all locations, including the control site which had a soil pH of 4.2; cation exchange 
capacity was very low at all sites; organic matter, total Kjeldahl nitrogen, nutrients and phosphorus 
increased with spoil age; and there were more species observed in the control site than in the mining 
sites. 
 

The Meghalaya State Pollution Control Board, Shillong conducted a study of the 
environmental impacts of coal mining in Jaiñtia Hills (MSPCB, 1997) in which water and ambient air 
quality at several locations in the district were monitored for two years in pre-monsoon, monsoon and 
post-monsoon seasons. Water samples were collected from rivers, streams and mine drains and 
ambient air quality was monitored at the mining areas and at coal depots. The study revealed that the 
water quality is highly acidic, with lowest pH recorded being 2.7. There was no distinction between 
the water quality from the different locations and there was only a slight seasonal variation. Iron 
content was found to be very high and no variation in the water quality was observed in the two year 
period. The ambient air quality was found to exceed the National Ambient Air Quality Standards 
prescribed by the Government of India on a few occasions and this was mainly attributed to vehicular 
emissions and dust generated due to movement of these vehicles on unpaved forest tracks.   
 

Das Gupta (1999) and Das Gupta et al. (2002) investigated the physico-chemical properties 
of coal mine spoils to study the colonization, establishment and growth of plants on these spoils and to 
enumerate soil microbial population and measure the activity of soil micro-organisms. Their study was 
conducted in Bapung coal mining area from where they selected mine spoils of ages varying from 0-2 
years up to 12-14 years and a control site undisturbed by mining. Their study revealed that mining 
activities had adversely affected the physico-chemical and biological properties of soil making it less 
suitable for plant growth and development. With soil moisture content and organic carbon being the 
least in the youngest mine spoil, there was very less plant growth on them. Nutrients were found to be 
deficient in the youngest spoils and showed an increasing trend with age. Similar observations were 
also made with the cation exchange capacity of the soil. The number of plant species also showed an 
increasing trend from the youngest mine spoil to the control site and also with age of the mine spoils. 
Though mining had altered the soil properties, a slow natural recovery process was observed by the 
authors. 
 

Swer and Singh (2003, 2004) conducted water quality studies in Jaiñtia Hills to assess the 
impacts of coal mining on surface water and aquatic biodiversity. Their studies have revealed that 
AMD has affected several rivers in the mining areas of the district with the color of these rivers being 
a perpetual orange or red and pH varying from 2.31 to 4.01. High concentrations of metals, sulphates, 
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electrical conductivity, suspended solids and silt in these rivers has rendered them unusable by humans 
and has wiped out almost all aquatic life except for a few resistant species. The polluted water, 
combined with deposition of silt and coal dust on the river beds, has impaired the ecosystem of benthic 
macro-invertebrates which in turn has affected the supply of food to higher organisms leading to their 
disappearance from these rivers. AMD also directly affected fish by causing various physiological 
disturbances leading to death by anoxia. It was observed that most of the rivers lack commonly found 
aquatic life-forms like fish, frogs and crustaceans.  
 

Sarma (2005) studied the effects of coal mining on vegetation cover in a part of the Jaiñtia 
Hills district. It was found that coal mining had greatly affected the plant growth in the district. While 
normal growth and species distribution was observed in undisturbed areas, the mined areas showed 
reduced plant species and dominance of one or two species. In the study area, in a period of 26 years, 
there was a loss of 40.5 sq.km. of forest cover and 48% dense forests. While mining area increased at 
the rate of 1.2 sq.km. per year, cropped areas reduced by about 5 sq.km. 
 

Jeeva (2007) in his study on impact of mining on plant diversity and community structure of 
aquatic and terrestrial ecosystems in Jaiñtia Hills has observed that despite having similar edapho-
climatic conditions, the different study sites showed high differences in species composition which he 
has attributed to AMD discharge. There were more terrestrial species in the undisturbed areas and soil 
was found to be acidic in all sites. Water quality was degraded to the extent that streams have lost their 
life sustaining role and have become devoid of aquatic life. 
  

The soil types present in the study area are also of importance to see if they contribute to 
acidity of the water bodies. Soil acidification is a natural process that is accelerated by certain plants 
and human activities, like industrial and mining activities (Bolan et al., 2005). Soil acidification is 
caused mainly by (1) production of carbonic and organic acids in the soil which dissolves earth alkali 
cations from soil minerals leading to it acidification, (2) the uptake of basic earth alkali cations by 
plants and their release of protons (H+) to maintain electroneutrality, (3) the accumulation of organic 
nitrogen which is a large source of protons and during the transformation and cycling of carbon, 
nitrogen and sulphur, and (4) the addition of dissolved strong acids through atmospheric activities 
(Blake, 2005). 

 
The entire north-eastern region of India has the largest stretch of acid soils in India with the 

main cause being the humid tropical climate along with severe soil erosion due to rugged topography, 
high rainfall and shifting cultivation (Sen et al., 1997). Both surface and subsurface soils are highly 
leached exhibiting poor base saturation with low cation exchange capacity (Sen et al., 1997a). Acid 
soils of North-east India have been studied earlier by Sen et al. (1994, 1996, 1997a, 1997b) and Nayak 
et al. (1996). The soils have thick solum and free drainage with red color and high clay content. The 
color pattern of soils indicates the dominance of iron oxides in the pedogenic environment. The soils 
are acidic (pH 4.0 to 5.6) and highly leached, having poor base saturation and low cation exchange 
capacity (Sen et al., 1997). 
 
 Singh et al. (1999) have written that the variation in topography and landform in Meghalaya, 
coupled with climatic and rainfall variation, has dictated the formation of different soils in the state. 
The soils have been classified into 4 orders, 8 sub-orders, 14 great-groups and 25 sub-groups. The soil 
depth in the state is mostly a combination of deep and moderately deep (56.99% of total geographical 
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area), followed by deep soils (27.92%), moderately deep soils (11.3%) and the rest is moderately 
shallow to moderately deep (Table 2.1). Majority of the soils are loamy with only 8 – 10 % fine clayey 
and about 8% sandy. Soils of Meghalaya have been found to be acidic in reaction (pH 4.5 – 6.5) with 
majority of the soils (65%) classified as moderately acidic and the rest are slight acidic (Table 2.1). 
 
Table 2.1: Soil depth and soil reaction classes. 

(after Singh et al., 1999) 
Soil depth  Soil reaction  
Class Depth Class pH 
Extremely shallow < 10 cm Strongly acidic < 4.5 
Very shallow 10 – 25 cm Moderately acidic 4.5 – 5.5 
Shallow 25 – 50 cm Slightly acidic 5.5 – 6.5 
Slightly deep 50 – 75 cm Neutral 6.5 – 7.5 
Moderately deep 75 – 100 cm Slightly alkaline 7.5 – 8.5 
Deep > 100 cm Moderately alkaline 8.5 – 9.5 
  Strongly alkaline > 9.5 
 

The Department of Agriculture, Government of Meghalaya (DoA, 2006) has described that 
the soils of the Meghalaya hills have been derived from gneissic complex parent materials, varying in 
color from dark brown to dark reddish-brown and in depth from 50-200 cm, rich in organic carbon but 
deficient in available phosphorous and medium to low in available potassium. The reaction of the soils 
varies from acidic (pH 5.0 to 6.0) to strongly acidic (pH 4.5 to 5.0). Most of the soils occurring on 
higher altitudes under high rainfall belt are strongly acidic due to intense leaching and are not suitable 
for intensive crop production. Base saturation of these soils is less than 35 %. These soils are rated low 
in available boron and molybdenum and about 40% of the soils of the state contain micronutrients 
below the critical level.  

 
Shankar et al. (1993) and Satapatty (2002) have also mentioned that acidic soil in Jaiñtia 

Hills has limited the agricultural production of the area. 
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3. Study Area 

3.1. Introduction 

The state of Meghalaya is located in India’s North-eastern corner (Fig.3.2) It was granted 
complete statehood by the Government of India on the 21st January 1972. It has Bangladesh bordering 
it to the south and west and Assam in the north and east. The name of the state literally means “The 
Abode of the Clouds” and has been derived from the perpetual cloud cover hovering over the hills 
during the monsoon season. The state has been divided into seven districts with its capital located at 
Shillong, fondly called the “Scotland of the East” due to its striking similarity with the Scottish 
highlands. With its scenic natural beauty and cool climate, Meghalaya is a popular tourist destination 
with 462,952 foreign and domestic tourists visiting it in 2007 (DES, 2009). The villages of Sohra 
(Cherrapunjee) and Mawsynram, famous for having the heaviest rainfall in the world, are located in 
the southern part of the state and are a major tourist attraction.  
 

Meghalaya is also richly endowed with natural resources like coal, limestone, uranium, 
kaolin, clay, to name a few. Table 3.1 shows the reserves and grades of mineral resources obtained 
from records of the Directorate of Mineral Resources (DMR), Government of Meghalaya. Good 
quality limestone deposits with an inferred estimate of 5000 million tonnes exist along the southern 
part of the state (Meghalaya State Official website). The limestone has been traditionally mined to 
produce slaked lime which is exported to other states and also to Bangladesh. The Hindustan Paper 
Corporation Limited, Jagi Road, Assam, is one of the major buyers of slaked lime for its paper 
production. Lafarge Surma Cement Limited and Chhatak Cement Company Limited, both located in 
Bangladesh, are totally dependent upon the state’s limestone as they rely upon their mines in southern 
Meghalaya for their cement production. Uranium reserves of around 9.22 million tonnes have been 
identified in the West Khasi Hills District (MSPCB website). However, till date, its mining has not 
been approved by the Government due to public opposition.  

 
Table 3.1: Reserves and Grades of Meghalaya’s mineral resources. 

S.No. Minerals Reserves 
(in million tones) 

Grades 

1. Limestone 14700.00 Cement, metallurgical and chemical 
2. Coal 576.48 Sub-bituminous, partly caking, medium 

to high sulphur and calorific value 
3. Kaolin 5.24 White ware 
4. Lithomargic Clay 97.0 White ware, earthen ware, furnace lining, 

curing soap, etc. 
5. Glass Sand 3.0 Ordinary glass ware 
6. Quartz 0.5 Ordinary ceramic grade 
7. Feldspar 0.127 Ceramic grade 
8. Iron ore 3.60 Low grade 
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9. Sillimanite 0.045 High temperature furnace lining 
10. Bauxite 1.45 Low grade (40% Al2O3) 
11. Rock Phosphate 0.015 Low grade (15-30% P2O5) 
12. Phosphatic nodule Nominal P2O5: 5 – 15% 
13. Gypsum Nominal Crystals of salanite variety 
14. Granite 5.0 million m3 Table top, wall cladding, etc. 
15. Uranium 9.22 0.104%: U2O8 
16. Base metal/ Trace metal 1.14% Cu: 0.80mt; 1.60% Zn: 0.85mt; Pb: 0.88mt, with traces 

of Cd, Bi, Ag. Tenor of gold encountered in 3 boreholes in 
Tyrsad. 

Source: DMR, Govt. of Meghalaya 
 

The occurrence of coal in Meghalaya was first reported by H. B. Medlicott in 1869 (GSI, 
1974; NEC 1991). The coal belts are confined to the Tertiary sediments of the Garo, Khasi and Jaiñtia 
Hills districts and the Lower Gondwana sediments in the western part of the Garo Hills district. The 
deposition of coal happened under stable shelf condition along the southern periphery of the Shillong 
Plateau (NEC, 1991). The distribution and concentration of specific trace elements in coal samples 
indicate that the coals of Meghalaya have a marine influence during their formation and they show a 
gradual trend of increase in total sulphur from west to east (Mukherjee et al., 1992). The deposits are 
found in thin seams of thickness ranging from 30 cm to 210 cm embedded in sedimentary rock, 
sandstone and shale of the Eocene age (Sarma, 2005; GSI, 1981). In the Garo Hills, coal occurs in the 
Tura sandstone of the Jaiñtia group (Eocene) while in the Jaiñtia Hills, coal deposits in Lakadong, 
Lumshnong, Malwar, Musiang-Lamare and Mutang are reported to occur in the Lakadong sandstone 
member and those around Jaraiñ-Shkentalang, Bapung, Sutnga and Iooksi in the Lower Sylhet 
sandstone member or Therria Formation of Palaeocene Age. Fig. 3.1 shows the location of coal 
deposits in Meghalaya. 

 
    Figure 3.1: Location of coal deposits in Meghalaya. 

Source: DMR, Govt. of Meghalaya 
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3.2. Jaiñtia Hills District 

The Jaiñtia Hills District is the eastern most district of Meghalaya (Fig.3.2). It lies between 
91°58’E and 92°50’E longitudes and 25°02’N and 25°45’N latitudes. It is bounded by Cachar and 
North Cachar Hills Districts of Assam in the east, the Karbi-Anglong District of Assam in the north, 
the East Khasi Hills District of Meghalaya in the west and it shares the international boundary with 
Bangladesh in the south. It covers an area of 3819 sq.km. and is home to a population of 299,108 
people, with 96% Scheduled Tribes, as per the Census of India 2001 (DES, 2009). The district 
headquarter, Jowai, is located at a distance of 66 km from Shillong along the National Highway 44. 
This is a very important highway as it connects the rest of India to the Barak Valley of Assam, 
Mizoram, Tripura and parts of Manipur (Suchiang, 2002). A summary of the vital statistics of Jaiñtia 
Hills is given in Table 3.2. 

 

 
    Figure 3.2: Location of study area (Merged CARTOSAT-1/RESOURCESAT-1 image). 
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  Table 3.2: Vital Statistics of Jaiñtia Hills District. 

S. 
No. 

Items Units Year Jaiñtia Hills District 
statistics 

1. Area sq.km 2001 3819 
2. Sub-divisions (other than district 

head quarters) 
Nos. 2007 2 

3. Community Development Blocks ” 2001 5 
4. No. of  towns ” 2001 1 
5. No. of villages ” 2001 499 
6. Total Population ’000 Nos. 2001 299.1 
7. Male Population ” 2001 149.9 
8. Female  Population ” 2001 149.2 
9. Rural Population ” 2001 274.0 
10. Urban Population ” 2001 25.1 
11. Scheduled Tribes Population ” 2001 287.0 
12. Scheduled Castes Population Nos. 2001 456 
13. Total Literacy % 2001 51.9 
14. Population density Per sq.km. 2001 78 
15. Sex ratio Females per 

1000 males 
2001 996 

16. Male Literacy % 2001 50.1 
17. Female Literacy % 2001 53.7 
18. Total Cropped Area Hectares 2004-05 30507 
     
19. Population of Cultivators ’000 Nos. 2001 52.2 
20. Agricultural laborers ” 2001 17.1 
21. Registered small scale industries Nos. 2006 722 
22. Medium and large scale industries ” 2004-05 15 
23. Coal production ’000 MT 2005-06 3890 
24. Limestone production ” 2005-06 412 

      Source: DES, 2007 

3.2.1. Geology 

The Jaiñtia Hills District is a contiguous part of the Meghalaya plateau which is a remnant of 
an ancient plateau of Pre-Cambrian Indian Peninsular Shield which has been block uplifted to its 
present height, and its landscape evolution is closely linked to that of the peninsula (GSI, 1974; Sarma, 
2005). The core of the plateau consists of an ancient mass of gneiss, schist and granite formations, 
exposed in the north but hidden in the south beneath Cretaceous and Tertiary deposits and a Mesozoic 
trap known as Sylhet Trap (Bhattacharyya, 2002). The general stratigraphic formation of the Jaiñtia 
Hills is given in Table 3.3.  
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Table 3.3: General stratigraphic formation of Jaiñtia Hills District. 
Age Group Formation Lithology 
Recent - - Alluvium, sand, silt and clay 

 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~  Unconformity  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 
Upper 
Eocene 

Jaiñtia  Kopili Formation 
 

Alterations of shales and hard sandstones with a 
few limestone bands 
 

Middle 
Eocene 

Jaiñtia Sylhet limestone 
 

Prang limestone: Fossiliferous, argillaceous 
limestone 
 
Narpuh sandstone: Sandstone with subordinate 
calcareous bands 
 

Lower 
Eocene 

Jaiñtia  Umlatdoh sandstone: Foraminiferal limestone 
containing a few sandstone bands  
 
Lakadong sandstone: Coal-bearing quartzitic 
sandstone 
 
Lakadong limestone: Fossiliferous limestone 
 

Palaeocene Jaiñtia Theria sandstone 
(lower Sylhet 
sandstone) 

Medium to coarse grained ferruginous, 
quartzitic sandstones, containing thin coal 
seams, carbonaceous shales and, at places, clay 
beds. 
 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~  Unconformity  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
Pre-
Cambrian 

- - Acid and basic intrusives, quartzites, phyllites, 
etc. 
 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~  Unconformity  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
Archaeans - - Granite and gneissic complex 

Source: NEC, 1991 
 

The Archaeans are exposed over an extensive area near Jowai and are also confined to the 
deep ravines and gorges within the sedimentary rocks. The acid and basic intrusives comprise the Pre-
Cambrian stratum. The coal bearing rocks have been deposited over platform areas under stable shelf 
condition with the Tertiaries of the Jaiñtia Group extensively developed over these areas. These 
unconformably overlie the Archaeans and Pre-Cambrian formations with sediments ranging in age 
from Palaeocene to Upper Eocene (NEC, 1991). The rock formations strike ESE-WNW to E-W with a 
low dip of 2° to 12°, which increases southwards. The predominant structural lineament along the 
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southern fringe of the district is the Dawki fault which continues eastwards into North Cachar Hills 
District of Assam. The geology map of the district is shown at Fig.3.3. 
 

3.2.2. Physiography and Drainage 

The Jaiñtia Hills District comprises of flat topped low hills with mild gradient. The mean 
elevation of the district ranges between 1050m to 1350m with the Maryngksih peak on the eastern part 
being the highest point at an elevation of 1631m from the mean sea level (Jaiñtia Hills District official 
website). The physiography can be divided into three parallel zones, viz. (i) the northern hills draining 
into the Brahmaputra Valley, (ii) the central plateau and (iii) the southern steep slope or escarpment 
(Bhattacharyya, 2002). The plateau shows a gradual inclination towards the south. The drainage 
pattern of Jaiñtia Hills shows a spectacular feature of extraordinary straight river and stream courses, 
evidently along joints and faults (GSI, 1974). The major rivers draining into the Brahmaputra Valley 
in the north include the Kopili and its tributaries, the main ones being Umiurem, Myntriang, 
Mynriang, Rimanar, Kharkor, Umtarang, Rashu and Sarbang; and the Umkhen River. The Umngot 
River forms the boundary between the East Khasi Hills and Jaiñtia Hills Districts of Meghalaya and 
flows south towards Bangladesh. Another major river is the Myntdu which encircles Jowai on three 
directions before it is joined by several tributaries, the main ones being Prang, Umlatang and 
Lynriang, on its way to Bangladesh. The Lubha and its main tributaries, the Umlunar and Lukha, also 
flow into Bangladesh through Sonapur in the east. Fig. 3.4 shows the drainage map of the coal mining 
areas of Jaiñtia Hills.  
 

3.2.3. Climate 

The district experiences tropical monsoon climate with the hottest day never going above 
26°C and winter temperatures of around 8°C. The rainfall is very heavy due to orographic uplift of 
monsoon clouds. The average annual rainfall varied from a lowest of 2898 mm in 2006 to a highest of 
5379 mm in 2007 and generally falls in the months of March to October. Table 3.4 shows the 
minimum and maximum temperature recorded at Jowai in 2007 and Table 3.5 shows the annual 
rainfall at Jowai from 2001 to 2007. 
 
Table 3.4: Minimum and Maximum temperature recorded at Jowai in 2007. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Min (°C) 8.23 9.36 12.58 15.25 18.00 18.59 18.97 19.40 19.40 19.07 17.01 9.79 
Max (°C) 18.36 17.66 22.07 23.09 24.70 24.10 22.79 25.40 24.12 22.10 21.66 18.70 

    Source: DES, 2009 
Table 3.5: Rainfall recorded at Jowai 2001-07. 

 2001 2002 2003 2004 2005 2006 2007 
Rainfall (mm) 4909 4169 3180 5374 3042 2898 5379 

    Source: DES, 2009 
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      Figure 3.3: Geology map of Jaiñtia Hills district. 

      (after NEC, 1991) 
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Figure 3.4: Drainage map of coal mining areas in Jaiñtia Hills. 

(after Swer & Singh, 2003) 

3.2.4. Soil 

The prevalent soil types in the district are red loamy soil, red yellow soil and laterite soil. Due 
to the high rainfall, the top soil is very thin and at some places, the underlying rocks have been 
completely exposed. The soils are mostly acidic with high organic content and nitrogen but low 
phosphate and potash content (Bhattcharyya, 2002).  
 

3.2.5. Natural vegetation 

The official website of Meghalaya reports that Jaiñtia Hills District still has fairly good forest 
cover with 46.13% of its geographical area still under forest. Depending upon the altitude, the 
vegetation of Jaiñtia Hills varies from sub-tropical to temperate (Bhattacharyya, 2002). Primary forests 
have mostly depleted and given way to secondary forests of Pinus kesiya which grows well in the 
degraded conditions (Das Gupta, 1999). Bhattacharyya (2002) has categorized the vegetation into 3 
types, viz. mixed evergreen forests, grasslands and pine forests. The first type are predominant in the 
hill slopes of the lower part of the district and consists of broad leaved trees and shrubs with scattered 
bamboos and timber trees. The hill tops with shallow topsoil are generally devoid of vegetation and 
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are covered by grasslands. Temperate vegetation like pine is dominant in the uplands. A summary of 
the area of forest type classes in the state in given in Table 3.6. 

 
Table 3.6: Forest Type classes of different districts of Meghalaya. 
(Area in sq. km.) 

Class East 
Khasi 

West 
Khasi 

Jaiñtia West 
Garo 

South 
Garo 

East 
Garo 

Ri Bhoi Total 

Sub tropical pine 
forest 

111.88 341.07 54.52 - - 34.97 542.44 542.44 

Tropical semi-
evergreen 

170.68 221.53 503.31 480.79 292.18 453.87 337.19 2459.55 

Tropical moist/ 
Dry deciduous 

781.74 1568.67 828.39 1257.08 716.4 955.5 859.73 2459.55 

Tropical dry 
deciduous and 
bamboo mix 

127.66 677.1 382.27 316.99 177.49 110.29 - 6967.51 

Degraded 577.27 852 462.97 656.3 110.67 360.27 364.3 1791.8 
Grasslands 182.74 264.72 128.95 - 28.68 34.61 - 3383.78 
Agriculture/ Non 
forest 

760.21 1301.43 1430.93 914.04 470.68 675.42 793.19 621.7 

Built up 16.46 - - - - - - 16.46 
Sandy area 4.05 18.29 13.21 33.17 38.17 9.18 13.54 129.61 
Water bodies 15.31 20.19 14.45 55.63 15.73 3.86 45.08 170.25 
Total 2748 5247 3819 3714 1850 2603 2448 22429 

                     Source: Meghalaya official website 

3.3. Coalfields of Jaiñtia Hills 

Meghalaya has an estimated coal reserve of 559 million tones, which are spread over in an 
area of 213.9 sq. km. The Garo Hills district has the highest coal reserve of 390 million tones, 
followed by West Khasi Hills (98 million tones), Jaiñtia Hills (39 million tones) and East Khasi Hills 
districts (31 million tones) (Fig. 3.5.) (DEF, 2005). Due to inaccessibility of most of the coalfields 
because of slow development, coal mining in the Garo Hills is still in its nascent stage. Mining of coal 
in the Jaiñtia Hills started more than 100 years ago, primarily for domestic use, and its commercial 
extraction started to increase only after 1978-79 (De, 2007). The district produces more than 50% of 
the state’s total production with mining being actively carried in all the identified coalfields. Fig.3.6, 
details of which are given as Appendix 1, gives the production of coal from 1994 till 2009. 

Jaiñtia Hills
West Khasi Hills
East Khasi Hills
Garo Hills

 
Figure 3.5: Coal reserves in Meghalaya. 
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Figure 3.6: Production of coal in Meghalaya from 1994-95 to 2008-09. 
        Source: DMR, Govt. of Meghalaya 

 
The coalfields of Jaiñtia Hills are located in the central and southern part of the district 

between 25°10’N and 25°28’N latitudes and 92°8’E and 92°33’30”E longitudes. The coal bearing 
strata covers an area of 70 sq.km. and is spread out in small detached patches. All the coalfields have 
the same geographical, stratigraphical and structural set-up. The main coal occurrences are Jaraiñ-
Skhentalang, Lakadong, Lumshnong, Malwar-Musiang Lamare, Mutang, Bapung, Sutnga and Iooksi. 
Out of these, the Bapung coalfield is the most important in terms of areal extent and accessibility 
(NEC, 1991). 
 

3.3.1. Jaraiñ-Shkentalang 

This field has an inferred coal reserve of 1.1 million tonnes within an area of 2.8 sq.km. The 
coal seams occur in the Therria Formation (Lower Sylhet Sandstone) of Palaeocene Age. Two seams 
with thickness varying from 0.10m to 0.15m and from 0.30m to 1.00m have been observed. The coal 
shows moisture of 1.6%, ash 4.4%, volatile matter 48.1% total sulphur 5% and calorific value of 8450 
Kcal/kg (GSI, 1974, 1981; NEC, 1991; DMR office records). 
 

3.3.2. Lakadong 

The Lakadong plateau covers a large area between the Hari and Prang Rivers. Coal 
occurrences have been reported from the Umlatdoh and Pamsaru areas with proven reserves of 5 
million tonnes. In Umlatdoh a seam of thickness from 0.3m to 2.1m, in the Lakadong sandstone of 
Eocene Age, has been recorded over an area of 1.04 sq.km. In a few places, a thin seam varying in 
thickness from 0.1 to 0.3m overlies the lower main seam with a parting of 12m. In Pamsaru, a seam of 
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0.31 to 1.1m thickness in the Lakadong sandstone has been recorded over an area of 0.5 sq.km. The 
coal here shows moisture of 1.8% to 4.2% (at 60% RH and 40°C), ash of 3.7% to 17.1% and volatile 
matter of 32.3% to 36.8%. The coal is strongly caking with Caking Index of 31 to 33. Total sulphur is 
3.2% to 5.3% of which organic sulphur is 95.7% to 99.2%. The Lakadong coal is said to be of the best 
quality available in the Northeast, however, the coal seams are not economical to work (GSI, 1974, 
1981; NEC, 1991; DMR office records). 
 

3.3.3. Lumshnong 

Several isolated exposures are recorded in west and south-west of Lumshnong in an area of 
0.6 sq.km. The seam has an E-W trend which dips to the south at 4° to 6° and a thickness of 0.3 to 
0.6m. The coal shows moisture 1.6% to 1.8%, ash 3.2%, to 3.8% and total sulphur 1.6% to 4%. The 
inferred reserve of coal in this area is 0.2 million tones. The area does not offer any prospect for large 
scale mining (GSI, 1981; NEC, 1991). 
 

3.3.4. Malwar-Musiang Lamare 

Exposures of coal have been reported around Malwar and Musiang-Lamare villages confined 
to the Lakadong sandstone over an area of 2.59 and 2.31 sq.km. respectively. In Malwar, there is only 
one seam with thickness ranging from 0.31 to 1.67m. In Musiang-Lamare, the coal seam shows 
pinching and swelling and varies in thickness from 0.31 to 1.06m. The general strike of the seams is 
ENE-WSW and the dip varies from 7° to 10° towards SSE. The analytical data of this coal shows 
moisture 4.7% (at 60% RH and 40°C), ash 1.4%, and volatile matter 33.4%. The coal is weakly caking 
with Caking Index being less than 5. The calorific value is around 7400 Kcal/kg and total sulphur is 
4.8% of which organic sulphur is most dominant (97.9%). The area contains an inferred reserve of 1.1 
million tonnes of coal (GSI, 1981; NEC, 1991; DMR office records). 
 

3.3.5. Mutang 

A coal seam with a thickness varying from 0.25 too 1.8m has been recorded to the north-west 
of Mutang village. The seam shows a conspicuous pinching and swelling and as such does not merit 
any further attention (GSI, 1981). 
 

3.3.6. Bapung 

The Bapung coalfield is the most important coalfield in the Jaiñtia Hills with inferred 
reserves of 33.66 million tonnes within an area of 46 sq.km. A coal seam varying in thickness from 
0.31m to 1.05m, striking in an ESE-WNW direction with south-westerly rolling dips varying from 4° 
to 7°, has been reported. The coal on air dried basis analyses 2.02 % to 4.2% moisture, 2.3% to 5.78% 
ash and 40.54% to 53.84% volatile matter. The sulphur content ranges from 2.77% to 5.21% (GSI, 
1981; NEC, 1991; DMR office records). 
 

3.3.7. Sutnga 

The Sutnga coalfield is an extension of the Bapung coalfield. Outcrops of coal have been 
recorded within the lower most member of the Sylhet limestone within an area of 0.16 sq.km. Two 
coal seams have been recorded with the top seam having thickness of 0.1 to 0.2m and the bottom of 
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0.3 to 1.07m. The seam shows a low regional dip of 3° towards south. The coal shows moisture of 
1.5% to 2.3%, ash of 2.2% to 3%, volatile matter of 42.4% to 42.8%, total sulphur of 4% to 4.9% and 
calorific value of 8050 to 8345 Kcal/kg. The total inferred reserves here are 0.65 million tonnes (GSI, 
1981; NEC, 1991; DMR office records). 
 

3.3.8. Iooksi 

The coal occurrences in Iooksi are found in the Therria sandstone with thickness varying 
from 0.5 to 0.9m and lying within an area of 3.6 sq.km. The ash content varies from 6.0 to 18.1%, 
volatiles from 33.0 to 43.4% and the coals are weakly caking. Total sulphur varies from 2.19 to 
6.32%. The total inferred reserve is 1.5 million tonnes (NEC, 1991; DMR office records). 
 

3.4. Present Study Area 

This study is carried out in the watershed of the Umiurem and Umtarang (Myntriang) Rivers 
(Fig.3.2) which is located towards the central part of the Jaiñtia Hills District between 92°15’E and 
92°34’E longitude and between 25°20’N and 25°32’N latitude. The catchment covers an area of  
237.44 sq.km. This catchment falls within the Bapung coalfield and encompasses the active coal mine 
areas of Bapung and Sohkynphor. The two rivers join with the Kopili River, the main feeder of the 
Kopili Hydro-electricity Project of the North Eastern Electric Power Corporation Limited (NEEPCO) 
which generates 275 MW of power. This area has been primarily selected because of the availability 
of RESOURCESAT-1 (IRS-P6) LISS-IV and CARTOSAT-1 images from the National Remote 
Sensing Centre, Hyderabad. The watershed has an elevation ranging from 746m to 1400m above MSL         
(Fig. 3.7.). The drainage showing Strahler’s stream order 3 onwards is shown in Fig. 3.8. 

 
Figure 3.7: SRTM DEM of study area. 
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Figure 3.8: Drainage in study area. 

 

3.4.1. Geology of the study area 

The study area consists of only two major lithological groups, the contact of which runs 
horizontally across and dividing it into almost two equal parts. The geology is shown at Fig.3.9. This 
map has been extracted from Fig.3.3 with slight modifications done by Dr. S .K. Srivastava, Thesis 
Supervisor, after field survey and through interpretation of the merged CARTOSAT-1/ 
RESOURCESAT-1 (IRS P6) LISS-IV image. 
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Figure 3.9: Geology of the study area. 
 

At 8th Mile village, we first come across gently dipping weathered sandstone (Fig.3.10a) 
which continues eastwards till Umbluh River (Sampling station R8) where we find an outcrop of 
gneisses on both banks of the river (Fig.3.10b and Fig.3.10c). After this, we find gneisses all the way 
to the eastern corner of the study area with another contact at Pyntei Village, located between Raliang 
and Biar (Sampling station R26), which lies outside the watershed (Fig.3.10d). Granitic gneisses are 
observed again just to the east of Raliang (Fig. 3.10e). There are also some evidences of spheroidal 
weathering of granitic gneisses near Raliang (Fig.3.10f). 
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Figure 3.10: Field photographs depicting the geology of the study area. 
 

Near Mynska, just to the west along the road, there is a seepage zone (Sampling station A9) 
with yellow stains seen on the wall and along flow path (Fig.3.11a and Fig.3.11b). The southern part 
of the study area comprises of sandstone of the Jaiñtia Group with coal bearing strata. Figures 3.11c – 
3.11f show the lithology at different places in the southern part of the study area. 
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Figure 3.11: Field photographs depicting the geology of the study area. 
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3.4.2. Soils in the study area 

The study area is made up of soils of the Upper Plateau which are mainly of three types 
(NBSSLUP, 1996): 
(1) Deep, excessively drained, fine soils on moderately sloping side-slopes of hills having loamy 

surface with moderate erosion hazard; associated with: Moderately deep, excessively drained, 
coarse-loamy soils on gently sloping hill tops with very severe erosion hazard and strong 
stoniness. The soil taxonomies include Typic Kandiudults and Typic Dystrochrepts.  

(2) Deep, excessively drained, fine soils on moderately sloping side-slopes of hills having loamy 
surface with moderate erosion hazard; associated with: Deep, poorly drained, fine-loamy soils 
on very gently sloping valleys with very slight erosion hazard and groundwater table below one 
metre depth of the surface. The soil taxonomies include Typic Hyplohumults and Humic 
Haplaquepts.  

(3) Deep, excessively drained, fine soils on moderately sloping side-slopes of hills having loamy 
surface with moderate erosion hazard; associated with: Moderately deep, excessively drained, 
fine-loamy soils on gently sloping hill tops with very severe erosion hazard and strong 
stoniness. The soil taxonomies include Typic Kandihumults and Typic Dystrochrepts.  
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4.  Materials and Methods 

This chapter discusses the different inputs used for the study along with the methodology 
employed to obtain the final results to address the research objectives. The software and instruments 
used have also been listed. 
 

4.1. Materials 

4.1.1. Satellite Images and Ancillary Data 

 
The different satellite images and ancillary data used for this study are described in Table 4.1. 

 
Table 4.1: List of data acquired. 

S. 
No. 

Data Source Date of 
acquisition 

1. ASTER 
AST_L1B_00301282003043638_20080519221916_6715 

ITC, Enschede,  
The Netherlands 

28-01-2003 

2. ASTER 
AST_L1B_00301312004043603_20070726053442_27260 

ITC, Enschede,  
The Netherlands 

31-01-2004 

3. ASTER 
AST_L1B_00302162004043602_20080519221946_7637 

ITC, Enschede,  
The Netherlands 

16-02-2004 

4. Landsat 7 (ETM+) Path 136, Row 042 
Author: NASA Landsat Program  
Publication Date: 12-02-2004 
Collection Name: Landsat7 ETM+  
Image Name: p136r042_7dx19991219.ETM-GLS2000 
Processing Level: Ortho, GLS2000 
Publisher: USGS  
Publisher Location: Sioux Falls  
Product Coverage Date: 19-12-1999 

Global Land Cover 
Facility, 
www.landcover.org. 

19-12-1999 

5. SRTM WRS2 tile Path 136, Row 042 
Author: USGS 
Publication Date: 2006 
Collection Name: Shuttle Radar Topography Mission  
Image Name: 3 arcsec scene SRTM_ffB03_p136r042 
Processing Level: 3 arcsec, Filled Finished-B 
Publisher: Global Land Cover Facility, University of 
Maryland 
Publisher Location: College Park, Maryland 
Product Coverage Date: February 2000 

Global Land Cover 
Facility, 
www.landcover.org 

February 
2000 
 



IDENTIFICATION OF THE EXTENT OF ARTISANAL COAL MINING AND RELATED ACID MINE WATER HAZARDS USING REMOTE 
SENSING AND FIELD SAMPLING: A CASE STUDY IN JAIÑTIA HILLS OF NORTH-EASTERN INDIA 

 

 

40 

6. IRS P6 (RESOURCESAT-1) LISS 4 Path 101, Row 042 NRSC, Hyderabad 30-03-2007 
7. IRS P6 (RESOURCESAT-1) LISS 4 Path 101, Row 054 NRSC, Hyderabad 05-02-2008 
8. CARTOSAT-1 PAN-A Path 607, Row 280 NRSC, Hyderabad 27-01-2006 
9. CARTOSAT-1 PAN-A Path 608, Row 280 NRSC, Hyderabad 16-01-2006 
10. QuickBird Standard Imagery Bundle (black and white and 

multispectral), a subset of catalog ID 1010010004C76600 
Digital Globe, USA  30-01-2006 

11. Google Earth merged PAN and multispectral image of 
QB02 sensor of QuickBird 

GoogleEarth 30-01-2006 

12. ASTER GDEM ASTGTM_N25E092_dem ASTER GDEM website -- 
13. Topographic maps: Sheet Number  83-C/6, 7 and 11 ; scale 

1:50,000 
Survey of India -- 

14. Geology map of Meghalaya (scale 1:500,000) NEC, Shillong -- 
15. Meghalaya Soil map (scale 1:500,000) NBSSLUP, Jorhat -- 

 

4.1.2. Software used 

The software used during the course of the study are given below: 
• ArcGIS 9.3 
• ERDAS Imagine 9.1 
• Definiens Developer 7.0 

 

4.1.3. Instruments used 

The following instruments were used during field survey and for analysis of the water and 
sediment samples: 

• Eutech Cyberscan pH11 pH/mV/°C meter 
• Aqualytic SensoDirect CD24 conductivity meter 
• Garmin GPS12 GPS meter 
• Systronics Spectrophotometer 
• Merck ThermoScientific UV10 spectrophotometer 
• Shimadzu AA680 and PerkinElmer 2380 Atomic Absorption/Flame Emission 

Spectrophotometer (AAS) 
• Varian Liberty II  sequential inductively coupled plasma optical emission spectrometer (ICP-

OES) 
• Atomic Absorption/Flame Emission Spectrophotometer 
• Systronics Digital Nepheloturbidity meter 
• Chemito Flame Photometer 

 

4.2. Methodology 

To meet the desired objectives, the methodology of this study has been divided into the 
following parts: 

• Pre-field data collection and preparation. 
• Visual interpretation and digital image processing of satellite images. 
• Water and sediments field sampling during two seasons and their analysis. 
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• Data representation and interpretation. 
• Preparation of maps showing the spatial distribution of trace metals due to AMD in the 

catchment.  
A schematic of the methodology has been given at Fig.4.1. 
 

 
Figure 4.1: Schematic diagram of methodology. 
 

4.2.1. Pre-field data collection and preparation 

• Satellite data acquisition. 
• Preparation of base map of the catchment area from Survey of India topo-sheets, including 

extraction of watershed boundary and drainage in the catchment. 
• Collection of ancillary data from various organizations and state government departments. 

 

4.2.2. Image processing and interpretation 

4.2.2.1. ASTER images 

The ASTER images obtained from ITC, the Netherlands consisted of the three VNIR bands 
only, i.e. band 1 (green), band 2 (red) and band 3N (near infrared). Hence, it was not possible to do 
any processing by band ratio calculation. Further, with a spatial resolution of 15m, identification of the 
artisanal coal mines using these images was impossible as the mines have a diameter or a side of about 
6 to 8m. These images were shelved and no processing was done on them. 
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4.2.2.2. Landsat ETM+ images 

The Landsat ETM+ images with spatial resolutions of 15m for panchromatic and 30m for 
multispectral could not be used for identification of the small artisanal “rat-hole” type coal mines even 
after their fusion (15m spectral resolution). However, because of having seven bands spread through a 
wide range of the electromagnetic spectrum, Landsat ETM+ is very well suited for carrying out band 
ratio calculation and stacking different ratio images, using the primary colors, to produce hybrid 
FCC’s which can give a better idea about the land use and land cover in the study area.  
 

As coal mining is associated with the presence of iron and its oxides, the ETM+ images were 
used to detect the presence of iron oxides/hydroxides on the stream beds, as a preliminary overview of 
the presence of AMD in the study area. As stated earlier, the oxidation and hydrolysis of iron pyrites 
in coal leads to the formation of sulphuric acid and precipitation of iron oxide/hydroxide. The latter 
forms an orange, yellow or red colored coating at the bottom of stream beds which is often called 
“yellow boy” or ochre. During the lean season, these ochre-coated stream beds are exposed and, in 
satellite imagery, show a typical red-orange signature when viewed as true color composite (TCC). 
Fig. 4.2 and 4.3 show a couple of Google Earth screen shots of parts of the study area to corroborate 
this.  
 

 
Figure 4.2: Google Earth screen shot of Umtarang 
(Myntriang) River. 

 

 
Figure 4.3: Google Earth screen shot of Rimanar 
River. 

 
All thirty possible band ratios were generated using the ERDAS software Model Maker. 

Three ratio images were taken at a time and hybrid FCC’s were generated by assigning each ratio 
image a primary color. This way several FCC’s were generated using different ratio combinations. 
These images were interpreted to detect the presence of iron oxides on stream beds. 

4.2.2.3. Merged CARTOSAT-1 and RESOURCESAT-1 (IRS-P6) LISS-IV images 

The first step was to merge the 2.5m spatial resolution panchromatic CARTOSAT-1 image 
with the 5.8m spatial resolution multispectral image of RESOURCESAT-1 (IRS-P6) LISS-IV in the 
ERDAS Imagine software using the available algorithms with Brovey Transform method and nearest 
neighbour resampling technique giving the best result (Fig.4.4). In order to improve the classification, 
along with the merged image, the following layers were added (Saha et al., 2005): 
1. NDVI layer generated from the RESOURCESAT-1 (IRS-P6) LISS-IV image, 
2. First and second principal components of the RESOURCESAT-1 (IRS-P6) LISS-IV image, and 
3. ASTER GDEM. 

Umtarang (Myntriang) R. 

Rimanar R. 

Umiurem R. 
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Figure 4.4: The original images before merging and the merged image. 
 

A supervised classification using Maximum Likelihood Classifier (MXL) was carried out to 
classify the study area into five classes: 

1. Forest, 
2. Fallow and Barren land, 
3. Settlements and Roads, 
4. Rivers, and 
5. Mines. 

4.2.2.4. Visual interpretation 

The merged CARTOSAT-1/RESOURCESAT-1 image was visually interpreted to map the 
extent of mining area. The mine shafts were identified through their peculiar signature of dark spots 
surrounded by bright over burden dumps. Fig.4.5 shows a zoomed-in view of a part of the watershed 
with labels indicating the different features. Fig.4.6 shows how the mines look like on the ground. The 
mine shafts were digitized as point features, while the entire area of mine and overburden was 
digitized as polygons and each polygon was treated as a mine. 
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Figure 4.5: Zoomed-in view of part of the watershed. 
(as seen in the merged CARTOSAT-1/RESOURCESAT-1 LISS-IV image) 
 

The QuickBird panchromatic (61cm spatial resolution at nadir) and multi-spectral (2.44m 
spatial resolution at nadir) were merged so as to serve as a base for accuracy assessment of the 
interpretation. Merging was done on ERDAS software using the various available algorithms with the 
best result produced by Principal Component method and cubic convolution resampling. The merged 
image was visually interpreted in the same way as the merged CARTOSAT-1/RESOURCESAT-1 
image. Accuracy assessment was done by comparing the number of intersecting mine polygons 
between the QuickBird and the merged CARTOSAT-1/RESOURCESAT-1 images. 

Fig.4.6(a)
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Figure 4.6: Views of mines around the study area. 
 

4.2.2.5. Object oriented image classification 

The extent of the mining area within the watershed was also mapped in a semi-automatic way 
by developing an algorithm for OOC in the Definiens Developer 7 software. First of all, the different 
layers to be used in the process were selected (Fig.4.7). The main image used for the classification was 
the merged CARTOSAT-1/RESOURCESAT-1 image. Its three layers were given a weight of one 
each. The other layers added were the CARTOSAT-1 panchromatic image and the NDVI layer 
generated from the RESOURCESAT-1 LISS-IV image. These layers and those added subsequently 
were not given any weight for classification. As the main objective was to identify and map the extent 
of mines in the watershed, features that were not required with this classification were masked out one 
by one. This procedure has been followed after Barlow et al. (2003, 2006). 
 

It was observed that the CARTOSAT-1 panchromatic image contained a few clouds and 
shadows. Therefore, a layer was created to mask out these features. As mines were not expected to 
exist along river courses, a layer was created to mask out the river courses also. The slope layer was 
added in order to mask out the steep land where mines were not expected to exist. It may be mentioned 
that both ASTER GDEM and SRTM DEM were used to create the drainage and slope maps. It was 
found that SRTM DEM, even with a spatial resolution of 90 m, produced better results than ASTER 
GDEM with 15 m resolution. The latter produced a drainage network with several gaps in it and 
proved useless for the task. The NDVI layer generated from IRS-P6 LISS-IV image was used to mask 
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out vegetation. The CARTOSAT-1 panchromatic texture image was generated through Image 
Interpreter in ERDAS Imagine software and this, along with the geology layer of the watershed 
(Fig.3.9), were used to fine tune the classification process. 

 

 
Figure 4.7: Layers used for OOC of merged CARTOSAT-1/RESOURCESAT-1 image. 
 

The first and most important step to any OOC is image segmentation. Segmentation is 
performed by splitting the image into zoned partial areas of differing characteristics called image 
objects. Each image object is a group of connected pixels representing a definite region in an image 
(Definiens, 2008b). Image objects are pixels grouped on the basis of their reflectance characteristics, 
shape criteria, texture and proximity, making OOC a powerful classification tool because it allows the 
incorporation of texture and areal characteristics, such as the length to width ratio, shape index, etc, to 
be included for classification (Barlow, 2003; Moine, 2009). The software uses six algorithms for 
segmentation. However, for the present study only the following two were used (Definiens, 2008a): 
 
Quadtree based segmentation which splits the image into a quadtree grid formed by square objects. 
Each square firstly has the maximum possible size and secondly must fulfil the homogeneity criteria 
defined by the mode and scale parameter. Mode defines either the color difference, which should be 
less than a user defined scale, or the super object form, which stipulates that each square object must 
completely fit into the super-object. The latter condition works only if there is an upper image level. 
 
Multi-resolution segmentation which applies an optimization procedure that locally minimizes the 
average heterogeneity of image objects for a given resolution. Image layers can be weighted 
differently depending on their importance or suitability for the segmentation result. Thematic layers 
can also be added and weighted for consideration during segmentation process. A scale parameter is 
defined to determine the maximum allowed heterogeneity for the resulting image objects. The size of 
image objects can be varied by modifying the value of the scale parameter. The homogeneity criterion 
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is calculated as a combination of color and shape properties. These parameters define the percentage to 
which the spectral values of the image layers will contribute to the entire homogeneity criterion. The 
user has to assign a weight between 0.1 and 0.9 to shape criterion, which indirectly defines the color 
criterion (color criterion = 1 – shape criterion). The shape criterion is composed of two complementary 
parameters, smoothness and compactness. The former is used to optimize image objects with regard to 
smoothness of borders and the latter with regard to compactness. A weight between 0.1 and 0.9 is 
given to compactness, which will indirectly define the smoothness (smoothness = 1 – compactness). 
 

After the image has been suitably segmented, the objects are then classified “to give them 
both a meaning and a label” (Definiens, 2008b). The software generates a host of statistics, including 
layer mean values, shape, texture, relationships between classes and between levels, etc., for each 
image object and these statistics are used to discriminate between objects. Each class has to be defined 
by a set of criteria and the objects are assigned to a class which best fits these criteria. The whole 
sequence of segmentation and classification is defined in a rule set which consists of a list of processes 
and commands, organized in a tree-like structure, which can be edited and executed individually and 
which, when executed entirely, detects the objects of interest as required (Definiens, 2008b). 
 

The present study area has an area of 237.44 sq.km., so, classification rules were first 
developed for a  subset (Definiens, 2008b) which was about 20 sq.km. in area (Fig.4.8). After many 
trials, it was found that the best segmentation was achieved through multi-resolution segmentation 
process with a scale factor of 7, shape factor of 0.2 and compactness of 0.1. The classification 
followed thereafter was taken after Barlow et al. (2003, 2006) wherein identification of the mines was 
done by eliminating the other features one by one. The unclassified background, rivers and steep slope 
were masked out by taking the mean values in respective layers. Vegetation was masked out by using 
the NDVI layer and fine tuned by using mean layer value of the CARTOSAT-1 panchromatic layer. 
The latter layer mean value was also used to mask out barren and fallow land. Roads were classified 
by using shape properties of length to width ration and shape index. The settlements were classified by 
using texture after Haralick, grey level co-occurrence matrix (GLCM) dissimilarity in all directions of 
the CARTOSAT-1 texture image. The unclassified objects were considered to be mines. 

 
Subsequently, this rule set was used to segment and classify the entire image. A problem 

arose because the study area was relatively big and there was not enough computer memory space for 
multi-resolution segmentation. To overcome this, it was found fit to combine quadtree based and 
multi-resolution segmentation processes. Defininens (2008b) suggested that by running a quadtree 
based segmentation first and then merging the small image objects through multi-resolution, one can 
save a lot of computing time with no significant differences in the results. Therefore, for the entire 
study area, a quadtree based segmentation, in the color mode and with a scale factor of 6, was first run 
on the image. From the resultant objects, the background, clouds, shadows and rivers were classified 
and masked out. A multi-resolution segmentation was then run on the unclassified objects. This step 
refined the shape of the objects, particularly that of the roads. The steep slope, vegetation and barren 
and fallow land and roads were classified by the same rules used for the subset. For settlements, 
besides the texture rule, the geology of the study area was also used. It was found that there was a lot 
of confusion between the mines and settlements as both have not only almost the same spectral 
signature but texture was found to be similar too. Many settlement objects, especially around the 
central and northern parts of the study area, were misclassified as mines by the rule set. Visually it was 
observed that there were no mines existing in the areas mapped as gneiss and schist in the central and 
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northern parts of the watershed. The geology layer was used to classify all unclassified objects within 
gneisses as settlements. The rule set used to classify the entire area is given as Appendix 2. A 
schematic of the entire process has been summarized in Fig. 4.9. 

 
             Figure 4.8: Location of subset used in OOC of merged CARTOSAT-1/RESOURCESAT-1 image. 
 

To check the accuracy of the semi-automatic classification, it was first exported as a shape 
file with only the mine polygons. This was compared with the visually interpreted map of mine 
distribution. An intersection of the two maps gave the correctly identified mines. Over identified 
mines gave the error of commission while unrecognized mines gave the error of omission. 
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Figure 4.9: Schematic of OOC process for merged CARTOSAT-1/RESOURCESAT-1 image. 
 

To validate the OOC process, the rule-set used for the above classification was used for a 
semi-automatic classification of a 2.4 sq.km. subset of the pan-sharpened QuickBird image. A subset 
had to be taken as the segmentation process could not be carried out on the whole image because of 
computer memory problem. The layers that were not used in this OOC were that of (i) geology, 
because the QuickBird image was only of areas within sedimentary rock, (ii) cloud and shadow, (iii) 
slope, because it was generated from SRTM whose 90 m spatial resolution was too big to match with 
the 61cm spatial resolution of the pan-sharpened QuickBird image, (iv) texture image of CARTOSAT-
1 panchromatic data generated by using ERDAS Imagine software, and (v) CARTOSAT-1 
panchromatic image. The image segmentation parameters were also changed to suitably match with 
the spatial resolution. For the quadtree segmentation in color mode, a scale factor of 50 was selected 
and for the multi-resolution segmentation used in the second segmentation step, a scale factor of 25 
was used. Shape was given a weight of 0.5 and compactness 0.4. The threshold values used for class 
description had to be changed also. However, the basic process was the same. A schematic for this 
process is given at Fig.4.10. 
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Figure 4.10: Schematic of OOC process for pan-sharpened QuickBird image. 

 

4.2.3. Field-based steam water and sediment sampling and analysis 

Field-based water and stream sediment sampling was carried out for two seasons to determine 
if there is any seasonal variation in their quality. Monsoon sampling was carried out between 30th June 
and 16th July, 2009 and post-monsoon sampling between 13th and 27th October, 2009. Grab water 
samples were collected. Two water samples were collected from every location. One sample was 
collected in a pre-washed polyethylene container for analysis of anions, iron and other physico-
chemical properties; and the other sample was collected in an acid-washed polyethylene container for 
analysis of trace metals. In addition, a sample for dissolved oxygen (DO) was also collected. Stream 
sediments were collected in fresh zip-loc polythene packets. Several handfuls of bed sediments were 
collected from different places around the sampling location and placed in the polythene packet. The 
parameters measured in situ were pH, electrical conductivity, temperature and latitude-longitude of the 
sampling location by instruments mentioned in Section 4.1.3 earlier in the chapter. For determination 
of DO, the sample was fixed in situ by adding 1 ml each of manganese sulphate and alkali-iodide-
azide.  
 

Tentative sampling locations were identified through Survey of India topo-sheets during the 
pre-field work period. These locations were mainly bridges and stream confluences. However, after 
reaching the field it was found that most parts of the area were accessible only through unpaved forest 
roads and, with most of the main streams flowing through steep sided valleys and requiring a lot of 
walking to reach them, covering all the tentative sites was not possible due to time constraint. Most of 
the sampling sites were located on streams that were either close to accessible roads or with, at most, 
two hours walking distance from the road. 
 

The monsoon sampling programme was disrupted by heavy rain and served mostly as a 
reconnaissance survey only. The daily rainfall recorded at Jowai, the district head quarter, located 
about 20 km from the northwest corner of the study area, between June and October 2009, obtained 
from the Meghalaya State Electricity Board (MeSEB) is given in Fig.4.11 details of which are given in  
Appendix 3.  
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Figure 4.11: Daily rainfall in Jowai (June-October 2009). 

       (Source: Meghalaya State Electricity Board) 
 

During the monsoon sampling, 14 water samples were collected along with 8 stream sediment 
samples. Sediment samples could not be collected from locations where the streams were too deep. 
Besides these, at 4 other locations, only field measurements were carried out. The sampling locations 
were designated as “R” for river and “A” for the other locations. Fig.4.12 shows the locations of the 
monsoon sampling locations. During this period, ancillary data and other necessary information were 
also collected from various Government departments, organizations and libraries. 
 

The post-monsoon sampling was, in reality, carried out during a “late monsoon” period. 
There was heavy rainfall the week before the sampling, which started on 13th October. However, a dry 
spell in the weeks following allowed for a better coverage of the watershed. The areas which require 
long distance walking were left out once again because of the time constraint. During the post-
monsoon programme, 30 water samples were collected, which included 29 river water samples, 
designated as “R”; and 1 sample of water which was being pumped out from a mine, designated as 
“M”. At the same time, 22 sediment samples were collected and field measurements were carried out 
at 12 other locations, designated as “A”. Again, stream sediment samples were collected only from 
locations where the stream was not deep. Fig.4.13 shows the locations of the post-monsoon sampling 
locations and Fig.4.14 shows a few photographs taken during the field work. 
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Figure 4.12: Monsoon sampling locations. 
 

 
Figure 4.13: Post-monsoon sampling locations. 
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Figure 4.14: Field photographs. 

 
The sampling locations were also classified on the basis of provenance so as to correlate the 

presence of AMD at the location with the geology. The distribution of mines obtained from the remote 
sensing part of the study can be compared with the laboratory analysis results and the geology of the 
area to give a fairly good idea about the origin of AMD in the study area. Table 4.2 gives the 
classification of the sampling locations based on their geological provenance along with a brief 
description of the activities around each location. Strahler number was used to define the stream order 
taken from Survey of India topo-sheets. 

 
Table 4.2: Description of sampling locations. 

Location_Cod
e 

Provenanc
e 

Stream 
order 

Remarks Sediment
s 

sampling 
R1 S 2 Major coal depots of Bapung and mines are 

observed upstream of the location. 
YES 

R2 S 4 Located in active mining area. YES 

R3 S 4 No mining activity in the vicinity but active mining 
upstream of location. 

YES 

R4 S 7 Located on the Rimanar River which flows 
northwards and meets the Kopili River north of 
Lakasein Village. The Rimanar receives discharge 
from Umtarang-Myntriang River, Umiurem River 
and several other rivers flowing from active coal 
mining areas of Sutnga, Jalaphet, etc. 

NO 

R5 S 7 Located on the Rimanar River at Lakasein Village 
downstream of R4.  

YES 

R6 M 4 Background values for metamorphics (gneisses). YES 
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Table 4.2 contd…    

R7 M 4 Background values for metamorphics (gneisses). NO 

R8 M+S 3 Background values for metamorphics (gneisses). NO 

R9 S 3 Located downstream of major coal depot at 8th 
Mile Village. 

YES 

R10 M+S 5 No mining activity in the vicinity. NO 

R11 S+M 4 Located on Umpai River. No mining activity in the 
vicinity but receives discharge from coal mining 
areas. 

YES 

R12 S 3 Located downstream of active mining areas. YES 

R13 S 3 Located in active mining area. YES 

R14 S 1 Background values for sedimentary (sandstone) NO 

R15 M+S 4 No mining activity in the vicinity. Coal depot of 8th 
Mile located upstream. 

YES 

R16 M+S 4 No mining activity in the vicinity. NO 

R17 M+S 5 Downstream of confluence of R15 and R16. YES 

R18 S 5 Located in active mining area. YES 

R19 S 2 Located in active mining area. YES 

R20 S 3 Located in active mining area. YES 

R21 S+M 4 Located upstream of R11. No mining activity in the 
vicinity but receives discharge from coal mining 
areas. 

YES 

R22 S 3 Located in active mining area. YES 

R23 S 2 Located in active mining area. YES 

R24 S 2 Located downstream of R1 with major coal depots 
just upstream. 

YES 

R25 S 1 Background values for sedimentary (sandstone)  

R26 M 3 Background values for metamorphics (gneisses) YES 

R27 S+M 3 Located downstream of R9. No mining activity in 
the vicinity. Coal depot of 8th Mile located 
upstream. 

YES 

R28 S 3 No mining activity in the vicinity but major coal 
depot of 8th Mile Village located upstream. 

NO 

R29 S 2 Background values for sedimentary (sandstone) YES 

M1 S - Direct discharge from mine. NO 

A1 S 1 Background values for sedimentary (sandstone) NO 

A2 S 1 Background values for sedimentary (sandstone) NO 

A3 S 3 Located just downstream of R9. 
 
 

NO 
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Table 4.2 contd…    

A4 S 2 No mining activity in the vicinity but a coal depot is 
located upstream. 

NO 

A5 M 5 Background values for metamorphics (gneisses). NO 

A6 S 1 Located in active mining area. YES 

A7 S 1 Located in active mining area. NO 

A8 S 1 No mining activity in the vicinity. Coal depot of 8th 
Mile located upstream. 

NO 

A9 S 1 Seepage zone to the west of Mynska Village. NO 

A10 S 2 Located in active mining area. NO 

A11 S 2 Located in active mining area. YES 

A12 S 3 Background values for sedimentary (sandstone) NO 

Note: S means provenance lies completely in sedimentary rocks (sandstone)  
         M means provenance lies completely in metamorphic rocks (gneisses)  
         M+S means provenance lies mainly in metamorphic rocks and partly in sedimentary rocks 
         S+M means provenance lies mainly in sedimentary rocks and partly in metamorphic rocks 

 

4.2.3.1. Laboratory work 

(1) Water samples 
All the water samples were analysed at the Laboratory of the Meghalaya State Pollution 

Control Board, Shillong within 24 hours of their collection. The following water quality parameters 
were analyzed as per NEERI (1987): 
 
1) Turbidity: Turbidity was directly measured by using the Nepheloturbidity meter. 
 
2) Dissolved Oxygen (DO): DO was determined by Winkler’s Method. A separate water sample was 

collected in Biological Oxygen Demand (BOD) bottles of 300ml capacity, filled to the brim. To 
the sample, 1 ml of MnSO4 was added followed by 1 ml of alkali-iodide-azide reagent and the 
bottle shut immediately. The solution was well mixed by inverting the bottle a few times. A white 
precipitate forms if the sample is devoid of oxygen and becomes increasingly brown with rising 
oxygen content. The precipitate was dissolved by adding 1 ml conc. H2SO4 and mixing well. The 
sample was then titrated against standard Na2S2O3 (0.025N) solution using starch as indicator. 
The amount of DO is directly proportional to the amount of thiosulphate solution. 

 
3) Solids: Solids in water sample were determined gravimetrically. Total solids were first 

determined by evaporating to dryness a known volume of sample and calculating by taking initial 
and final weight of the dish. The total suspended solids (TSS) were determined by filtering the 
sample through 0.45μm glass fibre filter paper of known initial weight, drying the latter in a 
muffle furnace, taking its final weight and calculating from the difference in weight. Total 
dissolved solids (TDS) were determined by subtracting TSS from total solids. 
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4) Total Hardness: Total hardness was determined by titrating the sample against standard EDTA 
(Ethylene Diamine Tetra Acetic acid) (0.01M) after adding a buffer solution and using sodium 
sulphide nonahydrate as inhibitor and calmagite indicator. 

 
5) Acidity: Acidity was determined titrimetrically against standard (0.02N) NaOH solution with 

phenolphthalein as indicator. 
 
6) Alkalinity: Alkalinity was determined titrimetrically against (0.02N) standard H2SO4 with 

phenolphthalein as indicator. Total alkalinity was determined by further adding methyl orange 
indicator to the same sample and continuing the titration till end point is reached (yellow color 
changes to orange).  

 
7) Calcium: Calcium was determined by titrating the sample against standard (0.01M) EDTA with 

NaOH buffer and solochrome indicator. 
 
8) Magnesium: Magnesium was determined through calculation using the following equation 

(APHA-AWWA-WEF, 1998):  
Mg (mg/l) = [Total hardness (as CaCO3 mg/l) – Calcium hardness (as CaCO3 mg/l)] x 0.243 
 

9) Sodium: Sodium was determined by using a flame photometer at 589nm wavelength. 
 
10) Potassium: Potassium was determined by using a flame photometer 665nm wavelength. 
 
11) Chloride: Chloride was determined by Argentometric Method which involves titration of the 

sample with standard silver nitrate, using potassium chromate as indicator, till color changes from 
yellow to red.  

 
12) Nitrate: Nitrate was determined by Phenol Disulphonic Acid (PDA) Method. The sample was 

first evaporated to dryness on a water bath and the residue dissolved with phenol disulphonic acid 
reagent. 10ml of ammonium hydroxide was then added and nitrate was determined by reading the 
intensity of color developed at 410nm wavelength in a spectrophotometer.  

 
13) Sulphate: Sulphate was also determined colorimetrically using a spectrophotometer. A buffer 

solution was first mixed properly with the sample before a spatula of barium chloride was added 
and stirred constantly for 1 minute. Sulphate concentration was then read from a 
spectrophotometer. 

 
14) Iron: Total iron was determined colorimetrically by the Phenanthroline Method. Iron in the 

sample was first dissolved by boiling with 2 ml conc. HCl and 1 ml hydroxylamine HCl solution 
until the volume was reduced to 15 to 20 ml. After cooling to room temperature, 10ml 
ammonium acetate buffer and 4ml phenanthroline solution were added and the solution was 
diluted to 100 ml. It was then mixed thoroughly and allowed to stand for around 10 minutes for 
color development. The concentration was then read from a spectrophotometer. 

 
Trace elements: Trace elements analyzed were Zn, Pb, Cd, Cr, Cu, and Mn. These were analyzed as 
per de Zwart and Trivedi (1994). A flowchart of the analysis procedure is shown at Fig. 4.15. 



IDENTIFICATION OF THE EXTENT OF ARTISANAL COAL MINING AND RELATED ACID MINE WATER HAZARDS USING REMOTE 
SENSING AND FIELD SAMPLING: A CASE STUDY IN JAIÑTIA HILLS OF NORTH-EASTERN INDIA 

 

 

57 

 

 
Figure 4.15: Analysis procedure for trace metals in water samples. 

      (after de Zwart and Trivedi, 1994) 
 
Table 4.3 gives the operating conditions and detection limits of the different trace metals 

analyzed in the AAS (de Zwart and Trivedi, 1994; User Manual of AAS): 
Table 4.3: Operating conditions and detection limits of AAS. 
Element Wavelength (nm) Flame gases Detection limit (mg/l) 
Zinc  213.9 Air – Acetylene 0.003 
Lead  283.3 Air – Acetylene 0.010 
Cadmium  228.8 Air – Acetylene 0.010 
Chromium  357.9 Air – Acetylene 0.001 
Copper  324.7 Air – Acetylene 0.001 
Manganese  279.5 Air – Acetylene 0.010 
Nickel  232.0 Air – Acetylene 0.030 

 
(2) Sediment samples 

The trace metals in stream sediments were analysed at the ITC laboratory by Drs. J. B. 
deSmeth. The trace metals analysed were antimony, arsenic, barium, cadmium, cobalt, copper, 
chromium, iron, manganese, lead, lithium, nickel and zinc. The analysis procedure is given below: 

 
1. The wet samples were first dried. Then they were ground in a mortar and pestle and sieved 

through a 250 micron mesh. The sieved samples were then left overnight in an oven for complete 
drying. 

2. 500 mg of sample is decomposed in a 30 ml test-tube with a solution 1 ml of Aqua Regia and 1 ml 
of demineralised water on a shaking water bath at 90°C for two hours. Every 30 minutes the tubes 
are extra shaken on a Vortex shaker. The sample gets diluted forty times. The batch also includes 
two repeat samples, two ITC A Reference standard powders and one blank.  
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3. After two hours, 18.2 ml of demineralised water is added (0.2 extra to compensate average loss 
through evaporation). The tubes are homogenized and left for 15 minutes on the hot shaking water 
bath to remove all material attached to the side of the tube. 

4. The samples are left to precipitate overnight and next day are decanted in a clean 20 ml Pyrex tube 
with stopper.  

5. Combined calibration standards are prepared for the different trace metals in the same acid 
strength as the samples. 

6. The samples are then analysed on a Varian sequential ICP-OES, model Liberty 2. Analysis starts 
with a liquid control sample (LCS). After 19 samples again a LCS is analysed followed by 
remeasurement of the calibration liquids and a new LCS. The samples are analysed in random 
order and include the repeat samples, ITC reference house standard material and blank. 

7. After all the samples are measured, the samples of which repeats were made are reanalyzed after 
recalibration.    

 

4.2.3.2. Data quality check 

Any laboratory analytical work has to produce information that is technically valid, legally 
defensible and of known quality (APHA-AWWA-WEF, 1998). Errors may creep in right from the 
sample collection stage and more so during the analysis. The quality check applied in this study is the 
anion-cation balance. For natural waters, the anion and cation sums, when expressed in 
milliequivalents per litre, must balance because such waters must be electrically neutral (APHA-
AWWA-WEF, 1998). The balance is computed by the following formula (APHA-AWWA-WEF, 
1998): 

∑ ∑+
∑ ∑−

=
anionscations
anionscations

*100e%differenc …………(1) 

A positive difference means that there are excess cations or insufficient anions and vice versa. A 
%difference of ±10% is assumed to be good (APHA-AWWA-WEF, 1998). 
 
 In balancing the ions for the monsoon samples, it was found that eight of the fourteen 
samples were outside the acceptable difference of ±10%. The reasons for this could be either 
contamination during sample collection or, most likely, error during analysis as it was done very 
quickly. Since, the monsoon sampling was more like a reconnaissance survey only, more attention was 
paid during the post-monsoon sampling. However, the monsoon analysis values were used in 
preparation of the different maps. 
 

The post-monsoon ion balance was found to be much better with all twenty nine river 
samples being within the acceptable limit. The only sample falling outside the limit was the one 
collected directly from the mine discharge (M1). This sample was groundwater being pumped out 
from an underground mine and collected from the outlet of the pumping main. This sample can be 
expected to be in disequilibrium due to reaction with the surface air. Plots of the cation sum versus the 
anion sum for both monsoon and post-monsoon samples are shown in Fig. 4.16. As expected, the 
monsoon plot was more scattered with many points lying far from the trend line. The post-monsoon 
plot showed a good balance between the cations and anions and they are linearly related. 
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Figure 4.16: Scatter plot of cation sum versus anion sum (a) monsoon water samples and (b) post-
monsoon water samples. 
 

Another quality check used for the water samples was the collection and analysis of duplicate 
samples. In general, 10% of water samples have to be collected and analyzed in duplicate (APHA-
AWWA-WEF, 1998). During the monsoon sampling, no duplicate sample was collected. However, 
five water samples of the thirty collected during post-monsoon were collected in duplicate. The 
relative percent difference (RPD) is given by (APHA-AWWA-WEF, 1998): 

100*
result)/2 duplicateresult (sample
result) duplicateresult (sample

RPD
+

−
= …………(2) 

 
The calculation for RPD for the post-monsoon water samples is given in Table 4.4. High 

RPD for turbidity could be dirty test tube during analysis. Sodium and potassium were analyzed in a 
flame photometer which has a least count of 1 mg/l. With all the readings rounded up to the nearest 
whole number, a change of 1 unit of measurement will give a very high percent difference. High RPD 
for chlorides and other parameters determined titrimetrically will be because of human error during 
titration. The trace metals have very low concentrations, close to the lower limit of detection where the 
procentual errors are large and a small change in concentration therefore, leads to high RPD.  
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Table 4.4: Calculation of Relative Percent Difference between duplicates of post-monsoon water samples. 

Code R2 R4 R5 R13 R26 

Sample (a) (b) RPD (a) (b) RPD (a) (b) RPD (a) (b) RPD (a) (b) RPD 

Turb. 1.3 1.2 8 0.4 0.5 22.2 0.6 0.7 15.4 1.9 2 5.1 1.7 1.9 11.1 

TDS 568 597 5 272 282 3.6 497 521 4.7 262 276.1 5.2 20.1 18.2 9.9 

TSS 10 10 0 5 5 0.0 5 5 0.0 10 10 0 5 5 0 

TH 117.1 115 1.8 94 90 4.3 95 90 5.4 24 24 0 20 21 4.9 

Acid. 79 82 3.7 32 36 11.8 68 72 5.7 51 56 9.3 6 5 18.2 

Alk. 0 0   0 0   0 0   0 0   16 14 13.3 

Ca 60 55 8.7 24 25 4.1 27 24 11.8 14 13 7.4 1 1 0 

Mg 13.9 14.6 4.9 17 15.8 7.3 16.5 16 3.1 2.4 2.7 11.8 4.6 4.9 6.3 

Na 7 6 15.4 15 14 6.9 13 15 14.3 11 12 8.7 10 11 9.5 

K 4 5 22.2 11 9 20 11 12 8.7 6 7 15.4 8 7 13.3 

Cl 70 68 2.9 3 2 40 5 4 22.2 7 8 13.3 3 2 40 

NO3 3.9 3.7 5.3 2.5 2.4 4.1 2.7 3 10.5 2.3 2.5 8.3 1.4 1.5 6.9 

SO4 127.4 122.7 3.8 190.4 185.8 2.5 190 183.8 3.3 66.4 68.4 3. 28.7 31.0 7.7 

Fe 9.8 9.7 1 2.1 2.3 9.1 1.1 1.2 8.7 4.6 4.4 4.4 1.26 1.30 3.1 

Cu BDL BDL   0.01 0.01 0.0 BDL 0.01   BDL BDL   BDL BDL   

Cd BDL BDL   BDL BDL   BDL BDL   BDL BDL   BDL BDL   

Cr BDL BDL   BDL BDL   0.01 0.01 0 BDL BDL   BDL BDL   

Mn 0.13 0.11 16.7 0.31 0.31 0.0 0.28 0.29 3.5 0.06 0.06 0 0.01 0.01 0 

Ni BDL BDL   0.03 0.03 0.0 0.05 0.05 0 BDL BDL   BDL BDL   

Pb BDL BDL   0.01 0.01 0.0 0.01 0.01 0 BDL BDL   BDL BDL   

Zn 0.03 0.04 28.6 0.13 0.14 7.4 0.18 0.14 25.0 0.01 0.01 0 BDL BDL   

 

4.2.3.3. Data representation and interpretation 

The basic descriptive statistics – mean, quartiles, standard deviation, minimum and maximum 
– were generated for all samples. Box plots were used to define the cut-off values for representing in 
maps showing the spatial distribution of the main pollutants associated with AMD, i.e. pH, sulphates, 
iron and sum of dissolved trace metals. Graduated symbols along with a color scheme were used to 
represent the relative concentration of the pollutants in the sampling locations. A correlation matrix 
showing the relationship of the different pollutants with each other and scatter plots of pH with other 
pollutants were also generated to interpret the analysis results.  
 

An effective graphical representation of water quality data is the trilinear Piper diagram 
(Fig.4.17). The Piper diagram is drawn by plotting the proportion (in % milli-equivalents per liter) of 
the major cations [Ca2+, Mg 2+, (Na+ + K+)] on one triangular diagram and the proportions of the major 
anions [alkalinity (CO3

2- + HCO3
1-), Cl-, SO4

2-] on another. These are then projected upwards on a 
quadrilateral to give an idea about the main features of the water chemistry and to see if the analysis 
falls into distinct clusters (Drever, 1997).  The Piper diagram gives four tentative conclusions about 
the origin of the water represented by the analysis, viz. water type, precipitation or solution, mixing 
and ion exchange (Hounslow, 1995). The two main uses of Piper diagrams are that they serve as a 
visual way of displaying a water analysis in order to classify water into a “type” or “hydrochemical 
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facies” based on the relative proportions of the major ions and as a quick test to see if a series of water 
compositions can be explained by mixing between two end members, if the compositions will plot 
along a straight line in each of the fields of the diagram (Drever, 1997). The Piper diagram showing 
different water types is given in Fig.4.17 and it can be interpreted after Sadashivaiah (2008), Drever 
(1997) and Hounslow (1995) as given in Table 4.5. 
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Figure 4.17: Piper diagram showing different water types. 

(after Sadashivaiah, 2008) 
 
Table 4.5: Interpretation of Piper diagram. 
1: (Ca2+ + Mg2+) > (Na+ + K+) A: Calcium type 
2: (Ca2+ + Mg2+) < (Na+ + K+) B: No dominant type 
3: (CO3

2- + HCO3
-) > (SO4

2- + Cl-) C: Magnesium type 
4: (CO3

2- + HCO3
-) < (SO4

2- + Cl-) D: Sodium or potassium type 
5: Magnesium bicarbonate type (temporary hardness) E: Bicarbonate type 
6: Calcium chloride type (permanent hardness) F: Sulphate type 
7: Sodium chloride type (saline type) G: Chloride type 
8: Sodium bicarbonate type (alkali carbonate)  
9: Mixed type (no dominant cation-anion)  
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4.2.4. Pollutant distribution maps 

As mentioned earlier in the chapter, maps showing the distribution of selected metal 
pollutants associated with AMD in water samples were generated by plotting their concentration with 
graduated symbols and a color scheme. Standards of permissible concentrations for these pollutants 
have also been prescribed by the Bureau of Indian Standards and the Central Pollution Control Board 
and can be used to assess the level of pollution in the water. River bed sediments, on the other hand, 
do not have any prescribed standards in India. Several numerical sediment quality guidelines (SQG’s) 
have been developed in other countries, particularly in the U.S.A. These have been developed using a 
variety of approaches on the basis of pollution receptors – benthic organisms, wildlife or humans – 
each having its own advantages and disadvantages for assessing the sediment quality of a river system 
(MacDonald et al., 2000).  
 

To bring about an agreement and a synthesis between the various SQG’s, MacDonald et al. 
(2000) proposed consensus-based SQG’s for 28 chemicals of concern in freshwater sediments, viz. 
metals, polycyclic aromatic hydrocarbons (PAH’s), polychlorinated biphenyls (PCB’s) and organo-
chlorine pesticides. They developed 2 SQG’s, from published and existing SQG’s, for each pollutant, 
including a threshold effect concentration (TEC) and a probable effect concentration (PEC). The 
TEC’s were contaminant concentration levels below which harmful effects on sediment-dwelling 
organisms were not expected. The PEC’s, on the other hand, were intended to identify contaminant 
concentrations above which harmful effects on sediment-dwelling organisms were expected to occur 
frequently. These consensus-based SQG’s were then tested for reliability by applying them to a large 
data set from all over the U.S.A. and the results were found to be very accurate.  
 

The consensus-based SQG’s were developed by firstly scouring through published SQG’s 
and selecting only the “effects-based” ones, which specified both TEC’s and PEC’s. The consensus-
based SQG’s were then calculated by taking the geometric mean of those SQG’s for which at least 3 
or more values were available for each contaminant. Te geometric mean was calculated as it gives an 
estimate of central tendency which was not unduly affected by extreme values and also because the 
distributions of the SQG’s were not known. The authors developed consensus-based SQG’s for 8 trace 
metals, 10 PAH’s, 1 each for total PAH and total PCB, and 9 organo-chlorine pesticides. Table 4.6 
shows the calculated consensus-based SQG’s proposed by MacDonald et al. (2000) for trace metals. 
Table 4.6: Sediment Quality guidelines  for trace metals in freshwater ecosystems that reflect threshold 
effect concentration (TEC) and a probable effect concentration (PEC). 
(after MacDonald et al., 2000) 
S.No. Trace metal 

(mg/kg dry weight) 
Consensus-based TEC Consensus-based PEC 

1 Arsenic 9.79 33.0 
2 Cadmium 0.99 4.98 
3 Chromium 43.4 111.0 
4 Copper 31.6 149.0 
5 Lead 35.8 128.0 
6 Mercury 0.18 1.06 
7 Nickel 22.7 48.6 
8 Zinc 121.0 459 
9 Iron (%)* 2.0 4.0 
10 Manganese* 460.0 780.0 

* after da Silva et al. (2006) 
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The PEC values can further be used to predict the incidence of toxicity to sediment-dwelling 

organisms due to a combined effect of several contaminants. To do this, firstly, the concentration of 
each substance in each sediment sample was divided by its respective consensus-based PEC to give 
the PEC quotient (PEC-Q). The PEC-Q’s of all substances in the sample were summed and the mean 
PEC-Q was calculated for each sample. The authors had then plotted a curve (Fig.4.18), the equation 
of which was used to estimate the predicted incidence of toxicity at each sampling location.  
 

 
Figure 4.18: Relationship between mean PEC-Q and incidence of toxicity in freshwater sediments. 
 

MacDonald et al. (2000) gave the following uses for the SQG’s developed: 
1. to identify hot spots of sediment contamination, 
2. to determine the potential for and spatial extent of injury to sediment-dwelling organisms, 
3. evaluate the need for sediment remediation, and  
4. support the development of monitoring programmes to assess the extent of contamination and 

effects of contaminated sediments on sediment-dwelling organisms. 
These SQG’s, however, did not consider the potential for bioaccumulation in aquatic organisms nor 
the hazards to the higher organisms that consume these aquatic organisms. 
 

In this study, the concentration of trace metals in stream sediments (As, Cd, Cr, Cu, Pb, Ni 
and Zn) were compared with the TEC and PEC values developed by MacDonald et al. (2000) and 
those of Mn and Fe were compared with TEC and PEC values given by da Silva et al. (2006). The 
mean PEC-Q values were calculated and through them, the incidence of toxicity to sediment-dwelling 
organisms was calculated for each sampling location for both seasons by using the equation given by 
MacDonald et al. (2000). 
 

The predicted toxicity was then represented in maps to show the distribution of 
contamination due to a combined effect of trace metals in river bed sediments. Graduated symbols and 
a color scheme were used to show the levels of toxicity. 



IDENTIFICATION OF THE EXTENT OF ARTISANAL COAL MINING AND RELATED ACID MINE WATER HAZARDS USING REMOTE 
SENSING AND FIELD SAMPLING: A CASE STUDY IN JAIÑTIA HILLS OF NORTH-EASTERN INDIA 

 

 

64 

5. Results and Discussions 

5.1. Image analysis for identification of rat-hole mines 

5.1.1. Visual interpretation of merged CARTOSAT-1/RESOURCESAT-1  image 

Through visual interpretation and manual digitization of the merged CARTOSAT-1/ 
RESOURCESAT-1 image, 1281 mines and overburden dumps could be identified in the whole 
watershed. As expected, the mines were distributed mostly in the coal-bearing sandstone in the central 
and southern part of the study area. The map showing distribution of mines is given at Fig.5.1. Each 
mine was digitized as a polygon which included the overburden dump around it. No mining activity 
could be seen in the northern part, which left the Umiurem River and its tributaries untouched. The 
major activity could be observed along the northern bank of the Umtarang (Myntriang) River with a 
few mines scattered on its southern bank. 

 
Figure 5.1: Distribution of mines digitized from merged CARTOSAT-1/RESOURCESAT-1 image. 
 

As stated earlier, the pan-sharpened QuickBird image was used to assess the accuracy of the 
visual interpretation. The QuickBird image constituted only about 13% of the total area of the 
watershed (Fig.5.2), however, manual digitization of the image yielded 1546 mines and overburden 
dumps within the approximately 30 sq.km. area (Fig.5.3).  
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Figure 5.2: QuickBird image with respect to entire study area. 

 
Figure 5.3: Distribution of mines digitized from QuickBird image. 
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To check the accuracy, the number polygons of the merged CARTOSAT-
1/RESOURCESAT-1 image, identified within the area covered by QuickBird only, were compared 
with those of the latter. It was seen that only 712 polygons were digitized through CARTOSAT-
1/RESOURCESAT-1 image within this same area which gave an accuracy of 46%. The accuracy 
assessment was also carried out in terms of area of the polygons visually mapped through the two 
different images. The 712 polygons mapped through the CARTOSAT-1/RESOURCESAT-1 image 
covered an area of 0.16 sq.km. and the 1546 polygons mapped through the pan-sharpened QuickBird 
image covered 0.27 sq.km. which gives an accuracy of 59.3%. Table 5.1 shows a summary of the 
accuracy assessment for the merged CARTOSAT-1/RESOURCESAT-1 image. 

 
Table 5.1: Accuracy assessment calculation of visual interpretation of merged CARTOSAT-1/ 
RESOURCESAT-1 image. 

  No. of mines 
a Visually mapped through merged CARTOSAT-1/RESOURCESAT-1 

image 
712 

b Visually mapped through pan-sharpened QuickBird image 1546 
 Overall accuracy (a / b * 100) 46.05 % 
  Area (sq.km.) 
c Area of polygons mapped through merged CARTOSAT-1/ 

RESOURCESAT-1 image 
0.16 

d Area of polygons mapped through pan-sharpened QuickBird image 0.27 
 Overall accuracy (c / d * 100) 59.26 % 

 
The general sizes of the mines vary from 6m to 8m in width. Through the pan-sharpened 

QuickBird image, with its spatial resolution of only 61 cm, it was possible to see individual mines 
very clearly. The main reasons for a very low accuracy are given below: 
 
(1) The pan-sharpened QuickBird’s very high resolution image made it possible to see and map 

each and every mine easily. Due to this, many mines, that were either not visible or were missed 
out during interpretation of the merged CARTOSAT-1/RESOURCESAT-1 image, have been 
mapped through pan-sharpened QuickBird image. Fig.5.4 (a) and (b) give an example of such a 
case. In the figure, the background image is that of the merged CARTOSAT-
1/RESOURCESAT-1 image and on it shape files of the visual interpretation of this image and of 
the pan-sharpened QuickBird have been overlaid. The polygons of the former have been shown 
in red and of the latter in black. The pink rectangles show examples of areas on the image where 
mines have been mapped through QuickBird but not through merged CARTOSAT-1/ 
RESOURCESAT-1. Fig.5.4 (a) shows the case where mines were not visible and where mines 
have been missed out in the CARTOSAT-1/RESOURCESAT-1 image. Fig.5.4 (b) shows where 
series of small mines have been mapped through pan-sharpened QuickBird image but at the 
same location only a few bigger mines were discernible through CARTOSAT-
1/RESOURCESAT-1 image. 
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Figure 5.4: Comparison of visual interpretation of merged CARTOSAT-1/RESOURCESAT-1 and pan-
sharpened QuickBird (omission error). 
The pink rectangles show examples of areas on the image where mines have been mapped through 
QuickBird but not through merged CARTOSAT-1/ RESOURCESAT-1. (a) shows the case where mines 
were not visible and where mines have been missed out in the CARTOSAT-1/RESOURCESAT-1 image. 
(b) shows where series of small mines have been mapped through pan-sharpened QuickBird image but at 
the same location only a few bigger mines were discernible through CARTOSAT-1/RESOURCESAT-1 
image. 
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(2)  The other reason for low accuracy was the spatial resolution difference. At several places in the 
merged CARTOSAT-1/RESOURCESAT-1 image, one big polygon had been mapped, whereas, 
at the same location, not one, but many mine shafts were in existence as seen in the pan-
sharpened QuickBird image. This has resulted to the polygon count of the merged CARTOSAT-
1/RESOURCESAT-1 image being very less vis-à-vis the pan-sharpened QuickBird image. In 
Fig.5.5 (a) and (b), the white rectangles show a few examples of areas where through QuickBird 
many mine shafts could be seen at a location where through merged CARTOSAT-1/ 
RESOURCESAT-1 image only one mine was identified. The pink rectangles show unmapped 
mines and the yellow ellipses show mines completely misclassified through the merged 
CARTOSAT-1/RESOURCESAT-1 image. 

 
The total area of polygons mapped through QuickBird was higher because of more number of 

polygons. However, the accuracy became higher because the sizes of most of the polygons mapped 
through the merged CARTOSAT-1/RESOURCESAT-1 image were bigger as stated above. 

 
Although the overall accuracy of the visual interpretation of the merged CARTOSAT-1/ 

RESOURCESAT-1 image was very low, it was further observed that out of the 712 polygons 
identified, 635 polygons, i.e. 89%, were found to spatially match with those of the pan-sharpened 
QuickBird image. Due to lower spatial resolution, the mapping error had occurred but what had been 
mapped was found to be suitable for the merged CARTOSAT-1/RESOURCESAT-1 image to be used 
as a reference for accuracy assessment of the OOC.  
 

The merged CARTOSAT-1/RESOURCESAT-1 image, along with the additional layers of 
LISS-IV NDVI, Principal Component (PC) 1 and PC 2 and ASTER GDEM, were also used in a 
supervised classification in the ERDAS software. Training sites were taken throughout the image, with 
the QuickBird image used as a reference. The five classes that were classified were: (1) Forest,           
(2) Fallow and barren land, (3) Settlements and roads, (4) Rivers, and (5) Mines. The classified image 
is shown in Fig.5.6. A close-up of the merged CARTOSAT-1/RESOURCESAT-1 has been shown as 
(a) and that of the corresponding area in the classified image has been shown as (b). 
 

The intention of the classification was to see if the “rat-hole” mines could be classified or not. 
At a glance, the forest, fallow and barren land and settlements have come out quite well. However, 
there has been a misclassification of roads, mines and rivers. Point 1 in Fig.5.6 (a) and (b) shows an 
example where the roads have been classified as mines. Dry stream beds on the eastern corner of the 
study area have also been misclassified as mines. Settlements have been classified as mines at several 
places also – Point 2 shows an example. Barren land has been classified as rivers and vice versa at 
several places – Point 3. This was due to the inherent problem with pixel-based classifiers being used 
on very high resolution images. Each pixel was classified uniquely with no homogeneous region 
generated (Durieux et al., 2008). Misclassification also occurred due to the similarity in spectral 
signatures of the overburden dumps around the mine shafts and other land cover types, particularly 
roads, settlements and the exposed river beds.  
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Figure 5.5: Comparison of visual interpretation of merged CARTOSAT-1/RESOURCESAT-1 and pan-
sharpened QuickBird (resolution difference). 
The white rectangles show a few examples of areas where through pan-sharpened QuickBird many mine 
shafts could be seen at a location where through merged CARTOSAT-1/RESOURCESAT-1 image only 
one mine was identified. The pink rectangles show unmapped mines and the yellow ellipses show mines 
completely misclassified through the merged CARTOSAT-1/RESOURCESAT-1 image. 
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Figure 5.6: Land use land cover supervised classification of merged CARTOSAT-1/RESOURCESAT-1 
image using Maximum Likelihood classifier. 
The pink rectangle shows the position of the close-ups taken on (a) CARTOSAT-1/RESOURCESAT-1 
image and (b) Corresponding location on classified image. Point 1 shows an example where the roads 
have been classified as mines. Point 2 shows an example where settlements have been classified as mines. 
Point 3 shows an example where rivers have been classified as barren land.  
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The main reason for this misclassification was because pixel-based classifiers do not consider 
textural information (Yan et al., 2006). This was another major drawback with such classifiers, 
especially if used on high spatial resolution images. The addition of layers like ASTER GDEM, LISS-
IV NDVI and PC 1 and PC2 did not help produce a good result. Since the classification did not yield 
any conclusive result, an accuracy assessment was not done. To meet the objective, object-based 
classification technique was carried out on the image.  

 

5.1.2. Object Oriented Classification (OOC) 

With the supervised classification using MXL classifier yielding nothing conclusive, it was 
felt necessary to try out a semi-automatic process to classify the area and map out the mines by using 
OOC in the Definiens Developer 7 software. By running the rule set given as Appendix 2, we get the 
output given at Fig.5.7. 

 
Figure 5.7: OOC image of merged CARTOSAT-1/RESOURCESAT-1 image and close-up. 
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The classified image was exported from the Definiens software as a shape file containing the 
mine polygons only. There were 1555 polygons (mines) classified through OOC, as compared to 1281 
polygons (mines) mapped through visual interpretation. Fig.5.8 shows an overlay of the two shape 
files with the black ellipses indicating some areas where there has been misclassification of settlements 
as mines. Both cultural features (settlements and roads) and mines have very similar spectral 
signatures. Textural information was able to discriminate between the two features to some extent. By 
masking out the northern gneiss dominant areas using the geology layer and classifying the remaining 
polygons there as settlements, it has been observed that the number of misclassified polygons was 
reduced to a big extent. Further processing to fine tune the classification through textural properties 
did not help. Instead, correctly identified mines got classified as cultural features.  

 

 
Figure 5.8: Overlay of mines classified through OOC and through visual interpretation. 
 

The classification was then checked for accuracy. Two random areas, where the 
concentration of mines was very high, were selected. These areas are shown in pink rectangles labelled 
“A” and “B” in Fig.5.8. Each area was about 10 sq.km. in area. The two shape files were intersected 
and polygons that intersect were considered as correctly identified mines. Those identified through 
OOC but not visually interpreted were considered as error of commission. Error of omission was 
considered for those polygons that were visually mapped but missed out through OOC (Fig.5.9). In 
random area “A”, there were 294 mines that were visually mapped and 274 mines classified through 
OOC. Out of these 226 mines were found to intersect, which gave an overall accuracy of 76.9%, an 
error of omission of 23.1% and an error of commission of 16.3%. Random area “B” yielded an overall 
accuracy of 60.5%, an error of omission of 39.5% and an error of commission of 13%. For the whole 
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watershed, the overall accuracy was calculated to be 67.4%, the error of omission 32.6% and the error 
of commission 54%. 

 
Figure 5.9: Examples of mine polygons classified through OOC and visually mapped mine polygons. 
(The background is the merged CARTOSAT-1/RESOURCESAT-1 image). 
 

Table 5.2 shows the calculation for accuracy assessment. High error of commission for the 
whole watershed was due to misclassification of cultural features as mines. Similar spectral and 
textural signatures of these features and similarity in shape due to quadtree segmentation are the main 
reasons for this misclassification. The addition of the geology layer helped in classifying cultural 
features in the northern gneissic areas correctly as it was known that there were no mines in these 
areas. Perhaps, the addition of another contextual layer which depicts the settlement boundaries would 
have reduced the high error of commission. Moreover, if it had been possible to run multi-resolution 
segmentation directly on the whole image, this error would have further reduced. 
Table 5.2: Accuracy assessment calculation of object oriented classification of merged CARTOSAT-1/ 
RESOURCESAT-1 image. 

No. of mines   
Random 
area “A” 

Random 
area “B” 

Whole 
watershed 

Area 
(sq.km.) 

a Visually mapped 294 277 1281 0.42 
b Classified through OOC 274 203 1555 0.16 
c Correctly classified (intersecting) 226 167 863  
d Not classified (a - c) 68 110 418  
e Over classified (b - c) 48 36 692  
f Overall accuracy (c/a * 100 %) 76.9 60.3 67.4 38.1 
g Error of omission (d/a * 100 %) 23.1 39.7 32.6  
h Error of commission (e/a * 100 %) 16.3 13.0 54.0  
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As done earlier with the visual interpretation, the areal extent of the polygons mapped 
through visual interpretation was compared with that of the polygons obtained through OOC. The total 
area of the 1281 polygons obtained through visual interpretation was 0.42 sq.km. and that of the 1555 
polygons through OOC was 0.16 sq.km which gave an overall accuracy of 38%. Although the number 
of polygons through OOC was more, the total area they cover was less than half of that obtained 
visually. This was because the size of the polygons visually mapped was much bigger in size. In 
Fig.5.9, it can be seen that at several places the red colored mine polygons correctly identified through 
OOC were much smaller in size than the black colored mine polygons not identified through OOC.  

 
An OOC was also carried out on the pan-sharpened QuickBird image as mentioned at the end 

of Section 4.2.2.5 using the procedure given at Fig.4.10. The classified image of the subset has been 
given at Fig.5.10, which also shows the location of the subset. Accuracy assessment of the 
classification was carried out by intersecting the polygon shape file of mines identified through OOC 
and that of mines visually mapped through the pan-sharpened QuickBird image. The overall accuracy 
worked out to be 71.5%, error of commission 14.7% and error of omission 28.5%. In terms of areal 
extent, the visually mapped polygons covered an area of 0.051 sq.km and the OOC polygons covered 
an area of 0.029 sq.km. This classification was better than that of the merged CARTOSAT-
1/RESOURCESAT-1 image, especially in terms of error of commission. It can be concluded that the 
process followed was correct as it gave consistent results with both merged CARTOSAT-
1/RESOURCESAT-1 image and pan-sharpened QuickBird image. Table 5.3 shows the accuracy 
assessment calculation of OOC of pan-sharpened QuickBird image.  
 
Table 5.3: Accuracy assessment calculation of OOC of subset of pan-sharpened QuickBird image and 
comparison with OOC of merged CARTOSAT-1/RESOURCESAT-1 image at same location. 

  QuickBird CARTOSAT-1/ 
RESOURCESAT-1 

  No. of 
mines 

Area 
(sq.km.) 

No. of 
mines 

Area (sq.m) 

a Visually mapped 421 0.051 166 23,558.19 
b Classified through OOC 363 0.029 95 7820.69 
c Correctly classified (intersecting) 301  90  
d Not classified (a - c) 120  76  
e Over classified (b - c) 62  5  
f Overall accuracy (c/a * 100 %) 71.5 56.9 54.2 33.2 
g Error of omission (d/a * 100 %) 28.5  45.8  
h Error of commission (e/a * 100 %) 14.7  3  

 
 The decrease in accuracy by taking areal extent of the mapped polygons was because the 
number of mine polygons identified through OOC was less than that which was visually mapped. 
Also, as seen with OOC of the merged CARTOSAT-1/RESOURCESAT-1 image, the size of the mine 
polygons identified through OOC were smaller in size as compared to those which were visually 
mapped. In the subset taken, the settlements, which were mostly temporary labor sheds, have merged 
with the barren and fallow land and vegetation. That was why no settlements were classified in this 
image. The error of omission was high due to darker signatures of older mines which merged with the 
vegetation and barren and fallow land and were missed out through OOC. Fig.5.11 shows examples of 
the different mine polygons visually mapped and classified through OOC. 
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Figure 5.10: Object oriented classification of pan-sharpened QuickBird image  
(a) location of the subset (b)  classified image. 
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Figure 5.11: Examples of mine polygons classified through OOC and visually mapped mine polygons. 
(The background is the pan-sharpened QuickBird image). 
 
 A comparison of the accuracy obtained through OOC of the pan-sharpened QuickBird image 
and that obtained through the merged CARTOSAT-1/RESOURCESAT-1 image in the same subset is 
shown in Table 5.3. It is seen that the accuracy is much better in the QuickBird classification which is 
because of its higher spatial resolution. 
 

In conclusion, it may be said that object-based classification had proven its superiority over 
pixel-based classification in identification of the artisanal “rat-hole” mines of Jaiñtia Hills. While 
pixel-based classification resulted in a completely misclassified image, OOC was able to segregate and 
map out the mines. In the mining area, with overburden dumps, unpaved forest roads, playgrounds, 
dry river beds and settlements having the same spectral signature, OOC has been able to address this 
problem to a large extent. Through its added advantage of using textural, contextual and shape 
parameters of the class objects, OOC was able to discriminate among the classes. Despite having a 
high error of commission, OOC has proved to be an efficient method for mapping out the extent of 
mining in the study area. 

 
A general drawback of the OOC is that the rule-set developed for one data or area may not 

work on another. The image layers used may remain the same. However, values like scale parameter, 
weights for color and shape and weights for smoothness and compactness in the segmentation process 
are area specific and need to be modified if used for another data or area. Similarly, the threshold 
values of different classes used in the classification process have to be modified suitably. These aside, 
OOC has out-performed pixel-based classification and has shown that in this age of very high 
resolution imagery, the classification trend has to shift from the pixel to the object. 
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5.2. Image analysis to map iron precipitates on stream bed 

 
Another image analysis that was carried out was on Landsat ETM+ images to identify areas 

of high iron oxide through band ratio calculation and stacking of these ratio images to produce hybrid 
FCCs. As mentioned earlier, the Landsat ETM+ images could not be used for identification of the rat-
hole mines because of their large spatial resolution. However, because of having more number of 
spectral bands, these images were used in a different way. From literature several combinations were 
used to highlight iron oxide rich areas. The combinations that were tried out in red, green and blue 
order were (B3/B4, B3/B1, B5/B7), (B3/B1, B4, B5/B4), (B3/B1, B4/B2, B1/B7), (B3/B1, B7/B5, 
B4/B3) and (B3/B1, B5/B4, B5/B7). The best combination that highlighted the iron precipitates on dry 
stream beds was the last combination and has been described below.  
 

Peters and Hauff (2000) and Vandeberg (2003) have used the combination of B3/B1, B5/B4, 
B5/B7 (red, green, blue) to identify iron oxides, ferrous minerals and clays. This combination is also 
given in the ERDAS software as an index for mineral composite. The ratio B3/B1 is generally used for 
detecting iron oxides, B5/B4 for ferrous minerals and B5/B7 for clay minerals. The composite image 
obtained is given as Fig.5.12. 

 

 
Figure 5.12: Landsat ETM+ image showing band ratio combinations 3/1-5/4-5/7. 

Here the vegetation appeared in dark blue and the barren and fallow land in yellow to green. 
However, the feature to be noted is the dry bed of the Rimanar River, in the eastern corner of the 
image. The river bed here appeared in shades of red and orange which indicated the presence of iron 
rich materials (Peters and Hauff, 2000). A close-up of the area shown by the red rectangle in Fig.5.12 
is shown at Fig.5.13. The inset photographs were taken at the sampling locations indicated. 
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Figure 5.13: Close-up of area shown by red rectangle in Fig.5.10. 
(Inset photographs are of sampling locations indicated). 

 
As mentioned earlier, when viewed as true color composite (TCC), the QuickBird image 

shows the areas of high iron oxide very clearly. The typical yellow to reddish-brown color of the 
precipitates make them very obvious and they can be easily picked up in aerial or satellite imagery, 
especially in very high resolution imagery like that of QuickBird. Fig. 5.14 shows the QuickBird 
image in TCC with close-ups showing areas with presence of high iron precipitates on the dry stream 
beds. Insets 1, 4 and 6 show the same locations identified through Landsat ETM+ with presence of 
high iron precipitates. This shows that areas with potential AMD problems can be identified easily 
through high resolution satellite or aerial images and can help in the planning and management of 
remediation of such areas. 
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Figure 5.14: QuickBird image in true color composite (TCC) showing areas with presence of high iron 
precipitates on dry stream beds. 
Inset 1 shows the unaffected Umiurem River (flowing eastwards) at its confluence with the affected 
Rimanar River (flowing northwards); Insets 2, 3, 4 and 5 show the affected Umtarang (Myntriang) River 
at different locations; Inset 6 shows the confluence of the Umtarang (Myntriang) River and the Rimanar 
River; Insets 1, 4 and 6 show the same locations identified through Landsat ETM+ as areas with presence 
of high iron precipitates on the dry stream beds.  
 

Inset 1 shows the unaffected Umiurem River flowing from west to east with pH of 5.46, iron 
concentration of 1.26 mg/l and sulphate concentration of 28.7 mg/l measured in the water during post-
monsoon at station R26 upstream of this location. The predicted incidence of toxicity in the bed 
sediments is 12%. However, the Rimanar River, flowing northwards, shows yellow coloration of its 
exposed bed. At station R5 which is just upstream of the confluence, the pH is 3.08, iron concentration 
is 1.1 mg/l and sulphate concentration is 190 mg/l in water samples. The predicted incidence of 
toxicity in the bed sediments is high at 30%. Similarly, station R4 which is located just upstream of 
inset 6 along the Rimanar River has pH of 3.57, iron concentration of 2.1 mg/l and sulphate 
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concentration of 190.42 mg/l. The predicted incidence of toxicity in the bed sediments is not 
calculated because sediments could not be collected as the river is very deep at this location. 

 
Even though identification of the mines was not possible through Landsat ETM+ image, a 

preliminary assessment can be made to identify streams that are facing AMD problems in the 
watershed. This can help in planning monitoring programmes and to identify which areas need more 
attention. The main drawback of the Landsat ETM+ image is its coarse spatial resolution which made 
it possible to identify only the wider streams that have an AMD problem. The red to orange coloration 
was barely visible for station R4 and R18 on the Myntriang (Umtarang) River but were much clearer 
at station R5 on the Rimanar River, which is comparatively wider. This has demonstrated that through 
the simple process of band ratio calculation, remote sensing has helped in identifying rivers affected 
by AMD.  
 

5.3. Field-based stream water and sediment sampling and analysis 

 

5.3.1. Water quality 

Monsoon water sampling was carried out in June-July 2009. The summary of the analytical 
results of water samples is given at Table 5.4 and the details are given as Appendixes 4 and 5. When 
these results were compared with the Indian Standards for drinking water (BIS, 2003), given as 
Appendix 10, it was observed that almost all the parameters, for which standards have been 
prescribed, were within the desirable limits for drinking water except for pH, iron and manganese. pH 
was found to be within the desirable limit (6.5-8.5) at only 4 out of 18 locations. Iron was found to be 
above the desirable limit (0.3 mg/l) at 11 out of 14 locations and out of these, at 5 locations the values 
were above the maximum permissible limit (1.0 mg/l), prescribed in the case an alternate drinking 
water source was absent. Manganese was above the desirable limit (0.1 mg/l) in 4 out of 14 locations, 
but these were observed to be below the maximum permissible limits. 

 
Table 5.4: Summary of analytical results of monsoon water samples. 

Parameter n Min Max Mean SD Q1 Q2 Q3 
pH 18 3.3 7.4 4.92 1.43 3.62 4.3 6.3
EC 18 6.0 402.0 124.7 141.03 18.9 47.5 248.0
Turbidity 14 0.3 3.9 1.54 1.21 0.7 0.85 2.1
D O 14 3.2 9.44 7.19 1.84 6.6 7.5 8.7
TDS 14 9.2 361.8 127.69 126.13 17.0 80.55 223.2
TSS 14 5.0 20.0 9.64 4.58 5.0 10.0 10.0
Total hardness 14 4.0 116.0 30.14 30.98 8.0 19.0 52.0
Acidity 9 16.0 108.0 59.56 32.09 30.0 60.0 80.0
Alkalinity 5 0.8 12.0 6.16 4.21 4.0 6.0 8.0
Ca 11 2.0 9.0 5.09 2.70 2.0 6.0 6.0
Mg 14 0.2 23.5 4.95 7.32 0.24 0.95 9.9
Na 14 2.0 14.0 6.71 2.76 5.0 6.5 8.0
K 14 3.0 14.0 6.07 2.87 4.0 5.5 7.0
Chloride 14 4.0 9.0 6.57 1.83 5.0 6.5 8.0
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Nitrate 13 1.2 1.9 1.58 0.20 1.5 1.6 1.7
Sulphate 14 1.3 112.0 44.89 39.84 6.6 31.55 85.0
Fe 14 0.2 4.0 1.21 1.22 0.36 0.66 1.6
Zn 13 0.0 0.22 0.06 0.07 0.02 0.03 0.06
Pb 6 0.01 0.02 0.01 0.01 0.01 0.01 0.02
Cd - BDL BDL - - - - -
Cr 12 0.0 0.01 0.01 0.0 0.0 0.01 0.01
Cu 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mn 13 0.02 0.2 0.09 0.05 0.05 0.09 0.12
Σ(metals) 14 0.21 4.32 1.36 1.3 0.52 0.78 1.92

Note:  n    = Number of valid samples,  SD = Standard deviation, BDL = Below detectable limit 
 Q1, Q2, Q3 = First, second and third quartiles of the each parameter distribution 

All values are in mg/l except pH, EC (µS/cm) and Turbidity (NTU) 
 
The stream water in the study area was generally acidic with pH ranging between 3.3 (R2) 

and 7.4 (A1). Electrical conductivity ranged from 6 mg/l to 402 mg/l with the highest value recorded 
at R2. The Central Pollution Control Board, Delhi prescribes that dissolved oxygen (DO) should be 6 
mg/l or more for a “drinking water source without conventional treatment but after disinfection” and 4 
mg/l or more for “propagation of wild life and fisheries”. Besides R2, where the DO recorded was 3.2 
mg/l, all other locations met either one or both of the standards. Total dissolved solids (TDS) ranged 
between  9.2 mg/l and 361.8 mg/l with the highest value recorded at R2, where the pH was the least. 
All the major cations and anions, for which standards were available (Ca, Mg, Cl-, NO3

- and SO4
2-), 

were found to be within desirable limits. Trace metals were found to be within desirable limits, mostly 
below detectable limits, except for Mn, as discussed earlier. Iron was the major pollutant mainly due to 
hydrolysis of pyrites in waters of low pH. 
 

To classify the water type for monsoon samples, a Piper diagram was plotted and shown at 
Fig.5.15. The sampling locations were divided into two types based on the lithology of the location. 
The circle ( ) represented locations in sandstone areas and the triangle ( ) represented those in 
gneisses and schists (metamorphics). The stations located where the river drains through both gneisses 
and schists and sandstone have been labelled as ( ) for locations flowing through more gneisses and 
schists areas than sandstone areas and ( ) for more sandstone areas than gneisses and schists. 
 

From the figure it can be seen that the main water type was of sodium-potassium type, 
followed by magnesium type and lastly by calcium type. Sulphate was the dominant anion, followed 
by chloride. The water types in the study area are dominantly of sodium (potassium) sulphate type, 
followed by calcium (magnesium) sulphate type. It was also observed that all the water samples from 
locations in gneisses and schists were of sodium (potassium) sulphate type and most of the samples 
from sandstone areas were of the calcium (magnesium) sulphate type with only a few falling in the 
former type. The dominance of sulphate over the other anions can be attributed to presence of pyrite 
from the coal mines. 
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Figure 5.15: Piper diagram for monsoon water samples. 
Symbols indicate sampling location in sandstone ( ), in metamorphics ( ), in metamorphics and 
sandstone ( ) and sandstone and metamorphics ( ). 
 

Post-monsoon water sampling was carried out in October 2009. The summary of the 
analytical results of water samples is given at Table 5.5 and the details are given as Appendixes 7 and 
8. Comparing these results with the Indian Standards for drinking water (BIS, 2003) (Appendix 10), it 
was observed that, as with the monsoon samples, almost all the parameters, for which standards have 
been prescribed, were within the desirable limits for drinking water except for pH, iron and manganese 
and TDS at a few locations. pH was found to be below the desirable limit (6.5-8.5) at all locations. 
Iron was found to be above the desirable limit (0.3 mg/l) at 28 out of 30 locations and out of these, at 
14 locations the values were above the maximum permissible limit (1.0 mg/l). Manganese was above 
the desirable limit (0.1 mg/l) in 10 out of 30 locations and in 3 of these locations, it was observed to be 
above the maximum permissible limit. TDS was above the desirable limit (500 mg/l) in 4 of the 
locations, but these were observed to be below the maximum permissible limits. 
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Table 5.5: Summary of analytical results of post-monsoon water samples. 

Parameter n Min Max Mean SD Q1 Q2 Q3 
pH 42 2.74 6.24 4.47 1.23 3.26 4.45 5.63
EC 42 6.5 1143.0 225.48 324.42 19.75 39.45 290.5
Turbidity 30 0.3 6.2 1.72 1.54 0.6 1.2 2.3
D O 10 6.2 8.0 7.3 0.48 7.2 7.2 7.6
TDS 30 8.0 998.0 198.24 277.89 17.2 40.6 262.0
TSS 30 5.0 15.0 8.17 3.82 5.0 5.0 10.0
Total hardness 30 3.0 271.0 49.15 66.43 7.0 20.0 58.0
Acidity 30 0.0 386.0 47.93 87.84 6.0 16.0 38.0
Alkalinity 30 0.0 24.0 6.9 7.68 0.0 2.0 14.0
Ca 30 0.05 205.0 24.9 48.43 1.0 3.5 15.0
Mg 30 0.5 22.1 5.89 6.24 1.2 2.9 7.5
Na 30 5.0 17.0 9.9 2.77 8.0 9.5 11.0
K 30 2.0 11.0 5.87 2.33 4.0 6.0 7.0
Cl 30 2.0 91.0 14.2 22.45 4.0 5.0 8.0
Nitrate 30 1.0 4.6 2.01 1.07 1.2 1.5 2.5
Sulphate 30 4.07 486.3 91.62 122.18 17.15 37.04 87.15
Fe 30 0.1 13.0 2.66 3.52 0.84 1.05 2.1
Zn 16 0.01 0.19 0.07 0.06 0.03 0.05 0.11
Pb 7 0.01 0.02 0.01 0.004 0.01 0.01 0.01
Cd - BDL BDL - - - - - 
Cr 4 0.01 0.01 0.01 0.0 0.01 0.01 0.01
Cu 5 0.01 0.02 0.01 0.01 0.01 0.01 0.02
Mn 29 0.01 0.46 0.11 0.11 0.03 0.08 0.13
Ni 9 0.01 0.14 0.05 0.04 0.03 0.04 0.07
Σ(metals) 30 0.13 13.49 2.83 3.63 0.9 1.18 2.59

Note:  n    = Number of valid samples,  SD = Standard deviation, BDL = Below detectable limit 
 Q1, Q2, Q3 = First, second and third quartiles of the each parameter distribution 
 All values are in mg/l except pH, EC (µS/cm) and Turbidity (NTU) 
 

The river water during post-monsoon was acidic with pH ranging between 2.74 (again at R2) 
and 6.24 (R29). Electrical conductivity was higher in post-monsoon sampling with a highest value of 
1143 mg/l, recorded at R24. All the major cations and anions, for which standards were available (Ca, 
Mg, Cl-, NO3

- and SO4
2-), were found to be within desirable limits. Trace metals were found to be 

within desirable limits, mostly below detectable limits, except for Mn, as discussed earlier.  
 

A Piper diagram was also plotted for post-monsoon samples (Fig.5.16). The symbols used 
were the same as for monsoon samples. From the figure it can be seen that the main water type was 
again of sodium-potassium type, followed by mixed type with no dominant cation and lastly, by 
calcium type. Sulphate was the dominant anion, followed by mixed type with no dominant anion and 
one sample in bicarbonate type. The samples taken from areas of gneisses and schists were mostly of 
sodium (potassium) sulphate type with two falling in the no dominant cation-anion zone. The samples 
from sandstone areas were mostly of calcium (magnesium) sulphate type with a few sodium 
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(potassium) sulphate types and one falling in the no dominant cation-anion zone. Domination of 
sulphate ions once again indicate pyrite hydrolysis due to coal mining. 
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Figure 5.16: Piper diagram for post-monsoon water samples. 
Symbols indicate sampling location in sandstone ( ), in metamorphics ( ), in metamorphics and 
sandstone ( ) and sandstone and metamorphics ( ). 
 

To examine the relationships of the various parameters analyzed, Pearson correlation 
coefficient were generated for both monsoon and post-monsoon samples and the resultant matrices 
have been given at Table 5.6 and Table 5.7 respectively. The correlation was calculated on raw data. 

 
The correlation matrix of the monsoon samples show a high negative correlation between pH 

and electrical conductivity (EC), total dissolved solids (TDS), sulphates, sodium, potassium and iron 
which indicates the presence of these pollutants in waters of low pH. EC shows high correlation with 
TDS, as the latter is a measure of the former and the main constituents of TDS are calcium, sodium, 
potassium, sulphates, iron, manganese and zinc. Total hardness (TH) correlates very high with 
magnesium, manganese and sulphates which show that the rivers are generally of permanent hard 
water. Sulphates have high correlation with iron, zinc and manganese which is also reflected in higher 
concentration of these metals vis-à-vis the others in water samples. Iron and zinc have a high 
correlation which shows the solubility of these metals in waters of low pH.  
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Table 5.6: Correlation matrix of different parameters for monsoon water samples. 

 
** Correlation is significant at the 0.01 level (2-tailed)   
* Correlation is significant at the 0.05 level (2-tailed) 
n = Number of valid samples 
 

Table 5.7: Correlation matrix of different parameters for post-monsoon water samples. 

 
** Correlation is significant at the 0.01 level (2-tailed)  
* Correlation is significant at the 0.05 level (2-tailed) 
n = Number of valid samples 

N.B.: Figures in red color indicate major differences between correlation coefficients of the two seasons. 
 

The correlation matrix of the post-monsoon samples also show similar high negative 
relationship between pH and EC, TDS, the major cations and anions, iron and manganese. pH is 
observed to have negative relation with all parameters which means that with lower pH there is more 
dissolution of metals and other pollutants and in water with higher pH either the metals have 
precipitated or they are not present at all. EC is very highly correlated with TDS and also with almost 
all the cations, anions and metals analyzed. Calcium and magnesium have high correlation with the 
anions contributing to the hardness of the water.  
 

Gray (1996) has pointed out that sulphate and EC are important indicators of AMD firstly 
because both are extremely sensitive to AMD even after large dilutions have occurred and secondly, 
because sulphate is not removed to a great extent by both sorption and precipitation processes due to 
fluctuations in pH. In this case, both monsoon and post-monsoon samples show very high correlation 
between sulphate and EC which indicates the presence of AMD in the study area. As the strength of 
correlation increases with increase in contamination (Gray, 1996), in this case, with correlation 
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coefficients of 0.89 and 0.94 for monsoon and post-monsoon samples respectively, it can be concluded 
that the rivers in the study area are being impacted by AMD. 
 

It may be mentioned that in generating the correlation matrices, a few analyzed parameters 
were left out. Only those parameters which were common to both seasons and which have enough 
valid samples for a proper correlation calculation were selected.  

 
A comparison of the matrices of the two seasons revealed that some parameters have a big 

difference in their correlation coefficients. pH generally shows a negative relationship with all 
parameters which indicates that with increase in pH, the dissolved solids precipitate out or get 
adsorbed by the bed sediments. However, in the monsoon samples pH showed a positive relationship 
with chloride, nitrate and lead. The reason could be that for lead, the number of valid samples was 
relatively less for calculating the correlation. Both chloride and nitrate show high differences in their 
relationships in both seasons. This is possibly due to human error during analysis in the monsoon 
samples which yielded inaccurate results which was, however, not the case with post-monsoon 
samples. The negative relationships of total hardness (TH) with calcium and of calcium and 
magnesium in the monsoon samples may also be due to inaccuracies in analysis. A big increase was 
noted in the calcium – sulphate relationship. The former vindicates the findings through the Piper 
diagram (Fig. 5.16) that in the leaner post-monsoon season, the dominant water was calcium-sulphate 
type. 

 
As seen from Fig.4.16, there was a lot of variation in the sum of anions and cations in the 

monsoon samples. The results were dispersed both above and below the trend line. However, the post-
monsoon samples fitted well around the trend line. This was also a reason for the major differences in 
correlation coefficients of the two seasons. Further, the difference in number of samples (14 in 
monsoon and 30 in post-monsoon) may have also affected the calculation of correlation coefficients in 
the two seasons which has led to high differences for several parameters. 
 

The scatter plots of pH plotted against a few selected pollutants have been generated and 
shown in the following figures. 

 

 
Figure 5.17: Scatter plot of pH versus EC 
(a) monsoon water samples (b) post-monsoon water samples. 
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 Fig.5.17 shows that in waters of low pH, particularly below pH 4, the ion activity increases 
significantly. This shows that AMD plays a role in reducing the pH and leaching of metals from the 
surrounding rocks and mine spoils. In low pH, the metals stay in solution and increase the EC. 
 

 
Figure 5.18: Scatter plot of pH versus log10 (sulphate)  
(a) monsoon water samples (b) post-monsoon water samples. 
  

Fig. 5.18 shows the relationship of pH with sulphate. By taking sulphate in log scale, a 
linearly decreasing trend can be observed, especially in the post-monsoon samples. The limited 
number of samples in monsoon has also showed a more or less similar trend. This is true because in 
waters of low pH, pyrite hydrolysis releases large quantities of sulphate into the water and this reduces 
with increase in pH. 

 

 
Figure 5.19: Scatter plot of pH versus log10 (iron) 
(a) monsoon water samples (b) post-monsoon water samples. 
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Figure 5.20: Scatter plot of pH versus log10 (manganese) 
(a) monsoon water samples (b) post-monsoon water samples. 
 

 
Figure 5.21: Scatter plot of pH versus log10 (sum of trace metals) 
(a) monsoon water samples (b) post-monsoon water samples. 
 

The scatter plots shown in Fig.5.19 through Fig.5.21 show that in waters of low pH, the 
solubility of metals increases and they stay in solution as they are leached from the surroundings. As 
the pH increases the solubility of Fe decreases and oxyhydroxides are formed. At the same time, the 
capacity of the particles in the water to adsorb metal ions also increases which results in the removal 
of metals to the particles and bed sediments (Eby, 2004). 
 

The variation of some of the important parameters in the two studied seasons has been plotted 
as box plots in the following figures.  
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Figure 5.22: Variation of pH in (a) monsoon (b) post-monsoon. 
 (Stream provenance is shown along X-axis. “n” denotes the number of valid samples) 
 
 From Fig. 5.22 it is obvious that the impacted streams all lie in the sedimentary rock around 
the coal mining area. However, it can also be seen from the extreme values and outliers in the figure, 
that locations within sedimentary rock but away from coal mining areas (R14, R29 and A2) show high 
pH. This shows that pyrite hydrolysis from coal mining is the major cause of AMD in the study area. 
Overall, there has been a slight decrease of pH in the post-monsoon samples due to reduced dilution in 
the stream water. 

 
Figure 5.23: Variation of EC in (a) monsoon (b) post-monsoon. 
(Stream provenance is shown along X-axis. “n” denotes the number of valid samples) 
 

From Fig.5.23 it can be seen that EC is high in locations where pH is low. The outlier in 
monsoon samples from sedimentary rock was recorded at A2, a head stream. EC is seen to be higher in 
post-monsoon samples with pH being lower. 
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Figure 5.24: Variation of sulphate in (a) monsoon (b) post-monsoon. 
(Stream provenance is shown along X-axis. “n” denotes the number of valid samples) 

 
Sulphates can also be seen to have higher concentration in samples from sedimentary rock 

where the pH is much lower due to presence of coal mines (Fig.5.24). Similarly, higher sulphate 
concentration in post-monsoon samples is expected with lower pH and increased hydrolysis of pyrite 
from the surrounding coal mining areas. 

 
Figure 5.25: Variation of iron in (a) monsoon (b) post-monsoon. 
(Stream provenance is shown along X-axis. “n” denotes the number of valid samples) 
 

The presence of high iron in samples from sedimentary rock (Fig.5.25) shows its solubility in 
waters of low pH. Its concentration is observed to be low in the samples from metamorphic rock and 
from mixed rock type. Higher iron concentration in the post-monsoon samples is consistent with the 
overall lower pH. 
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Figure 5.26: Variation of manganese in (a) monsoon (b) post-monsoon. 
 (Stream provenance is shown along X-axis. “n” denotes the number of valid samples) 
 

The solubility of manganese is also seen to have increased in the post-monsoon samples with 
pH being lower (Fig.5.26).  

 
Figure 5.27: Variation of sum of trace metals in (a) monsoon (b) post-monsoon. 
(Stream provenance is shown along X-axis. “n” denotes the number of valid samples) 
 

Trace metals can be seen to have been more dissolved in samples from sedimentary rock 
which has low pH vis-à-vis the samples from metamorphic rock and from mixed rock type (Fig.5.27). 
There was, however, only a slight seasonal variation in their concentration. The Meghalaya State 
Pollution Control Board (MSPCB, 1997) reported similar observations where they found very less 
variation in the monitored rivers in a study period of two years.  

 
 The distributions of a few pollutants in both monsoon and post-monsoon seasons have also 
been mapped and given below (Fig.5.28 to Fig.2.35). 
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Figure 5.28: Distribution of pH in monsoon samples. 
(Symbol size based on Q1, Q2, Q3 from Table 5.4) 

 
Figure 5.29: Distribution of pH in post-monsoon samples. 
(Symbol size based on Q1, Q2, Q3 from Table 5.5) 



IDENTIFICATION OF THE EXTENT OF ARTISANAL COAL MINING AND RELATED ACID MINE WATER HAZARDS USING REMOTE 
SENSING AND FIELD SAMPLING: A CASE STUDY IN JAIÑTIA HILLS OF NORTH-EASTERN INDIA 

 

 

93 

 
Figure 5.30: Distribution of sulphate in monsoon samples. 
(Symbol size based on Q1, Q2, Q3 from Table 5.4) 

 
Figure 5.31: Distribution of sulphate in post-monsoon samples. 
(Symbol size based on Q1, Q2, Q3 from Table 5.5) 
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Figure 5.32: Distribution of iron in monsoon samples. 
(Symbol size based on Q1, Q2, Q3 from Table 5.4) 

 
Figure 5.33: Distribution of iron in post-monsoon samples. 
(Symbol size based on Q1, Q2, Q3 from Table 5.5) 
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Figure 5.34: Distribution of dissolved metals in monsoon samples. 
(Symbol size based on Q1, Q2, Q3 from Table 5.4) 

 
Figure 5.35: Distribution of dissolved metals in post-monsoon samples. 
(Symbol size based on Q1, Q2, Q3 from Table 5.5) 
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From the above figures, it can clearly be seen that maximum contamination of the streams is 
happening in the southern sandstone part of the watershed. No doubt, the acidic soil from the 
surroundings has added to the stream water being slightly acidic all over the watershed. However, it 
was observed that stations located with provenance on metamorphic rocks are still unpolluted. Further, 
stations on sedimentary rocks but away from mining areas have been found to be unaffected also 
(R14, R25, R29, A1, A2). The major impact has been felt by stations located on sedimentary rocks 
that are being actively mined for coal. Clearly it can be seen that with the increase in density of mines, 
the impact on river water has been very high. 
 

Another activity which has contributed to pollution in the study area, both to the air and 
water, is the existence of coal depots. Some of the major depots have been shown in the above 
Fig.5.28 to Fig.5.35 and photographs shown in Fig.5.36. The major depots are located along the length 
of the National Highway (NH-44) on the west of the study area and one each to the east of Shangpung 
and at Khlieh Rangnah. Depots at 8th Mile, Bapung and Mookhep lie within the watershed of the study 
area and have a direct influence on the water quality of the rivers downstream. These depots have 
made soils in their vicinity very acidic and unsuitable for plants except for a few resistant species (Das 
Gupta, 1999; Das Gupta et al., 2002, Lyngdoh, 1995; Shankar et al., 1993; Jeeva, 2007). Leachate and 
run-off from these depots enter the nearby water courses, which eventually reach the rivers and 
streams making them acidic. The stations R9, R27 and R28 have a direct impact from the depots 
located in and around 8th Mile which lie immediately upstream. These stations, though lying on 
sandstones, have no mining activity in their vicinity but it is observed that their water quality has 
deteriorated due to the presence of the depot upstream. The depots on both sides of the National 
Highway at Bapung and Mookhep have a major influence on water quality at station R1 and R24.  

 

 
Figure 5.36: Photographs of major coal depots in the study area. 
 

In conclusion, it can be said that the water quality analysis of the streams in the study area 
has revealed that those in the southern half, lying on coal-bearing sedimentary rocks, have been 
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contaminated from the coal mining activity. The distribution of mines interpreted from the merged 
CARTOSAT-1/RESOURCESAT-1 image when overlaid on the study area clearly shows that the 
areas with high density of mines is the one that has been most affected by the presence of AMD. 
Precipitating iron hydroxide has left its mark on the stream beds with its distinctive orange-yellow 
color which can clearly be seen in the pan-sharpened QuickBird and Google Earth images in true color 
combination (Fig.4.2, Fig.4.3 and Fig.5.14).  
 

5.3.2. Stream sediment quality 

 
Sediment samples were collected from 8 locations during monsoon and from 22 locations 

during post-monsoon. Thirteen trace metals were analyzed at the ITC Laboratory by Drs. J. B. de 
Smeth. The summaries of the analytical results are given in Table 5.8 and Table 5.9 respectively, and 
the details in Appendix 6 and Appendix 9 respectively. As stated earlier, in India neither quality 
criteria nor standards have been prescribed for river sediments. In this study, the consensus-based 
threshold effect concentration (TEC), below which harmful effects are unlikely to be observed on 
benthic macro-invertebrates, after MacDonald et al. (2000) and da Silva et al. (2006), was used to 
describe the sediment quality (Refer Table 4.6). 
 
Table 5.8: Summary of analytical results of monsoon sediment samples. 

Parameter n Min Max Mean SD Q1 Q2 Q3 
Antimony 4 0.1 0.6 0.3 0.24 0.1 0.25 0.5
Arsenic 1 7.1 7.1 7.1 - 7.1 7.1 7.1
Barium 8 4.63 26.56 10.35 7.06 6.8 7.75 11.26
Cadmium 8 0.6 1.7 1.1 0.3 1.0 1.1 1.15
Chromium 8 13.45 29.74 21.50 5.65 17.85 20.45 26.09
Cobalt 8 1.04 4.93 2.38 1.25 1.48 2.15 2.92
Copper 8 8.28 23.46 15.08 4.58 12.54 14.43 17.46
Iron (%) 8 1.05 4.38 2.44 0.94 1.99 2.45 2.6
Lead 8 6.6 11.5 8.96 1.53 7.75 9.35 9.7
Lithium 8 2.26 9.38 4.88 2.38 3.58 4.11 6.02
Manganese 8 27.70 110.1 65.44 30.65 40.60 58.9 93.35
Nickel 8 2.85 12.27 7.17 3.15 5.05 6.93 9.15
Zinc 8 14.60 41.00 22.18 8.74 15.1 21.35 24.45

Note:  n    = Number of valid samples,  SD = Standard deviation 
 Q1, Q2, Q3 = First, second and third quartiles of the each parameter distribution 
 All values are in mg/kg except where indicated 
 

In the monsoon sediment samples, the single sample of arsenic was found to be below the 
TEC. Cadmium was found to be above the TEC in all but one sample. Chromium, copper, lead, 
manganese, nickel and zinc were found to be having concentrations well below the TEC. Iron was 
observed to be higher than the TEC in all but two samples.  
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Table 5.9: Summary of analytical results of post-monsoon sediment samples. 

Parameter n Min Max Mean SD Q1 Q2 Q3 
Antimony 2 0.1 0.5 0.3 0.28 0.1 0.3 0.5
Arsenic 2 8.7 15.9 12.3 5.09 8.7 12.3 15.9
Barium 22 2.21 53.5 16.98 11.94 8.61 14.22 21.34
Cadmium 22 0.3 2.8 1.23 0.62 0.8 1.05 1.6
Chromium 22 5.73 81.39 24.89 16.7 13.5 21.03 32.6
Cobalt 22 0.41 7.15 2.9 1.92 1.64 2.26 4.66
Copper 22 4.09 35.02 16.03 7.64 10.16 15.35 20.2
Iron (%) 22 0.53 5.2 2.39 1.49 1.32 1.78 3.79
Lead 22 1.9 22.0 9.78 4.51 7.9 9.25 12.8
Lithium 21 1.13 17.3 7.95 4.48 4.52 7.17 11.11
Manganese 22 6.7 150.8 70.55 42.97 35.3 66.65 97.9
Nickel 22 1.21 14.02 7.05 3.61 4.77 6.01 10.38
Zinc 22 4.1 59.8 25.4 13.58 15.4 23.55 32.0

Note:  n    = Number of valid samples,  SD = Standard deviation 
 Q1, Q2, Q3 = First, second and third quartiles of the each parameter distribution 
 All values are in mg/kg except where indicated 
 

In the post-monsoon sediment samples, the two arsenic samples were observed to be one 
above and one below the TEC. Copper, lead, manganese, nickel and zinc were found to be having 
concentrations below the TEC. Iron and cadmium once again had most samples higher than the TEC. 
Chromium, too, was observed to have two of its samples above the TEC.  

 
The sediment quality obtained was also used to calculate the predicted incidence of toxicity 

to benthic sediment-dwelling organisms by the method proposed by MacDonald et al. (2000). These 
toxicity levels were then mapped to show the extent of metal contamination in the study area. 

 
In this study, comparison of the sediment quality between stations can be carried out only for 

the post-monsoon samples as they were more in number and fairly scattered around the study area. 
The background values for locations on sedimentary rocks can be taken from station R29 which was 
located in a broad valley with paddy fields all around and no mining activity observed in the vicinity. 
Similarly, R26 can be considered as the background station for those on gneisses and schists as this 
too, was located in a valley with paddy fields on its western back and fairly dense forest on its eastern 
bank.  

 
When comparing the trace metal concentrations of the background stations and the 

downstream stations, it was observed that there was not much difference between them. In fact, the 
background values were higher than some of the downstream stations. In the background stations, the 
natural high acidity of the river water may leach metals into solution and these may have either 
precipitated or been adsorbed onto bed sediments. In the downstream stations, the very low pH of the 
water keeps the leached metals in dissolved state and bed sediments free from metal contamination. At 
the downstream most station (R5) on the Rimanar River with recorded pH of 3.55 and 3.08 during 
monsoon and post-monsoon respectively, some precipitation of iron and adsorption of metals has 



IDENTIFICATION OF THE EXTENT OF ARTISANAL COAL MINING AND RELATED ACID MINE WATER HAZARDS USING REMOTE 
SENSING AND FIELD SAMPLING: A CASE STUDY IN JAIÑTIA HILLS OF NORTH-EASTERN INDIA 

 

 

99 

occurred. Some iron sulphides precipitate to their amorphous forms even at very low pH, e.g. jarosite 
forms at pH between 1.5 and 3 and schwertmannite forms at pH between 3 and 4 (Murad and Rojik, 
2004). Since this was the boundary of the study area, sediments were not collected further downstream 
from this station. Further, the relatively low concentration of metals in water samples may also mean 
that there are lesser metals to precipitate out in waters of higher pH. 

 
Only seven samples in post-monsoon were taken as repeat of monsoon samples and all, 

except R11, are located on sedimentary rock. Therefore, getting a clear picture of the seasonal 
variation at all sampling locations was not possible. Further, as the difference in the stream velocity 
during and after monsoon may have had consequences for the fines in the sediments, the results of the 
seven common locations are first normalized to 25,000 ppm or 2.5% iron which eliminates the stream 
velocity as a factor of variation and makes the results more comparable. The value of 2.5% iron was 
taken as it lies in the middle of the range and it is a common value in the stream sediments. Seasonal 
variation of trace metals in river bed sediment samples is given in the following Figures 5.37 to 5.47. 
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Figure 5.37: Seasonal variation of barium. 
(Normalized to 2.5% iron) 
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Figure 5.38: Seasonal variation of cadmium. 
(Normalized to 2.5% iron) 
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Figure 5.39: Seasonal variation of chromium. 
(Normalized to 2.5% iron) 
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Figure 5.40: Seasonal variation of cobalt. 
(Normalized to 2.5% iron) 
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Figure 5.41: Seasonal variation of copper. 
(Normalized to 2.5% iron) 
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Figure 5.42: Seasonal variation of iron. 
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Figure 5.43: Seasonal variation of lead. 
(Normalized to 2.5% iron) 
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Figure 5.44: Seasonal variation of lithium. 
(Normalized to 2.5% iron) 
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Figure 5.45: Seasonal variation of manganese. 
(Normalized to 2.5% iron) 

0

3

6

9

12

15

N
i (

m
g/

kg
)

R2 R3 R5 R9 R11 R12 R13

Sampling stations

Monsoon Post-monsoon

 
Figure 5.46: Seasonal variation of nickel. 
(Normalized to 2.5% iron) 
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Figure 5.47: Seasonal variation of copper. 
(Normalized to 2.5% iron) 

 
From the above, it is observed that cadmium, chromium, cobalt and copper have very less 

seasonal variation. The other metals do not have a clear trend. Some show an increase at some stations 
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and a decrease at others. However, with limited samples to compare from, no far reaching conclusions 
can be made from the seasonal variation of the trace metals.  

 
The seasonal variation of iron, manganese and the sum of trace metals (barium, cadmium, 

chromium, cobalt, copper, lead, lithium, nickel and zinc) in the different lithology was also shown 
using box plots. 

 
Figure 5.48: Variation of iron in stream sediments (a) monsoon (b) post-monsoon. 
(Stream provenance is shown along X-axis. “n” denotes the number of valid samples) 

 
From Fig.5.48 it is seen that in monsoon some precipitation of iron has occurred in R5, the 

downstream most sampling location while at R3, located near active coal mining areas in the mid-
stream, iron is still dissolved in the water. In post-monsoon, with more number of samples, a bigger 
variation can be seen in the locations on sedimentary rock. Even with the pH slightly lower, 
precipitation of iron has occurred at several stations, perhaps, due to higher adsorption by stream 
particles. In locations on metamorphic rock and in mixed provenance, the precipitation of iron is seen 
to be still less due to lower pH. 

 
Figure 5.49: Variation of manganese in stream sediments (a) monsoon (b) post-monsoon. 
(Stream provenance is shown along X-axis. “n” denotes the number of valid samples) 
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From Fig.5.49, it can be seen that in the metamorphic and mixed provenance, more 
precipitation of manganese has occurred because of the relatively higher pH in these locations than in 
the sedimentary. 

 

 
Figure 5.50: Variation of heavy metals in stream sediments (a) monsoon (b) post-monsoon. 
(Stream provenance is shown along X-axis. “n” denotes the number of valid samples) 

 
Fig.5.50 also shows that with higher pH in the metamorphic and mixed provenance, more 

precipitation of the heavy metals has taken place than in the sedimentary locations. In sedimentary 
provenance, the upstream stations show more metal concentration in their sediments because higher 
pH allows for more ions to get adsorbed to the stream particles and sediments. 
 

5.4. Pollutant distribution maps 

The calculations to estimate the predicted incidence of toxicity to benthic sediment-dwelling 
micro-organisms after MacDonald et al. (2000) are shown in Tables 5.10 and 5.11. The locations have 
been divided as per the stream provenance. The predicted incidence of toxicity in the monsoon 
sediments varied from 9% (R3) to 23% (R5) which indicates low toxicity in all the 8 locations. 
Limited number of samples made it impossible to compare between locations of different lithology. 
Similarly the post-monsoon sediment toxicity ranged from 4% (R12) to 32% (A6) which show low 
impact on sediment-dwelling organisms. 
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Table 5.10: Calculation of predicted incidence of toxicity in monsoon sediments. 
  Location Code R1 R2 R3 R5 R9 R12 R13 R11 
  Lithology S S S S S S S M 
Element Unit TEC PEC         
As mg/kg 9.79 33       7.1  
Cd mg/kg 0.99 4.98 1.2 1.1 0.6 1.7 1.0 1.1 1.1 1.0 
Cr mg/kg 43.4 111 21.0 16.7 13.5 29.7 19.0 23.2 29.0 19.9 
Cu mg/kg 31.6 149 14.4 13.2 8.3 18.9 11.8 23.5 14.5 16.0 
Fe  (%) 2* 4* 2.41 2.51 1.05 4.38 2.03 2.49 2.69 1.96 
Pb mg/kg 35.8 128 9.9 9.5 7.7 9.3 6.6 11.5 7.8 9.4 
Mn mg/kg 460* 780* 64.5 53.3 27.7 86.3 100.4 110.1 32.9 48.3 
Ni mg/kg 22.7 48.6 12.3 4.8 5.3 7.1 7.2 11.1 2.9 6.8 
Zn mg/kg 121 459 22.4 14.6 14.6 26.5 20.3 41.0 15.6 22.4 
Mean PEC-Q 0.18 0.15 0.09 0.25 0.15 0.20 0.18 0.14 
Predicted incidence of toxicity (%) 17 14 9 23 14 19 17 13 
 
N.B.: No value cells indicate concentration below detectable limits; S = Sedimentary provenance,                     M 
= Metamorphic provenance; 
* Values taken from da Silva et al. (2006). All others after MacDonald et al. (2000). 
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The pollutant distribution maps based on the predicted incidence of toxicity for monsoon and 
post-monsoon are given in Fig.5.51 and Fig.5.52 respectively. The percentage values were classified 
into three classes using the ArcGIS software and graduated symbols were used to depict percent 
toxicity.  

 
Figure 5.51: Predicted incidence of toxicity for monsoon samples. 

 
Figure 5.52: Predicted incidence of toxicity for post-monsoon samples. 
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It is observed that the predicted toxicity to benthic sediment-dwelling organisms is low for all 
stations and for both seasons. This may be because of high acidity in almost all the stations, the trace 
metal have either not yet precipitated or been adsorbed by the stream particles and remained in 
solution. Also, the fact that the metal concentration is less in the water samples means that the stream 
sediments are still relatively unpolluted. The highest predicted toxicity was observed to be at station 
R5 for both seasons. This, incidentally, is the downstream most station for this study and, therefore, 
indicates that some metal precipitation may have started due to a lower chemical mobility at high pH 
values. Comparing the post-monsoon incidence of toxicity with the distribution of dissolved metals 
(Fig.5.34 and Fig.5.35) also reveals that there is a slight decrease in dissolved metal load at this station 
as compared to the other upstream stations. It is also seen that at this station the concentration of iron 
in the sediments was highest for monsoon season (4.38%) and was second highest for post-monsoon 
season (4.96%). The highest was recorded at A6 (5.1%) which also had the highest toxicity of 32%. 
However, no more samples were collected further downstream, as that would have gone beyond the 
study area boundary.  
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6. Conclusions 

The conclusions that can be drawn from this study are summed up by answering each 
research question to see if the research objectives have been met or not. 
 

6.1. Answers to research questions 

6.1.1. Question 1 

“Can the rat-hole mines be identified and mapped through RESOURCESAT-1-1 (IRS-P6) LISS-IV, 
CARTOSAT-1, ETM+ and ASTER images?” 

Identification and mapping of the artisanal “rat-hole” mines in the Umiurem-Umtarang 
(Myntriang) watershed of the Jaiñtia Hills district through ASTER image (VNIR bands, 15m spatial 
resolution) and Landsat ETM+ merged panchromatic and multi-spectral images (15m spatial 
resolution) is not possible because of the coarse spatial resolution of the sensors. With the sides of 
mine shafts measuring about 6 to 8 m, identification of individual mines through these images was 
completely ruled out. The RESOURCESAT-1 (IRS-P6) LISS-IV image, on its own, is not very clear 
to be used for identification of the mines. Bright spots can be identified, but as the mine shafts are not 
visible, it cannot be concluded that these are mines because even the roads and settlements have 
similar spectral signatures. Only after merging it with the 2.5 m spatial resolution panchromatic image 
of CARTOSAT-1, are the mines discernable. However, this has its own limitations in that older mines 
with darker overburden dump signatures merged with the background barren land or vegetation and 
cannot be discriminated. At several places, clusters of several small mines appear as a single big mine. 
When compared with the very high spatial resolution (61 cm) merged PAN and multi-spectral 
QuickBird image, the visual interpretation yield an overall  accuracy of 46%, by taking a count of the 
number of polygons mapped through each image, and of 59% , through comparison in terms of area. 
However, an observation is made that almost all the mines that can visually be mapped, match in 
location with those on the QuickBird image, which means that despite the resolution limitation, what 
can be mapped is done so correctly. The low accuracy can be attributed to lower spatial resolution of 
the merged  CARTOSAT-1/RESOURCESAT-1 image and also due to quality loss in the image when 
making the mosaic and during image fusion. 
 

6.1.2. Question 2 

“Can the mines be identified using OOC?” 
An algorithm is developed to semi-automatically classify the coal mines through an OOC 

approach using the Definiens Developer 7 software. The algorithm developed on the merged 
CARTOSAT-1/RESOURCESAT-1 image for the whole study area proves to be capable of identifying 
the artisanal “rat-hole” mines. Where the technique of pixel-based supervised classification gave 
inconclusive and unclear results, OOC has proved its superiority. By incorporating spectral signatures 
along with textural, contextual and shape features, OOC is able to discriminate between the different 
features and finally isolate the mines with an overall accuracy of 67.4%. A limitation of the procedure 
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is observed due to spectral and textural signatures of mine overburden dumps, roads and settlements 
being identical. Further, similarity in shape due to quadtree segmentation is also an important reason 
for this misclassification. Therefore, besides being able to discriminate the mines, several settlement 
and road objects are also classified as mines leading to a high error of commission (54%). Perhaps, the 
addition of another contextual layer which depicts the settlement boundaries may have reduced the 
high error of commission as this will help in correct classification of the settlements. Moreover, if it 
had been possible to run multi-resolution segmentation directly on the whole image, this error will 
have further reduced.  

 
To validate the algorithm developed, it is tested on a subset of a pan-sharpened QuickBird 

image. The segmentation parameters and classification thresholds are suitably changed to match with 
the QuickBird data. The overall accuracy obtained is 72% with errors of commission and omission of 
15% and 28% respectively. 

 
Finally, the answer to the question is, yes, the mines can be identified through OOC, but in 

all, the mines are over-identified because of reasons stated above. A drawback of OOC is that the 
segmentation parameters and the threshold values used in the rule-set are area and data specific.  
 

6.1.3. Question 3 

“What are the hydro-chemical characteristics of AMD in the watershed?” 
In general, the water throughout the watershed is acidic with a range of 3.3 to 7.4 in monsoon 

and 2.74 to 6.24 in post-monsoon samples respectively. A slightly acidic value would be normal due 
to the presence of acidic soils throughout the study area because of intense leaching. Acid rock 
drainage (ARD) and runoff from these soils lowers the pH of the stream waters which then leaches 
metals present in the surrounding rock. Pyrite from the surrounding coal gets quickly hydrolyzed in 
this slightly acidic water and in that process, releases further protons and sulphates, adding to the 
acidity and increasing the concentration of sulphate. With lower pH, trace metals mostly become more 
mobile and get leached into the stream water reducing its quality even further.  

 
The water quality analysis suggests that many streams in the watershed are affected by AMD 

as manifested in the form of low pH and elevated values of EC, iron, sulphates and manganese. A very 
high correlation between EC and sulphates also indicates the presence of AMD in the river water. The 
dominance of sulphate ions seen in the Piper diagrams of both seasons indicates that oxidation and 
hydrolysis of pyrites has led to the presence of high acidity and iron concentration. When compared 
with the visually interpreted map, it is observed that water quality had deteriorated considerably in 
areas where the density of mines is very high, downstream of actively mined areas or downstream of 
major coal depots, but is still relatively good in other places. 

 
Stream sediments, on the other hand, have not reached alarming concentration levels in the 

study area. High acidity in almost all the streams may have kept the metals in solution or is due to the 
low trace metal concentrations in the weathered sulphide minerals in the coal. Unfortunately there is 
no information on the chemical composition of the sulphide minerals in the study area. However, in 
the more downstream stations, the presence of iron precipitates can be observed on the stream beds. 
This fact is corroborated by seeing these locations in the pan-sharpened QuickBird image in true color 
combination with the distinctive yellow-orange coloration of iron precipitates. Field verification at 
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these locations also confirmed it. Landsat ETM+ with its advantage of having six optical and infrared 
bands is used for detecting stream beds that are coated with iron precipitate through the process of 
band ratio calculation. Coarse spatial resolution made it possible to locate presence of iron precipitates 
only along the wider streams, but these locations match with those seen in the QuickBird image.  

  

6.1.4. Question 4 

“Are the mines the main cause of AMD in the watershed or are there other plausible causes?” 
As stated above, the streams in the watershed are found to be slightly acidic throughout. This 

is basically due to ARD and runoff and leaching from surrounding acidic soils, a common feature 
throughout the state of Meghalaya. However, the contamination became elevated in the proximity of 
coal mines. Pyrite oxidation and hydrolysis quickly occurs in these slightly acidic waters reducing the 
pH drastically and increasing the concentrations of iron and sulphates. In locations having the same 
lithology, but away from the clusters of coal mines, it is observed that the acidity is low (i.e. the pH is 
relatively higher) and the presence of metals and other pollutants is minimal. The presence of coal 
depots within the study area also contributes to water pollution. These depots are seen to have affected 
the water quality at the sampling stations located immediately downstream to them. It can be 
concluded that though the mines may not be responsible for water acidity in the study area per se, their 
presence, along with related activities like coal depots, has exacerbated the situation to a large extent 
by adding AMD and increasing the contaminants in it. 
 

6.1.5. Question 5 

“What is the extent of the presence of heavy metals in the watershed?” 
Heavy metals in the study area are present within permissible limits in the water samples, 

with iron and manganese being the only metals having concentrations above these limits. The stream 
sediments have heavy metal concentrations well below the Threshold Effect Concentrations (TEC’s) 
given by MacDonald et al. (2000) and da Silva et al. (2006). Cadmium is the only metal with values 
consistently above the TEC’s but well below the Probable Effect Concentrations (PEC’s). Iron once 
again was above the TEC limit but below PEC in all cases. All the bigger streams in the watershed 
flow through deep valleys, so the lateral dispersion of heavy metal pollution into surrounding soils can 
be ruled out unless the water is used for irrigation purposes on the valley slopes. Some iron 
precipitation has occurred within the study area with several locations showing higher presence of 
metals in their sediments. However, the true picture of the extent of metal contamination in the stream 
sediments can only be known if more sampling was done further downstream.  
 

6.2. Limitations 

1. A major problem encountered during field work is accessibility within the study area. There are 
only a few paved roads which give access to the northern part which is of less interest because no 
mines are present there. The main mining area is accessible only through forest roads cut by the 
earth moving machines of the coal prospectors and miners. Heavy rain during the monsoon 
sampling programme turned these forest roads into pools of mud which became inaccessible even 
to a four-wheel driven vehicle.  

2. The extent of the AMD problem cannot be conclusively determined by this study. To determine 
the change in water quality from headstream to downstream of all streams in the area, a more 
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detailed study has to be conducted. As stated above, due to accessibility problems, systematic 
sampling could not be carried out.  

3. Heavy rain disrupted the monsoon sampling which resulted in having very few repeat samples to 
compare seasonal variability.  

4. This study has been limited to only one watershed within the Bapung coalfield. To know the full 
extent of AMD problem and its impact on the environment, and also man-made features like the 
Kopili Dam, detailed studies have to be carried out in both upstream and downstream of the 
Rimanar and Kharkor Rivers and their tributaries. Other noted problem watersheds like that of the 
Lukha-Lunar and even watersheds lying in the coalfields where coal deposits have dwindled from 
over-exploitation, need to be thoroughly studied and results compared with control sites so that the 
source and extent of AMD can be positively ascertained in the district. This can then be used in 
formulating management and restoration strategies.  

5. There was no information available on the chemical composition of the sulphide minerals and 
trace elements in the coal found in the study area and the facilities to determine them were not 
available at both Meghalaya State Pollution Control Board and IIRS. 

 

6.3. Recommendations 

1. It is observed from this study that most of the streams in proximity to coal mines have been 
affected by AMD to a considerable extent. Although the stream sediments have not been impacted 
within this watershed, the problem may exist further downstream of the last sampling station (R5). 
Regular monitoring of this area is recommended so that the AMD problem can be checked. This 
can be restricted to parameters that can be measured in situ. pH, EC and temperature can be easily 
measured using portable meters. pH can also be easily ascertained by using special pH paper. 
However, it is recommended that complete analysis of all parameters under the Uniform Protocol 
on Water Quality Monitoring Order, 2005 issued by the Ministry of Environment and Forests, 
Government of India through its Notification No. S.O. 2151 dated 17th June, 2005 has to be 
carried out as per given protocol. A map showing proposed locations for regular monitoring is 
given in Fig.6.1. These locations are chosen on the basis of accessibility with more emphasis on 
the streams on coal-bearing sedimentary rock. 

2. Coal mining has brought about a lot of wealth to the Jaiñtia Hills, but has also resulted in 
environmental degradation at certain places as well. Ignorance about the impacts of haphazard and 
unorganized coal mining has led to streams/rivers becoming highly acidic. It is seen from 
literature that forests have dwindled in area, soil degradation has resulted in reduced agricultural 
yield and the scenic natural beauty has been destroyed. What needs to be done is to firstly, create 
awareness among the mine owners about the dangers of the prevailing system of mining. 
Limestone is found abundantly in Jaiñtia Hills. Perhaps, this can be used to neutralize mine 
drainage to some extent in constructed drains or ponds near mine shafts before releasing it to the 
receiving waters. This would increase the salt load of the waters but in view of the abundant 
rainfall in the area, this should not pose a problem. 

3. Mine owners should be directed to backfill their abandoned mine shafts after either prospecting 
has been done or the mine shaft is abandoned. It is here that the local grass-root administration can 
play a very important role. The village headman and his council may be given the authority to 
penalize a mine owner who does not backfill abandoned mine shafts even if the mine lies in the 
individual’s private property. 
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Figure 6.1: Proposed locations for regular monitoring. 
 
4. Coal mining has made several people extremely wealthy but this wealth has not been utilized in 

developing the areas around the coal belts. The people there have remained as poverty stricken as 
before. These rich mine owners may be directed to start some sort of fund, which can be looked 
after by the village councils, and to be used to restore abandoned mining sites, to reforest barren 
areas and mine dumps, to provide educational and medical facilities to the people living in the 
mine areas and to develop roads and other infrastructure. 

5. The Government of Meghalaya has introduced the Draft Mining Policy, 2009 which has been 
vehemently opposed from all quarters as it does not provide for protection of the rights of 
indigenous people, as laid down in the Sixth Schedule of the Indian Constitution. It has been 
accused of ushering in the big players and pushing the individual miner to the sidelines. The 
Policy is yet to be approved and implemented. As the debate goes on, it can be said that finally, 
the State government has taken a positive step to try and regulate this highly unorganized, 
environmentally unfriendly but very resourceful industry. 

6. Chemical analysis is required to investigate the trace element composition of the coal and 
associated sulphide minerals. This would help to determine its toxicity.  

7. Hyperspectral remote sensing can also be tried to determine the extent of presence of heavy metals 
in the mining areas and in dry stream beds. Indirect detection and mapping of heavy metals may 
be done by studying the spectral signatures of minerals that bind them in the soil or sediments 
(Choe et al., 2008). 
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Appendix 1: Statement of coal production in Meghalaya, 1994-95 to 2008-09. 

 PRODUCTION ( in Metric tonnes) 

YEAR 
JAIÑTIA 

HILLS 
GARO 
HILLS 

KHASI 
HILLS 

TOTAL 
(Col.2+3+4)

1994-1995 2389714 752831 122552 3265097 
1995-1996 2159474 899173 188062 3246709 
1996-1997 2273550 803315 164086 3240951 
1997-1998 2514577 599454 119462 3233493 
1998-1999 3246111 807118 184569 4237798 
1999-2000 2935932 907011 217158 4060101 
2000-2001 2839800 1017727 207375 4064902 
2001-2002 3869323 977502 302529 5149354 
2002-2003 3084393 916374 405140 4405907 
2003-2004 3918037 1058440 462791 5439268 
2004-2005 3610603 1101088 633499 5345190 
2005-2006 3879738 1120525 565451 5565714 
2006-2007 4045710 1174635 566307 5786652 
2007-2008 4359878 1370263 811004 6541145 
2008-2009 2890865 1594170 1003613 5488648 
  Source: DMR, Govt. of Meghalaya
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Appendix 2: Rule set used in OOC of the merged CARTOSAT-1/ 
RESOURCESAT-1 image of the entire study area 
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Appendix 3: Daily rainfall in Jowai (June-October 2009) 

RAINFALL IN JOWAI (mm) 
DATE 

Jun 2009 Jul 2009 Aug 2009 Sep 2009 Oct 2009 
1 31.75 157.48 2.79 2.79 0.00 
2 83.82 114.30 8.89 0.00 0.00 
3 0.00 81.02 21.08 0.00 0.00 
4 0.00 58.16 6.60 0.00 0.00 
5 0.00 17.52 0.00 4.06 2.54 
6 36.83 10.16 0.00 2.54 23.36 
7 3.81 7.87 5.58 33.02 17.01 
8 0.00 11.68 3.04 0.00 56.89 
9 0.00 7.62 4.31 3.55 161.54 

10 0.00 12.70 2.79 0.00 4.32 
11 7.62 12.19 18.03 9.14 2.29 
12 8.89 3.55 61.46 6.35 0.00 
13 172.72 0.00 29.21 0.00 0.00 
14 9.14 0.00 60.45 13.20 0.00 
15 2.03 5.08 45.21 0.00 0.00 
16 0.00 12.70 34.03 0.00 6.10 
17 0.00 4.57 40.89 2.54 0.00 
18 0.00 4.06 57.65 0.00 0.00 
19 0.00 0.00 35.56 15.74 0.00 
20 8.89 2.03 67.31 26.92 0.00 
21 4.31 0.00 21.08 4.57 0.00 
22 0.00 10.66 93.72 0.00 0.00 
23 7.11 4.82 12.44 37.08 0.00 
24 16.51 31.75 93.72 14.73 0.00 
25 2.54 0.00 9.90 8.89 0.00 
26 0.25 5.84 0.00 0.00 0.00 
27 2.51 3.04 23.36 0.00 0.00 
28 5.33 56.38 7.36 0.00 0.00 
29 73.23 48.51 0.00 0.00 0.00 
30 82.55 63.24 17.78 0.00 0.00 
31  9.65 4.06  0.00 

TOTAL 214.40 756.58 788.30 185.12 274.05 
      Source: Meghalaya State Electricity Board 
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 Appendix 4: Sampling locations and field measurements for monsoon 
samples  

(Coordinates are in UTM/WGS84 Zone 46N, electrical conductivity (EC) in µS/cm and temperature in °C) 
Location Code X-coordinate Y-coordinate Altitude 

(m) 
Water 

temperature 
pH EC 

R1 430934.93 2810214.62 1296 21.4 3.8 126.8 

R2 434688.68 2809949.75 1234 21.7 3.3 402 
R3 435522.19 2811883.70 1225 21.7 3.5 264 
R4 453265.46 2813169.81 773 22.1 4.24 180 
R5 453615.51 2814239.07 753 23.4 3.55 335 
R6 437238.04 2819169.16 1168 23.8 6.5 29 
R7 433488.43 2818630.48 1270 24.3 6.3 14.6 
R8 432011.03 2818013.43 1304 26.9 6.2 19.1 
R9 430566.09 2817221.03 1339 28.6 4.4 53.5 

R10 435536.07 2817094.67 1228 22.3 6.73 18.9 
R11 440831.34 2814738.51 1223 22.4 4.35 53 
R12 441538.04 2813477.27 1147 24.5 3.62 248 
R13 438108.68 2813022.01 1204 23 3.39 392 
R14 440259.02 2810397.54 1211 22.9 5.96 10.2 
A1 434193.02 2809149.29 1287 21.3 7.4 14.5 
A2 430841.91 2811682.44 1303 21 7.02 6 
A3 430702.73 2817183.41 1322 26 4.15 42 
A4 441488.25 2813588.23 1150 23.9 4.2 36 
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Appendix 7: Sampling locations and field measurements for post-monsoon 
samples  

(Coordinates are in UTM/WGS84 Zone 46N, electrical conductivity (EC) in µS/cm and temperature in °C) 
Location Code X-coordinate Y-coordinate Altitude 

(m) 
Water 

temperature 
pH EC 

R1 430934.93 2810214.62 1296 23.6 3.8 103.6 
R2 434688.68 2809949.75 1234 24.3 2.74 623 
R3 435522.19 2811883.70 1225 22.5 3.21 265 
R4 453265.46 2813169.81 773 24.7 3.57 315 
R5 453615.51 2814239.07 753 26.1 3.08 542 
R6 437238.04 2819169.16 1168 25.3 5.45 29.7 
R7 433488.43 2818630.48 1270 20.3 6.2 12 
R8 432011.03 2818013.43 1304 27.3 6.22 26.2 
R9 430566.09 2817221.03 1339 21.8 4.25 41.6 

R10 435536.07 2817094.67 1228 21.9 5.58 17.8 
R11 440831.34 2814738.51 1223 22.1 4.62 37.4 
R12 441538.04 2813477.27 1147 23 3.56 188.3 
R13 438108.68 2813022.01 1204 21.5 3.11 299 
R14 440259.02 2810397.54 1211 26.2 5.78 6.5 
R15 435089.92 2816765.22 1207 22.6 5.7 16.6 
R16 435152.06 2816796.30 1202 22.9 5.65 14.6 
R17 435148.71 2816796.31 1198 22.4 5.85 13.3 
R18 450858.06 2814025.58 847 23.8 2.88 925 
R19 450307.66 2814730.80 914 26 3.48 210 
R20 446933.14 2813988.86 994 24.3 3.1 472 
R21 439949.94 2814749.20 1109 22.1 5.14 17.7 
R22 439689.74 2812037.21 1163 24.3 2.9 988 
R23 432428.77 2810032.30 1302 20.1 3.39 211 
R24 431491.25 2808962.85 1280 23.1 2.79 1143 
R25 429002.85 2813951.83 1351 21.7 5.93 41.5 
R26 445888.30 2819183.07 1133 20 5.46 19.7 
R27 431589.24 2816670.05 1297 19.9 4.42 45.4 
R28 429640.88 2815454.58 1231 23.2 3.84 125.4 
R29 430809.49 2811679.54 1301 24.6 6.24 9.4 
M1 436140.16 2809305.40 1291 21.8 3.91 37.3 
A1 434193.02 2809149.29 1287 23.1 5.93 19.9 
A2 430841.91 2811682.44 1303 24.5 6.2 9.1 
A3 430702.73 2817183.41 1322 20.8 4.82 29.8 
A4 441488.25 2813588.23 1150 23.4 5.5 29 
A5 437843.18 2819011.30 1140 23.1 5.98 20.6 
A6 450613.54 2814519.27 903 26.3 2.98 734 
A7 446930.97 2814287.86 1022 24.3 3.5 215 



IDENTIFICATION OF THE EXTENT OF ARTISANAL COAL MINING AND RELATED ACID MINE WATER HAZARDS USING REMOTE 
SENSING AND FIELD SAMPLING: A CASE STUDY IN JAIÑTIA HILLS OF NORTH-EASTERN INDIA 

 

 

127 

Appendix 7 contd…      
Location Code X-coordinate Y-coordinate Altitude 

(m) 
Water 

temperature 
pH EC 

A8 430588.71 2817275.06 1328 20.8 4.9 26 
A9 441410.85 2814285.01 1167 25.2 4.48 9.2 

A10 439643.67 2812229.37 1170 21.2 3.14 469 
A11 439630.26 2812229.43 1168 23 2.87 1085 
A12 428945.60 2812951.75 1319 20 5.45 26.4 
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Appendix 10: Specification for Drinking Water (BIS: 10500 - 1991) 

Bureau of Indian Standard 
Specification for Drinking Water (BIS: 10500 - 1991) 

 
 Sl. 
No. 

Substance or 
characteristic  

Requirement  
Desirable 
limit 

Undesirable effect 
outside the desirable  

Permissible limit 
in the absence of 
alternate source  

Remarks  

  Essential Characteristic  
1. Turbidity (NTU) 

Max 
5 Above 5, consumer 

acceptance decreases  
10 - 

2. pH value 6.5 to 8.5 Beyond this range the 
water will after the 
mucous membrane 
and/or water supply 
system   

No relaxation  - 

3. Total 
Hardness 
(mg/L) 
CaCO3  

300 Encrustation in water 
supply structure and 
adverse effects on 
domestic use  

600 - 

4. Iron (mg/L 
Fe) Max 

0.3 Beyond this limit 
taste/appearance are 
affected; has adverse 
effects on domestic 
uses and water supply 
structure and promotes 
iron bacteria 

1.0 - 

5. Chlorides 250 
(mg/L, Cl) Max 

250 Beyond effects outside 
the desirable limit 

1000 - 

 Desirable Characteristics    
6. Dissolved solids 

mg/L. Max 
500 Beyond this, 

palatability decreases 
and may cause 
gastrointestinal 
irritation.  

2000 - 

7. Calcium (mg/L, 
Ca) Max. 

75 Encrustation in water 
supply structure and 
adverse effects on 
domestic use. 

200 - 

  8. Magnesium 
(mg/L, Mg) Max 

30 Encrustation in water 
supply structure and 
adverse effects on 
domestic use. 

100 - 

  9. Copper (mg/L, 
Cu) Max 

0.05 Astringent taste dis- 
coloration and 
corrosion of pipes 
fittings and utensils 

1.5 - 
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 Sl. 
No. 

Substance or 
characteristic  

Requirement  
Desirable 
limit 

Undesirable effect 
outside the desirable  

Permissible limit 
in the absence of 
alternate source  

Remarks  

will be caused beyond 
this. 

10. Manganese 
(mg/L, Mn) Max  

0.1 Beyond this limit 
taste/appearance are 
affected, has adverse 
effect on domestic  use 
and water supply 
structure   

0.3 - 

11. Sulphate  
(mg/L, SO4) Max. 

200 Beyond this causes 
gastro intestinal 
irritation when 
magnesium or sodium 
are present  

400 May be 
extended upto 
400 provided 
magnesium (as 
Mg) does not 
exceed 30 

12. Nitrate (mg/L, 
NO3) Max. 

45  Beyond this methaemo- 
globinemia takes place. 

100 - 

13. Cadmium  
(mg/L, Cd) Max 

0.01 Beyond this the water 
becomes toxic 

No Relaxation. To be tested 
when pollution 
is suspected  

14. Lead (mg/L Pb) 
Max. 

0.05 Beyond this the water 
becomes toxic  

No Relaxation To be tested 
when pollution 
is suspected 

15. Zinc (mg/L, Zn) 
Max. 

5 Beyond this limit it can 
cause astringent taste 
and an opalescence in 
water   

15 To be tested 
when pollution 
is suspected 

16. Chromium  
(mg/L, Cr6+ 

0.05 May be carcinogenic 
above this limit 

- - 

 
 


