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Abstract 
 
Merapi – type is categorized as regular eruption of Merapi with 8 – 15 year interval (Thouret 
et al., 2000). The increasing number of population on forbidden zone has exposed the 
inhabitants to major threat of pyroclastic flows produced from this type of eruption.  
Morphologic analysis of summit and vicinity area was conducted on series of digital 
elevation models (DEMs), to observe dynamic changes over 70 years and to define factors 
ascertain the direction and major distribution of Merapi – type eruption in the past, to be 
used as factors to determine direction and to predict affected area in the near future. Slope 
angle (°), plan curvature, shaded DEM and travel distances of Merapi – type eruptions were 
combined to produce proposed pyroclastic flows hazard zone that used to assess the fitness 
of forbidden zone of existing hazard map toward dynamic changes in Merapi eruptive 
behavior. As the quality of morphologic analysis was determined by quality of DEM, the 
assessment of efficacy and accuracy of input data was essential to conduct. Initial and 
visual observations and three statistical parameters: mean error, range error and root mean 
square error of elevation (RMSEz) were utilized to assess the usefulness of IFSAR DEM to 
that of reference DEM. 
Based on reconstruction of past time eruptions, from six features observed in Merapi edifice: 
crater rim form, crater breaching, crater floor, adjacent ridges, breaches and remnant of 
domes, crater breaching and its adjacent ridges are the main factors ascertain direction of 
Merapi – type eruption and shifting trends of Merapi – type eruption of west -  southwest – 
southeast are able to observe. Prediction in direction and area affected by pyroclastic flows 
reveals almost 18.000 inhabitants in four villages Hargobinangun, Umbulharjo, Kepuharjo 
and Glagaharjo in southern flank of Merapi to be likely affected by the hazard in the near 
future. 
Proposed pyroclastic flow hazard zone discovers the extent distance and area to those of 
forbidden zone of existing hazard map as far as 1.42 km with 2.2 hectare covered area in 
northern part and as far as 0.43 km with 0.9 hectare of covered area in southern part. Detail 
of area and river channel probably channelized by pyroclastic flow hazard was carried out to 
improve existing hazard map, to finally provide appropriate and effective mitigation plans 
during the activity considering 132.000 inhabitants in forbidden zone, and to provide 
guidelines for long term landuse planning well as.   
The initial observation of shaded DEMs showed that scale 1: 25.000 was appropriate to 
study morphology of vicinity area and scale 1: 5.000 (pixel size 5 m) or even larger is 
needed to study morphology of summit area. DEM produced from topographic maps 
(ground survey and photogrammetry techniques), give better topographic representation 
rather than that of produced from IFSAR DEM but those methods have been started to lose 
their ability to deliver most up to date topographic representation. However, assessment of 
IFSAR DEM through three statistical parameters, mean error (3.879 m), range error (15.269 
m) and RMSEz (5.711 m) showed that absolute vertical accuracy of this data less than its 
product specification although it delivers similar height distribution to that of reference DEM. 
 
Keywords: Merapi – type eruption, morphologic analysis, proposed pyroclastic flow 
hazard zone, digital elevation models 
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ASTER GDEM Advanced Spaceborne Thermal Emission and Reflection Radiometer, Global Digital 

Elevation Map 
BAKOSURTANAL Badan Koordinasi Survei dan Pemetaan Nasional; National Coordinating Agency for 

Survey and Mapping 
BPN Badan Pertanahan Nasional; National Land Administration Agency 
BAPPEDA Badan Perencanaan Pembangunan Daerah; Regional Development Planning Agency  
BPPD Badan Pengelolaan Pertanahan Daerah; Regional Land Management Agency  
CVGHM Central of Volcanology and Geology Hazard Mitigation, Department of Energy and 

Mineral Resources, previously VSI 
D Growing lava dome 
DEM Digital Elevation Model 
DGN 95 Datum Geodesi Nasional 1995; Indonesian Geodetic Datum 1995 
Dinas P3BA Dinas Perairan, Pertambangan dan Penangulangan Bencana Alam; Local Agency for 

Irrigation, Mining and Disaster Management 
DPW Department of Public Works 
DSM Digital Surface Model 
DTM Digital Terrain Model 
EDM Electronic Distance Meter 
EGM 96 Earth Gravitational Model 96 
GCP Ground Control Point 
GMU Gadjah Mada University 
Gn Gunung; Mount or Volcano 
ITRF 2000 International Terrestrial Reference Frame 2000 
JAXA Japan Aerospace Exploration Agency 
K Kali; River 
Km Kilometer 
L Remnant of domes and coulees  
LAPAN Lembaga Penerbangan dan Antariksa Nasional; National Institute of Aeronautics and 

Space 
MOP  Merapi Observation Post 
MVO Merapi Volcano Observatory 
PIC  Person In Charge 
PSBA Pusat Study Bencana Alam; Center of Natural Hazard Study, Gadjah Mada University 
PUSPICS Program Penginderaan Jauh untuk Sumberdaya dengan Pendekatan Interpretasi Citra 

dan Survei Terpadu; Center for Remote Sensing and Geographic Information System 
SRTM DEM Shuttle Radar Topography Mission, Digital Elevation Model 
SNVT SABO Satuan Non Vertikal Tertentu SABO 
TAGANA Taruna Siaga Bencana; Cadet for Disaster Mitigation and Response 
TIN Triangulated Irregular Network 
TM Transverse Mercator 
TNGM Taman Nasional Gunung Merapi; Merapi National Park 
UTM Universal Transverse Mercator 
VEI Volcanic Explosivity Index 
VSI  Volcanological Survey of Indonesia 
WGS World Geodetic System 
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Glossaries 
 
Ash fall or Tephra : fine-grained rock and mineral fragments and glass shards ejected by 

volcanic eruption, dangerous for aviation 
Lava dome : thick, bulbous, usually volatile poor masses of highly viscous lava 
Lava tongue or Coulee : stubby flows transitional between conventional flows and domes 
Remnant of domes : lava dome or coulee which not tore down during eruption and changes 

morphology of Merapi edifice 
Merapi – type eruption : pyroclastic flow generated by dome collapse, nuees ardentes d’ avalanche 

(French) 
Pyroclastic density 
current 

:  A particulate gaseous volcanic flow moving along the ground. This term 
includes both pyroclastic flows and pyroclastic surges but has no 
connotation of particle concentration or flow steadiness.  

Pyroclastic flow : a flow of volcanic material ranging from vesiculated, low-density pumice to 
unvesiculated, dense lava and clasts which tend to follow topographic 
lows, mostly restricted to valley floor 

Pyroclastic surge : a turbulent, low-density, high-velocity part of a pyroclastic density current. 
It is not so constrained by topography and can effect areas high on valley 
walls and even overtop ridges to enter adjacent valleys 

St. Vincent – type eruption : Pyroclastic flow generated by fountain collapse, nuees ardentes d’ 
explosion (French) 



 

 

Chapter 1. Introduction 
This chapter describes the background of the research, problem statement, research objectives, 
research questions, benefit of the research, scope and limitations and thesis structure.  
 

1.1. Background 
The Merapi volcano (2968m) is one of the most active volcanoes in Indonesia. It is 
situated on the administrative boundary between Central Java and Yogyakarta provinces. 
Merapi is famous for Merapi – types or dome collapse pyroclastic flows that are 
characterized by continuous growth of lava domes, interrupted by collapses and phases 
of quiescence (Camus et al., 2000; Voight et al., 2000). 
Ever since Merapi activities have been recorded, it has erupted for 53 times, which can 
be differentiated into brief and violent explosion (Voight et al., 2000). Merapi brief 
explosions at 8 – 15 year intervals generate dome collapse pyroclastic flows and destroy 
whole or part of the existing domes. Violent explosive episodes occurred on an average 
recurrence of 26 - 54 years have generated pyroclastic flows, surges, tephra-falls, and 
subsequent lahars (Lavigne et al., 2000; Thouret et al., 2000). 
The morphology of the summit region has a significant effect in directing volcanogenic 
flows, particularly if there are distinct crater breaches (Davidson and Silva, 1999), which 
then produce the hazards on the slopes. Thus, changes in summit morphology whether 
caused by eruption activities or by hydrothermal altered processes would change the 
direction of those flows including dome collapse pyroclastic flows (Bacharudin, 1990). 
Based on historical data, Merapi has changed its eruption direction several times 
following summit morphology. For instance, from 1931 to 1945, Merapi eruptions were 
directed toward the west – southwest direction whilst from 1961 to 1998, Merapi eruption 
shifted into the west – southwest - south direction.  
The southern flank of Merapi was previously protected by Geger Boyo, part of West dome 
formed by the 1930 eruption, impeded lava flow toward south direction. After it finally 
collapsed in 2006, the southern flank was opened to unstable and growing lava dome 
(Wilson et al., 2007). This condition shifted hazard direction from west and southwest 
direction to the southern flank of Merapi volcano in which Yogyakarta, the capital city of 
Yogyakarta province, is located.  
Although Merapi – type eruptions are considered as regular activities of Merapi volcano 
and usually distributed in relatively narrow sectors, dense populated area in southern 
flank of this active volcano, over 123 thousand above elevation 500 m in 2008, has 
leading the community to threaten hazards. The economic activity of sand mining has 
invited people to live nearby the volcanic cone, the most dangerous area affected by 
Merapi – type eruptions. Thus, in order to give preliminary view of hazard potential, the 
study of morphologic changes of Merapi edifice and possible directions of Merapi – type 
eruption are needed to reduce the effect of those hazards.   

1.2. Problem Statement 
Two largest Merapi – type eruptions in the last two decades were in 1994 and 2006. In 
1994, Merapi eruption produced roughly 2.5–3 million cubic meters of deposition 
(Abdurachman et al., 2000), killed 64 people and made more than 6.000 refugees. In the 
2006’s eruption, 2 people were buried inside an escape bunker where they tried to hide 
from pyroclastic flows (CVGHM, 2006).  



 

Morphologic Analysis of  Merapi Edifice in Studying Merapi – Type Eruption, to Improve Volcanic Hazard Map

 
 

2 Chapter 1. Introduction  

Insufficient forecasting on direction of dome collapse, following dynamic morphologic 
changes of summit area resulted in inappropriate mitigation programs which should 
reduce the number of victims and losses. For instance, 2006 eruption neglected 
development of structural counter measures i.e. SABO dams, built to reduce effects of 
lava flow and lahar, which mainly located in west and southwest flank of Merapi and 
leaved south flank unprotected (Wilson et al., 2007). On the other hands, development of 
SABO dams to close to volcanic cone has directed overland pyroclastic flow and buried 
Kaliadem tourism object (Frank Lavigne, personal communication).  
Merapi flanks areas are densely populated because fertile soil invites people to stay and 
grow corps and to mine sand from volcanic deposition. Local communities in those areas 
are vulnerable element at risks when Merapi erupts. In order to prevent casualties and 
losses, predictions in direction of Merapi – type eruptions are needed as consideration for 
local authority’s mitigation and preparedness plans. Therefore, the study of summit 
morphology related to Merapi – type eruptions are necessary to give preliminary 
information of hazards and extent of affected areas.  
The study of volcanic geomorphology for risk assessment by geomorphic hazard zonation 
and composite risk zonation could be achieved through improvement of quantitative 
classification of volcanic landforms, which blends morphometry and ground observation, 
remote sensing data, and laboratory experiments and diversity used of airborne images 
and digital data acquired through radar and satellites (Thouret, 1999; Huggett, 2007). 
Combination of those techniques provides useful sources to develop digital elevation 
models (DEMs) dataset. By means of geographic information system, the useful tools to 
integrate, to input, to analyze and to manage all data from different scales and sources, 
those dataset can provide numerous sources for developing digital representation of 
surface topography. 
Topographic elements of volcanic landforms can be computed directly from a DEM 
(Huggett, 2007) including primary and secondary attribute e.g. slope, aspect, plan and 
profile curvature which useful to study landform (Hutchinson and Gallant, 2000). Thus, 
digital elevation model derived from ground survey, photogrammetry and remote sensing 
techniques by means of GIS tools provide powerful sources to study morphologic 
changes of Merapi edifice regarding Merapi – type of eruption. 

1.3. Research Objectives 
The objectives of this research are to study morphologic changes of Merapi edifice in the 
last 70 years related to Merapi – type eruptions. Morphologic analyses of past time 
eruptions on a series of DEM were carried out to determine morphologic factors ascertain 
direction of dome collapse. Utilization of those factors to determine direction of dome 
collapse and identification of areas prone to pyroclastic flows in the near future are 
carried out by means of remote sensing and geographic information systems. This main 
objective is carried out through four specific research objectives: 
1. To study morphologic changes of summit area related to Merapi – type eruption using 

existing data of remote sensing imageries and detail contour maps. 
2. To forecast the direction dome collapse in the near future based on morphologic 

analyses of past time eruptions. 
3. To identify areas prone to pyroclastic flow hazard in the near based on recent 

morphology of the slopes, especially on the river valleys and to develop proposed 
hazard zone for Merapi – type eruption in order to improve forbidden zone of Merapi  
hazard map. 

4. To compare the accuracy and efficacy of different types of input data for studying 
morphology of summit and vicinity area.  
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1.4. Research Questions  
In order to answer research objectives above, these following questions are to be 
addressed: 
Table 1-1. Research objectives and research questions 

No Research Objectives Research Questions 
1 To study changes in 

summit morphology using 
existing data of remote 
sensing imageries and 
detail contour maps. 

a. What kind of data needed to study morphology of summit and 
vicinity area? 

b. How to reconstruct changes in summit morphology from 1930 to 
2006 eruptions? 

c. How to reconstruct the lava dome growth from past 70 years? 
d. How to represent the result of morphologic changes in the summit 

area? 
e. How to assess morphologic changes in recent year after 2006 

eruption? 
2 To forecast the direction 

dome collapse in the near 
future based on 
morphologic analyses of 
past time eruptions. 

a. Which morphologic features need to be observed in summit area 
to be utilized as factors ascertain direction of Merapi – type 
eruption? 

b. Which morphologic features need to be observed in vicinity area 
regarding direction of Merapi – type eruption? 

c. Which morphologic factors ascertain the direction of dome 
collapse from 1930 to 2006 eruptions? 

d. Which morphologic factors play the most important roles to 
determine the direction of dome collapse in the past? 

e. How accurate do the trend we have in comparison to Merapi 
historical data?  

f. How to predict the direction of dome collapse in the near future by 
using those factors? 

3 To identify areas prone to 
Merapi – type eruptions in 
the near future based on 
recent morphology of the 
slope, especially on the 
river valleys and to improve 
forbidden zone of Merapi 
hazard map 

a. What type of data needed to determine the extent of pyroclastic 
flows in the near future? 

b. How to determine the affected area by considering morphology of 
river channel and DEMs? 

c. How to determine the pyroclastic flow hazard zone of Merapi – 
type eruption? 

d. How the result of proposed pyroclastic flow hazard zone to 
improve forbidden zone of Merapi hazard map? 

4 To compare the accuracy 
and efficacy of different 
types of input data for 
studying morphology of 
summit and vicinity area. 

a. How the surface representation of input data establishes DEMs 
quality for studying morphology of summit and vicinity area and 
how to compare them?  

b. How is the usefulness of each type of the data? 
c. How to compare between DEM of topographic map derived from 

photogrammetry and active remote sensing? 
d. What is minimum accuracy of input data to provide appropriate 

morphologic quality for this research? 

1.5. Benefit of the Research 
This research provided information about the morphologic changes of Merapi edifice from 
the last 70 years regarding Merapi – type eruptions, dimension of dome remnants, 
prediction in direction and extended area affected by Merapi – type eruption in the near 
future, proposed hazard zone for Merapi – type eruption and efficacy of input data for 
studying volcanic morphology. Thus, the result of this study will be useful for government, 
local community and other stakeholders for several purposes as follows: 
1. It is useful to observe morphologic changes of summit area using spatial geo-

reference data and revealing the relation between the changes and Merapi – type 
eruptions. 

2. It can be useful to expose dimension of dome remnants and their relative positions on 
Merapi edifice.  
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3. It will be useful to predict direction of Merapi – type eruptions by observing 
morphologic factors ascertain the direction and to provide more reliable forbidden 
hazard zone for Merapi – type eruption. 

4. It will be useful to figure out appropriate input data to study morphology of summit 
and vicinity area. 

5. It can be useful for developing effective mitigation and preparedness plans prior to 
Merapi eruptions as well as local government consideration for purposed landuse 
planning to reduce the negative effects of Merapi’s eruptions. 

6. It can be useful for further study about Merapi. 

1.6. Scope and Limitation of the Research 

1.6.1. Scope 
This research focuses on morphologic analyses of Merapi edifice on a series of DEMs in 
the past, to determine factors ascertain direction of Merapi – type eruptions. Those 
factors will be used to determine the direction of Merapi – type eruption and predicted 
area affected by pyroclastic flows it produced in the near future and proposed hazard 
zone for Merapi – type eruption. Comparison of DEM derived from various types of input 
data e.g. topographic map and IFSAR DEM was carried out to reveal efficacy of input 
data type. 

1.6.2. Limitation 
Some limitations in this research were underlined including focus of this research, various 
scale and source of input data and modeling of the pyroclastic flows.  
1. This research focus on Merapi – type eruption or dome collapse pyroclastic flow 

although Merapi produces other types of hazards affected broader area i.e. 
pyroclastic surges.  

2. Various scales and sources of input data, low data quality and insufficient series of 
digital elevation models before and after each eruption in the past prevent better 
result in determining precise direction of dome collapse in the past.  

3. Modeling of pyroclastic flow could not be conducted due to data availability and time 
constraint so prediction of affected area was carried out based on morphologic 
analysis of slope and plan curvature combined with historical data on predicted 
direction. Unavailability of digital elevation model after eruption 2006 made the 
utilization of DEM 2006 as terrain surface model to carry out morphologic analysis for 
predicted affected area and proposed hazard zone for Merapi – type eruption. 

1.7. Research Structure 
This research is composed of eight chapters, which are described briefly in this following 
section:  
Chapter 1 - Introduction 
This chapter describes introduction of the research including background, research 
problems, research objectives, research questions, benefit of the research, scope and 
limitation of the research and research structure. 
Chapter 2 – Literature Review  
The literature review provides theoretical background related to this research including 
volcanoes, strato volcano, lava dome, digital elevation model (DEM), DEM interpolation 
methods, DEM quality assessment, application of DEM for studying volcanic landform, 
electronic distance meter (EDM) for trilateration network and GIS for morphologic 
analysis.   
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Chapter 3 – Merapi Strato Volcano 
This chapter gives the overview of the study area including general overview of Merapi, 
selection of study area, summary of Merapi history, characteristic of Merapi eruptions and 
morpho – chronology of lava domes. 
Chapter 4 – Research Methodology 
This chapter provides the methodology including data, software and equipment and 
method used to derive purposed objectives of this research, separated based on the 
activity during pre – field work, field work and post – field work. 
Chapter 5 – DEM Generation and Quality Comparison 
This chapter provides result of DEMs preprocessing, DEM generation from dataset, 
DEMs quality comparison by initial observation, height distribution and statistical 
parameter and concluding remarks. 
Chapter 6 – Morphologic Analysis 
This chapter provides utilization of EDM data for morphologic changes, morphologic 
features recognition and quantification, morphologic analysis for verifying factor ascertain 
Merapi – type direction, reconstruction of Merapi – type eruption in the past using those 
factors, comparison of reconstruction results to historical data and concluding remarks 
Chapter 7 – Predicted Affected Area and Improvement of Forbidden Hazard Zone 
This chapter provides predicted affected area in the near future by morphologic analysis 
of recent summit topography and vicinity area, proposed hazard zone for Merapi – type 
eruption through travel distance from historical data and morphologic analysis, 
improvement of existing Merapi hazard map, social and economic activities on forbidden 
zone and concluding remarks.  
Chapter 8 – Recommendation 
This chapter defines achievements of this research n as well as contribution of this 
research for present circumstances related to Merapi – type hazard. The 
recommendation is also presented for future research regarding Merapi hazards. 

 



 

 

Chapter 2. Literature Review 
The literature review provides theoretical background related to this research including volcanoes, 
strato volcano, lava dome, digital elevation model (DEM), DEM interpolation methods, DEM quality 
assessment, application of DEM for studying volcanic landform, electronic distance meter (EDM) for 
trilateration network and GIS for morphologic analysis.   
 

2.1. Volcanoes 
A volcano is usually a cone – shaped hill or mountain composed of materials erupted 
through an opening in the Earth’s crust which extends from the hotter zones below 
(Scarth, 1994). Volcanoes seem to occur in many places around the World but actually, 
they are restricted to narrow and specific places. Volcanoes are clearly associated with 
plate boundaries and their activities depend on the type of plate boundary (Hamblin, 
1989). 
Volcanic activity commonly occurs in divergent and convergent boundaries with different 
type of magma produced (Scarth, 1994). Divergent boundaries usually take form of 
basaltic fissure magma, which commonly occur under the ocean so called mid ocean 
ridges. Convergent or collusion boundaries mostly produce more viscous magma due to 
higher silica content. This leads to more explosive eruption because the captured gasses 
cannot escape easily. However, there are areas where volcanic activity can occur far 
away from a plate boundary, known as hotspot areas. 

2.2. Strato volcanoes 
Volcanoes can be differentiated based on several categories i.e. shape, size, type of 
magma and style of activity. Thompson and Turk, 1997 had differentiated volcanoes into 
five categories: basalt plateau, calderas, cinder cones, shield volcanoes and strato or 
composite volcanoes, see table 2-1. 
Table 2-1. Characteristic of different type of volcanoes (Source: Thompson and Turk, 1997) 

Type Form Size Type of Magma Style 
Basalt 
plateau 

Flat to Gentle slope 100.000 to 1.000.000 km2 in 
area; 1 to 3 km thick 

Basalt Gentle eruption from 
long fissures 

Calderas Cataclysmic eruption 
leaving a circular 
depression called a 
caldera 

Less than 40 km in diameter Granite  Very violent 

Cinder Moderate slope 100 to 400 m high Basalt or andesite Ejection of 
pyroclastic materials 

Shield 
volcanoes 

Slightly slope 6° to 12° Up to 9000 m high Basalt Gentle, some fire 
fountains 

Strato or  
composite 
volcanoes 

Alternate layers of 
flows and pyroclastic 

100 to 3500 m high Variety types of magma 
and ash 

Often violent 

Strato or composite volcanoes commonly occur in convergent boundaries and they are 
differentiated from volcanoes occurring in divergent zone because of their silicic magma. 
Thus, this type of volcano has more viscous lava forming thicker flow that extent less far 
from the vent (MacDonald, 1972). Viscosity of lava sometimes hampers gas to escape 
resulting in explosive and violent eruption accompanied by large quantities of tephra.  
As a part of collision boundaries of Eurasian Plate and Indo-Australian Plate, Indonesia is 
littered with a major strato - volcanoes line ranging from Sumatera, Java, Bali, Nusa 
Tenggara, Sulawesi to Papua, figure 2-1. One of the most active and dangerous 
volcanoes in Indonesia is Merapi, due to its frequent activities which often produce 
pyroclastic flows and surges.  
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1. Efficient interpolation processing time e.g. DEMs with over a million points can be 
easily interpolated using computer workstation. 

2. The roughness penalty can be modified to preserve sharp changes in terrain 
associated with ridges, stream and other features. 

3. A drainage enforcement algorithm that attempts to remove all sinks in the fitted DEM. 
4. Drainage enforcement is further enhanced to incorporate streamline data supplied by 

user in interpolation process. 
5. ANUDEM can recognize and preserve sinks in the landscape. 
6. User can specify the output resolution of the DTM.  

2.6. Application of DEM in Studying Volcanic Landform 
Representation of terrain surface in form of DEM plays a fundamental role in modeling 
the Earth surface which can directly confer understanding of the nature of the process 
acting in the Earth surface (Hutchinson and Gallant, 2000) which made widely usage of 
DEM for different types of applications in geosciences including geomorphology. 
Geomorphology is the area of study leading to an understanding of and appreciation for 
landforms and landscapes including continents and islands, those beneath water bodies, 
as well as those on the terrestrial planets and moons of our Solar System (Goudie, 2004). 
Geomorphology delivers the study of landform using four main aspects: morpho-genesis, 
morpho-chronology, morpho-arrangement and morphology (Zuidam, 1983). 
Morphology delivers the general relief of landform through morphography, the descriptive 
aspects of geomorphology of an area and morphometry, the quantitative aspects of an 
area (Zuidam, 1983). Those aspects could be achieved by analyzing digital 
representation of surface known as digital elevation model (DEM). Terrain morphometry 
or commonly term as geomorphometry is an important component of terrain analysis and 
surface modeling (Huggett, 2007; Evans et al. 2003 in Miliaresis, 2008) to improve 
mapping and modeling in some field e.g. geomorphological and geological features of 
volcanic landform. 
According to Huggett (2007), the resurgence of geomorphometry for various geosciences 
applications were measured due to two developments, first, development and use of GIS 
which allow input, storage, and manipulation of digital data representing spatial and non 
spatial features of the Earth’s surface and second, the development of electronic distance 
meter (EDM) and global positioning system (GPS). Those developments made the 
process of making large-scale maps much quicker and more fun as well as made the 
modeling of surface topography in more various and broader ways. 
Application of DEM is very useful in deciphering geomorphic and structural features in 
volcanic landform, especially those of large-scale edifices and deposits which be readily 
studied or identified in the field cannot (Székely and Karátson, 2004). Moreover, volcanic 
morphometric modeling provides reliable measurements of eruption edifice morphology 
and its derivatives, important for constraining both aggradation and degradation models 
of volcanic landforms (Rodriguez-Gonzalez et al., 2009). 

2.7. EDM for Monitoring Volcanic Deformation 
For several decades, ground deformation studies in volcanic area have provided useful 
information to enable eruption forecasts and to constrain the shape and the evolution of 
volcano plumbing systems with time (Peltier et al., 2009).  By advances in remote sensing 
technologies, some methods for studying volcanic are provided e.g. utilization of LIDAR 
or SAR interferometry for monitoring volcanic movement. However, in most volcanic area, 
older surveying techniques i.e. leveling or distance measurement are still used to 
monitoring the movement of part of an active volcano.  
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2.8. GIS for Morphologic Analysis of Volcanic Landform 
Advances in GIS technology, the rising availability of high accuracy DEM and remote 
sensing imagery have led to the growing application of GIS tools in many areas of 
geomorphology. In geomorphology, spatial and temporal relationships between features 
and processes are essential. Thus, GIS techniques are extremely useful for the 
representation, visualization, analysis and comprehension of landforms (Remondo and 
Oguchi, 2009) through morphologic analysis. 
GIS also allows various computations using numbers of pixel size, interpolation methods 
to produce appropriate DEMs for different types of applications which considerable as no 
single interpolation method would fit all of them. Moreover, much of valuable information 
of surface attribute can be developed from interpretation of DEM by means of GIS such 
as general geomorphometric parameters (slope, aspects and curvature both profile and 
plan) and specific geomorphometric parameters (hydrologic modeling, view shade 
analysis) (Klimanek, 2007). 
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16 Chapter 3. Merapi Strato - Volcano  

volcanic area is resulted from the south–north subduction of the Indian oceanic plate 
beneath an arc system that in Java is transitional from continental to oceanic (Hamilton, 
1979 in Camus et al., 2000).  

 
Figure 3-2. Sketch map of the alignment Ungaran, Telomoyo, 
Merbabu and Merapi (Source: Verstappen, 2000) 
 
 
 
 
 
 
 
 
 
 

The gradual steepening of subduction plane in the course of time results in a gradual 
outward displacement of the rising magma and thus the central of activity. The oldest 
volcanism in the north and the active Merapi marks the south end (Verstappen, 2000). 
This gradual steepening seems to affect the evolution of Merapi, in which the rate of flow 
may have decreased and thick and long lava flows were progressively replaced by 
smaller ones, then by slow dome extrusions (Camus et al., 2000). This may also employ 
decreasing in explosivity of Merapi, from explosive eruption (VEI 4) in ninetieth century 
into more effusive eruption (VEI < 3) in twentieth century. 

3.2. Selection of Research Area 
According to Ratdomopurbo and Andreastuti (2000), Merapi strato – volcano can be 
divided to four morphologic units: volcanic cone composed of lava and pyroclastic 
materials, upper volcanic slope consisting of lava and pyroclastic deposition and lahar, 
middle volcanic slope and volcanic foot slope which consist of pyroclastic deposition, 
lahar and alluvium. 
This research was focused on morphologic analysis of Merapi edifice and volcanic cone, 
later on called summit area, with some extend of upper volcanic slope, called vicinity area 
(Figure 3-3). Merapi edifice and its volcanic cone are dynamic areas due to volcanic 
activities that change the morphology and direction of dome collapse. Some extent of 
upper volcanic slope was utilized to observe morphologic factors e.g. drainage pattern, 
lineaments and major rivers affected by pyroclastic flow for a comparison of past time 
eruption and for prediction of near future eruption.  

3.3. Summary of Merapi History 
According to Camus et al., 2000, the history of Merapi can be divided into four main 
periods: Ancient Merapi, Middle Merapi, Recent Merapi and Modern Merapi whilst 
Ratdomopurbo and Andreastuti, 2000 divided Merapi into Pre – Merapi, Ancient Merapi, 
Middle Merapi and Modern Merapi periods. However, they seem to refer to same 
development processes and evidences. Thus, the summary of Merapi history described 
below was a combination among their publications. Some arguments were also raised by 
Newhall et al., 2000 questioning the volcanic structures and processes related to their 
interpretations.  
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chronology of remnant of old domes, later on stated as remnant of domes for lava domes 
and coulees, in Merapi edifice becomes important.      

3.5. Morpho – chronology of Domes 
Ever since Merapi activities have been recorded, it has erupted for 53 times underlining 
significant differences in characteristic of eruption between ninetieth and twentieth 
century. In the 1800s, explosive eruptions of relatively large size occurred (to VEI 4); 
some associated with St – Vincent types while Merapi activity has comprised mainly 
Merapi – types during the twentieth century (Voight et al., 2000). This significant 
difference has made recent Merapi eruptions less destructive than that of ninetieth 
century and morphologic changes of summit area accomplishes of process development 
and destruction of domes or coulee.  
Morpho – chronological of domes in twentieth and twentieth first centuries become one 
focus on this research since their growths and collapses perform morphology of summit 
area. On the other hands, remnant of dome which accomplishes Merapi edifice become 
important when the crater rim has already filled by volcanic material leading magma to 
find weak zone along crater rim. Strong fumarolic activity, weathering and erosion made 
remnant of domes become one of the weakest zone, indicated by some fractures at south 
flank in which remnant of dome located (Subandriyo et al., 2009; Camus et al., 2000). 
Thus, remnant of domes could become point of magma extrusion and sliding or collapse 
as well which could give preliminary assessment of collapse direction in the future. 
Historical data of Merapi eruption and morpho – chronology of remnants of domes in 
Merapi edifice was summarized from Voight et al. (2000), MVO (2000) and CVGHM 
(2006). Terms used are dome collapse nuees ardentes, refer to Merapi – type eruption 
and fountain collapse nuess ardentes, refer to St. Vincent – type eruption. History of 
Merapi eruption in during twenty and twenty first centuries is described below: 
1902 - 1904 
Merapi activities in the beginning of twentieth century were begun on Mesjidanlama crater 
rim that already filled in by lava 1883.  A dome began to growth in east of Mesjidanlama, 
a precursor of East dome or Gn. Anjar, in which the activities of Merapi centered until 
present day. On January 1904, several explosions destroy eastern part of East dome and 
“partially created” Woro breach, caused nuees ardentes that travelled 6 km, to the east–
northeast and producing heavy ash fallout in Boyolali. 
1905 - 1906 
A less violent explosion occurred in southeast – east part of East dome, in which 
undifferentiated Merapi type explosion extruded to Woro valley through reopen Woro 
breach. After explosion, the dome resumed growth and enlarged beyond north of 
Mesjidanlama crater causing gravitational collapses. 
1909 – 1913 
Locus of active volcanism shifted towards the northwest, and the advancing dome lava 
overrode the crater rim.  A few nuees ardentes were reported during 1909 and 1910, 
probably due to minor dome collapses, considered as Merapi – type.  
East dome or Gn. Anjar continued to growth through 1911, especially at the northwest 
side, with the summit taking on a more symmetric shape. On the west side of G. Anjar, a 
second summit dome rose in 1911–1912 and ultimately it became higher than G. Anjar by 
July 1912, refer to figure 3-7. This West dome had an unstable front on the southwest 
that collapsed periodically, generating nuees ardentes toward the Batang.  
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Senowo valleys as far as 4.5 km. New lava emerged soon after, with slow effusion. By 29 
January, volume of new dome was reported as much as 0.65 million m3, which then 
producing dome collapse nuees ardentes on 10 February 2001 toward Bebeng, 
Sat/Putih, Lamat and Senowo. At the end of eruption, only small part of L 2001 remained, 
covering upper part of L 1997 – 1998. L 2001 can be clearly observed from MOP 
Babadan.    
2006 
Merapi activities in this period were started by emerging of new dome in between 
Gegerboyo and L 1997. New dome grew toward south and filled area toward Gendol 
valley with average of 0.2 million m3 per day. The average of dome growth decreased to 
0.07 – 0.15 million m3 per day after 88 dome collapse nuees ardentes invaded 4.5 km to 
Krasak and Boyong (mainly) and small nuees to Gendol on 15 May 2006. 
 After an earthquake on 27 May 2006, the dome growth was renewed to 0.17 million m3 
per day. Important nuees occurred on 5 June 2006 because some part of Gegerboyo 
collapsed, widening Gendol breaches and changed the direction of nuees ardentes 
toward Gendol as far as 4.5 km (mainly). New dome then emerged inside the cavity. This 
dome, L 2006, can be observed from MOP Babadan (last viewed in September 2009) 
and can be clearly distinguished from others because of its’ color.  
Based on Merapi historical eruptions in twentieth and twentieth first centuries above, 
historical eruptions and remnants of domes on summit area in present time were 
comprehensively summarized in table 3-1 and 3-2 respectively.  
Table 3-1. Summary of Merapi eruption during twenty and twenty first centuries 

Year Type of eruption Direction River Flowed and extent distance 
1902 - 1904 Dome collapse  E Woro (6 km) 
1905 - 1906 Undifferentiated E Woro 
1909 - 1913 Dome collapse SW Batang 
1920 – 1923 Undifferentiated W – SW Blongkeng 
1930 Undifferentiated NW, W – SW, SW Senowo, Blongkeng (12 km), Batang 
1933 – 1934 Fountain collapse NW Senowo 
1939 – 1941  No collapse  - 
1942 – 1945 Dome collapse NW, SW Senowo, Blongkeng, Batang 
1948 No collapse  - 
1953 – 1956 Dome collapse N Apu (5km) 
1957 – 1958 Dome collapse SW Batang (4km) 
1961 
17 – 18 April Dome collapse NW, SW  Batang ( 6.5 km), Senowo 
7 – 8 May Fountain collapse NW, SW, SE, E Senowo, Batang (12 km), Gendol, Woro  
27 – 28 Nov Dome collapse SW Batang (8 km) 
1967 – 1969 
1967 - 1968 Dome collapse SW Batang (7 km) 
1969 Fountain collapse SW, W – SW – S  Bebeng (13.5 km), 9 km to Blongkeng, Batang , Krasak   
1972 – 1974 
1972 Fountain collapse SW Batang (3 km) 
1973 Dome collapse W – SW Blongkeng (5.5 km), Bebeng (7 km), Batang (6 km) 
1976 – 1979 Dome collapse  SW Batang (6km) 
1980 – 1983 Dome collapse SW, SW – S  5 – 7 km to Batang, Bebeng, Putih, Krasak  
1984 – 1991 Dome collapse SW Sat/Putih 
1992 – 1993 Dome collapse W  Sat/Putih (4 – 5 km) 
1994 - 1998 
1994 Dome collapse SW, SW– S, S Bebeng, Krasak, Bedog, Boyong (6.5 km) 
1995 Dome collapse SW, S 3.5 km to Krasak, Boyong 
1997 (14 Jan) Dome collapse SW, SW– S Bebeng, Krasak, Bedog 
          (17 Jan) Fountain collapse SW– S, S Krasak, Bedog, Boyong (6.5 km) 
1998 No collapse  - 
2001 Dome collapse  NW,W – SW, SW Senowo, Lamat, Bebeng  (4.5 km) and Sat/Putih (6 km) 
2006 (15 May) Dome collapse SW – S , S,  SE 4.5 km to Krasak, Boyong, Gendol 
        (14 June) Dome collapse SE Gendol (7 km) 

Note: E: east, SE: southeast, S: south, SW: southwest, W: west, NW: northwest, N: north 
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Table 3-2. Table of dome remnants, L: remnant of domes 
Eruptions Dome/Coulee Produced Remarks 
1888 L 1888 Remain in northwest direction, from activity before twentieth century 
1902 – 1904 - Continue to grow until destroyed by eruption 1909 
1902 – 1909 L 1988 – 1909 Part of East dome, remain in northeast and southeast 
1905 – 1906 L 1906 Remain in east 
1909 – 1913  L 1911 – 1913 Some destroyed by eruption 1922, some remain in south (Gegerboyo) 
1920 – 1923 L 1922 Completely destroyed during the eruption 
1930 – 1931 L 1930  Small part remains, in northwest 

L 1931 Covered by L 1934 
1933 – 1934 L 1934 Covered by L 1957  
1939 – 1941 L 1940 Covered by L 1992 – 1993 
1942 – 1945 L 1942 Covered by L 1948  

L 1943 Covered by L 1948 
1948 L 1948 Small part remains in northwest – north, others covered by L 1957  
1953 – 1956 L 1953 – 1955 Some remain in north 

L 1956 Some remain in north 
1957 – 1959 L 1957 Completely destroyed by during eruption 1997 - 1998 
1961 L 1961 Completely destroyed by eruption 1967 – 1969 
1967 – 1969 L 1969 Completely destroyed by eruption 1972 – 1974 
1972 – 1974 L 1973 Completely destroyed 
1976 – 1979 L 1977 Completely destroyed by eruption 1984 – 1991  
1980 – 1983 L 1983 Completely destroyed by eruption 1984 – 1991  
1984 – 1991 L 1984 - 1986 Some remain in southwest, some covered by L 1992 
1992 – 1993 L 1992 Some part remain in west 
1994 – 1998 L 1994  Completely destroyed during the eruption  

L 1997 Some remain in southwest  
L 1998 Some remain in west, part of it covered by L 2001 

2001 L 2001 Small part in west 
2006 L 2006 Some remains in northwest  

Changing in direction of dome collapse over time was caused by changes in active 
sectors and (or) aggradation and degradation processes result in changes in low land 
areas along the crater rims (Voight et al., 2000).  From historical data along last century, 
some highlight should take into account related to prediction in direction of dome collapse 
nuees ardentes or Merapi – type eruption in the future: 
1. Central of Merapi activities was usually centered inside horseshoe shape crater rim 

which opens to certain direction, which remains unchanged for 30 – 40 years e.g. 
crater rim 1930 finally changed after 31 years, shifting the open direction toward 
southwest direction and crater rim 1961 changed after 45 years toward southeast 
direction. 

2. Shifting in active sectors could be caused by remnant of lava dome blocking the 
active vent which causing the eruption driving overpressure (Pex) less than lithostatic 
pressure P2, figure 3-6. For instance, remnant of lava dome L 1940 caused shifting of 
central eruption during 1942 – 1945. Some experts of MVO stated that these events 
were caused by lithostatic pressure of symmetrical dome L 1940, blocking magma 
extraction through the vent so magma extruded through other weak zone, usually 
adjacent to remnant of dome and indicated by explosions.  

3. Shifting in direction of lava dome collapse also caused by changing in low area along 
crater rims, in this case crater rim was were filled by remnant of domes i.e. L 1953 – 
1956 moved toward north presumably because crater rim was filled by L 1940, 
western part of crater rim had already filled in by L 1942, L 1943, and L 1948 while 
south to northeast were protected by crater wall 1930, figure 3-11 as reference.  

4. Eruption during 1994 – 1998 gave an indication that south ridges of crater rim 1961 
or Gegerboyo (L 1911 – 1913), a remnant of West dome, and L 1888 – L 1909, a 
remnant of East dome, were a critical point to slide or collapse during the eruption 
because they already altered by hydrothermal and erosion process.  



 

 

Chapter 4. Research Methodology 
This chapter provides the methodology including data, software and equipment and method used to 
derive purposed objectives of this research, separated based on the activity during pre – field work, 
field work and post – field work.  
 
 
This research was focused on the morphologic changes of Merapi edifice to determine 
morphologic factors ascertain direction of Merapi – type eruption in the past and 
utilization of those factors to predict the direction of Merapi – type eruption and the 
affected area in the future. The accuracy and efficacy of input data to study morphologic 
changes were also assessed through initial interpretation, visual and statistical methods.  
The research processes were divided based on three stages: pre field work, field work 
and post field work (Figure 4-1). 

4.1. Pre – field Work 
Pre field work activities were started by intensive literature review throughout books, 
journals, reports, and previous studies relevant to this research. Valuable information 
concerning data needed, methods used, softwares and tools used to achieve research 
objectives was delivered from those resources. Moreover, those resources provided lots 
of information useable during field work and post field work stage. 

4.1.1. Data availability, software and equipment needed 
In this research, sets of DEMs were required in order to monitor morphologic changes 
over 70 years. Those data were collected from several institutions related to Merapi 
hazard and disaster management during pre field work and field work, as shown in table 
4-1. However, some data cannot be used in this research due to either low quality of 
surface representation e.g. ASTER GDEM and SRTM DEM or not fulfill requirement for 
delivering DEM e.g. aerial photographs of 1969 without calibration camera report.  
Some software and equipment utilized to acquire data as well as to process, analysis and 
visualize the input data were listed in table 4-2.   
Table 4-1. List of data used in this research, year represented here were production year 

Types Scale/Res Format Sheet Nr/Area Sources Year 
AMS Topo Map  1:   50.000 Hardcopy 5020 II series T725 (Muntilan) US ARMY Service 1964 
Contour map 1: 100.000 Scanned Merapi - Merbabu VSI 2001 
Topographic map 1:   25.000 Digital 1408 – 244 (Kaliurang) BAKOSURTANAL 2000 
Contour map 1:     5.000 Digital Merapi SNVT SABO Project 2006 
IFSAR DEM          5 m  Digital Merapi Intermap Tech. Inc. 2006 
ALOS Prism Image 2.5 m (Pan) Digital Merapi - Merbabu JAXA, Japan via LAPAN 2006 
Hazard Map 1: 100.000 Digital Merapi VSI, BAKOSURTANAL 1978 
EDM data (2006 – 2009) - Hardcopy Merapi MOPs - 
Statistics data - Digital DIY and Central Java Province Statistical Board 2008 

4.1.2. Overview of the Data  
Surface representations were crucial for studying morphologic changes of Merapi edifice 
over time. Hence, overview of history, acquisition date and field checking date of data 
available was necessary as described below.  
AMS topographic map 
AMS topographic map of 1964 was compiled from AMS topographic map of 1944, sheet 
47/XLI – C, 47/XLI – D, 48/XLI – C, planimetric detail revised by photo planimetric 
method, horizontal datum: Batavia coordinate system Transverse Mercator and vertical 
datum: mean sea level.  
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Figure 4-1. General Research Methodology (Source: own illustration) 
 
From Dutch Colonial Institute website (www.kit.nl), the author figured out this map was 
copied from Dutch map of 1939 scale 1:25.000 sheets 47/XLI l partly revised in 1936, 
47/XLI p revised in 1935 – 1936, 47/XLI q revised in 1934, 47/XLI D scale 1:50.000 
surveyed in 1924 – 1925. Revision of topographic condition was carried out by 
topographic map of G. Merapi scale 1:10.000 from Volcanic Research Bureau, Bandung 
surveyed in 1935 – 1937. By studying the index, the author concluded that topographic 
representation of Merapi summit is representation of year 1935. 
VSI contour map  
VSI contour map was produced from mosaic orthophoto of aerial photographs scale 
1:60.000 taken in 1981 – 1982 with end lap 60% and side lap 25%. Those images were 
processed by digital photogrammetric technique using Z/I imaging and Bentley Leica 
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softwares. Ground control points were taken in 1998 – 2000 using GPS static methods 
with approximate accuracy 1 meter. Hence, topographic representation of this map is 
situation of 1982.  
The contour lines were produced from stereo model with coordinate system UTM zone 49 
south and reference datum WGS 1984. Contour lines were overlying the orthophoto in 
scanned format so the visibility of contour lines was less.  
Table 4-2. List of software and equipment 

No Software and Equipment Functions 
Software 
1 Adobe Photoshop Visualization of graphs and pictures 
2 Arc GIS 9.3 Processing, analyzing and visualization of DEM data 
3 Arc View 3.3 Defining lineament and dome remnant orientations, ellipse parameters and 

azimuth and distance 
4  ENVI 4.5  Defining elevation of check points 
5 Global Mapper Converting IFSAR DEM to Arc GIS format 
6 PCI 9.1 DEM extraction from ALOS PRISM imageries 
7 Microsoft Excel 2007 Calculating EDM data and DEM quality comparison 
8 Microsoft Word 2007 Typing thesis report 
9 Rozeta 2.0 Drawing rose diagram 
Equipment 
1 Flatbed scanner Scanning topographic map 
2 GPS Garmin CS 76 Plotting position of Merapi pictures taken, bench mark of EDM measurement 
3 Panasonic LUMIX camera Taking pictures of Merapi edifice and field work activities 
4 Personal computer Data processing, data analysis and result visualization 
5 Printed Merapi sides pictures Plotting remnant of  domes in Merapi summit 
6 Interview form Filling the information related to distance measurement and precursor of Merapi 

eruption, information regarding the activities of Merapi  

BAKOSURTANAL topographic map 
Topographic map from BAKOSURTANAL, known as RBI map, was produced from 
mosaic orthophoto from aerial photographs scale 1: 30.000 taken in 1993 – 1994 and 
field checked in 1996. The map was collected in digital format, using coordinate system 
UTM zone 49 south, horizontal datum: GDN 1995 which utilized WGS 1984 parameters, 
vertical datum: mean sea level. The topographic situation represented in this map was 
based on field survey in 1996. 
SNVT SABO Project topographic map  
This map employed photogrammetric technique to derive contour lines of Merapi edifice 
and surrounding area before 2006 eruption. Coordinate system used in this map is UTM 
zone 49 south, horizontal datum WGS 1984 and vertical reference: mean sea level. West 
- northwest part of Merapi edifice was covered by solfatara. 
IFSAR DEM 
IFSAR DEM was obtained from Intermap Technologies Inc. Denver, USA in form of digital 
surface model (DSM) with pixel size 5 m, geographic coordinate system, horizontal 
datum: ITRF 2000 and vertical datum: EGM 96. The acquisition date was in between 
earthquake at 27 May 2006 and Merapi eruption at 16 June 2006.  
Some striped lines and voids were observed in vicinity area but the summit area is clear 
enough to observe. These errors occur due to the nature of data capturing process 
(technician of ExsaMap Asia, written communication). 
JAXA ALOS PRISM imagery  
Pairs of ALOS PRISM imagery 1B2 nadir and forward taken at 12 September 2006, after 
2006 eruption, could be utilized to develop DSM. These images are radiometry and 
geometry corrected with coordinate system UTM zone 49 south, horizontal datum: WGS 
1984 and vertical reference: WGS 1984.  Most parts of study area were covered by cloud 
which may affect the DEM resulted.  
Merapi Hazard Map 
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34 Chapter 4. Research Methodology  

and affected area of Merapi – type eruption in the near future, proposed hazard map for 
Merapi – type eruption, layout and report writing.   

4.3.1. DEMs Generation and Quality Comparison 
Application in geo-science e.g. geology, geomorphology needs integration of terrain relief 
and features in form of spatial model (Rahman and Pilouk, 2008) and DEM is a very 
effective tool for terrain analysis since many terrain attributes e.g. as slope, aspect can be 
derived and displayed with the help of GIS (Bi et al., 2006; Huggett, 2007). The quality of 
geomorphometry analysis, method for land surface analysis, is determined by the quality 
of DEMs input. Even the most sophisticated geomorphometric algorithm will be unable to 
rectify severe artifacts and errors in the input DEMs (Reuter et al., 2009). 
The most common form of DEM is grid DEM because of their simplicity and ease of 
computer implementation (I.D. Moore et al., 1991, 1993f, Wise, 1998 in Wilson and 
Gallant, 2008). However, DEM derived products often contain blunder, systematic and 
random errors (Li et al., 2005; Reuter et al., 2009) which might not be detected in grid 
DEM. Sun shading, often called hill shade model or simple GIS operation, should be 
utilized to visually detecting those types of errors (Reuter et al., 2009).  
To be able to visually detect those types of errors, derived DEMs were developed into 
sun shading or hill shade model using Arc GIS 9.3 before editing and re – interpolation. 
3D representation was developed from re – interpolated grid DEM into hill shade and TIN 
models by means of Arc Scene 9.3. 
DEM quality comparison of input DEM could conceptually be carried out only for IFSAR 
DEM and ALOS DEM due to time range and significant accuracy difference between 
other topographic maps and DEM 2006 as reference.  

4.3.1.1. DEMs Generation  
DEM generation in this research was conducted in two steps: DEMs preparation consist 
of coordinate system transformation, error recognition, editing and re – interpolation and 
development of 3D models, figure 4-4. 

 4.3.1.1.1. DEM Preparation 
DEM preparation was conducted to develop a dataset with particular coordinate system 
and correct representation of surface topography since the fundamental of morphologic 
analysis was based on parameters and objects extraction from DEMs (Pike et al., 2009) 
in which observation of particular object was easier when they were referred in the same 
coordinate system (Anonymous, 2003).  
Coordinate system is a fundamental issue when dealing with dataset from various 
institutions for observing changes of particular phenomena due to possibilities of miss 
positioning.  Hence, unique geo – reference coordinate system must be utilized to make 
those physical phenomena easier to calculate or understood, frequently by conducting 
transformation from one coordinate system to another.  
In this research, coordinate system UTM zone 49 south, reference datum WGS 1984 was 
used as geo-reference coordinate since most data available used it. Therefore, 
transformation from other coordinate systems was necessarily to develop single 
coordinate system for dataset e.g. transformation of TM coordinate system, Batavia 
datum (AMS topographic map 1964, later on called map 1935) and geographic 
coordinate system, ITRF 2000 (IFSAR DEM). 
Generally speaking, there are three types of errors commonly occur in DEM derived 
products: blunder or gross error, systematic error and random error. Gross error in fact is 
a mistake e.g. wrong coded elevation contours. Systematic error usually occurs due to 



 

Morphologic Analysis of  Merapi Edifice in Studying Merapi – Type Eruption, to Improve Volcanic Hazard Map

 
 

35 Chapter 4. Research Methodology  

procedure or system used to deliver DEM and this type of error could not be removed in 
the existing data. Random error usually refers as a random noise in data acquisition 
which commonly removes before the data has been published and filtering process is 
usually applied to remove this error (Li et al., 2005; Reuter et al., 2009). 
Since data used in this research were existing data, only gross and random errors on 
DEM might be able to observe. Grid DEM was then built up into hill shade model to detect 
these errors.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-4. Workflow of DEM generation from various input data. The years of topographic maps represented 
were years of surface topographic represented, not the production date, refer to section 4.1.2 (source: own 
illustration) 

DEM preparation from Topographic Maps 
Contour lines of topographic maps are one of the most common resources to develop 
digital terrain models in most part of the World (Li et al., 2005) before other techniques 
were developed e.g. photogrammetry and remote sensing. In this research, most of 
terrain representation from past 70 years could be achieved through topographical maps.  
Digitization from scanned topographic maps, map 1935 and Map 1982, were conducted 
manually because low quality of lines obstacles automatic conversion using Arc Scan and 
result in segmented contour lines. In addition to, contour lines of summit area need to be 
digitized precisely due to their important visualization to study morphologic changes. 
Digital contour lines of map 1935 were then projected into dataset coordinate system. 
Topo 2 Raster tools developed based on ANUDEM interpolation method (Arc GIS help) 
was chosen to convert contour lines into grid DEMs because it preserved actual 
representation of terrain shape e.g. ridges which is important in geomorphologic analysis 
(Fisher, 1998 in Reuter et al., 2009), efficient in data processing, enforces sinks and 
defined output DEM resolution (Hutchinson and Gallant, 2000; Sinha, 2000 in Rahman, 
2006; Yang et al., 2005). The optimum resolution of ANUDEM interpolation, termed as a 
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Statistical methods are well accepted for quality assessment but they provide incomplete 
result and vice versa. Moreover, accurate representation of terrain shape is more 
important than absolute elevation accuracy (Geodata and Geoscience Australia, 2002) 
and the absolute accuracy of the elevation values in a sample is not the most important 
indicator of high quality DEMs (Reuter et al., 2009). Thus, the combination of visual and 
statistical methods is needed to fulfill the weaknesses of one method to another. 
In geomorphometry point of view, the accuracy of land – surface parameters and objects 
were the most consideration in which the DEM accurately resembles the actual shape 
and flow/deposition process, termed as relative accuracy or geomorphological accuracy 
of DEMs (Schneider, 1998; Wise, 2000 in Reuter et al., 2009). For example, even 
elevation values are sampled very accurately e.g. LiDAR can achieve an accuracy of ± 
0.15 m, the results of the geomorphometric analysis may still be poor e.g. because the 
DEM is too noisy; or the canopy is unfiltered. 
Some visual methods for dataset quality assessment include initial observation of 
topographic representation of DEM and checking consistency of data set using a 
reference data for analysis i.e. better quality DEM, orthophoto, contour lines from map, 
etc (Podobnikar, 2008; Ping, 2003; Li et al., 2005) by comparing a path drawn on each 
DEM or presenting terrain profile between two points (Podobnikar, 2008 and Trisakti and 
Pradana, 2007).  
Most common statistical methods used to compared DEM quality was conducted by 
computing a mean error, indicator for a systematic error; root mean square error (RMSE), 
indicator for a random error after the systematic component has been eliminated, and 
range error (minimum/maximum error) (Podobnikar, 2008 and Li et al., 2005). Amongst 
those parameters, RMSz errors is the most common descriptor used in statistical 
evaluation of DEM errors (Fisher and Tate, 2006; Yilmaz 2007 in Rodriguez – Gonzales, 
2009; Li et al., 2005 and Podobnikar, 2008). 
In this research, DEM quality assessment was carried out by combining both visual and 
statistical methods of dataset using DEM 2006 as reference data because it has the 
highest accuracy among others (Li et al., 2005). The initial observations of topographic 
representation of morphologic features among DEMs were conducted visually for summit 
and vicinity area whereas the comparison of terrain profile and statistical assessments of 
input data were conducted only for IFSAR DEM due to enormous changes in topographic 
condition over acquisition date and vast accuracy gap between other input data with 
reference DEM, figure 4-7. 
 
 
 
  
 

 
 
 
 
 
 

Figure 4-7. Workflow of DEM comparison of DEM 2006 and ALOS DEM to IFSAR DEM  
(Source: own illustration) 

Three transect lines were selected to observe height distributions between IFSAR DEM 
and DEM 2006 and fifteen conjugate points were chosen to calculate the statistical 
parameters showing the absolute elevation accuracy. Transect lines and conjugate points 
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4.3.2.1. EDM for morphologic changes 
EDM data collected from every MOP were one of the resources to deliver morphologic 
changes in summit and flank area. Incomplete series of EDM data before Merapi eruption 
in 2006 and other supporting data e.g. coordinate of fixed prism prevented the utilization 
of those data to deliver morphologic changes due to 2006 activity. Thus, the best 
utilization for these data was distance changes after 2006 activity.  
The distances from benchmark to fixed prisms were calculated from daily measurement 
before calculated into average distances per years. The distance changes were delivered 
as changes between year of 2006 and 2009. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-9. Workflow for morphologic analysis (Source: own illustration) 

 4.3.2.2. Morphologic features recognition and quantification 
Volcanic morphometric modeling provides reliable measurements of eruption edifice 
morphology and its derivatives which are important for constraining both aggradations 
and degradations models of volcanic landforms. For modeling process of aggradations 
and degradations of past time volcanic activity, morphometric parameters were 
determined (Rodriguez-Gonzalez et al., 2009). The parameters taken mostly related to 
crater and their features (Corazzato and Tibaldi, 2006).   
Morphologic features recognition and quantification from past time were carried out based 
on morphologic features observed on hill shades and 3D models of past time DEM: DEM 
1935, DEM 1982, DEM 1996 DEM 2006 and IFSAR DEM. Summary of morphologic 
features and parameters used to quantify them was displayed in table 4-3. 
Guided by studying the morphology of area; study by MVO, 2000; Rodriguez-Gonzalez et 
al., 2009; Corazzato and Tibaldi, 2006 and expert opinion, the following morphologic 
features were identified, some of which were illustrated in figure 4-10: 

4.3.2.2.1. Summit Features  
1. Crater rim: a circular crown of a volcanic cone with steep to very steep wall formed by 

explosion activity. As the volcanic activity was centered inside this features, it is most 
rapidly changed site on strato – volcano (Scarth, 1994). Tinkler, 1971 in Goudie, 
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3. Crater floor: area inside the crater rim representing area where the magma extrudes 
to the surface. Crater floor has formed as the result of ejection collapse material from 
explosive eruption and later on filled by some remnant of domes which not tore down 
during the eruption or developed after the eruption. 

4. Adjacent ridges: ridges adjacent to crater breaching, important features since their 
presences could act as artificial barrier controlling direction of pyroclastic flow 
produced by dome collapse or Merapi – type eruption (CVGHM, 2006).   
Parameters used to quantify adjacent ridges were their relative positions and heights 
(Figure 4-10). Ridges position was determined by its relative direction to rim 
depression while their heights were calculated from cross section profile, maximum 
height - minimum height drawn in the profile.  

5. Breaches: cracks on crater rim which might give preliminary judgment of the area 
altered by hydrothermal process making it more vulnerable to erosion by both long-
term, slow-mass-wasting, glacial or fluvial processes and catastrophic failure 
(Davidson and Silva, 1999).  
Parameters measured for breaches were relative orientation, depth and width. 
Orientations of breaches, displayed as relative position to crater rim, were measured 
from north with central point on crater rim using distance and azimuth extension in 
Arc View 3.3 while its depth and width were calculated from profile graph of cross 
section along breaches. 
Table 4-3. Morphometric parameters used to quantify features  

Features Parameters  Description /unit Proposed Methods 
Crater Shape Ellipse parameters (a, b, e) Ellipse extension  
 Perimeter Perimeter of rim /m Shape length 
Crater rim floor Shape  Shape of rim floor - 
 Perimeter Perimeter of rim floor/m Shape length 
Crater breaching  Orientation Orientation of rim depression Distance and azimuth extension 
 Shape U or V shape Profile Graph from 3D 
 Depth The lowest point of depression Cross section, Profile graph 
 Width Length of the depression /m Cross section, Profile graph 
Adjacent ridges Position Left or right sides of crater breaching Cross section, Profile graph 
 Height   The highest point of steep wall /m Cross section, Profile graph 
Breaches Orientation Orientation of major axis of rim Distance and azimuth extension 
 Depth The lowest point of depression Cross section, Profile graph 
 Width Length of the depression /m Cross section, Profile graph 
Remnant of domes Shape Dome or coulee Shape Length 

Orientation Orientation of major axis Distance and azimuth extension 
 Area Covered area /m2 Shape Area 
Drainage  Pattern  Basic drainage pattern Flow direction and accumulation 
Lineaments Orientation Azimuth Rose Diagram 
Major rivers  Name  Major rivers flowed by PF 

(Sources: Corazzato and Tibaldi, 2006; A. Rodriguez – Gonzalez et al., 2009 and expert opinion) 

6. Remnant of domes: parts of domes or coulees which not tore down during the 
activities and remain on or around crater rim. Dome is mounds of rock that 
accumulate around the vent and if they show some flow away from the vent, they are 
termed coulees (Goudie, 2004). 
The degradation process on most of strato volcano has underlining the effects of 
hydrothermal alteration by a sufficient heat flux from mature conduit. The 
consequence of this process is the rock volume affected by the system is altered and 
weakened, making it more vulnerable to erosion by both long-term, slow-mass-
wasting, glacial or fluvial processes and catastrophic failure (Davidson and Silva, 
1999). 
Remnant of domes in Merapi summit is one of critical points to consider when dealing 
with direction of dome collapse in the near future. Hydrothermal process from 
endogenic force, weathering and erosion process made remnant of old domes 
altered (Camus et al., 2000) and subsequent explosive eruptions or major dome 
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collapses might create new depressions that can differ from previous depressions in 
size and orientation (Young et al., 2000). Thus, their relative position and estimated 
volumes must be clearly defined. However, volume estimation of remnants of domes 
was difficult to carry out owing to incomplete series of DEM before and after each 
eruption. 
Remnant of domes was recognized based on their specific morphology and their 
delineations were carried out based on visual interpretation on hill shade and 3D 
models. For two recent DEMs: DEM 2006 and IFSAR DEM, recognition and 
delineation were carried out  using combination of pictures of Merapi sides, recent 
sketches in MOPs and description from PIC in every MOP (refer to figure 4-3). 
Morpho – chronology of domes from historical data was used to verify the description.  
Remnant of lava domes was amounted on hill shade view before checked in 3D 
model. The dimensions of remnants of domes calculated including their relative 
positions and areas, figure 4-12. Quantification of remnants of domes was carried out 
by their relative orientations toward crater rim and area covered. Initial positions of 
domes’ remnants were delivered from table 3-2. Their orientations were relatively 
observed from center of crater rim to main axes and covered areas were 
automatically calculated from the attribute table. 
 

Figure 4-12. Workflow for 
remnant of domes (Source: 
own illustration) 

 
 
 
 
 
 
 
 
 

4.3.2.2.2. Vicinity Features 
1. Drainage pattern reflects influence of such a factors as slope, rock, structural 

controls, etc that they are extremely helpful in the interpretation of geomorphic 
features and study of them represents one of the practical approaches to an 
understanding of structural and lithologic control of land form evolution (Thornbury, 
1958). Disrupted of drainage pattern might be performed by fault scarps (Huggett, 
2007). 
Basic drainage pattern of study area was derived from flow accumulation and flow 
direction from grid DEM 15 m pixel size because 5 m pixel results in too detail 
drainage pattern making hard to classify them. Drainage pattern and hill shade DEM 
were then utilized to define the lineaments and to digitize major rivers located down 
slope of crater breaching.  

2. Lineaments: any linear features which perform straight lines or curves that resulted 
from tectonic origin (Huggett, 2007).  Recognition of lineaments in study area were 
carried out by digitize them on hill shade overlain by drainage pattern.  
Parameter used to quantify lineaments was their relative orientation and distribution 
which calculated using distance and azimuth extension in Arc View 3.3 before drawn 
using Rozeta 2.0 (Pazera, 2004).  
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3. Major rivers: rivers located down slope of crater breaching which might be overflowed 
by pyroclastic flow hazard. These features were digitized on hill shade DEM overlain 
by drainage pattern and later on would be used to reconstruct major distribution of 
volcanic eruption products. 

4.3.2.3. Morphologic analysis of features  
Morphologic analysis of past time eruption in this research was divided into two steps: 
morphologic changes over 70 years and analysis of those morphologic features to 
determine factors that ascertain the direction of Merapi – type eruption. 

4.3.2.3.1. Morphologic changes over 70 years: 
1. Computation of DEM difference 

Scales and resolution of input data were one of major problems when dealing with 
morphometric analysis of a dataset (Hutchinson and Gallant, 2000). In planar shape 
analysis, ratio combinations of area, perimeter length and axis length are used to 
quantify planar shape in specific geomorphometry (Goudie et al., 1990). 
DEMs used in this research were computed from various scales and resolutions 
which might affect the result of morphometry features’ quantification. To determine 
the ratio of area and perimeter among DEMs, conventional geomorphometry 
technique was utilized, using circle from a central point passing a reference point 
whereas ratio of distance was calculated by preserving distance between two 
reference points.  
The area and perimeter of the circle were derived automatically on field table attribute 
in Arc GIS before compared to DEM 2006 using equation 9. Percentage of area, 
perimeter and distance differences of DEM toward reference DEM were calculated 
using equation 10 and 11 before used for correcting area, perimeter and distance 
quantification value.   

2. Correction of morphometry features’ quantifications.  
Correction of morphometry features quantification was carried out by subtracting 
quantification values of features with percentage of area and perimeter correction as 
shown in equation 12.  

3. Figure out the morphologic changes of features over 70 years.  
Morphologic changes over 70 years were carried out by observing morphology and 
corrected morphometry parameter of features which quantified in every DEM. 

 

 

 

 

 

 

 

4.3.2.3.2. Analysis of morphologic features 
Morphologic analysis of features was conducted to determine the morphologic factor 
ascertain direction of dome collapse in the near future by studying past time eruptions. 
Morphologic changes of features from past 70 years were studied before deciding 
features that ascertain direction of dome collapse in the past.  
As this study was focused on Merapi – type of eruption, pyroclastic flow produced by 
gravitational failure (Voight et al., 2000), morphologic features chosen as factors were the 
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one indicates low land area around Merapi edifice and the ones act as controlling factor 
directed pyroclastic flow hazard.  

4.3.2.4. Reconstruction of Merapi – type eruption in the past 
Merapi activities are characterized by continuous growth of lava domes, interrupted by 
collapses and phases of quiescence (Camus et al., 2000). Gravitational collapse of lava 
domes were then driven to several types of hazards i.e. tephra, pyroclastic flows and 
surges. Pyroclastic flows and surges are two end – member types of pyroclastic density 
current (Wilson and Houghton, 1999). Pyroclastic surges are distinguished from 
pyroclastic flow by contained material even though a continuum exists between them 
(Marti and Ernst, 2005). 
Pyroclastic surge is a turbulent, low-density, high-velocity part of a pyroclastic density 
current. It is not so constrained by topography and can effect areas high on valley walls 
and even overtop ridges to enter adjacent valleys. Pyroclastic flow is a flow of volcanic 
material ranging from vesiculated, low-density pumice to unvesiculated, dense lava and 
clasts which tend to follow topographic lows, mostly restricted to valley floor (Nakada, 
1999; Marti and Ernst, 2005) or depressions in the slope of volcano and spread out over 
the adjacent landscape (Zuidam, 1983).  
Small nuees ardentes d’avalanche or Merapi – type eruption, reach only 1 – 3 km from 
the crater but the bigger one may reach a distance of 7 to 9 km (Zuidam, 1983). 
Pyroclastic material from Merapi-type dome failures is distributed usually in relatively 
narrow sectors defined by the approximately radial valley systems (Voight et al., 2000). 
Thus, the importance of valleys and their morpho – arrangement were needed to identify 
the area prone to pyroclastic flow (Frank Lavigne, personal communication).  
Reconstruction in direction of Merapi – type eruption in the past was carried out to 
determine the direction of dome collapse and to identify major distribution of volcanic 
eruption products. Reconstruction of direction of dome collapse in the past was derived 
from analysis of morphologic factors ascertain the direction. Distribution of volcanic 
eruption products was accomplished based on morphology of flank area since height of 
barrier ridges, slope angle and gradient of ground surface greatly influence the flow 
directions. Topographical effect of break in slope on the flank of stratocone contributes to 
decoupling within two zones of pyroclastic flows:  dense, gravity – driven pyroclastic flow 
and dilute, overriding turbulent gas – cloud surge of ash elutriate from the flow (Thouret, 
1999).  
Identification of the major distribution of volcanic eruptive product was conducted by free 
hand delineation on slope angle (°) overlying plan curvature, assistance by shaded DEM. 
Incomplete series of DEM before and after each eruption made consideration to include 
adjacent rivers, in addition to major rivers down slope of crater breaching, due to the 
nature of pyroclastic flows that often perform overbank flow (Frank Lavigne, personal 
communication). Overbank flows were produced from changing in valley (river) 
morphology either by volcanic products from previous activities or man-made structure 
i.e. SABO dam.  
Slope would determine pyroclastic flow direction whist plan curvature performed the 
convergence and divergence of the flow. 
1. Slope. Slope is a gradient maximum of height conveying the angle measured from 

horisontal line to tangent plane of a predifined point (Huggett, 2007; Klimanek, 2007). 
Slope is the means by which gravity induces flow of water and other materials so it 
has a great significance in hydrology and geomorphology (Gallant and Wilson, 2000). 
Verstappen and Van Zuidam in Zuidam (1983) suggested to devide the slope into 
seven classes as displayed in table 4-4  with expected terrain condition.  
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4. Eruption between 1961 and 1982 because no DEM available to quantify crater 
breaching dimension of rim 1961 in comparison to that of rim 1930. 

Thus, historical eruptions used as a comparison limited to activities of years: 1942, 1943, 
1984 – 1991, 1992 – 1993, 1994 and 1995.  

4.3.3. Prediction of Affected Area and Improvement of Forbidden 
Hazard Zone 

Geomorphology can contribute to geomorphic hazard zonation, both volcanic and non 
volcanic hazard (Thouret, 1999). Traditional methods of assessing the hazard zones 
associated with these events are based on reviews of historical records and field work to 
identify the limits of their deposits in the geological record. Predictions of future hazard 
zones are then based on interpolation and extrapolation of known data, perhaps 
supplemented by calibrated flow routing models (Stevens et al., 2003). 
Guided by studying historical eruption of Merapi in past two centuries, morphologic 
analysis of study area and previous study by Thouret et al (2000) and Charbonnier and 
Gertisser (2008, 2009), the predicted affected area by Merapi – type eruption in the near 
future and proposed hazard map of Merapi – type eruption were developed, figure 4-14.  

 

Figure 4-14. Workflow for predicting affected area and proposed hazard map (Source: own illustration) 

4.3.3.1. Predicted affected area in the near future 
Revealing area prone to Merapi type eruption in the near future was separated into three 
parts: morphologic analysis to define direction of dome collapse; morphologic analysis to 
determine affected area by considering maximum extent distance from historical data 
(table 3-1); and delineation and identification of area prone to Merapi – type eruption in 
the near future.  

4.3.3.1.1. Morphologic analysis to define direction of Merapi – type eruption 
Morphologic analysis was conducted by recognizing morphologic factors: crater 
breaching and its adjacent ridges and analyzing those factors to determine direction of 
dome collapse in the near future based on recent topographic condition.  
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Since absence of DEM after eruption 2006 prevented morphometric analysis of the 
factors, the analysis was finally conducted by reconstructing recent topographic condition 
using DEM 2006 and pictures of Merapi edifice and conducting visual interpretation of 
edifice morphography to determine direction of dome collapse. 

4.3.3.1.2. Morphologic analysis to determine affected area 
Driven by gravity, pyroclastic flows seek topographically low areas of the volcano and 
tend to be channeled into valleys (Nakada, 1999). Local spatial changes in topography 
will cause changes in flow. As the slope angle increases, the flow will go faster and when 
slope angle decreases, very dense flows can be stopped as the basal friction becomes 
too high (Felix and McCaffrey, 2005). Pyroclastic flows slowed and thickened when 
traveling across a change in slope, from steeper to gentler slopes, when entering a 
channel and when passing through a constriction. For flows confined to the constricted 
channel, runout is longer than for comparable flows confined to the non constricted 
channel (Stinton and Sheridan, 2008). 
The morphologic analysis to determine affected area by Merapi – type eruption was 
carried on DEM 2006 since DEM from ALOS Imageries, showing surface topography 
after eruption in June 2006, was failed to deliver recent topographic condition of study 
area due to thin cloud covered. The morphologic features utilized to predict area affected 
by Merapi – type eruption were slope and profile curvature since modeling simulation for 
pyroclastic flow was unable to conduct due to absence of recent DEM and time 
constraint.  
Slope angle (°) of grid DEM 2006 was calculated using 3D analyst tools before classified 
into seven classes, as shown in table 4-4 and filtered using low pass filter 3x3 in Arc GIS 
9.3 whereas plan curvature was calculated using curvature tools. 

4.3.3.1.3. Delineation and identification of affected area  
Predicted affected area by Merapi – type eruption was carried by taking into account the 
direction of dome collapse, slope angle (°), profile curvature and historical data. Direction 
of dome collapse gave toward which pyroclastic flow hazard would affect flank area. 
Slope angle (°) and plan curvature gave impression of topographic barrier around 
volcanic cone and indication of overbank pyroclastic flow from main valleys (rivers) to 
adjacent valleys (rivers). Historical data gave the maximum extent area affected by dome 
collapse pyroclastic flow or Merapi – type eruption in the past.  
Guided by numerical modeling of eruption in June 2006 developed by Charbonnier and 
Gertisser, 2009 and maximum extent area, delineation of the area was conducted free 
hand on slope angle (°) overlying plan curvature. From area delineated, villages prone to 
pyroclastic hazard were identified and the number of total inhabitants in those areas was 
calculated based on statistic data in 2008. 

4.3.3.2. Proposed pyroclastic flow hazard zone of Merapi – type eruption 
Previous study by Thouret et al (2000) portrayed hazard maps for Merapi volcano by 
differentiated hazards based on their recurrences and posed four eruption scenarios: first,   
Merapi – type dome growth based on quasi – continuous ‘regular’ eruptive activity and 
dome collapse scenario including small and moderate size of pyroclastic density current; 
second, mixed effusive/pelean based on 1930 – 1931 eruption; third, subplinian based on 
April 1872 eruption and fourth, worst – case scenario encompass flank failure of south 
southwest flank produce debris avalanche and direct blast parallel to avalanche caldera.  
Two hazard zone maps was developed by Thouret et al (2000): hazard zone map for 
Merapi – type eruption scenario based on the 1961 – 1996 events (VEI 2-3), figure 4-15a, 
and hazard zone map for the subplinian eruption scenario based on the 1872 eruption 
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3. The ‘second danger zone’ corresponds to the radial valleys draining the volcano’s 
flanks, particularly toward the west and south. Lahars and water floods can devastate 
the second zone as far as 30 km down valley from the summit 

Most of Merapi historical eruptions were accompanied by pyroclastic flow hazard more 
often than any other volcanoes in the World (Thouret et al., 2000) and the 61 reported 
eruptions since the mid-1500s killed about 7000 people (Lavigne et al., 2008). 
Unfortunately, scientific view of Merapi has not automatically deliver inhabitants 
awareness about posed threaten hazards. Lack of knowledge in volcanic process, 
distance from active crater, visual obstacle between villages to active crater were thought 
to be the main reasons to develop inhabitants perception (Lavigne et al., 2008). 
Furthermore, during the peak activity of Merapi, inhabitants also suffer from significant 
social and economic disruption and often decide to back to their village despite high 
possibility of hazard threaten (Sagala, 2007).   
Improvement of existing hazard map was proposed to provide more reliable hazard zone 
for regular activity of Merapi, following recent trends of Merapi behavior after eruption 
2006 since the volcano morphology have changed from the time of existing hazard map 
had compiled. Assessment of existing hazard map was carried out by overlying the 
proposed pyroclastic flows hazard and forbidden zone of hazard map and identifying the 
extent distance and area of proposed hazard zone and forbidden hazard zone. The 
distances were calculated by using measure distance tool whereas the areas were 
calculated automatically from table attribute in Arc GIS 9.3. 

4.3.3.2.4. Social and economic activity on forbidden hazard 
Merapi flank is one of most densely populated volcanic areas. It is inhabited by almost 1.1 
million people of which 440.000 are 440,000 are at relatively high risk in areas prone to 
pyroclastic flows, surges, and lahars (Thouret et al., 2000). Overview of social and 
economic activities on forbidden zone was carried out to portray number of inhabitants on 
forbidden zone and current activities of inhabitants despite threat of the most dangerous 
and devastating hazards from the volcano. The overview of social and economic activities 
was delivered from previous studies, reports, spatial and statistic data combined with field 
work results both pictures and interviews.  
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applications (Goudie et al., 1990; Hutchinson and Gallant, 2000). Land systems mapping 
may employ 1:50.000 base maps, or even smaller, whereas detailed morphological 
mapping and morphometric measurement require maps of 1:25.000 or larger with contour 
intervals of 10 m or less (Goudie et al., 1990).  
From initial observation, scale of 1: 25.000 seemed appropriate for studying vicinity area 
but scale 1: 5.000 or even larger were needed to study summit area. In addition to the 
scale, acquisition method needs to be considered since summit area of active volcano is 
a dangerous zone and it is often covered by cloud and solfatara. Until recently, ground 
survey and large scale aerial photograph could give better DEM representation rather 
than active remote sensing techniques e.g. IFSAR but they might restricted by dangerous 
of active volcano for ground measurement and by cloud or solfatara covered for aerial 
photographs. Thus, active remote sensing techniques should be taken into account to 
study volcano morphology despite expensive cost and technology used in these 
industries.   

5.2. DEMs Quality Comparison  
DEM quality comparison of this research was carried out to determine suitability of DEM 
produced from active remote sensing technique toward the one produced from passive 
technique. Since check points from DGPS could not be carried out due to topographic 
condition, DEM 2006 was used as reference to assess the quality of IFSAR DEM. 
DEMs quality comparison was performed by combination of statistical and visual 
methods. Statistical methods used to compare DEMs through calculation of error range, 
mean errors and RMSz errors while visual methods were carried out through comparing 
height distribution of horizontal and vertical transect lines. Selection of points and transect 
lines were restricted to south - southeast – east – northeast – north of summit area and 
avoiding the vicinity area due to discrepancy of DSMs and DTM. 

5.2.1. Visual Method for DEM Quality Comparison 
Visual methods for comparing those three DEMs were carried out by comparing height 
distribution along transect lines drawn in those DEMs. The first and third transect lines 
were made horizontal along the elevation while the second transect line was made 
crossing the elevation. The height distributions of IFSAR DEM compared to DEM 2006 
was displayed in figure 5-11.  
From height distributions drawn in figure 5-11, visual interrogations of their distribution 
were carried out which enlighten some points in each line as follows: 
1. Profile graph of transect line 1 showed almost similar trend of IFSAR DEM compared 

to reference DEM but in some point height differences could also easily observed. 
Distribution heights of IFSAR DEM along transect line 1 was somewhat smoother 
than those of reference DEM.  

2. Very similar height distribution of transect line 2 with reference DEM could be easily 
observed in the profile graph. Height distributions of IFSAR DEM were smoother than 
those of reference DEM.  

3. IFSAR DEM height distributions along transect line 3 displayed similar pattern 
although some serious height differences occur along the lines. Smoother height 
distribution was also observed along IFSAR transect lines rather than reference 
DEM. 
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Figure 5-10. Height distribution along three transect lines 

Smoother pattern in transect lines of IFSAR DEM compared to those of DEM 2006 was 
resulted from DEM accuracy. DEM 2006 were derived from contour interval 2.5 meter 
with accuracy 1/3 of contour lines (Li et al., 2005) whereas IFSAR DEM type III has 3 
meters accuracy (technician expert of ExsaMap Asia, written communication).  
Different height distribution of profile lines 1 might result from volcanic ashes since IFSAR 
DEM was taken in the middle of Merapi activities and the transect line located very close 
to Merapi edifice. Serious height distribution along transect line 3 was resulted from 
pyroclastic flow material since this area were also affected by small pyroclastic flow 
during 2006 activity (CVGHM, 2006) before new crater breaching was formed toward 
southeast direction where transect lines 2 drawn. Thus, the height distributions of IFSAR 
DEM along transected line 2 were displaying actual distribution height compared to DEM 
2006. 

5.2.2. Statistical method for DEM Quality Comparison 
Statistical parameters for elevation differences: error range, mean errors, and RMSz error 
were delivered from fifteen conjugate points in two DEMs. The conjugate points were the 
points which refer to the same natural object e.g. ridges, peak of hills. The elevation 
differences of IFSAR DEM to DEM 2006 (dz) were displayed in table 5-2 from which 
those three parameters were then calculated, as shown in table 5-3. 
Table 5-2. Elevation differences and statistical parameters 

Id Z IFSAR DEM (m) Z DEM 2006 (m) dz  (m) dz2 (m2) 
1 1849.487 1854.025 -4.538 20.591 
2 1846.040 1837.809 8.231 67.744 
3 1686.776 1681.738 5.039 25.387 
4 1770.237 1769.140 1.097 1.203 
5 1811.091 1808.167 2.924 8.552 
6 2391.825 2389.276 2.550 6.500 
7 2495.410 2487.804 7.606 57.844 
8 2666.687 2658.219 8.468 71.707 
9 2640.690 2644.198 -3.508 12.305 

10 2544.074 2533.343 10.731 115.163 
11 2394.988 2392.858 2.130 4.537 
12 2426.613 2423.489 3.123 9.754 
13 2502.821 2497.063 5.758 33.156 
14 2255.850 2248.555 7.295 53.223 
15 2050.300 2049.026 1.274 1.622 

Table 5-3. Statistical parameters 
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Parameters Value 
Σ dz2 489.288 m2 

Σ dz2/n 32.619 m 
Range 15.269 m 

Mean (μ) 3.879 m 
RMSEz error 5.711 m 

The statistical computation from elevation differences were resulted in 3.879 m of mean 
error, 15.269 m of range error and 5.711 m of RMSEz error. Thus, the absolute elevation 
of IFSAR DEM compared to references DEM was less acceptable since specification of 
IFSAR DEM vertical accuracy should be less than 3 m for DSM type III (Intermap, 2009).  
IFSAR data delivered was the raw data, indentified from striped lines and void which may 
affect absolute elevation of check points. Thus, processed data of IFSAR DEM were 
needed to deliver better quality assessment.  

5.3. Concluding Remarks 
1. Initial interpretation among DEMs showed that DEM delivered from topographic map 

scale 1: 25.000 was appropriate to study morphology of vicinity area but larger scale, 
1: 5000 or even larger was needed to deliver morphologic detail of summit area. 

2. Different methods of deriving DEM play important rule in surface morphology’s 
representation. Ground survey and aerial photogrammetry techniques were deliver 
better representation of topography rather than active sensor but limitation of those 
techniques leads to utilization of active remote sensing to study morphologic changes 
of summit area.  

3. Visual assessment of height distribution showed that IFSAR DEM has similar height 
distribution along transect lines although it conveyed less detail topography 
compared to that of DEM 2006. 

4. Statistic parameters showed that vertical accuracy of IFSAR DEM was less than the 
product specification, 3 m for DSM type III, with mean error 3.879 m, range error 
15.269 m and RMSEz error 5.711 m.  



 

 

Chapter 6. Morphologic Analysis 
This chapter provides utilization of EDM data for morphologic changes, morphologic features 
recognition and quantification, morphologic analysis for verifying factor ascertain Merapi – type 
direction, reconstruction of Merapi – type eruption in the past using those factors, comparison of 
reconstruction results to historical data and concluding remarks.  
 
 
Morphologic analysis of morphologic features to determine direction of lava dome 
collapse in the near future was carried out through five main parts: EDM for morphologic 
changes, morphologic features recognition and quantification on past time DEMs, 
morphologic analysis to determine factors ascertain direction of Merapi – type eruption, 
reconstruction of direction of Merapi – type eruption in the past and comparison of 
construction results to that of historical data. 

6.1. EDM for Morphologic Changes 
Electronic distance meter (EDM) is one of monitoring tools utilized by MVO for ground 
deformation as precursor of Merapi activities. EDM measurement was divided into 
summit and observatory trilateration network. Since complete data was unable to conduct 
from MVO, observatory trilateration data was obtained directly from four MOPs: 
Kaliurang, Babadan, Jrakah and Selo.  
Observatory trilateration network was developed from distance measurements of fixed 
prisms mounted on summit and flank area from benchmarks in every MOP, figure 6-1. 
Based on data observation and interview, every MOP has different number of fixed 
prisms to be measured independently, meaning no prism measured from two MOPs. 
Recently, Kaliurang has four prisms utilized to replace previous prisms that tore down 
during eruption in 2006; Babadan has six prisms; Jrakah and Selo have two prisms and 
other two fixed prisms from Deles. Since no MOP located in Deles, EDM data from Deles 
was unable to collect.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-1. Sketch of Merapi observatory trilateration network, inset: EDM equipment (Reconstructed from MVO 
publication at Merapi Museum, taken at October 24th, 2009 and information from PIC at every MOP) 
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65 Chapter 6. Morphologic Analysis 

As we observed in table 6-6, distance changes of RK 1 and RK 2 conveyed significant 
changes in term of deformation, almost 1 m, during 2007 – 2009. Distance changes of RK 
1 showed positive value whist distance changes of RK 2 showed negative value 
indicating reverse ground movement of the summit area.  
Observation of EDM data showed that the slope distances often varied from day to day 
because EDM instrument was sensitive to changes in temperature, atmospheric pressure 
or humidity. No standard for time measurement made difficult to distinguish changes 
caused by magma activity or by instrumental bias except if trend of distance changes has 
continued. On the other hands, cloud covered, especially during monsoon and rainy 
season, made standardization for time measurement rather difficult to achieve.  
Positive value of distance changes is an indication of ground deformation toward the 
direction of distance measurement and vice versa. Slope distance of prisms showed 
significant changes i.e. RS 2 (3.243 m), RJ 1 (-4.172 m) meaning magma extrusion 
caused deformation before, during and after eruption. Meanwhile, according to PIC at 
MOPs, during quiescence phase of Merapi e.g. from 2007 to 2009 usually no significant 
distance changes occur (± 10 cm) due to instrument bias, unless magma extrusion 
makes displacement in some parts of edifice. For instance, distance changes of three 
prisms: RB 4 (0.6 m), RK 1, (0.662 m) and RK2 (-0.962 m) indicates magma extrusion 
through conduit on south – southeast of Merapi edifice (Santoso et al., 2009) and 
emphasize the instability of south flank – southeast flank. 
Although distance changes were categorized significant during Merapi activities in term of 
ground deformation, they were difficult to be observed on DEM since their movements 
were less than a pixel size (5m). In case of enormous morphologic changing, there was a 
possibility of prism to tear down by dome collapse i.e. eruption in 2006. Thus, EDM data 
was less useable to observe morphologic changes of summit area.   

6.2. Morphologic Features’ Recognition and Quantification 
Morphologic features recognition and quantification of past time DEMs were performed to 
conduct parametric analysis of features which plays important role in determining 
direction of dome collapse or Merapi – type eruption. 

6.2.1. Morphologic features’ recognition 
Morphologic feature recognition was carried out to observe morphologic features in both 
summit and vicinity area that might reveal direction of Merapi – type eruption in the past.  
Features recognized were mainly the ones located in or around Merapi edifice with some 
additional features of vicinity area since direction of Merapi – type eruption was defined 
by summit topography. 
Morphologic features recognition was conducted on past time DEMs: DEM 1935, 1982, 
1996, 2006 and IFSAR DEM. Features from summit area able to identify were active 
crater rim, crater floor, crater breaching, adjacent ridges, breaches and remnant of 
domes. Features from vicinity area included drainage pattern, lineaments and major 
rivers.  

6.2.1.1. Morphologic features of summit area 
Morphologic features of summit area on each DEM were observed and delineated on hill 
shade model with assistance of 3D model. Hill shade models were utilized for showing 
crater rims (green line: crater rim 1930, yellow line: crater rim 1961, dashed when 
inferred), crater floor (red lines), crater breaching (green dashed), breaches (purple 
dashed) and remnant of domes (blue lines, orange text indicating new domes) from 
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Crater rim floor  
Crater rim floor of Merapi summit called Kawah Mati which formed after eruption 1930. In 
present time, Kawah Mati was bordered by East dome in east, L 1940 in west and L 1956 
in north.  
Table 6-8. Quantification values of crater rim floor 

FEATURES DEM 1935 DEM 1982 DEM 1996 DEM 2006 IFSAR DEM 
Crater rim floor 
Shape Curved line - Curved line Curved line Curved line 
Perimeter (m) 436.321 225.875 185.995 152.190

 
Crater breaching 
Crater breaching is low land area around Merapi edifice in which the horseshoe shape 
crater rim opens. Orientation of crater breaching was defined as azimuth of crater 
breaching major axis, calculated using distance and azimuth extension in Arc View 3.3. 
Dimension of crater breaching was calculated from cross section profile graph in Arc Map 
9.3.  
Table 6-9. Quantification of crater breaching 

FEATURES DEM 1935 DEM 1982 DEM 1996 DEM 2006 IFSAR DEM 
Crater Breaching 
Orientation  N 265 N 228 N 226 N 226 N 226 
Shape U U U U U 
Depth (m) 105.980 111.736 102.397 107.945 97.860 
Width (m) 396.000 407.131 213.029 215.595 162.807 

 
Adjacent ridges 
Adjacent ridges of crater rim depression were quantified by determining their relative 
position toward the depression and calculation of their height from profile graph of cross 
section in Arc Map 9.3. Positions of ridges were corresponding to the section 6.2.1.1. 
Table 6-10. Quantification of adjacent ridges 

FEATURES  DEM 1935 DEM 1982 DEM 1996 DEM 2006 IFSAR DEM 
Adjacent ridges 
# 1  Position  S S S S S 
 Height (m) 105.980 111.736 32.496 15.768 18.366 
# 2  Position N N N N N 
 Height (m) 64.665 43.970 102.397 107.945 97.860 

 
Breaches 
Breaches orientation was calculated using distance and azimuth tools in Arc View 3.3 
while their depth and width was calculated from profile graph of cross section in Arc Map 
9.3. Numbers of breaches were corresponding to the section 6.2.1.2. 
Table 6-11. Quantification of breaches 

FEATURES  DEM 1935 DEM 1982 DEM 1996 DEM 2006 IFSAR DEM 
Breaches 
# 1 Orientation N 150 N 150 N 150 N 150 N 150 
 Depth (m) 27.594 23.284 20.687 25.747 26.711 
 Width (m) 133.462 137.186 142.476 142.378 144.498 
# 2 Orientation     N 52 N 52 N 52 
 Depth (m)     39.994 30.116 50.451 
 Width (m)     121.571 88.558 88.977 
# 3 Orientation       N 148 N 148 
 Depth (m)       69.818 79.911 
 Width (m)       134.022 144.498 
# 4 Orientation         N 323 
 Depth (m)         27.016 
 Width (m)         104.345 
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Remnant of domes 
Remnant of domes in the summit area varied among DEMs. Their relative orientations 
were calculated using distance and azimuth extension in Arc View 3.3 and areas covered 
were calculated automatically in field attribute on Arc GIS 9.3. 
Table 6-12. Quantification of remnants of domes  

FEATURES  DEM 1935 DEM 1982 DEM 1996 DEM 2006 IFSAR DEM 
Remnant of Domes 
# L 1888 Shape  Coulee Coulee Coulee Coulee Coulee 
 Orientation N 300 N 300 N 300 N 300 N 300 
 Area 196839.155 233093.689 217777.396 159807.755 204111.470 
# L 1988 – 1909 a Shape  East dome East dome East dome East dome East dome 
 Orientation  N 77 N 77 N 77 N 77 N 77 
 Area 135559.296 102380.440 96157.852 67034.232 111680.926 
# L 1888 – 1909 b Shape  East dome East dome East dome East dome East dome 
 Orientation  N 129 N 129 N 129 N 129 N 129 
 Area 266651.771 99977.581 105865.515 109079.795 199176.221 
#L 1906 Shape  Coulee Coulee Coulee Coulee Coulee
 Orientation N 98 N 98 N 98 N 98 N 98
 Area 33415.508 35558.090 25439.005 27729.894 56170.346
#L 1911 – 1913 Shape  West dome West dome West dome West dome West dome 
 Orientation N 183 N 183 N 183 N 183 N 183 
 Area 247159.092 160890.026 165244.911 167990.586 209632.066 
#L 1930 Shape  Coulee - Coulee - Coulee 
 Orientation N 284  N 289  N 286 
 Area 190818.991   27578.159   14328.801 
#L 1931 Shape  Coulee Coulee - - - 
 Orientation N 237 N 240    
 Area 511076.681 56713.776    
# L 1934 Shape  Coulee Coulee - - - 
 Orientation N 265 N 256  
 Area 601132.394 178369.543  
# L 1940, L 1942, 
L 1943 

Shape  - Dome Dome Dome Dome
Orientation Central Central Central Central

 Area  79581.503 24939.370 13040.189 12209.238 
# L  1948 Shape   Coulee Coulee Coulee Coulee 
 Orientation  N 314  N 314 N 314 N 314 
 Area  46841.955 15974.823 47353.289 64162.051 
# L 1953 – 1955 Shape  - Coulee Coulee Coulee Coulee 
 Orientation   N 334 N 334 N 334 N 334 
 Area  151347.111 151713.658 148650.675 143134.497 
# L 1956 Shape  - Coulee Coulee Coulee Coulee 
 Orientation  N 336 N 336 N 336 N 336 
 Area  68038.035 64344.984 66220.098 55733.565 
# L 1957 Shape  - - Coulee - -
 Orientation N 281  
 Area 180120.801  
# L 1984 – 1986 Shape  - - Coulee Coulee Coulee
 Orientation   N 232 N 232 N 232 
 Area   130054.731 121051.113 167495.177 
# L 1992 Shape  - - Coulee - Coulee 
 Orientation   N 268  N 268 
 Area   91887.173  83208.954 
# L 1997 Shape  - -  Coulee Coulee 
 Orientation    N 228 N 228 
 Area    104519.711 73548.160 
# L 1998 Shape  - - - - Coulee 
 Orientation     N 225 
 Area  28748.252
# L 2001 Shape  - - - - Coulee
 Orientation  277
 Area  6585.875
# L 2006 Shape  - - - - Dome 
 Orientation     Central 
 Area     38709.967 

6.2.2.2. Morphologic features’ quantification of vicinity area 
Morphologic features recognition of vicinity area was carried out for all features located in 
the vicinity area including drainage patterns, lineaments and major rivers. 
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Drainage pattern 
In general, three types of drainage patterns were observed in Merapi vicinity area 
including half circular radial drainage pattern along volcanic cone, dendritic/sub dendritic 
drainage pattern in north – northwest to southeast and parallel drainage pattern in south 
to northwest (see figure 6-12b).   
Lineaments 
Lineaments in vicinity area except for Kukusan Fault were recognized and delineated on 
hill shade DEM. Their relative orientations were defined as an azimuth before drawn to 
Rose Diagram using Rozeta en. Numbers of lineaments from one DEM, refer to figure 
6.3, were not correlated with the same number on another DEM. 
Table 6-13. Quantification values of lineaments orientation 

FEATURES DEM 1935 DEM 1982 DEM 1996 DEM 2006 IFSAR DEM 
Nr. Lineaments 
# 1 N 131 N 133 N 227 N 256 N 243 
# 2 N 207 N 257 N 242  N 242 N 233 
# 3 N 216 N 273 N 229 N 223  N 218 
# 4 N 212 N 303 N 240  N 242 N 199 
# 5 N 131 N 261 N 260 N 260 N 209 
# 6 N 257 N 207 N 257 N 261 N 218 
# 7 N 235 N 246 N 280 N 281 N 225 
# 8 N 243 N 248 N 237 N 233 N 262 
# 9 N 242  N 241 N 134 N 213 N 234 
# 10 N 216 N 151 N 210 N 212 N 221 
# 11 N 243 N 142 N 212 N 235 N 140 
# 12 N 226 N 225 N 236 N 237  N 140 
# 13 N 247 N 229 N 236 N 221  N 140 
# 14 N 291  N 224 N 210 N 147 
# 15 N 268  N 208 N 135  
# 16 N 302  N 134 N 140  
# 17 N 135  N 142 N 135  
# 18 N 143  N 134 N 215  
# 19 N 138  N 213 N 234  
# 20 N 145  N 234 N 247  
# 21 N 215  N 246 N 238  
# 22 N 301  N 241 N 232  
# 23   N 236 N 194  
# 24   N 190 N 147  
# 25   N 147 N 146  
# 26   N 146 N 140  
# 27   N 140   

Major Rivers 
Major rivers recognition was carried out to determine rivers located down slope of crater 
rim breaching. Regarding the nature of pyroclastic flow which not flows toward a river 
channel but affect broader sector, the delineation of major rivers was utilization for much 
broader area.  
Table 6-14. Major rivers located down slope of crater breaching 

FEATURES DEM 1935 DEM 1982 DEM 1996 DEM 2006 IFSAR DEM 
Rivers 
# 1 Senowo Blongkeng Sat/Putih Sat/Putih Sat/Putih 
# 2 Lamat Sat/Putih Batang Batang Batang 
# 3 Blongkeng Batang Bebeng Bebeng Bebeng 
# 4 Sat/Putih Bebeng Krasak Krasak Krasak 
# 5 Batang Krasak Bedog Bedog Bedog 
# 6 Bebeng  Boyong Boyong Boyong 

6.3. Morphology Analysis of Features 
Morphology of Merapi edifice is developed by collapse, rebuilding and changing vent 
location through time as complex evolution that is controlled by the interplay of 
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6.3.1.2. Correction of Morphometric Quantification Values 
Correction of morphometric quantification values was established for some features in 
summit area using formula 12, as follow: 

 Percentage of area was used to subtract area of remnants of domes 
 Percentage of perimeter was used to subtract perimeter of crater rim and crater floor 
 Percentage of distance was used to subtract the width of crater breaching and 

breaches. 
Table 6-15. Area, perimeter and distance differences among DEM  

 DEM 2006 DEM 1935 DEM 1982 DEM 1996 IFSAR DEM  
Area 6186215.8672 5357613.0013 6131459.8835 6188658.0519 6198044.6451 
Perimeter 8816.9315 8205.2270 8777.8242 8818.6717 8825.3570
Distance 2300.7950 2272.2247 2279.2843 2300.2802 2296.4891
Δ Area  -828602.8659 -54755.9837 2442.1847 11828.7779 
Δ Perimeter  -611.7045 -39.1073 1.7402 8.4255
Δ Distance  -28.5703 -21.5108 -0.5149 -4.3059
% Area  ‐15.47  ‐0.89  0.04  0.19 

% Perimeter  ‐7.46  ‐0.45  0.02  0.10 

% Distance  ‐1.26  ‐0.94  ‐0.02  ‐0.19 

6.3.1.2.1. Corrected area of remnants of domes 
Corrected areas of remnants of domes were calculated using formula 12 using DEM 2006 
as reference. The result of correction process was displayed in table 6-16. 
Table 6-16. Corrected area of remnants of domes on every DEM 

Remnants of Domes DEM 1935 DEM 1982 DEM 1996 DEM 2006 IFSAR DEM 
L 1988 227282.095 235175.293 217691.456 159807.755 203721.930 
L 1988 - 1909 a 156524.757 103294.732 96119.906 67034.232 111467.787 
L 1988 - 1909 b 307891.857 100870.414 105823.738 109079.795 198796.099 
L 1906 38583.516 35875.635 25428.966 27729.894 56063.147 
L 1911 - 1913 285384.460 162326.827 165179.701 167990.586 209231.989 
L 1930 220330.858   27567.276   14301.455 
L 1931 590119.270 57220.249       
L 1934 694102.906 179962.443       
L 1931 - 1934     166462.757     
L 1940, L 1942, 1943   80292.193 24929.529 13040.189 12185.937 
L 1948   47260.270 15968.519 47353.289 64039.600 
L 1953 - 1955   152698.691 151653.788 148650.675 142861.329 
L 1956   68645.638 64319.592 66220.098 55627.199 
L 1957     180049.721     
L 1984 - 1986     130003.409 121051.113 167175.518 
L 1992     91850.912   83050.152 
L 1997      104519.711 73407.796 
L 1998          28693.387 
L 2001         6573.306 
L 2006         38636.090 

6.3.1.2.2. Corrected perimeters of crater rim and crater rim floor  
Corrected perimeters of crater rim and crater rim floor were calculated using formula 12 
toward reference DEM. The result of correction was displayed in table 6-12. 
Table 6-17. Corrected perimeters of crater floor and crater rim floor 

 DEM 1935 DEM 1982 DEM 1996 DEM 2006 IFSAR DEM 
Crater rim 1157.103 1026.788 979.880 735.267 966.557 
Crater rim floor 468.849 - 225.830 185.995 152.045 

6.3.1.2.3. Corrected width of crater breaching and breaches 
Corrected width of crater breaching and breaches were calculated using formula 12. The 
result of correction was displayed in table 6-13. 
As the percentages of correction for every DEM, except for DEM 1935, was less than one 
percent for all parameters: area, perimeter and distance, there were no significant effects 
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on trends of morphologic changes of those features. Inconsistent remnants of domes’ 
areas were mainly caused by aggradation and degradation processes in which some 
eruptive materials covering the older one and their differentiation were difficult to carry out 
due to lack of data series. 
Table 6-18. Corrected width of crater breaching and breaches 

 DEM 1935 DEM 1982 DEM 1996 DEM 2006 IFSAR DEM
Crater Breaching 400.979 410.973 213.077 215.595 163.112
Breaches      

# 1 135.140 138.481 142.508 142.378 144.769
# 2 - - 121.598 88.558 89.144
# 3 - - - 134.022 144.769 
# 4 - - - - 104.541

Correction of other values related to elevation were not carried out i.e. crater breaching 
depth because huge time gaps to reference DEM and their quantifications were only 
needed to be compared to other values on the same DEM e.g. depth of crater breaching 
were compared to depth of breaches in order to define the lowest topographic area on 
Merapi edifice that moment. 

6.3.1.3. Morphologic Changes  
Observation of morphologic features, especially those in Merapi edifice from over 70 
years, was carried out to determine features which ascertain the direction of dome 
collapse in the past, regarding the low land area around crater rim. From the observation, 
morphologic changes of features were underlined: 

6.3.1.3.1. Summit area 
Dynamic morphologic changes of features in summit area from section 6.2 were 
summarized as follows:  
1. Crater rim 

Crater rim form described using eccentricity parameter (e) derived from major and 
minor axes of ellipse. As the eccentricity value less than 1, the crater rim form 
represents ellipse (Corazzato and Tibaldi, 2006).  
Quantification of crater rim shape showed eccentricity parameter of Merapi in past 70 
years approximately about 0.866 meaning Merapi has ellipse shape with a low land 
area in crater rim, described by crater breaching azimuth or known as horse shape 
crater rim (MVO, 2000). Perimeter of crater rim 1930 was longer than that of crater 
rim 1961. Crater rim 1961 shows a tendency to decrease, except on DEM 2006 
because some part of crater rim could not be observed. 

2. Crater floor 
Crater floor is the area where the magma extrudes to the surface. Crater floor 
perimeter of Merapi has a tendency to decrease during 70 years by some remnant of 
domes which not tore down during the eruption or developed after the eruption, 
except for DEM 1982 in which crater floor was absent due to low accuracy of input 
data. Decreasing in perimeter of crater floor indicated the possibility of Merapi central 
vent to be blocked and increased of lithostatic pressure of the magma. Thus, 
changing in active sector toward lower land area may perform for future eruption. 

3. Crater breaching 
Crater breaching showed the low land area around the summit. The orientations of 
crater breaching tend to shifting in past 70 years. Crater rim of 1930 had oriented 
toward west (N 265) and crater rim of 1961 had oriented toward southwest (N 228 – 
N 226). Crater rim of 1961 in DEM 1982 had orientation of N 228 and N 226 in DEM 
1996, DEM 2006 and IFSAR DEM meaning the major axis of the crater breaching 
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84 Chapter 6. Morphologic Analysis 

of 1994 – 1998, some of volcanic material deposit built up against south crater wall 
allowing pyroclastic flows jumped to south flank (Boyong valley). This fact was 
strengthened by morphologic analysis of adjacent ridges on DEM 1996 that showed lifting 
of northern ridge by L 1984 – 1986 and L 1992 – 1993, figure 6-8 as reference. Hence, 
changes in adjacent ridges of crater breaching 1961 had occurred during activities of 
1984 – 1986 and 1992 – 1993. 
  Table 6-20. Comparison of reconstruction results to those of historical data  

Eruption Morphologic analysis Historical data 
 Direction Major Rivers Direction Major rivers 
# 1935 – 1982 NW – W – SW Senowo, Lamat, Blongkeng, 

Sat/Putih, Batang 
 

1942   NW, W Senowo, Blongkeng 
1943 SW  Batang 
# 1982 – 1996 W – SW  Blongkeng, Sat/Putih, 

Batang, Bebeng, Krasak 
 

1984 – 1991  W – SW  Sat/Putih 
1992 – 1993 W – SW Sat/Putih 
1994 SW, SW – S, S Bebeng, Krasak, Bedog, Boyong 
1995 SW, S Krasak, Boyong 
# 1996 - 2006 W – SW – S   Sat/Putih, Batang, Bebeng, 

Krasak, Bedog, Boyong 
 

1997 (14 Jan)  SW, SW– S Bebeng, Krasak, Bedog 
Note: S: south, SW: southwest, W: west, NW: northwest  
Incomplete series of DEM’s before and after the eruption prevented observation of more 
specific summit morphology and lava dome position of each eruption. Thus, specific 
directions, major rivers flowed and quantitative validation for Merapi – type eruption were 
unable to conduct.  
Although quantitative validation was unable to carry out due to lack of data series, 
reconstruction of direction of Merapi – type eruptions and major rivers flowed using those 
morphologic factors could be accepted with limitation that those factors were able to 
define direction of Merapi – type eruption but restricted to lava dome growth inside active 
crater rim.  

6.6. Concluding remarks 
From studying morphologic changes of Merapi edifice using EDM data, DEMs and 
historical data, some remarks could be underlined: 
1. Distance changes derived from slope distance between benchmarks and fixed prisms 

were less usable for morphologic changes of Merapi summit area due to relative 
small changes during the activity, less than 1 pixel size (5 m) of DEM, and possibility 
of the prisms to tear down during the eruption. Utilization of the distance 
measurement more reliable for precursors of Merapi activity.  

2. Significant differences of morphometric quantification values: area, perimeter and 
distance were observed from DEM data which posed coordinate system 
transformation so correction of morphometry quantification values needs to be carried 
out for this type of data. 

3. Morphologic analysis of summit and vicinity area showed dynamic changes of Merapi 
summit by aggradation and degradation processes including: changing direction of 
crater rim breaching from west to southwest and lifting of northern ridge of crater 
breaching by remnant of domes which affecting the direction of Merapi – type 
eruption; increasing numbers of breaches that could give initial view of fractures on 
Merapi summit which interconnected to magma extrusion and might perform weak 
zone around the edifice; and old dome remnants in south, southeast and east 
direction of Merapi edifice as a critical point to monitor due to possibility of collapse 
during Merapi activity in the near future. 
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Main structure on Merapi vicinity: part of avalanche caldera, observed as Kukusan 
Fault had performed topographic barrier to direct pyroclastic flows from Merapi 
activities. Therefore, pyroclastic flows will never flow over this somma rim in case that 
the direction of dome collapses toward southeast, east or northeast. 

4. Morphologic analysis was able to reconstruct direction of Merapi – type eruption and 
major distribution of volcanic eruptive product in the past. Hence, utilization of those 
factors: crater breaching and its adjacent ridges for direction’s reconstruction and 
slope angle (°) overlying plan curvature assistance by shaded DEM for major 
distribution of volcanic eruptive products, to predict direction of Merapi – type eruption 
and major rivers flowed in the near future could be achieved, restricted to lava dome 
growth inside active crater rim. 
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breaching 1961. Hence, the south and southwest direction of Merapi will also be 
threathen by Merapi – type of eruption (Subandriyo et al., 2009) in addition to major 
direction of dome collpase toward southeast. However, in this research, the affected area 
was identified and deliniated only based on recent morphology of Merapi edifice in which 
Merapi – type eruption will flow through direction of crater breaching 2006. 

7.1.2. Morphologic Analysis to Determine Affected Area 
Morphologic analysis of study area was conducted to reveal the area which may be 
affected by Merapi – type eruption by considering the prediction in direction of dome 
collapse in the near future. The morphologic analysis was utilized in DEM 2006 since the 
recent DEM from ALOS Imageries was failed to deliver recent topographic condition of 
study area due to thin cloud covered. Moreover, model simulation for pyroclastic flow was 
prevented by inavailability of recent DEM, after eruption 2006, and time constrain. 
Morphologic analysis of study area was conducted for two factors: slope angle (°) and 
plan curvature. Slope angle (°) reveals terrain condition and paths in which pyroclastic 
flows tend to flow whereas the plan curvature indicate the divergence and convergence of 
the flow.  
Free hand delineation of area which may affacted by pyroclastic flows based on the 
direction circumstances in which the direction toward southest (N 148 – 150) as direction 
of crater breaching 2006 and maximum distance affected by Merapi – type eruption in the 
past, 8 km, 27 – 28 November 1961 eruption (table 3-1 and figure 7-5).  
Slope angle (°) was calculated from grid DEM pixel size 5 m and classified into seven 
classess, see table 7-1 whereas plan curvature calculated from grid DEM pixel size 5 m 
by means of curvature tools in Arc GIS 9.3, as shown in the figure 7-3 a and b. Slope 
angle (°) was then overlying plan curvature with 40%  transparency to observe the flow 
path of pyroclastic flow before conducted free hand digitizing, figure 7-3 c.  
Table 7-1. Slope angle (°) classification 

Classes Expected Topographic Condition Total pixel Percentage (%) 
1 Flat or almost flat 82361 1.18 
2 Gently sloping 550917 7.88 
3 Sloping 1797447 25.71 
4 Moderately steep 1725640 24.68 
5 Steep 1692006 24.20 
6 Very steep 1063034 15.20 
7 Extremely steep 80563 1.15 

Total pixel in study area 6991968 100.00 

From table 7-1,we can observe that study area has dominated by sloping to very steep 
slope, approximately 25%, followed by gently sloping topography, flat or almost flat area 
and extremely steep topography. As shown in figure 7-3 a, the extremely steep slope 
dominates southeast, east and northeast part of volcanic cone in which avalanche 
caldera rim located. 
Plan curvature values were ranging from -28.54 to 20.57. Low or minus values indicates 
the divergence of flow whilst high or positive values indicates convergence of the flow. 
The low value of plan curvature were dominating south (Gn. Kendil), east (avalanche 
caldera/Kukusan Fault), northeast (Jurang Nganjang) and north (down slope of Pasar 
bubar crater rim).  

7.1.3. Deliniation and Identification of Affected Area 
Guided by slope angle (°), plan curvature and previous study by Charbonnier and 
Gertisser, 2009, deliniation of predicted affected area was perfomed. Free hand 
deliniation was based on the slope angle (°) overlying the plan curvature, assistance by 
shaded DEM, by considering major rivers located downslope of crater breaching 2006, 
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Forbidden zone of Merapi hazard map is, in reality, not a inhibited area. The fact that this 
area provides fertile soil making government attempts to forbid community to cultivate 
and finally seatle this area seems to be fall shorted. For instances, in north flank of 
Merapi, some people has cultivated in the higher slope, only 2 – 2.5 km from active crater 
rim. They feel safe because this area never affected by pyroclastic flow for almost 53 
years (PIC at MOP Selo, personal communication). Thus, socialization of volcanic 
process and availability of more reliable hazard map are needed to develop awareness 
and community perception. 
Detail of forbidden zone proposed by pyroclastic flow was developed to provide more 
reliable pyroclastic hazard zone which then could fill the gaps between scientific point of 
view and inhabitants’ perceptions, to eliminate casualties. Furthermore, the revision of 
existing hazard map following recent trend of Merapi activity ensuing dynamic changes of 
Merapi eruption behavior is on a great demand since this map is used to provide 
guidelines for mitigation plans and long term landuse planning.   

7.4. Concluding Remarks 
Some remarks could be concluded regarding the predicted area that might affected by 
dome collapse pyroclastic flow as follows: 
1. Recent crater breaching has opened toward southeast (N 148 – N 150), in which 2 

breaches on crater rim, Br 1 and Br 3, was observed in previous DEM. Hence, the 
direction of dome collapse will be likely toward southeast and would produce 
pyroclastic flows hazard on the south – southeast of Merapi flank. 

2. Morphologic analysis of slope and plan curvature, assistance by shaded DEM, and 
maximum travel distance of Merapi – type eruption in the past reveals four villages 
will probably be affected by pyroclastic flow hazard in the near future, with more than 
seventeen thousand inhabitants.  

3. Morphologic analysis of slope and plan curvature, assistance by shaded DEM, and 
travel distance of Merapi – type eruption in the past discovers that proposed 
pyroclastic flow hazard zone exceeds the forbidden zone to first danger zone, in 
northern part (K. Apu) is measured as far as 1.42 km with 2.2 hectare covered area 
while southern part (K. Gendol) is measured as far as 0.43 km with 0.9 hectare of 
covered area.  
The existing hazard map seems to give less detail representation, includes areas with 
higher elevation as area to be likely affected by pyroclastic flow and not gives detail 
of river channels prone to pyroclastic flows. Thus, detail of forbidden zone by 
purposed pyroclastic flow hazard zone could be used to provide more reliable 
forbidden zone in regular activities of Merapi and to fill the gaps between scientific 
point of view and inhabitants’ perceptions, in eliminating the casualties. 

4. The improvement of exiting hazard map by giving detail hazard map and by ensuing 
dynamic changes of Merapi eruption behavior is on a great demand since this map is 
used to provide information for local communities to increase their awareness of 
volcanic hazard and guidelines for landuse planning and for evacuation in mitigation 
phase during Merapi activities. Proper evacuation plan should be effectively 
organized because almost 132.000 inhabitants live on the forbidden zone which 
might be affected by pyroclastic flow hazard in the near future. 

 

 
 



 

 

Chapter 8. Conclusion and Recommendation 
This chapter defines achievements of this research n as well as contribution of this research for 
present circumstances related to Merapi – type hazard. The recommendation is also presented for 
future research regarding Merapi hazards. 
 

8.1. Final Conclusion  
In general, this research could satisfy the general research objectives addressed in first 
chapter. The purposed of this research is to study morphologic changes of Merapi edifice 
related to Merapi – type eruptions in the last 70 years. Study of morphologic changes was 
carried out by incorporating series of DEMs before conducting morphologic analysis to 
determine morphologic factors ascertain direction of Merapi – type eruption in the past. 
Those factors were then utilized to reveal the direction of Merapi – type eruption in the 
near future and the predicted affected area as well.  
Related to specific research objectives addressed, some conclusions could be highlighted 
as follows: 
Morphologic changes of Merapi edifice related to Merapi – type eruption 
Study of morphologic changes on Merapi edifice was carried out on a series of digital 
elevation models (DEMs) from past 70 years. Some morphologic changes related to 
Merapi – type eruptions could be observed in this research were trend of crater breaching 
changes from west (N 265) – southwest (N 228 – 226) and southeast (N 148 – 150); 
crater floor and adjacent ridges were dynamically changed by remnant of domes and 
affected direction of Merapi – type eruption; and breaches appeared on Merapi edifice 
could give preliminary judgment of fractures related to magma activity. 
Forecasting the direction dome collapse in the near future based on morphologic 
analyses of past time eruptions 
There are some morphologic features observed in both summit and vicinity area which 
might contribute to ascertain direction of Merapi – type eruption. Summit features 
incorporate crater rim form, crater floor, crater breaching, adjacent ridges, breaches and 
remnant of domes whilst vicinity features include drainage pattern, lineaments and major 
rivers. From summit features, crater breaching and its adjacent ridges were the main 
factors that ascertain the direction of Merapi – type eruption. The extent area affected by 
Merapi – type eruption was blocked by Kukusan Fault in eastern part of volcanic cone to 
direct the flow toward southeast - south.  
Identification of areas prone to Merapi – type eruptions in the near future and 
improvement forbidden zone of Merapi hazard map 
Morphologic analysis of slope angle (°) and plan curvature, maximum travel distance and 
previous study was able to identify the area which would likely be affected in the near 
future. The area prone to Merapi – type eruption was on south – southeast flank, along 
Gendol River and its adjacent rivers. The predicted affected area was covering four 
villages inhibited by more than seventeen thousands people.  
Morphologic analysis of slope angle (°) and plan curvature, assistance by shaded DEM, 
and travel distance of previous eruptions was exposed that existing hazard map gives too 
general forbidden area, includes higher elevation as part of area prone to pyroclastic 
flows and not clearly represents river channels prone to pyroclastic flows. Overlaying 
proposed pyroclastic flow hazard zone and existing hazard map also shows extent area 
of proposed hazard zone to forbidden zone in northern part (K. Apu) measured as far as 
1.42 km with 2.2 hectare covered area while southern part (K. Gendol) measured as far 
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as 0.43 km with 0.9 hectare of covered area. Thus, detail of forbidden zone is needed to 
provide more reliable forbidden zone in filling gaps between scientific point of view and 
inhabitants’ perceptions and awareness of volcanic hazard to eliminate casualties. 
Moreover, improvement of Merapi hazard map is on a great demand since this map used 
as guidelines for landuse planning and for evacuation in mitigation phase during Merapi 
activities considering 132.000 inhabitants living in forbidden hazard zone. 
Comparison of accuracy and efficacy of different type of input data 
Initial interpretation reveals that scale 1: 25.000 was appropriate to study morphology of 
vicinity area and scale 1: 5.000 (pixel size 5 m) or even larger is needed to study 
morphology of summit area. Digital elevation model produced from ground survey (DEM 
1935) and photogrammetry (DEM 2006) give better topographic representation rather 
than the one produced from active remote sensing technique but those methods have 
been started to lose their ability to deliver most up to date topographic representation. 
However, assessment of IFSAR DEM to DEM 2006 through three statistical parameters, 
mean error (3.879 m), range error (15.269 m) and RMSEz (5.711 m) showed that 
absolute vertical accuracy of this data less than its product specification although it 
delivers similar height distribution.  
Besides addressed research objectives, an additional discovery revealed is the 
usefulness of trilateration network to study summit morphology. Trilateration network in 
form of EDM data is less usable to study the morphologic changes of Merapi edifice due 
to small changes of distance changes and the possibility of prisms collapsed during 
Merapi activities. 
Achievement of this researches related to research question addressed could be 
summarized in table 8-1. 

8.2. Contributions of this Research  
From achievements reached in this research some contributions could be revealed as 
follows: 
1. MVO as the main institution for studying and monitoring Merapi volcano should 

regularly produce an appropriate scale map to develop suitable topographic 
representation for studying morphologic changes of Merapi edifice with a particular 
geo-reference system to construct easier monitoring process. 

2. The emerging of active remote sensing system as IFSAR, RADAR and 
Radargrammetry could be utilized to overcome the limitation of ground survey and 
aerial photogrammetry in delivering the most – up – to date DTMs to monitor rapid 
morphologic changes of Merapi edifice due to its activity.   

3. The utilization of morphologic factors ascertains the direction of Merapi – type 
eruption: crater breaching and its adjacent ridges would be useful to predict 
pyroclastic flow hazard generated by dome collapse in the near future. 

4. The information of remnants of domes and cracks around Merapi edifice could be 
employ to enhance preparedness and monitoring system due to the possibility of 
slide collapse which increases the threat to the community during Merapi activity in 
the near future. 

5. The preliminary predicted affected area could persuade the revision of existing 
hazard map due to essential contribution of Merapi hazard map to landuse planning 
and evacuation plans during Merapi activities. 
 
 
 
 



 

Morphologic Analysis of  Merapi Edifice in Studying Merapi – Type Eruption, to Improve Volcanic Hazard Map

 
 

99 Chapter 8. Conclusion and Recommendation  

Table 8-1. Relation between research achievements and research questions 
Research Questions Reference 
RO 1: To study changes in summit morphology  
a What kind of data needed to study morphology of summit and vicinity area? Sub Chapter 4.3.2.2; 6.2 
b How to reconstruct changes in summit morphology from 1930 to 2006 

eruptions? 
Sub Chapter 4.2.2.1.1; 
4.2.3.2 

c How to reconstruct the lava dome growth from past 70 years? Sub Chapter 4.2.2.1.1 
number 6 

d How to represent the result of morphologic changes in the summit area? Sub Chapter 4.2.2.2; 
6.2.1.1; 6.3.1.3.1 

e How to assess morphologic changes in recent year after 2006 eruption? Sub Chapter 4.3.3.1.1; 
7.1.1 

RO 2: To forecast the direction dome collapse in the near future  
a Which morphologic features need to be observed in summit area to be 

utilized as factors ascertain direction of Merapi – type eruption? 
Sub Chapter 6.2.1.1 

b Which morphologic features need to be observed in vicinity area regarding 
direction of Merapi – type eruption? 

Sub Chapter 6.2.1.2 

c Which morphologic factors ascertain the direction of dome collapse from 
1930 to 2006 eruptions? 

Sub Chapter 6.3.2 

d Which morphologic factors play the most important roles to determine the 
direction of dome collapse in the past? 

Sub Chapter 6.3.2 

e How accurate do the trend we have in comparison to Merapi historical data?  Sub Chapter 6.5 
f How to predict the direction of dome collapse in the near future by using 

those factors? 
Sub Chapter 7.1.1 

RO 3: To identify areas prone to Merapi – type eruptions in the near future 
and to improve forbidden zone of Merapi hazard map   

 

a What type of data needed to determine the extent of pyroclastic flows in the 
near future? 

Sub Chapter 4.3.3.1.2 

b How to determine the affected area by considering morphology of river 
channel and DEMs? 

Sub Chapter 4.3.3.1.3 

c How to determine the pyroclastic flow hazard zone of Merapi – type 
eruption? 

Sub Chapter 4.3.3.2 

d How the result of proposed pyroclastic flow hazard zone to improve forbidden 
zone of Merapi hazard map? 

Sub Chapter 7.2.3 

 RO 4: To compare the accuracy and efficacy of input data  
a How the surface representation of input data establishes DEMs quality for 

studying morphology of summit and vicinity area and how to compare them? 
Sub Chapter 5.1.2 

b How is the usefulness of each type of the data? Sub Chapter 5.1.2 
c How to compare between DEM of topographic map derived from 

photogrammetry and active remote sensing  
Sub Chapter 4.3.1.2 

d What is minimum accuracy of input data to provide appropriate morphologic 
quality for this research? 

Sub Chapter 5.1.2 

8.3. Recommendation for Future Studies 
The emerging of geomorphometry analysis in various applications of geosciences has 
lead to the utilization of morphologic analysis in determining the volcanic hazard as the 
result of massive development of active remote sensing and GIS technologies. However, 
numerous limitations of this research should be resolved by further studies leading to 
some recommendation regarding better achievement for volcanic hazard assessment as 
follows: 
1. This research only considered pyroclastic flow hazard generated by dome collapse 

and did not consider other type of hazard produced by Merapi activity. Hence, further 
studies should consider other types of hazards to produce comprehensive hazard 
zonation. 
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2. Broader extent of DEM quality assessment using high quality DTM of active remote 
sensing techniques should be carried out to have precise elevation error which leads 
to the complete utilization of active remote sensing to replace conventional ground 
surface and aerial photogrammetry techniques. 

3. The use of simulation models e.g. energy cone, FLOW 2D, FLOW 3D and Titan 2D 
for Merapi – type eruption based on high quality DTM should be carried out to 
precisely predict the affected area.  

4. Volume calculation of remnant of domes using simulation of volcanic cone could be 
carried out to precisely predict the volume of dome remnants that have possibility to 
collapse and produce greater hazard than that of produce from lava dome growth 
alone. 

5. More detail number of inhabitants in predicted affected area should be conducted in 
order to have more specific number of people threaten by pyroclastic flow hazard and 
to increase the effectiveness of mitigation program during Merapi activities.   
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Appendix A. Data inventory from institution and MOPs 

1. Data Inventory From Institutions 
Purpose: obtaining spatial data for topographic representation of Merapi
Date Institutions Contact Persons Results 

07/07/09 
22/07/09 

MVO Sri Sumarti 
Head of Merapi Sub 
Division 

1. No data could be achieved except they could 
participate in the research, as supervisor.  

2. Accessible library and some publications  
08/07/09 PUSPICS Badrun AMS Topographic Map scale 1: 50.000, production date: 

1964
09/07/09 NASA LP DAAC - ASTER GDEM data of Merapi (30 m) 
14/07/09 BAPPEDA Sleman Agus  

Technology and 
Interrelation Sub Division 

1. No satellite data could DEM 
2. Statistic data of year 2007 
3. Landuse planning for Merapi   

14/07/09 BPPD Bambang Pamungkas Merapi summit of IKONOS Imageries (2003) covered by 
cloud 

14/07/09 BPN Bayu  
Head of Survey and 
Mapping Sub Division

1. The GCPs available in 2D coordinate (X,Y) 
2. No GCP located nearby Merapi volcanic cone 

16/07/09 Dinas P3BA Singgih/Asih 
Head of Disaster 
Management 
Division/Sub division 

1. Report of mitigation and response for Merapi eruption 
in 2006 

2. 8 EWS for lahars 
3. Mitigation plan based on MVO recommendation 

16/07/09 SNVT SABO Bambang Cosmas 
Sukatja

Digital contour map scale 1: 5.000, acquisition date: 2006 

17/07/09 PSBA Joko 
Merapi Disaster Division 

No digital data for Merapi area 

23/07/09 TNGM Silviana, Dhani S. 
Technical Sub Division 

1. No digital data for Merapi area 
2. Some pictures of Merapi crater and surrounding area 

11/08/09 BAKOSURTANAL - Topographic map of Merapi, production date: 2000 

10/08/09 Previous researcher Ruli Andaru VSI contour map overlying orthophoto, acquisition date: 
1982

11/08/09 Geodesy GMU Wagiyo Topographic map of Merapi, production date 1944 
08/09/09 Geological Survey 

Indonesia 
- Topographic maps of Merapi, production date 1964 and 

1944
22/08/09 Museum Ketep Pass - Pictures of Merapi summit
13/10/09 ExsaMap Asia Daniel Adi Nugroho Request for Merapi DEM
12/11/09 Intermap Tech. Inc 

Canada 
Stephen Griffiths 
Daniel Adi Nugroho 

Data delivered from Denver, USA through ExsaMap Asia, 
Jakarta

16/12/09 Infoterra – global  
Germany  

Christian Thiergan 
Ralf Duering 

No further information about data request  

 
 

2. Data Inventory From MOPs 
Purposes:  
a. Collection of EDM data 
b. Picture of Merapi sides, Sketches and Remnant of Domes Recognition 
c. Interview of PIC in MOPs 

Date MOPs Contact Persons Results 
01/08/09 
14/08/09 
22/08/09 
 

Babadan, 
Magelang 

Yulianto, Triyono 1. EDM data 2006 – 2009 
2. Remnant of domes recognition and delineation 
3. Publications of Merapi 
4. Map of Merapi scale 1: 25.000, production date 1939

22/08/09 
09/09/09 

Selo, Boyolali Ismail, Singat 1. EDM data 2006 – 2009 
2. Sketches of Merapi 

09/09/09 Jrakah, Boyolali Trimujiyanto 1. EDM data 2006 – 2009 
2. Sketches of Merapi 

11/09/09 Kaliurang, Sleman Panut, Suramto 1. EDM data 2006, 2007, 2009 
2. Some pictures from eruption 2006 

11/09/09 Ngepos, Magelang Retiyo Some pictures of Merapi edifice 
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Appendix B. Field work form 
Double Degree M Sc. Program 

Geoinformation for Spatial Planning and Risk Management (ITC-GMU) 
MOP FIELD WORK FORM 

Researcher 
Contact 
Title 

: Komang Sri Hartini 
: hartini20739@itc.nl 
: Morphologic Analysis of Merapi Edifice in Studying Merapi – Type Eruption, To Improve Volcanic 

Hazard Map 
A. General Information 
1. Date 
2. MOP 
3. PIC 

a. Name 
b. Contact 

4. Equipment

:  
: 
 
: 
: 
: 

B. Electronic distance meter 
1. Benchmark coordinate E : 

S : 
2. EDM equipment type    : 
3. EDM Data available    : 
4. Fixed Prism Numbers Positions on Merapi edifice or flank 

 1.  
2.  
3.  
4.  
5.  
6.  

1.  
2.  
3.  
4.  
5.  
6.  

C. Supporting equipment 
1. Seismograph � Yes � No 
2. EDM  � Yes � No 
3. Camera � Yes � No 
4. Computer � Yes � No 
5. Siren � Yes � No 

D. Interview 
Questions Answers 

1. EDM measurement 
a. Time of EDM measurement  

 
b. Measurement series  

 
c. Obstacle of EDM measurement  

 
d. Distance changes during precursor  

 
e. Daily distance changes  

f. Transferring data to MVO  
 

2. Remnant of domes 
a. Number of remnant observed  

b. Dome remnants identification  
 

 
Double Degree M Sc. Program 

Geoinformation for Spatial Planning and Risk Management (ITC-GMU) 
PICTURE OF MERAPI SIDES FIELD WORK FORM

Date 
Equipment 
Coordinate 
 
Descriptions 

 
 
E 
S 
 

: 
: 
: 
: 
: 
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