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Summary

In the context of aerial physical interaction, a branch of aerial robotics focuses on the study and
the accomplishment of contact-based interaction and manipulation tasks with aerial robots.
The goal of the assignment is to enhance the level of autonomy of the aerial robots developed
at RAM-UT, providing them with an accurate localization system to perform a handover to a
human. The handover will be performed in both indoor and outdoor scenarios in GPS-denied
environments. Currently, the system relies on Motion-Capture (MoCap) state feedback for in-
door localization.

In order to find an optimal odometry technique, a comparison of the alternatives was conduc-
ted. Consecutively, deep research and evaluation on the conventional open-source VO/VIO
alternatives were performed, discarding the machine learning implementations as these tech-
niques cannot outperform the conventional ones for now. This study ranks appearance-based
and feature-based methods depending on their convenience for our application.

The insight gained from the analysis of open-source alternatives allows us to select ORB-
SLAM2, ORB-SLAM3 and SVO Pro as the most promising solutions to obtain localization in a
resource-constraint platform like the MAV. These solutions were tested again the EuRoC data-
sets which were recorded from a MAV and are broadly used by the research community and
against a custom dataset recorded at RAM-UT Arena using Intel Realsense camera D435i. The
algorithm evaluation considered the overall performance of the algorithm to estimate the real
trajectory, the maximum error achieved to perform human safety and the robustness of the
implementations along with multiple runs.

It was concluded that the algorithms SVO Pro stereo, ORB-SLAM3 stereo and ORB-SLAM3 VIO
stereo are valid alternatives that would provide optimal performance under the tested condi-
tions, providing both position and orientation of the MAV at each time step.

Robotics and Mechatronics Miguel A. Alonso



iv
ACHIEVING FULL AUTONOMY IN AERIAL AND PHYSICAL HUMAN-ROBOT INTERACTION

CONTROL VIA ONBOARD PERCEPTION ALGORITHMS RELYING ON COMPUTER VISION

Miguel A. Alonso University of Twente



v

Contents

1 Introduction 1

1.1 Aerial Core Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State of the Art 5

2.1 Overview of Odometry techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Visual Odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 V-SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Visual Inertial Odometry (VIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Machine Learning in VINS algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 VINS algorithms comparison for MAVs 20

3.1 What is a MAV? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 System requirements for the selecting the VINS algorithm . . . . . . . . . . . . . . 20

3.3 Open Source VO/VIO Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 System Design and Evaluation Tools 29

4.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Overall Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Tools for Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Results 49

5.1 Absolute Trajectory Error in Position . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Maximum Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Orientation accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Discussion 69

6.1 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A Appendix 75

A.1 IMU initialization in ORB-SLAM3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.2 IMU Preintegration and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.3 Machine Learning algorithms vs Conventional algorithms. . . . . . . . . . . . . . 77

A.4 Complete results of ATE in position for RAM datasets. . . . . . . . . . . . . . . . . 77

A.5 Visualization of trajectories in RAM datasets. . . . . . . . . . . . . . . . . . . . . . . 80

Robotics and Mechatronics Miguel A. Alonso



vi
ACHIEVING FULL AUTONOMY IN AERIAL AND PHYSICAL HUMAN-ROBOT INTERACTION

CONTROL VIA ONBOARD PERCEPTION ALGORITHMS RELYING ON COMPUTER VISION

Bibliography 83

Miguel A. Alonso University of Twente



1

1 Introduction

Autonomous robotics has been continuously growing in the past years supported by a strong
research community which has led to a big commercial success. Big improvements have been
made in multiple fields such as the development of accurate and lightweight sensors, the
increase of power storage on batteries or the higher power capabilities of onboard devices.
Altogether has allowed achieving affordable and high efficient robotic platforms. This progress
has been especially effective in aerial robotics, the small size platforms used in this area are
commonly referred to as miniature unmanned aerial vehicles (mini-UAVs) or micro aerial
vehicles (MAVs).

Promising applications have appeared in the context of these small-sized airborne platforms,
for instance, power line inspections, surveillance tasks, dangerous terrain explorations, trans-
portation, etc., unmanned robots are expected to replace humans when physically performing
these tasks in the not too distant future. MAVs must be provided with the capabilities of see-
ing, thinking and acting to perform these tasks safely and effectively with the least human
intervention. Electric power line rehabilitation has always been a tedious and challenging task
accomplished by a human. Within this context appears aerial physical interaction, a branch
of aerial robotics focused on the study and accomplishment of contact-based interaction and
manipulation with aerial robotics. This thesis address how MAVs could help to ease this task
by supporting humans with the handover of tools. Before being able to think or act, the MAV
needs to find its position concerning a fixed reference frame. Afterwards, it will be able to plan
its path (think) and apply controls (act) to reach its target.

Self-localization, which is the first step toward providing full autonomy to a MAV, is the main
focus of this work. We will explore the available odometry technologies in robot navigation
systems for GPS and GNSS denied environments. The most promising implementations are
compared, selecting the one that applies better to resource-constraint platforms. Performing
an accurate localization of the platform is key when performing human interaction as the first
goal is preserving human safety. Validations of the algorithms are based on real data using
available datasets and using custom datasets more specific to our use case.

Robotics and Mechatronics Miguel A. Alonso
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1.1 Aerial Core Project

This master thesis assignment is within the scope of the European project (1), it is the largest
European project in drones, where several European universities and companies cooperate to-
wards a common goal. The main project’s ambition is the integration of aerial cognitive robotic
systems, providing them with unprecedented abilities to interact with humans safely. This pro-
ject aims to make feasible co-working between drones and human, with the task of handling
the maintenance and inspection of linear infrastructures. The challenges that this project has
to face are:

• Accurately inspecting local and long-range infrastructure.

• Developing safe and efficient aerial co-workers for inspection and maintenance opera-
tions.

• Providing drones with the capability of accomplishing maintenance jobs that involve
force interaction.

The Aerial-coworkers will be proved on the electrical power systems of ENDESA, the project will
have a big impact on this field as nowadays the maintenance and inspection of these power
systems have not only a big economic impact but also imply improving workers safety and
wildlife conservation.

This thesis assignment is part of the fourth stage of the AERIAL-CORE European project. This
fourth stage aims to accomplish contact-based interaction and manipulation tasks with aerial
robots. The drone must be able to localize itself with reference to the human’s position in real-
time. The worker must be able to signalize through gestures different instructions that need to
be performed by the aerial co-worker, hence, the drone must be ready to detect, recognize and
execute any of the orders for smooth human-drone interaction. A robotic arm is mounted at
the bottom of the drone’s body to allow the required physical interactions such as handover or
reception of the tools from the human.

1.2 Problem Statement

This MSc assignment goal is to enhance the level of autonomy of the aerial robots developed at
RAM-UT. The available robot at UT should be able to effectively perform handovers to humans
in both indoor and outdoor environments in an autonomous manner.

To accomplish this task the aerial vehicle must be provided with an accurate self-localization
system. This would grant the system with capabilities to determine its position and pose, re-
quired information for obstacle avoidance or object tracking. The Global Positioning System
(GPS) is the traditional approach for autonomous navigation. GPS is used worldwide and com-
putes trajectory and speed making use of radio signals. It became available for civilians in the
1980s, providing localization with an accuracy of just a few meters (2).

Nonetheless, GPS has several drawbacks that make it inoperative for our application. GPS pro-
duces limited data about the vehicle only giving information about linear velocity. Vehicles
that move in the 3D space such as underwater or aerial vehicles also require angular velocity
for an accurate self-localization. Moreover, this traditional solution is not accurate enough for
autonomous navigation systems, where its highest accuracy causes an error of few centimetres.
The system is quite sensitive as the signal strength highly depends on the surrounding environ-
ment, for instance, the forest has weaker signals than urban areas and the signal is corrupted
by walls or other objects which also make it unsuitable for indoor navigation. The final draw-
back is the multipath effect, the Global Positioning System is not always the most robust as it
requires the signal from multiple satellites simultaneously to provide an accurate estimation.
Atmospheric conditions may affect the signal travel from GPS to the receiver causing delays in

Miguel A. Alonso University of Twente
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the signal reception. In the past years, Visual odometry (VO) and Visual inertial odometry (VIO)
have called researchers attention as an efficient and cost-effective alternative for autonomous
navigation. The advantage of these vision-based localization systems over GPS is their inde-
pendence from external resources, namely, it relies on local sensors to retrieve its position and
pose relative to its starting point.

Currently, drone localization totally relies on indoor Motion-Capture (MoCap) state feedback.
Therefore, an extensive analysis of the Visual-Inertial Navigation System (VINS) techniques
available in literature was conducted and then the most promising implementations were se-
lected according to the project requirements. Hardware components have to be effectively
chosen and used to implement the selected VINS method. Both hardware and software com-
ponents were integrated into the software architecture used in RAM-UT during the implement-
ation phase, and finally, they were extensively tested using custom datasets. The final software
implementation must be able to:

• Localize itself effectively with respect to the human.

• Generate a map of the environment.

• Recognize and understand human’s instructions to navigate to the correct location and
perform the given task.

Most of the available VINS solutions are focused on either applying the algorithm to run against
open datasets, performing real-time indoor or outdoor robot navigation using a powerful CPU.
On the other hand, this assignment approaches the problem from a different perspective, RAM
solution has been implemented on a MAV to navigate at both indoor and outdoor environ-
ments, depending on limited software performance. The reason of this constraint performance
on MAVs is due to the correlation between weight and computational capabilities of hardware.
As MAVs need to lift all its weight to hover then the lighter the longer time of flight (ToF) that
will be able to achieve.

This Master thesis project is application-based, where the main focus is evaluating and integ-
rating the most promising onboard localization solutions for MAV with the final goal of per-
forming a handover to a human. The handover should be performed in both indoor and out-
door scenarios at GPS-denied environments.

The following research questions are under the frame of the main research question. The ques-
tions will guide us to address the main research questions in the best way and fulfilling all the
set goals :

• Which are the hardware options to provide vehicles with localization in GPS-denied en-
vironments? And which is the most convenient option for MAV?

• Which are the most promising open-source algorithms to provide the MAV with localiz-
ation capabilities (position and orientation)?

• How different are the conditions in outdoor scenarios? Can the same framework be
seamlessly used? How do changes in light affect the estimation?

• Should the solutions integrating Machine Learning be considered as optimal localization
method for our use-case?

• In a simplified scenario without too many obstacles, is it necessary to have loop closures
as a feature in the VIO/SLAM pipeline?

• Which is the most promising open-source algorithm to provide the MAV with localization
capabilities (position and orientation)?

Robotics and Mechatronics Miguel A. Alonso
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• Is one camera enough to perform vio/slam while also recognizing the man and his/her
gestures?

• How should the camera be placed on the MAV? What is the optimal placement? Is the
presence of 3DOF constraining the placement?

Miguel A. Alonso University of Twente



5

2 State of the Art

In this section it is provided an overview of the theoretical side of the project. The knowledge
gathered in this section explains the concepts behind odometry, visual-inertial navigation sys-
tems and how they apply to MAVs to gain an understanding of the topics. It also includes a
comparison between the available VINS algorithms in open-source.

2.1 Overview of Odometry techniques

As described in 1.2 a GPS solution is not convenient to perform autonomous navigation due to
its limitations. The main drawbacks are its constraints to achieving self-localization with high
precision and the influence that environmental conditions have on the satellites’ signals. There
are many alternatives for GPS-denied self-localization techniques that we will briefly cover in
this section, the basic odometry approaches (3) are:

• Wheel Odometry (WO): it applies only to ground vehicles with 2 or 4 wheels. The posi-
tion and orientation computation is found on wheel encoders that count the number of
revolutions each wheel makes (4). Each side of the vehicle needs to work independently
in different directions and speeds. The main drawbacks are that his method accumulates
position drift error over time and, position and orientation estimations decrease with ir-
regular terrains and slippery surfaces.

• Inertial Odometry (IO): An Inertial Measurement Unit (IMU) is used to estimate the alti-
tude, linear velocity, orientation and position of the robot relative to the starting point.
A gyroscope measures orientation through magnetism and gravity detection while non-
gravitational accelerations are estimated with an accelerometer (5). They are highly used
on resource-constrained platforms such as MAVs due to their low power consumption
and the small size of this MEMS sensor. The main drawbacks of IO are its drifting er-
rors and bias on the accelerometer and gyroscope measurements, thus, this method is
unsuitable for lifelong localization applications.

• Radar Odometry (RO): an onboard radar sensor is in charge of generating and interpret-
ing scans to retrieve the relative motion of the vehicle. The surrounding objects are detec-
ted through the radio waves. The main advantages of this technique are its low sampling
rate, the small range to target for detection and the low power consumption. Moreover,
radars are immune to unfavourable environmental conditions or low textures. Nonethe-
less, the main disadvantages are its deficient performance on irregular terrains and the
high storage required when performing large-scale mapping, then RO is not advisable for
resource-constraint platforms.

• Laser Odometry (LO): it produces light emissions and tracks laser speckle patterns com-
ing from the surrounding objects on the 2D plane and uses consecutive 2D images to
build the 3D reconstruction using the iterative closest point method (ICP). Subsequently,
both position and orientation are retrieved from these measurements. LO performance
is not distressed either by low textures or environmental light. However, this solution is
difficult to implement on resource-constrained platforms given the need for matching
points of two sets, therefore, it is computationally expensive. Also, in presence of dy-
namic objects, distortion appears on the scan, this effect needs to be corrected inducing
poor performance.

• Visual Odometry (VO): estimates the ego-motion of a vehicle through the analysis of the
sequence of images of the surrounding environment which are captured by one or mul-

Robotics and Mechatronics Miguel A. Alonso
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Localization Technique Real Time Power Accuracy Energy Rosbustness Dimensions
GPS Soft Low-power Semi-accurate Non-efficient High 2D
WO Hard Low-power Non-accurate Efficient Low 2D
IO Hard Low-power Non-accurate Efficient High 3D
RO Hard Low-power Accurate Efficient High 3D
VO Firm High-power Accurate Non-efficient Low 3D
LO Hard High-power Accurate Non-efficient Medium 3D
Filter-based VIO Firm High-power Accurate Non-efficient Medium 3D
Optimization-based VIO Soft High-power Accurate Non-efficient Medium 3D
Loosely-coupled VIO Firm High-power Non-accurate Non-efficient Low 3D
Tightly-coupled VIO Soft High-power Accurate Non-efficient Medium 3D

Table 2.1: Comparison of the most common localization techniques.(3)

Figure 2.1: VO pipeline

tiple cameras. This localization technique is highly affected by environmental conditions
such as blur, frame drops or environmental light.

A much more extensive comparison of these algorithms was conducted by (3), where they are
also evaluated in terms of accuracy, robustness, energy efficiency, performance and response
time.

2.2 Visual Odometry

The simplicity of visual odometry to perform state estimations, along with its appropriateness
in resource-constrained platforms has motivated robotic researchers to explore and make pro-
gress on this odometry approach, maximizing its reliability and robustness. It is an odometry
algorithm able to compute the vehicle orientation and position by incrementally analysing
the deviation on a sequence of images as a result of motion. This deviation is computed by
detecting features within the images and tracking their displacement through the input frame
sequence. As a final step, some local optimizations can be made over the last number of poses
(windowed bundle adjustment). Applying VO implies taking into account several assumptions
(6): sufficient illuminations are needed, it should check that overlapping is sufficient between
consecutive frames, the static scene should have high texture and predominate over dynamic
objects to be able to remove apparent motion.

VO is a subset inside a technique well-known as Structure from Motion (SFM) (7). This tech-
nique reconstructs the structure of 3D scenes by making use of sets of unordered images, the
algorithm optimizes the camera and computes the position of the feature points. The final
step at SFM consists of an optimization which is done offline as the refinement of the scene
reconstruction and camera pose is a computationally expensive operation that grows with the
number of images.

In Figure 2.3 it is represented the general pipeline for visual odometry. Now it is reviewed the
processes required in VO to complete a successful localization in real-time.

Miguel A. Alonso University of Twente
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Figure 2.2: Ilustration of VO scheme.(8)

Vision Systems

Numerous types of camera sensors and configurations can be applied to capture the sequence
of images from the environment, each sensor has its benefits and limitations (3).

• Stereo: the 3D information is reconstructed from a pair of images. Two cameras are
aligned and calibrated with respect to the projective centre of each camera, at least two
points have to be projected on the camera projection planes to build the absolute scale
by applying a technique called triangulation. This approach consists of matching fea-
tures in a stereo pair of images and aligning them along an epipolar line, this method is
also known as epipolar geometry. The disadvantage of stereo cameras is the need of per-
forming a very precise extrinsic calibration, this calibration gets degraded as an effect of
vibrations or sharp movements so over time a re-calibration is required. Stereo-cameras
count with a fixed baseline distance which affects the depth estimation, the bigger this
distance the better accuracy to detect larger depths, oppositely to detect very close ob-
jects an ultra-short baseline is convenient.

• Monocular: the baseline issue is not present in this type of camera. At least three suc-
cessive frames are required to do the 3D reconstruction. The main disadvantage is that
the translation vector is computed concerning a relative scale since the transformation
matrix between the two initial frames is not fully known, so a predefined value is set.
However, several ways have been developed to resolve the drift and ambiguity on the
scale such as using the information on the planarity of surfaces or making use of convo-
lutional neural networks (CNN).

• RGB-D: single camera that counts with an IR transmitter that projects speckle patterns
on the surfaces and saves the IR image as a reference image. Successively, the reference
image and the captured image are triangulated to compute a real depth estimation, this
method helps to overcome scale ambiguity when using a single camera. RGB-D cameras
are advantageous to obtain poses in low texture environments. However, they have a
significant drawback, their depth sensor is only accurate when measuring depths in the
range of 0 and 3 meters (9), which can lead to scale accumulative error.

Robotics and Mechatronics Miguel A. Alonso
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• Omnidirectional: this camera provides a 360 field of view (FoV) boosting accuracy pose
estimations in comparison to cameras with lower FoV, as a higher area of the surround-
ings is captured.

• Fisheye: allows a panoramic view of almost 180 degrees from side to side, as it happens
with omnidirectional cameras it also allows to capture more information from the en-
vironment compared to traditional cameras. The corresponding pixels on fisheye-stereo
cameras are projected on epipolar curves, preventing the usage of traditional disparity al-
gorithms. Fisheye cameras imply higher computational costs due to the epipolar curves.

• Thermal Camera: these cameras are promising for low visibility environments, they
capture the surrounding temperature environment without the need for an additional
source of light. On the other hand, these cameras accumulate noise over time and low-
resolution images (8).

• Event Based: these are dynamic vision sensors able to capture intensity changes across
the pixels on the camera, these changes are also known as events. The camera out-
put works asynchronously as it is triggered by any variation in the scene illumination.
These cameras outstand for their high dynamic range and low latency compared to reg-
ular cameras. Additionally, blur does not influence the output because the value of each
pixel is calculated independently.

Camera sensors can either be placed downward- or front-facing. The front-facing solution cap-
tures more information about the surrounding environment, while shows deficiencies to cap-
ture small movements. Furthermore, this position is more prone to be affected by shadows or
sunlight changes. On the other hand, the downward-facing position is useful for pre-explored
maps but, has difficulties finding appropriate matching points when the are fast dynamics.
Normally, it is seen that cameras pointing downwards generate 2.5D maps due to the flatness
of the ground plane. Meanwhile, front-facing cameras are normally applied to build 3D recon-
structions, as they are better for indoor navigation and can detect better the obstacles such as
buildings or trees.

Problem Formulation

The chosen camera is responsible of taking images recurrently from the environment. The
relation between two successive camera poses k-1 and k can be established through rigid body
transformation (6). The set T1:n = T1,0, ...,Tn,n−1 contains all the transformation matrices of the
previous camera poses, where:

Tk,k−1 =
[

Rk,k−1 tk,k−1

0 1

]
(2.1)

where Rk,k−1 represents the rotational matrix from pose k −1 to pose k, while tk,k−1 represents
the translation on the 3D space from pose k −1 to the pose k. The camera successive camera
transformations with respect to the initial frame k = 0 are contained by the set C0:n =C0, ...,Cn ,
hence, the ongoing position Cn can be deduced from concatenating the previous transforma-
tions form k = 1 to k = n, this means Cn =Cn−1Tn .

Feature Extraction and Tracking

VO’s main task is to find the relative transformations between camera poses and then concat-
enate them to recover the full trajectory. Several approaches can be used to extract the data
contained in the captured images, more conventional ones such as appearance-based (direct
method) or feature-based (indirect method) and the non-conventional approach is applying
machine learning.

Miguel A. Alonso University of Twente
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Figure 2.3: VO problem, where the transformation between adjacent camera positions are computed
from the matching features. As a result, the absolute poses Ck can be deduced regards the initial
frame.(6)

Appearance-based/Direct methods: Camera poses are estimated through the minimization of
the photometric error between the pixels of two consecutive frames. All the frame information
is used and the feature extraction step is skipped, allowing to quickly gather the mapping data.
Direct methods make use of geometric constraints from the image frame, reducing aliasing
problems with other similar patterns and improving accuracy and robustness in low textured or
low visibility situations. The drawback of this method is its lack of robustness to moving objects
because very close pixels may cause mismatches while pixels with high depth are sensitive to
calibration errors, desynchronisation between depth and colour or the rolling shutter effect.

This method can be classified into optical-flow based and region/template matching based: the
former uses an optical flow algorithm which uses as input the raw pixel data when the intensity
of a pixel changes between two consecutive images then this pixel is analyzed to estimate cam-
era motion. With the intensity pixel variations, it is possible to compute the 2D displacement
vector of the projected points of the two frames. One of the most relevant implementations of
this OF algorithm is the one that (10) proposed, where the 3D points of the global map between
the two frames get aligned by an iterative closest point (ICP) algorithm. These algorithms have
weak performance in low texture environments and are computationally expensive. On the
other side, regional-based methods aligns consecutive images to estimate the motion between
two ensuing camera poses. For instance, an algorithm was proposed by (11) where a correl-
ation mask is applied to the size and location of the objects, this data is used to predict the
position of the object in the next frame. Later on, an extension to apply rotation and translation
to the mask was suggested by (12).

Feature-based/Indirect methods: Use outstanding and repeatable features from each frame
to approximate the motion between camera poses. This approximation is based on geomet-
ric error minimization over the matched features between frames. Indirect methods start
by identifying areas where key features can be found such as corners, edges, lines or curves,
often intensity gradients are employed to detect these key zones. Some of the most famous
feature descriptors are Harris, SURF, SIFT, FAST and ORB, the choice between them is driven by
the trade-off between computational efficiency and feature detection robustness. Descriptors
have been optimized to be robust against noise and geometric distortions. After the descriptors
have detected the key features an optimization method is used to minimize the geometric error
between them along the sequence of images. Lastly, the camera poses are estimated with the
transformation matrices. Feature-based methods achieve high robustness in environments

Robotics and Mechatronics Miguel A. Alonso
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Figure 2.4: VIO: direct methods vs feature-based methods

with high geometric distortions. This method is independent of illumination variations. The
detection, matching and tracking of features is a computationally expensive operation that in-
creases proportionally with the extracted number of features, nonetheless, the pose estimation
accuracy increases proportionally as well.

The main focus of this section is set on conventional models, discussing machine-learning-
based implementations in Section 2.5, more information about any of these approaches can
be found in (3). The input space is linked to the election between direct and indirect methods,
on the other side, the output space depends on the election between sparse and dense maps
(13). Sparse maps are typically used for correcting the trajectory in vSLAM algorithms, these
maps are composed of just a small subset of the pixel contained in the image frame. Contrary,
dense maps generate maps that contain all the possible pixel information from the image
frames, creating these maps implies a heavy parallel computation and it is very probable that a
GPU is needed to produce these dense maps. The most common combinations for input/out-
put solutions are indirect/sparse methods and direct/-dense methods.

Motion estimation

Once the matching features are detected in consecutive images ( fk and fk−1) then the cor-
responding transformation matrices need to be computed. Finding this matrix between two
camera poses depends on the dimensional space in which the features are defined, either in
2D or 3D space. As a result, there are 3 different cases, (13; 8):

• 2D to 2D: the points at both fk and fk−1 are represented on the 2D plane, at least 5 match-
ing points are needed. The solution involves finding the transformation matrix that can
minimize the distance between the point reprojection and its matching point in the ref-
erence frame (see Figure 2.5a).

• 3D to 3D: the points at both fk and fk−1 are represented on the 3D space, therefore, it is
needed to triangulate points at each time step. Given 3D points in the real world which
are mapped to their 2D projection, it is possible to estimate the camera pose. The op-
timal solution is computed by the minimization of the error from the euclidean distance
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(a) 2D-2D alignment error (b) 3D-3D alignment error

(c) 3D-2D alignment error

Figure 2.5: Different types of geometric error (14)

.

between the triangulated 3D matching points, Figure 2.5b. This method provides higher
uncertainties than 3D-2D, so it is rarely used.

• 3D to 2D: also called 2.5D alignment or PnP (perspective from n points), where the points
of the frame fk−1 are specified in 3D space and fk points on the 2D plane. At least 3
points are needed for the minimal case to be solved. The points in the 3D space are
reprojected on the 2D space of the new frame, the solution is the transformation where
the euclidean distance between the tangent plane and the reprojected reference point is
minimal, Figure 2.5c.

Ultimately, 3D-2D alignment estimation is more computationally efficient than 2D-2D align-
ment (15). Moreover, with 3D-2D alignment camera poses are estimated with a higher level of
accuracy than 3D-3D alignment, as it minimizes the reprojection error instead of computing
the euclidean distance between the 3D matching points. For more mathematical details please
refer to (6; 14). Stereo cameras can capture motion on an absolute scale and generate less drift
compared to monocular cameras, still when the stereo baseline is too small compared to the
distance to the objects then VO gets degraded into monocular VO.

Some of these motion estimation approaches require the triangulation of their 3D points. The
triangulated 3D points are found by intersecting the back-projected rays from 2D image cor-
respondences of at least two image frames. However, this intersection never occurs, leading
to uncertainty areas around the feature point position. This effect is a consequence of image
noise, deficiencies in the camera model and calibration estimations or the uncertainty around
feature matching. There are different ways of reducing this uncertainty, the first one is by hav-
ing more observations or more distant views that can decrease the position uncertainty. An-
other alternative is by applying Keyframe selection, this procedure consists of skipping frames
until the average uncertainty is under a chosen threshold, the selected frames are the named
keyframes. Many times wrong data associations are made, these outliers must be removed
to increase robustness. Traditionally this is done by the well known RANSAC algorithm (16),
which is a non-deterministic method as the solution differs from each run.
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(a) Representation of how uncertainty changes with
distance when applying triangulation.

(b) Keyframe selection. Approach needed before
each motion update to mitigate drift.

Windowed Camera-Pose Optimization

It is possible to graphically represent camera poses as nodes and their rigid-body transforma-
tions by using edges connecting these poses. The pose graph can provide information about
the constraints from the camera poses by observing feature points from different camera po-
sitions (17; 18; 4). The final goal is the minimization of the cost function (Equation 2.2) by
rearranging the camera poses to satisfy the given constraints.

∑
ei j

‖Ci −Tei j C j ‖2 (2.2)

where C represents a camera pose and Ti j the transformation matrix between i and j. Rota-
tions introduce nonlinearities in the optimization and therefore nonlinear optimizers need to
be used such as Lovernberg-Marquardt. This optimization can be done not only between con-
secutive frames but also between non-adjacent frames which are inside a window of the m last
keyframes, the optimization process is also known as Windowed Bundle Adjustment. The pro-
cess of removing previous frames so they are not considered during the optimization is called
Marginalization (19), refer to the paper (20) for information regarding marginalization with VIO
techniques.

2.3 V-SLAM

V-SLAM stands for Visual Simultaneous Localization and Mapping, as its definition suggests
this process describes the navigation of a vehicle in an unknown environment inferring its own
location and creating a map of the surrounding environment where it positions itself. VO can
be considered as a reduced SLAM system, where place recognition (loop closure) is disabled.

Previously, it was described how the VO objective is recovering the path pose after pose, and
before every motion update, it optimizes over the last m camera positions (window bundle ad-
justment), achieving local consistency trajectories. The key to creating a robust map is loop
closure detection. It allows the reduction of accumulative VO drift and the position of cam-
era poses through global bundle adjustment optimization, accomplishing global consistency
for both the trajectory and the map (18). The trade-off between VO and V-SLAM is simplicity,
performance and consistency.

There are mainly two types of VSLAM algorithms (21):

• Filtering-based: the problem is modelled as an online state estimation, where states are
estimated as soon as a new measurement comes available using Maximum a Posteriori
(MAP) estimator. These models are similar to those initially used on the SLAM problem.
They can be based on the Extended Kalman Filter (EKF), for instance MonoSLAM (22), on
particle filters such as FastSLAM (23; 24) or Multistate Constraint Kalman Filter (MSCKF)
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(25) or its stereo version, the S-MSCKF (26). Traditionally, filtering-based methods con-
catenate on the same state vector the camera poses and landmarks positions, this turns
out to be inefficient in terms of scalability. As in the classic SLAM, when a landmark is
revisited then the state vector updates its parameters. When applying this V-SLAM al-
gorithm the 3D features are extracted from the state vector and stored in a static map.
The mapping process takes place after the localization is finished rather than simultan-
eously. Filtering methods evolved and nowadays permit windowed optimizations im-
proving computational efficiency.

• Smoothing: in which most of the recent SLAM algorithms are based, it estimates the
full trajectory from the complete set of measurements. These methods are based on
parallel methods which derive from PTAM (27). These algorithms are also known as
"optimization-based" because the features are parametrized with respect to the key-
frames enabling parallelization of tasks (multi-threading). Smooth algorithms perform
a global optimization process known as bundle adjustment (BA) which corrects drift ef-
fects. This non-linear least-square optimization problem can be addressed using mul-
tiple solvers (i.e.,iSLAM2 (28), g2o (29) ,Ceres(30)). These algorithms were mainly con-
ducted offline due to the computational costs of BA optimization until PTAM (27) ap-
peared proposing the parallelization of tasks. BA is capable of optimizing both camera
poses and the built map, however, it is also possible to limit its optimization process to
motion-only BA and structure-only BA. Besides, BA optimization can be also combined
with other optimizations such as the Windowed camera-pose optimization. The keys to
achieving high accuracy when applying BA to sparse feature correspondence are: 1) a
Large number of uniformly dispersed features in the image plane. 2) Tracking feature in
multiple frames with small drift. 3) Association of old landmarks with newly detected
features (i.e.,loop-closures).

To sum up, filtering-based algorithms are solved incrementally in a single thread, while
Smoothing-based algorithms use multi-thread and are based on keyframe-based solutions us-
ing both windowed and global optimization techniques. While the latter has higher accuracy,
the former holds a higher computational speed.

2.3.1 Loop Detection for Global Bundle Adjustment

As depicted in Figure 2.7, a simple way of visualizing loop closure is considering that when the
vehicle has loop closure deactivated it sees the world as an "infinite corridor", so the vehicle is
continuously exploring new areas, even when revisiting previous landmarks. Contrarily, when
loop closure is activated the vehicle can visualize the world as a "corridor" that keeps inter-
secting itself. An intersection occurs whenever an old landmark is revisited, this gives him an
understanding of the topology and helps to find shortcuts.

Loop closures are a valuable tool for pose-graph optimization, when a landmark is revisited a
new constraint is created between graph nodes. Usually, these nodes are far from each other
and drift has accumulated between them. This drift in position is highly reduced and all the
past poses are updated gaining a higher understanding of past vehicle positions, and it is at this
point when Global Bundle Adjustment happens. However, special care should be taken when
adding a new loop closure due to the high impact of the new constraints on the camera-pose
optimization, it is preferable to omit a loop closure than add a wrong one.

2.3.2 V-SLAM Architecture

Modern V-SLAM systems are divided into two main components:

• Front-end: this part is focused on receiving the input from the visual sensors to ex-
tract features and make data associations, this data association can either be short-term
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Figure 2.7: The left map does not consider loop closure, it starts in A and ends in B. In the built map
points that might be close in reality such as B and C are seen as far from each other in the odometric
map. The right map leverages loop closure and understand the real topology of the environment, finding
shortcuts within the map (21)

or long-term associations. Short-term associations are the ones that match 3D feature
points from consecutive frames, this is done by means of descriptors or optical flow (6)
methods as commented in Section 2.2. Oppositely, Long-term data association is a more
challenging task as it detects and validates loop closures. It would be impractical trying to
match by brute force a detected feature against all the known features, therefore a more
practical approach named bag of words is applied.

• Back-end: provides feedback to the front-end for loop closure detection and validation
and is encharged of motion and structure optimizations. The final goal is to detect loop
closures robustly avoiding perceptual aliasing, this phenomenon consists of having dif-
ferent input from sensors that cause the same sensor signature. Nevertheless, visual
aliasing is unavoidable, wrong loop closures degrade the pose graph estimation (31),
so there are some proposed techniques (31; 32; 33; 34) to protect the back-end against
false positives. For instance, one of the methods proposed was checking the loop closure
against the odometry measurements (35).

Bag of Words Approach

As mentioned, trying to match every feature against all the others by brute force seems an im-
practical procedure, alternatives have been found to do this process more efficiently. One of
the most well-known methods is the so-called visual words (18; 36; 37; 38; 39). In this method
every visual feature can be represented by a bag of visual words. This method simplifies the rep-
resentation of a high-dimensional feature descriptor with just an integer number. The initial
high dimensional descriptor space is divided in k-means clusters (40), named as visual vocabu-
lary. Each feature descriptor that falls into the same cell is assigned with the same cell number,
representing a visual word. The visual similarity between two images is measured by using
the distance of the visual word histograms between them. Initially, the first n-similar images
are found, then a geometric verification. In V-SLAM the method applied to reject outliers is
RANSAC (6), once this is checked the maps and poses are corrected and the transformation
pose between the two frames is computed. In Section 2.3.2 we commented how this aliasing is
unavoidable and some ways to tackle this have been proposed.

Several methods can be used to search within the bag of words. TF-IDF (41) were the words
are classified in terms of the frequency in which they appear on the images, the more they
appear the easier to recognise. Other methods arrange visual words on hierarchical trees (42)
which work as a lookup table. These approaches are not able to handle illumination variations,
therefore there are techniques with account for these variations by matching sequences (43) or
consider both spatial and appearance information (44).
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2.4 Visual Inertial Odometry (VIO)

These algorithms are state estimations that fuse the camera images with IMU measurements
to provide an accurate motion tracking of the mobile platform.

The inertial measurement system is a lightweight and low-cost module that provides local lin-
ear acceleration and angular velocity. The IMU data is corrupted by biases and noise, suffer-
ing a poor signal-noise ratio at low angular velocities and linear accelerations (45). Inertial-
based odometry methods deteriorate with time, making the position estimation unreliable for
lifelong experiments. On the other hand, camera-based approaches can provide precise and
rich information during slow-motion displacements, but suffer from a very limited output rate
( 100Hz) and have scaling problems in their monocular setup. The quality of the pose estima-
tions highly decreases in low textured environments, when features are occluded, under High
Dynamic Ranges (causes underexposure of images) or with high-speed motions (causes mo-
tion blur).

The integration of the VO pipeline with these inertial-based approaches helps to overcome
these limitations on the VIO systems. In addition, it helps to make the scale observable for
monocular systems. The IMU provides high-frequency data ( 1000Hz) for short term estima-
tion, cushioning the impact of dynamic scenes on the visual approach. Both methods comple-
ment each other producing a more robust and accurate state estimation.

2.4.1 VIO Classification

VIO solutions can be classified based on the stage at which the sensor fusion takes place
loosely-coupled and tightly-coupled. Also, VIO methods can be categorized depending on the
type of data fusion between IMU and visual data into filtering-based and optimization-based
(8).

Loosely-coupled VIO: considers Inertial Odometry and Visual Odometry as two separate en-
tities, each one delivering an independent pose estimation, this results in sub-optimal pose
estimations as the correlations amongst the multiple sensor measurements are discarded.
These two estimations are post-processed to estimate a unique position and orientation for
the mobile platform. The main benefit of this method is its computational efficiency, and
the ease to integrate new sensors. The most well-known technique for data sensor fusion is
Kalman Filters (KF). Additionally, nonlinear optimizations can be implemented to improve
the accuracy and robustness of pose estimation at the expense of computational load, driving
them to be infeasible for resource-constrained platforms (i.e. UAV (46)). The main drawback
of fusing the two decoupled pose estimations is the information loss, which has an impact on
accuracy.

The loosely coupled methods can be classified into two groups depending on how data is
processed for prediction and observation when data is fused ().

The first group uses IMU measurements to estimate the states of the kinematic model, while
visual data is used as observation data that updates the Kalman filter, such as (46) and (47).
This implementation is suitable for accurate high-rate linear velocity estimation, suitable for
robotic motions where manoeuvres with variable speeds are performed. The main drawback
of this solution is that as it mainly relies on the IMU it is then sensitive to its biases and drift,
hence accumulating errors in the pose estimation over time.

The second group uses visual odometry for state estimation, in this case, the IMU data is used
as the observation data for the Kalman filter updates. The method is capable of estimating the
poses accurately and being drift-free on long runs. On the other hand, as it is not founded on
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Figure 2.8: Loosly-coupled VIO

the IO, the linear velocity is estimated with lower accuracy. Another drawback of this approach
is that the occlusions or high dynamics can cause the VO to fail and it would stop estimating
the poses of the mobile platform.

Tightly-coupled VIO : All the inertial and visual sensors are together optimized to produce an
accurate state estimation. Applies IMU integration to predict the location of the features on
the 2D space to ease feature tracking on consecutive frames. Classically the tightly coupled
Extended Kalman Filter(EKF) is the multi-state constraint Kalman filter (MSCKF) presented in
(48) or ROVIO (49). The results of this approach showed high accuracy of pose estimation when
performed in real-time(RT) and large-scale environments.

Figure 2.9: Tightly-coupled VIO

Depending on the type of data fusion, the VIO can be classified into:

• Filtering-based: IMU data is used to process the vehicle pose from its dynamic model
(process model). This model is later employed to update the state of the vehicle us-
ing the information obtained from visual data (measurement model). The filtering ap-
proaches can be split into four frameworks: Extended Kalman Filter (EFF), Unscented
Kalman Filter (UKF), Multi-State Constraint Kalman Filter (MSCKF) and Particle Filter
(PF). The main disadvantages of this approach are that older states are dropped when es-
timating a new state, causing linearization errors and outliers to be enclosed in the filter
state (50). Secondly, linearizations at wrong estimations cause inconsistencies in the un-
observable directions when using filters (51) (52). There are four unobservable directions
when using VIO: the global position and the orientation around the gravity axis.

• Optimization-based: Computes state estimation from visual data and IMU measure-
ments by minimizing a least-square nonlinear problem (8). This method allows the
linearization of multiple points achieving a state estimation with a higher degree of pre-
ciseness. While filters add a new state at every IMU measurement, this is infeasible on
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Figure 2.10: Visual description of the frequency in which the IMU and the camera publish the estimated
data. The IMU provides information about the MAV position with a higher frequency but lower accuracy.
Cameras use visual landmarks to retrieve the position and correct the drift from IMU estimations.

optimization approaches as complexity grows with the dimension of the states. There-
fore, the integration of inertial data between frames aids to establish relative motion
constraints. This technique requires reintegrating every time the state updates (i.e., after
each optimization). A reparametrization of the relative motion constraints avoids the
repetition of these integrations, named IMU preintegration. It was proposed by (53) built
upon (54) and is widely accepted in VIO to avoid duplicated integrations.

The optimization-based approach has higher precision than filtering-based methods.
However, a higher computational load is needed as a larger number of landmarks are
considered on the state estimation. If the complete history of landmarks is used for
the estimation we will call them Full smoothers, while Fixed-lag smoothers (or sliding
window estimators) just consider the last states.

Full smoothers allow re-linearization with each update, while fixed-lag smoothers lock
linearization permanently on the marginalized states, this provides less accuracy in ex-
change for a lower computational load. Nowadays, research focus on Fixed-lag and Full-
smoothers as computational power has improved and their higher accuracy.

2.4.2 VIO vs VI-SLAM

VINS algorithms are included as an instance of VI-SLAM and visual-inertial odometry (VIO).
While the former uses the features positions and IMU and camera poses together on the state
vector, the latter does not include the features in the state vector but uses the features to set
motion constraints between the IMU and the camera poses. When performing loop closures
VI-SLAM boosts the accuracy of features position at the expense of higher computational com-
plexity. VIO state estimators’ error grows unbounded as no information from previous loca-
tions is known to constrain them.

2.5 Machine Learning in VINS algorithms

Machine Learning (ML) algorithms have attracted significant attention from the research com-
munity. ML approaches benefit from the increasing volumes of data and computational power,
applying their approaches to many different domains. Pose estimation is not an exception,
where ML allows more precise state estimations and faster data processing. Humans perceive
their self-motion and surroundings with multiple perception sensors that allow them to nav-

Robotics and Mechatronics Miguel A. Alonso



18
ACHIEVING FULL AUTONOMY IN AERIAL AND PHYSICAL HUMAN-ROBOT INTERACTION

CONTROL VIA ONBOARD PERCEPTION ALGORITHMS RELYING ON COMPUTER VISION

Figure 2.11: Comparison of the Deep learning approaches based on VO on Trajectory 10 of KITTI data-
set. (55)

igate in the 3D space. Similarly, neural networks perceive the environment and estimate the
system position using multiple sensors (55).

How can Machine Learning improve VINS algorithms?

Data-driven algorithms avoid the human effort of defining all the mathematical and physical
rules for the algorithm. The NN is provided with a set of successive images where depth, motion
parameters and pose are predicted and trained against a ground truth. ML algorithms not only
learn from past experience but also adapt to the changing world by employing new training
and including it in their evolving localization algorithm.

One of the main advantages of conventional algorithms is the ability to predict motion without
any prior knowledge of the camera parameters. Machine learning algorithms can make use
of the increasing amount of sensor data and the growing computational power. They easily
scale to large problems, where the parameters inside the model are minimized through op-
timization. Nevertheless, these algorithms are more computationally costly than conventional
models.

2.5.1 Working principals of Machine Learning and VO/VIO

Deep learning algorithms extract high-level features from images providing alternatives to
solve VO/VIO predictions. Deep learning algorithms may combine classical VO/VIO algorithms
with neural networks (hybrid VO/VIO) or be purely based on neural networks (end-to-end VO/-
VIO). This last group can be supervised VO/VIO if there is ground-truth data available during
the training phase or unsupervised VO/VIO if it is not available.

A typical choice for supervised learning is DeepVO (56) which combines a convolutional
neural network with a recurrent neural network. DeepVO estimates the position of a vehicle
when driving it in unseen scenarios, outperforming monocular conventional methods such as
VISO2(57) or ORB-SLAM (58) when there are no loop closures (57). Furthermore, it can extract
the scale even with monocular cameras as the NN deduces the scale metric from the experience
of large sets of images.

The research community’s interest in exploring efficient unsupervised learning VO algorithms
is growing. They make use of unlabelled data in the training phase, saving human effort. This
also provides better generalization and adaptation to new scenarios. A typical unsupervised al-
gorithm predicts depth maps and poses to estimate the transformation between the captured
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images. The two main problems that prevail unsolved from the original work (59) are the im-
possibility to retrieve a good scale and the assumption of a static environment without camera
occlusions. Today the performance of unsupervised learning is lower than supervised methods
as depicted in Figure 2.11, however, the constant evolution of performance and the superior
advantages of unsupervised learning make it a promising option for the not too distant future.

Figure 2.12: Top: Supervised learning framework for VO. Bottom: Unsupervised learning framework for
VO.(60)

Hybrid approaches use neural networks but rely on conventional VO frameworks, where deep
learning is used to replace part of the mathematical model, normally by estimating the scale.
D3VO (61) is one of the best hybrid algorithms which integrated depth, uncertainty and pose
directly on visual odometry. The combination of both frameworks makes these algorithms
more accurate and robust than end-to-end deep learning approaches. For instance, D3VO de-
feats several VO/VIO alternatives such as DSO (62) or ORB-SLAM (58).

VIO algorithms encompass visual and inertial data, opening the possibility to train NN with
IMU measurements, such as DeepVIO (63), to reconstruct trajectories on a global scale. As
mentioned, they are also categorized into hybrid VIO and end-to-end VIO(supervised or unsu-
pervised).
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3 VINS algorithms comparison for MAVs

One of the end goals of the project is providing the team with more flexibility to fly our MAVs
autonomously in any indoor or outdoor environment. Currently, aerial robots developed at
RAM-UT rely mainly on Motion-Capture (MoCap) state feedback for indoor localization. VINS
algorithms play a fundamental role in enhancing the level of autonomy of our MAV’s, granting
pose information employed in localization.

3.1 What is a MAV?

An unmanned aerial vehicle (UAV) is the term used for an aerial vehicle with no human pilot.
Over the years, systems and sensors have been continuously improving allowing us to create
UAVs that fit in the palm of our hands.

MAV is a term used to describe a fairly small UAV. Commonly, UAVs come with flapping wings,
fixed wings or rotatory wings. The research community have been attracted by the wide variety
of applications, and continuously expanding list of new algorithms developed for them. MAVs
open a huge number of possibilities in research, where research is conducted in multiple types
of environments (indoor and outdoor, know and unknown, obstacle-dense and obstacle-free),
and involving challenging tasks such as physical interactions.

3.2 System requirements for the selecting the VINS algorithm

The final ambition of the project is the integration of aerial cognitive robotic systems, providing
them with unprecedented abilities to interact with humans safely. In this section, it is explored
the most used opensource VINS solutions to accurately estimate MAV poses, with the final goal
of making feasible co-work between humans and drones. Requirements for choosing the most
convenient VINS algorithm:

1. Accuracy will be the highest priority to preserve human safety and accomplish the tasks
successfully.

2. The VINS algorithm will run in a MAV which has hardware limitations due to the reduced
size of these devices.

3. MAVs will be working with humans for an indeterminate time, we will look for optimal
algorithms for lifelong experiments

4. Providing a final map of the surrounding environment is not critical but it is a plus.

5. Ultimately, the MAV should not only run indoors, where most of the algorithms are nor-
mally tested but also outdoors where the drone is exposed to more challenging scenarios
such as more critical illumination changes or longer distance to objects.

6. Strong community using the algorithm. We believe there is a correlation between the
high frequency of appearance on papers of the algorithms and a strength of the com-
munity supporting and using this algorithm.

3.3 Open Source VO/VIO Comparison

In the past few decades, VIO has received much attention for efficiently estimating the ego-
motion of unmanned aerial vehicle systems. Numerous researches on VIO and the multiple
possibilities that camera sensors offer to interact with humans (e.g., gesture recognition) and
the surrounding environment (e.g., object detection, semantic recognition) motivate us to ex-
ploit the alternatives that include camera sensors.
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In this section, it is pictured the main open-source VINS algorithms used in research. The ana-
lysis just includes the most recent algorithms, the ones that guarantee the highest accuracy and
most used. In this analysis, the papers selected were those which compare multiple algorithms
at the same to be sure the tested algorithms were graded under the same conditions.

The evaluated algorithms only include conventional approaches as machine learning imple-
mentations were either not available for the general public or not as robust as conventional
approaches, therefore, these methods have been discarded. A descriptive table has been in-
cluded in Figure A.2 for reference. As mentioned on (55), VIO state-of-the-art classical mod-
els still outperform learning-based VIO and require less computational resources than ML ap-
proaches, however, the latter is more robust to real time issues such as noise. ML approaches
should not be forgotten, as their potential is very high and have a rapid rate of progress, see
Figure 2.11. The fast development on power capabilities of onboard devices points make them
a promising alternative in the not too distant future. Some of them already outperform several
popular VO/VIO systems such as DSO (62) or VINS-Mono (64).

In Table 3.1 it is summarized the most relevant algorithms extracted from the analysis. It con-
cludes that the typical cameras used in localization algorithms are either monocular, stereo and
RGB-d. Nonetheless, most of the novel algorithms are exploring other types of cameras men-
tioned in 2.2, such as (65) which uses event cameras or (66) dependent on thermal cameras.

Event cameras would be relevant in high dynamic scenarios and thermal cameras are oriented
to perform in low visibility capturing temperature information from the environment. Neither
of the described scenarios applies to our case, therefore we to sticked to monocular, stereo
and RGB-d algorithms which have been tested more extensively. Lastly, fisheye cameras could
have been considered as an option, however, almost none of the recent algorithms included
the possibilities to use these cameras, this is due to the higher distortions that they caused on
images and the higher computational cost as a result of their curved epipolar line.
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Algorithms Hardware requirements Approach Input Treatment Localis./Mapping Loop Closures Map Comparison Papers Comment

ORB-SLAM (58) Monocular Optim. Indirect 2D-2D/3D-2D Yes Sparse

(67)
(68)
(13)
(69)
(70)
(71)

Robust for large path tracking

ORB-SLAM2 (72) Stereo/RGB-D Optim. Indirect 2D-2D/3D-2D Yes Sparse

(67)
(68)
(73)
(69)
(74)
(70)
(71)

Robust for large path tracking

RTAB-MAP (75) Stereo/RGB-D Filter Direct – Yes Dense
(67)
(70)
(71)

Scene reconstruction

Mono-SLAM (76) Monocular Filter Indirect 3D-2D No Sparse
(68)
(13)

Pose estimation in robotics

PTAM (77) Monocular Optim. Indirect 3D-2D No Sparse
(68)
(13)
(71)

A.R. in small workspace

SVO (78) Monocular/Stereo + IMU Optim. Direct/Indirect 2D-2D/3D-2D No Sparse

(68)
(13)
(69)
(79)

Fast, consistent semidirect method

LSD-SLAM (80) Monocular/Stereo Optim. Direct 2D-2D Yes Semi-Dense

(68)
(13)
(73)
(69)
(74)

Semidense trajectory estimation

VINS-Mono (64) Monocular + IMU Filter Indirect 3D-2D Yes Sparse

(13)
(69)
(81)
(79)

Full VI-SLAM method

DSO (62) Monocular/Stereo Optim. Direct 2D-2D No Sparse

(13)
(13)
(73)
(73)
(69)
(71)

Direct and sparse VO method

ROVIO (49) Monocular/Stereo + IMU Filter Direct/Indirect 2D-2D No None

(13)
(69)
(81)
(79)

Robust VIO for UAV

PRO-SLAM (82) Stereo Optim. Indirect - No Sparse (73) -
OpenVSLAM (83) Monocular/Stereo/RGB-D Optim. Indirect 3D-2D Yes Sparse (73) -

MSCKF (48) Monocular/Stereo Filter Indirect 3D-2D No None

(13)
(69)
(81)
(79)

-

OKVIS (84) Stereo Optim. Indirect 2D-2D/3D-2D No Sparse
(13)
(81)
(79)

Robust stereo VIO for UAV

ElasticFusion (85) Monocular/RGB-D Optim. Direct 2D-2D No Dense
(13)
(74)

Map-centrinc vSLAM

KineticFusion (86) RGB-D Optim. Direct 3D-2D No Dense
(13)
(74)

3D modelling with the Kinetic

Table 3.1: Comparative classification of main VO/VIO and V-SLAM/VI-SLAM methods.
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Weights 100 5 2 1 2 1 1 2 3 1 1 1
Algorithms Available Accuracy Low Cost Hardware Memory Usage Computational Cost Type of Map Frequency of Usage Robustness Outdoor Low Texture Ilumination Loop Closure Total Score
ORB-SLAM 2 1 1 -1 1 1 2 -1 1 -1 1 1 213
ORB-SLAM2 2 2 1 1 0 1 2 2 2 0 1 1 228
RTAB-MAP 2 1 -0.5 -0.5 -0.5 2 0 0 -0.5 -0.5 -0.5 1 203
Mono-SLAM 2 -2 -0.5 -0.5 -0.5 1 0 -0.5 -0.5 -1 -1 1 185
PTAM 2 -1 -0.5 -1 -0.5 1 -0.5 -0.5 -1 -1 -1 -1 185.5
SVO 2 1 2 -0.5 2 1 2 1 -0.5 1 -0.5 -1 215.5
LSD-SLAM 2 -2 1 -1 1 2 2 0 1 -1 -0.5 1 199.5
VINS-Mono 2 1 1 -0.5 -1 1 2 1 1 -0.5 -1 1 212
DSO 2 1 -1 -1 -1 1 2 1 1 0 -0.5 1 208.5
ROVIO 2 1 1 1 1 -1 2 1 -1 -2 -0.5 -1 206.5
PRO-SLAM 2 -1 1 1 2 1 0 -0.5 -0.5 -0.5 -0.5 1 200.5
OpenVSLAM 2 -1 1 1 2 -0.5 0 -0.5 -0.5 -0.5 -0.5 -1 197
MSCKF 2 -1 2 2 2 -1 1 1 -1 -1 -1 -1 201
OKVIS 2 1 1 -0.5 -0.5 1 1 1 1 -1 1 -1 211.5
ElasticFusion 2 1 1 -1 1 2 1 -1 -1 1 -0.5 -1 205.5
KineticFusion 2 0 1 1 1 2 1 -0.5 -0.5 -0.5 0 -1 204

Table 3.2: VIO algorithm’s evaluation against the properties which were considered relevant for the project.
Legend: Very Bad = -2, Bad = -1, No Data = -0.5, Decent = 0, Good = 1, Very Good = 2.
Type of Map: Dense/Semi-Dense = 2, Sparse = 1, No Map = -1.
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3.3.1 Top 5 algorithms analysis and selection.

A numerical evaluation was given to each of the algorithms, taking into account the perform-
ance and conclusions reached on the numerous comparison papers presented on Table 3.1.
Each of the algorithms presented here was tested against different environments (underwa-
ter, aerial vehicles, handheld, UGV ...) and, with different hardware configurations and power.
The numerical grading is presented on Table 3.2. Different properties have been deduced and
weighted in terms of the requirements and their impact on the final goal of the project. Based
on the scoring obtained the extracted conclusions regarding top 5 algorithms are presented
bellow:

• ORB-SLAM: monocular VO algorithm, it tracks features applying an optimization-based
approach. Results highly improve when there are several loop closures, otherwise it loses
track much more easily. Detecting a low number of features causes inaccuracies in the
robot trajectory estimation and the projection of mapped features, leading to a loss in
localization. Abrupt rotations have a negative impact on the estimations. Needs high
memory compared to implementations without loop closure detection as it saves fea-
tures on a bag of words to identify previously seen features, however, it does not have the
best performance for long-life experiments where it was not able to track the complete
trajectory. Experiences slow initialization in some cases. ORB-SLAM is a feature-based
method that builds sparse point cloud maps. Therefore, there are difficulties to recover
3D scenes but performs good enough for navigation. Monocular V-SLAM systems suffer
from scale drift, which could be solved with an additional recovery module.

• ORB-SLAM2: stereo/RGB-d version of ORB-SLAM algorithm. Very satisfying results, per-
forming nicely in both outdoor and indoor environments and outperforming in several
experiments other frameworks in translation estimations. As it is an indirect method it
reinforces translation estimation by tracking valuable features, on the other hand, direct
methods showed higher accuracy against rotation. Increasing movement speed has an
inverse correlation with the number of stable features detected, hence, giving poorer res-
ults. It takes even 3 times longer to process each frame compare to non-optimization
based algorithms. There is always a tradeoff between accuracy and efficiency. ORB-
SLAM2 performs a pruning process of the key-frames to reduce memory consumption.
For instance, in (74) the experiments start at 200MB and it only grows up to 240MB. It
shows to be a computational effective algorithm, in spite of not using a GPU it only per-
forms twice slower than KineticFusion. As ORB-SLAM2 is the stereo/RGB-d version of
ORB-SLAM it does not suffer from the same scaling problems. The performance between
stereo and RGB-d versions is very similar in indoor scenarios but stereo presents more ro-
bust and accurate results outdoors. Last but not least, ORB-SLAM2 handles challenges
such as scale changes, pedestrian motion or glass reflection. ORB-SLAM2 is considered
as one of the first options for its user-friendliness (i.e. easy initialization and set up),
computational power and hardware requirements, and global accuracy and robustness.

• SVO: VO odometry SVO implementation has not the best accuracy. When only depend-
ing on stereo cameras it was subject to rotation errors as it is mainly an indirect method
that detects corners and tracks their intensities, therefore having slightly better results
in dealing with rotation than other indirect methods. SVO tracks feature effectively, but
when a few of them are available it might lose track. It is one of the algorithms which
provides the highest computational efficiency preserving a good level of accuracy for fly-
ing robots applications. Loop closures are not possible with this method, therefore, it
accumulates drift over time. When adding an IMU it seems to work very well in both
monocular and stereo versions. It worked well under large rotations, improving thanks
to the IMU, and under high-intensity gradients becoming one of the best algorithms in
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performance. This method provides good results both indoor and outdoor, being able to
deal with low texture environments and providing robust tracking of movement. SVO has
been evaluated taking into account the VIO version which provides competitive results.

• VINS-Mono : full VI-SLAM method, it tracks features applying a filtering-based ap-
proach. Uses loop closure more intensively as the error grows, the IMU preintegration
helps to keep the error bound. Offers a very realistic scale estimation when the algorithm
is properly initialized, otherwise it may run into inaccuracies as it only uses one camera.
ORB-SLAM2 comes first when comparing easiness of being implemented and as it is a
more user-friendly algorithm. Under good illumination conditions, it provides a satis-
factory performance and is one of the few packages that does not look track underwater,
however, when not enough features are detected it diverges easily. In terms of accuracy is
one of the best among the other analysed algorithms, but also has slightly higher memory
usage in comparison with other methods. VINS-mono was revealed as one of the tops in
robustness across multiple platforms and sequences, nicely peformin in both outdoor
and indoor environment and large environments. Its superior performance comes at the
cost of a high level of resource usage which can turn out to be prohibitive in resource
constraint hardware. Especially effective when loop closure was enabled, although this
was not always a possibility in platforms with limited resources.

• OKVIS : robust VIO implementation with no loop closure, which uses an optimization-
based approach to track features. OKVIS is an optimization method, having more po-
tential than filtering ones, such as VINS-Mono, in terms of memory management and
accuracy in exchange of more using more computational resources. It performs accur-
ately across platforms with different power capabilities, despite its low update rates as a
consequence of the long processing time per frame. Good feature detection and tracking
despite low contrast images or low illumination. The stereo implementation has advant-
ages in terms of memory management.

Upon this overview of the best conventional localization algorithms, it is time to select the
ones that we considered optimal for our use-case. By using the final scores it was clear for
us that ORB-SLAM2 had to be tested as it seemed to be the clear winner after our research.
Furthermore, by the time the analysis had concluded we discovered the VIO version of ORB-
SLAM2 (called ORB-SLAM3) had been released in the past months and seemed worthy to test
its capabilities.
Furthermore, by the time the analysis concluded the improved version of SVO was made open-
source. This new version was named SVO Pro and included several improvements mounted
on top of SVO. It allowed loop closures performing local and global bundle adjustment that
optimizes global poses and the map in real-time. SVO and SVO Pro were both developed by the
Robotic and Perception group from Zurich. This team fosues on drone development and the
results on SVO were already promising, therefore, we considered SVO Pro to have a big potential
to be an effective localization method, hence we decide to test it as well.

3.3.2 State of the art of the selected algorithms

In this section, we briefly introduce the three selected algorithms, which allows our system to
retrieve the position and orientation data from the IMU measurements and visual landmarks.
As suggested by original papers of the presented algorithms, we will use the default configura-
tion as it was tuned to generalize for most of the environment. Also with this configuration we
would be able to achieve a fair comparison against the original papers.
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ORB-SLAM2

As its name suggests, it uses ORB (Oriented FAST and Rotated BRIEF) features (87), it is built on
FAST keypoint detector and the BRIEF descriptor which are attractive for their good precision
and low computational cost allowing RT. These features are invariant to rotation and scale and
are applied for tracking, mapping and place recognition. ORB-SLAM2 (88) runs 3 threads in
parallel:

• Tacking thread: finds the matching features between the image frame and the local map.
The detected keypoints are detected as close (retrieve scale, translation and rotation) or
far (retrieve accurate rotation) thanks to depth information, an improvemnt in compar-
ison to (58). Then the reprojection error is minimized to estimate the camera motion in
each frame.
The map used for pose estimation has four components: 1) The keyframe stores the fea-
tures extracted from the frame, the camera pose and its intrinsic parameters. 2) Map
points store all the infromation about to the points, 3D positions, viewing direction, the
descriptor of the points and the distance at which they are detected. 3) Covilibility graph
link keyframes that share at least 15 matched points. This covisibility graph provies the
key frame and map points that are used for computing the local trajectory and optim-
izing the map. 4) The spinning tree is the root of the covisibility graph as it contains a
minimal number of connections and is essential for fast identification of map points and
keyframes.

• Local mapping thread: performs bundle adjustment to a local window of keyframes and
the points in the local map.

• Loop closure thread: every time a new loop is detected it performs a pose-graph op-
timization to reduce the accumulated drift. This last thread activates a fourth thread to
execute a full BA optimizing all keyframes and map points.

There is a place-recognition module that employs a bag of words call DBoW2 (89) which has
the purpose of detecting loops, relocalizing the system when it lost track of the position or re-
initializing in the mapped environment. A major improvement compared to ORBSLAM is the
quickest initialization as the scale is obsevable.

Figure 3.1: ORBSLAM2 pipeline overview with its 3 mian threads: tracking, local mapping and loop
closing.(88)
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ORB-SLAM3

ORB-SLAM3 (90) is an improvement of ORB-SLAM2 where IMU measurements are tightly-
coupled with visual data resulting in a VIO method that fully relies on MAP estimation, which
corresponds to BA methods that minimizes feature reprojection error. Other major improve-
ments are:

• Novel place recognition method that allows short, mid and long term associations im-
proving map accuracy at the expense of negligible computational cost.

• Atlas (91): novel multiple map system that initializes a new map when it gets lost until it
revisits mapped areas, at this time both maps get merged.

• Abstract camera representation that makes the SLAM algorithm independent from the
camera model, this allowed the implementation of pinhole and fisheye camera. With this
implementation, we do not encounter the typical problem in VIO methods which con-
sider uniform reprojection error. This forces to crop the peripherical area of the fisheye
camera, losing the advantages of large FOV.

• Fast initialization method that uses both visual and inertial uncertainties to estimate the
scale with 5% error in 2 seconds and drops down to 1% after the first 15 seconds.

SVO Pro

SVO Pro is a VIO algorithm that results from a set of enhancements on top of the SVO (78) loc-
alization approach. Consequently, we will start by understanding SVO implementation. SVO
is a monocular VO localization algorithm blend of direct and indirect methods. It emerged
as a possibility to used dense structures and motion in RT. SVO is known for being a fast and
versatile visual front-end,it has two parallel threads:

• Motion-estimation thread: an approach for motion estimation that consists of 3 steps:
1) Sparse alignment, estimates camera motion by the minimization of the difference
between pixel intensities of matching 3D points, known as photometric error. It is con-
sidered a semi-dense approach as it only exploits pixels with high gradients to perform
the alignment, these are features in corners and edges. It creates patches around the
mentioned features and approximates them to the same depth. Eventually, the photo-
metric error is minimized using those features for which depth is known. 2) Relaxation,
minimizes drift in motion estimation by aligning the patches of the new frame to the
frame in which they were first detected. 3) Refinement, to achieve optimal camera poses
and 3D map points it performs a BA to minimize the projection error

• Mapping thread: depth filter which initializes for each feature whenever a new keyframe
is selected. Through a Bayesian update using template matching, the initial depth un-
certainty is reduced. When uncertainty is under a certain threshold a new point is added
to the 3D map and used for motion estimation.

SVO Pro is the newest version of SVO and includes the following extensions:

• Supports not only perspective cameras but also fisheye and catadioptric (92) cameras in
monocular and stereo set up, including active exposure control (93) for all cameras.

• Improvement to build an optimization-based VIO algorithm. SVO is used in the front-
end and a tightly-coupled approach (94) is used for optimizations. In the back-end, it
uses local BA (modification from (84)) and global bundle adjustment can be activated to
detect loop closures using the bag of words DBoW2 (89).
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Figure 3.2: Motion and Mapping threads from SVO framework. (78)

-
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4 System Design and Evaluation Tools

This chapter describes the selected hardware to fly the MAV to build our custom datasets and
the hardware used in the EuRoC dataset, which was specifically recorded with an IMU and a
pair of stereo cameras assembled on top of a MAV. The hardware calibration is described in
detail and the tools required to evaluate the VINS algorithms. It also contains a description of
the software architecture, showing how the hardware components communicate with the ROS
nodes to produce the estimated poses and the map point-cloud.

4.1 Hardware

The experiments were performed using the FiberTHex drone developed by the RAM group at
UT. FiberTHex is composed of 6 propellers with an angle of 60 degrees between them, Fig-
ure 4.1. The hardware components of the drone are shown in Table 4.1. The onboard computer
of the FiberTHex runs on Ubuntu 18.04.6, it will be in charge of the control and the navigation
of the drone while recording our custom datasets. FiberTHex reads the pose measurements
from the Optitrack and uses this information to provide the correct input to the propellers.

Figure 4.1: FiberTHex drone with 6 propellers and the camera D435i mounted between propeller 6 and
1.

The datasets will be recorded using an HP Pavilion, its hardware components are described
in Table 4.2. The computer will activate the camera and record the camera images and IMU
measurements that were used to estimate the positions of the drone using VI-SLAM algorithms.

As mentioned earlier, the chosen technology to perform localization is complementing camera
images with IMU measurements, allowing us to use VI-SLAM. The chosen hardware was the
Intel RealSense camera D435i. This camera is provided with two infrared global shutter cam-
eras, an RGB camera, a laser to improve depth estimation in scenes with low texture and an
Inertial Measurement Unit (IMU) for 6 degrees of freedom data. The camera properties can
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FiberTHex Properties
MASS 2.2kg (minimual setup)
GPS Sirius
Flight Controller Mikrokopter f.c. V2, Paparazzi Chimera
Onboard computer Intel NUC, Odrioid XU4
Motor MK 3638
Propellers Up to 13”
Battery 3500mAh 4S1P 14.8V 45C/90C

Table 4.1: FiberTHex Properties description

HP Pavilion
Memory 15.5 GiB
Processor Intel Core i7-7700HQ CPU @ 2.80GHz × 8
Graphics Intel® HD Graphics 630 (KBL GT2)
SSD 141.5GB

Table 4.2: HP Pavilion properties

be seen in the Table 4.3. This camera comes with a ROS Wrapper that publishes the camera
data on multiple ROS topics such as the camera images from the stereo and RGB cameras, the
inertia measurements or the depth estimations provided from the image disparity of the stereo
cameras. Additionally, the onboard processor is also capable of providing the rectified images
and publishing them as a ROS topic so no rectification is required from our side.

Figure 4.2: Intel RealSense camera D435i, starting from the left we have the right infrared camera, the
Infrared projector, the left infrared camera and the RGB module.

4.1.1 Intel RealSense Calibration

IMU Intrinsic parameters: The angular velocity w̃ and linear acceleration ã measured by the
IMU are affected by noise (ηg ,ηa) and bias (bg ,ba):

w̃ = w +ηg +bg (4.1)

ã = a +ηa +ba (4.2)

being w and a the true angular velocity and acceleration at the body reference frame. The noise
is assumed to have Gaussian distribution:

ηg ∼ N (0,σ2
g I3) (4.3)

ηa ∼ N (0,σ2
a I3) (4.4)
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Intel Realsense Camera: D435i
Image Senosory Technology Global Shutter
Ideal Range 0.3m to 3m
Depth Techonology Stereocopic
Minimum Depth distance at Max Resolution ∼28cm
Depth Accuracy <2% at 2m
Depth Field of View 87º x 58º
Depth Stream Output Resolution Up to 1280x720
Depth Stream Output Frame Rate Up to 90 fps
RGB Frame Resolution 1920x1080
RGB Frame rate 30 fps
RGB Sensor Techinolgy Rolling Shutter
RGB Sensor FOV 69ºx42º
RGB Sensor Technology Rolling Shutter
RGB Sensor FOV 69ºx42º
Camera Module Intel RealSense Module D430 + RGB Camera
Vision Processor Board Intel RealSense Vision Processor D4
Form factor Camera Peripheral

Table 4.3: Intel RealSense D435i camera properties.

where σ2
g and σa are the noise densities provided by the IMU data-sheet. When working on

discrete-time the IMU measurements are integrated. The resulting noise densities (σa, f ) will
be dependent on the IMU frequency f , also provided in the specification sheet.

σg , f =
σg√

f
(4.5)

σa, f =
σa√

f
(4.6)

Brownian motion is used to model the slow variations from sensor biases. Considering two
consecutive instants of time:

bg
i+1 = bg

i +ηg
r w with η

g
r w ∼ N (0,σ2

g ,r w I3) (4.7)

ba
i+1 = ba

i +ηa
r w with ηa

r w ∼ N (0,σ2
a,r w I3) (4.8)

where σg ,r w and σa,r w are the random walk standard deviation which should also be given by
the manufacturer.

IMU Calibration
The IMU is calibrated to keep the drone stable when flying. This calibration is straightfor-
ward by running the python code provided in the RealSense SDK. Following the procedure
described on the SDK, where the camera is left steady on a flat surface for a long period
and applying multiple orientations. With this approach, the algorithm estimates the biases
random walk, noise densities and sensitivity of the calibrated IMU. The calibration is con-
sidered to be successful when the accelerometer norm is close to the expected value of 9.8,
fitting the earth’s gravity acceleration. On our calibration the gravity vector components were
[0.11278,−9.7918,−0.52477][m/s2], and the module of the gravity vector was 9,8057 so the
calibration was considered successful.
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Finally, the homogeneous transformation from the left camera frame to the IMU frame (con-
sidered to be the camera body frame) is estimated following the procedure in (95). Although
this metric is previously given by the manufacturer, the transformation proposed was inaccur-
ate thus a further calibration was performed. This method consists of exciting the accelero-
meter and the gyroscope along their axes, making sure the camera always points to the pattern
used for the camera calibration. For this purpose, the tool Kalibr was developed by the Robotics
and Perception Group at ETH and the University of Zurich.

Camera Calibration - IntelRealsense
D435i camera sensors are built to be sturdy to maintain factory calibration and performance
over their lifetime. Nevertheless, extreme vibrations or temperatures can cause degradation
over time. IntelRealsense SDK provides an on-chip calibration tool in case of degradation, how-
ever, it will not be used in our case as the camera was new so little degradation was expected.

Camera Calibration - Kalibr
SVO Pro algorithm always rectifies the images given as an input, therefore, the calibration
values for the stereo cameras were needed for the algorithm configuration. Kalibr tool was
chosen for this aim as it is extensively used for camera calibration in the research community.

The camera calibration solves the intrinsic parameters and the relative camera transformation
for the stereo cameras. The intrinsic parameters of a pinhole camera include the focal length
( fu and fv ), the optical center(pu and pv ), also known as principal point.

Ideal cameras do not have any lens, therefore the camera matrix does not take into account the
distortion that the lens cause. The accurate representation of a camera model includes radial
and tangential distortion caused by lenses.

• Radial distortion: the rays of light bend more when they are closer to the edged than at
the optical center. The smaller the lens the bigger the distortion.

xdi stor ted = x(1+k1 · r 2 +k2 · r 4 +k3 · r 6)

ydi stor ted = y(1+k1 · r 2 +k2 · r 4 +k3−·r 6)

where x,y are the undistorted pixel locations. Computed from the pixel coordinates by
applying optical centre translation and dividing by the focal length in pixels. The variable
r represents r 2 = x2 + y2, and k1,k2 and k3 are the radial distortion coefficient of the lens.

• Tangential distortion: it is cause because the image plane and the lens are not completely
parallel.

xdi stor ted = x + [
2·1 ·x · y +p2(r 2 +2 · x2)

]
ydi stor ted = y + [

2·2 ·x · y +p1(r 2 +2 · x2)
]

where p1 and p2 are the tangential distortion coefficient of the lens.

To estimate the camera parameters using Kalibr the ArilTag pattern is used. Images of this
pattern are taken from multiple points of view. With the captured images the tool estimated
the parameters for our D435i camera which are depicted in Table 4.4 and Table 4.5.

4.1.2 Motion Capture System

Currently, the poses of the MAV are captured within a room thanks to a Motion Capture (Mo-
Cap) system. This system captures the 3D position of the MAV using an optical system, it uses
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Camera Left Right

Focal Length
fx

fy

401.363

400.85

393.395

394.86

Principal point
pu

pv

413.16

234.13

418.83

223.98

Distortion Coefficients

k1

k2

r1

r2

−0.1041

0.0152

0.0002

−0.015

−0.092

0.0073

−0.004

−0.014

Translation (mm)

tx

ty

tz

−31.0

12.7

97.2

26.5

−11.9

98.6

Rotational Matrix

 0.9988 0.00762 0.0463
−0.00736 0.9999 −0.0058
−0.0463 −0.00586 0.9989

  0.998 −0.0073 −0.0463
0.0076 0.9999 0.005518
0.0463 −0.00586 0.9989


TimeShift (ms) 0.03112 0.01885

Note that the relative transformations refer the camera frames to the IMU frame. For camera D435i
it is use pinhole as camera model and radial-tangential as distortion model.

Table 4.4: Camera Calibration-IMU calibration Parameters

IMU Accelerometer Gyroscope
Noise density 0.00186 0.000187
Noise density (discrete) 0.0263043 0.00264457
Random Walk 0.000433 2.66e-5
Update Rate 200Hz 200Hz

Table 4.5: IMU Configuration Parameters

image sensors to triangulate the position of reflective markers. When three or more markers
are used to define an object it is possible to determine not only its position but also its relative
orientation. Motion Capture systems can run with very high frequency and precision. For in-
stance, our room uses Flex 3 cameras from OptiTrack which provide an accuracy of +/- 0.5mm
with a frame rate of 100Hz. While these systems provide superior positioning information, they
restrict the MAV to fly within a limited space. Therefore, one of the goals of the project is substi-
tuting this system for a VINS algorithm, able to provide the localization data without depending
on the MoCap system. This solution implies a sacrifice in precision for the benefit of running
the MAV in any environment.

The MoCap system has very high precision, hence it will be used as ground truth to compare the
trajectory traced by the MoCap and the one estimated by the VINS algorithms, which provide a
poorer performance.

MoCap also requires calibration to guarantee high performance, in our case we used the calib-
ration procedure proposed by OptiTrack on its documentation page.
1

1Procedure followed to calibrate the Optitrack: https://v22.wiki.optitrack.com/index.php?
title=Calibration#Wanding
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4.2 Overall Framework

This work tests different V-SLAM and VI-SLAM alternatives using various datasets. The localiz-
ation algorithm must provide an optimal estimation of position in real-time. ROS environment
is a powerful tool that will aid us to connect the different modules needed for localization.
It easily establishes communication between hardware components, image processing tools,
SLAM libraries and visualization systems to picture the 3D point-clouds and camera poses.
Each component can be represented by a node, each node publishes data to topics (channels
for messages of the same format) and subscribes to topics to receive inputs. The communica-
tion within ROS is done through ROS messages, a master node is in charge of coordinating the
exchange of messages between nodes and topics.

The framework used in this thesis is described in Figure 4.3. Our framework subscribes to the
camera topics, depth topic and IMU measurements (depending on the type of SLAM algorithm
that we want to run). The SLAM node processes the input data to predict the localization of the
system at each moment and publishes the pose and point cloud data. Lastly, the visualization
node outputs graphically this data.

Figure 4.3: Communication between hardware, SLAM and the visualization system within ROS envir-
onment.

4.2.1 ROS Positioning Frames

In VIO systems, poses are expressed in computer vision as transformations from the camera
frame to the world coordinate system, represented as Twc . In this context, Pw is assumed to be
the position of the camera in the world frame and Pc is the camera position in its world frame
(equivalent to the identity matrix).

In the ROS framework, the camera frame is known as base_link as mobile robots can be com-
posed of multiple sensors. Therefore, this frame represents the position of the moving platform
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Figure 4.4: Schematic of ROS frames of ORB-SLAM2 RGB-d.

Pbase . The base_link may have a different position and orientation depending on the hardware
platform used.

The ROS frame odom is world-fixed, used as a reference by the base_link to represent the posi-
tion of the robot in the world frame, Podom . This frame is normally initialized to match with the
initial base_link axis estimated. The robot poses may change and drift over time without any
restrictions. As an effect of this drift, the odom frame is unreliable as a global reference frame
for life-long localization. The benefit of the odom frame is that robot poses are continuous
without making discrete jumps. To represent the robot position in the world frame it is needed
the transformation matrix T odom

base . Thus,

Pw = T w
c ·Pc (Comp. Vis.) ⇒ Podom = T odom

base ·Pbase (ROS)

Odom frame is normally initialized with the first

The Map frame is also fixed to the world with the z-axis pointing upwards. Contrary to Odom, its
position should not drift over time. Map frame constantly recomputes robot poses eliminating
drift using sensor data, though, this causes discrete jumps on the estimations. While Odom
frame was useful as a shot-term the Map frame is used as a global long-term reference, making
it useless for local navigation. There is no specific reference to initialize the Map frame. The
default configuration is located at the origin of the reference frame with the x-axis east, y-north
and z-axis up, complying with the Geodetic and ENU Coordinate systems.

ROS uses broadcasters to connect the multiple reference frames. A broadcaster represents an
homogenous matrix which contains both translation and rotation from one frame to another.
For instance, Figure 4.4 depicts the transformation tree from one component frame to another
in ORB-SLAM2 RGB-d. The broadcaster /Extra_broadcaster_tf2 contains the geometrical trans-
formation from camera_link and base_link frame. 2

2For more information about ROS frames refer to: Coordinate Frames for Mobile Platforms
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4.2.2 Frame Alignment

VI-SLAM algorithms are not only able to map the surrounding scene but also provide an es-
timation of the localization of the camera along the trajectory. The evaluation of the chosen
VI-SLAM requires a ground truth of the trajectory to be compared, this data is provided by the
OptiTrack measurement system. A key point to accurately compare the trajectories is an ap-
propriate matching between them. Commonly, the Horn Closed-form (96) method is used for
this purpose, however, in this work also frame alignment is used in some cases as it provides
more relevant results for evaluating the algorithms drift, understanding when loop closures
take place or extracting the maximum error. Frame alignment adds an extra degree of com-
plexity as the estimations of the positions of the camera in the VINS coordinate frame (Estim-
ated Trajectory) have to be matched to the drone position in the Optitrack coordinate frame
(Ground Truth Trajectory).

Figure 4.5: V1_01_easy EuRoC dataset: Trajectories without alignment

As depicted in Figure 4.5, the ground truth and the estimated trajectory are represented in two
different coordinate frames, these are the OptiTrack system and the VINS system respectively.
Therefore, the two methods used to align will be: aligning the trajectories to the initial frame or
aligning the full trajectory minimizing the error between trajectories (Horn Closed-Form (96)).

OptiTrack Frames

The OptiTrack system will have 2 coordinate frames: the OptiTrack world frame and the Drone
reference frame captured by the OptiTrack. The OptiTrack world frame is initialized during
the calibration, all the measurements taken by the OptiTrack will be concerning the previously
defined world frame, in our case X and Y axes were in the ground plane and the Z-axis pointing
upwards. The Drone reference frame is manually defined when creating the drone object on the
OptiTrack using the reflective markers. The frame was set to be located on the centre of rotation
around the Z-axis of the MAV and at the same height as the top base frame of the drone. The
XY plane is contained on the top base plane of the drone and with the Z-axis pointing upwards.
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VINS Frames

Each VINS algorithm has 2 main coordinate frames: the VINS coordinate frame and the Cam-
era coordinate frame. The VINS coordinate frame is the fixed reference frame, whose Z-axis
points in the opposite direction to the gravity vector. In the pure case where no translation or
rotations are applied, the world frame is set to align with the first camera pose.

In stereo algorithms, the left camera is used as the reference frame, where the points of the
right image are matched to the left image points to compute disparity and estimate the depth
of each matching pixel point as described in Figure 4.6a. In VI-SLAM the reference frame of
the camera is the IMU frame, therefore the depth is estimated with respect to the left camera
frame and then it is transformed to the IMU camera frame, being this the body camera frame
as illustrated in Figure 4.6b. The orientation of each camera frame and ground frame varies
depending on the used algorithm.

(a) Stereo mode.

(b) Stereo mode with IMU.

Figure 4.6: Camera Frames
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Figure 4.7 shows the frames in which the estimation and ground truth will be represented. The
images show how the World frame of the OptiTrack and the Body frame remain constant for
both algorithms (as described previously). On the other hand, the VINS World frame and Cam-
era frame are initialized by the VINS algorithms, therefore Figure 4.7a and Figure 4.7b have
different orientations but are initialized at the same positions.

(a) Coordinate frames from VINS and Optitrack in ORBLAM3 VIO stereo algorithm.

(b) Coordinate frames from VINS and Optitrack in ORBLAM2 stereo and ORBSLAM3 stereo al-
gorithms.

Figure 4.7: Representation of the frames from the ground truth and the estimation systems from ORB-
SLAM2 and ORB-SLAM3.

Changes in Reference frames

In the experiments, the effectiveness of the VINS estimated poses are estimated by means
of comparing it against the ground truth estimations provided by the OptiTrack. Each of the
trajectories denotes the poses of a different element. While the ground truth represents the
position of the drone on the OptiTrack reference frame, VINS estimates represent the pose
of the camera on the algorithm reference frame. This camera poses will be transformed to
represent the estimations of the drone body on the OptiTrack reference frame.

WOPT PC = RWV I N S
B ·WV I N S PC (4.9)

WOPT PC = RWOPT
B ·RB

C ·RC
WV I N S

·WV I N S PC (4.10)

Miguel A. Alonso University of Twente



CHAPTER 4. SYSTEM DESIGN AND EVALUATION TOOLS 39

Initially, with Equation 4.10 it is applied a transformation to change the camera poses from
the VINS world frame (WV I N S PC ) to the OptiTrack world frame by applying a rotation matrix
RWV I N S B . RC

WV I N S
is the inverse of RWV I N S

C which is equivalent to the transpose of this last matrix

as for all rotational matrix R−1 = RT . RWV I N S
C are the estimated orientations of the camera. RB

C is
the transformation from the camera frame to the body frame of the drone. Both frames are part
of the drone’s rigid body as depicted in Figure 4.7, thus this rotation matrix remains constant
and will be manually computed for each of the algorithms.

RB
C = R y(90◦) ·Rz(−30◦) ORBSLAM2/ORBSLAM3 (4.11)

RB
C = Rz(120◦) ·Rx(−90◦) SVO Pro (4.12)

RWOPT
B represents the change of orientation from the body to the OptiTrack world frame, which

is directly extracted from the pose output from the OptiTrack measurements.

The Camera poses on the OptiTrack reference frame are now known, however, the Body poses
of the drone are the ones required.

WOPT PWOPT
B =WOPT PWOPT

C −RWOPT
B

B P B
C + t g nd

est (Estimation Data) (4.13)

Equation 4.13 represents the estimated drone poses on the world OptiTrack frame, being t g nd
est

the difference in position between VINS and OptiTrack frame. This difference is done using the
data at the time i in which we want to align our frames.

t g nd
est =GN D PWOPT

B (i )−EST PWOPT
C (i )−EST RWOPT

B (i ) ·B P B
C (i )

A similar procedure applies to the orientation of the frames.

EST RWOPT
B =EST RWOPT

C ·RB
C

where RB
C is the constant transformation between Camera and Body frame transformations.

Then EST RWOPT
C is deduced from Equation 4.14.

EST RWOPT
C = RWOPT

WV I N S
·RWV I N S C (4.14)

where RWV I N S C is the orientation estimation of the camera by the VINS algorithms, and RWOPT
WV I N S

is a constant rotation matrix that represents the orientation difference between the VINS world
frame and the OptiTrack world frame at the timestamp i at which it is preferred to align both
frames, commonly at time 0s.

RWOPT
WV I N S

= RWOPT
B (i ) ·RB

C ·RC
WV I N S

(i ) (4.15)

considering RWOPT
B (i ) to be the measurement of the OptiTrack at time i of the drone orientation,

and RC
WV I N S

(i ) the inverse of the rotational matrix of the orientation at time i,
(
RWV I N S

C (i )
)−1

.

Once all the trajectories are representing the poses of the drone body on the OptiTrack refer-
ence frame, it is possible to evaluate the accuracy of each of the algorithms. The OptiTrack
measurements are used as a reference to compute the difference between this trajectory and
the estimated by VINS using different metrics.
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Figure 4.8: V1_01_easy EuRoC dataset: Trajectories with alignment to initial frame.

Figure 4.8 shows how we aligned the initial frames from both trajectories in position and ori-
entation. The trajectories start at point (X, Y, Z) = (-0.979,0.436,1.444) and then the trajectories
start to drift at certain points and optimization techniques will manage to decrease the error at
certain points of the trajectory keeping the error bound.

4.2.3 Full Trajectory Alignment

The other alternative for aligning the trajectories is using the complete trajectories and min-
imizing the RMSE of the position. This option is broadly adopted by the community for both
similarity and rigid body transformation, which is based on Horn closed-form (96). For severely
corrupted data singular value decomposition implemented by Horn might reflect the rotation
matrix (det (R) = −1). Umeyama method (97) overcomes this limitation, however, this is not
our case and we mention this method to raise awareness in future projects.

Horn method is founded on a least-square minimization problem of the following function
with at least three points. The matching between two different coordinate systems (pi and
p̂i ) can be seen as a rigid body transformation. This transformation counts with 7 degrees of
freedom: translations along 3 axes, rotations around 3 axes and the scale. 3 points provide 9
constraints for the 7 unknowns, therefore, discarding 2 constraints a system of equations with
7 equations and 7 unknowns can be set. The minimization problem is then defined as:

e2(R, t , s) = 1

N

N∑
i=1

‖pi − sRp̂i − t‖2 (4.16)

where R,t and s correspond to applied rotation, translation and scale respectively. The trans-
lation is computed as the difference between the centroid coordinates of one system and the
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scale rotation of the centroid of the other. Whereas the scale is equivalent to the ratio between
the RMS (root mean square) of the coordinates of the two systems to their centroids. The rota-
tional matrix is extracted through singular value decomposition.

There is no standard rule of how many points to use for the transformation computation. There
are two possible ways: 1) Using all the positions. 2) Using only the initial states. The former
gives a lower error when evaluating the complete trajectory, the latter gives a more intuitive
error as it increases over time as seen from the experiments in (98).

Figure 4.9: V1_01_easy EuRoC dataset: Trajectories with Horn Closed-Form alignment

As mentioned Horn Closed-Form alignment used as in Figure 4.9, minimizes the RMSE (root
mean square error) of the matching positions between trajectories. The trajectories do not
start aligned at the same position, it is seen how the estimated trajectory does not match with
the initial ground truth point (X, Y, Z) = (-0.979,0.436,1.444). Nevertheless, it seems that the
estimated trajectory follows more accurately the ground truth as by visual inspection it can be
deduced that the errors between matching points are kept smaller.

4.3 Tools for Evaluation

The chosen algorithms will be tested against multiple metrics to evaluate their performance.
The goal of using these metrics is to select the most convenient algorithm for our use case,
performing the handover of a tool to a human. Human safety will be prioritised to guarantee
against any other metric. The other properties that will also be evaluated are overall perform-
ance error along the complete trajectory, the robustness and consistency in the performance
of these algorithms and their capability to run in long-life experiments without drifting.
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4.3.1 Safety First!

At all times we want to guarantee that the drone will remain under a certain threshold error dur-
ing the complete trajectory to avoid damaging the human during the cooperation. To measure
the error an alignment of the initial frames between the estimated and the ground truth tra-
jectories is accomplished as described in Section 4.2.2. Once the alignment is performed, the
position from equivalent timestamps is compared to compute the error at each time step. This
error should never exceed the threshold of 132.15 cm as deduced below.

Security distance

This section defines the security distance between the drone and the human. The error of the
drone will never exceed this security distance at any point of the trajectory, otherwise, we would
consider the algorithm to be unsuccessful in providing localization data. The security distance
is defined by the capability of the human to stretch by just taking one step.

Considering the one step distance to stretch and the average lengths of the body represented
in Figure 4.10 to be:

• Arm: 70 cm 3

• Trunk: 54.3 cm 4

• Step: 70 cm 5

Figure 4.10: Estimated security distance used as threshold for VINS algorithms.

Finally, it is supposed that the human can bend 30 degrees to grab the object, as a result:

Security Distance = Arm + Trunk Projection + Half Step

= 70cm+27.15cm+35cm = 132.15cm

It can be considered that an extra security distance of 30 cm is available in case of an emergency
that corresponds to the drone arm that stretches to hand the tool to the human.

Emergency Security = Security distance + MAV arm

= 132.15cm+30cm = 162.15cm
3Average Arm length: https://hextobinary.com/unit/length/from/armlength/to/cm
4Average Trunk length: https://www.nature.com/articles/s41598-020-60813-w/tables/3
5Average Step Stride: https://www.healthline.com/health/stride-length#takeaway
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4.3.2 ATE and RPE

Two frequently applied methods for comparing the estimated trajectories against their ground
truth are the absolute trajectory error (ATE) and the relative trajectory error (RPE). These errors
have been computed in multiple ways within the research community, however, we will stick
to the implementations used on ORB-SLAM2 and SVO Pro to make the comparison between
our results and our papers as fair as possible (99).

ATE measures the absolute pose difference estimated trajectory to the ground truth trajectory
supposing both trajectories to be aligned. If we represent the true states as X and the estimated
states as X̂ , then the difference between their orientation and position can be expressed as:

∆Xi =
{
∆Ri ,∆pi ,∆vi

}
(4.17)

Ri =∆Ri R̂i , pi =∆Ri p̂i +∆pi (4.18)

We leave the error on the left side, hence:

∆Ri = Ri (R̂i )T (4.19)

∆pi = pi −∆Ri p̂i (4.20)

Commonly, the root mean square is used to evaluate the quality of the trajectory:

AT Er ot =
(

1

N

N−1∑
i=0

‖]∆Ri‖2

) 1
2

(4.21)

AT Epos =
(

1

N

N−1∑
i=0

‖]∆pi‖2

) 1
2

(4.22)

This metric simplifies the evaluation of the algorithm’s performance as it represents its accur-
acy with just a single number. Despite making comparison easy, ATE metric has some disad-
vantages as it is dependent on when the error occurs. When the error happens at the beginning
the error will be larger than when it happens at the end.

RPE measures the difference between the estimated poses and the true poses. It is a useful tool
to evaluate drift or the accuracy at loop closures. It provides extra information on ATE metric.
This metric also requires an alignment between both datasets. RPE requires choosing k states,
this k represents the number of poses along the trajectory that will be evaluated in each set.
This provides us with details about the sub-trajectories in which we divided our poses such as
the median, average or the percentiles. When k is small the RPE represents local consistency,
alternatively, when k is large it denotes the performance of long-life experiments.

Following the RPE expression proposed by Scaramuzza in (99), where K are the pair of states
selected by some kind of criteria such as a certain amount of displacement or a specific amount
of seconds:

F = {dk }K−1
k=0 , dk = {x̂s , x̂e }

where F contains the sets in which the trajectory is divided and dk the initial and last set of a set.
Similarly to ATE, for each set an alignment between the initial positions xs and x̂s is performed.
To each subtrajectory the following errors are computed:
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Figure 4.11: ATE error computation after trajectory alignment.

δφ=∠δRk =∠Re (R ′
e )T

δpk =∥ pe −δRk p̂ ′
e ∥2

Gathering all the errors from each of the sub-trajectories of F :

REr ot =
{
δφk

}K−1
k=0

REpos =
{
δpk

}K−1
k=0

The RPE is harder to interpret compared to ATE which is just only a number. Nonetheless, it
provides more information about the trajectory than ATE and different parameters can be eval-
uated by using different criteria to select the sub-trajectories. A disadvantage of this method is
that the estimation quality is harder to be evaluated using an interval than a single number. A
visual example of how RPE is computed can be seen in Figure 4.12. In our experiments we will
apply frame alignment to evaluate the drift and loop closures using visual inspection, never-
theless, this is a useful tool to express this numerically.

4.4 Datasets

For the benchmarking evaluation, it is convenient to have datasets with the IMU measure-
ments and visual feed. Datasets allow the running of multiple algorithms against the same
inputs, they are especially helpful when testing the controls is not needed, as playing them is
much quicker and repeatable than running them on real hardware and simulation platforms.

In our project, two datasets have been used to evaluate the most convenient algorithm to safely
perform a handover to a human. The chosen datasets record a sequence of images and IMU
measurements by flying a real MAV, contrary to most of the available Datasets which are re-
corded handheld or with UGV. The chosen datasets and the one recorded in RAM Arena at the
University of Twente try to evaluate the performance of the algorithms under similar scenery
conditions in terms of drone vibrations, visual inputs, IMU measurement and trajectory to a
real handover to a human.

• The EuRoC MAV Dataset (100).

• Custom dataset collected at RAM Arena.
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Figure 4.12: RPE error computation with initial frame alignment of each subtrajectory.

DATASET YEAR ENVIRONMENT CARRIER CAMERAS IMU TIME SYNC GND TRUTH

EuRoC MAV 2016 Indoors MAV
1 stereo gray
2x752x480
@20Hz

3-axis acc/gyro
@200Hz

hw

Laser tracker pose
@20Hz
Motion Capture pose
@100Hz, accuracy ∼1mm

Custom RAM MAV 2022 Indoors MAV
1 stereo gray
2x848x480
@30Hz

3-axis acc/gyro
@200Hz

hw
Motion Capture pose
@ 100Hz, accuracy∼0.5mm

Table 4.6: Summary of the Datasets employed to evaluate the algorithms performance.

4.4.1 EuRoC Dataset

EuRoC Dataset contains sequences of images which were filmed by a real MAV. It contains 11
sequences in 3 different scenes, capturing stereo monochrome images at 20 FPS and taking
IMU readings with acceleration and angular rate of 200Hz. These sequences contain ground-
truth poses and scene information in case it is required to evaluate the generated map. The
difficulty of each of the sequences is assigned by the authors in terms of speed in rotation and
translation, lack of texture and darkness of the scenes. The algorithms will be tested against
three of the datasets from EuRoC, these are "MH02_easy", "V1_01_easy" and "V1_02_medium".
In "MH02_easy" the dataset is recorded inside a spacious hall, part of the room can be visual-
ized on Figure 4.13a to give a sense of the space and the scale. This dataset has illumination
changes and the detected visual features are far from the object. The datasets "V1_01_easy"
and "V1_02_medium" test the MAV localization performance within a small office room, as
seen in Figure 4.13b, where visual features are desks, stairs, boxes... With these datasets it is
tested localization when features are closer, there are more rotations and, some dynamic ele-
ments such as curtains moving and a human moving around. For a simple description of the
datasets see Table 4.7. Overall, these experiments help us to analyse the behaviour of lifelong
experiments as the MAV is in constant movement throughout the dataset.

4.4.2 Custom RAM Datasets

Creating our custom dataset allows us to evaluate the performance of the algorithms using
our hardware and deduce if we can achieve similar performance when running the MAV we
have at RAM UT lab. The RAM Datasets have been recorded with the goal of testing specific
dynamics that would be expected during the handover of a tool to a human. The MAV was

Robotics and Mechatronics Miguel A. Alonso



46
ACHIEVING FULL AUTONOMY IN AERIAL AND PHYSICAL HUMAN-ROBOT INTERACTION

CONTROL VIA ONBOARD PERCEPTION ALGORITHMS RELYING ON COMPUTER VISION

(a) Part of the room explored by the EuRoC Machine
Hall sequences.

(b) Exploreed room on Vicon Dataset.

Figure 4.13: Partial overview of the two areas explored on EuRoC dataset.

NAME LENGH/DURATION AVG. VEL./ANGULAR VEL NOTE

MH_02_easy
73.5m
150s

0.49m/s
0.21rad/s

Good texture,
bright scene

V1_01_easy
58.6m
144s

0.41m/s
0.28rad/s

Slow motion,
bright scene

V1_02_medium
75.9m
83.5s

0.91m/s
0.56rad/s

Fast motion,
bright scene

Table 4.7: Description of the Datasets used from EuRoC copied from original paper (100).

controlled by inputting manually the position to the drone, the controller developed at RAM
will be responsible for reaching that position by using the OptiTrack position measurements.
As we know, one of the goals of this project is to remove the dependency on this system and be
able to navigate without it.

The datasets have been recorded within the RAM Arena at UT, where the OptiTrack system
was calibrated and tracks the MAV position accurately. The camera D435i was used to record
stereo images and IMU readings while flying the MAV. The camera was configured with similar
settings to EuRoC dataset as described in Table 4.7, the frame rate was set to 30 fps close to the
20 fps from EuRoC, the output resolution was 2x848x480, and the IMU worked with a frequency
of 200Hz as in EuRoC. This camera uses laser measurements that are captured by the infrared
stereo camera to improve the internal depth estimation, however, these laser projections are
captured as points on the images by the infrared cameras. During experimentation, it was
deduced that these points were wrongly interpreted as feature points generating misbehaviour
of the VIO localization algorithms. Hence, the laser projections have to be deactivated to use
VO/VIO localization.

The VIO algorithms require a starting period where the scales and the IMU readings are being
initialized. Therefore all the custom datasets count with the following structure:

• Initialization Stage: the drone is manually moved along and around the 3 axes. This ini-
tialization takes around 15-25 seconds.

• Land Stage: the drone stays on the floor after the dynamic initialization while the RAM
controller is initialized.

• Action Stage: during this period the MAV is flown by directly inputting the desired posi-
tion. The dynamics from Table 4.8 are tested and experiments finished with a landing.
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The datasets recorded are:

• Static2 and Static3: the drone takes off and remains to hover at the same position and at
two different heights to test the drone does not drift under this situation.

• Translation_0_1ms: the drone performs a simple translation moving along the Z-axis.

• Waving and Dynamic: the drone takes off and hovers during the complete dataset. Mean-
while, apart from the static objects, we will move a stick with a glove as if a man was wav-
ing the drone close to the drone. On the Dynamic dataset, we also used two persons to
constantly move in front of the drone at 3 meters distance to check if the drone would be
able to handle localization under this situation.

• Square2, Square3, Square4_max and Square5_max: the drone draws a square trajectory
at different speeds. When it reaches back the initial position the drone completes a
pure yaw rotation. On "Square4_max" and "Square5_max" the drone moves as fast as
possible between waypoints, and the lateral bound force is increased from 2N to 3N in
"Square5_max". This is the maximum lateral force that the drone can achieve without
tilting, therefore the MAV is able to move 0.2m/s faster between the waypoints.

• Translation_Frontback and Translation_Frontback_max: the drone performs pure trans-
lations moving backwards and forwards.
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NAME DURATION NOTE
Static2 187s Hovering at 60cm heigh
Static3 123s Hovering at 70cm heigh

Translation_0_1ms 112s
Up and down 3 times (0.3m height)
Speed 0.1m/s

Waving 124s
Hovering
Dynamics with a glove in front of the camera

Dynamic 150s

Hovering
People moving
Dynamics with a glove in front of the camera
Reflectoins

Square2 147s

Square motion
(average speed 0.1m/s, distance between waypoints 0.5m)
+
Pure Yaw rotation
(average speed 20º/sec, rotated distance 60º both ways)

Square3 182s

Square motion
(average speed 0.2m/s, distance between waypoints 0.5m)
+
Pure Yaw rotation
(average speed 20º/sec, rotated distance 60º both ways)

Square4_max 118s

Square motion
(average speed 0.4m/s, distance between waypoints 0.5m)
+
Pure Yaw rotation
(average speed 20º/sec, rotated distance 60º both ways)

Square5_max 110s

Square motion
(average speed 0.6m/s, distance between waypoints 0.5m)
+
Pure Yaw rotation
(average speed 20º/sec, rotated distance 60º both ways)

Translation_Frontback 203s
Moving forward and backwards for 90s
Translation displacement ∼0.25m/s
Distance between waypoints 0.5m

Translation_Frontback_max 195s
Moving forward and backwards for 90s
Translation displacement ∼0.4m/s
Distance between waypoints 0.5m

Table 4.8: RAM Dataset where we test dynamics similar the ones a MAV might perform during a han-
dover to a human.
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5 Results

In this section it is presented the outcomes of testing the algorithms that were chosen as the
most promising conventional VINS solutions. The algorithms are tested against the EuRoC
dataset recorded by a MAV and our custom dataset. The extracted results will provide us with
the most convenient solutions for our research questions, helping to clarify which are the most
appropriate algorithms to perform a handover of a tool to a human to permit secure coopera-
tion between humans and MAVs.

5.1 Absolute Trajectory Error in Position

As a general rule, the ATE metric assists us to deduce which algorithms have the best perform-
ance against the tested dataset. To compare the performance it is mainly taken into account the
median value of the absolute trajectory error of the runs of each algorithm in each dataset. Pre-
viously exposed papers in Table 3.1 considered that 5 runs per algorithm in each dataset were
a decent number to evaluate the algorithm’s performance as exposed. Then, the median ATE
value of the 5 runs of each algorithm is used as a comparison metric between the algorithms,
extracting which VINS provide the best localization performance.

The algorithms do not provide consistent performance during all the runs because RANSAC
iterative estimation is in charge of filtering outliers during feature detection, as it is a non-
deterministic method the results vary from run to run.

All papers used in Table 3.1 and reference papers of the algorithms ((90),(94) and (88)) use full
alignment between ground truth and estimations to extract ATE values. From our point of view,
this metric is not fair as it does not represent the real drift that happens along the trajectory,
however, to allow us to compare our results against the mentioned papers required to use to
the same alignment. Nevertheless, the results will also be exposed using frame alignment, as it
is a useful method to extract relevant deductions from the algorithms.

5.1.1 EuRoC

Table 5.1 presents the ATE run values in meters of the tested algorithms against each of the
datasets. It is deduced that the algorithms that made use of an IMU took the initial dynamics
of the run to initialize the IMU parameters, this behaviour caused step jumps on the trajectory
until the scale was stable. (90) clearly states that the first 15 seconds of navigation where the
drone is moving are used to make the map of ORB-SLAM3 to be stable (we will then consider
the map to be mature). Once the initialization is successful and the map is mature it will not
suffer from these discrete jumps again. The plots presented in Figure 5.1 show how SVO Pro
does not make any discrete jumps while initializing the IMU parameters. However, if it is not
properly initialized it will achieve poor performance as happened in some of our custom RAM
datasets.

Results from Table 5.1 show our results and in parenthesis the results from the official al-
gorithms papers, occasionally the values were provided scaled. From our side, it was decided
not to scale the results for three main reasons, the former is that in real navigation there is no
chance to scale the trajectory so our values are more realistic than what we would expect in real
experiments. Additionally, if there are deviations on the trajectory increasing or decreasing the
scale may allow reducing the error, but at the expense of decreasing the performance at those
points where the trajectory was correctly estimated. Finally, when testing the performance of
the scaled trajectories for these datasets the scale error was always between 0-5%. The ATE
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(a) ORB-SLAM3 VIO
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Figure 5.1: VIO stereo algorithms

metric changed in the order of mm, considering then to have a decent performance without
the need for scaling.

ATE values were larger when running the experiments from our side than the runs shown in
the original research papers. Multiple factors might have an impact on the achieved results
such as the hardware used, the RANSAC runs removing better outliers or possible fine tunning
of each of the individual algorithms.

The Table 5.1 show that algorithms that only have a font-end and do not count with back-end
optimizations provide worst results compared to the rest of the VINS algorithms. To visualize
the loop closure effect it is required to align the initial frames of both trajectories as in Fig-
ure 5.2a. The plot represents the estimated trajectory, which changes its colour depending on
the error between its corresponding point of the ground truth. By visual inspection, it is de-
tected how the error starts very low after the alignment and consecutively the estimation starts
to drift accumulating error. This algorithm counts with a window optimization that optimizes
the last K poses. This behaviour is depicted in Figure 5.2b, where the error value increases from
yellow to red and then optimization takes place reducing drift and going back to yellow colours.
Yet, when reexamining previously seen features after a period out of the optimization window
then optimizations cannot take place. On the other hand, algorithms that count with back-end
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ALGORITHM\DATASET MH02_EASY V1_01_EASY V1_02_MEDIUM

ORB-SLAM3 VIO MONO
0.309

(0.037-scale error 0.3%)
0.271

(0.049-scale error 2%)
0.311

(0.015-scale error 0.6%)

ORB-SLAM3 VIO MONO MATURE
0.149

(0.037-scale error 0.3%)
0.091

(0.049-scale error 2%)
0.105

(0.015-scale error 0.6%)

ORB-SLAM3 STEREO
0.128

(0.019)
0.369

(0.035)
0.485

(0.025)

ORB-SLAM3 STEREO MATURE
0.129

(0.019)
0.403

(0.035)
0.105

(0.025)

ORB-SLAM3 VIO STEREO
0.439

(0.033-scale error 0.2%)
0.171

(0.038-scale error 0.8%)
0.714

(0.014-scale error 0.6%)

ORB-SLAM3 VIO STEREO MATURE
0.143

(0.033-scale error 0.2%)
0.085

(0.038-scale error 0.8%)
0.111

(0.014-scale error 0.6%)

SVO PRO VIO MONO
0.151

(-)
0.193

(-)
0.162

(-)

SVO PRO VIO MONO FRONT-END
4.092

(-)
0.767

(-)
1.44
(-)

SVO PRO STEREO
0.1667
(0.05)

0.137
(0.05)

0.148
(0.05)

SVO PRO VIO STEREO
0.155

(0.036)
0.101

(0.041)
0.129

(0.048)

Table 5.1: ATE metric from EuRoC datasets without scaling. Units: meters

optimizations are able to correct the accumulated drift when a previously seen area is revis-
ited. For instance, when looking at the Z-axis displacement in Figure 5.3b it is seen that the
trajectory starts to drift at 60 seconds, then around 105 seconds when the initial positions are
revisited the algorithm corrects the drift reducing the accumulated error.

The mature implementations demonstrate how removing the initial 15 seconds (where the IMU
parameters are being initialized) cause a major improvement of the algorithm performance as
depicted in Table 5.1. Due to an implementation bug from ORB-SLAM2 stereo ROS wrapper
provided by appliedAI, rectification of the images was not done correctly. Hence, the feature
points positions in these datasets were wrongly estimated and localization was not correct.
As an alternative, ORB-SLAM2 RGB-D performance was evaluated in similar scenarios to the
EuRoC ones. The datasets used were part of TUM RGB-D dataset where "Frieburg1_xyz" is a
navigation around a desk within an office room and "Frieburg1_room" is a navigation within
a spacious room, where the objects are far from the camera. These experiments provide us an
intuition of the performance of ORB-SLAM2 algorithm and, as mentioned in (101), the expec-
ted results in indoor navigation are very similar in RGB-D and Stereo methods. Table 5.2 show
that ORB-SLAM2 has similar ATE performance to ORB-SLAM3 and SVO Pro so ORB-SLAM2 is
considered as a promising option and will be tested against our custom datasets. 1

ALGORITHM\DATASET FRIEBURG1_ROOM FRIEBURG1_XYZ
ORB-SLAM2 RGB-D 0.143 0.197

Table 5.2: ATE metric from TUM RGB-D datasets without scaling. Units: meters.

Robustness

Measuring how much the ATE deviates within an algorithm with the same dataset provides a
good insight into the robustness of each algorithm. It is preferred a robust implementation that
consistently provides low absolute trajectory error. Considering the 5 runs from each algorithm
we build the graph from Figure 5.4a. This graph provides the information on the median value
of the ATE metric among all of the runs and how the standard deviation of the rest of the runs.
The interpretation of this graph provides a much higher understanding of the performance.

1ORB-SLAM2 library: https://github.com/appliedAI-Initiative/orb_slam_2_ros
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(a) 3D graph.
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(b) Trajectories in X,Y and Z axis.

Figure 5.2: SVO Pro monocular front-end trajectory estimation of dataset V1_01_easy from EuRoC data-
set.

It is deduced that ORB-SLAM3 VIO runs that include the initial dynamics are less robust and
with a higher median than their corresponding mature implementations. The ORB-SLAM3
Stereo implementation does not require removing the initial dynamics as the results do not
differ much between both implementations. The front-end implementation of SVO Pro has
clearly the worst performance in comparison to the other alternatives, where the results for
"MH02_easy" datasets are not visible on the graph because all the values provided a higher
value than 2m.

Finally, the goal of this dataset is to find the most promising algorithms and filter them for
more intensive testing using the custom dataset recorded at RAM. Inspecting the results from
Figure 5.4b and Figure 5.4c both Monocular with IMU implementations are discarded. Al-
though the results are very close to their corresponding stereo implementations they seem to
have slightly worst robustness. The standard deviation in "MH02_easy" in ORB-SLAM3 VIO
Monocular implementation is higher and in SVO Pro VIO Monocular has smaller standard
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(a) 3D graph.
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Figure 5.3: SVO Pro VIO monocular trajectory estimation of dataset V1_01_easy from EuRoC dataset.

deviations in 2 out of 3 cases.

The algorithm’s results with the best performance are gathered in Figure 5.4b and Figure 5.4c,
these algorithms are robust due to their small standard deviation. The different runs vary in the
order of centimetres. In general, the algorithms seem to perform with higher accuracy when
the visual features are closer to the MAV during navigating, as the ATE results for "MH02_easy"
dataset are slightly higher than for the Vicon datasets. This is not the case for ORB-SLAM3
stereo mature algorithm, which provides the best performance in terms of robustness in this
dataset.

"V1_02_medium" dataset is the most challenging scenario in terms of dynamics. ORB-SLAM3
stereo mature has a low median ATE value, yet there are runs with very high ATE error. On the
other hand, ORB-SLAM VIO algorithms keep the error low, therefore, in challenging scenarios
with high dynamics the IMU readings allow to achieve more accurate estimations. ORB-SLAM3
algorithms tend to be much more robust than SVO Pro algorithms in these experiments as the
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Figure 5.4: Absolute Trajectory Error (ATE) of chosen algorithms in EuRoC dataset
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boxplot percentiles have a lower ATE value. When comparing the SVO Pro tests it seems that
SVO VIO stereo provides not only the best median but also the lowest deviation in its results, it
is considered then to be the most robust option.

5.1.2 Custom RAM datasets

The EuRoC datasets were useful to provide us with higher insight into the performance of the
algorithms. As the dataset was recorded using a MAV, it guaranteed similar vibrations to the
ones expected when running purely on the VINS for localization. The next step is testing the
algorithms under situations that the MAV will face when performing a real handover of a tool
to a human. When recording these experiments the initialization was done handheld. After
this initialization, the drone was left on the floor and then the desired positions were input
programmatically to the MAV.

Full alignment is again applied to evaluate the performance of the algorithms against the built
datasets to be consistent with the EuRoC dataset. From the initial tests, several discrepan-
cies were found between algorithms when performing in the EuRoC dataset and our custom
datasets. The extracted results showed scaling issues for all the implementations, where VIO
algorithms seemed to be less affected. In Table A.1 all the scaled and non-scaled values are
presented, for the stereo implementations the scaling error seemed to be consistent along with
the multiple runs of each algorithm. VIO algorithms make use of the IMU readings to retrieve
the scale together with the camera disparity, so with the support of the IMU measurements,
they achieve a much more accurate scale. The problem seems to be with the camera calibra-
tion in the case of ORB-SLAM2/3 due to the improvement achieved with the IMU estimations.

Meanwhile, the VIO algorithms seemed to have much smaller scaling errors as depicted in
Figure 5.5b. ORB-SLAM3 is the one with the smallest error, this effect is due to the IMU being
used to retrieve the scale together with the camera disparity. As the IMU is providing good
estimations the scale is closer to the correct value despite the inaccurate calibration of the
camera images. A representation of the scaling errors can be found in Figure 5.5 where all the
stereo implementations have similar scaling problems as Figure 5.5a, either overestimating or
underestimating the trajectory.

The scaling error in ORB-SLAM2 and ORB-SLAM3 is caused by inaccurate camera calibration.
As the Intel camera D435i claims to output rectified images, then only the on-chip calibration
was done and we skipped the Kalibr camera calibration with this algorithm. However, rectific-
ation coming from the camera D435i is not accomplished correctly, as the used parameters for
ORB-SLAM3 are identical (default parameter settings) in all runs from EuRoC and our custom
datasets. Hence, the results have been scaled manually to provide a similar result to the ones
we would have achieved by applying a proper image rectification. On the other hand, SVO Pro
had a built-in functionality to rectify the images provided by the cameras, having this func-
tionality as optional with ORB-SLAM3, nonetheless, the scale is incorrect as well. The reason
behind the scaling errors in SVO Pro is that this algorithm is semi-direct, capturing all the pixel
intensities and the infrared camera captures the projected rays by the OpriTrack. The rays
caused a flickering effect on the sequence of images captured impacting the corners and edges
detection in SVO Pro as it changed the contrast between consecutive frames. This behaviour
has no impact on pure feature-based methods like ORB-SLAM3 as features are being detected
locally in each frame from maximums and minimums pixel points. Nevertheless, the extracted
results can still be used because SVO Pro is a feature-based algorithm supported by the direct
measurements, using non-infrared cameras the results can only improve under these condi-
tions.

Robotics and Mechatronics Miguel A. Alonso



56
ACHIEVING FULL AUTONOMY IN AERIAL AND PHYSICAL HUMAN-ROBOT INTERACTION

CONTROL VIA ONBOARD PERCEPTION ALGORITHMS RELYING ON COMPUTER VISION

(a) ORB-SLAM3 stereo

(b) ORB-SLAM3 VIO

Figure 5.5: Graph representing the scaling errors in Square2 dataset.

This last theory was proven by moving the camera along the edge of a table square table of 60cm
x 60 cm located out of the arena. The experiment from Figure 5.6 proves that SVO Pro was able
to estimate correctly the table dimensions without incurring the scale errors experienced in the
arena. The side lengths of the left and top sides of the estimated table are approximately 0.6323
and 0.667 which are 5% and 10% of error, far from the 50% estimation error. The conduc-
ted experiments on EuRoC datasets show that the scaling error in the algorithms is minimal.
Therefore, for future experiments, we would highly improve the results of navigations by per-
forming a correct rectification for ORB-SLAM3 such as the one conducted in SVO Pro and by
using non-infrared cameras to avoid capturing the laser from the OptiTrack.

The last point that should be considered is that the extracted results for our custom datasets
shown in Table 5.3, Table 5.5 and Table 5.4 do not consider the full trajectory. The manual ini-
tialization phase is discarded because VIO algorithms tend to take some seconds to provide
a stable scale and would not be a fair comparison between the VIO and VO algorithms. The
landing section was also removed as some of the datasets were recorded with emergency land-
ings due to the low battery available on the drone. The low battery caused the drone to enter
an emergency landing more impacting negatively the measurements. Eliminating this section
does not impact negatively our evaluation as the desired dynamics that we want to test are
preserved in all of the datasets.

By inspecting absolute trajectory errors in Table 5.3, it is deduced that all the algorithms have
a good localization estimation when performing hovering with and without dynamic features
on the experiments performed. The difference between them is not significant and there is no
clear winner. For the dataset "Static2" the VIO algorithms did not initialize correctly because
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Figure 5.6: SVO Pro navigation around square table with side length of 60cm.

DATASET\ALGORITHM STATIC2 STATIC3 WAVING DYNAMIC
ORB-SLAM2 STEREO 0.004 0.022 0.019 0.008
ORB-SLAM3 STEREO 0.004 0.008 0.014 0.011
ORB-SLAM3 VIO STEREO — 0.013 0.009 0.016
SVO PRO STEREO 0.007 0.005 0.033 0.008
SVO PRO VIO STEREO — 0.014 0.035 0.021

Table 5.3: ATE metric from the custom RAM datasets Static2, Static3, Waving and Dynamic with scaled
values. Units: meters.

the phase at which high dynamics were performed for the initialization was not long enough.
This caused that after leaving the drone on the floor it required a completely new initialization,
therefore, this dataset was useless for VIO algorithms.

DATASET\ALGORITHM TRANSLATION_0_1MS TRANSLATION_FRONTBACK TRANSLATION_FRONTBACK_MAX
ORB-SLAM2 STEREO 0.024 0.041 0.024
ORB-SLAM3 STEREO 0.007 0.010 0.008
ORB-SLAM3 VIO STEREO 0.009 0.016 0.022
SVO PRO STEREO 0.010 0.033 0.028
SVO PRO VIO STEREO 0.045 0.098 0.435

Table 5.4: ATE metric from the custom RAM datasets Translation_0_1ms, Translation_frontback, trans-
lation_frontback_max with scaled values. Units: meters.

In Table 5.4 the datasets represent pure translations in the XY plane in "Translation_FrontBack"
and "Translation_FrontBack_max", and translation along the Z-axis for "Translation_0_1ms".
SVO Pro VIO stereo implementation provides an estimated localization which is more than 9
times more inaccurate than ORB-SLAM3 stereo, which is the algorithm with the best perform-
ance for all these three datasets, followed closely by ORB-SLAM3 VIO stereo.
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DATASET\ALGORITHM SQUARE2 SQUARE3 SQUARE4_MAX SQUARE5_MAX
ORB-SLAM2 STEREO 0.089 0.038 0.087 0.075
ORB-SLAM3 STEREO 0.071 0.049 0.057 0.065
ORB-SLAM3 VIO STEREO 0.066 0.018 0.087 0.056
SVO PRO STEREO 0.051 0.035 0.035 0.059
SVO PRO VIO STEREO 0.119 0.014 0.045 0.035

Table 5.5: ATE metric from the custom RAM datasets Square2, Square3, Square4_max and Square5_max
with scaled values. Units: meters.

Lastly, it is evaluated the presented results on Table 5.5, the datasets record the translation
along an imaginary square and finish with a pure yaw rotation. In these datasets it is high-
lighted the performance of SVO Pro implementations. Direct localization algorithms outper-
form the indirect ones when applying pure rotations, as deduced from the papers mentioned in
Table 3.1. As SVO Pro is a semi-direct method it seems to have a positive impact when perform-
ing pure rotations. As mentioned earlier, a higher improvement of SVO Pro is expected when
using non-infrared cameras as the direct feature tracking will not be affected by OptiTrack laser.
ORB-SLAM3 VIO stereo seems to perform slightly better than the stereo implementation. The
cause seems to be that VO only relies on visual features which are easily lost during pure ro-
tations while VIO algorithms rely also on IMU measurements. As an outcome of testing these
11 datasets, it is deduced that novel algorithms outperform the ORB-SLAM2 stereo algorithm,
which it was never chosen as the preferred solution. An example of the achieved performance
can be found in Figure A.4, Figure A.6 and Figure A.5, where some ORB-SLAM3 stereo graph
runs are plotted.

Robustness

The consistency of the algorithms was also tested on our custom datasets as it provides a higher
insight into the performance than just referring to the ATE to choose an appropriate solution.
To evaluate this metric correctly the runs in which VIO algorithms were not able to initialize
correctly were removed. The reasons for bad initialization were always due to having a short
initially dynamic phase, this caused that when leaving the drone on the floor the algorithm
needed a new initialization from scratch. This problem can be easily avoided in future experi-
ments by extending the time employed in the initialization phase.
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Figure 5.7: ATE runs in Custom RAM datasets Dynamic, Static2, Static3 and Waving

Figure 5.7 represents the datasets in which the MAV takes off and hovers in front of both static
and dynamic features. In the represented results the values for ORB-SLAM3 VIO stereo should
not be considered, as the algorithm was not able to initialize correctly in any of the cases. The
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experiments show that adding dynamic features (Waving and Dynamic datasets) does not have
a meaningful impact on the algorithm’s performance. Overall, ORB-SLAM3 implementations
tend to slightly outperform ORB-SLAM2 and SVO Pro, as the ATE values are lower. From this
experiment, it is noticed that ORB-SLAM3 did improve its predecessor ORB-SLAM2. Addition-
ally, VIO implementations seem to perform marginally worst than stereo algorithms. A possible
explanation would be that when MAV remains hovering the dynamics are low and the readings
provided by the IMU readings have lower accuracy than with high dynamics.
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Figure 5.8: ATE runs in Custom RAM datasetsTranslation_0_1ms, Translation_FrontBack and
Translaion_FrontBack_max.

To gain an intuition regarding pure translations in XY plane and Z axis the results from Trans-
lation_0_1ms, Translation_FrontBack and Translation_FrontBack_max are inspected in Fig-
ure 5.8. SVO Pro stereo achieved trajectories with higher robustness than the implementations
which included IMU measurements. A possible cause could be that the position estimations
provided by the IMU measurements highly differed from the estimations provided by the visual
inputs as an effect of the OptiTrack lasers. In all three scenarios, ORB-SLAM3 seems to be the
most robust option, achieving high performance followed by ORB-SLAM2 solution.

Square2 Square3 Square4_max Square5_max
0

0.05

0.1

0.15

0.2

0.25

0.3

A
T

E
 [m

]

ATE w.r.t translation part (m) trajectory (Full Alignment with Horn-closed form) 

orbslam2 stereo
orbslam3 stereo
orbslam3 stereo vio
svo pro stereo
svo pro strereo vio

(a) Full view.

Square2 Square3 Square4_max Square5_max

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

A
T

E
 [m

]

ATE w.r.t translation part (m) trajectory (Full Alignment with Horn-closed form) 

orbslam2 stereo
orbslam3 stereo
orbslam3 stereo vio
svo pro stereo
svo pro strereo vio
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Figure 5.9: ATE runs in Custom RAM datasets Square2, Square3, Square4_max and Square5_max.

The last datasets are the most challenging ones, where a pure translation is preceded by a com-
bination of translations that draw a square as depicted in Figure 5.9. Again, a similar conclu-
sion is deduced, where ORB-SLAM3 accomplished better results than ORB-SLAM2. SVO Pro
VIO stereo cannot be considered as a solution under these conditions because it performs very
poorly, however, SVO Pro can provide accurate values being one of the top algorithms in per-
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formance for these datasets, this is due to its capability to estimate better rotations than pure
feature-based methods.

Frame Alignment vs Trajectory Alignment

The most common method used in literature to compare trajectories is the full trajectory align-
ment, providing the minimal ATE error achieved by the algorithm in the analysed trajectory. To
compare VO and VIO methods both alignments provide significant results and allow to extract
conclusions regarding which algorithms perform better in each dataset. Nonetheless, it is very
difficult to extract relevant conclusions when observing the trajectory with full alignment. Ini-
tial frame alignment provides more significant results about when the trajectory is drifting or
when a loop closure happens. Additionally, we consider this alignment fairer as it represents
the real drift of the MAV at each time step during navigation. All this data provides important
information about the algorithm performance, such as if it drifts with rotations or high speeds,
or how good is to correct the position drift when features are revisited.

Therefore, for our custom datasets, we also explored robustness by applying frame alignment
to understand better the algorithm’s performance and see how the results differ from both im-
plementations.
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Figure 5.10: ATE runs in Custom RAM datasets Dynamic, Static2, Static3 and Waving

The boxplots Figure 5.10, Figure 5.11 and Figure 5.12 represent the runs with frame alignment.
As expected, the ATE values increased compared to the ones in a full alignment, but represent
trajectories more realistically. Both trajectories start with the same orientation and position
and start to drift from this point. In hovering experiments, stereo implementations seem to
be more robust than VIO stereo and in this case, ORB-SLAM3 stereo provides the lowest ATE
values as deduced earlier. The main difference is that the standard deviation in ATE perform-
ance increases concerning full alignment. Again, it is concluded that ORB-SLAM3 commonly
outperforms ORB-SLAM2 results, and SVO stereo can achieve more accurate estimations of the
trajectory and SVO VIO stereo. ORB-SLAM implementations have very similar performance for
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the tested datasets. However, in the square datasets, which are most challenging due to the
translational speed and pure rotations, it seems the VIO implementation has better perform-
ance when increasing the speed of displacement. In these datasets, Square5_max has better
performance due to the stabilization applied to the drone’s robustness and due to the highest
speeds.
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(b) Zoomed view.

Figure 5.11: ATE runs in Custom RAM datasets Translation_0_1ms, Transla-
tion_FrontBack,Translation_FrontBack_max

As previously commented, it seems that the big mismatch between IMU readings and stereo
estimations in SVO Pro VIO stereo makes it the worst option. Figure 5.13b shows how the data
is peakier and has a higher error than the stereo implementation from Figure 5.13a, where the
data is smoother and the overall error is smaller.

When analysing the performance on Square4_max dataset it is concluded that peaks and
higher errors are still present on Figure 5.14b. Meanwhile, the SVO Pro stereo trajectory from
Figure 5.14a keeps the error low after performing the square trajectory. Feature-based al-
gorithms have difficulties achieving rotations accurately, while SVO Pro stereo estimated bet-
ter rotations because it is a semi-direct method and it tracks edges and corners. On the other
hand, ORB-SLAM3 estimates translation with higher accuracy along the square as depicted in
Figure 5.14c, but the error almost doubles SVO Pro stereo when performing a translation.

5.2 Maximum Error

One of the most important metrics for evaluating the maximum error achieved during navig-
ation. This metric is crucial to guarantee that algorithms do not exceed a previously defined
threshold in Section 4.3.1 named Security distance. Guaranteeing human safety during human
and drone during their interaction is key to the success of this project.

The maximum error metric measures which is the maximum drift accumulated during the tra-
jectory out of each of the 5 runs, in this case, the Full Alignment estimation does not provide
realistic values. Frame alignment between the initial frames of the estimated and ground-truth
trajectories from Section 4.2.2 allows us to evaluate the error in the real experiment at every
time step. Therefore, we will be looking for this maximum difference between trajectories.

The results in EuRoC datasets from Table 5.6 discard the usage of the ORB-SLAM3 non-mature
implementations where the security distance of 1.32 meters is exceeded. It seems ORB-SLAM3
stereo also requires some initialization seconds to achieve an accurate scale, in "V1_01_easy"
dataset it exceeds the security distance but after the initialization period the maximum error
dops down to 0.294 mm. Considering the front-end implementations it is seen how the al-
gorithms exceed the maximum error allowed, so they are not valid for our application.
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Figure 5.12: ATE runs in Custom RAM datasets Square2, Square3, Square4_max and Square5_max

0 20 40 60 80 100 120 140 160

t [s]

-0.6

-0.4

-0.2

0

X
 [

m
]

Trajectory Error X-Y-Z: coulored depending on translation error

0.02

0.04

0.06

0.08

X Pos: Gnd Truth

X Pos: Estimation

0 20 40 60 80 100 120 140 160

t [s]

-0.5

-0.4

-0.3

Y
 [

m
]

0.02

0.04

0.06

0.08

Y Pos: Gnd Truth

Y Pos: Estimation

0 20 40 60 80 100 120 140 160

t [s]

0.4

0.6

0.8

1

Z
 [

m
]

0.02

0.04

0.06

0.08

Z Pos: Gnd Truth

Z Pos: Estimation

(a) SVO Pro Stereo.
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(b) SVO Pro VIO stereo.

Figure 5.13: X,Y and Z displacement values for Translation_FrontBack dataset.

Table 5.7 represents the maximum error achieved by the algorithms on the datasets where the
algorithm hovers in front of static and dynamic objects. In RAM datasets there were initial-
ization problems in the scale, mainly caused by the insufficient initialization dynamics. This
effect happened on VIO algorithms, therefore, to provide more realistic results the badly ini-
tialized runs were discarded in Figure 5.16b. The red line sets the maximum error it can be
achieved, as none of the algorithms exceeds the line then they accomplish the requirement for
these datasets.

On the RAM datasets where we test translations in Z and the XY plane, SVO PRO Stereo does
not comply with the security distance in "Translation_FrontBack_max" as depicted in Table 5.8.
However, when looking at Figure 5.17 where Figure 5.17b shows the algorithms without outliers
we can deduce that the security distance was exceeded in a run with a deficient initialization.
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Figure 5.14: X,Y and Z displacement values for Square4_max dataset.

ALGORITHM\DATASET MH02_EASY V1_01_EASY V1_02_MEDIUM
ORB-SLAM3 VIO MONO 18.692 3.313 3.32
ORB-SLAM3 VIO MONO MATURE 0.540 0.1821 0.295
ORB-SLAM3 STEREO 0.8401 0.1506 1.809
ORB-SLAM3 STEREO MATURE 0.541 0.594 0.294
ORB-SLAM3 VIO STEREO 7.352 11.95 7.619
ORB-SLAM3 VIO STEREO MATURE 0.726 0.552 0.415
SVO PRO VIO MONO 1.915 1.682 0.460
SVO PRO VIO MONO FRONT-END 12.169 4.646 4.645
SVO PRO STEREO 0.745 0.377 0.840
SVO PRO VIO STEREO 0.782 0.934 0.819

Table 5.6: Maximum Error per algorithm in EuRoC datasets. Units: meters.

As it does not exceed the limit in Figure 5.17b then the algorithm is good to be used in similar
experiments.

Finally, it is analysed the maximum error results from Table 5.9 for the datasets where a square
is performed. It is deduced that ORB-SLAM2 surpasses the security distance. Also, SVO Pro VIO
stereo is very close to exceeding these values and removing the outliers does not a big difference
in the performance of this metric as compared in Figure 5.18a and Figure 5.18b.

To sum up, the algorithms ORB-SLAM2 stereo, SVO Pro mono and SVO Pro mono front-end are
not the most convenient solution in terms of security. SVO Pro VIO stereo should be closely
tracked as in some of our Custom datasets it was close to surpassing the security distance.
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Maximum Tranlsational Error achieved EuRoC dataset
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Figure 5.15: Maximum error achieved per algorithms in EuRoC datasets

DATASET\ALGORITHM STATIC2 STATIC3 WAVING DYNAMIC
ORB-SLAM2 STEREO 0.323 0.984 0.460 0.072
ORB-SLAM3 STEREO 0.101 0.259 0.046 0.034
ORB-SLAM3 VIO STEREO 0.729 0.519 0.792 0.578
SVO PRO STEREO 0.098 0.087 0.340 0.117
SVO PRO VIO STEREO 0.166 0.132 0.292 0.558

Table 5.7: Maximum error per algorithm in RAM datasets Static2, Static3, Waving and Dynamic with
outliers.Units: meters.

DATASET\ALGORITHM TRANSLATION_0_1MS TRANSLATION_FRONTBACK TRANSLATION_FRONTBACK_MAX
ORB-SLAM2 STEREO 0.728 0.151 0.0669
ORB-SLAM3 STEREO 0.219 0.044 0.042
ORB-SLAM3 VIO STEREO 0.127 0.454 0.072
SVO PRO STEREO 0.076 0.157 0.807
SVO PRO VIO STEREO 0.444 0.504 1.46

Table 5.8: Maximum error per algorithm in RAM datasets Translation_0_1ms, translation_frontback and
translation_frontback_max with outliers.Units: meters.

DATASET\ALGORITHM SQUARE2 SQUARE3 SQUARE4_MAX SQUARE5_MAX
ORB-SLAM2 STEREO 0.482 1.194 1.136 1.34
ORB-SLAM3 STEREO 0.407 0.184 0.632 0.403
ORB-SLAM3 VIO STEREO 0.605 0.801 0.474 0.251
SVO PRO STEREO 0.265 0.410 0.300 0.541
SVO PRO VIO STEREO 0.674 1.107 1.292 1.192

Table 5.9: Maximum error per algorithm in RAM datasets Square2, Square3, Square4_max and
Square5_max with outliers. Units: meters.
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(a) With outliers.
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Figure 5.16: Maximum error per algorithm in RAM datasets Static2, Static3, Waving and Dynamic . The
red line describes the security distance limit.Units: meters.

5.3 Orientation accuracy

Commonly, orientation is not used as a metric to measure the performance of the algorithms.
However, it will have an impact when relying solely on VO/VIO estimations as control inputs.
Therefore, ATE performance on rotation is analysed to guarantee good performance on the
orientation estimations of our MAV body. ATE of the orientation is measured using angle-axis
notation where the angle is expressed in radians. This representation comes from Euler’s ro-
tation theorem, which states that any rotation from a rigid body in a 3D space is equivalent
to performing a pure rotation around a single fixed axis. For this metric it is chosen the frame
alignment between the initial frames to guarantee the real difference between ground truth
and estimation is computed at each instant of time.

The observed results on Table 5.10 show that in the hovering experiments where the rotation is
just a cause of vibrations the median ATE stayed lower than 5 degrees for all the experiments.
Similar results are extracted from Table 5.11 even though there are pure rotations involved in
the experiments it maintains the median ATE rotation value under 6 degrees. Same conclu-
sions are extracted from Figure 5.21, the median ate error remains under 6 degrees but for the
dataset "Translation_0_1ms" for ORB-SLAM3 VIO stereo where the median ate error is around
20 degrees, probably the lack of visual features when going up and down impacted negatively
these estimations.
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(a) With outliers.

Maximum Tranlsational Error achieved during navigation
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Figure 5.17: Maximum translation error in RAM datasets: Translation_0_1ms, Translation_FrontBack
and Translation_FrontBack_max. The red line describes the security distance limit. Units: meters.

Method Static2 Static3 Waving Dynamic
ORB-SLAM2 STEREO 0.0104 0.012 0.026 0.0162
ORB-SLAM3 STEREO 0.0069 0.019 0.0106 0.0142
ORB-SLAM3 VIO STEREO 0.0234 0.008 0.0215 0.066244
SVO PRO STEREO 0.027 0.043 0.0846 0.061802
SVO PRO VIO STEREO 0.0094 0.0085 0.0126 0.0145

Table 5.10: Absolute Trajectory Error of the orientation in RAM datasets Static2, Static3, Waving and
Dynamic. Units: radians

The maximum orientation error was also extracted from the aligned trajectories. In this case
a general pattern is observed from the datasets represented on Figure 5.19, Figure 5.20 and
Figure 5.21. The pattern is that ORB-SLAM2 stereo and SVO Pro stereo provide the highest
orientation errors. Another relevant deduction extracted from Figure 5.20 was that when in-
creasing the dynamics the algorithms that make use of IMU readings tend to provide more
accurate estimations, this is clear with ORB-SLAM3 VIO stereo. To conclude, the values of the
maximum error in the "Translation_0_1ms" dataset from Figure 5.21 provide a big rotational
error. It should not be a major concern as it seems to be a punctual deviation considering that
the ATE of the orientation decreases to 0.357 radians. Having an occasional big error estima-
tion on orientation does not imply a failure in navigation if the algorithm manages to correct
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(a) With outliers.
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Figure 5.18: Maximum translation error in RAM datasets: Square2, Square3, Square4_max and
Square5_max.

the orientation optimizing the poses. Also, ORB-SLAM3 VIO stereo tends to keep the orient-
ation error low through all the datasets, this high error could be a result of the lack of tracked
features from the homogeneous floor.
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(a) Full View.
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(b) Zoomed view.

Figure 5.19: Maximum rotation error in RAM datasets: Static2, Static3, Waving y Dynamic.
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Method Square2 Square3 Square4_max Square5_max
ORB-SLAM2 STEREO 0.063 0.049 0.090 0.063
ORB-SLAM3 STEREO 0.0198 0.015 0.025 0.022
ORB-SLAM3 VIO STEREO 0.0143 0.015 0.015 0.013
SVO PRO STEREO 0.0615 0.044 0.044 0.063
SVO PRO VIO STEREO 0.017 0.009 0.017 0.0148

Table 5.11: Absolute Trajectory Error of the orientation in RAM datasets Square2, Square3, Square4_max
and Square5_max. Units: radians

Maximum Rotational Error achieved during navigation
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Figure 5.20: Maximum rotation error in RAM datasets: Square2, Square3, Square4_max and
Square5_max.

Method Translation_0_1ms Translation_Front_Back Translation_FrontBack_max
ORB-SLAM2 STEREO 0.011 0.011 0.020
ORB-SLAM3 STEREO 0.094 0.016 0.015
ORB-SLAM3 VIO STEREO 0.357 0.0117 0.09
SVO PRO STEREO 0.042 0.0838 0.0527
SVO PRO VIO STEREO 0.0102 0.0292 0.0307

Table 5.12: Absolute Trajectory Error of the orientation in each of the RAM datasets translation
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(b) Zoomed view.

Figure 5.21: Maximum rotation error in RAM datasets: Translation_0_1ms, Translation_FrontBack, and
Translation_FrontBack_max.
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6 Discussion

The main goal of the work presented in this thesis is to answer the question:

How to enhance the level of autonomy of aerial robots developed at RAM-UT providing them
with an accurate localization system to perform a handover to a human?

Our prime goal is to find localization algorithms which provide the MAV position and ori-
entation at each time step. Open-source solutions that provided autonomous vehicles with
localization are analysed and evaluated. Currently, the MAV is dependent on a MoCap system
which limits MAV control to the room where this system is available. To achieve localization
independently from this system we explored the odometry options available in the literature
and evaluated the most convenient solutions for MAVs. The algorithms were tested under
environments and trajectories similar to the ones expected on a real handover of a tool to a
human.

This section answers the main research question by addressing the subquestions exposed in
Section 1.2. After finding the optimal solutions for our use case we will expose our contribu-
tions to the robotics research community. Finally, in Section 6.3 the main ideas for future work
that arise during the development of the project are treated.

6.1 Findings

1. Which are the hardware options to provide vehicles with localization in GPS-denied
environments? And which is the most convenient option for MAVs?

Multiple odometry options have been exploited to provide vehicles with localization cap-
abilities in GPS-denies environments: Wheel Odometry (WO), Inertial Odometry (IO),
Radar Odometry (RO), Laser Odometry (LO), Visual Odometry (VO) and even the com-
bination of multiple of this techniques.

In our use case, we will apply these algorithms on a MAV to perform a handover of a tool
to a human. The handover will be performed in a simple environment with few obstacles
considering both indoor and outdoor scenarios.

Micro aerial vehicles are resource-constrain platforms with restricted size and weight,
which makes the design of sensory systems challenging.

• Wheel Odometry (WO) cannot be considered in MAV as they are not UGV.

• Inertial Odometry (IO) provides linear velocity, accelerations, position and orient-
ation having little power consumption. The main drawback is its drifting errors and
bias on the accelerometer and gyroscope measurements, therefore, it is not suitable
for lifelong experiments.

• Radar Odometry (RO) can retrieve the relative motion of the MAV and the position
of the surrounding objects using radar sensors. It uses low power consumption, it
is suitable for low textures and unfavourable environmental conditions. Yet, it is
affected by inaccuracies of radar’s Doppler measurements, especially while flying
over non-flat terrain. Additionally, it requires high storage when performing large-
scale mapping making it inconvenient for resource-constraint platforms.
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• Laser Odometry (LO) uses light to accurately capture the position of the surround-
ing objects and uses these measurements to estimate the position and orientation
of the MAV. It is not distressed either by the low textures or the environmental light
but, struggles in presence of dust and bad weather. It is a computationally expens-
ive algorithm and is affected by dynamic objects, which distort the scans. As well as
RO, it grants accurate structure information in the lack of texture environments.

• Visual Odometry (VO) uses sequences of images to retrieve pose and orientation.
It is a lightweight implementation, which is frequently used in MAV navigation sys-
tems as a standalone algorithm. It is considered moderately accurate and inexpens-
ive. Nonetheless, localization estimations can be affected by illumination changes,
weather conditions or lack of features of the surrounding scene.

The handover will be performed in a context where the number of obstacles in the scene
is low. The MAV will navigate in a textured environment where there is a sufficient num-
ber of static features to perform visual navigation indoors and outdoors. Moreover, the
goal is to achieve accurate localization to safely deliver a tool to a human but, simultan-
eously use the least amount of computational power. This way, the free computational
resources could be used for other tasks, for instance, gesture recognition using ML which
uses high computational power. Under these circumstances, VO seems to be the pre-
ferred solution that could be supported with inertial measurements if required, as adding
these measurements will not suppose a high increase of the computational power.

2. Which are the most promising open-source algorithms to provide the MAV with localiz-
ation capabilities (position and orientation)?

Initially an evaluation was performed of the most promising VO/VIO algorithms. The
most recent papers were evaluated and the results were exposed in Table 3.2. From here
it was deduced that the most promising open-source solutions were:

(a) 1st - ORB-SLAM2

(b) 2nd - SVO

(c) 3r d - ORB-SLAM

(d) 4th - VINS-Mono

(e) 5th - OKVIS

Therefore, ORB-SLAM2 was selected as the algorithm to be tested against the EuRoC
dataset and our custom dataset. In the initial stage of the evaluation, we found two en-
couraging algorithms that were public, ORB-SLAM3 and SVO Pro. ORB-SLAM3 was the
improvement of our ORB-SLAM2, our top 1 algorithm, and SVO Pro was the improved
version of SVO as it included back-end optimizations and versions of the algorithms
which included IMU readings. Consequently, these three algorithms were tested to eval-
uate the performance from our side.

ALGORITHM HARDWARE REQUIREMENTS APPROACH INPUT TREATMENT LOOP CLOSURES MAP RELEASE
ORB-SLAM2 Stereo/RGB-D Optimization Indirect Yes Sparse Oct 11,2017

ORB-SLAM3 Monocular/Stereo + IMU Optimization Indirect Yes Sparse
v0.4 beta
Apr. 21,2021

SVO Pro Monocular/Stereo + IMU Optimization Semi-Direct Yes Sparse Oct. 21, 2021

3. How different are the conditions in outdoor scenarios? Can the same framework be
seamlessly used? How do changes in light affect the estimation?
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The main differences between performing localization indoors and outdoors are related
to the weather and illumination conditions. Visual odometry approaches fail under low
illumination conditions, as they are impeded to perform feature extraction or photo-
metric matching due to the lack of texture in images. Moreover, under rainy conditions,
the images suffer from the rain vailing effect that can reduce the visibility range of the
camera, as well as raindrops that can adhere to the lenses and degrade the quality of the
images.

Another major factor when performing outdoor navigation is that normally the distance
from the camera to the objects increases. RGB-d cameras have a limited range to estimate
depth. For instance, our camera INTEL D435i has a range between 0.2 and m-10 m so
these types of cameras have limitations when working outdoors.

4. Should the solutions integrating Machine Learning be considered as optimal localiza-
tion method for our use-case?

ML implementations cannot outperform the top conventional algorithms yet. There
are hybrid ML algorithms such as D3VO which defeat several VO/VIO alternatives such
as DSO and ORB-SLAM. ML approaches seem a very convenient solution to overcome
certain limitations of conventional algorithms, such as retrieving scale from monocular
cameras or being able to handle information from multiple sensors to estimate the pose.
The big efforts that the research community is doing and the growing computational
power make us consider them a promising alternative in the not too distant future.

5. In a simplified scenario without too many obstacles, is it necessary to have loop closures
as a feature in the VIO/SLAM pipeline?

Yes, loop closures have been proven to be a fundamental key to achieving accurate local-
ization and reducing the accumulated drift during navigation. It provides the algorithm
with the capability of doing relocalization and recognizing features from the past. This al-
lows performing global bundle optimization which highly increases accuracy and allows
the algorithms to comply with safety constraints. This was proven when applying the
front-end option of the SVO Pro VIO Mono algorithm. Without loop closures, the max-
imum error achieved during the runs never complied with the 1.35m security distance.
Furthermore, on the dataset V1_02_medium the algorithm failed during localization on
half of the runs and as loop closure was disabled it was never possible to relocalize itself.

6. Is the sensorial suite composed of onboard camera + IMU (performing online VIO-
SLAM) enough to perform an indoor handover of an object from a drone to a human?

A human can stretch a mean of 1.32m, considering his mobility is limited to half a step.
Supposing the MAV counts with a robotic arm that stretches up to 30 cm being this an
extra security distance where the value 1.32 should not be exceeded 1.32 m will be es-
tablished as the security distance between humans and drones. An effective and secure
localization occurs when the maximum error during the complete trajectory does not
exceed this 1.32m.

In Section 5.2 the results of the maximum error achieved during navigation are exposed.
The trajectory and ground truth trajectories are compared point to point and the max-
imum error achieved out of the 5 runs per algorithm and dataset is extracted. Results
prove that SVO Pro VIO versions and ORB-SLAM3 VIO versions that include the initial
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dynamics, exceed the security distance in EuRoC dataset as visualized in Figure 5.15.
When checking the same metric on our custom datasets from RAM we see that ORB-
SLAM2 Stereo and SVO Pro VIO Stereo do not comply with the security distance either.
This leaves us with ORB-SLAM3 stereo, ORB-SLAM3 VIO stereo and SVO Pro stereo as
valid options to perform localization under the tested conditions, where the final goal is
performing the handover of an object to a human.

7. Is one camera enough to perform VIO/SLAM while also recognizing the man and his/her
gestures?

To detect human gestures at least one camera should be pointing toward the human.
To perform an effective localization using VO/VIO a pair of stereo cameras are required,
these cameras can be located at any position where the camera can track static features.
If we put a pair of stereo cameras at the front, it is possible to reuse the input images
for the cameras both for gesture recognition using ML and to track features for effective
localization. Considering the real conditions are similar to the recorded dataset, where
high dynamic objects appear on the images and there are enough static features to be
tracked, we can assure that only with this pair of stereo cameras we would be able to
accomplish both tasks.

8. How should the camera be placed on the MAV? What is the optimal placement? Is the
presence of 3DOF constraining the placement?

The stereo camera pairs used for localization should be used in the orientation where
we would expect more static features to be tracked and where the images are more likely
to have a higher degree of contrast as features will be able to be detected more easily.
For instance, a surveillance drone that files at 160 km high should have the cameras on
the bottom to be able to track features from the floor. The drone will not be able to find
many relevant features if the cameras are located at the front as clouds move at different
speeds and tracking cloud features will provide poor localization. In the datasets that
were recorded in RAM Arena, it would have been more optimal to record the data with
the camera tilted a bit more upward. This orientation would have been more convenient
because the mattress from where the drone takes off is textureless and the descriptors
are not able to extract features from it. Moreover, in experiments where textureless en-
vironments were provided the algorithms were not even able to get initialized due to not
being able to track enough features.

The 3 DoF arm impacts negatively the localization algorithm. If the arm is in the field
of view, it will detect features from the arm. These features will be always tracked in the
same static position and will remain static in the same position during all the navigation
as the camera and the arm are part of the same rigid body. These features will increase
the localization error as the algorithm will be tracking on the one hand static features
of the environment that change position from frame to frame (used for camera localiz-
ation) and on the other hand the static features of the drone that wrongly indicate the
algorithm that the camera is not moving. Two types of features should be avoided within
the captured image to compute localization:

• Features that are part of a dynamic object, for example, a hand that is moving in
front of a camera.

• Features that are part of the rigid body.
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From the extracted results and the analysis of the data, it was mentioned that ORB-SLAM3
stereo, ORB-SLAM3 VIO stereo, SVO Pro stereo and SVO Pro VIO stereo were the algorithms
that complied with the maximum error allowed in position. Overall, each algorithm has its
pros and cons. As a general comparison of these three VO/VIO implementations it can be said:

• In EuRoC datasets ORB-SLAM3 VIO stereo proved the algorithm with the highest robust-
ness and lowest ATE in position, keeping this error under 0.15 meters for all datasets and
outperforming the stereo implementation in challenging scenarios (V1_02_medium). Its
implementation without IMU showed also a good ATE median value but the lowest ro-
bustness when facing challenging trajectories. SVO Pro stereo had a bit worst results in
ATE and robustness. EuRoC datasets are taken as reference for the expected results when
performing lifelong experiments with our MAV, as these experiments are longer than the
ones recorded in RAM datasets.

• Considering the custom RAM datasets we deduced that the VIO implementations are less
sensitive to faulty camera calibrations. ORB-SLAM3 presented the best results when fa-
cing challenging datasets, where the error decreased when increasing the displacement
speed, then we deduce that the IMU readings provided better estimations under his situ-
ations. Contrary, this algorithm has the worst ATE position performance when just hov-
ering compared to its stereo implementations. SVO Pro showed the worst performance
in all the datasets,however, they proved better estimations than ORB-SLAM3 when con-
ducting pure rotations.

• ORB-SLAM3 algorithms provided lower ATE in orientation than SVO Pro. ORB-SLAM3
stereo provides better estimations with low dynamics and when including the IMU meas-
urements the orientation estimations improved.

As explained in previous sections, SVO Pro is affected by the infrared lasers projected by the
OptiTrack and we expect better performance when using conventional cameras to capture im-
ages. Overall, the preferred solution in terms of performance for both position and orientation
is ORB-SLAM3 VIO stereo, however, an alternative for navigation should be considered until
the map is mature.

6.2 Contributions

This section presents how this project contributes to the scope of autonomous navigation in
robotics.

• Exposition and comparison of the open-source VO/VIO conventional algorithms.

• Evaluating the maximum error achieved by the most promising VO/VIO algorithms to
guarantee safe co-working human and drone. The algorithms were tested under sim-
ilar visual inputs and trajectories to the ones performed in a real handover of a tool to a
human.

• Comparing SVO Pro, ORB-SLAM2 and ORB-SLAM3 against broadly extended EuRoC
MAV datasets and our custom RAM datasets which perform trajectories similar to the
ones accomplished in a real handover of a tool. The comparison uses both position and
rotation ATE and evaluates the robustness of the VINS algorithms.

• Understanding ATE limitations as a result of relocalization. The main drawback of using
this metric is that the relocalization periods are not considered within the ATE equation.
Nevertheless, this limitation does not have a big impact on our results because only over-
all only the SVO Pro VIO mono algorithms are required to relocalize themselves on these
datasets. This was proven through visual inspection when running the algorithms.
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• Extracting results both from frame alignment and full alignment of the trajectories and
understanding their utility.

6.3 Future Research

The experiments conducted were done with the default configurations from the algorithms, as
previously mentioned, the way the algorithms come adjusted by default can provide decently
to other environments. The datasets were all recorded indoors, the way we simulated outdoor
environments was by choosing datasets where features were far from the camera. However,
multiple improvements can be tested with the chosen algorithms:

• Test the localization algorithm against the RAM controller. Instead of using the OptiTrack
measurements, it is now possible to use VO/VIO localization methods.

• The computational load can be tested together with the machine learning algorithm for
feature recognition to understand the computational power required.

• The camera resolution used with the RAM dataset was similar to the one used in the
EuRoC dataset. The camera resolution can be increased allowing to achieve better per-
formance for feature extraction. This should have a positive impact on localization ac-
curacy.

• Ground truth data can be recorded using a GPS device to build outdoor datasets and
check the performance.

• Change infrared cameras for conventional ones to test the real performance of SVO Pro
algorithms, they seem to be an interesting option if pure rotations are going to be fre-
quent during navigation.

• Fisheye cameras can be an alternative to smaller FoV cameras, it is worth having them in
mind although our FoV camera choice seems to be more appropriate. As pointed out in
(102), fisheye cameras are preferred in small and confined environments, while a smaller
field of view cameras such are the ones used here are suitable for large scale scenarios.

• Exploring solutions to remove dynamic features from the scene and the features captured
which are part of the drone body. These features decrease the accuracy of the estima-
tions.

• The biggest pain when using VO/VIO in our workflow are the faulty estimations when
initializing the scale. Consider other alternatives when starting navigation until the map
is mature and then switching back to VO/VIO.
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A Appendix

A.1 IMU initialization in ORB-SLAM3

The goal of the novel IMU initialization method from ORB-SLAM3 (90) is to provide good initial
values for IMU variables: body velocities, gravity direction and IMU biases. The problem is
solved as a MAP estimation problem split into three steps:

1. Vision-only MAP Estimation: the initialization is done as in a pure Monocular SLAM
implementation. The initial 2 seconds 10 frames and hundreds of points are stored, from
this data, we retrieve the scale through BA optimization. The first frame coordinates and
axis are used as a reference for the rest of the poses. From here we obtain an up-to scale
trajectory T 0:k = [

R, p
]

0:k .

2. Inertial-only MAP estimation: the next set is to obtain optimal estimations for the iner-
tial variables represented through the state inertial vector. The vector is computed using
the poses from T 0:k and inertia measurements between keyframes.

Yk = {
s,Rw g ,b, v0:k

}
The variables of the inertial state vector are: s ∈ R+ is the scale factor from step 1,
Rw g ∈ SO(3) is the rotation matrix to compute gravity vector g in the world frame as
g = Rw g gI, being gI = (0,0,G)T and G the gravity magnitude. The biases of the accelero-
meter and the gyroscope are represented by b = (ba ,bg ) ∈ R6 assumed as constants dur-
ing the initialization and finally v0:k ∈ R3 are the body velocities expressed on the body
scale and initally estimated from T 0:k . At this point we will only consider the inertial
measurements I0:k = {

I0,1...Ik−1,k }. From this parameters we can deduce the following
minimization problem:

p(yk |I0:k ) ∝ p(I0:k |yk )p(yk ) (A.1)

y∗
k = argmax

yk

(
p(yk )

k∏
i=1

p(Ii−1, i |s,Rwg,b, v i−1, v i )

)
(A.2)

y∗
k = argmin

yk

(
||b||2∑−1

b

k∑
i=1

||r Ii−1,i ||2∑−1
Ii−1,i

)
(A.3)

The covariance matrix
∑−1

b represents the prior knowledge about the scope of the IMU bi-
ases. To optimize the direction of gravity we will parametrize the the optimization equa-
tion with two angles as the gravity is aligned with the z axis:

Rnew
wg = Rold

wg Exp(δαg,δβg,0) (A.4)

In the equation above E xp(.) stands for exponential map. TO preserve the positive value
of the scale we will define its optimization function as:

snew = sol d E xp(δs) (A.5)

When the inertial-only optimization finishes, the poses and velocities of the frame and
the 3D map points will be in the correct scale and rotated to align the z-axis with the
gravity. The biases will be updated and it will keep computing IMU preintegration to
reduce linearization errors.
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3. Visual-Inertial MAP Estimation: once all the initial parameters are computed we can
combine both visual and inertial data to refine the values, but the biases are kept constant
for all keyframes.

In the case the movements are too slow during the initialization phase may not provide optimal
observability and fail to solve the optimization problem in the first 15 seconds. Therefore, a
robust technique has been developed for this situation, in this case only scale and gravity are
estimated during the inertial-only optimization. In this case, there will be no fixed biases, these
IMU parameters will be estimated from the mapping thread. This optimization will take place
until 100 keyframes are stored or 75 seconds have passed since the initialization, providing the
MAP estimation with more data to achieve accurate results. This IMu initialization process can
easily be extended to stereo-inertial by fixing the scale to 1 on the inertial-only optimization.

A.2 IMU Preintegration and Initialization

An IMU allows us to measure acceleration and rotation rate at a fixed frequency. These meas-
urements are adopted into the factor graph-based V-SLAM framework through the IMU prein-
tegration theory (53). The goal is to estimate the motion of the system from the IMU measure-
ments. Broadly speaking, IMU preintegration can be employed as a measurement between two
successive frames allowing us to define an estimation model and an error function. The IMU
discrete positions Pb , rotations Rb and velocities Vb can be modelled through the following
equations (53):

P t+4t = P t
b +V t

b 4t + 1

2
gw4t 2 + 1

2
R t

b(at
b −bt

a −ηad )4t (A.6)

R t+4t
b = R t

bE xp
((

w t
b −bt

g −ηg d (t )
)
4t

)
(A.7)

V t+4t
b =V t

b + gw4t +R t
b(at

b −bt
a −ηad (t ))4t (A.8)

where b is the body frame and W is the world frame. The term gw represents gravity, at
b is

the acceleration of the IMU and w t
b is its angular velocity at time t. The biases of the acceler-

ation and the gyroscope are ba and bw respectively. The discrete time Gaussian noise of the
gyroscope corresponds to ηg d and for the accelerometer is ηad .

Figure A.1: Different rates for IMU and camera. The blue line represent the complete interval where
IMU preintegrations take place. (53)

All the IMU measurements between two camera keyframes at times i and j can be simplified
into a single synthetic formula, named the preintegrated IMU measurement. This formula con-
straints motion between consecutive keyframes relying on the assumption that the IMU is syn-
chronized with the camera.
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p j = pi +
j−1∑
k=i

[
vk4t + 1

2
g4t 2 + 1

2
Rk (ak −ba

k −ηad
k )4t 2

]
(A.9)

R j = Ri

j−1∏
k=i

E xp
((

wk −bg
k −ηg d

k

))
4t (A.10)

v j = vi + g4ti j +
j−1∑
k=i

Rk (ak −bâk −ηad
k )4t (A.11)

Based on the IMU Gaussian noise model, the previous expresions of position, velocity and ori-
entation evolve to elimiate the dependency on biases and the time dependency of velocity and
position (otherwise the integrations need to be rerun when the linearized point ti changes).
Combining this enhancements we reach the preintegrated measurement model defining the
relative changes between successive frames:

4R̃i j = RT
i R j E xp

(
φσi j

)
(A.12)

4ṽi j = RT
i

(
v j − vi − g4ti j

)+δvi j (A.13)

4p̃i j = RT
i

(
p j −pi − vi4ti j − 1

2
g4t 2

i j

)
+δpi j (A.14)

Where random noise is described by the random vector
[
δφT

i j ,δvT
i j ,δpT

i j

]T
.

A.3 Machine Learning algorithms vs Conventional algorithms.

Figure A.3 represents the results of the ORB-SLAM2 stereo (72) algorithm on the KITTI datasets,
where stereo images are recorded from a car navigation. The values from column tr el corres-
pond to the average relative translation error in position and are used as a benchmark against
the machine learning algorithms from Figure A.2. The ML algorithms are tested against the
KITTI datasets 9 and 10 and the values represented on the table correspond to the tr el . It is
concluded that D3VO is the only algorithm capable of outperforming ORB-SLAM2 in the cur-
rent state of the art, providing a tr el 0.09% lower for sequence 9, however, this algorithm could
not be tested from our side because the algorithm was not opensource.

A.4 Complete results of ATE in position for RAM datasets.

Results visualized in Table A.1.
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Figure A.2: General overview of the Machine Learning algorithms available and the average relative
translation error in sequences 9 and 10 of KITTI datasets.(60)

Figure A.3: ORB-SLAM2 stereo performance on KITTI datasets.(72)

Miguel A. Alonso University of Twente



A
P

P
E

N
D

IX
A

.
A

P
P

E
N

D
IX

79

DATASET\ALGORITHM STATIC2 STATIC3 TRANSLATION_0_1MS WAVING DYNAMIC SQUARE2 SQUARE3 SQUARE4_MAX SQUARE5_MAX TRANSLATION_FRONTBACK TRANSLATION_FRONTBACK_MAX
ORB-SLAM2 STEREO 0.117 0.167 0.199 0.234 0.262 0.272 0.220 0.284 0.271 0.283 0.271

SCALED 0.004 (250%) 0.022 (250%) 0.024 (240%) 0.041 (220%) 0.008 (250%) 0.089 (190%) 0.038 (130%) 0.087 (120%) 0.075 (130%) 0.041 (220%) 0.024 (220%)
ORB-SLAM3 STEREO 0.195 0.274 0.355 0.405 0.435 0.548 0.466 0.551 0.505 0.506 0.491

SCALED 0.0045 (-55%) 0.0079 (-55%) 0.0065 (-55%) 0.014 (-55%) 0.011 (-55%) 0.0714 (-60%) 0.0496 (-55%) 0.0572 (-55%) 0.065 (-55%) 0.0105 (-55%) 0.0084 (-55%)
ORB-SLAM3 VIO STEREO 0.10798 0.016703 0.009871 0.02468 0.014988 0.10054 0.0277 0.087831 0.059075 0.031113 0.32952

SCALED 0.10798 (0%) 0.0139 (4%) 0.009871 (0%) 0.009 (+3%) 0.0167 (+5%) 0.0663 (+25%) 0.018162 (+5%) 0.08785 (+1) 0.0562 (+5%) 0.009871 (0%) 0.0167 (7%)
SVO PRO STEREO 0.067195 0.098724 0.099954 0.1409 0.12084 0.13861 0.12588 0.11989 0.10247 0.13583 0.12853

SCALED 0.0065 (70%) 0.005 (+60%) 0.0097 (+50%) 0.033 (90%) 0.0081 (+50%) 0.0508 (+45%) 0.0355 (+60%) 0.0355 (+60%) 0.059 (20%) 0.033 (+50%) 0.0282 (40%)
SVO PRO VIO STEREO 0.042173 0.031948 0.070498 0.068895 0.068102 0.14689 0.068017 0.18184 0.19803 0.11266 0.43548

SCALED ——————— 0.0142 (15%) 0.045 (-15%) 0.0354 (+20%) 0.021 (+10%) 0.1189 (+25%) 0.056 (+15%) 0.18184 (0%) 0.1903 (0%) 0.098 (10%) 0.43548 (0%)

Table A.1: ATE values of RAM datasets with scaled and out of scaled data.
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A.5 Visualization of trajectories in RAM datasets.

Figure A.4, Figure A.5 and Figure A.6 represent the ground truth trajectories against the estim-
ated trajectories of ORB-SLAM3 stereo.
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Figure A.4: ORBSLAM3 stereo with Frame Alignment for datasets Static2, Static3, Waving and Dynamic.
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Figure A.5: ORBSLAM3 stereo with Frame Alignment for datasets Translation_0_1ms, Transla-
tion_FrontBack dataset and Translation_FrontBack dataset_max.
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Figure A.6: ORBSLAM3 stereo with Frame Alignment for datasets Square2, Square3, Square4_max and
Square5_max.
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