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ABSTRACT 

Landslide susceptibility maps serve as the basis for hazard and risk assessment, as well as risk-informed landuse 

planning at various spatial scales. These maps are intended for a variety of purposes, including infrastructure planning 

and restrictive landuse zoning, by potential end-users such as spatial decision-makers and urban planners. These 

applications require accurate map information and specific map legends, as decisions based on these maps have the 

potential to cost lives and cause infrastructure damage. The usability of the maps depends on whether they provide 

the required information and whether that information is accurate enough to be utilised for the intended purpose. 

Therefore, assessing the usability and predictive accuracy of landslide susceptibility maps is of paramount importance. 

Typically, the accuracy of the maps is evaluated using the same landslide inventory that was used to create the map, 

which does not actually test the predictive ability of the maps in future situations. To address these issues, we evaluated 

three landslide susceptibility maps for an area in Kerala (India) that were generated in the past years by utilising a new 

landslide inventory created after the maps were generated. This research presents a method for evaluating classified 

maps intended for use in decision-making and planning. We assessed (1) the usability of the landslide susceptibility 

maps by conducting a literature analysis and conducting interviews with the map producers and users in Kerala. The 

assessment indicated the requirements for a map to be utilised for the intended purpose. We (2) generated a robust 

(new) landslide inventory using a MsaU-Net deep learning (DL) model, which was (3) used to evaluate the landslide 

susceptibility maps generated in the past years. We designed a method for evaluating classified maps, with a focus on 

evaluating and comparing in different scenarios. A major accomplishment of the research was to generate Unique 

Conditions Units (UCUs), which were utilised to evaluate classified maps. We propose that these units can also be used 

to generate landslide susceptibility maps and provide a reasonable topographic representation. Our study has huge 

significance, particularly in (1) investigating the usability of landslide susceptibility maps and attempting to direct the 

focus of map producers toward more user-oriented landslide susceptibility mapping, (2) generating landslide inventory 

of small-sized landslides utilizing open source datasets, (3) designing a method to assess the classified landslide 

susceptibility maps in multiple evaluation scenarios, and (4) providing a method to generate Unique Conditions Units 

(UCUs) for evaluation as well as mapping purposes, (5) highlighting the challenges of analysing the importance of 

landuse and landcover changes on the validity of the landslide susceptibility maps. We conclude that, although the 

volume of literature on the best methods for landslide susceptibility assessment is enormous, there is an urgent need 

to focus more on the forward predictive capability and usability by end-users. 
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1. INTRODUCTION 

This chapter introduces the research on analysing how landslide susceptibility maps are validated and used and provides 

the literature review which motivates the research in terms of the existing gaps. The chapter includes the (1) 

background, (2) research problem and scientific significance, (3) research objectives, and questions, (4) research design, 

and (5) literature review.  

1.1. Background 

Landsliding is a common phenomenon in mountainous areas, capable of causing loss of life and severe damage to 

infrastructure(Kjekstad and Highland, 2009). An area of around 3.7 million km2 of the earth's surface is susceptible to 

landslides, home to nearly 300 million people, or 5% of the world population (Dilley et al., 2005). The impacts of 

landslides include human death or injury, damage to the built environment, agricultural and forest productivity loss, 

reduced water quality, falling real estate values, etc. (Kjekstad and Highland, 2009). Risk reduction strategies, such as 

better landuse planning, restrictive zoning, vegetation control, slope stabilization, landslide early warning systems, etc., 

can be used to minimize the impacts (Lacasse et al., 2009). However, implementing these strategies requires 

quantification of the landslide hazard and risks to allocate the resources and reduce the risk. The first step toward 

obtaining quantitative risk maps is to conduct a susceptibility and, when possible, a hazard assessment (van Westen et 

al., 2006a). Often, investigators confuse the term ‘susceptibility’ with ‘hazard.’ However, these are two different but 

related terms. Landslide susceptibility is defined as “the relative propensity of slopes to generate landslides in a given area” (Varnes, 

1984; Brabb, 1985; Aleotti and Chowdhury, 1999), whereas landslide hazard is the probability of landslide occurrence 

of a given potentially damaging event with a given intensity in a given area, within a specific time period (Guzzetti et 

al., 1999).  
Landslide susceptibility maps serve as the foundation for hazard and risk assessment, as well as risk-informed 

landuse planning at various scales. These maps are intended to be used for a variety of purposes, including road and 

infrastructure planning, risk-informed master plans, restrictive landuse zoning by potential end-users such as spatial 

decision-makers, urban planners, administrators, real estate agents, transport and logistics agencies, agriculture and 

forest managers etc. Contrary to popular belief, landslide susceptibility has not been used extensively in planning and 

spatial decision-making (Guzzetti et al., 2000; Chacó et al., 2006; Reichenbach et al., 2018), which could be attributed 

to numerous problems encountered by end-users. Based on the existing literature, the challenges can be summarized 

in two major categories: purpose fulfilment and reliability. 

1.1.1. Purpose fulfilment: 

The usefulness of a landslide susceptibility map may be evaluated by how well it serves its intended purpose. The maps 

can be generated for various purposes such as information, advisory, statutory1, and design (Fell et al., 2008). Local-

scale maps (1:5,000-1:25,000), for example, can be utilized for statutory purposes, although regional (1:25,000-

1:250,000)  or national scale (<1:250,000)  maps may not be appropriate for the same (Soeters and van Westen, 1996). 

The local scale is the most commonly used reference scale for planning and implementing urban developments, 

warning systems, and emergency plans. However, because local scale landslide susceptibility maps are often unavailable, 

their implementation in large-scale urban planning is often not feasible.  

Apart from scale, another issue is the specific information required for different purposes. For example, 

infrastructure planning necessitates information on the regions that may be damaged by landslides, but most 

susceptibility maps only consider where landslides may initiate, which may be insufficient for the purpose. Another 

concern is the varying interpretation of the classification of different susceptibility maps because it is often unclear 

 
1 Statutory purposes are those in which the maps are used with a legal implication   
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what landslide impact can be expected in each susceptibility class. Non-specialists may not understand the maps very 

well, thus hindering the optimal utilization of the map for a particular purpose (Huabin et al., 2005). The primary goal 

of all maps is to convey the spatial information required for the intended purpose to different end-users. If the required 

information is not given, the susceptibility map may not be applicable in the planning process, especially in a legislative 

framework. Therefore, it is critical to involve the relevant stakeholders to understand their requirements clearly and 

generate the map based on the purpose defined.  

Once the map is generated, the map producer should indicate the conditions under which the map can be 

used and, more importantly, cannot be used (Hearn and Hart, 2019). More than an indication, the map producer should 

rather illustrate a practical application of the landslide susceptibility map for the purpose it was created, demonstrating 

how the map can be used and highlighting the circumstances in which it cannot be used. Hence, a collaborative 

approach in the preparation of landslide susceptibility maps is necessary to meet the end-user requirements and gain 

acceptance in the planning and decision-making process.  

1.1.2. Reliability:  

Reliability is defined as the “quality of being able to be trusted to do what somebody wants or needs” (Oxford dictionary, n.d.). In 

the context of landslide susceptibility, the map should be trusted by the end-user for its intended purpose. Map 

reliability comes from model accuracy and robustness2, transparency, and objectivity, which leads to the acceptance of 

these maps into the planning and decision-making process (Guzzetti et al., 2006; Fleuchaus et al., 2021). This enables 

end-users to make well-informed decisions based on maps with associated technological explanations to them. 

Transparency of the methods used in producing maps is vital for making these maps more reliable for the 

end-user. Here, transparency is referred to as the communication of the map uncertainty and usability constraints to 

the intended end-user. The end-users must be aware of the inherent uncertainty in landslide susceptibility maps which 

is inevitable due to the quality of the spatial input datasets (van Westen et al., 2008), missing knowledge of the landslide 

controlling factors (Carrara et al., 1999),  and limitations of the technique itself (Guzzetti et al., 2006). However, the 

model uncertainty is rarely assessed (Reichenbach et al., 2018)  and communicated to the end-users. End-users are 

often also not interested in knowing the map uncertainties (Petschko et al., 2014). Uncertainties should be considered 

in planning and preparedness, but they must be based on scientific evidence in order to produce the most rigorous 

assessments of the relationship between map uncertainty and its potentially disastrous repercussions (UNISDR, 2015). 

Most importantly, the maps must be evaluated to ensure the reliable application of landslide susceptibility 

maps for risk management and land-use planning (Hearn and Hart, 2019). Accurate hazard information is required to 

develop economically viable mitigation options. This is important in developed countries, but especially in developing 

countries like India, with limited financial means combined with a large population and huge administrative areas. 

Robust hazard information is required in such countries to effectively manage disaster risks. The lack of such hazard 

information, and the inclusion of inaccuracies may have direct and indirect economic consequences such as clean-

up/repair costs, search and rescue costs, infrastructure disruption, and, most importantly, loss of life (Winter et al., 

2018), even in areas designated as “safe or low susceptible”, giving a false sense of security. As a result, assessing the 

quality of the susceptibility maps/information generated is critical. 

The most rational way of quality evaluation of a model (map) is accuracy assessment, which is performed by 

comparing the model results with observed data, also known as map validation. Typically, map validation is performed 

in two ways, (1) model fit, which is the model’s ability to explain or ‘mimic’ the known distribution of landslides by 

comparing the resulting landslide susceptibility map to the same landslide inventory used to train the model 

(Reichenbach et al., 2018), and (2) model prediction, which is the model’s ability to predict landslides, which is performed 

by comparing the output map with independent landslide occurrences not used in the construction of the model 

(Chung and Fabbri, 2003; Remondo et al., 2003). A landslide inventory can be considered independent when the 

landslides occurred in a different time period than those used in developing a susceptibility map. Acquiring an 

independent landslide inventory can be difficult, which makes the assessment of the predictive capabilities of a landslide 

susceptibility map a challenging task. 

 
2 Model robustness is the sensitivity of the model to small changes in parameters or inputs. 
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1.2. Problem statement 

Since the future landslide occurrences are unknown at the time of analysis, the model can only be tested against the 

past landslide occurrences. Therefore, investigators attempt to create a pseudo-independent landslide inventory set to 

test the model prediction performance by splitting the dataset over time and space. Researchers generally use one of 

the four methods listed below to obtain an independent landslide dataset for model prediction performance assessment 

(Jaiswal, 2011; Remondo et al., 2003):  

1. Dividing the available landslide inventory into two random sets and using one for calibration and the other 

for validation. 

2. Dividing the landslide dataset into several subsets (k) and performing k-fold validation. 

3. Modelling is done in one part of the study region, extrapolating the model to another portion of the region 

and validating the whole model with landslides from the other region. 

4. Modelling is done with landslides from a specific time period, and validation is done using landslides from 

different time periods. 

The above methods 1 and 2 randomly split the dataset into a defined ratio of, for example, 30-70%, 25-75%, or k=10 

number of partitions for calibration and validation (Figure 1.1). However, the landslide inventory belongs to the same 

time and triggering conditions; thus, it mimics the landslide occurrences rather than predicting new ones (Remondo et 

al., 2003). Method 3 splits the region into two parts; one for calibration and the other for validation. According to 

Guzzetti et al. (2006), this technique presupposes that the causal factors remain constant in the training and validation 

regions. In addition, it is also assumed that the combined contribution of variables to define the existing distribution 

of landslides remains the same geographically (Guzzetti et al., 2006). Method 4 splits the data temporally; however, the 

validation dataset still contributes to the generation of the landslide susceptibility maps.  

Hence, the actual prediction assessment of landslide susceptibility maps is not possible using these methods, 

as these are more oriented towards model fit than model prediction. Although this is the case when the map is generated 

for future occurrences, logically, independent landslide inventory datasets cannot be available. But once these maps 

were created in the past a posterior 3  predictive performance assessment can be done using the new landslide 

occurrences (Chung and Fabbri, 2003; Remondo et al., 2003; Petschko et al., 2014; Fleuchaus et al., 2021). However, 

this does not directly solve the problem of model prediction assessment for real-time map generation. Still, it indicates 

how well the landslide susceptibility maps created in the past predicted future occurrences. Nevertheless, this 

assessment allows us to get more insights into the limitations and uncertainties of the maps and further improvements 

that can be made to these maps.  

 Fleuchaus et al. (2021) tested the predictive performance of statistical models retrospectively (posterior). They 

revealed that high validation scores achieved during model calibration (e.g. 80%) do not necessarily mean that the 

model will predict well. In terms of advantages, the posterior prediction assessment provides a high level of objectivity, 

and the reliability of the map can be demonstrated in a more reasonable manner, which helps to gain acceptance of 

the landslide susceptibility maps in decision-making and planning (Fleuchaus et al., 2021). A very few researches have 

carried out a posterior assessment of the predictive performance of these maps.  

 
3 Looking back in time  

Figure 1.1: Splitting techniques to obtain an independent landslide inventory 
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A complicating factor in the posterior validation of landslide susceptibility maps is that the conditions that 

were prevalent before the map was made may have changed. Recent investigations have challenged the concept of 

‘fixed’ or ‘time-invariant’ susceptibility in an area for a few years to some decades (Guzzetti et al., 2005; Reichenbach 

et al., 2014). After creating the landslide susceptibility maps, landcover change may also influence the causal factors for 

the landslide susceptibility of the region. Samia et al. (2018) found out that old landslide occurrences affect the newly 

occurring landslides, also known as ‘landslide path dependency’, causing an increase in susceptibility over around ten 

years. It is a matter of further research on how the susceptibility may evolve over a period of time, considering the 

effects of old occurrences or change in other influencing factors such as climate (e.g., extreme rainfall events), lithology, 

landcover, etc.  

Chen et al. (2019) investigated the effect of landcover change on landslide susceptibility. The study revealed 

that the susceptibility is not affected directly by landcover change but the alteration in slope conditions due to these 

landcover changes. Thus, landslide susceptibility maps generated at a specified time may not predict future occurrences 

well if there have been significant changes in the slope conditions. Therefore, while evaluating the predictive 

performance of landslide susceptibility, considering landcover changes is essential. Here, we assume that landcover 

change influences susceptibility the most, and there is no combined effect of other influencing factors on the change 

of susceptibility. In this thesis, we will focus on the effects of landcover changes on susceptibility, which are primarily 

caused by human activities and are comparatively easier to capture using remote sensing and GIS tools than other 

influencing factors such as climate.   

1.3. Research objectives & questions 

The main objective of the research is to evaluate the usage of existing landslide susceptibility maps by end-users and 

to analyse their posterior predictive performance using independent landslide inventories. In order to attain this goal, 

the following sub-objectives and research questions were considered. 

1. Sub-objective 1: To evaluate existing landslide susceptibility maps based on their purpose and usability in a 

case study in Kerala, India. 

a. What are the proposed purposes of landslide susceptibility maps indicated by map producers, and 

to what extent do they serve these purposes?  

b. What information do end-users require from landslide susceptibility maps, and what are the 

operational problems in using landslide susceptibility maps in planning and decision making? 

2. Sub-objective 2: To develop new landslide inventories using deep learning (DL) methods for posterior 

landslide susceptibility map evaluation 

a. Which of the many deep learning models is best suitable for landslide detection? 

b. What data combination of optical and topographical datasets is optimal for mapping landslides? 

c. How accurately can landslides be mapped using the DL model? 

3. Sub-objective 3: To assess the predictive performances of landslide susceptibility maps using an independent 

landslide inventory 

a. What are the quantitative and qualitative evaluation metrics and evaluation units suitable for the 

predictive performance assessment of past landslide susceptibility maps? 

b. How do susceptibility maps, generated using heuristic, statistical and physically-based methods, 

compare in terms of their classification and predictive performance? 

4. Sub-objective 4: To analyse how changes in landslide controlling factors, such as land cover, influence the 

predictive performance of landslide susceptibility maps 

a. How can landcover changes be mapped, specifically influencing the landslide occurrences? 

b. Is it possible to establish a relation between the landcover changes and landslide occurrences? Can 

this relation influence the predictive performance of the lanslide susceptibility maps? 

 

The research questions will now be mentioned in conjunction with the sub-objectives. (For example, 2(a) for Question 

1 of Sub-objective 2).  
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1.4. Research design & conceptualization 

Figure 1.2 depicts the overall framework of the research to achieve the objectives and answer the linked research 

questions indicated in the preceding section. The research will start with the analysis of the purpose and applicability 

of the landslide susceptibility maps in landuse planning and decision making (sub-objective 1). To do this, two 

approaches were used: literature review and interviews with end-users and map producers in the southern state of 

Kerala, India. To address sub-objective 2, a landslide inventory map for the Devikolam area in Kerala was generated 

using deep learning (DL) methods followed by manual cleaning of the inventory. The landslide inventory generated in 

sub-objective 2 was used to analyse the posterior predictive performance (sub-objective 3)of the three landslide 

susceptibility maps for the Devikolam area in Kerala, generated by three organisations using different methods. For 

the assessment, a combination of quantitative and qualitative metrics was used. After the predictive performance 

assessment of the landslide susceptibility maps, the maps were analysed with respect to landcover changes. This 

objective aimed at finding out the influence of landcover changes on the predictive performance of the respective 

landslide susceptibility map. 

 

Figure 1.2: Research design 
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2. RESEARCH METHODOLOGY, STUDY AREA, AND 
DATA 

This chapter includes (1) the study area description and its rationale, (2) the research methodology,  and (3) the dataset 

acquisition and its description.  

2.1. Study area 

Landslides threaten 0.42 million square kilometers of India's total land area, excluding snow-covered areas (GSI, 2022). 

The Western Ghats and Konkan hills located on the south-western coast of India account for 0.09 million square 

kilometers of the total landslide prone area in India, which constituents states such as Tamil Nadu, Kerala, Karnataka, 

Goa, and Maharashtra)(GSI, 2022). The Geological Survey of India (GSI), the nodal agency for the generating and 

updating of national geoscientific information and mineral 

resource assessment, constantly monitors and maps the 

landslide areas. In the context of hazard management, National 

and State Disaster Management Authorities (NDMA & 

SDMA) and National Disaster Response Force (NDRF), 

established under the disaster management act (2005), play a 

key role in prevention, mitigation, preparedness and response 

in every part of India.  

In the state of Kerala, a catastrophic landslide and 

flood event in 2018 triggered 516 debris flows, 683 landslips, 

62 soil slide, 22 shallow planar failure and other types of 

landslides (Premlet, 2019). A rapid mapping of the event was 

carried out by National Remote Sensing Centre using 

semiautomated landslide detection and GSI carried out field investigation for immediate response. The event killed 

nearly 534 people and an estimated million people were evacuated from various districts (Figure 2.1)(Premlet, 2019). 

Figure 2.2: Study area 

Figure 2.1: NDRF team rescuing people during the event 
(Source: NDRF Website) 
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Kerala State Management Authority (KSDMA) and the National Disaster Response Force rescued 535 people, 

evacuated 24690 people, and relocated 119 livestock to safer locations (NDRF, 2018). 

The research was conducted in Devikolam taluk of Idukki district in the state of Kerala (Figure 2.2). Located 

along the mountains of Western Ghats, Kerala is one of the most landslide-prone regions in India (Sreekumar, 2009), 

with historical evidence of landslide occurrences dating back to the 13th century A.D. (Kuriakose et al., 2009). With a 

total area of 38,863 km2, it is the third most densely populated (860 people/km2) state in the country (Census of India 

2001). All 13 of the 14 districts of Kerala except the coastal district of Alappuzha are prone to landslides. In India, 

landslides are primarily triggered by rainfall in the monsoon season. The occurrence of catastrophic landslides along 

the leeward slope of the Kerala’s western ghats during torrential rainfall is a result of the region's distinctive topography 

and climate. Puthumala and Kavalappara landslides killed 81 people in 2019 (Wadhawan et al., 2020), and the Pettimudi 

landslide killed 66 people working in a tea estate in 2020 (Achu et al., 2021). Strong bedrock weathering due to tropical 

climate and a heavy downpour during monsoon are the leading causes of landslides (Sajinkumar et al., 2011). In 

addition, anthropogenic activities like deforestation, slope modification for horticulture, road cuttings, and 

construction works are the main factors speeding up the weathering process.  

Due to its high population density, long history of landslides, colossal death toll due to landslides, and elevated 

weathering process resulting from natural and human causes, Kerala is obligated to take significant steps toward 

disaster mitigation and adaptation strategies.  

The Kerala State Disaster Management Authority (KSDMA) was the first state disaster management authority 

in India to provide GIS-based landslide and flood susceptibility maps of Kerala available for public use (Kuriakose, 

2019). The National Center for Earth Science Studies generated a landslide susceptibility map in the year 2010, which 

was legalised in the year 2016 under the Disasater Management Act (2005). The map have been used for statutory 

purposes, specifically for landuse restrictive zoning and implementing regulations for slope alteration, e.g., a ban on 

mining with heavy machinery (KSDMA, 2016; Premlet, 2019). Prior to approving any infrastructure development 

projects, the implementing department must follow checklists for risk assessment laid out in the State Disaster 

Management Plan that specify restrictions in hazard zones (Kuriakose, 2019). This establishes the map as a techno-

legal document; consequently, landslide susceptibility/hazard zones are not merely classes but have associated costs 

and restrictions. As a result, it also decreases land prices in regions designated as high susceptibility zones. Therefore, 

evaluating the accuracy and precision of such a map and determining the extent to which it can be utilized are of 

paramount importance. 

2.2. Research methodology 

The evaluation of existing landslide susceptibility maps necessitates a thorough understanding of their purpose and 

applicability, the datasets and methodologies used, and intrinsic uncertainties. This insight was gained by a systematic 

literature review and interviews with map producers and users. The map evaluation requires landslide susceptibility 

maps generated in the past years aiming to predict landslide events in the future. Another criterion is that there have 

been a sufficient number of landslides in the area for which the maps are available. More importantly, these landslides 

need to be mapped accurately and precisely so that errors and uncertainty in the landslide inventory do not hamper 

the evaluation process. Once a robust inventory is prepared, it can be utilized to assess the predictive capability of the 

landslide susceptibility maps. The evaluation results are then compared with landcover changes to establish a 

relationship, if any.  

Keeping these aspects into consideration, the research methodology consisted of the following steps to fulfil the 

respective sub-objectives (Figure 2.3): 

Sub-objective – 1 
1) Literature analysis on the specific aims of landslide susceptibility maps. A systematic literature review was 

conducted to gain (Chapter 3) 

2) Interview with map producers and users to investigate the purpose and applicability of the landslide 

susceptibility maps (Chapter 3) 
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a) Investigating the map producers’ perspective on the intended use and the end-user of the map, end-users 

requirements and interpretation of the landslide susceptibility classes in terms of expected losses or landslide 

numbers. 

b) Examining map users' perspectives on usability in terms of operational issues encountered when using 

landslide susceptibility maps. The interview was conducted in order to gain a better understanding of the 

specific purposes for which the maps are required, as well as the limitations of the map currently in use to 

meet those needs. 

Sub-objective – 2 
3) Generation of landslide inventory map using a deep learning model, which was used to evaluate the three 

landslide susceptibility maps. To do that, we acquired satellite images and prepared training labels, which were fed 

into a deep learning model. A number of model experimentations and hyperparameter tuning were performed to 

obtain an optimal model to finally detect landslides. (Chapter 4)  

Sub-objective – 3 
4) Generation of Unique Condition Units (UCUs) by using a Digital Elevation Model (DEM). The DEM was 

used to create a slope unit map as well as a generalised slope class map. These two maps were intersected to 

generate UCUs, which were then used to calculate landslide number and area density for map evaluation. (Chapter 

5) 

5) Evaluation of the landslide susceptibility maps was done by using newly generated landslide inventory. For 

the evaluation, the maps were acquired from three organisations – 1) GSI, 2) KU&MTU, and 3) NCESS. Three 

evaluation scenarios were used to evaluate the maps – 1) Overall, 2) Evaluation based on UCUs, and 3) 

Comparative evaluation. For overall evaluation, landslide densities were examined in landslide susceptibility classes 

of the different maps. For UCU-based evaluation, landslide densities were calculated in the UCUs and related to 

susceptibility classes of the maps. Comparative evaluation was performed by comparing three maps using 

correlation and covariance matrics and pixel-by-pixel comparison. (Chapter 5) 

Sub-objective – 4 
6) The influence of LULC changes on the predictive performance of the landslide susceptibility maps was 

investigated by field observations and literature review. An attempt was made to map LULC changes specifically 

influencing the landslide occurrences. Finally, the challenges of establishing a relation between LULC changes and 

predictive performances were highlighted. (Chapter 6) 
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2.3. Data acquisition 

Table 2.1 provides an overview of the datasets used for each sub-objective. Sub-objective-1 required literature on 

existing landslide susceptibility maps, which were acquired from WoS and Google scholar. Sub-objective-2 was to 

generate landslide inventory using optical satellite images, Digital Elevation Model, and label datasets from existing 

inventories. Sub-objective-3 required landslide susceptibility maps generated pre-2018 monsoon and landslide 

Figure 2.3: Overall methodology of the research 
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inventories post-2018 monsoon for evaluation. In the end, land cover changes were captured from high-resolution 

Google Earth images.  

 
S
N 

Sub-objectives Datasets Type 
Source 
(s) 

Remarks Purpose in thesis 

1 

To investigate 
the purpose and 
applicability of 
landslide 
susceptibility 
maps 

Research 
articles 

Docume
nt 

Web of 
Science, 
Google 
Scholar 

100 research articles 
based on a selection 
criteria  

Used for literature 
analysis and extraction 
of information on the 
purpose of LSMaps 

2 

Landslide 
inventory 
generation using 
deep learning 

Satellite 
imagery 

Raster Planet 

High-resolution images 
(3m) 

Used for training the 
model for landslide 
detection 

DEM Raster 
Alaska 
Satellite 
Facility  

Digital elevation model 
(12.5m) 

Used as complementary 
topographic information 

Landslide 
training 
labels 

Polygon NRSC  

OBIA4-based inventory 
using 5.8 m satellite 
imageries 

Helpful for generating 
label datasets  

Point 
Bhukos
h-GSI  

Inventory generated 
based on field surveys & 
Google Earth 

Point 

Lina 
Hao et 
al. 
(2020)  

Refined inventory of 
GSI & NRSC inventory 

3 

To evaluate the 
performance of 
landslide 
susceptibility 
maps 

Three 
landslide 
susceptibilit
y maps 

Raster/
Vector 

GSI, 
KU&M
TU, 
NCESS 

More details are given in 
the next section 

Maps that were 
evaluated using the 
inventory generated in 
sub-objective 2 

4 

To relate results 
from SO - 3 with 
landcover 
changes 

Google 
Earth 
images 

Raster 
Google 
Earth 
Pro 

High spatial and low 
temporal resolution 

To delineate landcover 
changes after the 
creation of landslide 
susceptibility maps 

Table 2.1: Datasets used for each subjective 

2.3.1. Description of landslide susceptibility maps 

Landslide susceptibility maps were acquired from three different organizations : (1) Geological Survey of India (GSI), 

(2) Kerala & Michigan Technological University (KU&MTU), and (3) National Centre for Earth Science Studies 

(NCESS). The abbreviations listed in brackets next to each organization will be used as map names from now on. Table 

2.2 contains a basic description of the maps. 

 

Description GSI Map KU&MTU Map NCESS Map 

Scale of mapping 1:50,000 1:50,000 1:50,000 

Data format 

(Resolution) 

Raster  

(50m) 

Raster 

(30 m) 

Vector 

(Rasterized to 50m) 

Map values5 

(available) 
Classified map (discrete) 

Unclassified map 

(continuous) 
Classified map (discrete) 

 
4 Object-based Image Analysis – An image classification technique 
5 Whether the available raster map is already classified or has continuous susceptibility values. 

https://www.webofscience.com/wos/woscc/basic-search
https://www.webofscience.com/wos/woscc/basic-search
https://scholar.google.com/
https://scholar.google.com/
https://www.planet.com/
https://search.asf.alaska.edu/#/
https://search.asf.alaska.edu/#/
https://search.asf.alaska.edu/#/
https://www.nrsc.gov.in/
https://bhukosh.gsi.gov.in/Bhukosh/Public
https://bhukosh.gsi.gov.in/Bhukosh/Public
https://essd.copernicus.org/articles/12/2899/2020/
https://essd.copernicus.org/articles/12/2899/2020/
https://essd.copernicus.org/articles/12/2899/2020/
https://essd.copernicus.org/articles/12/2899/2020/
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Susceptibility 

classes 

Low 

Medium 

High 

Low (FS6<1.25) 

Medium(1.25<FS<1.75) 

High ( FS >1.75) 

No susceptibility 

Low 

Medium 

High (+Very high) 

No susceptibility 

Method 
Analytical Hierarchy 

Process 
Infinite slope stability analysis Index-based method 

Parameters/factor 

maps 

Slope, aspect, curvature, 

geomorphology, slope 

forming material, regolith 

depth, structure 

(fault/lineament), structure 

(regional thrusts/faults), 

land use/cover, geo-

hydrology 

Slope, Soil cohesion, friction 

angle, groundwater condition 

(assumed saturated), 

vegetation, landuse/cover, 

soil thickness 

Slope map, landform, soil 

thickness, soil material, 

landuse, drainage density, 

drainage pattern, proximity 

to lineaments, man-made 

slope alterations (toe cuts 

etc.) 

Source/author 
Bhukosh (Geological 

Survey of India) 

Dr. Sajinkumar KS, Dr. 

Thomas Oommen  

Developed by NCESS, 

provided by KSDMA7 

Table 2.2: Description of landslide susceptibility maps 

The description of the map generation processes is based on published literature and interviews with map 

authors/producers to gain a deeper understanding of the decisions made while generating the map. Note that these 

maps were created for the entire state of Kerala (India), whereas this thesis is limited to the Devikolam taluk (refer to 

section 2.1 Study area).  

  

(1) GSI Map:  

The Geological Survery of India (referred as GSI) generated lanslide susceptibility map as part of the National 

Landslide Susceptibility Mapping (NLSM) program. The map for the study area was completed during the program's 

priority-1 phase, which ended in 2016-2017. To prepare the map, the following steps were taken: 

a) Landslide inventory preparation using satellite imagery and fieldwork (routine landslide mapping). 

b) GIS-based factor maps (see Table 2.2 ) are based on multiple input data preparation stages: Pre-fieldwork, 

fieldwork, and post-fieldwork. In the pre-field stage, factor maps such as landcover/landuse, geomorphology, 

and so on are created using Google Earth images. In the fieldwork stage, a 42-point detailed geo-parametric 

attribute table is used to collect data on the ground. These collected data are then used in the post-field stage 

to update/alter the factor maps generated in the pre-field stage.   

c) Spatial association analysis of the various geo-factors with the landslide inventory to determine factor class 

ratings and geofactor theme weights. 

d) Knowledge-driven estimation of ratings of the factor classes and weights of the geo-factor themes using 

Analytical Hierarchy Process (AHP) 

e) GIS-based modelling for integrating selected and weighted geo-factor maps in order to generate landslide 

susceptibility scores, and 

f) The use of a success rate curve to classify landslide susceptibility score maps into qualitative maps displaying 

varying degrees of landslide susceptibility. 

 

Uncertainties: 

Large-scale collection of regolith depth data is difficult; therefore, it was known from road and channel cuts and 

occasionally from newly constructed borewells, as people could easily discern the depth at which rock debris began 

to appear. 

 

 
6 Factor of Safety 
7 Kerala State Disaster Management Authority, India 

https://bhukosh.gsi.gov.in/Bhukosh/Public
https://bhukosh.gsi.gov.in/Bhukosh/Public
https://www.ncess.gov.in/
https://sdma.kerala.gov.in/hazard-maps/
https://www.gsi.gov.in/webcenter/portal/OCBIS/pageQuickLinks/pageNLSM
https://www.gsi.gov.in/webcenter/portal/OCBIS/pageQuickLinks/pageNLSM
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 (2) KU&MTU Map:  

The Kerala Univeristy (India) and Michigan 

Technological University (USA) generated a 

landslide susceptibility map for the state of 

Kerala, referred as KU&MTU map in this 

research. Figure 2.4 shows the three landslide 

susceptibility maps used in this study. 

The map was produced and published 

in the ‘Landslide atlas of Kerala’ in the year 2017 

(Sajinkumar and Oommen, 2017). The map was 

generated using the infinite slope stability model 

(Hammond, 1992), a physically-based method. 

The stability of a slope is described by its factor 

of safety (FS) using the infinite slope model. The 

FS is the ratio between the resisting forces to 

destabilizing forces acting on the slope. When 

FS > 1, the slope is stable; when FS < 1, the 

slope is unstable; and when FS = 1, the slope is 

at equilibrium. The infinite slope stability model 

is best suited for the analysis of shallow 

landslides with planar failure surfaces, which are 

present in the study area, because it assumes that 

landslides are infinitely long but have a small 

landslide depth in comparison to their length 

and width. Soil (cohesion and internal friction 

angle) and weight characteristics (saturated and 

unsaturated), as well as the local terrain slope 

and soil depth, are all taken into account by the 

infinite slope models.  For the KU&MTU map, 

the model was applied in a GIS framework using 

‘A GIS tool for infinite slope stability analysis 

(GIS-TISSA)’ (Sanders, 2017; Escobar-Wolf et 

al., 2021). 

 

The following major decisions and steps were taken to prepare the map: 

a) Preparation of the factor/input maps (see Table 2.2 )  

b) Because soil is a much more influential factor than rocks, soil geotechnical properties were taken into account. 

The study area contained four major soil units: well-drained sandy soil, poorly-drained clayey soil, gravelly 

clay, and gravelly loam. 

c) The range of soil cohesion values extends from cohesionless sand (0 N/m2) to highly cohesive gravelly clay 

(32,364 N/m2). The thickness of the soil ranges between 1 m and 5.5 m, and the angle of internal friction 

differs between 24 and 34.5 degrees. These values were based on different studies carried out in similar terrain 

conditions.  

d) Root cohesion and tree surcharge values were calculated from Normalised Difference Vegetation Index 

(NDVI) having majorly two classes: Non-vegetation (bare soil), and vegetation ( Bushy vegetation, plantation 

and dense forest). Root cohesion and surcharge values were set to 0 in bare soil and other classes such as 

Figure 2.4: Landslide susceptibility maps used in the study 
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bushy vegetation, plantation, and dense forest were given a consant root cohesion values (Minimum-(mean)-

maximum) of 4762-(4762)-25000 pa and surcharge values of 238-(1190)-1905 pa. 
e) Once all of the factor maps were completed, they were processed in GIS-TISSA. The FS values were classified 

as follows: low susceptible (FS < 1.25), medium susceptible (1.25 > FS < 1.75), and high susceptible (FS > 

1.75). Typically, FS > 1 is considered safe, but 0.25 FS was added as a margin of safety to account for 

uncertainties. 

Uncertainties:  

It was assumed that the conditions of the groundwater were saturated, which may not be entirely accurate, but the 

lack of data makes it difficult to make such decisions. Soil geotechnical properties and shear strength were 

estimated using the National Bureau of Soil Survey's (NBSS) five-class soil map, which may not be sufficient for 

precise estimation. As mentioned previously, root cohesion and tree surcharge values were also based on a very 

general classification, which may have introduced uncertainty. 

 

(3) NCESS Map:  

The map was produced in the year 2010 by National Centre for Earth Science Studies, referred as NCESS map in this 

research. The purpose of the map was to provide a macro-zonation of the area, which can support the government in 

decision-making. The map was generated using an index-based method that employs a simple ranking and rating 

technique for zonation of landslide susceptibility. The following steps were taken to generate the map: 

a) Local studies were carried out at different sites in Kerala to establish a relation between landslides with 

different causal factors such as slope, soil material & thickness, landform nature, vegetation cover, and so on.  

b) The factor maps (see Table 2.2 ) with a grid size of 250x250 m and refined with the survey of India toposheets 

at a scale of 1:50,000 

c) Soil thickness and material types were estimated from the landform classes 

d) Rating and ranking values for various factor maps and their classes were determined based on local studies 

and other available literature. The slope was given the highest weightage. 

e) These ranking and ratings were aggregated into 250x250 m grids, which were then classified into four major 

classes: Low, Medium, High, and, Very High and many unclassified areas. Note that only the first three classes 

are present in the study area with a lot of unclassified areas. These map grids were later revised by NCESS 

and KSDMA and converted into KML polygon format.  

Uncertainties: 

Initially, the map was generated using 250 x 250 m grids as mapping units, aggregating causal factors in these large 

mapping units. Therefore, substantial generalization of the causal factors may have caused discrepancies in the 

predictions. A further issue is that field-level datasets were only collected for landslide locations; other landslide-

prone areas with varying geology and slope conditions were not taken into account, which may have introduced 

bias into the map. Some causal maps were derived from other existing maps, such as soil material and thickness, 

which were derived from general landform classes such as plateau platform, plateau margins, etc. Consequently, a 

high degree of uncertainty is inherent in such a derivation; however, the absence of datasets necessitates such 

decisions. 
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3. ON THE PURPOSE AND USABILITY OF LANDSLIDE 
SUSCEPTIBILITY MAPS 

This chapter addresses the first objective of the thesis by investigating the purposes and usability of landslide 

susceptibility maps from the perspective of map producers and end-users.  

3.1. The rationale of the investigation  

A collaboration of the map producer and end-user is critical for map preparation in terms of dataset collection, the 

scale of analysis, and the outcome relevant for the purpose it is required by the user. On the other hand, in order to 

use a map properly, it requires that the end-users have an understanding of the uncertainties and limitations of the map 

in terms of the type and detail of information provided. These should be known from the map producer. Therefore, 

this chapter aims to capture both producers' and end-users’ perspectives on the purpose of the landslide susceptibility 

maps.  

3.2. Map producers’ perspective 

As previously noted, the usability of landslide susceptibility maps can be measured by the extent to which they fulfil 

the desired purpose. The purpose for which the map is made determines the scale of analysis, the method used, the 

detail and type of input data used, and the outcome (Corominas et al., 2014). Many thousands of landslide susceptibility 

maps have been created and reported in the literature, but the question is, first and foremost, 'Do they have a purpose 

defined?' and, secondly, if they have, 'What are the purposes these maps are made for?'. Such maps are unlikely to be useful for 

end-users if the map producers did not properly consider the objective for which they make the map and the way the 

end-user should use it. To understand this better, two investigations were carried out to understand the map producers’ 

perspectives on the purpose and possible use of the landslide susceptibility maps: 1) literature review and 2) interviews 

with producers.  

3.2.1. Literature analysis 

Figure 3.1 presents the workflow of the 

analysis carried out.  

 

 

3.2.1.1. Literature search and selection: 

A systematic manual search of the literature on 

landslide susceptibility mapping was carried out 

using Web of Science (WoS) and Google 

Scholar databases to randomly select 100 

research papers. Given time limitations and 

scope this research we only chose 100 research 

papers. The research papers that presented 

methods and results of landslide susceptibility 

mapping were considered as the candidates. To 

find the literature, the following search term 

combinations were used (Table 3.1). 

Figure 3.1: Literature analysis workflow 



 

16 

Nos. Search term combinations 

1 ("landslide" AND "susceptibility" AND "mapping") 

2 (("landslide" OR "debris flow" OR "rockfall") AND "susceptibility" AND "mapping") 

3 ("landslide" AND "susceptibility" AND "mapping" AND ("physically-based" OR 

"statistical" OR "heuristic")) 

Table 3.1: Search term combinations 

Around 250 research papers were chosen at random from the search results, which were narrowed down to 100 after 

scanning the abstract. List of these research papers is provided in Annexure-1. Comparative studies, including literature 

demonstrating the comparison of methods, metrics, and datasets, were not considered during the selection process 

because their primary purpose is to compare rather than to perform susceptibility mapping. Comparative studies 

comprised a significant portion of the literature that was omitted, which is an intriguing fact. It is important to note 

that terms related to potential purposes of the susceptibility maps, such as "planning”, "decision-making”, and so on, 

were not used for searching the literature because they had to be analysed after the research paper had already been 

chosen. Selected literature was stored, managed, and reviewed in Zotero (2016) software.  

3.2.1.2. Systematic literature review: 

This review analysis sought to answer two questions, 1) Whether the papers that report on landslide susceptibility maps 

have a purpose defined?, if they have, 2) What are the purposes these maps are made for? 

Literature review analysis of 100 research papers can be laborious and time-taking. Therefore, three steps were taken 

to conduct a quick scan of the selected literature in order to extract the information pertaining to the map's purpose. 

Step 1: 10 key terms were searched within the document using the basic search function (Ctrl + F). These terms include 

"planning”, "purpose”, "objective”, "decision”, "government”, "urban”, "management”, "reduction”, "road”, and "land-use” as all of 

these terms relate to the potential purposes of the maps. Information around and near these key terms was extracted. 

Step 2: We assume that authors can mention purpose-related information in the abstract, introduction and conclusion 

of the paper, so we read these three sections. If the map's purpose remains unclear or insufficient, we proceed to Step 

3, where we read the entire paper to clear up any remaining issues (Figure 3.1). All of this information was stored in 

text format, which was then used to derive the most frequently used words to define the purpose of the maps. This 

gives us an insight into the focus of the map producers' perspective on the purpose of these maps. In addition, the 

research papers were divided into three groups according to how precisely they defined the map's purpose: General 

purpose, No purpose, and Specific purpose class.  

We observed that many research papers commonly used sentences like "This landslide susceptibility map generated 

using this method can be used for decision-making and landuse planning." but did not explain how. These research papers were 

assigned to the General purpose class. The No purpose class was assigned to research papers that did not include a 

description of the map's purpose. Research papers that defined the purpose of the map specifically (e.g., Critical road 

infrastructure planning) and, ideally, followed an appropriate scale of analysis, method, and presented outcome fulfilling 

the defined purpose, were classified in the Specific purpose class. Finally, a list of the specific purposes defined in these 

research papers is provided, together with a remark on their mapping approach.  

3.2.2. Interview with map producers: 

The map producers of GSI, KU&MTU, and NCESS were interviewed with the aim of understanding the purpose 

and possible use of landslide susceptibility maps generated by them. Table 3.2 presents a summary of the questions 

asked during the interview. A consent was taken from the people interviewed before the interview of map producers 

and users. The complete questionnaire and consent form are attached in the Annexure-2. 

 
Nos. Questions 

1 Who is intended to use this map? 

2 What was the purpose of the generation of this landslide susceptibility map? (e.g., information, 

statutory, engineering, etc.) 
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3 Did you discuss with the end-users on their requirements (required information, use, detailing) 

with respect to the output map? If yes, what did the end-user indicate what was required? 

4 What could one expect in these classes of the landslide susceptibility map that you made, in terms 

of landslide numbers or damage etc.? 

Table 3.2: Questions asked to map producers 

3.3. Map users’ perspective 

The counterparts of the map producers are the end-users, who should use these maps for various purposes and 

applications. The requirements of landslide susceptibility maps may vary depending on the aim of the potential end-

users, such as urban planners, disaster risk managers, land 

revenue departments, geology and mining departments. For 

example, critical road infrastructure planning may necessitate 

information on the road with the greatest potential for damage as 

well as alternative safe roads, whereas landuse restrictive zoning 

necessitates information on each land parcel and the type of 

activity that can be carried out on it. Even within the same type 

of application (e.g., urban planning), the requirements can vary 

depending on the application (e.g., gas pipeline planning or 

drainage network planning). As a result, it is critical to 

comprehend the various purposes of maps, as well as the type 

and level of detail required for the same, from the perspective of 

map users.  

In order to achieve that, five map end-users were selected with the help of KSDMA (Figure 3.2), namely: a 

senior town planner, an environmental lawyer, a disaster management policy implementor, a disaster manager and a 

quarry owner and interviewed The identity of the interviewees has been kept anonymous for privacy reasons. It is 

noteworthy that searching for the end-users was a difficult task. Even though we were in contact with KSDMA which 

has an extensive network and is a state authority, it was difficult to find people who actually use these landslide 

susceptibility maps. This also highlights the issue of the low popularity of these maps. All these end-users were 

interviewed with the following questions (Table 3.3) ( The questionnaire is attached in the Annexure 2): 

 

Nos. Questions 

1 What are the purposes do you require these landslide susceptibility maps for? 

2 What information do you require to fulfil the purposes? 

3 Does the map you use is applicable for your purpose? 

4 What are the operational problems do you face when using these maps? 

Table 3.3: Questions asked from end-users 

Figure 3.2: Map end-users considered in Kerala 
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3.4. Results and discussion 

As described in section 3.2.1, a systematic review of 100 

research papers was done to understand the purpose and 

usability of landslide susceptibility maps. As explained 

earlier, the literature was classified into three classes, and 

those that reported on specific purposes were listed 

together with a remark on their mapping approach. 

Simultaneously, the most frequently used words to 

describe the purposes of these maps are also presented. 

3.4.1. Distribution of literature by method and 
publication year 

Figure 3.3 shows the distribution of the selected research 

papers by year. The selected research papers were 

classified by the method utilized, which highlights the 

variety in the selected literature and indicates the most 

frequently used methods (Figure 3.4). According to the classification, logistic regression was used in 22 research papers, 

followed by Weight-of-evidence, Fuzzy approach, and Frequency ratio. Six of the most popular methods are data-

driven, while the number of physically-based methods was significantly lower.  

 

3.4.2. Literature review and classification 

Figure 3.5 displays the literature review findings, indicating 

the number of research papers based on the level of detail 

used to describe the purpose. Interestingly, the majority (62) 

of the 100 research papers considered, only describe the 

purpose of generating the landslide susceptibility map in 

general terms. It was discovered that research papers 

conduct the entire analysis without mentioning the purpose, 

and at a later stage in the conclusion, for instance, they 

mention the potential use to be decision making or landuse 

planning, etc., despite the fact that the purpose should be 

defined first, followed by the analysis. Hence, these 

researches do not target to fulfil any specific requirements 

of the potential end-users but conclude with possible 

general uses. Surprisingly, 20 of the research papers did not 

mention any purpose-related information. Both of these 

classes indicate that the map preparation is not really 

directed towards fulfilling any specific requirements but 

rather demonstrating a particular method of analysis. Out of 

the 100 papers considered, only 18 considered a specific 

purpose with more detail. Out of the 100 papers considered, 

only 18 considered a specific purpose with more detail. 

However, to what extent they fulfilled the requirements 

based on the defined purpose is a matter of further research. 

In this research, we have listed three examples of the 

specific purposes together with a remark on their mapping approach based on the review (Table 3.4).  

Figure 3.3: Number of papers by year 

Figure 3.4: Frequency of methods utilized in the 100 selected papers 
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To better understand this, we have also 

extracted purpose-related text and created a word frequency chart (Figure 3.6). Majorly, two types of words can be 

seen: 1) Application-based (e.g., planning, management, decision-making), and 2) End user-based (e.g., 

planners, engineers, decision-makers, authorities). In both cases, these words are very general, which again 

highlights the lack of detail in the purpose described. For example, in planning itself, there are various 

applications such as master-level planning, risk-informed spatial plans, and road network planning, and each 

individual application requires the identification of specific requirements as well as specific end-users (e.g., 

Senior town planner, town planning department, etc.). At the same time, we should identify these 

applications with more precision beforehand and then formulate the data collection methods, the scale of 

analysis and methods, and the way of presenting the outcome. 

 
N Author Specific purpose A remark on mapping approach 

1 
(Bostjancic et 

al., 2021) 

Reduce the investigation area for 
large-scale analysis, and direct 
resources and detailed research in 
highly susceptible areas 

The area was mapped at a scale of 1:100,000 The 
objective was attainable with standard mapping, so 
we did not observe any significant modifications to 
the strategy. However, the author was very clear 
about the map's purpose and the limitations on its 
usability, as well as how it can be used. 

2 (Ozdemir, 2009) 
Assessment of landslide damage 
potential in the near vicinity of a 
major landslide 

The evaluation was conducted with an emphasis on 
urban areas at a scale of 1:25,000 using the 
conditional probability method. They indicated 
potential damage zones based on standard 
susceptibility mapping, but mapping runout zones 
would have been more appropriate for this purpose. 

3 
(Hussain et al., 

2022) 
Assist highways in ensuring safe 
and smooth driving. 

 
A standard mapping technique employing three 
machine learning algorithms was used, with only the 
highway removed from the entire area. Although the 
map is still useful, it has been designed to generate 
greater value.  

 
Table 3.4: A remark on mapping approach of Specific purpose researches 

Table 3.4 presents three examples of the specific purposes together with a remark on their mapping approach. The 

table shows that even defining a specific purpose is insufficient. For example, if specific purpose 2  was to “Assess the 

landslide potential damage in the vicinity of a major landslide”, the researcher investigated the entire area on a scale of 1:25000 

Figure 3.5: Literature classification by purpose detail 
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using the Conditional Probability method. From the standpoint of susceptibility mapping, it does indicate areas with 

higher chances of failure; however, not the areas with higher damage potential, which could have been achieved by 

modeling runout zones alongside the probability of failure; thus, it does not fulfill the stated purpose but instead 

produces a general-purpose map. The author did not mention the way map can be used.  

In contrast, Bostjancic et al. (2021) explicitly described the user's method of application and the map's 

limitations. This presents a user-centric approach to mapping landslide susceptibility. We can conclude that 

indetification of the specific purpose is crucial, but it is even more crucial to approach the evaluation in a way that 

achieves that purpose. In cases where it is not possible due to a lack of data availability, data quality, etc., the researcher 

should indicate the limitations and uncertainties of the map. 

3.4.3. Interview with map producers 

The map producers of the GSI map, the KU&MTU map, and the NCESS map were interviewed in order to better 

understand the map's purpose and potential applications of the landslide susceptibility maps generated by them.  

1) Producers of GSI map: 

As described in Chapter 2, the map was produced under the National Landslide Susceptibility Mapping 

(NLSM) programme. They mentioned that the map can be used for any possible use, and it was specifically  

made for the state governments. They discussed the map requirements with the state government. The 

interpretation of the map classes in terms of expected losses or landslides are unknown and this type of 

analysis has not been carried out. Mostly, these classes are interpreted in relative terms, e.g., high class would 

expected more landslides than medium class. 

 

2) Producers of KU&MTU map: 

Map producers indicated that local governments are intended to used this map. However, they did not discuss 

the map requirements with end-user. The idea was to provide an updated map to help the local government, 

since NCESS map was in vector format and generated some years ago and it was relevant to develop a new 

raster based map with recent datasets. The interpretation of the map classes in terms of expected losses or 

landslides are unknown, since this type of analysis was not carried out. 

 

3)  Producers of NCESS map: 

The map was required by the state for macro-level risk-informed spatial planning and it was supposed to be 

used by the district administration for anticipatory actions. The map requirements were discussed with state 

government. Similar to other two maps, the expected losses or landslides in unknown for different classes. 

 

These interviews are further discussed in the chapter summary. 

 

3.4.4. Interview with map users 

The goal of interviewing map users was to better understand their needs for the specific purposes for which they 

require these maps. Therefore, Five end-users were interviewed, who have been using NCESS map and were shown 

KU&MTU and GSI maps for their responses so that they could compare the outcomes to their intended use. 

1) Senior town planner:  

The Senior Town Planner was primarily responsible for planning activities such as critical road network 

planning and risk-informed master planning. Critical roads connect critical infrastructures such as hospitals 

and fire departments. These roads are the most needed in the event of a hazard event, so they must be 

weatherproof and able to withstand the emergency. They require information on roads that will be affected 

on an annual, decade, or bi-decade basis. Because construction of critical road infrastructure requires 

extensive planning, financing, and labor and the susceptibility information must be highly accurate. Inaccuracy 

is a serious issue they are currently dealing with, because large-scale town planning, for example, requires 
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highly accurate information to design and propose infrastructure, as well as the frequency of occurrence of a 

hazard event. They also stated that having three landslide susceptibility classes is sufficient, as having more 

would complicate planning. However, during the interview, we noticed that the planner's interpretation of 

the landslide susceptibility classes was unclear and asked me to explain. Habitable areas are the planners' 

primary concern since they are mostly involved with city planning and require more accurate information 

throughout the city. Master plans, for example, are legal documents that require at least a 1:5,000 scale map 

with high accuracy; but, available maps are of limited use. Planners need to know what and where the damage 

will occur, which is not provided in most susceptibility maps, and they are unaware of this limitation. They 

must be aware of the potential consequences of a landslide moving downhill in order to plan accordingly. 

They no longer use the map when they notice damage in low-hazard areas. They indicated that restriction of 

development activities is not the way forward; instead, incorporating preventive measures in areas prone to 

landslides can allow for some planning. 
 

2) Environmental lawyer: 

In the context of landslides, the environmental lawyer was mostly involved in cases involving a conflict of 

interest between the people and authorities (in this case, the KSDMA) regarding the use of an area (e.g., 

quarrying). Normally, the authorities are silent in these cases, so they go to court. The landslide susceptibility 

maps are used as a legal document or as evidence in court. The map can be used to impose restrictions on 

certain activities (for example, quarrying) in areas with medium and high vulnerability. Courts are unfamiliar 

with coordinate systems, as well as latitude and longitude. As a result, they approach the disaster management 

authority or the district collector, or other authorities to confirm the susceptibility of a particular area. 

Obejectively, interpretation of the map classes and the types of activities permitted must be clear. If it is low 

and denoted in "Green," it is understood to be "safe," and the court asks the authority why the activity is not 

permitted if the area is low or medium susceptible. Even lawyers are unaware of what activities are permitted 

and prohibited in a given class. The law only recognizes 'black' and 'white' interpretations; grey areas are 

difficult to deal with. This highlights the most difficult aspect of the map's usability on the ground, because 

people without a background in landslide sciences should not be expected to understand the meaning of 

landslide susceptibility classes. 

There are several issues with implementation of the law: To begin, disaster management plans are 

required for District Disaster Management Authorities (DDMA) under the Disaster Management Act of 2005 

and must be submitted to KSDMA. However, many DDMAs have not submitted such a plan, and no legal 

action can be taken against them due to inconsistencies in the law's implementation. Second, officers pretend 

to be ignorant of facts. When asked about providing clearance in a medium or high hazard zone, they say 

they didn't realize it was medium or high hazard. Sometimes village officers disregard the fact that such a map 

is available for use and required by law. Third, the implementation of such maps obstructs a wide range of 

developmental activities, particularly business; as a result, politicians are unwilling to impose such maps 

because it would jeopardize their political careers.   
 

3) Disaster management plan implementor: 

The implementor of the disaster management plan was in charge of preparedness, mitigation, and response 

activities. They require information on 'safe' locations for relocation planning, so highly reliable information 

is required to ensure people's safety. They need information on highly populated areas in high-risk areas so 

that they can train people to survive in an emergency. One of the critical pieces of information required for 

an effective response is early warning. As a result, map accuracy is extremely important.  
 

4) Quarry Owner:   

Quarry owners run businesses for extracting building stone to meet the state's demand for building materials. 

After 2002, even looking for building materials required an environmental clearance. Building stone is a scarce 
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resource in the state, and prices for the material have risen exponentially in recent years. When they want to 

quarry in areas where building stone materials, such as granite, are available but have been designated as a 

high hazard zone. When investigated the area on the field, they discovered highly compact hard rock with 

little to no potential for landslides This causes problems in their business, especially given the scarcity of the 

material in Kerala. They propose that the hazard zonations should be reevaluated and a new classification 

provided, particularly based on field investigations. They understand that people's safety must be ensured, 

but developmental activities should not be hampered by such decisions, or at least some scope of activities 

should be left open. For micro-level resource planning, they require highly accurate maps based on field 

investigations conducted by a local research body. 
 

5) Disaster manager: 

The disaster manager is the primary user of the landslide susceptibility maps and has a statutory position in 

the management. Due to privacy concerns, additional information is not provided. The disaster manager 

stated that the NCESS map was created to provide macro-level zonation for the state of Kerala for land use 

restrictive zoning and risk-informed spatial planning. The NCESS map was created in 2010 and has been 

legally used since 2016. Despite its low resolution, it adequately serves the purpose and allows them to use it 

as a state statutory map. Due to a conflict of interest, the disaster manager was even sued, but was able to 

prove its legality in court. This provides a real-world example of the map's usability and emphasizes the 

importance of its accuracy.  

The newly created GSI map will replace the NCESS map for administrative purposes. However, the 

disaster manager raises concerns about the practical application of the GSI map for a variety of reasons. 

Despite the fact that the GSI map was recently prepared with higher resolution and possibly better accuracy 

than the NCESS map, ground application of the map necessitates a different approach. The mapping unit of 

the GSI map is 30 x 30 m grid, with three classes - Low, Medium, and High. None of the areas are excluded 

from the susceptibility mapping, which is frequently misinterpreted on the ground. For example, if an area is 

mapped as "low hazard," it will be difficult for people to build houses or shops. Since people with conflict of 

interest can use this map to obstruct development activities for personal vendetta and use it to challenge in 

the court. Since the court may interpret "low hazard" as "low but still hazardous area." If such a map is made 

legal, it could have serious consequences for the population. 

This demonstrates that even a higher quality maps in terms of spatial resolution and accuracy can be of less 

use if user requirements are not considered. The manager requires the landslide susceptibility maps for land 

use restrictive zoning and risk-informed spatial planning. 

 

Table 3.5 presents the summary of map end-users' responses for the NCESS map. The table describes the specific 

purposes of landslide susceptibility maps, the information needed to fulfil those purposes, and the operational 

challenges associated with their use. 

End-user No Specific purpose 
Information 
required 

Serve the 
Purpose? 

Operational problem (s) 

Senior town 
planner 

1 
Road network 
planning 

Potential landslide 
damage areas 

No 
Runout info required, large-
scale maps required 

2 
Critical road 
connectivity plan 

Frequency and 
location of the 
landslides 

No 
Accurate information is not 
available 

3 
Risk-informed 
masterplan 

Multi-hazard Risk 
information 

No 
1:5000 scale map required, Risk 
information required  

Environmental 
lawyer 

4 
Managing a case on 
conflict of interest 
for the use of land 

Whether a piece of 
land is susceptible 
or not 

Somewhat 
Yes 

Courts do not understand geo-
coordinates or degree of 
susceptibility, no strict law, 
political influence, playing 
ignorance of the fact 
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5 
The case against 
activity restriction 

Degree of 
susceptibility and 
associated allowed 
activities 

Yes 
Generally, lawyers are not aware 
of non-(permissible) activities 

Disaster 
management plan 

implementor 

6 Planning relocation 
Whom to relocate 
and where to? 

Somewhat 
yes 

1:5000 map is required, runout 
info required 

7 
Preparedness, 
mitigation,  and 
response 

Which districts to 
give what directions 

Yes 
Mismatch within the 
Susceptibility classes 

8 Capacity building  Whom to train 
Somewhat 

yes 
- 

9 Early warning  
Susceptible classes 
with landslide 
rainfall thresholds 

No 
Lack of Automatic Weather 
Stations (Need 256 but only 
nine are available) 

Quarry owner  

10 
Identification of 
potential quarry 
areas 

Is quarrying 
allowed in this land 
parcel? 

No 
The accuracy and resolution of 
the map are not sufficient 

11 
Challenging 
authorities for 
susceptibility maps 

Not allowed; why? Yes 
Ground reality does not match 
the map information 

Disaster manager 

12 
Landuse restrictive 
zoning 

Susceptible land 
uses 

Yes 
Map uncertainty may hamper 
the development process 

13 

Risk-informed 
regional disaster 
management 
planning 

Overall regional 
susceptibility status 

Yes - 

14 
Cadastral or real 
estate level planning 

Local Landslide 
prone areas  

Somewhat 
yes 

1:5000 scale required; does not 
have desired information; 
people understand cadastral 
information 

15 
Emergency 
management 
operations 

Risk information No 
Irrespective of susceptibility 
class, anticipatory actions are 
taken 

Table 3.5: Responses of end-user for NCESS map 

It is important to note that specific purposes (1, 2, 3, 6, 10, 14) that necessitate large-scale analysis are not being fulfilled 

because their application requires more detailed susceptibility information. Other purposes (1, 3, 9, 15) are not being 

fulfilled due to the type of information required to fulfill those purposes. For example, a risk-informed master plan 

requires multi-hazard risk information to develop a comprehensive plan; therefore, even a high-quality landslide 

susceptibility map, in terms of spatial resolution and predictive ability, cannot serve the purpose, given that it requires 

vulnerability and exposure information of the same quality, which is often not available.  

3.5. Chapter Summary 

A better understanding gained from map producers and end-users will enable landslide scientists to prepare maps that 

are more valuable to the user community, and the published literature will shift focus from the map producers to create 

more user-oriented landslide susceptibility maps which will gain more acceptance in the decision-making and planning. 

When we compare the nature of information required by the end-user to that provided by map producers, we see a 

significant difference in terms of detailing, type, and amount of information required. This emphasizes the critical 

importance of a collaborative map-making process that is more user-oriented rather than map producers working in 

silos.  

Now referring back to the research questions of sub-objective 1, we answer as follows:  

1. What are the proposed purposes of landslide susceptibility maps indicated by map producers, and to what extent do they serve 

these purposes?  

The literature review revealed that the majority of studies proposed a generic purpose for the maps, typically 

concluding, "This map can be utilised for land use planning and decision making." The proposed purposes are 
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extremely broad and do not aim to meet the specific needs of the end-users. Other literature indicated specific 

purposes such as “damage potential asssement in the near vicinity of a major landslide”, but ended up 

conducting a standard landslide susceptibility mapping which do not provide runnout zones for potential 

damage but only initiation information. The findings of the literature review were confirmed by the interview 

with the map producers, who reported a similar approach to identifying end-users and the map's purpose. 

The literature does not provide a descriptive operational use of the map for the stated purpose or any other 

purpose. Typically, map producers do not discuss user requirements with end-users; consequently, the maps 

do not appear to serve their intended purpose. Producers of GSI and NCESS map indicated that they had 

discussed requirements with end-users, but did not describe user requirements explicitly during the interview. 

In the case of KU&MTU, such communication was absent. We indicate that the purpose of the map and the 

needs of the user are not in the focus of map producers; as a result, they do not consciously think about them 

and incorporate them into the mapping process. Consequently, it is crucial to emphasize the significance of 

defining specific purposes and taking end-user requirements into account. 

 

2. What information do end-users require from landslide susceptibility maps, and what are the operational problems in using 

landslide susceptibility maps in planning and decision making? 

Specific purpose require specific information. Senior town planner required information on the potential 

damage areas and frequency of an event for critical infrastructure road network planning. Risk informed mast 

plan required information the multi-hazard risk information. Disaster manager required a map which can be 

used to impose land use restriction in the area, in which not all the areas should be mapped beause of their 

mis-interpretations and mis-use on the ground. As per interviews with map end-users, they have specific 

requirements that landslide susceptibility maps typically do not meet due to irrelevant information, map scale 

and resolution, and map inaccuracy.  

As noted in the interviews with map users, the landslide susceptibility maps have several operation 

problems. Firstly, scale of the maps is not sufficient for application requiring large scale information such as 

town planning or relocation planning. Secondly, most of the purposes require highly accurate information, 

therefore, even the slightest doubt on the accuracy of the map prevent the end-users from using them. 

Thirdly, interpretation of the map classes is not clear and people without background in landslides sciences 

do not understand the meaning of these classes. For example, courts do not understand geocoordinates or 

these classes but they require “black & white” interpretation of the classes for a fair judgement. Fourthly, most 

of these maps provide landslide initiation information, however, for example, road and infrastructure 

planning require runnout information. They require information for the damage areas and frequency of the 

event. Fifthly, uncertainty in the maps may cause distress in the authorities as well as people, for example, as 

observed for quarry owner, constant conflict between the KSDMA and quarry owner was observed. Even to 

an extent that it was charged with a law suite. Sixthly, low political will, soft implementation of law and playing 

ignorance of the fact to prevent themselves from implementing the maps on ground for their personal good 

is another issue.  
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4. LANDSLIDE INVENTORY GENERATION 

The purpose of this chapter is to achieve sub-objective 2, which is to generate a landslide inventory for the study area 

that will be used to evaluate the three landslide susceptibility maps. 

4.1. Purpose and background 

4.1.1. Purpose of landslide inventory generation 

The landslide inventory was required to assess the predictive capability of the three landslide susceptibility maps. Thus, 

it is critical to generate a robust landslide inventory, which is accurate and complete, so that errors and uncertainty in 

the landslide inventory do not hamper the evaluation process. We mapped landslide initiation points as well as landslide 

polygons in the study area from the year 2018 to 2021 so that the landslide point and area density can be considered 

in the evaluation.  

4.1.2. Methods of landslide inventory generation 

Landslide inventories have been identified as the critical landslide susceptibility and hazard assessment dataset. There 

are seven landslide mapping techniques (van Westen et al., 2008; Corominas et al., 2014), including (1) image 

interpretation, (2) field investigations, (3) archive studies, (4) dating methods for landslides and (5) monitoring networks 

(6) (semi) automated classification based on spectral characteristics, (7) (semi) automated classification based on 

elevation characteristics. 

Image interpretation includes visual analysis of stereo aerial photos, high-resolution satellite imageries, LiDAR 

shaded relief maps and RADAR images. Although, mapping using stereo images can be time-consuming and requires 

an expert mapper of the technique. At the same time, aerial photographs, LiDAR, and RADAR images are often not 

available in a short time (Martha et al., 2010) or sometimes never. Traditionally, field investigations have been there 

before the availability of remote sensing datasets, although they advanced with better tools and techniques (e.g., mobile 

GPS and GIS, etc.). Archive studies make use of newspapers, interviews, road maintenance, etc. Dating methods are 

performed in laboratories with the help of dendrochronology, radiocarbon dating, etc. Monitoring networks such as 

Extensometer, EDM, GPS, total stations, etc., can provide continuous information such as movement velocity. (semi) 

automatic classification based on spectral characteristics includes object-oriented image analysis (Martha et al., 2010; 

Stumpf and Kerle, 2011). However, the spectral information can be combined with the elevation information in other 

(semi) automated methods, such as artificial neural networks (ANN), support vector machines, and other deep learning 

methods like Fully Convolutional networks (FCN) (Ghorbanzadeh et al., 2021).  

Particularly, Fully Convolutional Network (FCN) methods may achieve high accuracy but require very high-

resolution imagery, sufficient training datasets, and computation space to perform the detection. Besides that, selecting 

the appropriate architecture and fine-tuning parameters is crucial for FCN to outperform other methods 

(Ghorbanzadeh et al., 2021). The FCN describes the linkage of each pixel to a specific class label, such as landslides 

and non-landslides. Some of the authors have used this to accomplish pixel-by-pixel semantic segmentation in the 

venture of landslide detection (Liu et al., 2018; Lei et al., 2019; Peng et al., 2019; Shi et al., 2020; Soares et al., 2020; 

Meena et al., 2021). The essential properties of FCN are the end-to-end learning of the upsampling approach with the 

help of encoder-decoder structure and skip connections to fuse data from diverse depths in the network (Long et al., 

2015).  

FCN model variations such as U-Net and attention-U-Net have recently been found to be effective in 

detecting landslides as well as transferable across different regions (Ghorbanzadeh, 2021; Meena et al., 2022). However, 

these studies mapped comparatively large landslides by utilizing high-resolution spectral (5 m) and topographical 
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information (5 m) having similar spatial resolution. In the study area, the landslides are small-size shallow landslides 

which are difficult to map. Therefore, we utilized another FCN model, i.e., Multi-scale attention U-Net, which is 

designed to detect small features in the images and was initially utilized in biomedical image segmentation research 

(Oktay et al., 2018; Abraham and Khan, 2018). The goal of employing Multi-scale attention U-Net was to automatically 

detect landslides that occurred in isolation and might go undetected when mapping using visual interpretation. 

However, the number of landslides is fairly limited in any case, but deep learning allows for the generation of a relatively 

complete landslide inventory.  

4.1.3. Problems with landslide inventories 

Many investigators have stressed enough the requirement of landslide inventory for the susceptibility and hazard 

assessment and how the completeness, in terms of spatial and temporal coverage, as well as the geographical and 

thematic accuracy of landslide inventory, influence the quality of the assessment (Galli et al., 2008; van Westen et al., 

2006b, 2008; Jaiswal and van Westen, 2009; Guzzetti et al., 2012; Ghosh et al., 2012; Steger et al., 2016). Landslide 

inventories suffer from severe problems propagating into the landslide hazard assessment (Steger et al., 2016). 

However, Steger et al. (2016) artificially introduced positional errors in the inventory and revealed valuable insights for 

a statistical model (logistic generalized linear model). The positional errors subsequently distort the modeling results, 

although the interrelation between the inventory-based errors and subsequent models is complex. Furthermore, the 

error-propagation is not only limited to the positional inaccuracies of the inventories but also the spatial representation 

of landslides and the environment (causal factors), landslide magnitude, and the characteristics of the study area, the 

selected classification method, and an interplay of predictors within multiple variable models. Although, these errors 

can be adapted to the model by generalizing the input data, and selecting an intense generalizing classifier. However, 

adjusting the data to these errors is likely to produce a weak prediction. 

 van Westen et al. (2006b) indicated other major landslide inventory problems. They discuss that unlike other 

hazards like earthquakes or flooding, landslides occur in isolation, making detection a tedious job. While mapping 

landslides by visual interpretation, it is quite common to miss the slope failures that occurred in isolation, especially 

small in size. In addition, when mapping one by one, there may be different attributions to the same type of landslides. 

Usually, countries do not have a single agency performing landslide mapping. It introduces variations in landslide 

inventories based on the particular interest of the agency, e.g., the road department will only be concerned about 

landslide occurrences affecting roads, hence only mapping them. The list of problems with landslide inventories is 

quite long; nevertheless, the focus should be on the standardization of mapping methods with proper attribution 

designed for various purposes of landslide zoning like information, advisory, statutory, and design (Corominas et al., 

2014). 

4.2. Datasets and methodology 

Figure 4.1 presents the procedure for compiling a landslide inventory in the study area. We created three data 

combinations from Planetscope images and ALOS palsar DEM and fed them into a deep learning model to detect 

landslides. Training, Testing, and Validation sets were created from the data. The DL model learns from the training 

S. no Datasets Format (resolution) Remarks 

Spectral and topographic information 

1 Planetscope images (2018) Raster (3 m)  Used for Spectral information (VNIR)  

2 ALOS Palsar DEM Raster (12.5 m) 
Used for  generating slope, profile curvature, 
planar curvature, and aspect 

Landslide inventories 

3 NRSC Polygon Used as reference 

4 GSI Points Used as reference 

5 Lina hao et al Points 
Refined from NRSC and GSI inventory, main 
reference 

More details of the datasets are provided in section Data acquisition 

Table 4.1: Datasets used for landslide inventory generation 
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set, validates or calibrates on the validation set, and the Testing set is used to evaluate the model's accuracy in the final 

stage. The deep learning model was used to detect landslides in 2018, while Google Earth images were used to compile 

the inventory for 2019-2021. Since 2018 was a catastrophic year with a large number of landslides, it was worthwhile; 

however, in other years there were fewer landslides, so the following 

procedure was not as advantageous as visual interpretation from 

Google earth. Table 4.1 presents the datasets utilised to generate the 

landslide inventory in the study area. Planetscope images were used 

for spectral information and generating NDVI, since it is considered 

as a promising indicator for landslide detection (Lu et al., 2019). In 

addition, topographic information is considered important, given 

that steep slopes are more prone to landslides than the flat areas. 

Apart from slope, other DEM derivatives such as aspect, profile 

curvature and planar curvature can play a role (Ohlmacher, 2007; 

Ghorbanzadeh et al., 2019), since these topographical information 

are considered proxy to weathering agents such as wind, sunlight 

and precipitation received (Pourghasemi et al., 2018).  

Therefore, we utilized ALOS-Palsar DEM to generate 

slope, profile curvature, planar curvature, and aspect. Other critical 

datasets were landslide inventories generated by NRSC, GSI, and 

Lina Hao et al. (2020), which formed the basis for generating a 

training dataset for the detection model and later for comparison.  

4.2.1. Data preprocessing 

The data was preprocessed using ArcGIS pro, and ERDAS 

IMAGINE software. PlanetScope images and ALOS DEM were 

separately mosaicked and visually inspected for any geometric and 

radiometric errors. The "Fill (Spatial Analyst)" tool in ArcGIS pro 

was used to fill the missing values in the ALOS DEM dataset. DEM 

was used to generate slope, aspect, profile curvature, and planar 

curvature after adjustments. Using the nearest neighbor resampling 

approach, these derivatives were resampled and aligned to match 

the resolution and extent of PlanetScope images. We acknowledge 

that we may have added some inconsistencies to the dataset through 

this process, but the topographical information is still indicative of 

the original data. PlanetScope images were used to create the 

Normalized Difference Vegetation Index (NDVI). 

 Even though we had access to three landslide inventories, we 

were unable to directly employ any of them for the study due to missing 

landslides and incorrect boundaries, which may not be useful. Details of 

the problems and their correction are given in the next section.  

4.2.2. Training data preparation 

Figure 4.2 presents a snapshot of GSI and NRSC inventory. Since NRSC 

inventory was generated for providing landslide event information by 

rapidly mapping them, it had issues in terms of missing landslides or 

shifted landslide boundaries. Another issue was that NRSC inventory was 

generated using IRS-LISS-IV(5.8m) images; therefore, polygons do not 

align with PlanetScope images, which is undesirable and problematic 

since it may introduce mixed-pixel information and deteriorate the Figure 4.2: GSI & NRSC inventory, and re-
digitized polygons 

Figure 4.1: Landslide inventory generation 
methodology 

https://www.nrsc.gov.in/
https://bhukosh.gsi.gov.in/Bhukosh/Public
https://essd.copernicus.org/articles/12/2899/2020/


 

28 

model’s quality (Pattathal V. et al., 2022). Therefore, incorrect landslide polygons were re-digitized or shifted so that 

they align with PlanetScope images (Figure 4.2). The inventories by GSI and Lina hao were in point format, therefore, 

they cannot be utilized in model training since we require a polygon inventory; however, they were used as reference 

when creating training polygons using Google Earth Pro and PlanetScope images. The label polygons were rasterized 

and resampled to align with PlanetScope images. Spectral (VNIR and NDVI) and topographical information (DEM 

derivatives) were used to create three data combinations(Table 4.2): 

Combination Rasters (nos.) Layers 

Vndvi 5 Visible, near-infrared, NDVI 

VndviSL 6 Vndvi, slope 

VndviAll 9 VndviSL, aspect, profile curvature, planar curvature 

Table 4.2: Training data combination 

Topographic information was split into Vndvi with only slope (VndviSL) and with all other information (VndviAll) so 

that the influence of the type of additional information could be noted more explicitly. Since slope is a continuous 

first-order DEM derivative, whereas aspect is a categorical first-order and profile & planar curvature are second-order 

DEM derivatives. Hence, the type of information is different from than slope and kept separately in another 

combination.  

After the preparation of each dataset, a single Fishnet was used to slice each data combination into uniform 

tiles of 640 x 640 pixels. These tiles were then patched into 64 × 64 pixel patches prior to the training, and any patch 

devoid of landslides was eliminated. Small and sparsely spaced landslides necessitated covering a big area to generate 

plenty of training samples. The whole procedure is displayed in Figure 4.3. 

4.2.3. Data splitting, augmentation, and training strategy 

 All the data combination layers, Vndvi, VndviSL, and VndviAll, were sliced into 86 tiles for each combination with a 

size of 640 x 640 pixels. These tiles were further split into training (73 %), validation (11%), and test sets (16%), which 

were strategically distributed in the study area to avoid Geo-spatial autocorrelation8. Remotely sensed data naturally feature 

spatial autocorrelation, which is the foundation for any pixel-based classification algorithms; yet, ignoring the spatial 

 
8 Geo-spatial autocorrelation describes the degree to which one pixel resembles other neighboring pixels. 

Figure 4.3: Data preparation workflow 
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dependency between training, validation, and test sets might lead to overestimation of generalisation capabilities9 (Karasiak 

et al., 2022). Therefore, we considered the visual variations between the tiles and complexity within the tiles in terms 

of mixed pixels, low contrast and presence of objects with a spectral signatures similar to landslides etc. This allows us 

to maximize the generalisation capability of the model and decrease the false predictions. Table 4.3 shows the number 

of patches and split percentage 

for each split set. 

 

 
 

 

Figure 4.4 presents the distribution of the 

training, validation, and testing tiles in the 

study area. It shows that we trained on the 

landslides outside the study area as well to 

capture more inferences of the landslides. 

Given that training datasets were low, we 

adopted two strategies: 1) Data 

augmentation, and 2) Sample generation using a 

semi-trained model.  

 
9 Generalisation capability is the model’s ability to adapt properly to new, previously unseen data.  

Data distribution Number of tiles Number of patches Split (%) 

Training set 63 6300 73.1 

Validation set 9 900 10.5 

Testing set 14 1400 16.3 

 Total 8600  

Table 4.3: Dataset split into training, validation and test sets 

Figure 4.5: Manual selection of predictions made by semi-trained model  

Figure 4.4: Distribution of training, validation and test datasets 
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Data augmentation is a method of increasing the training datasets by introducing slight variations to the existing 

datasets. This prevents model over-fitting 10and improves the model’s generalisation capability (Shorten and Khoshgoftaar, 

2019). Geometric transformations such as flipping, colour space, cropping, rotation, translation, noise injection, and 

colour space transformation are examples of data augmentation techniques (Shorten and Khoshgoftaar, 2019). Firstly, 

augmentation techniques, i.e., horizontal flip, vertical flip, rotation (45 deg), and shear along the x- and y-axis. Prior to 

augmentation, there were 8,600 patches, which increased to 60,200 patches after augmentation.  The second strategy 

was Sample generation using a semi-trained model. A semi-trained model can be referred to as a model whose hyperparameters 

are not optimal to achieve the best results but still can predict very well. We used a semi-trained model to predict on 

an unseen Vndvi dataset and then manually selected the correct predictions by overlaying in Google Earth Pro (Figure 

4.5).  

4.3. Deep learning model setup 

4.3.1. The rationale of model selection 

U-Net, Attention U-Net, and Multi-scale attention U-Net have been applied effectively in biomedical image 

segmentation with promising outcomes(Ronneberger et al., 2015; Abraham and Khan, 2018; Oktay et al., 2018). 

Numerous authors have shown applications of U-Net (Ghorbanzadeh, 2021; Meena et al., 2022) and Attention U-Net 

(Nava et al., 2022) for landslide detection and demonstrated their efficacy in detecting landslides. Multi-scale attention 

U-Net (MsaU-Net) is utilized in biomedical image segmentation, which is specially designed for detecting small features 

with less training labels. Although, it has not been utilized in landslide detection yet. MsaU-Net model is the improved 

verison of U-Net and Attention U-Net, although, improvement in a model may not directly imply that it would be 

optimal for the problem under observation. It can also be difficult to choose a model based on the literature, given the 

complexity of the study area can be different. Therefore, we utilized U-Net, Attention U-Net and MsaU-Net for initial 

experimentation. Surprisingly, MsaU-Net outperformed the other two models, which was evaluated based on the F1-

score (an evaluation metric) explained in section 4.3.2.3. Hence, we utilized MsaU-Net for further experimentations 

and is explained in detail below.  

4.3.2. Multi-scale attention U-Net (MsaU-Net): Model architecture 

The detection of landslides in the study area was carried out using the MsaU-Net (Abraham and Khan, 2018). Multi-

scale attention U-Net is an improved version of Attention U-Net. More importantly, a novel loss function11 named Focal 

 
10 Model over-fitting is the model’s tendency to exactly mimic the training dataset and memorizing the noise in the 
dataset. This decreases the model’s ability to predict accurately on unseen datasets. 
11 Loss function calculate how far an estimated value deviates from its actual value. 

Figure 4.6: MsaU-Net architecture (Abraham and Khan, 2018) 
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Tversky Loss (FTL) was implemented 

together with MsaU-Net,  which is 

specifically designed to detect small features 

and handle the data imbalance in the dataset, 

which is one of the challenges the landslide 

detection.  

 Figure 4.6 present the architecture 

of MsaU-Net, which consists of a 

contracting path (left) and an expanding 

path (right) with skip connections (dash 

lines) adjoining them to effectively extract the high-resolution spatial and contextual information to result in an efficient 

semantic segmentation result. These skip connections provide input to the Attention Gates(Figure 4.7), which extract 

relevant information from contracting and expanding paths and promote more semantically meaningful outputs. Multi-

scale inputs (Figure 4.6 - left) together with deep-supervision provides better intermediate feature representation that 

might be lost otherwise due to convolution.  

The results of the model predictions are in binary form, which differentiates between landslide pixels from the 

background pixels. The training of the network was performed on the Center of Expertise in Big Geodata Science 

(CRIB) computing platform of ITC-UT using python JupyterLab.  

 As proposed by Bottou (2010) and Mezaal et al. (2017), model optimisation was performed utilizing the Adam 

optimiser instead of the standard Stochastic Gradient Descent optimiser. The former is significantly quicker due to its 

adaptive learning capabilities and converges faster to decrease the loss, hence enhancing the overall precision. To 

optimize training speed and avoid overfitting the network model, learning rate and weight decay settings were used. 

This stage would provide heat maps with probability values classified as "landslides" and "non-landslides." The next 

section includes a list of hyper-parameters that were optimized and used in model training. 

4.3.2.1. Hyper-parameter tuning and experimentations 

Hyperparameter tuning is a crucial part of optimizing the results of a deep learning model. The tuning aims to find an 

optimal set of hyper-parameters and build a high-quality model that can generalize well on datasets with huge variations 

(Hovden, 2019). Hyper-parameters are the variables that determine the network architecture and how the network is 

trained. Table 4.4 presents the list of hyperparameter combinations utilized to achieve the optimal model for final 

landslide detection. 

Parameters (nos.) Instances 

Learning rates  1e-3, 1e-4, 1e-5 

Batch Size 8, 16, 32 

Number of filters 8, 16, 32 

Gamma values (FTL) 0.80, 0.85, 0.90 

Data combinations* Vndvi, VndviSL, VndviAll 

*Not a hyperparameter 
Table 4.4: Hyperparameter combinations 

The descriptions of the hyperparameters, models, and data utilized are as follows (Table 4.4): 

1. Learning rate: The learning rate is an optimization parameter that determines the step size of each iteration as 

the loss function approaches its minimum. 

2. Batch size: The batch size refers to the number of training patches sent across the network in a single iteration. 

3. Filters: Filters extract features by concatenating multiple kernels of size (x * y) and input channels (z). The 

dimensions of the filter would be (x * y * z). 

4. Gamma value: A parameter to enforce the Focal Tversky Loss (FTL) function to handle data imbalance.  

Figure 4.7: Additive Attention Gate (AG) adapted by Abraham and 

Khan (2018) 
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5. Data combinations: As described in section 4.2.2, the data combinations were generated by combining visible, 

near-infrared, NDVI, and DEM derivatives. The combinations mentioned in the table above experimented 

with.  

 

Other significant parameters, such as the Number of epochs 12(100, 200, 250) and weight decay rate13 (0.20, 0.3), were 

experimentally determined on the fly based on the model's behaviour and without fixation. As proposed by 

Ghorbanzadeh et al. (2019), patch sizes14 64x64 and 128x128 were employed; however, it was discovered that the 64x64 

patch size yielded significantly better results due to the small average size of the landslides, so the remaining experiments 

were conducted with this patch size. The optimal combination of these various options was determined through testing. 

Nevertheless, testing each of these permutations may be impractical. Combinations that performed poorly in the 

preliminary stages were therefore eliminated. 

4.3.2.2. Combination elimination criteria 

To eliminate combinations that would take a long time and a lot of computing power, a performance-based elimination 

was used. Initially, it was found that Multi-scale attention U-Net outperformed Attention U-Net and U-Net in the 

majority of the hyperparameter combinations, which could be attributed to MsaU-Net’s ability to detect smaller objects 

with less number of training samples and relatively efficient handling of the training data imbalance. Therefore, we 

continued the remaining experiments with MsaU-Net. Apart from that, a patch size of 128 x 128 gave comparatively 

low F1-scores than 64 x 64; thus, we utilized this patch size.   

4.3.2.3. Model evaluation metrics 

For the results generated by different models, standard accuracy assessments such as Precision, Recall, and F1 score 

were utilized using base metrics such as True Positives (TP), False 

Positives (FP), and False Negatives (FN)(Table 4.5). When the 

model correctly predicts the positive class15, this is referred to 

as a True Positive. A true negative, on the other hand, is referred 

to when the model correctly predicts the negative class16. A False 

positive is the incorrect prediction of the positive class by the 

model. A False negative is the incorrect prediction of the negative 

class by the model. Precision is the proportion of landslides 

correctly identified by the given method. The recall is the 

percentage of labelled landslides detected correctly by the 

method. The F1-Score is used to find the right balance of Precision and Recall.  

4.4. Results 

All the initial experiments were conducted using Vndvi datasets, and optimized hyperparameter combinations were 

achieved. Top 5 hyperparameters were then utilized for training on VndviSL and VndviAll datasets to limit the number 

of experiments. Thus, we first present the results of hyperparameter tuning experiments using the Vndvi dataset, 

indicating the top five combinations, and then present the results of using those five combinations on the other two 

datasets to determine the impact of topographic information on model performance. 

 
12 Epochs are the number of full training passes through a training dataset. 
13 Weight decay rate is a hyperparameter that prevents the weights of a model from becoming too large by causing them 
to exponentially decrease to zero. 
14 Patch size is the input size of the image fed into the network. 
15 The positive class is the feature class under  consideration (or feature of interest) 
16 The negative class is everything else except feature of our interest  

Standard accuracy assessment metrics 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑭𝟏 = 𝟐 ×
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

Table 4.5: Model evaluation metrics 
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4.4.1. Overall results of the different hyperparameters combinations for the Vndvi dataset 

Table 4.6 depicts a green to red spectrum of model performances in terms of F1-score against all the hyperparameters. 

A number of Filters and Learning rate are shown in rows, and the Batch size and Gamma values (FTL) are shown in 

columns. Green cells have the highest F1-scores, red cells have the lowest, and values in between are represented by a 

combination of the two colours. F1-scores in bold font indicate the best score of the group of combinations contained 

in that area with a thick black border. Overall, the best model was able to attain an F1 score of 0.7851, which is an 

average performance. It can be observed that Learning rate of 1e-3 with a Batch size of 8 produced the best results; on 

the other hand, batch size of 32 with a learning rate of 1e-5 produced the worst results. A medium Learning rate of 1e-

4 with a Batch size of 32 produced average F1-scores. Sample results with Precision and Recall scores can be found in 

Annexure 3. 

Learning 
rate 

Batch size 8  Batch size 16  Batch size 32 

g{0.8} g{0.85} g{0.9}  g{0.8} g{0.85} g{0.9}  g{0.8} g{0.85} g{0.9} 

1e-5            

 

N
u
m

b
er

 o
f 

fi
lt

er
s 

8 0.6851 0.6507 0.6661  0.6787 0.6005 0.6047  0.5788 0.5586 0.6042 

16 0.7230 0.7187 0.7174  0.7094 0.7091 0.6977  0.6564 0.6768 0.6540 

32 0.7401 0.7545 0.7471  0.7491 0.7526 0.7449  0.7156 0.7334 0.7426 

1e-4            

 

N
u
m

b
er

 o
f 

fi
lt

er
s 

8 0.7614 0.7661 0.7715  0.7396 0.7378 0.7174  0.7483 0.7328 0.7315 

16 0.7736 0.7606 0.7640  0.7660 0.7712 0.7622  0.7377 0.7392 0.7545 

32 0.7720 0.7712 0.7683  0.7669 0.7615 0.7605  0.7401 0.7471 0.7491 

1e-3            

 

N
u
m

b
er

 o
f 

fi
lt

er
s 

8 0.7631 0.7711 0.7731  0.7642 0.7646 0.7662  0.7702 0.7658 0.7667 

16 0.7766 0.7807 0.7836  0.7728 0.7707 0.7757  0.7642 0.7817 0.7838 

32 0.7760 0.7730 0.7622  0.7851 0.7769 0.7766  0.7734 0.7782 0.7622 

Table 4.6: F1-score for each hyperparameter combination 

4.4.2. Influence of batch size and learning rate combinations on F1-score 

Figure 4.8 presents the F1-scores for Batch size and Learning rate combinations when Gamma value and Filters are kept 

constant at 0.85 and 16, respectively. It can be observed that lower learning rates in combination with higher batch 

0.60
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0.70

0.75

0.80

8 16 32

Batch size

F1 score with learning rate 1e-3 F1 score with learning rate 1e-4
F1 score with learning rate 1e-5

Figure 4.8: Influence of batch size and learning rate on F1-score 
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size produced low F1-scores. However, a learning 

rate of 1e-3 gave better results irrespective of the 

batch size used. The best results were achieved by 

using a learning rate of 1e-3 and a batch size of 8.  

4.4.3. Influence of filters and learning rate 
combinations on F1-score 

Figure 4.9 presents the F1-scores for Filters and 

Learning rate combinations when Gamma value and 

Batch size are kept constant at 0.8 and 16, 

respectively. Similar to previous results, a learning 

rate of 1e-3 produced the best results irrespective 

of number filters utilised. The best results were 

achieved with higher number of filters, which 

logical since filters are the number of features 

learned by the model; higher number of features 

learned imply that model will be able to learn 

comparatively better than 8 and 16 filters. Simlar 

observations were made by Zebin et al. (2019). 

4.4.4. Influence of gamma value and learning 
rate combinations on F1-score 

Figure 4.10 presents the F1-scores for Gamma value 

and Learning rate combinations when Batch size and 

Filters are kept constant at 8 and 32, respectively. 

The gamma value compels the FTL to focus on the 

less dominating class, which in this case is 

landslides. It can be seen that increasing Gamma 

values yielded decreasing F1-scores, which may 

signal that a gamma value of 0.8 was more efficient 

in dealing with imbalance in the dataset than 0.85 

and 0.9. However, the F1-score is the greatest at 

0.85 gamma for learning rates of 1e-5. 

4.4.5. Best parameter combinations: Comparison for different datasets 

Table 4.7 presents the top 5 hyperparameter combinations which yielded the best F1-scores when trained with the 

Vndvi dataset. These combinations were further utilized for training the model on VndviSL and VndviAll datasets; 

resulting F1 scores are presented in the table. The table shows that a learning rate of 1e-3 generated the best outcomes 

for various combinations of F1-scores. Although the difference between the top five hyperparameters is not 

considerable, using any other combinations could be less efficient. Statistically, the best performance was achieved 

utilising the Vndvi dataset only, followed by VndviAll and VndviSL. Our hypothesis that additional topographic 

information will improve accuracy; proved to be incorrect. However, when we predicted utilizing the model trained 

with VndviAll, it decreased the number of false positives, but landslide boundaries were not crisp. 

 

Combination 

rank 

Learning 

Rate 

Batch 

Size 
Filters Gamma 

F1 -score 

Vndvi VndviSL VndviAll 

1 1e-3 16 32 0.8 0.7851 0.7157 0.7613 

2 1e-3 32 16 0.9 0.7838 0.7429 0.7587 

0.60

0.65

0.70

0.75

0.80

8 16 32

Number of filters

F1 score with learning rate 1e-3 F1 score with learning rate 1e-4

F1 score with learning rate 1e-5

Figure 4.9: Influence of filters and learning rates on F1-scores 
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Possibly, the poor performance could be attributed to the following reasons: 

1) The disparity in spatial resolution between PlanetScope and ALOS DEM: 

The spatial resolution of ALOS DEM is four times the PlanetScope images; therefore, the information is not 

comparable spatially. Moreover, the information utilized as topographic information is second-order DEM 

derivatives meaning that the derivative pixel is calculated using 8 neighbouring pixels. Thus, generalises the 

information to some extent. At the same time, the landslides are significantly smaller, which may not be 

represented by the DEM in use. 

 

2) Small patch size:  

We observed that a patch size of 64 × 64 gave relatively better outcomes because the model is better able to 

learn local characteristics when the patch size is smaller, as opposed to contextual information when the patch 

size is larger (Kervrann and Boulanger, 2008). Thus, a change in patch size (smaller or larger) would result in 

the loss of either spectral or topographic information regarding a landslide in terms of local information.  

4.4.6. Final landslide detection in Devikolam 

We utilised the best hyperparameters combination as 

indicated in the previous section, i.e., Learning rate of 1e-3, 

Batch size of 16, 32 Filters, and a Gamma value of 0.8 to train 

the model for final predictions on Vndvi dataset to landslides 

for the entire Devikolam taluk. Since predicting on the entire 

image may produce boundary artefacts due to patch level 

predictions, a sliding window method with a stride of 24 was 

employed to generate overlap images. The predictions in 

overlapping regions are averaged to produce a final prediction for the entire image. The purpose of post-classification 

was to eliminate false positives and merge polygons that belonged to the same landslide. Table 4.8 displays the final 

prediction scores for the test Vndvi dataset. The landslide polygons are indicated in red polygons; white boxes indicate 

false positives. We will discuss the most common false positives in the study area in the discussion section.  

4.4.7. Finalisation of landslide inventory 

Referring back to our purpose of generating a robust landslide inventory for 

evaluation of the three susceptibility maps, we wanted to reduce the percentage 

of error as much as possible. Therefore, a thorough post-classification cleanup 

was performed in Google Earth Pro software by utilising high-resolution satellite 

information with a possibility of 3D visualisation aiding in interpretation (Hao 

et al., 2020). Landslides missed due to the relatively small size of the landslide 

were digitised, and landslides from 2019-2021 were completely mapped on 

Google Earth Pro. Once a polygon inventory was finalised, it was utilised to 

generate a point inventory by automatically extracting the initiation point using 

ALOS DEM (Figure 4.11).  

 Finally, we generated an inventory of 864 landslides in point and 

polygon format, with a total landslide area of 1.70 km2, indicating an average 

landslide size of around 2000 m2. Figure 4.12 present the final landslide 

inventory map and Table 4.9 distribution of landslides in each year and final method used to map them.  

 

3 1e-3 8 16 0.9 0.7836 0.7370 0.7461 

4 1e-3 32 16 0.85 0.7817 0.7259 0.7432 

5 1e-3 8 16 0.85 0.7807 0.7113 0.7385 

Table 4.7: Results of best parameter combination using Vndvi, and then applied to VndviSL and VndviAll 

Metrics Scores Scores (%) 

Accuracy 0.9511 95.11 

Precision 0.7810 78.10 

Recall 0.7922 79.22 

F1-Score 0.7851 78.51 

Table 4.8: Final prediction results for the test Vndvi dataset 

Figure 4.11: Extracting initiation point 
using ALOS DEM 
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Years 
Number of 
landslide 
mapped 

Method 

2018 788 Deep learning + Visual interpretation 

2019 6 
Visual interpretation of high resolution 

Google earth images 
2020 47 

2021 23 

 864  

Table 4.9: Number of landslide mapped in each year 

  

 

4.5. Discussion 

A wide range of model performances against different sets of hyper-parameter combinations indicates the significance 

of its optimisation. It was realised that the learning rate and batch size greatly influenced the model performance. Since 

Gamma values enforce the Focal Tversky Loss to focus on the less dominant feature class, it indirectly handles the 

Figure 4.12: Final landslide inventory map (2018 – 2021) 
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problem of data imbalance and reduces the training loss effectively. Different combinations of Gamma values for FTL 

indicate that higher gamma values do not always indicate better handling of data imbalance because it depends on the 

degree of data imbalance in your dataset and how effective enforcement would be. The number of filters demonstrates 

that a greater number of filters always aids the model in learning more characteristics of the datasets, resulting in 

superior results. However, a large number of filters 

requires more processing power and time, so there is a 

trade-off. Experiments also indicate that a smaller number 

of batch sizes is preferable because the model has less 

information to learn from at one time and, as a result, does 

not precisely replicate the entire dataset, resulting in 

greater generalisation. Aside from hyper-parameters, the 

analysis indicates that incomparable spatial resolution 

between spectral and topographical information may not 

aid the model in learning the topographic information; 

however, we observed that it reduced false positives 

caused by riverine sand and built-up in low-lying areas but 

at the expense of arbitrary landslide boundary on steep 

slopes. We highlighted that having a small patch size can 

aid the model in learning spectral features but leaves out 

the possibility of learning topographic information due to 

its coarser spatial resolution. The comparison between 

VndviSL and VndviAll, indicates that utilising other DEM 

derivatives than just slope helps the model to learn more 

topographic characteristics. 

In the final predictions, a large number of false 

positives were observed, although the majority of 

landslides were accurately detected. Given the similar 

spectral and spatial characteristics of landslides to other 

features such as urban areas, riverine sand, unpaved roads, 

and barren land, landslide detection is a difficult 

classification problem. Figure 4.13 is a comparison of 

spectral profiles from Devikolam, which shows that the 

spectral signatures of landslide initiation and built-up area 

are similar, whereas an unpaved road closely aligns with a 

landslide toe or a small revegetated landslide. In addition, 

the presence of overhanging trees on the landslide scar 

prevents the detection of landslides using optical datasets, 

even when visual interpretation is employed. Even within 

a single landslide, a great deal of spectral variation can be 

observed (e.g., the difference in spectral signature between 

the landslide's initiation, body, and toe), resulting in partial 

landslide detection or arbitrary boundaries. Moreover, 

revegetation on landslides prevents landslide detection, particularly in our study area with a tropical wet climate with 

intense rainfall and high temperature, thereby promoting rapid regrowth of vegetation (Schuster and Highland, 2007). 

Th number of false positives can be reduced by employing DEM derivatives created from similar spatial 

resolution, as also proposed by Ghorbanzadeh et al. (2019); however, in our case, it was incomparable. Although, 

problems like revegetation and overarching trees will still be difficult to handle. We discuss more the possible solutions 

to handle the detection complexity in the recommendation section in chapter 7.   
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4.6. Chapter Summary 

The chapter starts by indicating the purpose of the generation of landslide inventory and providing a background of 

the inventory generation methods and associated problems. Suggestions from the literature review and understanding 

of the complexity of having small landslides in the study area, we first experimented with three models and finalised 

MsaU-Net due to its ability to detect small features with deep supervision and multi-scale input approach together with 

a customised Focal Tversky Loss for handling data imbalance. We described different datasets and their preparation, 

training strategy and experimentations. Later, we explained different sets of hyperparameters utilised and their influence 

on the model performance and overall performance spectrum was presented. Once all the experiments were carried 

out, we provided top-performing hyper-parameters combinations for Vndvi dataset, which were later used to train on 

the VndviSL and VndviAll. The performance of the same was compared, and finally, Vndvi dataset with the best 

parameter combination was utilised to predict landslides in the study area. Those predictions were post-processed and 

more landslides were added in the cleanup process. Lastly, we finalised the inventory in point and polygon format with 

a total of 864 landslides.  
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5. PREDICTIVE CAPABILITY EVALUATION 

This chapter aims to accomplish the third sub-objective of evaluating the predictive capabilities of landslide 

susceptibility maps. This is done by comparing the three landslide susceptibility maps with the point and polygon 

landslide inventories generated from the satellite data and deep learning model presented in the previous chapter. This 

chapter includes the description of the datasets and their preparation, and presents the evaluation strategy, results, 

discussion and the chapter summary.  

5.1. Datasets and their preparation 

Mainly two datasets were utilized in the evaluation process: 1) Landslide susceptibility maps, and 2) Landslide 

inventories. Landslide susceptibility maps and their map generation process have been described in section 2.3.1. 

Before the evaluation, these maps were processed in three steps:  

1. All the maps were co-projected and clipped to the study area,  

2. Since the GSI and KU&MTU maps were in raster format, the NCESS map (Polygon) was also rasterized 

with the same pixel size as the GSI map (50 m), which had the largest pixel size of the three maps. 

3. We observed that NCESS and KU&MTU maps had some unclassified areas; consequently, they cannot be 

used directly for comparison or evaluation. It would have been even more difficult if the maps had differing 

numbers of classes. Fortunately, each map had three landslide susceptibility classes. Unclassified areas of the 

NCESS map had the same meaning as low-class areas on the other two maps, whereas unclassified areas on 

the KU&MTU map were due to the exclusion of water bodies and areas with gradual slopes after the map 

was created. All of these regions 

were categorized as low on the 

other two maps, so we considered 

the unclassified regions as low. Table 

5.1 displays the original map classes 

presented by the producer and the 

final map classes used for our 

evaluation. Preparation of the 

landslide inventory was already 

described in the previous chapter 

and is now used in the evaluation process. 

5.2. Evaluation metrics and rationale 

Based on the literature, we will describe the commonly used evaluation metrics and the rationale for chosen evaluation 

metrics here.  

 The review by Reichenbach et al. (2018) indicates that success/prediction rate curve (PRC) is the most 

commonly utilized metric, followed by landslide density or frequency (Baeza and Corominas, 2001), receiver operating 

characteristics (ROC), and other evaluations based on standard confusion matrices. To visualize the performance of a 

statistically-based quantitative susceptibility model, the receiver operating characteristics (ROC) curves are well-

established (Beguería, 2006a; Frattini et al., 2010). They show the proportion of true positives (TP - landslide) correctly 

predicted against the proportion of true negatives (TN – Non-landslide) incorrectly predicted for all the range of 

landslide susceptibility values. For a higher proportion of true positives and a lower proportion of true negatives, the 

curve tends to move towards the top left corner of the ROC diagram. The area under the ROC (AUROC) is calculated 

to determine the overall accuracy of the map.  

Having continuous quantitative susceptibility values is a major requirement for generating a ROC or PRC 

curve. Once a map had been created and used in planning and decision making, it was classified into three discrete 

Original map classes 
Classes finally used as 

GSI KU&MTU NCESS 

- Unclassified Unclassified Low susceptibility 

Low Low Low Low susceptibility 

Moderate Medium Medium Medium susceptibility 

High High High High susceptibility 

Table 5.1: Reconsidered landslide susceptibility map classes  
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classes: low, medium, and high and serves as the foundation for policies and decisions. Hence, evaluation should also 

be conducted on the classified map since continuous quantitative values did not play a role in decision-making and 

planning. Also, the classification of the map is part of the the map-making process, and the classified map is considered 

the final product on which decisions are made. Therefore, we could not utilise ROC and PRC curves to evaluate the 

maps, which made the evaluation process more challenging. 

 We evaluated three classified maps (GSI, KU&MTU, and NCESS) and one unclassified map (KU&MTU), 

with a special focus on the classified maps. To assess the classified maps, metrics such as landslide density and relative 

landslide density index (R-index) can be utilised since they do not require continuous quantitative values and can 

indicate the consistency of landslide distribution for various susceptibility classes (Baeza and Corominas, 2001). 

Therefore, we mainly utilize density-based indices together with correlation analysis of FoS values (KU&MTU map) 

with landslide point occurrences, which can give us insight into the classification and predicted FoS values of the map. 

But, these density-based metrics require evaluation units (same as mapping units), which can be used to calculate 

densities. All these maps are either pixel-based (ranging from 30m to 50m) or large polygon-based zonations, which 

cannot be utilized for the calculation of density and are also not geomorphologically meaningful. Therefore, we had to 

choose suitable evaluation units which could be utilised for density calculations. The rationale for the evaluation units 

and their generation are described in the next section.  

5.3. Evaluation units, rationale and strategy 

In this section, we first describe the evaluation units and rationale of the chosen units, followed by the evaluation unit 

generation workflow and finally, the evaluation strategy explaining three different scenarios. 

5.3.1. Evaluation units and rationale  

A mapping unit is chosen when generating a landslide susceptibility map. Similarly, evaluation is also performed based 

on these units, which are referred to here as ‘Evaluation units’. Idealistically, it is the smallest meaningful spatial unit 

in the analysis because each unit is assigned a unique susceptibility value having a unique set of terrain conditions 

(Beguería and Lorente, 2002). It should closely reflect the topography pertaining to landslide triggering conditions and 

similar terrain characteristics. Table 5.2 presents the advantages and disadvantages of different evaluation units. The 

slope of a terrain is considered to be the most influential factor in landslide triggering, but it is not taken into account 

in the grid or administrative units, making them less relevant from an evaluation standpoint. Geomorphic units require 

expert-level interpretation skills and can be time-consuming; however, they provide more reasonable terrain division. 

Evaluation units Advantages Disadvantages 

Grid  

Easy to process in GIS software, 

Equal area of evaluation unit, easy to 

generate, high objectivity 

Do not represent  similar landslide 

triggering condition, not related to 

geology or geomorphology 

Administrative  
Useful for decision-making and 

planning, readily available 

Usually large size, not related to terrain 

conditions, assessment may not be reliable  

Slope  

Good representation of similar terrain 

conditions, assessment could be 

reliable 

Difficult to generate, shallow slope toes 

with low landslide triggering potential 

clustered with steep slope 

Unique 

Condition*  

Better representation of similar 

landslide triggering slope units + 

angles 

Difficult to generate, may introduce many 

smaller units 

Geomorphic 
Better representation of terrain 

features 

Manual interpretation required, division of 

units is subjective 

*Generated by intersection of slope units and generalized slope classes 

Table 5.2: Evaluation units - advantages and disadvantages 



 

41 

Slope units can be generated automatically and used to represent generic terrain features, but they can be incorrect if 

the method is not optimized.  

However, in comparison to geomorphic units, these units can be generated in less time for large regions. The 

fact that slope units define a single slope as a unit composed of a number of slope angles pertaining to differing 

landslide triggering potential is a major issue. For example, a single slope unit may contain steeper slope angles (e.g., 

40 degrees), where landslides initiate, and gentle slopes of valley areas (e.g., 15 degrees), where landslide material 

accumulates with no potential for initiation. If we aggregate different causal factor values (e.g. mean or standard 

deviation of planar curvature)  in those units, we may introduce significant discrepancies. Therefore, we need to 

consider different slope angles within slope units, which can be achieved by generating Unique Condition Units 

(UCUs). Depending on the purpose, unique conditions can be generated in a variety of ways, such as by intersecting 

slope and administrative units to create a unique set of units that provide favourable landslide-triggering conditions 

and can be utilized in decision-making due to administrative boundaries. For the purpose of evaluation in this research, 

we considered unique condition units generated by intersecting slope units and generalized slope classes (<15, 15-35, 

>35 degrees), which relates to the landslide potential.   

5.3.2. Generation of the Unique Condition Units (UCUs)  

Since the objective of UCUs was to create evaluation units that can represent slope angles within slope units, the 

following steps were taken generate them- Step 1: Slope unit generation, Step 2: Slope class map generation 

(generalized), Step 3: Intersection of slope units with slope class maps and omission of sliver polygons and arbitrary 

UCUs.  

The ALOS Palsar DEM with 12.5 m resolution, downloaded from Alaska Satellite Facility (ASF) was utilized 

to generate slope units and slope classes as well. Before utilizing the DEM, it was preprocessed with ArcHydrology 

(fill operation), and NoData values were interpolated using the nearest neighbourhood operation and compared with 

the SRTM DEM to ensure that it did not contain any significant errors that could compromise the accuracy of our 

results. 

5.3.2.1. Slope unit generation 

The slope units (SUs) were generated in GRASS GIS software using the r.slopeunits software algorithm developed by 

Alvioli et al. (2016). To accomplish this, the algorithm uses r.watershed module in GRASS GIS, which utilizes DEM to 

represent terrain morphology by adopting an advanced flow accumulation (FA) area analysis. FA information is used 

to single out streams and divides, which are the main elements of SU delineation (Carrara, 1988).  

The r.slopeunits software requires a DEM and user-defined parameters to delineate the slope units presented 

in Table 5.3. SU1 and SU2 indicate the parameter combinations used to generate two sets of Slope Units: SU1 and SU2. 

The algorithm utilizes an iterative strategy given by Carrara (1988), which first delineates a small number of large areas 

(e.g., half basins) and then iteratively decreases the area sizes with respect to streams and divides. 

 

No. Parameter (s) Abbrevia. SU1 SU2 

1 Flow accumulation area threshold thresh 800,000 500,000 

2 Minimum area size of SU (square meters) areamin 40,000 20,000 

3 
The minimum circular variance of terrain aspect within a 
slope unit  

cvmin 0.4 0.3 

4 Reduction factor rf 10 10 

5 A threshold value for the cleaning procedures cleansize 20,000 10,000 

Table 5.3: Parameters values combinations (SU1 & SU2) 

https://search.asf.alaska.edu/#/
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In the iterative process, the Flow accumulation area (FA) threshold and reduction factor (rf) regulate the numerical 

convergence but have no explicit geomorphological meaning. Whereas the minimum area (areamin) and minimum 

circular variance (cvmin) define the size and regulate the aspect of the SUs. Ideally, experimenting with these parameter 

combinations is necessary to achieve the optimized slope unit divisions. Unfortunately, the optimization process costs 

huge computation power and time to run multiple combinations of parameter values, which is a limitation of this 

approach. Therefore, based on experiments done by Alvioli et al. (2016), we heuristically utilized two set of parameters 

values to generate SU1 and SU2 (Table 5.3). The output of the algorithm is in shapefile vector format, therefore it can 

be manipulated easily.  

SU1 and SU2 were overlaid and compared in Google Earth Pro, which provides high-resolution topographic 

information. A total of 5300 polygons for SU1 and 11801 polygons for SU2 were generated. As shown in Figure 5.1, 

SU2 exhibited comparatively excessive partitioning of the terrain (red circles) because the parameters circular variance 

and the minimum area size of SU2 was comparatively lower than SU1 (see Table 5.3), which generated arbitrary 

partitions of the terrain. On the other hand, SU1 was missing some critical terrain divisions (yellow lines), which were 

manually added; however, these were few in comparison to SU2. As a result, SU1 was chosen for further investigation.  

5.3.2.2. Slope class map generation 

The next step was to intersect slope units with a slope class map, thus requiring vectorized polygons of classified raster 

slope angle maps. Therefore, we first calculated slope angles using ALOS DEM (12.5) and classified them into three 

classes: Less than 15 degrees, 15 – 35 degrees, and More than 35 degrees. The classification was based on the distribution of 

landslides in different slope classes. The largest number of landslides were observed on slopes ranging from 15 to 35 

degrees (Figure 5.3). The idea was to separate slopes with a higher potential for landslides from slopes with a lower 

potential for landslides. We observed that 64 percent of all landslides (of a total of 864) occurred in slopes between 15 

and 35 degrees, 22 percent in slopes greater than 35 degrees, and only 15 percent in slopes less than 15 degrees.  

Figure 5.1: Slope units resulting from SU1 and SU2 parameter sets (Example A and B in rows) 
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After the classification of the 

slope map, a ‘salt-and-pepper’ effect 17  was 

observed in the raster map due to pixel-

based threshold-dependent classification. 

Since the final slope map had to be 

vectorized, this effect could have generated 

a large number of small polygons, resulting 

in a large number of UCUs. Consequently, 

it was necessary to generalize the classified 

slope map by minimizing the number of 

isolated slope class pixels that were mixed 

with other major classes. We utilized an 

iterative majority filtering technique 

implemented in QGIS 3.10, which reduces 

the number of isolated pixels with each 

iteration while preserving the majority classes locally. With a total of four iterations with a 5 x 5 majority filter was 

used. During experimentation, we observed that a 3 x 3 filter required more iterations but still left many isolated pixels, 

whereas a 7 x 7 filter overgeneralized the raster map in just two iterations, so we chose a 5 x 5 filter. During the filtering 

process, we lost a significant amount of slope information, which may not be ideal in many situations. However, since 

the goal of this filtering was to generate a generalized map that can indicate the major slope classes, this technique was 

deemed acceptable. Figure 5.2 shows the classified slope map, a visual representation of the majority filter utilized, and 

snapshot of results of each iteration in the bottom part of the figure. It can be observed that the first iteration removed 

the majority of the isolated pixels from the classified slope map (shown on the top); subsequent iterations smoothed 

the remaining isolated pixels (shown below). Finally, the generalized slope map was vectorized after the fourth iteration 

and used for intersection with slope units generated in the previous section.  

 
17 ‘Salt-and-pepper’ effect or raster speckling is a result of significant local spatial heterogeneity between adjacent pixels. 

Figure 5.3: Landslide (2018) distribution in slope classes 

Figure 5.2: Slope map (top left), Slope classified map (top center), Majority filter (top right), Filtering iterations (below) 
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5.3.2.3. The intersection of slope units with slope class maps 

The slope unit vector polygons and slope class map were intersected using the overlay operation in the ArcGIS pro 

software. During the intersection of these two layers, many sliver polygons18 and arbitrary polygons were generated, 

and some of these polygons were also generated during the slope unit generation process, which was one of the major 

challenges of this process. Manually altering or removing these many polygons can be time-consuming and infeasible, 

so automatic removal was required. These sliver polygons all had one thing in common: they were either very small or 

narrow-shaped or a combination of the two. These characteristics can easily be captured in order to distinguish them 

from other polygons by computing the polygon area size and shape attributes. This, however, was insufficient because 

these polygons needed to be merged with their respective neighbouring polygons in order to form the best possible 

polygon boundary based on the two polygons.  

To achieve the above-mentioned, we performed the following process: firstly, we calculated two parameters 

of the polygons: 1) Polygon area (m2), and 2) Polygon circularity. Polygon circularity is given by the equation: 

Circularity = 4π × Area/Perimeter2. The circularity ratio will be 1 for a circle and less than 1 for non-circular shapes. 

Hence, narrow polygons will have even lower circularity as compared to wide polygons.  The following criteria were 

utilised to select the unfit polygons based on experimentations (in ArcMap SQL expression with a where clause): a) 

Polygons with Area < 60,000 m2 AND Circularity < 0.25, b) Area < 20,000 m2, and C) Circularity < 0.15. These criteria 

were chosen based on the visual analysis of the polygons by iteratively selecting the polygons in an experimentative 

manner. After selecting all of the polygons, another visual check was performed to ensure that no critical polygons 

boundaries were being removed. The selected polygons were merged with adjacent polygons in ArcMap using the 

"Eliminate selected polygons" tool, which merges the selected polygons with adjacent polygons that share the longest 

border. Figure 5.4 shows area (in red) and circularity (in yellow) values labelled for each polygon; polygons selected 

based on the criteria (Part A) and merged polygons resulting from elimination based on the criteria (Part B).  Figure 5.5 

depicts an example of the area and circularity of various polygons selected using the defined criteria. It can be observed 

that unfit polygons have combinations of low circularity and large area or high circularity and low area. Therefore, 

these polygons can easily be distinguished and eliminated. As shown in the figures, vectorized boundaries from raster 

images have undesirable texture (zig-zag boundaries) due to heterogeneity in the pixels, which is unappealing 

 
18 Sliver polygons are small or thin polygon features that appear along the polygon edges or borders following an 
overlay of two or more vector shapefiles. 

Figure 5.4: A - Selected polygons based on the area (red) and circularity (yellow), B - Selected polygons merged with 
polygons sharing the longest boundary 
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aesthetically and makes vector processing time-consuming. We smoothed the polygon boundaries as part of the 

cleaning procedure, with a smoothing tolerance of 5 meters given the resolution of the ALOS DEM (12.5 m) on which 

the slope units and slope class map are based. As the final unique condition units, 11661 vector polygons were 

generated. We propose that these unique conditions units can be used not only as evaluation units but also as mapping 

units for landslide susceptibility mapping. Figure 5.6 presents the finalized UCUs, which present slope units interesected 

with slope classes. It can be seen that slope units having gentle slopes (slope <150) have been separated from 

moderately steep (slope 150 -350) and steep (slope >350) slopes. This highlights the issue with slope units, as they do 

not deal with different slope angles, making them less efficient, given that moderately steeper slopes have more 

potential than gentle slopes. 

 

Figure 5.6: Finalized Unique Condition Units (UCUs) 

Figure 5.5: Example of selected polygons based on their selection attributes 
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5.3.3. Evaluation strategy – Three evaluation scenarios 

Our evaluation strategy consisted of three evaluation scenarios, 1) Overall evaluation, 2) Evaluation based on Unique 

Condition Units (UCUs), and 3) Comparative evaluation.  

5.3.3.1. Scenario 1: Overall evaluation 

Figure 5.7 depicts the workflow of scenario 1, in which 

the landslide susceptibility classes of the maps were 

considered as evaluation units. These evaluation units 

or susceptibility classes of each map were intersected 

with the landslide initiation points and polygons. The 

number or areas of landslides falling into each unit was 

aggregated. These numbers were simply used to 

calculate two metrics: 1) Landslide density and 2) 

Relative landslide density index (R-index) (Baeza and 

Corominas, 2001).  

 
𝐿𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =

 
number or area of landslides in Class a (n𝑖) 

𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠 𝑎 (N𝑖)
   

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
(

𝑛𝑖
N𝑖

)

∑ (
𝑛𝑖

N𝑖
) 

× 100 

Where, 𝑛𝑖 is the percentage of  landslide number or 

area observed within a susceptibility class and N𝑖  is the 

percentage of area for the landslide susceptibility class.  

5.3.3.2. Scenario 2: Evaluation based on Unique 
Condition Units (UCUs) 

Figure 5.8 present the workflow of scenario 2, in which 

the evaluation was performed in comparatively smaller 

units, i.e., Unique Condition Units (UCUs), with the 

following three steps-  Step 1: calculation of landslide 

density in each UCU, Step 2: aggregation of 

susceptibility classes and in each UCU, Step 3:  a violin 

plot and correlation analysis using point and area 

densities. In Step 1, the landslide point and area 

densities were calculated for each UCU. In Step 2, for 

the classified maps, a majority vote was taken for 

landslide susceptibility classes (low, medium, and high) 

for each map (GSI, KU&MTU, and NCESS) in all 

UCUs. For the unclassified map of KU&MTU, a 

minimum a factor of safety (FoS) was taken for each 

UCU, as it represents the highest unstability within that 

UCU. Other aggregations, such as mean and median, 

cannot be used because they do not accurately reflect 

the stability of the region and can be misleading. In Step Figure 5.8: Scenario 2 - Evaluation based on unique condition 
units (UCUs) 

Figure 5.7: Scenario 1- Overall evaluation 
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3, we did violin plot and correlation analysis in R using the datasets generated above.  

5.3.3.3. Scenario 3: Comparative evaluation of the landslide 
susceptibility maps 

For the comparative evaluation, we compared maps with various 

map combinations and compared two maps with similar features. 

Figure 5.9 shows the workflow of comparative evaluation of the 

landslide susceptibility maps. The following steps were taken: 1) 

Rasterization and resampling of all the maps, 2) Combine all the 

maps by sampling pixel values for each map, 3) correlation and 

covariance analysis together with contingency bar plots for 

prediction pixel comparison. 

Since all maps are generated for the same region, 

susceptibility must be represented similarly throughout the region. 

This enables us to evaluate the degree of agreement and discord 

between the three maps. For the comparison, each map was 

converted to the same datum and projection (WGS 84 & UTM 

43N), data format (raster), and spatial resolution (50 m) using the 

ArcMap nearest neighbourhood operation. We recognize that some 

information may have been lost during this process, but the overall 

map values are representative of the actual values, especially when 

using the nearest neighbourhood resampling method. 

 Once all the maps were prepared, the susceptibility classes 

were given values from “1 to 3” for “Low to High” classes. These 

values were utilised for correlation and covariance analysis in ArcMap software. These maps were further utilised to 

generate contingency bar plots for overall comparison as well as comparison of two maps with similar features.  

5.4. Results and discussion 

5.4.1. Scenario 1: Overall evaluation  

Firstly, we present an overview of landslide distribution together with the percentage of area under different classes. 

Secondly, we compare the landslide point and area densities. Thirdly, we present the relative landslide density (R-index).  

Figure 5.10 compares the class area 

percentage with the percentage of landslides falling in 

those classes. NCESS map shows a concerning trend 

since around 60% of the landslides are falling in the 

“Low” class accounting for 65 % of the total map, 

while this class might have been considered “safe” in 

decision-making for the past ten years. In contrast, 

GSI and KU&MTU maps present relatively 

reasonable landslide distribution. Yet, 32% of the 

landslides are falling in the “Low” class of 

KU&MTU, which is still a considerable number. 

Almost half of the landslides on the GSI map are 

classified as "Medium," accounting for nearly 40 

percent of the map. Already, the interpretation of 

classes of landslide susceptibility classes is unclear 

because it is unknown what can be anticipated in each 

class in terms of the number of landslides or expected 

Figure 5.10: Distribution landslide (%) by susceptibility class area 
(%) 

Figure 5.9: Scenario3 - Comparative evaluation of 
landslide susceptibility maps 
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losses. The combination of ambiguous interpretation and such predictions will make decision-making difficult because 

if 50 percent of landslides are classified as "Medium," what kinds of activities can be permitted based on such a general 

forecast? Comparatively, KU&MTU map provides a better distribution of landslides, however, cannot be directly 

employed in decision-making given that 32% of the landslides still fall in “Low” class. Idealistically, a map having 

almost 10% of landslides in “Low”, 25% of landslides in “Medium”, and the remaining 65% of the landslides in 

“High”, could be more useful for planning decision-making. However, making such a good prediction is expected, but 

the absence of high-quality datasets, i.e., high-resolution DEM, and a complete landslide inventory, makes it a difficult 

task (van Westen et al., 2006b). Yet, maps tending to predict such a landslide distribution should always be preferred.  

Figure 5.11 depicts the absolute area and density of points on maps of landslide susceptibility. All the maps 

depict increasing landslide densities in proportions that vary. The increasing trend of densities suggests that these maps 

present consistent susceptibility levels overall but unacceptable densities of the area and point density. For instance, 

the "Low" class of the NCESS map displays a landslide point density of 0.45, which corresponds to one landslide every 

2 km2. In contrast, the KU&MTU and GSI maps have a point density of 0.70 and 0.60 for the "Medium" class, 

respectively, indicating that there will be nearly two landslides every 3 km2 according to both maps, which is quite 

unexpected for a "Medium" class. Comparable observations can be made regarding area densities as well. Therefore, 

these maps cannot even be used for regional-scale planning (1:30,000), and we strongly advise against using them for 

large-scale planning (1:10,000). 

 

 

Figure 5.12 present the results of the relative landslide density index (R-index). A detailed calculation table for landslide 

area and point density, and R-index can be found in Annexure 4. The R-index for landslide points and area follows 

an increasing trend for all the maps from low to high susceptibility class, which is considered ideal for any map (Baeza 

and Corominas, 2001); since the index represents the ratio between the density of landslides in a given susceptibility 

class and the overall density of landslides. This 

metric allows us to compare the point and area 

distribution of landslides across different maps, 

but it cannot be used to present the likelihood 

of an element-at-risk being hit by a landslide. A 

larger ratio indicates higher susceptibility 

relative to the region's overall susceptibility. 

Notably, R-index values for both points and 

areas are remarkably similar for GSI and 

KU&MTU maps with an average difference of 

4% per class, indicating consistent 

susceptibility levels and a general agreement 

between these maps and the distribution of 

landslides across different classes. However, it 

can also be observed that the “Medium” class 

of GSI &MTU exhibit almost 30-35% 

Figure 5.12: Relative landslide density Index for landslide points (P) and 
area (A) 
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Figure 5.11: Landslide area and point densities 
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susceptibility to the overall susceptibility of the maps for both point and area densities. Similarly, the “high” class 

exhibit almost 50% susceptibility to the overall susceptibility of almost all the maps.  

It can be concluded that the overall distribution of landslides within susceptibility classes demonstrates a 

positive correlation; however, the distribution levels may not be acceptable for a particular purpose. Therefore, we 

propose that the map classifications be revised or reevaluated so that the majority of landslides can be predicted as in 

"High" class. KU&MTU and GSI maps provide generic predictions, particularly for the "Medium" class; consequently, 

classification or the analysis itself must be reconsidered. The NCESS map has been used as it is, mainly for land-use 

planning and restrictive zoning for the past ten years. The analysis present that this map should no longer be utilised 

for administrative purposes. This also begs the question of how long a map can be used for landslide prediction after 

its creation. The discrepancies can be attributed to the limitations of the map, such as coarse resolution datasets, 

generalized classes of factor maps, limited GIS software availability, and large grid size (250 m).  

5.4.2. Scenario 2: Evaluation based on UCUs 

Figure 5.13 depicts violin and box plots of landslide area and point densities calculated in UCUs for the susceptibility 

classes of all maps. Area density and point densities for the maps are presented in rows, in the order GSI, KU&MTU, 

and NCESS. Violin plots illustrate the probability distribution function (PDF) for landslide densities within each class, 

allowing us to highlight the most frequently observed densities in a particular class or its distribution as a whole. Given 

the small landslide sizes (total landslide area 1.70 km2) and the low landslide density (864 landslides in 1200 km2), the 

plots are presented on a logarithmic scale. Additionally, small differences in landslide densities are significant given the 

size and quantity of landslides. The boxplot inside the violin plot shows an average (black point), the median 

(centerline), 25th and 75th quartile (upper and lower blackline) and minimum and maximum (ends of the vertical black 

line) of the data series. Wider sections of the violin plot indicate a higher probability that a susceptibility class will have 

the given density, whereas narrower sections indicate a lower probability. Thus, violin plots are suitable for illustrating 

the PDF for landslides alongside quartiles of the datasets. Ideally, the landslide area or point density of landslides 

should increase from low to high class, and there should be little to no overlap between the landslide densities between 

the susceptibility classes. A clear distinction should be observed within the map.  

Figure 5.13 displays violin and box plots for landslide densities across all maps. First, the plots reveal no 

statistically significant differences between the maps' distributions of landslide area and point densities. Greater density 

overlap indicates that there is no discernible difference in susceptibility between classes. Figure 5.13 – A depicts the 

plots for the GSI map, which demonstrates comparable area densities for the "Low" and "High" classes and relatively 

lower area densities for the "Medium" class. This confirms the findings of our previous evaluation, in which we 

identified issues with the "Medium" class. Close examination of the KU&MTU map reveals an increase in median 

landslide area density from low to high class, indicating a positive correlation (Figure 5.13 - C). The "High" class of the 

map has a wider, denser violin plot section. At the same time, it is concerning to observe a significant number of maps 

with high area densities in the "Low" classes. Figure 5.13 – E depicts a normal distribution of area densities in the 

"High" class, whereas a greater concentration of higher area densities is visible in the "Medium" class of the map. Figure 

5.13 – B, D, and F illustrate a highly variable distribution of landslide point densities across all classes without any 

discernible trend. For the GSI and NCESS maps, a decreasing trend is observed, but point densities are completely 

dispersed, whereas the KU&MTU map reveals no correlation between point densities and susceptibility classes. 

The calculation of landslide area densities is complicated by the fact that even the smallest portion of the landslide that 

falls in each unit contributes to the density calculation of that UCU. In any case, area densities are always preferred 

over point densities because point densities do not account for the size of the landslides and do not indicate the 

likelihood that an object will be struck by a landslide. Obviously, a susceptibility map does not indicate the magnitude 

of a landslide, but it should indicate the likelihood of a landslide striking a single location. Landslide (initiation) point 

locations that fall within a specific UCU contribute to its point density calculations, even if the entire landslide (other 

than the initiation) falls within a different UCU, introducing inaccuracies. In addition to the inability of the maps to 

distinguish between high and low landslide densities based on susceptibility classes, the aforementioned issues may 

also explain why landslide point densities exhibit no discernible trend.  
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In conclusion, comparing all the three maps based on the distribution of area densities for the susceptibility 

classes, KU&MTU map presents a relatively better relationship or consistent susceptibility levels. The medium class 

of the GSI map show inconsistencies in scenario-1 and 2 as well. Nonetheless, none of the classes shows a significant 

expected relationship between landslide densities and susceptibility classes. Ideally, it is expected that “High” class will 

have relatively higher landslide densities, followed by “Medium” and “Low” classes. As “Low” class is interpreted as 

“safe”, it should have little to no landslide density. However, there are no standard criteria for expected landslide 

densities for landslide susceptibility maps. 

 

   

 

Figure 5.13: Violin plots for all the maps for landslide point and area densities 
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5.4.3. Scenario 3: Comparative evaluation of the landslide susceptibility maps 

In the first section, we compare maps pixel-by-pixel and analyze their spatial correlation and covariance. We compare 

GSI and KU&MTU maps in greater detail in the second section due to their similarity in terms of mapping units and 

generation year.  

5.4.3.1. Overall comparison 

Figure 5.14 depicts a pixel-by-pixel comparison, indicating a comparison of all maps, as well as three other map 

combinations. As expected, there is a low agreement between all classes when comparing all of the maps 

simultaneously. For all maps, "Low" class agreement is greater than that of "Medium" and "High" classes, which have 

a negligible agreement. This suggests that all three maps predict the same region with varying susceptibility levels and 

that at least one of the three predictions made by the maps is inaccurate at each pixel. If we make a one-to-one 

comparison of the maps, the map combinations involving NCESS map present a lower agreement, whereas, GSI-

KU&MTU map combinations present the highest agreement in all classes. Apart from their ability to predict similarly, 

it could also be beause of their pixel-based mapping unit which were generated in recent years, whereas NCESS map 

was a polygon-based map and was generated in the year 2010, when advanced GIS tools were not available and 

relatively low quality datasets were available. It should be noted that because we are examining the maps on a pixel-by-

pixel basis, even the most random agreement between the three maps is being considered. Possibly, if we compare 

them on a coarser scale, the disparities will be even greater. If these three maps are presented to a decision maker, it 

would be extremely difficult to choose one.  

The covariance matrix and correlation matrix for the GSI, KU&MTU, and NCESS maps are shown in Table 

5.4. The covariance matrix contains variance (in bold) and covariance values. The variance is a statistical measure that 

shows the amount of variation within in a map, whereas covariance is a measure that expresses the variation of pixel 

values in two raster maps. It represents the maps' joint variation to the common mean of pixel values. Correlation 

matrix gives the correlation coefficients between the each combination of two maps.  

 

  

 

The correlation matrix reveals that all map combinations are positively correlated, with the strongest correlation being 

between GSI and KU&MTU (0.32), followed by KU&MTU and NCESS (0.28), and finally GSI and NCESS (0.30). 

(0.19). Which validates the conclusion from the pixel-by-pixel comparison that GSI and KU&MTU have the highest 

degree of agreement. However, the consensus remains extremely low. A correlation of 0.28 between KU&MTU and 

NCESS is the result of greater "Low" class aggreement. Similarly, we observe that covariance exhibits a similar trend; 

however, covariance values are interpreted according to the unit used to calculate them. Here, the amount of co-

occurring change for the class values of the two maps is displayed. The covariance is the amount of change in class 

value. KU&MTU - GSI had the highest covariance of 0.10, followed by KU&MTU – NCESS (0.08), and GSI -NCESS 

(0.05). Which reconfirms the previous findings of the evaluation.  

Covariance matrix 

Map GSI KU&MTU NCESS 

GSI 0.28   

KU&MTU 0.10 0.33  

NCESS 0.05 0.08 0.27 
    

Correlation matrix 

Map GSI KU&MTU NCESS 

GSI 1.00   

KU&MTU 0.32 1.00  

NCESS 0.19 0.28 1.00 

Table 5.4: Covariance and correlation matrix for the three 
maps 

Figure 5.14: Prediction agreement between the three susceptibility 
maps 
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5.4.3.2. Comparing GSI and KU&MTU maps 

Predictions may differ from one map to the next, but identifying the areas where they differ the most, can highlight 

the areas for improvement. Figure 5.15 presents a prediction variation map based on UCUs and contingency bar plot 

showing the change of one class to another. The figure presents three types of prediction variations: 1) Identical 

predictions, 2) significantly different predictions, and 3) predictions with some variations.  

Identical predictions are those with exact same prediction in both the maps e.g., “Low” to “Low”. Signifiantly 

different predictions are those with class rank difference of atleast two classes e.g., “Low” to “High”, “High” to “Low”, 

and these are the most concerning predictions. Lastly, predictions with some variations are those having a class rank 

difference of one, e.g., Low to Medium, 

High to Medium. In the end, we located 

areas on the map where significant 

differences were observed. 

 Figure 5.15 shows that the 

majority of the areas have been 

predicted identically, particularly for the 

"Low" class with 32% of total area, 

while only 7% and 11% are agreed for 

the "Medium" and "High" classes, 

respectively. Almost 10% of the area 

has a significant difference in 

predictions, and at a location, either 

map is inaccurate. Nearly forty percent of the map displays variations, which is also a disagreement but on a lesser 

scale. Nonetheless, sufficient to confuse the decision makers. This raises the question of whether a specific class of 

landslide susceptibility (e.g., high) indicates the same thing on two different maps. If not, then how much difference is 

there in their susceptibility levels and how can it be quantified beyond its relative interpretations? This raises the 

previously posed question of what these classes mean in terms of the expected number of landslides or losses. 

 

 

 

Type Class variation 
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 Low_to_Medium 6.17 

Medium_to_High 6.92 

High_to_Medium 6.00 

Medium_to_Low 22.10 

 Total 100.00 

Table 5.5: Percentage of prediction 
variations from KU&MTU to GSI 

Figure 5.15: Susceptibility prediction comparison: KU&MTU to GSI map 
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5.5. Chapter Summary 

We mentioned that evaluation should be conducted on the classified map, as decisions are dependent on the 

classification. Nonetheless, this does not preclude the evaluation of continuous maps whenever they are available. 

Especially when evaluating classified maps posteriorly, it can be difficult to establish a correlation between them and 

actual landslide occurrences because the scope of quantitative assessment decreases exponentially and qualitatively 

establishing a correlation is challenging due to the discrete classes. Another difficulty is the evaluation unit used in the 

evaluation procedure, which is analogous to the mapping unit used in map generation. We propose that the Unique 

Condition Units (UCUs) generated by crossing slope units and generalized slope classes be used, given the varying 

susceptibility within slope units with varying slope angles. However, the slope units themselves must be optimized by 

experimenting with various algorithm parameters. Simultaneously, evaluation metrics are already scarce, but they 

become even scarcer when evaluating classified susceptibility maps. For instance, we could not utilize the area under 

the receiver operating characteristics due to the absence of continuous susceptibility values in classified maps, which 

prevented their application.  

We evaluated the maps in three distinct scenarios; Scenario-1 revealed that the maps present overall consistent 

susceptibility levels, but those levels may not be acceptable to the decision-makers. Scenario-2 indicated that the 

consistency could not be observed for individually defined units or did not present a strong relationship. This implies 

that evaluations should be conducted in various units (susceptibility classes, districts, UCUs) to present the degree to 

which the map provides reasonable accuracy at different scales. For example, GSI and KU&MTU maps can be used 

to allocate funding based on their overall consistent susceptibility levels after reconsidering classification. However, 

they cannot be used for urban planning at the UCU scale because they do not demonstrate a strong relationship 

between landslide densities and susceptibility levels in the UCUs. Area densities demonstrated a stronger relationship 

between susceptibility and densities than point densities, as area densities consider the number of failed pixels in a 

given unit, whereas point densities consider each occurrence as a single number, regardless of the number of failed 

pixels in that unit. Scenario-3 presented that higher agreement can be achieved for areas classified as “Low”, whereas 

there are significant differences for “Medium” and “High” classes. It also implies that at a location, at least one map 

prediction is inaccurate. This scenario highlighted the problem of varying interpretation of susceptibility classes and 

unclear interpretation in terms of expected landslide numbers of losses.  

In three of the scenarios, we discovered that none of the maps had reasonable accuracies. We demonstrated 

that the NCESS map is no longer useful for its intended purpose and should not be used in practice. The KU&MTU 

map provided slightly better predictions for Scenarios-1 and 2, but not enough to make a decision. We identified issues 

with the GSI map's medium susceptibility class due to landslide density overlap with other classes and prediction 

overlap with other maps, and thus the classification can be revised. Furthermore, bodies of water may be excluded, 

and a new classification system must be implemented. 
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6. LANDUSE/COVER CHANGE AND PREDICTIVE 
CAPABILITY 

This chapter addresses sub-objective 4 which attempts to answer “If landuse/cover changes can thwart the predictive ability of 

the landslide susceptibility map?”. Which means that an area predicted to be low-susceptible or medium susceptible 

experienced a large number of landslides due to significant landuse/cover changes that altered the region's susceptibility 

between the creation of the map and the occurrence of landslides. Given the landcover changes, any decisions made 

regarding land use planning and restrictive zoning based on these maps may be unjustifiable. Therefore, assessing the 

possible landuse/cover changes after map creation and landslide occurrences would be relevant. A fieldwork 

investigation was conducted in February-March 2022 to observe the influence of LULC changes on the landslide 

occurrences in the study area.  

 First, we provide a background on literature that attempts to establish a relationship between landuse/cover 

change and landslide occurrences. Second, we describe the fieldwork investigation, which will be referred to in several 

sections, together with supporting literature to highlight the challenges in establishing such a relationship. Thirdly, we 

present a case study highlighting the importance of landuse/cover changes. Finally, we present the discussion section 

and summary of the chapter.  

6.1. Landuse/cover change and landslides occurrences: A review 

Anthropogentically induced land use, and land cover (LULC) changes such as unregulated building and road 

construction (Karsli et al., 2008; McAdoo et al., 2018; Hürlimann et al., 2022), forest logging (Jakob, 2000), hill cutting 

(Rahman et al., 2017), mining (Fathi Salmi et al., 2017), and other unsustainable land-use practices are known to 

contribute to slope instability (Glade, 2003a; Reichenbach et al., 2014). Therefore, LULC changes should not be 

overlooked in the landslide risk reduction strategies, specifically in the context of adapting sustainable natural hazard 

risk management (Promper et al., 2015). These human-induced LULC changes can have hydrological and mechanical 

effects on the slope. For example, vegetation significantly alters soil hydrology by increasing rainfall interception, 

infiltration, evapotranspiration, and soil mechanics through soil reinforcement and slope loading (Beguería, 2006b). 

Hence, vegetation removal will reduce the terrain's stability in most cases (sometimes not, e.g., slope loading by timber 

may increase the probability of failure)(Beguería, 2006b). 

 Numerous researchers associate landslide occurrences with LULC changes. An evidence-based study of 

historical landscape dynamics in New Zealand (Glade, 2003a) investigated geomorphic evolution resulting from 

anthropogenic LULC changes. Some studies assessed the effect of LULC changes on the landscape of the Pyrenees 

and found that vegetation recovery could reduce the frequency of shallow landslides (Beguería, 2006b; Shu et al., 2019). 

Similarly, Schmaltz et al. (2017) confirmed the findings by utilizing multi-temporal landslide inventories based on 

remote sensing data in Austria. Persichillo et al. (2017) and Gariano et al. (2018) focused on the effect of agricultural 

activities and land management on triggering regional landslides in Italy by utilizing heuristic and multivariate 

approaches, respectively. Other studies utilised process-based stability models to assess the impacts of modelled future 

LULC changes on the Spatio-temporal probability of landslides (Reichenbach et al., 2014). Despite utilising varying 

methods, all the studies indicated that LULC changes could influence the propensity of hillslopes to landslides. When 

addressing the issues of slope failures, it is crucial to obtain dynamic information on land use and land cover in a timely 

and precise manner.  

6.2. Field investigation for LULC changes and landslides 

Thirty-seven landslide locations were visited in the Munnar region of Devikolam taluk to investigate the influence of 

LULC changes on landslide occurrences. Figure 6.1 presents the distribution of landslides visited during the fieldwork, 

indicated with observed LULC on the ground.  Table 6.1 presents number of landslides with observed LULC on the 

ground and their predictions by the three landslide susceptibility maps.  
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The table shows that most (12) of the landslides were caused due to road cuts made along the roads, whereas a number 

of landslides (8) were either occurred naturally or had unclear LULC change. Because it not possible to determine the 

LULC change of the landslide even by field observations. It is also possible that LULC change that occurred at the 

location was washed away by the landslide itself. For example, a landslide at Munnar Arts College was caused due 

unregulated construction on an old landslide (2005) during the heavy downpour of 2018 monsoon. The landslide 

swiped away the newly constructed buildings downhill leaving no evidence of LULC change that it caused it. The 

location was also specifically marked potentially unstable by Sajinkumar et al. (2017), just a year before the occurrence, 

and the areas was marked high susceptible by all the three maps, however, no attention was paid to any of the available 

information. Which highlights that landslide susceptibility maps or any other literature are not considered before the 

construction of buildings in the region. 

 

 

 

 

 

 

 

 

 

 

 

Landslide nos. 
Land use/ 
land cover 

GSI KU&MTU NCESS 

Low Medium High Low Medium High Low Medium High 

2 
Building 
construction 

 1 1 1 1    2 

4 
Drainage 
blocked 

 3 1 2 1 1 4   

12 Road cut 4 3 5 5 1 6 8  4 

4 Slope cut 3  1 3 1  4   

7 Tea plantation  6 1 3 2 2 4  3 

8 Unclear 5 1 2 5 2 1 6 1 1 

37 Total 12 14 11 19 8 10 26 1 10 

Table 6.1: LULC of the landslides and their predictions by the maps 

Figure 6.1: Location and LULC of the landslides visited during the fieldwork 



 

56 

None of the maps predicted highest number of these landslides in the high susceptibility classes. Surprisingly, 26 of 

the landslides are falling in the “Low” class of the NCESS map, and only 10 in “High”. 

It would be intuitive to conclude that the landslides were caused due LULC change in the region after the creation of 

the map, however, question can be raised on whether these maps could capture this detail level of LULC changes to 

predict them. Since all of these maps used LULC maps at scale of 1:50,000 with general class details. Given that they 

are difficult to determine even on the field. Whether it would be fair to evaluate these small scale maps based on the 

LULC changes which are so localized and spatially confined to a few meters of range. 

Figure 6.2 shows a rotational landslide on NH-85 Munnar to Bodimettu highway. The space was required for toll plaza 

construction, so transport authorities cut the slope, which resulted in slope failure; however, this slope consisted of 

highly weather wet material. 

6.3. Challenges in establishing a relation between landuse changes and landslide occurrences 

The purpose of establishing a relationship between LULC changes and landslide occurrences is to identify the changes 

that actually modify the susceptibility of a region so that these LULC changes can be incorporated into landuse/cover 

planning and restrictive zoning, and sustainable land practices. LULC changes can increase or decrease the 

susceptibility of a mountainous region (Beguería, 2006b; Chen et al., 2019), or some LULC changes may not change 

the susceptibility at all. However, there are challenges in establishing those relationships, which can be described in 

two major challenges: 1) Limited Spatio-temporal resolution of the satellite images and LULC maps, and 2) Possible 

time delay between landuse change and landslide occurrences. 

6.3.1. Limited Spatio-temporal resolution of the satellite images and LULC maps 

Satellite remote sensing methods are the most common source of LULC information. The key step for acquiring LULC 

information is image classification (Shrestha et al., 2019). Uniformity in spatial and spectral satellite information is 

critical for generating comparable LULC information and reducing false changes in the LULC change analysis (Deng 

et al., 2009; Verburg et al., 2011). Table 6.2 presents the satellite information used by different authors to establish a 

relationship of LULC changes and landslide occurrences.  

Sr. 
No

. 
Author 

Years of 
analysis 

LULC maps/images 
Spatial 

resolution/Scale 
Study area 

Figure 6.2: A shallow rotational landslide with a construction activity on the landslide toe 
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1 
Glade 

(2003b) 
Multiple years 

Historical datasets (written 
docs, drawings and photos) 

Unknown 
New 

Zealand 

2 
Beguería, 
(2006b) 

1957 
B&W Aerial photos 

1:32,000 

Spain 1977 1:18,000 

2002 Colour orthophoto 1 m 

3 
Karsli et al. 

(2008) 

1973 Aerial images 1:23,000 
Turkey 

2002 Aerial images 1:16,000 

4 
Reichenbach 
et al. (2014) 

1954 B&W Aerial photos 
1200 dot/in. scan 

resolution 
Italy 

2009 QuickBird 
2.4 m, later pan-

sharpened with 1 m 

5 
Persichillo et 

al. (2017) 

1954 Aerial photos 0.5 m 

Italy 

1980 
Photo interpretation (TEM1 

flight) 
1:50,000 

2000 
Photo interpretation (IT2000 

flight) 
1 m 

2007 
Colour and infrared 

orthophotos (IT2007) 
50 cm 

2012 
Photo interpretation 

(AGEA) 
Unknown 

6 
Gariano et al. 

(2018) 

1956 "Land Use Map" by CNR 1:200,000 
Italy 

2000 CORINE Land Cover 1:100,000 

7 
Chen et al. 

(2019) 

1992 Landsat TM 30 m 
China 

2002, 2013 SuperView-1 2 m 

8 
Senanayake 
et al. (2020) 

2000 Landsat 7 

30 m Sri Lanka 2010 Landsat 5 

2019 Landsat 8 

9 
Liu et al. 
(2021) 

1980, 2000, 2018 

LULC maps derived from 
photo-interpretation of 

aerial photos and local field 
data 

Unknown China 

10 
Hao et al. 

(2022) 
2010, 2018 Google Earth images 0.30 m -15 m India 

Table 6.2: Geoinformation datasets utilized by different authors to establish a relationship between LULC changes and 
landslide occurrences 

The table displays two types of datasets: raw images for LULC generation and pre-made LULCs (highlighted in bold). 

All of these studies have considered large time ranges (58 to 8 years) and have varying spatial resolutions, utilizing data 

from multiple sources due to the obvious data scarcity, which has the potential to cause several issues. First, multi-

source LULC maps have different class criteria in terms of class numbers, classification levels (I, II, III, IV) (Anderson, 

1976) or different class names for the same class (for example, Gariano et al. (2018)). Sometimes, the LULC classes of 

a multi-source dataset consist of classes within a distinct class (Hao et al., 2020). In order to detect changes, it is 

necessary to combine and aggregate these heterogeneous datasets, which may introduce errors such as spatial 

aggregation, classification, and thematic aggregation errors (Petit and Lambin, 2002; Falcucci et al., 2007). Due to the 

varying spatial resolution of the images, the details of the derived LULC maps do not match (e.g., Persichillo et al. 

(2017), Beguería, (2006b)), leading to the detection of false LULC changes. Thirdly, even if the spatial and spectral 

information is consistent (for example, Senanayake et al. (2020) used the Landsat series), if the resolution is insufficient 

to generate LULC maps with the desired level of detail, generic outcomes will result. Lastly, high spatial and spectral 

resolution images are often not freely available and cost significant amounts; therefore, it is not utilized.  
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 Although, when a shorter period is considered for the analysis, 3D Google earth images (0.30 m – 15 m), 

Sentinel-2A (10 m), and PlanetScopes images (3 m) can be a good alternative in terms of spatial and spectral details, 

but may not be ideal for long term LULC analysis. Given the benefits, Hao et al. (2022) made a reasonable selection 

of datasets (Google Earth images) in light of the aforementioned issues. Although, a problem with Google Earth 

images is that they cannot be used for automatic classification since they can only be used for free on Google Earth 

Pro software.  

In this case, Sentinel-2A and PlanetScope images, which have been available since 2016 and 2017, respectively, 

can be used; nevertheless, the automatic classification does not provide the desired accuracy and detail (Srivastava et 

al., 2012) due to the terrain's complexity and the required detailed land use legend, and it has proven extremely 

challenging to distinguish between natural land use types (for example, forest from the cultivated area)(Hao et al., 

2020). 

6.3.2. The possible time delay between landuse change and landslide occurrences 

 Another barrier is the time lag between a landuse change and the occurrence of a landslide. Because this time span 

can be very long or very short, depending on the prevailing geological conditions, rate of weathering and type or 

intensity of the landuse change that occurred. Cutting a slope, for example, can make a slope mechanically less stable; 

similarly, forest logging would alter the soil hydrology of the terrain and would most likely take longer to dismantle 

than the previous. As a result, landuse changes that have an immediate effect on the terrain would necessitate high 

temporal LULC information. Landuse changes with a delayed effect, on the other hand, can only be captured over a 

longer time span. Figure 6.3 depicts a delayed landuse change effect observed during the field investigation at the 

Poopada hotel in the Munnar region of the study area. A slope cut was made at this location in the year 1984, and no 

other landuse change was observed during the years 2012 and 2017 (Figure 6.3-left), and the landslide occurred in the 

year 2018, 44 years later. Fortunately, no casualties were recorded in the event; however, it could have demolished the 

hotel building, possibly resulting in hundreds of deaths.  

It can be argued further on the slope's before and after stability conditions when the slope cut was made. 

Nonetheless, it demonstrates that such delayed effects of landuse changes are difficult to capture. As stated in Table 

6.2, the authors used varying time spans of LULC changes, and we indicate a possibility of missing out on information 

Figure 6.3: Poopada hotel landslide as a result of slope cut made in 1984. Left- 3D Google Earth 
images (2012, 2017, and 2018), Right- Google Earth image (top) and a field photo in the inset 
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on the immediate effects of LULC changes when considering longer time spans (e.g. Gariano et al. (2018)) and for 

delayed effects when considering shorter time spans (e.g. Hao et al., 2020). It would be of utmost importance to 

compile a classified inventory of LULC changes in relation to geology based on the potential effective time at which 

they can trigger a landslide. For instance, immediate effects (2-4 years), road cuts in disintegrated rock sections, delayed 

effects (5-10 years), or extremely delayed effects (greater than 10 years) (10-20 years). 

6.4. Assessment rationale of LULC changes in the study area 

As stated at the start of this chapter, the initial goal of the study was to compare the landslide susceptibility map 

performance with LULC changes. Ideally, LULC change information was required at a detail that it can observe the 

slope cuts of 2-5 m length which caused the biggest landslides in the study area, which is not possible in Sentinel-2A 

or PlanetScope image, especially using automatic methods for a large area with complex terrain, as mentioned in section 

6.3.1. Yet, targetting for larger LULC changes, we attempted to map LULC for the years 2017 and 2018 using Sentinel-

2A images since this was the only year between the creation of the maps and landslide occurrences and availability of 

the Sentinel-2A data. In short, the mapping was performed using a semi-automatic classification plugin in Qgis using 

Spectral Angle Mapper (SAM) method, but the classification results were not promising even for those changes which 

were observed in the field investigation and actually caused landslides.. Therefore, it was not worth moving forward 

with it. Instead, we decided to select a case study of a road widening project as an example, where we compared the 

susceptibility of the region to LULC changes and resulting landslides in the next section. 

6.5. Road widening project: A case of continuous landuse change 

A road widening project by the ministry of road transport and the highway was carried out during the years 2017-2022 

under the project “Rehabilitation and 

upgradation of NH-85 (Old NH 49)” with an 

investment of approx. Five hundred 

thousand USD (380.70 crore Indian 

rupees)(Press Information Bureau, 2020).  

Over the course of five years, 

enormous slope cuts were made to 

increase the width of the road from an 

average of 2.5 to 5 meters to an upgraded 

double lane with an average width of 8 to 

15 meters. Figure 6.4 depicts photographs 

of the NH-85 taken in the field that depict 

massive landslides and prevailing unstable 

conditions as a result of slope cuts made in 

previous years. As an immediate 

consequence of the LULC change, these 

slope cuts triggered a rockslide because the 

area is predominantly composed of highly 

disintegrated rock with very steep 

topography. As a result, the immediate 

collapse of the overhanging rocks was 

caused by the removal of the slope's 

underlying support as a result of the cut 

(Varnes, 1978).  

 

Figure 6.5 (left) compares the landslide susceptibility map for the region with landslides occurring between 2018 and 

2021. The figure's right side depicts slope cuts (SC) and landslides that occurred during this time frame, along with the 

month and year of occurrence. These observations were made on Google Earth Pro using the history viewer tool, and 

Figure 6.4: Field photos of (A) massive rockslide on NH-85 after the slope cuts made in 
year 2020, (B) Uncovered disintegrated rock segments, (C) Higly uncosolidated rock debris 

resting on a solid rock with a drainage opening 
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the final map was made in ArcGIS Pro 3D because slope cuts and landslides were more visible in 3D. It can be 

observed that landslides that occurred in 2020 and 2021 occurred at the same location where slope cuts were made in 

2018 and 2020. The largest landslide shown in 2021 in Figure 6.5 corresponds to the field photograph depicted in 

Figure 6.4 (A), which was the fourth largest landslide in the entire study area but was triggered by a relatively minor 

slope change. However, all susceptibility maps predict a low susceptibility class. Before this project began in 2017, 

Google Earth imagery revealed that the slope conditions were quite stable, as neither a LULC change nor a landslide 

could be observed. Nevertheless, other landslides belong to the high susceptibility classes, implying that the areas were 

susceptible, but slope cuts triggered the landslides. Anyway, we cannot conclude that LULC changes can or cannot 

thwart the predictive ability of the landslide susceptibility map based on this case study, but it is an intuitive example. 

6.6. Chapter Summary 

The chapter aimed at answering the question,  

RQ 4 (a) “How can landcover changes be mapped specifically influencing the landslide occurrences? 

In the study area, small-sized shallow landslides were observed, which are sparsely distributed. Given the limited spatio-

temporal resolution of the datasets and possibility of missing information in the analysis, specifically mapping LULC 

changes influencing landslide occurrences is a challenging task. Therefore, we propose utilisation of high-resolution 

images and conduct field investigations wherever possible. We propose that preparing LULC change inventory with 

possible effective time to trigger landslides can aid the landslide susceptibility mapping, or rather hazard mapping. 

 

RQ 4 (b) Is it possible to establish a relation between the landcover changes and landslide occurrences? Can this relation influence the 

predictive performance of the lanslide susceptibility maps? 

We found that establishing a relationship between LULC changes and landslide occurrences itself is a 

challenging task due to possible time delay between the LULC changes and landslides. It also raises the question of 

how to assess the accuracy of such a relation, because establishing a statistical relation is not enough, given that 

landcover changes can indirectly influence the susceptibility of region(Chen et al., 2019). Futhermore, establishing a 

relation between map’s predictive performance with LULC changes is another layer of difficulty.  

Figure 6.5: Left- Landslide susceptibility map prediction at the case study location, Right- Slope cut (SC) and landslide (LS) triggering maps for 
multiple years (All maps shown in 3D since slope cuts were not easily observable in 2D maps) 
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7. LIMITATIONS, RECOMMENDATIONS AND FINAL 
CONCLUSIONS 

In this chapter, we describe the  limitations encountered and potential solutions to counteract the limitations, followed 

by recommendations based on the study's findings, and ending with the conclusion. 

7.1. Limitations and suggestions 

This section presents the study's limitations, followed by a potential solution to each limitation. 

7.1.1. Landslide inventory generation 

Accurate landslide invetory is anyway necessary but especially when testing the accuracy of the landslide susceptibility 

maps. Otherwise, it hampers the evaluation process and outcomes are of limited use. Basically, “the proof of the pudding 

is in the eating”, in this context, it means that you really know if a map performs well if the landslides occur where you 

predicted them. To ensure high accuracy of the inventory map we utilised deep learning coupled with visual 

interpretation of high resolution satellite images from Google earth pro. 

Lack of training labels has always been a problem for detection methods based on deep learning Since model 

performance is optimal when a massive dataset is available. However, we attempted to increase the number of training 

labels through data augmentation and sample generation using a semi-trained model (not fully optimized). However, data 

augmentation does not introduce variation in the spectral distribution of the dataset but instead replicates it and 

presents it to the model differently. Yet, it helps the model to some extent. In addition, the number of landslides was 

already relatively low, so there was very little room to expand the training sample. However, this was primarily a needle 

in a haystack19 issue (Lotter et al., 2017; d’Ascoli et al., 2019).  

At a later stage of our research, we discovered that our approach of "sample generation using a semi-trained model" 

is actually known as the "active deep learning" method in computer sciences (Gal et al., 2017) but implemented in a more 

extensive and statistically supported manner. The model training begins with a small number of samples, on which the 

model makes predictions on previously unseen datasets, which are verified by an Oracle (often a human expert). This 

procedure is repeated, with the training labels increasing over time. These models frequently result in significant 

reductions in the number of training labels needed to train a deep learning model (and, therefore, cost and time). It 

also actively maximizes the variation in the dataset's spectral distribution so that the model can generalize well to 

previously unseen datasets. As a result, we suggest this approach for dealing with the issue of data imbalance as well as 

low training labels. Consequently, it will also improve the average performance achieved in our research with a best F1 

score of 78.51. 

 Another issue was the spectral mixing of landslides with similar classes, such as urbanized areas and riverine 

sand. We propose treating landslide detection not as a binary classification problem20but as a multi-class classification problem21. 

It is possible to generate training labels for urban and riverine areas independently. If available, we can use DEM with 

the same spatial resolution. However, we indicate that utilizing DEM can aid in reducing false positives such as riverine 

sand, but it will confuse the model to some extent because there are different slope angles within the same landslide 

polygon, and similar slope angles can be found in built-up areas and barren land with similar spectral signatures; 

therefore, the use of the DEM is less effective at distinguishing from surrounding areas. 

 
19 In the context of deep learning, needle in a haystack is a metaphor for the issue of data imbalance between feature 
classes, especially when features have similar spectral and spatial characteristics and very few samples are available 
overall. 
20 Binary classification problem involves distinguishing between two classes. 
21 Multi-class classification problem involves distinguishing between more than two classes. 
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7.1.2. Evaluation of landslide susceptibility maps 

One significant limitation of the study was that only classified landslide susceptibility maps were available, preventing 

us from quantitatively evaluating these maps. This problem limited us to only density-based evaluation metrics from 

an already limited number of evaluation metrics. The continuous map of KU&MTU could not be used for the AUROC 

metric because the factor of safety (FoS) values are not probability values and must be treated as such. Factor of safety 

values below 1 indicate unstable pixels, and changing this arbitrarily as done in the AUROC method wouldn’t make 

sense.  Continuous statistically-based maps should be used for evaluation using metrics such as AUROC, success, and 

prediction rate curves when available. At the same time, classified maps play a role in decision-making and are 

considered a final product; therefore, it is equally logical to evaluate them using the method we presented. As a result, 

we propose that continuous and discrete landslide susceptibility maps are concurrently assessed and their performance 

compared. This comparison of quantitative and qualitative evaluation of maps will provide a better understanding of 

the consistency in susceptibility levels of the classified maps, which will be used in decision-making and planning. 

AUROC values provide a more objective and quantitative picture of the performance, but map classification 

significantly affects the map's performance later (Anagnostopoulos et al., 2015). The comparison could also aid in 

optimizing the classification of susceptibility maps, which is a known issue with a lack of standardization. 

Another issue was the optimization of slope units, which were later used to generate Unique Condition Units. 

Because parameter optimisation is required to generate an optimal set of slope units, it was not possible to generate 

the best possible dataset due to the high computational and time costs. Despite the manual corrections of the slope 

units, we acknowledge that this may have also impacted the evaluation process. We used automatic manipulation 

techniques such as generalisation of slope classes, omission of arbitrary polygons based on polygon area and circularity 

in the UCU generation process, which may have introduced some inconsistencies in the datasets. Unfortunately, due 

to the large number of evaluation units, not all errors could not be manually assessed. We propose that the parameters 

should be optimised for slope unit generation when possible, followed by a geomorphic plausibility check and accuracy 

assessment of slope unit segmentation using evaluation metrics proposed by Alvioli et al. (2016, 2020).  

7.1.3. LULC changes and landslide occurrences 

Limited spatio-temporal resolution and the lack of the required level of detail of LULC information prevented us from 

analysing the impact of LULC changes on the predictive ability of the landslide susceptibility maps. In the context of 

our study area, the occurrence of small-sized shallow landslides requires detailed localized information on  LULC 

changes. In order to assess such a relation, we suggest that LULC change information should be collected at the 

landslide location level along with the time of LULC change. Given that high-resolution images of the past cannot 

always be collected, the spatial and temporal resolution of satellite images will pose a problem. Consequently, 

community-based surveying can supplement the historical LULC change information. Generation of LULC change 

inventories based on the best available resolution of past satellite images, in combination with information on landslides 

and community knowledge can be a path forward. 

7.2. Recommendations   

Suggestions to handle each limitation were given in the previous section; in this section, we recommend certain aspects 

to be considered in the future: 

1. The map producers should describe in an accompanying document the  specific purpose for generating the 

landslide susceptibility map and the end-user who will use it; should be consulted before generation the final 

map. The document should also describe the dataset collection, method selection, the scale of analysis, and 

clear description of the legend classes. 

2. Map producers should communicate with end-users to understand their requirements, and when the map is 

produced; clear communication of the map legend and its practical meaning, how the map can and cannot 

be used to make decisions, as well as the map's associated uncertainties. 



 

63 

3. The map users should be aware of the uncertainties of the landslide susceptibility maps for the application 

they are using it for. So that the user can incorporate these uncertainties to design more robust plans for their 

application.  

4. Detection of landslides using automatic methods must always be accompanied by manual assessment and 

interpretation using high-resolution imagery as a base map. This will prevent false positives from being 

overlooked in the final inventory of landslides. 

5. The method presented in our study to generate Unique condition units (UCUs), can also be used to generate 

mapping units for landslide susceptibility maps, particularly when causal factors are aggregated (mean, mode, 

median). Because slope units have varying slope angles within each unit, their potential to trigger landslides 

varies. Other considerations may include generating UCUs using LULC or a geology class map using the 

same technique. 

6. We evaluated the maps in three distinct scenarios, which revealed that a map might present overall consistent 

susceptibility levels, but the same may not be true for individually defined units or may not present a strong 

relationship. Therefore, evaluations should be conducted in various units (susceptibility classes, districts, 

UCUs) that also indicate the degree to which the map provides reasonable accuracy. 

7. A comparative evaluation of maps can enable decision-makers to select one of the available maps. The 

decision-makers can compare and utilise the consensus information from the two best sources of 

information. However, this is only the case when multiple maps exist for the same region. 

8. LULC change information cannot be retrieved from coarse satellite data; however, other documents available 

with urban planning departments and community knowledge can assist in the collection of LULC data to 

some extent. 

7.3. Final conclusions 

The main goal of the study was to evaluate the predictive power of landslide susceptibility maps posteriorly, despite 

the fact that only classified susceptibility maps were available. As stated previously, the sole purpose of the study was 

to assess the utility and reliability of the landslide susceptibility maps for risk management and land-use planning. 

Accurate information is necessary to develop economically viable mitigation options in countries with limited financial 

resources. The research attempted to develop a method to assess the predictive capability  of classified landslide 

susceptibility maps by utilising landslide inventory generated within the study. We employed state-of-the-art deep 

learning models to generate a robust inventory which can be utilised to evaluate the accuracy of the maps.  

The research sub-objectives were achieved by first (1) assessing the purpose and utility of the landslide 

susceptibility maps by reviewing 100 research papers and interviewing map producers and end-users, followed by (2) 

generating a landslide inventory in the Devikolam area by using MsaU-Net model with an F1- score of 78%, and (3) 

utilised this inventory to assess the three landslide susceptibility maps with  Unique Condition UnitsUCUs for density 

based evaluation. Lastly, (4) we attempted to assess the relation of the predictive ability of the landslide susceptibility 

maps with the LULC changes but ended up highlighting the challenges of establishing such a relationship and providing 

an insight into the complexity of the issue. It presents a method to generate landslide inventory in a region with 

relatively small-sized landslides using freely available satellite and topographic datasets by means of state-of-the-art 

deep learning models with an extensive experimental framework. The research provides a framework to assess 

classified landslide susceptibility maps, which play a role in decision-making, together with a comparative evaluation 

method that decision-makers can use to select maps for their application. The research highlights the significance of 

LULC changes at the same time and the challenges faced in deriving relevant LULC information.  

 We performed a coupled assessment of the usability and reliability of the landslide susceptibility maps to 

provide a comprehensive understanding of their use by their intended end-users. . The research shows that there is an 

urgent need for more clarity on the purpose and utility of landslide susceptibility maps, in order to be utilised by the 

end-users effectively. Unfortunately, much effort is lost in producing maps that are not reliable and that are not 

considering the needs of the map users. Landslide susceptibility map producers should always revisit the study area 

after a number of years, and evaluate the reliability of the map, and make an updated version. This should be done on 

average each five-ten years, or each time after a major landslide-triggering event has occurred. 
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APPENDIX 
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Annexure-2 – Questionnaire and consent form for interview with end-user and 
producers. 

 

End-users perspective on landslide susceptibility maps 

1.      Do you use landslide susceptibility maps? If yes, for which decisions you have to make in your work, it is 
essential to know which areas are dangerous due to landslides. 

2.      Do you consider three susceptibility classes enough? If yes, how do you decide in areas with medium landslide 
susceptibility zones? If not, what do you suggest otherwise, and why? 

a.       Safe (Low): no problems with landslides are expected  

b.      Dangerous (High): Problems expected 

c.       Intermediate (Medium): Maybe landslides are expected 

3.      How do you deal with the situation when landslides occur in areas where nothing is predicted? 

4.      How does a large area in a high susceptibility zone affect planning and governance?  

5.      What are the rule-of-thumb decisions taken in specific situations? For eg. Banning all types of construction 
within 50 meters from channels. 

6.      What information do you require regarding landslide prediction, e.g. when/where a landslide will occur? What 
is more important info- When or Where? 
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7.      How does the map having only initiation information limit its applicability? 

8.      Should runout and initiation information both be in the hazard map? 

9.      What is the mapping unit of the map required for the governance/implementation? (Showing three different 
maps)  

10.    Generally, maps have grid cells as mapping units; how do you make a decision on that? 

11.    How do you communicate your idea/information to someone who will implement that at another level of 
governance?  

 

Map producers on landslide susceptibility maps 

1.     Could you please give a short description of how the map was made? 

2.     What were input data used for the analysis and related uncertainties? 

3.     How was the map classified into different classes, and why were those threshold values? 

4.     What could one expect in these classes in terms of landslide numbers or damage etc.? 

5.     Did you consider the rainfall distribution while generating the map? 

6.     What was the purpose of the generation of this landslide susceptibility map for, e.g., information, statutory, 
engineering etc.? 

7.     Who is intended to use this map, and how can they use it? 

8.     Did you discuss with the end-users for their requirements (required information, use, detailing) with respect to 
the output map? If yes, what was required? 

9.     What were the biggest problems faced when generating the map? 

 

Consent Form 

 
 
I am currently working on my Master's Thesis, which will examine the predictive capability of Landslide 
Susceptibility Maps (LSMaps). A component of the research is an examination of the usability of the LSMaps, 
in which we investigate map producers' perspectives on the purpose and applicability of the LSMaps. It seeks 
to comprehend the specific applications for which these maps are created, as well as the intended user of the 
maps. On the other hand, we investigate map users' perspectives on map usability for the purpose they require. 
The importance of this investigation is to better understand the needs of end users and the purposes for which 
they require them. The type and level of detail required for the various applications for which these maps are 
used. 

Only a few studies have looked into the usability and end-user requirements of these maps. It would 
be more important to gain clarity on what exactly is required from these maps for their application on the 
ground, as well as identify areas where these maps fall short. 
 
Satement of Consent : 
I have read and understood the study information dated [28/02/2022], or it has been read to me. I understand 
that information I provide will be used for research. I understand that personal information collected about 
me that can identify me, such as [e.g. my name or where I live], will not be shared beyond the study team. The 
researcher ensures the privacy of the participants and protects any collected personal data. The researcher will 
follow  General Data Protection Regulation (GDPR)(https://gdpr.eu/) from European Union (2019) and the 
Netherlands Code from Netherlands Enterprise Agency, RVO, (2021) 
I consent to participate in the study. 
 
Tick yes if you agree 
          Yes                  No 

 

Topic Tittle: Analysing the posterior predictive capability of landslide susceptibility maps 
 
Researcher:   
Tanuj Pareek 
MSc student 
Faculty of Geo-Information Science and Earth Observation 
Natural hazards and disaster risk reduction 
University of Twente 
Enschede, The Netherlands 

https://gdpr.eu/
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Annexure-3 –Sample test results of MsaU-Net model 
 

Learning Rate Batch Size Filters Gamma Accuracy Precision Recall F1-Score 

0.001 8 32 0.8 0.9500 0.7598 0.7946 0.7760 

0.001 8 32 0.85 0.9478 0.7505 0.7992 0.7730 

0.001 8 32 0.9 0.9478 0.7689 0.7572 0.7622 

0.001 8 16 0.8 0.9498 0.7693 0.7862 0.7766 

0.001 8 16 0.85 0.9514 0.7801 0.7839 0.7807 

0.001 8 16 0.9 0.9500 0.7595 0.8110 0.7836 

0.001 8 8 0.8 0.9459 0.7534 0.7767 0.7631 

0.001 8 8 0.85 0.9456 0.7358 0.8132 0.7711 

0.001 8 8 0.9 0.9486 0.7797 0.7683 0.7731 

0.001 16 32 0.8 0.9511 0.7810 0.7922 0.7851 

0.001 16 32 0.85 0.9484 0.7504 0.8074 0.7769 

0.001 16 32 0.9 0.9498 0.7693 0.7862 0.7766 

0.001 16 16 0.8 0.9491 0.7750 0.7722 0.7728 

0.001 16 16 0.85 0.9478 0.7546 0.7907 0.7707 

 

 

Annexure-4 –Relative landslide density index (R-Index) 
 

Overall Landslide Density Index using landslide points (P) & landslide polygon area (A) 
 

GSI 

No. 
Susceptibility 
class 

Landslides Susceptibility 
class area 

(Km2) 
Ni ni (P) ni (A) 

ni/Ni 
(P) 

R-index 
(P) 

ni/Ni 
(A) 

R-
index 
(A) Points Area (Km2)  

1 Low  180 0.41 766.52 43.48 20.83 23.86 0.48 13.68 0.55 14.96 

2 Medium  418 0.68 693.72 39.35 48.38 40.06 1.23 35.11 1.02 27.76 

3 High  266 0.61 302.75 17.17 30.79 36.08 1.79 51.20 2.10 57.28 

  Total 864 1.70 1762.99     
∑ ni/Ni 

(P) 
3.50 

∑ ni/Ni 
(A) 

3.67   

Ni: % of susceptibility class area ni: % of landslides in the susceptibility class 

KU&MTU 

No. 
Susceptibility 
class 

Landslides Susceptibility 
class area 

(Km2) 
Ni ni (P) ni (A) 

ni/Ni 
(P) 

R-index 
(P) 

ni/Ni 
(A) 

R-
index 
(A) Points Area (Km2)  

1 Low  264 0.54 835.24 47.36 30.56 31.92 0.65 15.81 0.67 16.73 

2 Medium  278 0.49 397.43 22.53 32.18 29.00 1.43 34.98 1.29 31.96 

3 High  307 0.65 338.77 19.21 35.53 38.28 1.85 45.31 1.99 49.48 

4 
No 
susceptibility 

15 0.01 192.24 10.90 1.74 0.80 0.16 3.90 0.07 1.83 

  Total 864 1.70 1763.68     
∑ ni/Ni 

(P) 
4.08 

∑ ni/Ni 
(A) 

4.03   

            
NCESS 

No. Landslides Ni ni (P) ni (A) 
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Susceptibility 
class 

Points Area (Km2)  
Susceptibility 

class area 
(Km2) 

ni/Ni 
(P) 

R-index 
(P) 

ni/Ni 
(A) 

R-
index 
(A) 

1 Low 0 0.00 11.31 0.64 0.00 0.00 0.00 0.00 0.00 0.00 

2 Medium 157 0.36 391.94 22.08 18.17 21.06 0.82 23.64 0.95 22.26 

3 High 189 0.56 224.36 12.64 21.88 33.14 1.73 49.72 2.62 61.20 

4 
No 
susceptibility 

518 0.78 1147.46 64.64 59.95 45.80 0.93 26.64 0.71 16.54 

  Total 864 1.70 1775.08     
∑ ni/Ni 

(P) 
3.48 

∑ ni/Ni 
(A) 

4.28   

 


