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Definitions 
Term Definition 

Credit risk The risk of a borrower not paying its obligations completely. 

Default A borrower not paying its obligations completely. 

Regressor 𝑥 Predictor variable, referred to as 𝑥. 

Regressor parameter 𝛽 Weight of a regressor, referred to as 𝛽. 

Output variable 𝑦 The response variable PD, can be referred to as 𝑦. 

Intercept 𝛽0 If all (weighted) regressors equal zero, this is the output of a regression 
model. Referred to as 𝛽0. 

Linear model 𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖𝑖 + 𝜖. 

Logistic model 𝑙𝑛 (
𝑝

1−𝑝
) = 𝛽0 + ∑ 𝛽𝑗𝑥𝑗

𝑛
𝑗=1 . 

𝑡-value A test statistic that can be compared to a tail-value of the student’s T 
distributions to conclude on the power of a regressor. 

Null Hypothesis 𝐻0 Commonly, a null hypothesis may be 𝐻0 ∶  𝛽𝑥1
= 0. This hypothesis can 

be rejected or accepted with a certain confidence or power. 

Power The degree to which a regressor can be used to predict 𝑃𝐷. 

𝑝-value The probability of observing a more extreme 𝑡-value under 𝐻0 given an 
observed 𝑡-value.  

Type-𝐼 error Rejecting 𝐻0 while it is true. 

Inference In this research, drawing inference is the science of establishing a 
relationship between a variable of interest 𝑦 and a regressor 𝑥 within a 
certain model. 

Prediction A regression model can be suitable for making predictions. That is, 
observed data 𝒙 is placed in a regression model to estimate e.g. a PD. 

Biased model statistics See biased inference and biased prediction. 

Biased inference Post model selection 𝛽 and 𝑡-value sample distributions can be 
different from their theoretical distributions, possibly resulting in wrong 
estimates of the true value of 𝛽s and wrong conclusions regarding the 
power of regressors. 

Biased Prediction The performance of a model may be artificially inflated by certain 
model selection and performance evaluation techniques. 

Bootstrapping Drawing samples from a finite data set. 

Ordinary Least Squares 
(OLS) min

𝜷
∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

 

Lasso 

min
𝜷

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

+ 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

. 

 

Log Likelihood ℒ(𝜷) = ∑ 𝑦𝑖(ln 𝑦𝑖̂) + (1 − 𝑦𝑖) ln(1 − 𝑦𝑖̂)

𝑖

 

Lasso Logit 
min

𝜷
−ℒ(𝜷) + 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1
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Abbreviations 
Abbreviation Definition 

PD Probability of default. 

LGD Loss Given Default. 

EAD Exposure at Default. 

EL Expected Losses. 

RR Recovery Rate. 

CSMU Credit Model Strategy, Methodology and Monitoring Unit. 

RA Risk Analytics. 

OLS Ordinary Least Squares. 

MSE Mean Squared Error. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
− 𝑦𝑖

𝑡𝑟𝑢𝑒)
2

𝑛

𝑖=1

. 

MAE Mean Absolute Error. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
− 𝑦𝑖

𝑡𝑟𝑢𝑒|

𝑛

𝑖=1

. 

AIC Akaike Information Criterion. 

𝐴𝐼𝐶 = 2𝑘 − ln(ℒ̂) 
BIC Bayesian Information Criterion. 

𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2 ln(ℒ̂) 

LLF (ℒ̂) Log-likelihood function 

𝐿𝐿𝐹 = ∑ 𝑦𝑖(ln 𝑦𝑖̂) + (1 − 𝑦𝑖) ln(1 − 𝑦𝑖̂)

𝑖
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Symbols 
Symbol Definition 

𝛽 Regressor parameter. 

𝜷 A vector containing regressor parameters, e.g. 𝜷 = [𝛽1 … 𝛽𝑝] 

𝛽0 Intercept. 

𝑦 Outcome variable, variable of interest. 

𝑦̂ Prediction of a regression model. 

𝑥 A regressor. 

𝒙 A set of regressors. 

𝒙𝑗 A vector containing data (𝑥𝑗1, … , 𝑥𝑗𝑛)𝑇 with 𝑛 observations, labelled 𝑗 with , 𝑗 =

1,2, … , 𝑝. 

𝑝 Depending on the context, 𝑝 can be a probability or the number of regressors in a data 
set. 

𝜆 A penalty constant in the lasso objective. 

ℒ Log-likelihood of a logistic regression model. 

𝑁 Data size in terms of number of observations. 

𝑛 Sample size with which we draw from 𝑁. 
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Management Summary 
This management summary introduces the problem of biased probability of default (𝑃𝐷) model 

statistics and then discusses an approach to quantifying this bias using computer simulations. 

Thereafter, results of the simulations are discussed, based on which conclusions and 

recommendations are presented. 

Problem 
This research is commissioned by Coöperatieve Rabobank UA, where probability of default (𝑃𝐷) 

models are used to estimate the probability a counterparty will default on a loan. These 𝑃𝐷 models 

are engineered using model selection algorithms. 𝑃𝐷 model statistics (regressor parameters 𝛽 and 𝑡-

values) after model selection, however, are not always aligned with reality, possibly making 

regressors appear to have stronger power than they actually have. This phenomenon is referred to 

as biased inference. This makes it difficult for modellers to conclude on what the true model 

responsible for generating the variable of interest (𝑃𝐷) is, if such a model even exists. Furthermore, 

inflated model performance as a result of 𝑘-fold cross validation is discussed, potentially making it 

more difficult for modellers to estimate the true performance of a model. 

Reliable models are crucial for banking, hence we study how model statistics can be biased after 

model selection and how to reduce or avoid this as best as possible. From this objective we define 

the following research question: In what way, if at all, are the regressor-parameters and model 

performance of credit risk models at Rabobank biased, and how can Rabobank adjust for this bias 

both statistically and managerially? 

Approach 
According to literature, we can opt for a Monte Carlo simulation style approach to recognize biased 

model statistics. To investigate biased inference, we use a model with known parameters to 

generate defaults. Specifying a known model allows for a reference point to which results can be 

compared. Data samples are generated from this known model, on which different combinations of 

model selection algorithms and data strategies can be tested. In order to adjust for biased inference, 

we found that according to the literature, modellers can make use of data splitting, data carving, or 

adding noise to the data during the model selection stage. These data strategies are tested on 

relative performance to each other and to using the same data sample for both model selection and 

model fitting. Furthermore, we found in the literature that using Lasso as a model selection 

algorithm may reduce biased inference, hence it is tested as well. 

To investigate biased model performance, a similar Monte Carlo simulation can be utilized, but the 

data must be such that we have a controlled true metric of how well the data can be used for 

predictive modelling. In order to achieve this we use a method described by Moshontz et al. (2020). 

This method entails generating random data and assigning defaults to this random data with a 

certain probability. So, generated defaults are completely unlinked to the data. This means that the 

true model performance is controlled when we express performance by means of a metric that 

measures the probability of ranking a random positive case higher than a randomly selected 

negative case (the area under the curve (𝐴𝑈𝐶) of the receiver operating characteristic curve), as it 

can be argued that this metric should equal 0.5. On this random data different combinations of 

model selection algorithms and data strategies can be tested. Biased model performance can be 

quantified by observing how the reported 𝐴𝑈𝐶 deviates from 0.5. 
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Results 
Biased inference can occur when using the same data sample for both model selection and fitting 

the selected model. This bias is expressed in terms of irrelevant regressors that are not actual risk 

drivers of 𝑃𝐷 getting selected in a model, as well as being accepted after fitting the selected model. 

A promising solution, based on the results of the experiments, is to split a data sample in a model 

selection part and a model fitting part. The model selection part should have a size of 25% of the 

data sample, and the model selection algorithm should be Forward stepwise. The remainder (75%) 

of the data sample should be used to fit the selected model. Compared to the baseline of using the 

same data sample for Forward stepwise model selection and subsequent fitting, the proposed 

solution reduces the probability of selecting irrelevant regressors in a model by 15% on average. 

After fitting the selected model, the probability of accepting irrelevant regressors in a model is 

reduced by 86% on average. 

Model performance appears to be more inflated when increasing the number of regressors in the 

data set, and/or reducing the size of the data set. We observe that the average model performance 

over 𝑘-folds when using cross validation is least affected by inflated performance, compared to a 

separate test-set outside of the k-folds. The risk of inflated model performance diminishes no matter 

the model selection algorithm or data strategy when enough data is available. Modellers can make 

use of the tables in this research to determine if the risk of inflated model performance is too high. 

These tables show empirical probabilities of model performance being inflated, given the model 

selection algorithm, data strategy, data size, and reported model performances. 

Conclusions 
To answer the main research question: statistics, 𝑡-values as well as 𝛽s, of regressors post model 

selection can be biased such that they inaccurately reflect their true value. As a result, significant risk 

of irrelevant regressors being added to a final model is present when using the same data sample for 

both stepwise model selection and subsequent fitting. Model performance can be inflated as a result 

of model selection, but with sufficient data this problem is insignificant. From the experiments and 

the analysis of the data, the following recommendations on improving the 𝑃𝐷 model selection 

methodology of Rabobank may be formulated: 

- To, first and foremost, be aware of biased inference with 𝑃𝐷 model selection and; 
- To, when developing models, use Forward stepwise in combination with data splitting, 

where 25% of a data sample is used for model selection and the remaining 75% for model 

fitting and; 
- To make use of bootstrapping in practice, as from the results of Forward stepwise combined 

with data splitting we are able to recognize the true model responsible for generating 

defaults when bootstrapping via reported 𝑡-values after model fitting and; 
- To, given enough data, use Forward stepwise combined with data splitting and 5-fold cross 

validation to obtain an estimate of how well the data at hand can be used for predictive 

modelling; a modeller can judge the risk of inflated model performance using the tables in 

this research. 
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1. Introduction 
This research is about biased statistics in regression models as a result of model selection, and how 

Rabobank can be subject to different types of bias as a result of using model selection algorithms for 

constructing probability of default (PD) models. This chapter is structured such that we first establish 

the necessary background information on theory of regression, inference, and model selection 

(section 1.1) and on Rabobank (section 1.2) to finally introduce the problem by means of a casus-

description (section 1.3). 

1.1 Introductory Background Theory 
In this section we first give an introduction to linear (section 1.1.1) and logistic (section 1.1.2) 

regression models. Thereafter (section 1.1.3) the idea of statistical inference is discussed as well as 

model selection. Lastly (section 1.1.4) an experiment is conducted to illustrate how establishing 

statistical inference after model selection can be problematic. 

Rabobank, as part of a set of financial services, lends money to clients ranging from other financial 

institutions and corporate businesses to retail clients. Needless to say, money-lending involves the 

risk that the counterparty goes into default, thereby potentially leaving Rabobank with losses. This 

risk is defined as credit risk. Quantifying credit risk can be done with credit risk models, which are, 

for example, used in estimating the probability of default (PD): the probability that the counterparty 

does not pay back the loan. Credit risk models may be regression models such as linear and logistic 

regression models for drawing inference and estimating default probabilities. Needless to say, for 

both the bank and its customers it is crucial that these models are reliable.  

1.1.1 Linear Regression 
The idea of simple linear regression is to estimate a value 𝑦 given an input 𝑥. The general form of a 

simple linear regression formula 𝑦 = 𝛽0 + 𝛽𝑥 + 𝜖 shows this relationship clearly: imagine a two 

dimensional graph (Figure 1) with a horizontal 𝑥-axis and a vertical 𝑦-axis where observations in 

terms of (𝑥, 𝑦) coordinates are plotted, a line passes through these coordinates with regressor 

parameters 𝜷 such that, e.g., the sum of the squared distances between the line and the 

observations, called residuals, is minimized by e.g. linear algebra. In the general form 𝜖 is a random 

error term that is irreducible. 
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The output of a linear regression model may be seen as an estimate for 𝑦 conditional on the value of 

regressor(s) 𝒙. If multiple regressors 𝒙 seem to predict the variable of interest 𝑦 the general form, 

called multiple linear regression, looks like: 𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖𝑖 + ϵ. 

1.1.2 Logistic Regression 
A logistic regression model can be used is to estimate the probability that an observation belongs to 

the positive outcome, and can therefore be used in binary classification problems. Predicting 

defaults can be a binary classification problem, as a client defaults on a loan or does not. 

When 𝑃𝐷 is defined as a default probability (PD), 𝜷 as the regressor parameters, 𝛽0 as the y-axis 

intercept, and 𝒙 as the regressors 𝑥𝑖, 𝑖 = 0, … , 𝑝. Then the general form of a logistic regression 

model is 

ln (
𝑃𝐷

1 − 𝑃𝐷
) = 𝛽0 + ∑ 𝛽𝑗𝑥𝑗

𝑝

𝑖=1

. 

Notice the right-hand side is equivalent to that of linear regression but the left-hand side is a 

transformation of the 𝑃𝐷. Obtaining 𝑃𝐷 values is performed via the following transformation: 𝑃𝐷 =
1

1+𝑒
−(𝛽0+∑ 𝛽𝑗𝑥𝑗

𝑝
𝑖=1

)
. Details of logistic regression are discussed in the next chapter.  

1.1.3 Inference & Model Selection 

1.1.3.1 Statistical Inference and t-Values to Measure Power 

Deciding which regressors to include in a linear or logistic model can be done in a number of ways. 

First, there is the classical way where we hypothesize a relationship between the outcome variable 𝑦 

and a regressor 𝑥1. This hypothesized relationship can, e.g., be linear or logistic. To test if regressor 

Figure 1: An example of a linear model (the red line) based on natural 
observations of (𝑥, 𝑦) coordinates (the blue dots). 



3 
 

𝑥1 explains the outcome variable 𝑦 a null hypothesis 𝐻0 is defined as 𝐻0 ∶  𝛽𝑥1
= 0. Notice that if 𝐻0 

is not rejected then regressor 𝑥1 is insignificant in explaining the outcome variable 𝑦.  

For illustrative purpose, assume a linear model is developed and 𝛽𝑥1
 is estimated using data. With 𝑛 

data points, we transform this estimate of 𝛽𝑥1
, denoted as 𝛽𝑥1

̂ , in a 𝑡-value as follows: 

𝑡𝛽𝑥1
=

|𝛽𝑥1
̂ | − 𝐻0(𝛽𝑥1

)

𝑆𝐸(𝛽𝑥1
̂ )

=
|𝛽𝑥1

̂ |

√
1

𝑛 − 2
∗

∑ (𝑦𝑖 − 𝑦𝑖̂)
2

𝑖

∑ (𝑥𝑖 − 𝑥̅)2
𝑖

 

where 𝐻0(𝛽𝑥1
) is the value of 𝛽𝑥1

 under 𝐻0 and 𝑆𝐸(𝛽𝑥1
̂ ) and the standard error of the estimate 𝛽𝑥1

̂  

(Zach, 2021). Based on 𝑡𝛽𝑥1
 the significance of the regressor parameter estimate 𝛽𝑥1

̂  can be 

determined by comparing it to the 1 −
𝛼

2
 percentile tail value of a continuous distribution. In the 

case of linear relationships this is the 𝑡 distribution (see e.g. Federighi, 1959), with degrees of 

freedom 𝑑𝑓 equal to the number of observations minus two, and where, commonly, significance 

level 𝛼 = 5%. If 𝑡𝛽𝑥1
≥ 𝑡𝛼=5%,𝑑𝑓=𝑛−2 then 𝐻0 can be rejected and we can conclude that regressor 

𝑥1 explains the outcome variable 𝑦. Intuitively, if 𝑡𝛽𝑥1
 is much larger than the threshold of 

acceptance 𝑡𝛼=5%,𝑑𝑓=𝑛−2 then we speak of a regressor that has strong power. Generally, the smaller 

the value of 𝛼 exceeded the stronger the inference, because 𝛼 measures the maximum probability 

of the type-I error: the probability of 𝐻0 being correct given the data; also referred to as a 𝑝-value. In 

the case of testing logistic relationships, the distribution the test statistic is compared to is the 

standard normal curve and is sometimes referred to as a 𝑧-value. 

It must be noted that the standard error, and thus the 𝑡-values, of regressors in multiple linear 

regression (MLR) analyses depend on the inclusion of other regressors in the analysis (see e.g. The 

Pennsylvania State University, n.d.). Formulae for the standard error with multiple linear regression 

are implemented in statistical software such as the statsmodels1 Python package, and for the sake of 

brevity only the concept of standard error must suffice: the estimate 𝛽𝑥1
̂  is sample-dependent, 

meaning that if we perform the above statistical test on another data-sample the estimate 𝛽𝑥1
̂  will 

be different, 𝑆𝐸(𝛽𝑥1
̂ ) describes this uncertainty and adjusts 𝑡-values accordingly. This concept holds 

no matter the type of regression, simple, multiple or logistic. 

Concluding, the phenomenon of regressor 𝑥1 explaining the outcome variable 𝑦 significantly given a 

linear or logistic model is referred to as statistical inference. The above procedure can be performed 

to verify hypothesized relations between regressors and outcome variables for both linear and 

logistic relations. 

1.1.3.2 Model Selection 

When dealing with many regressors in a dataset statistical algorithms can be used to find 

hypothesized relationships for us. That is, statistical algorithms can select the models for us. This 

common practice is named model selection.  

Suppose we have data with 𝑝 regressors and an outcome variable 𝑦. Here, 𝑝 can be a very large 

number. One model selection algorithm could be to generate and compare all the possible different 

models, this is called best-subset selection. This method of model selection may take an 

unreasonable amount of time (discussed in section 2.2.2.3), so another method could be to start 
 

1 Statsmodels v0.13.2: https://www.statsmodels.org/stable/index.html  

https://www.statsmodels.org/stable/index.html
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with a model that has one regressor, and keep adding regressors until no improvements can be 

made, this is called forward-stepwise model selection. Numerous model selection algorithms exist, 

the relevant of which will be discussed in the next chapter. 

1.1.3.3 Model Performance 

The definition of a best model that is the result of a model selection algorithm depends on the type 

of problem and thus on the type of regression. For linear regression, an example of a common 

performance metric is the mean squared error (MSE) which squares and summates every prediction 

error and is calculated by: 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
− 𝑦𝑖

𝑡𝑟𝑢𝑒)
2

𝑛
𝑖=1 . 

An example of a common performance metric for logistic regression models, when dealing with 

binary classification problems, is the area under the receiver operating characteristic curve (AUC), 

which is a value between 0 and 1 that is an estimate of how well a model can distinguish between 

binary outcomes as the AUC is an estimate of the probability of a model predicting a higher score for 

an arbitrarily selected positive case than for an arbitrarily selected negative case (Fawcett, 2006; 

Moshontz, Fronk, Sant'Ana & Curtin, 2020). 

1.1.4 Biased Inference After Model Selection 
One can imagine searching for models, iteratively comparing the generated models based on 

suitable performance metrics, and selecting the best one. However, when researching which 

regressors explain the variable of interest best using a model selection algorithm, the search (the 

model selection algorithm) that such a conclusion is the result of must be taken into consideration 

before concluding on the power of a regressor, as we will see in this section. Recall that power is 

defined as how certain we are of the relationship between a regressor and the output variable, and 

a measure of power is a 𝑡-value (section 1.1.3.1). 

Conditioning on the fact that the observed power of regressors depend on the model selection 

algorithm can be referred to as the science of establishing statistical inference after model 

selection. Berk, Brown & Zhao (2010) show that when model-selection methodologies, such as the 

forward-stepwise algorithm, where regressors are iteratively added to a model if the performance 

increases significantly, are used for building linear models strangely shaped mixed-sampling 

distributions of regressor parameters and corresponding 𝑡-values can arise. This occurs when the 

selected model is fitted using the same data it was found with. As a result, regressors may show 

inflated power. 

To illustrate the phenomenon of biased regressor parameters, observe Figure 2 that is the result of 

an experiment, designed after Berk, Brown & Zhao (2010), using a forward stepwise algorithm. 

Pseudo code for the experiment is given in Table 1. The experiment can be summarized as follows: 

data from a known model is sampled a thousand times and on each sample a forward stepwise 

model selection algorithm is used, the outcome (i.e. the selected model) of this algorithm is then 

fitted to find final regressor parameters and corresponding 𝑡-values of a particular regressor if it is 

present in the set of selected regressors. 
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Table 1: Model selection algorithm on data from a known model. 

Pseudo-code for generating a 𝑡-value sample distribution (after Berk, Brown & Zhao, 2010) 

#A linear model is defined 
𝑦 =  𝛽0 + 𝛽1𝑤 + 𝛽2𝑥 + 𝛽3𝑧 + 𝜖 
#Parameters are set (intercept, w, x, z) 
𝛽0 = 3,  𝛽1 = 0, 𝛽2 = 1 ,  𝛽3 = 2 
#Experiment parameters are defined 
𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 1000 
𝑠𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒 = 200 
#The multivariate normal data are distributed as follows: 
𝑚𝑒𝑎𝑛 = [0, 0, 0],𝑐𝑜𝑣 = [[5,4,5][4,6,5][5,5,7]] 
#The error term 𝝐 is defined as 
𝜖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 10) 
 
#In a for loop over 𝒔𝒂𝒎𝒑𝒍𝒆𝒔, data is sampled from the multivariate normal 
distribution. The forward model selection algorithm is used on this data sample. 
Regressor parameters are found using ordinary least squares regression provided by 
the statsmodels library. 
 
For 𝑖 in 𝑟𝑎𝑛𝑔𝑒(𝑠𝑎𝑚𝑝𝑙𝑒𝑠): 

#Draw a sample, the result is a matrix with 4 columns representing regressors w, x, 
z, and a constant 𝛽0. 
𝑋 =  𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒_𝑛𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛, 𝑐𝑜𝑣, 𝑠𝑖𝑧𝑒 = 𝑠𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒) 
𝑋[′𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡′] = 1 
#Generate error array 
𝜖 =  𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑛𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  10, 𝑠𝑖𝑧𝑒 =  𝑠𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒) 
#Compute 𝑦 vector from 𝑋 and 𝜖 
𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑠𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒): 
        𝑦. 𝑎𝑝𝑝𝑒𝑛𝑑(𝛽0 + 𝛽1𝑤[𝑖] + 𝛽2𝑥[𝑖] + 𝛽3𝑧[𝑖] + 𝜖[𝑖]) 
#Use the model selection algorithm to find a model 
𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑀𝑜𝑑𝑒𝑙 = 𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝑋, 𝑦, 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 𝑀𝑆𝐸). 𝑟𝑢𝑛() 
#Store set of regressors selected by the model selection algorithm 
𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑀𝑜𝑑𝑒𝑙. 𝑟𝑒𝑝𝑜𝑟𝑡[′𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠′] 
#Fit a linear model to the sample using the selected regressors. Store 𝒕-values of 
regressor 𝒙 
𝐿𝑖𝑛𝑒𝑎𝑟𝑀𝑜𝑑𝑒𝑙 = 𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑦, 𝑋[′𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠′]). 𝑓𝑖𝑡() 
𝑡𝑉𝑎𝑙𝑢𝑒𝑠. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑙𝑖𝑛𝑒𝑎𝑟𝑀𝑜𝑑𝑒𝑙. 𝑡𝑣𝑎𝑙𝑢𝑒𝑠[′𝑥′]) 

#Plot the 𝒕-values in a histogram 
𝑃𝑙𝑜𝑡𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚(𝑡𝑉𝑎𝑙𝑢𝑒𝑠) 
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The same procedure (Table 1) without forward model selection is performed using the same method 

of data generation, with an equal number of samples and an equal sample size. A linear model is 

fitted using the known model (i.e. regressor 𝑤 is left out of the data used to fit a linear model, 

because its 𝛽 equals 0) and the 𝑡-values for regressor 𝑥 reported by the statsmodels software are 

stored and plotted. 

A thousand samples were drawn and hence a thousand models were selected (Table 1), regressor 𝑥 

was part in 581 of the thousand selected models, the result is visualized in Figure 2. Notice that the 

𝑡-value sample distribution of the forward stepwise model selection based on the MSE of models is 

exhibiting symptoms of bias. That is, the whole 𝑡-value histogram is moved to the right and is 

bimodal, it contains more extreme 𝑡-values in contrast to the true 𝑡-values. 

  

Ultimately, a 𝑝-value that describes the probability that a regressor is insignificant belongs to a 𝑡-

value. As discussed, a common threshold is a maximum type-I error of 0.05, this is also called a 

significance level of 0.05. Based on the experiment of Table 1, conditional on Rabobank forward-

stepwise 𝑀𝑆𝐸 accepting 𝑥 in a model, the empirical probability of accepting regressor 𝑥 as 

significant is 0.70. The empirical probability of accepting regressor 𝑥 as significant when the model is 

known is 0.58. Now the idea of biased inference after model selection becomes clear. 

Berk, Brown & Zhao (2010) state that the shape of these sampling-distributions determine the 

severity of potential consequences in power, and are influenced by (i.) the model selection directly, 

(ii.) the in- and exclusion of other regressors in the linear model, (iii.) the dispersion of the regression 

parameter itself, and (iv.) the interactions of these three mechanisms. 

Concluding, drawing inference from regressors in models must, somehow, take into consideration 

the search that is model selection, in the sense that models have a certain probability of being 

selected. This is difficult to achieve because the value of regressor parameters 𝜷, and thus of their 

corresponding 𝑡-values, depend on complex interactions of the discussed mechanisms.  

Figure 2: Output of an experiment to visualize bias after Berk, Brown & Zhao (2010). The histograms in blue are the 
reported values after model selection and fitting, the density functions in orange are the results on fitting the known model. 
On the left a bimodal 𝑡-value sample distribution can be observed, with false power as a consequence. On the right, a 
skewed sample distribution of 𝛽 can be observed, resulting in a wrong estimate of the true 𝛽. 
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1.2 Scope & The Context of CSMU 
The Credit Model Strategy, Methodology and Monitoring Unit (CSMU) is part of the Risk Analytics 

(RA) department of Rabobank. The topic of this research fits in the CSMU mission, which is to 

maintain trustworthy and valuable models for the bank’s decision making of Rabobank’s customers. 

Identifying and correcting for statistical bias in regression models, which are used for decision 

making, aligns with this mission. 

In more detail, CSMU delivers three services:  

- Model monitoring and back-testing, which involves assessing and reporting model 
performance and;  

- Model strategy and control, which involves making decisions regarding the future model 
landscape and;  

- Model methodology, which involves developing methodologies, policies and procedures 
related to, for example, credit risk modeling.  

Credit risk management should take into consideration the (possibility of) bias in models. The task of 
identifying and correcting for bias is an example of model methodology, and may have implications 
for model strategy. There are procedures available within the bank that elaborately describe how 
credit risk models should be developed. From a CSMU perspective, it is important to understand if 
the policies that are in place result in biased credit risk models. Hence this thesis focusses on 
identifying this bias and how to correct for this when developing a credit risk model instead of model 
development itself. 

1.3 Casus Description 
Banking is largely about modelling, profitable banking is about understanding the unreliability of 

models. At Rabobank this is no different, and to ensure a tailored solution we must establish, from 

the current situation, a problem. From this problem follows a research goal. Based on this research 

goal follows a plan of approach, containing research questions. 

1.3.1 Situation and Problem 
When a client, being a financial institution, a corporate client, a retail client, or any other client, 

applies for a loan, the applicants data is input to a credit risk model. This credit risk model estimates 

the probability that the client will default on the loan applied for. At Rabobank, these PD models can 

be in the form of logistic regression models, which contain specific (classified) regressors. These 

regressors are selected using a combination of linear and logistic regression techniques after which 

inference can be established from 𝑡-values. 

After regressors are selected, for example, we want to estimate a PD based on the educational 

attainment of the applicant, weights must be established in order for the model to be useful for 

drawing inference or prediction. These weights are the result of complex interactions of (i.) the 

model selection directly, (ii.) the in- and exclusion of other regressors in the linear model, (iii.) the 

dispersion of the regression parameter itself, (iv.) and interactions of these three mechanisms (Berk, 

Brown & Zhao ,2010) 

The idea of biased inference after model selection is as follows: a model is constructed using a 

model-selection methodology and regressor parameters are subsequently found, but these 

parameters are dependent on, at least, the data-sample and, as we have demonstrated in section 

1.1.4, on the model the regressor is present in. This makes it unclear what the true value of a 
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regressor parameter should be, if such a value exists, from which inference is drawn and models are 

constructed. 

Then, when a model is the correct one, assuming a correct model exists that accurately describes 

how the real-world data is actually generated, going with the average results of the sample 

distribution can result in systemic bias (Berk, Brown & Zhao ,2010). Such bias, as discussed, is 

difficult to identify due to the shape of the distribution being the result of interactions of multiple 

mechanisms. Banks have to cope with this phenomenon somehow otherwise mismanagement may 

occur by relying too much on models, and a logical starting-point is to identify, and later correct for, 

this bias. 

1.3.2 Research Goal 
The goal of this research is to identify and correct for bias in model statistics that may occur with 

credit risk model selection and, based on this bias, give Rabobank advice on credit risk management 

improvements. 

1.3.3 Plan of Approach and Research Questions 
In order to reach the research goal (section 1.3.2) a plan containing deliverables and research 

questions is made. Here, the research is split into different parts. First, we define the main research 

question: In what way, if at all, are the regressor-parameters and model performance of credit risk 

models at Rabobank biased, and how can Rabobank adjust for this bias both statistically and 

managerially? 

In the second chapter, a literature review is conducted where the goal is to answer the following 

sub-questions: 

- According to the literature, how to identify bias in model statistics for linear regression? 

- According to the literature, how to identify bias in model statistics for logistic regression? 

- According to the literature, how may Rabobank correct for bias in model statistics for linear 

– and logistic regression models? 

In the third chapter, we synthesize the data found in chapter two such that a method to identify bias 

in (selected) credit risk models for Rabobank can be constructed. In other words, this is a paper-

model or methodology. The research question can then be: 

- What does a conceptual model to find bias in selected Rabobank credit risk models look like, 

and which techniques that are expected to reduce this bias should be added to this 

conceptual model? 

In the fourth chapter, we conduct experiments using the model from chapter three using Rabobank 

data. Eventually, these experiments yield the results based on which conclusions to the main 

research question are formulated. A suitable research question for this chapter: 

- Based on the conceptual model of chapter three, how are regressor parameters and model 

performance of credit risk models biased as a result of Rabobank model selection algorithms 

and how are these model statistics biased as a result of the hypothesized solutions? 

In the fifth chapter we analyse the results of these experiments, and based on these results, in 

chapter seven, we draw conclusions and give recommendations such that the main research 

question, defined above, is answered. The chapter in-between, chapter six, discusses the methods 

used and stress tests the solution to see how well generalized it is. An overview of this plan is given 

in Table 2 below. 
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Table 2: Plan of Approach Overview 

Ch. Title Deliverable and/or Questions Method 

1 Introduction Plan of approach, research goal, research questions. Background → 
Problem → Goal → 
Approach 

2 Literature - According to the literature, how to identify 
bias in model statistics for linear and logistic 
regression? 

- According to the literature, how may 
Rabobank correct for bias in model statistics 
for linear and logistic regression models? 

This chapter, furthermore, is structured such that it 
places the problem and theory in context of 
Rabobank. 

Literature review. 

3 Synthesis A method to identify bias in (selected) credit risk 
models for Rabobank. 

- What does a conceptual model to find bias 
in selected Rabobank credit risk models look 
like, and which techniques that are expected 
to reduce this bias should be added to this 
conceptual model? 

Data-analysis from 
chapter 2. 

4 Experiments An experiment in e.g. Python that identifies bias in 
selected credit risk models. I.e. executing the 
chapter 3 plan. 

- Based on the conceptual model of chapter 

three, how are regressor parameters and 

model performance of credit risk models 

biased as a result of Rabobank model 

selection algorithms and how are these 

model statistics biased as a result of the 

hypothesized solutions? 

Implement the 
model from chapter 
3 in Python. 

5 Analysis of 
Results 

A written chapter on the outcome of the 
experiments in the context of improving credit 
management practices by reducing bias. 

N.A. 

6 Validation of 
solution 

To address the shortcomings of the method used, 
and propose topics for future research that may 
solve these problems. Furthermore, we test the 
solution to see how generalized it is. 

Simulation model 
and data analysis. 

7 Conclusions 
& 
Recommend
ations  

Based on the results, we formulate conclusions and 
recommendations that are expected to improve the 
credit risk management accuracy at Rabobank. 
 
An answer to the main question 

- In what way, if at all, are the regressor-
parameters of credit risk models at 
Rabobank biased, and how can Rabobank 
adjust for this bias both statistically and 
managerially? 

is given. 

N.A. 
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2. Theory 
In this chapter we lay the foundation of this research by conducting a literature study. Different 

facets and parts of the problem of identifying and correcting for statistical bias are discussed. 

Furthermore, an attempt is made at structuring this chapter such that it gives the problem context 

by linking theoretical concepts to real-world practice at Rabobank.  

We do this by first studying how different types of regression may be used in relevant credit-risk 

models (2.1). Based on the identified relationship between credit risk management and regression 

models, we study linear regression theory (2.2) and logistic regression theory (2.3). Lastly, the 

chapter is concluded by answering the research questions of chapter 2 given in Table 2. 

2.1 Quantitative Credit Risk Management 
The goal of this research is to identify, and correct for, bias in regressor parameters that may occur 

with model selection, and, based on this bias, give Rabobank advice on credit risk management 

improvements. The core of credit risk management are credit risk models. Such models, as we will 

see in coming sections, may depend on regression techniques. In this section we identify different 

credit risk models that may be relevant at Rabobank.  

2.1.1 Credit Risk Models 
Being creditworthy is defined by Merriam-Webster2 as the extension of credit being justified by 

being financially sound enough. In other words, the creditor is financially healthy and is expected to 

service its debt with interest without problems. Credit risk models aim at estimating the 

creditworthiness of Rabobank’s borrowers. There are different ways to do so. 

In a book on credit risk by the Oesterreichische Nationalbank (OeNB) and the Financial Market 

Authority (FMA) (2004), models are divided into (i.) heuristic models, (ii.) statistical models, and (iii.) 

causal models. Heuristic models are based on practical experience, and often quite fuzzy due to 

their subjective nature. Statistical models aim at verifying hypotheses (e.g. a hypothesized 

relationship) on the basis of empirical data, using statistical techniques. Regression models fit in this 

realm. Lastly, causal models use financial theory, such as option pricing models, to establish 

creditworthiness. It must be noted that combinations of the different types exist, e.g. the Z-score 

developed by Altman (1968) uses statistical techniques and financial theory to develop a simple 

linear formula with different financial ratios as input to compute a number that is a measure of 

creditworthiness. 

The OeNB & FMA (2004) discuss the use of logistic regression models in predicting binary outcomes 

of creditors being solvent enough to pay their obligations, which is referred to as a probability of 

default (PD) model. PD models are a subset of credit risk models, and are discussed in the next 

subsection. Other credit risk models are discussed in subsections thereafter. 

2.1.1.1 PD Models 

A rating of creditworthiness, according to the OeNB & FMA (2004), must be expressed as a default 

probability. PD models are designed to estimate the probability that a borrower will default on the 

loan, and there are different techniques present in the literature. 

 
2 https://www.merriam-webster.com/dictionary/creditworthy  

https://www.merriam-webster.com/dictionary/creditworthy
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Logistic Regression Models 

Examples of logistic regression to estimate PDs are present in literature. Examples include predicting 

defaults of consumers by Costa e Silva, Lopes, Correia & Faria (2020), predicting defaults of 

Norwegian corporates based on microeconomic data by Westgaard & van der Wijst (2001), and 

using a version of Lasso (Tibshirani, 1996), which penalizes the presence of regressor parameters in a 

logistic regression model, suitable for logistic regression to find variables that are predictive of 

default probabilities by Blaskó (2019). Wang, Xu & Zhou (2015) show that the lasso for logistic 

regression also works when placed in a more advanced statistical algorithm that solves the problem 

of having unbalanced data (i.e. many negative outcomes and few positive). 

Linear Regression Models 

Linear regression techniques can be used in model selection by analysing how regressors explain an 

outcome variable. That is to say, linear regressor techniques can be used for establishing statistical 

inference. Although inference does not necessarily yield default probabilities, the variables with 

strong power, i.e. low 𝑝-values, may be selected to model PDs using other models. Hence, from an 

holistic point-of-view, linear regression models may be considered when studying credit risk 

management. 

Machine Learning Models 

Machine learning (ML) models such as random forest algorithms and neural networks can be useful 

for predictive modelling. When used for finding inference, by hard-coding an ML model we know 

how relevant regressors can get selected. These techniques, however, are generally more complex 

than linear and logistic regression. Identifying bias in regressor parameters, or bias in any aspect of 

the outcome function, for ML models is therefore left out of scope: we lay a foundation by analysing 

linear and logistic regression models in this research because of their relatively simple structure, 

which may later be built upon further by analysing bias in more complex ML models. 

Causal Models 

Default probabilities for corporates may also be retrieved by means of causal models, examples of 

which are given in Hull (2018, pp. 431-455). One method Hull describes is based on hazard rates, the 

probability of default within a relatively short period of time, which are determined from historical 

cumulative default probabilities, published by e.g. Moody’s (Figure 3). 

Hazard rates may also be calculated from credit spreads (e.g. credit default swaps spreads, bond 

yield spreads, or asset-swap spreads). Credit spreads are excess returns on a corporate bond as 

compared to a similar risk-free bond (Hull, 2018, p.442), and example of which could be to subtract 

the premium paid on a credit default swap from a corporate bond because such a structure would 

be approximately risk-free. Note that the recovery rate (RR) of the corporate bond must be known 

Figure 3: An example of Moody's Average Cumulative Issuer-Weighted Default 
Rates. Taken from Hull (2018, p.434). 
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or estimated for such methods to be theoretically sound, as an estimate for the hazard rate 𝜆̅, given 

a credit spread 𝑠(𝑇) where 𝑇 is the maturity (end-date) of the bond, is defined as  𝜆̅ =
𝑠(𝑇)

1−𝑅𝑅
.  

One option to estimate RRs, because they are a percentage value of the face-value of the bond, 

could be (logistic) regression models that are based on historical RRs. If one were to estimate RRs 

using regression techniques then a model needs to be selected and thus the RRs may be subject to 

bias because the regressor parameters may be subject to bias. 

Lastly, PDs can theoretically be estimated by modelling a company’s equity as an option on the 

assets of the company (Merton, 1974); doing this requires estimates of the value of equity and 

assets at different times, as well as the volatility of these values. And thus, regression may indirectly 

affect the outcome of this model if regression models are used in estimating these values and their 

volatilities. 

2.1.1.2 From EAD and LGD to Expect Losses 

In managing a portfolio of loans it may be useful to know the Exposure At Default (EAD). The 

exposure at default is typically expressed as an amount of money (GARP, Apostolik & Donohue, 

2015), and represents the exposure of the lender when the counterparty defaults. An example of 

EAD modelling is 𝑘-factor modelling, where the exposure at the time of default may be estimated by 

e.g. using regression techniques. 

Loss Given Default (LGD) may be expressed as a percentage and can be modelled as 1 − 𝑅𝑅. As 

discussed in section 2.1.1.1, the 𝑅𝑅 is the expected fraction of the face value of e.g. a bond that the 

lender can still make a claim on and receive. So, the LGD is the fractional expected losses incurred 

conditional on a default. Ultimately, in portfolio management, the expected losses (EL) may be 

calculated based on the LGD (and thus the RR), the EAD, and the PD as follows: 𝐸𝐿 = 𝑃𝐷 ∗ 𝐿𝐺𝐷 ∗

𝐸𝐴𝐷. We established the relationship between PD, EAD, and LGD models and what they can be 

ultimately used for: calculating expected losses.  

It may be interesting to see how 𝑅𝑅s can be modelled by means of regression techniques, but these 

are out of the scope of this research and hence will not be further researched. To maintain a 

manageable research scope, EAD models will not be further researched too. 

2.1.2 Applications of General Regression Models in Credit Risk Management 
In section 2.1 we studied different quantitative credit risk management models. For this research the 

relevance lies in how these models may dependent on regression techniques. In the domain of PD 

models these dependencies are mostly present. We identified that logistic regression models are 

commonly used in estimating PDs. Furthermore, linear regression models may be used to draw 

inferences on factors that influence PDs. Causal models such as predicting PDs from credit spreads 

or equity prices may indirectly be affected by said regression techniques when assumptions are 

avoided, and statistical models to estimate e.g. recovery rates, asset-values or volatilities are 

preferred. 

Concluding, statistical regression models can, and are, used in (quantitative) credit risk management 

to make predictions and draw inferences; thus we study these models, how they work, and how 

biases arise in the next sections.  

2.2 Linear Regression 
Within Rabobank linear regression techniques can be used for determining regressors in PD models. 

In this subsection we first explain how linear regression techniques can be used for model selection. 

Then, we discuss the model selection algorithms used by Rabobank. Based on this we discuss how 
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bias in regressor parameters may occur and be recognized. Lastly, we formulate potential solutions 

to this phenomenon found in literature. 

Within Rabobank linear regression techniques can be used for determining regressors that may be 

used in PD models. That is, from a long list of potential regressors a few can be selected that seem to 

be related to PD rates. In this section we discuss model selection algorithms suitable in combination 

with linear regression (section 2.2.1), cross validation for model fitting (section 2.2.2), how bias in 

linear regression model statistics can be recognized (section 2.2.3), and what potential solutions may 

be in resolving this bias (section 2.2.4). 

2.2.1 Linear Regression Techniques for Model Selection 
Recall, from section 1.1.1, the general form of a multiple linear regression model: 𝑦 = 𝛽0 +

∑ 𝛽𝑖𝑥𝑖𝑖 + ϵ.  Researchers may formulate a question and then develop a linear model to test for 

inference. This, in the context of predicting defaults, could have been, e.g., to study the relationship 

between PD and educational attainment. The researcher may then set the null-hypothesis 𝐻0: 𝛽 = 0 

and compute 𝑝-values, based upon which 𝐻0 can be rejected with a particular significance 𝛼 of, say, 

5%. This is one method of model selection, where the relationship of one regressor to PD is tested, 

after which it the regressor may be used in an actual PD model. 

Storing data and measurements have become easier, and statistical algorithms are used to find 

hypothesized relationships for us. That is, statistical algorithms select the models for us. This 

common practice is named model selection, which we will now discuss. 

2.2.2 Model Selection Algorithms 
Commonly, model selection algorithms iteratively generate and compare models. Comparisons are 

based on model performance statistics such as, as discussed, the MSE. Different performance 

statistics for model comparisons exist, as well as different model selection algorithms. 

2.2.2.1 Linear Model Performance Statistics 

Mean Squared Error & Mean Absolute Error 

We start with a performance statistics that we discussed earlier: the mean squared error (MSE) of a 

linear model. When a linear model is established it can be used to make predictions. When we think 

of the error in MSE as the difference between the predicted value of the outcome variable 𝑦 and its 

observed actual value, the MSE becomes clear from its formula:  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
− 𝑦𝑖

𝑡𝑟𝑢𝑒)
2

𝑛

𝑖=1

. 

It can be seen from the formula above that the error for each observation is squared and averaged. 

Another similar idea is not to square the error but to take the absolute value of it. This is referred to 

as the mean absolute error (MAE) and can be calculated as follows: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
− 𝑦𝑖

𝑡𝑟𝑢𝑒|

𝑛

𝑖=1

. 

Akaike Information Criterion & Bayesian Information Criterion 

MSE and MAE do not account for overfitting of the model, that is to say in short that, given some 

data sample, the MSE and MAE are likely to decrease in value if more regressors are added to the 

model. Then, when such an overfitted model is presented new data the predictions are highly 

inaccurate because the model is fitted too heavily on observed data. 
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Penalizing the number of regressors in a model while rewarding how well a model predicts the 

observed value of the outcome variable may be preferred. The Akaike information criterion (AIC) 

and the Bayesian information criterion (BIC) can do that. The AIC and BIC are computed by 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(ℒ̂) 

and 

𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2 ln(ℒ̂) 

respectively, where 𝑘 is the number of regressors in a model, 𝑛 is the total number of data points 

that are used for developing a model and ln(ℒ̂) is the natural logarithm of the maximum likelihood, 

which is a measure of how well the model is fitted to the 𝑛 data points. In the next section (2.3) we 

elaborate on likelihood functions in more detail. 

An illustration of the idea that the MSE can keep decreasing when adding more variables to a model, 

and that, on the contrary, this is not the case for the AIC metric is given in Figure 4.  

 

Figure 4: An example of a backwards stepwise model selection procedure. Every model is evaluated on its AIC, which 
penalizes the number of regressors in a model, and its test MSE, which does not penalize the number of regressors. At some 
point, the AIC and BIC increase while the MSE appears not to do so in the same significant way. 

Note that AIC and BIC do not tell us explicitly, like MSE or MAE do, how well the model can be used 

to estimate the outcome variable 𝑦. Hence, AIC and BIC are model performance statistics that 

indicate how well models perform relative to other models. 
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F-test p-values 

An 𝐹-test (see e.g. Brockhoff, 2013) p-value is a relative performance statistics that compares a 

simpler model 𝑀1 with a more complicated model 𝑀2 that has one additional regressor in it. A null 

hypothesis can then be defined: the regressor parameter of the added regressor in the new model 

equals zero. With 𝑛 data points the test statistic 𝐹 based on which to reject or accept the null 

hypothesis is 

𝐹 =

𝑆𝑆𝑅1 − 𝑆𝑆𝑅2
𝑘1 − 𝑘2

𝑆𝑆𝑅2
𝑛 − 𝑘2

 

(Brockhoff, 2013) where 𝑆𝑆𝑅 is the sum of squared residuals, also referred to as the sum of squared 

errors and 𝑘𝑖 the number of regressors in model 𝑖,  𝑖 = 1,2. Test statistic 𝐹 is compared to a critical 

value with significance 𝛼 and degrees of freedom 𝑑𝑓 = (𝑘2 − 𝑘1, 𝑛 − 𝑘2). Rejecting 𝐻0 implies 

model 2 is better than model 1. Test statistic 𝐹 can also be converted to a 𝑝-value that can be 

interpreted as the probability that the new more complex model is not preferred over the old 

simpler model. 

2.2.2.2 Stepwise Algorithms 

Iteratively adding or removing a regressor from a model is the idea of stepwise model selection. At 

Rabobank, different stepwise algorithms can be used. 

Forward Stepwise 

With forward stepwise, we start with a model without regressors in it. Then, if no regressors are 

forced in the model (i.e. they must be in the model and are therefore selected unconditionally), 

regressors are iteratively added to the model by adding the regressor that contributes most to the 

performance statistic that is set as the model-selection criterion until no improvements are made. 

Backward Stepwise 

With backward stepwise the first model is a model that contains all available regressors. The 

regressor that improves the selection criterion (i.e. a performance statistic such as BIC) is removed. 

Without constraints on the minimum number of regressors in a model, regressors being forced in a 

model, or strict 𝐹-test 𝑝-value acceptance thresholds, the algorithm will continue until the defined 

performance metric cannot statistically improve. 

Bidirectional Stepwise 

With bidirectional stepwise we start with a model that contains one regressor, add another 

regressor that improves a set performance statistic the most, and subsequently test if removing any 

of the current two regressor in the model improves the set performance statistic. This continues 

until no improvements can be made, or terminating constraints such as maximum number of 

regressors in a model are reached. 

2.2.2.3 Subset Algorithms 

Suppose we have a data set with outcome variable 𝑦 and a total of 𝑁 regressors. Then, when 

choosing 𝑘 regressors, the total number of combinations of regressors in a model is (𝑁
𝑘

). With all-

subsets model selection, the total number of different models would be ∑ (𝑁
𝑘

)𝑁
𝑘=0 . All models are 

tested on a set performance statistic and the best one is selected. This practice may be inefficient 

because with, say, 𝑁 = 15 the total number of models, if we allow 𝑘 = 0, is 32768. Hence, a case 

can be made for restricting the total number of regressors in a model, this is referred to as modified 

subset model selection by Rabobank. 
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2.2.3 Cross Validation for Model Selection 
Simple k-fold cross validation (CV) is a technique that splits the data up in k equal size parts, referred 

to as folds, such that model parameters 𝜷 can be found using 𝑘 − 1 folds and the final model can be 

evaluated on the 1 fold that was left out. When we, after defining 𝑘 folds, iteratively use a different 

fold for evaluation and use the remaining folds for parameter estimation, we have generated 𝑘 

different models. Different types of k-fold CV exist, three are discussed below. 

2.2.3.1 Simple K-Fold Cross Validation 

With k-fold CV, data is partitioned in 𝑘 different parts. The procedure is to use a subset of the 𝑘 folds 

for model selection and parameter estimation, and the remaining folds for assessing the 

performance, called validation, of this model. The result of this procedure can be 𝑘 different models 

with 𝑘 different performance measures. The model with the best (average) performance may be 

selected to be put into practice. 

2.2.3.2 K-Fold Cross Validation and a Test Set 

With simple k-fold CV we can be biased when selecting a model because the selected model can 

perform well just by chance alone. Introducing a test set of data before splitting the remainder into 

𝑘 folds, with which simple k-fold CV is performed, may reduce the probability of selecting a model 

that performs well just by chance. That is, we perform k-fold CV to obtain 𝑘 different fitted models. 

The model that has the average best performance on the validation data set is selected. The 

performance of the selected model is evaluated using a test data set, and this performance is what 

we expect when the model is deployed. 

2.2.3.3 Nested K-Fold Cross Validation 

The characteristics of the test data set may influence the selected model performance due to chance 

alone. We can split the data into a train and a test set, using outer folds. We leave one outer fold 

out, and perform k-fold CV on the other sets. A model is selected and its expected performance is 

estimated using the test set. We loop over the outer folds, using a different fold to test the selected 

model from the simple k-fold CV. The result are a number (equal to the number of outer folds) of 

models and performance estimates. 

2.2.3.4 Concluding CV 

Performance of models can be estimated using k-fold CV. Robust analyses consider the variability of 

the data across these folds, an example of which is making use of a test set that is used to estimate 

the performance that is to be expected when the model is used in practice. The variability of this test 

set can be taken into consideration by using nested k-fold CV that loops over the outer folds and 

uses one as a test set each time. A schematic overview is given in Figure 5. In the next section we 

discuss how different types of CV can result in biased model performance. 
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2.2.4 Recognizing Biased Parameters in Linear Models 
Model selection algorithms are used by Rabobank to find promising models. While such algorithms 

can help, the power of the regressors is questionable because the algorithms may over-exploit the 

data by fitting many models, and select a promising one that can predict noise (Loftus, 2019). Hence, 

valid inference after model-selection, which is the main topic of this research, can be a problem for 

Rabobank. In the following sub-sections we discuss techniques that can be used to establish whether 

or not the credit risk models at Rabobank are subject to biased parameters. 

2.2.4.1 Regressor Parameters Sample Distributions 

The result of experiment from section 1.1.4 is a step in the direction of visualizing bias in regressor 

parameters that is the result of a model selection algorithm. We can control the way regressor data 

is generated, as well as the true value of the regressor parameters that are used to calculate an 

outcome variable. Furthermore, noise can be controlled.  

Samples are drawn, model selection is performed on each sample, and parameters are found using 

that same sample. By measuring the mean and standard deviation of the sample distribution of a 

regressor parameter and/or its respective 𝑡-value, bias can be recognized. Measuring the number of 

instances in which a regressor is selected, conditional on its true 𝛽, the severity of the bias can 

further be commented on. That is, if, for a regressor, its parameter 𝛽 = 0, and a stepwise algorithm 

selects this regressor many times out of the number of samples, there may be a problem. 

2.2.4.2 Model Uncertainty in Stepwise Algorithms 

Stepwise algorithms generally yield a final model that cannot be improved upon. We are, however, 

uncertain about this model being the optimal one because after every iteration there is a probability 

that the new model is not better than the previous model.  

For the sake of practicality, let us assume that the F-test p-value (section 2.2.2.1) is a useful estimate 

of, after an iteration, the probability that the previous model is better. Then, a nested for loop can 

Figure 5: Different types of CV (after Feldman, 2019). In k-fold CV, the letter T and V stand for training and validation 
respectively. The ‘Models’ cloud is a (set of) model(s) after model selection, that do not have fitted parameters yet. 
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be constructed where model selection is performed on a sample with the result being a list of all 

iterations made including the respective F-test p-values. The outer for loop samples data, the inner 

for loop samples from the iterations-list as shown in the example Table 3. 

Table 3: Example of selecting a model from a bidirectional stepwise model selection list. 

Iteration Model Direction F-test p-value P(selected) 

0 {const} Forward - 0,03 

1 { const, x1} Forward 0,03 0,001 

2 { const, x1, x6} Forward 0,001 0,004 

3 { const, x1, x6, x7} Forward 0,004 0,05 

4 
{ const, x1, x6, x7, 
x2} Forward 0,05 0,07 

5 { const, x6, x7, x2} Backward 0,07 0,845 

    SUM 0,155 1 

 

A number of draws can be made from a table similar to Table 3, after which the selected model is 

fitted and its statistics such as 𝛽 and 𝑡-value are stored. These statistics can be compared to the case 

of always selecting the final model: the more uncertain we are in accepting a new model at an 

iteration, the worse the bias is likely to be in terms of strangely shaped sampling distributions. 

2.2.4.3 Biased Performance Statistics after Cross Validation 

Instead of searching for bias in regressor parameters, which may be considered parts of models, we 

can also model potential bias of the complete PD model. Moshontz, Fronk, Sant'Ana & Curtin (2020) 

identify optimization bias of cross-validation bias in a simulation-based way. Optimization bias is 

defined as model performance statistics being overly positive. Here, different types of cross-

validation (CV) are seen as the model selection algorithm. 

Moshontz, Fronk, Sant'Ana & Curtin (2020) developed a methodology for quantifying optimization 

bias, which may aid in deciding which form of k-fold CV to use, simple, with a test data set, or 

nested. The methodology is as follows: first, regressor data 𝑿 is randomly generated from a 

multivariate normal distribution with zero covariance between regressors. Secondly, the outcome 

variable can be binomially generated with a certain probability of being positive. Third, a form of k-

fold CV can be applied to fit and validate models, for which eventually one is selected based on its 

performance. 

Performance is defined as the area under the receiver operating characteristic curve (AUC), which is 

a value between 0 and 1 that is an estimate of how well a model can distinguish between binary 

outcomes as the AUC is an estimate of the probability of a model predicting a higher score for a 

randomly selected positive case than a randomly selected negative case (Fawcett, 2006; Moshontz, 

Fronk, Sant'Ana & Curtin, 2020). 

A number of simulations are performed by Moshontz, Fronk, Sant'Ana & Curtin (2020) using 

different settings regarding the sample size of the data used in the CV algorithms, the dichotomy of 

the outcomes of the variable to be predicted 𝑦, the number of potential regressors in a model, the 

value of 𝑘 in the k-fold CV algorithms, and the type of k-fold CV used for selecting a final model for 

which the performance (AUC) is reported. Bias is reported to be quantified by observing how 

different the AUC is from the true value of 0.5 (recall, all data including the 𝑦 variables are randomly 

generated from a known model). The study does not show these quantitative results but suggests 
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that (i.) K-fold CV gives overly optimistic model evaluation, (ii.) smaller sample sizes of the 𝑘 folds 

increase optimization bias, and (iii.) unbalanced, i.e. un-dichotomous, outcomes increase 

optimization bias. 

2.2.4.4 Practical Considerations in Searching for Bias 

We searched the literature and found that model selection algorithms may influence the t-values of 

regressor parameters and k-fold cross validation techniques may introduce optimization bias in 

terms of model performance statistics. Monte-Carlo style simulation techniques can be helpful in 

giving quantified estimates of these biases.  

The characteristics of biased model statistics may depend on (i.) the model selection algorithm 

directly, (ii.) the in- and exclusion of other regressors in the model, (iii.) the dispersion of the 

regression parameter itself, (iv.) the sample size, (v.) the size of the folds in k-fold CV methods, and 

(vi.) unbalanced outcomes in the data-set. Hence, further practical implications may be to assess 

different combinations of model selection algorithms, types of CV, number of folds 𝑘 in 𝑘-fold CV, 

and balance and size of the data-set. 

Lastly, we must consider in what way the bias should be presented to Rabobank: regressor 

parameters 𝛽, 𝑡-values, or model performance statistics such as the AUC. These considerations are 

elaborated upon in the next chapter. 

2.2.5 Statistical Solutions to Biased Parameters in Linear Models 
Additionally to identification, we should know about potential solutions such that we can add these 

to the technical solution, because it may be that the solution lies in a different or modified model 

selection algorithm, and by finding the bias of this technique it can be compared to the techniques 

used by Rabobank.  

2.2.5.1 Lasso and Adjusting p-values using the Polyhedral Lemma 

Tibshirani (2018) discusses the of inference after model selection, and mentions false power may 

occur with the Lasso model-selection algorithm. Suppose we have some data (𝒙𝑗, 𝑦𝑖), 𝑗 = 1,2, … , 𝑝 

where 𝒙𝑗 = (𝑥𝑗1, … , 𝑥𝑗𝑛)𝑇 and we introduce a constraint on the sum of the absolute values of 𝜷 in 

terms of a maximum value 𝑠. Then the Lasso algorithm has the following objective: 

min
𝜷

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑|𝛽𝑗|

𝑝

𝑗=1

≤ 𝑠. 

Equivalently, when we define a penalty parameter 𝜆 that penalizes ∑ |𝛽𝑗|
𝑝
𝑗=1  the Lasso algorithm has 

the following objective: 

min
𝜷

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

+ 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

. 

By penalizing ∑ |𝛽𝑗|
𝑝
𝑗=1  the final model is expected to become sparser when increasing 𝜆. The 

important part is that, according to Tibshirani (2018), a mathematical property3, exists such that p-

values of regressors after model selection can be adjusted such that they are conditional on the 

 
3 This mathematical property is called the polyhedral lemma by Tibshirani (2018), and is not elaborated upon 
in this research because this lemma cannot be used in the case of logistic regression (Tibshirani, 2018). 



20 
 

model-selection algorithm. Doing so is based on defining a range for which lasso always selects the 

same model. Therefore we may consider modelling the bias of parameters in models selected by 

lasso after adjustment using this analytical approach, and compare this bias to that of other model 

selection algorithms. 

2.2.5.2 Data Splitting, Data Carving, and Adding Noise 

Controlling the type-I error is not the only thing we should be interested in because by conditioning 

the p-values on the model selection algorithm the confidence interval of the regressor parameters 

(the range the true value of a parameter is in with a certain probability) may become larger, thereby 

possibly making inference uncertain instead of biased. A common approach is data splitting where 

one sample is used to find a model and another sample to find 𝜷. But here we lose half of the data, 

and thus we may lose power: the confidence intervals for the parameters become wider. 

More sophisticated methods for drawing inference, discussed by Tibshirani (2018), based on when 

and how to use the data, exist. The first example is data carving, which involves removing a small 

portion of the data in model selection and then using all for tuning parameters. The second example 

is to add noise to the data by means of, e.g., adding a small random number to every observation, in 

the model selection stage, and then removing this noise when tuning parameters. Tibshirani (2018) 

shows us that data splitting is giving far worse results than the other two examples, in terms of the 

final model being able to distinguish between positive and negative outcomes. 

2.2.5.3 Potential Solutions to Biased Model Parameters 

Concluding, when modelling bias, in terms of regressor parameters and model performance, of 

techniques that are expected to reduce said bias, the following should be considered: 

- Model selection could be done with lasso, which penalizes the sum of absolute values of all 

𝛽, after which confidence intervals for the final 𝜷 can be adjusted analytically. However, 

implementing this is out of scope for this research due it not being applicable to logistic 

regression models. Lasso may be considered as a model selection method just because it 

may select the same model consistently across data samples. 

- When model selection is performed, data carving and adding noise to the data should be 

considered because these techniques yield unbiased estimates of confidence intervals for 𝜷. 

Data splitting may be experimented with as well. 

2.3 Logistic Regression 
Rabobank uses logistic regression models to predict if a borrower is a 𝑔𝑜𝑜𝑑 or a 𝑏𝑎𝑑 client. This is 

determined based on the PD of the (potential) borrower, where an applicant is 𝑏𝑎𝑑 is the PD is 

above a certain threshold. Regressors that seem to say something about going into default based on 

linear regression techniques are subsequently placed in a logistic regression model selection 

procedure. The final logistic regression model estimates the PDs. 

Logistic regression models are used to predict binary outcomes based on a probability of an 

observation being positive. In the case of Rabobank that means that a client applies for a loan and 

the model, based on characteristics of the client, estimates a probability of default. How a logistic 

regressions is built is discussed in the next sub-section. 

2.3.1 The Mechanism of Logistic Regression 
A logistic regressions model looks like an s-shaped curve that flows from zero to one on the y-axis. 

Its use is to estimate the probability that an observation belongs to the positive outcome, and is 

therefore used in classification problems. Predicting defaults can be a classification problem.  
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When 𝑝 is defined as, in this case, a default probability, 𝛽0 as the y-axis intercept, 𝜷 as the regressor 

parameters and 𝒙 as the regressors 𝑗 = 0, … , 𝑛. Then the general form of a logistic regression model 

is 

ln (
𝑝

1 − 𝑝
) = 𝛽0 + ∑ 𝛽𝑗𝑥𝑗

𝑛

𝑗=1

. 

Notice the right-hand side is similar to that of linear regression but the left-hand side is a 

transformation of the PD, denoted with 𝑝; which we will discuss now. 

2.3.1.1 Transformation 

The first step in constructing a simple logistic regression model, conceptually, is to place the 

(historical) observations on a probability-graph. This graph has a y-axis with values between zero and 

one, and all observations are discrete zero or one. Then a logit transformation is performed on the 

probability-values using 𝑦 ∶= ln(
𝑝

1−𝑝
) to get the log-odds. These log-odds can be graphed, and 

because all the known outcomes are either zero or one the new y-values will be either ∞ or −∞ 

after the logit transformation. On this log-odds graph an initial linear model is defined, and the ∞ 

and −∞ are mapped onto this linear function. The goodness of this linear model cannot be 

expressed in e.g. MSE of MAE since all observations are now either ∞ or −∞. So, these candidate 

log-odds are transformed back to an s-shape curve resembling the candidate probabilities as follows: 

𝑝 =
1

1+𝑒−𝑦.  

Figure 6: An example of fitting a linear model (the red line) to binary 
observations (the blue dots) in a probability graph. The corresponding log-odds 
graph has the same shape, but the blue dots ara in the limit of ∞ or −∞.  After 
StatQuest (2018). 
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A good model is an s-curve that can predict defaults well and has a relatively high likelihood, 

discussed in the next section. 

2.3.1.2 Likelihood 

The s-shaped curve of a logistic regression model gives a probability that a borrower will default: the 

likelihood 𝑦𝑖that a bad borrower will default, and the likelihood that a 𝑔𝑜𝑜𝑑 borrower will not 

default is 1 − 𝑦𝑖, where 𝑖 is an observed borrower. Given the model (the s-shaped curve) and the 

model outcomes 𝑦̂𝑖  for each observation 𝑖, 𝑖 = 1, … , 𝑛, we can calculate the log-likelihood (ℒ) as 

follows: 

ℒ = ∑ 𝑦𝑖(ln 𝑦𝑖̂) + (1 − 𝑦𝑖) ln(1 − 𝑦𝑖̂)

𝑖

. 

For a mathematical derivation see e.g. Faraway (2005, pp.224-228).The log-likelihood is iteratively 

calculated and compared, the s-shaped curve with the maximum log-likelihood is selected as the 

best model. Selecting the ‘best model’ in this case is adjusting 𝜷 until the log-likelihood cannot 

increase, but from previous sections we know that, in the case of linear regression at least, this 

vector is dependent on the regressors already present in the regression model, which may be 

determined by model selection algorithms. Model-selection algorithms that may be used for logistic 

regression are therefore discussed in the next section. 

2.3.1.3 Model-Selection in Logistic Regression 

Recall the general form of a logistic regression model: ln (
𝑝

1−𝑝
) = 𝛽0 + ∑ 𝛽𝑗𝑥𝑗

𝑛
𝑗=1 . Here, 𝜷 is found 

such that the log-likelihood, as discussed in the previous sub section, is maximized. Intuitively, the s-

shaped curve is not the direct result of a particular model but rather of a transformation of the log 

odds of the PD values 𝑝. Therefore, the same model selection algorithms as discussed in the linear 

Figure 7: An example of a logistic regression model. After mapping the 
observations on a linear model, the scores are transformed back to probabilities 
and the likelihood of the model can be computed. After Statquest (2018). 
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regression section may be applied. These are: forward- and backward stepwise, a combination of 

forward and backward stepwise, best-subset selection, and a modified subset where constraints are 

added in order to reduce the maximum number of models tested. Furthermore, we may use lasso as 

a model selection algorithm. 

2.3.2 Recognizing Biased Parameters in Logistic Models 
The simulation-based methods to find bias, discussed in the previous section on linear regression, 

are expected to be useful for logistic regression as well, because the engine behind logistic 

regression is, in the first place, a linear regression. The only aspect of logistic regression models to 

keep in mind is that the regressor parameters are in terms of the log odds of the PDs. CV methods 

discussed in the section on linear regression can be used for performance evaluation of logistic 

regression as well. Concluding, no additional difficulties in recognizing bias in regressor parameters 

or performance statistics for logistic regression models are expected. 

2.3.3 Statistical Solutions to Biased Parameters in Logistic Models 
Recall the polyhedral lemma (section 2.2.5.1) where confidence intervals for the true value, if it 

exists, of 𝜷 can be analytically constructed if model selection is done based on the lasso algorithm. 

This does not work for the logistic regression case of adjusting for bias (Tibshirani, 2018). Lasso 

regularization for logistic regression models differs from the linear regression case in having the 

following objective function4: 

min
𝜷

−ℒ(𝜷) + 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

, 

where −ℒ(𝜷) is the negative log likelihood of the model, 𝜆 is a penalty constant, 𝜷 is the vector of 

regressor parameters for all 𝑝 regressors. This does not mean lasso, or any other model selection 

algorithm, should be excluded from the conceptual model in the next chapter because, similar to the 

linear regression case, the model selection algorithm may select the same model consistently.  

Data carving, adding noise, and possibly data splitting (discussed in section 2.2.5.2), may be solutions 

to bias in regressor parameters in logistic regression models as these methods are not based on the 

mechanisms of regression directly; i.e. in these cases we seek solutions in the data, not in the 

models. 

2.4 Concluding Chapter 2 
In this chapter attempts were made at understanding credit risk models and how they may depend 

on linear or logistic regression techniques. This link was studied because Rabobank uses these 

regression techniques to ultimately estimate PDs. Depending on the nature of the model, heuristic, 

statistical or causal, credit risk models may depend heavily on these regression techniques. 

The results of a literature review on identifying and correcting for biased regressor parameters show 

that, for both linear and logistic regression techniques, biased model statistics may arise with model 

selection algorithms and versions of k-fold CV. We now answer the following research question: 

- According to the literature, how to identify bias in model statistics for linear and logistic 

regression? 

 
4 Since the statsmodels package is used in this research, the objective function of 𝑙𝑜𝑔𝑖𝑡. 𝑓𝑖𝑡_𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑() 
applies. Maximizing the log-likelihood is similar to minimizing the negative log-likelihood. 
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No matter if we consider linear or logistic regression, identifying biased regressor parameters as a 

result of model selection algorithms can be done by assessing the shape of the distribution of 𝛽 or 

the respective 𝑡-values and observing how these distributions deviate from a normal bell-shaped 

curve. Furthermore, data can be controlled and model selection algorithms can be used to estimate 

known parameter values, after which comparisons are possible. 

Optimization bias, which is an artificially inflated model performance, can be identified, in the case 

of logistic regression, by performing k-fold CV model building and performance evaluation 

techniques on data for which the model responsible is known such that the true 𝐴𝑈𝐶 = 0.5. The 

response variable 𝑦 should be binomially distributed. 

- According to the literature, how may researchers correct for bias in model statistics for 

linear – and logistic regression models? 

When using the lasso algorithm to select models, p-values based on which to reject null hypotheses 

can be analytically adjusted using a mathematical property (the polyhedral lemma). This analytical 

property, however, is discarded because it is not applicable to logistic regression. The lasso 

algorithm itself does not have to be discarded because it may select the same model consistently 

across data samples. 

There are no model selection algorithms that should be discarded, because correcting for bias may 

also be done by utilizing models that seem to perform well in terms of generating bell-shaped t-

value sampling distributions that are similar to the sampling distributions of regressor parameters 

when the correct model is known. Rabobank may then effectively reduce bias by adopting certain 

model selection techniques. 

Solutions can also be sought for outside of model selection algorithms. Data splitting, data carving 

and adding noise to the data, in combination with a model selection algorithm, are techniques that 

may be applied in order to get valid inference after model selection without greatly increasing 

confidence interval widths of 𝜷 for carving and adding noise.  

Outcomes always depend on the data sample. Therefore, the sample should be used such that it 

resembles the (unknown) population as much as possible when building credit risk models. K-fold CV 

techniques can be used for this, but exploiting the data in this way is not without the theoretical cost 

of optimization bias. The severity of this bias may depend on the dichotomy of the outcomes of the 

variable to be predicted 𝑦 and the number and size of folds 𝑘. The above mentioned techniques and 

aspects may be considered when building a technical solution to bias, which is the topic of the next 

chapter.  
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3. Methodology to Quantify Bias 
In this chapter we answer the research question ‘what does a conceptual model to find bias in 

selected Rabobank credit risk models look like, and which techniques that are expected to reduce this 

bias should be added to this conceptual model?’ by using the theory gathered in chapter 2, and apply 

this theory to Rabobank specifically. 

3.1 Quantifying Bias 
In chapter 2 we identified two different types of potentially problematic bias: biased inference after 

model selection and biased performance statistics as a result of k-fold cross validation and, possibly, 

model selection. Hence, we split the bias up in two parts: biased inference and biased model 

performance. 

3.1.1 Biased Inference 
Recall that statistical inference can be referred to as the science of using data to verify hypotheses. 

These hypotheses describe a relationship between, in this case, probability of default and any 

regressor we may want to analyse. We have seen that when model selection algorithms are used to 

define hypotheses for us, subsequent inference can be problematic. That is, for example, one model 

selection algorithm may be given a data sample and the result can be a different model every time. 

And since the model one regressor is placed in affects the power of that regressor, drawing 

inference may be problematic. 

Furthermore, we may make use of multiple and different model selection algorithms (e.g. forward, 

backward, and bidirectional stepwise, or the lasso algorithm), and all these algorithms can have 

different parameters regarding the maximum or minimum number of variables, the 𝑝-value 

threshold of adding or removing a regressor to or from a model, etcetera.  

The above greatly increases the number of possible models that can be outcomes to a model 

selection procedure, which in turn can make drawing inference problematic because the power of 

regressors can be conditional on the model these are present in. 

3.1.1.1 A Method for Quantifying Biased Inference 

To quantify biased inference we propose, based on several insights of chapter 2, the following 

methodology: 

1. Sample data 𝑿 that is representative for Rabobank, i.e. the data looks like data available at 

Rabobank for building a PD model. This may be uniformly distributed data. 

2. Transform 𝑿 such that each regressor has the same order: a value between zero and one. In 

the case of categorical regressors this can be done by means of, e.g., one-hot encoding, and 

in the case of continuous regressors this transformation can be e.g. a logit transformation 

with empirically established transformation function parameters. Or, 𝑿 is already 

normalized by means of using a suitable, e.g. uniform, random number generator. 

3. Generate a PD vector 𝑦 using known regressor parameters 𝜷 combined with 𝑿.  

4. Perform a (set of) simplified full model selection pipeline that may be regarded to as the 

current practice at Rabobank, and store regressor parameters 𝛽 and 𝑡-values of the 

regressors in the selected model. 

5. Perform a (set of) proposed solutions from Chapter 2 (i.e. Lasso, data carving, adding noise, 

and data splitting), and store regressor parameters 𝛽 and 𝑡-values of the regressors in the 

selected model. 
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6. Compare the results of steps 3 and 4 to the known true values of 𝜷, and compare the 

empirical acceptance probabilities (from 𝑡-values) of each regressor between the methods 

performed in step 3 and 4.  

7. The methods where the results deviate the least from the known model parameters may be 

preferred. 

The above steps will be further elaborated on in the subsections below. 

3.1.1.2 Data with a Known Model 

The reason for defining a known model to generate defaults in credit default data is twofold: firstly, 

it is necessary because with natural credit default data we do not know the true model responsible 

for the observed defaults, and, secondly, it allows for publication of this thesis without 

compromising the obligation of Rabobank to keep any client data confidential. 

To later test if the proposed solution works on real data as well, in this thesis, we make use of the 

publicly available German Credit Risk5 data set. We normalize this data set using techniques 

described in section 3.1.1.3 and remove its default column. This is expected to yield a dataset that is 

indistinguishable from real, yet its usefulness is now zero as the structure between regressors is 

removed: i.e. the relationships between regressors and the binary default outcome variable is 

removed. By using known regressor parameters 𝜷 to, via a logit transformation, generate a binary 

outcome vector 𝑦, we define our own structure that we can control, and compare to the structures 

found by the different model selection algorithms.  

3.1.1.3 Logistic and Linear Transformations 

Transformations for continuous regressors are useful in regression analyses because they transform 

the values of each regressor to a standard range, e.g. [0, 1], which, generally, allows for fair 

comparison across regressors. That is, regressors are not given relatively more power simply 

because of the order of their values. An observation, or natural value, 𝑥𝑖 is transformed, for 𝑖 =

1, … , 𝑛, with the logistic transformation function as follows: 

𝑇𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑥𝑖) =
1

1 + 𝑒𝑠𝑙𝑜𝑝𝑒∗(𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡−𝑥) 
, 

where 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 =
1

2
(𝑥5𝑡ℎ + 𝑥95𝑡ℎ) and 𝑠𝑙𝑜𝑝𝑒 =

2.944

𝑥95𝑡ℎ−𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡
, where 𝑥𝑝𝑡ℎ

 is the 𝑝-th percentile 

of the empirical values of 𝑥 and 2.944 is found by solving 𝑇(𝑥95𝑡ℎ). 

In the case of categorical regressors, the observed default rate (ODR) for each category is computed, 

which is used in computing a 𝑠𝑐𝑜𝑟𝑒 as follows: 

𝑂𝐷𝑅 =
1

1 + 𝑒𝑠𝑐𝑜𝑟𝑒
→ 𝑠𝑐𝑜𝑟𝑒 = ln (

1

𝑂𝐷𝑅
− 1). 

These 𝑠𝑐𝑜𝑟𝑒 values are not values between zero and one, so a linear transformation is performed: 

𝑇𝑙𝑖𝑛𝑒𝑎𝑟(𝑥𝑖) =
𝑥𝑖 − min(𝒙)

max(𝒙) − min(𝒙)
 , 

where 𝑥𝑖 is a value from the vector of regressor vector 𝒙 for 𝑖 = 1, … , 𝑛. 

 
5 The German Credit Risk data set is available at Kaggle (link: https://www.kaggle.com/datasets/uciml/german-
credit). 

https://www.kaggle.com/datasets/uciml/german-credit
https://www.kaggle.com/datasets/uciml/german-credit
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3.1.1.4 Rabobank Model Selection algorithms 

Currently Rabobank uses several model selection algorithms: backward stepwise, forward stepwise, 

and bidirectional stepwise, the details of which are discussed in section 2.2.2.2. These algorithms 

will be used where the model performance will be measured in terms of the AIC (see section 

2.2.2.1), because this performance statistic considers the complexity of the model and penalizes 

every additional regressor added. Furthermore, model uncertainty in terms of 𝐹-test 𝑝-value 

selection will not be modelled as initial experiments show that the impact of this uncertainty is 

small, while the additional computational time greatly increases. It is crucial to state that currently 

all data from a sample is used for both model selection and parameter estimation, without splitting. 

3.1.1.5 Proposed  Model Selection Algorithms 

We identified, in chapter 2, several potential solutions to biased inference. The first solution is to use 

the Lasso objective when selecting models, and every regressor that is selected in the Lasso, i.e. 

every regressor for which its parameter is not shrunken to zero, is subsequently used in a model for 

which the parameters are estimated again such that the log-likelihood is maximized. 

The second solution is found by manipulating the data during the model selection stage by adding 

noise to the data, and removing this noise when estimating parameters after having selected a 

model. Thirdly, removing a fraction of the data sample during the model selection stage and adding 

it back when estimating parameters can be a solution, this is called data carving. Lastly, data 

splitting, i.e. using half of the data for model selection and the other half for parameter estimation, 

does yield valid confidence intervals for beta, but these confidence intervals might be too wide to be 

useful: that is, the final model is expected to be less capable in distinguishing between positive (bad 

customers) and negative (good customers) outcomes. Techniques involving the manipulation or 

strategic withdrawal of data can be combined with any model selection algorithm. 

3.1.1.6 Outcome Data-frames 

The relevant outcome of the experiments can be visualized as a framework, visualized in Figure 8 

below. For each model selection algorithm, and each data-strategy, statistics for each regressor are 

computed. These statistics are the mean and standard deviation of the sampling distribution of 

regressor parameter 𝛽𝑖, 𝑖 = 1, … , 𝑛. 

The reported mean beta for the different combinations of model selection algorithms and data 

strategies will be compared to the known true value of beta, and the standard deviation may be 

used as a metric of stability of the fitted model. The probability of accepting a regressor as 

significant, after model selection, can be estimated from the array of 𝑡-values for a regressor, 

transforming it to a 𝑝-value, setting a threshold 𝑝-value, and counting every 𝑝-value smaller than 

threshold. 

Lastly, the selected model must be stored each time such that comparisons can be made in terms of 

stability of the model selection algorithm, combined with a data strategy, because when selecting 

Figure 8: Framework for Analysis of Outcomes in Identifying Biased Inference 
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the same model consistently across samples the probability of strangely shaped distributions may 

decrease. 

3.1.2 Biased Model Performance  
While inference can be useful in verifying hypothesized relations between, in this case, PDs and (a 

set of) regressor(s), the final model is used for prediction. That is, a fitted logistic regression model 

can be used to estimate the PD of new loan applicants. 

Hence, valid inference is necessary otherwise a model is selected based on the wrong reason simply 

because the model selection algorithm gave that regressor false power. Secondly, when explicitly 

searching for regressors that are linked to PDs, we may end up with a model that predicts only 

noise. That is, the outcome variable was naturally distributed as noise: there are no real patterns in 

the data. 

In chapter 2 we saw that k-fold CV may yield an inflated ROC AUC. We expect model selection, after 

which the selected model is fitted using k-fold CV, may add to this optimization bias. This can be 

problematic when a final model is accepted based on its performance (e.g. accept the model if 

𝐴𝑈𝐶 ≥ 0.7), while the model predicts noise. Hence, an useful metric of this optimization bias is the 

probability that a model that is fitted to noise is accepted to be put into production. This probability 

can be estimated as follows:  

(i.) Drawing 𝑛 = 1000 data samples where the outcome variable 𝑦 is not linked to the 

regressor matrix 𝑿, but is simply a Bernoulli trial with a known probability of success 𝑝, 

i.e. the true AUC equals 0.5.  

(ii.) Performing model selection on this data sample.  

(iii.) Fitting the model using a form of k-fold CV.  

(iv.) Dividing the number of instances where the average AUC across 𝑘 folds, or for/across 

test sets, is greater than a fixed threshold of, say, 0.7, by the total number of samples 

drawn. 

The above can be performed for different combinations of sample size 𝑛 and number of folds 𝑘, as 

well as for different model selection algorithms and data strategies. The results may be presented in 

a table, where, for the different (𝑛, 𝑘) combinations and 𝐴𝑈𝐶 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠, the estimated 

probability of accepting a model that predicts noise is given. 

3.2 Overview for Quantifying Bias 
We split bias in two parts: inference and prediction. For inference, we are interested in the value of 

regressor parameters that the model selection procedure found, and compare these to the known 

true value. Furthermore, the reported 𝑡-values are of interest such that we can comment on how 

well model selection procedures can recognize power. 

For the prediction part we perform a simplified complete model selection procedure. That is, we 

select a model, fit it, and test its performance. The important part here is that the data is random, 

such that the true performance is 𝐴𝑈𝐶 = 0.5. By completing a complete model selection procedure 

we quantify the total bias resulting from, possibly, false power by model selection and optimization 

bias from k-fold CV and model selection.  

An overview of an experiment, for any model selection algorithm combined with a data strategy, is 

given in Figure 9. The analysis of results, for inference and prediction, are along the lines of Figure 8 

and the table described in section 3.1.2 respectively. 
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Figure 9: Conceptual model for identifying biased inference and inflated performance. 

3.3 Expected Practical Implications 
The reason for not working with real PD data in the experiments from 3.2 is that by using artificial 

data we can define a known model for inference, and a known performance for prediction. Would 

we use natural data, the results would mean nothing, as we have nothing to compare them to. The 

results of these controlled-data experiments may show us which algorithms and techniques identify 

relevant regressors, give good estimates of true regressor parameters, and have a low probability of 

accepting a model that predicts noise. Then, if any particular model selection algorithms combined 

with certain data strategies, which are currently not in use by Rabobank, are performing well in the 

three criteria above, Rabobank may consider using these algorithms and strategies: so, the potential 

implications of this research are not abstract. 

3.4 Concluding Chapter 3 
Now we answer the research question ‘What does a conceptual model to find bias in selected 

Rabobank credit risk models look like, and which techniques that are expected to reduce this bias 

should be added to this conceptual model?’ 

We developed a conceptual model that can be used to find biased inference and performance 

statistics for any combination of model selection algorithm and data strategy (Figure 9), as well as 

overviews for data analysis that can quantify and compare the bias across model selection 

algorithms and data strategies. 
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To answer the second part of the research question, the techniques that are expected to reduce 

biased inference, and possibly optimization bias, are to use Lasso as a model selection algorithm, 

and to strategically use the data by performing either data-carving or adding noise. 

We now continue to the next chapter, where the experiments will be formally defined. That is, all 

experiments will be defined in terms of parameters, such as sample size, number of samples, etc.  
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4. Experiments 
In the fourth chapter, we conduct experiments using the model from chapter three. First biased 

inference is addressed (Section 4.1), then biased model performance is addressed (section 4.2), and 

lastly we conclude chapter four (section 4.3). 

4.1 Biased Inference 
In this section we define the parameters of the experiments necessary to run in order to understand 

what, empirically, drives biased regressor parameters, and false power of regressors (section 4.1.1). 

Thereafter we discuss and present the general results (section 4.1.2) of these experiments, and 

elaborate on well performing strategies in terms of selecting the correct regressors and 𝛽 estimates 

(section 4.1.3). Lastly, we discuss the Lasso results (section 4.1.4).  

The regressor data used for these experiments is randomly generated uniformly distributed data, 

where defaults are randomly generated with a 𝑃𝐷 obtained via a known model (Table 4). This data 

combined with the specified known model and an intercept 𝛽𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = −1.5𝑒2, yields an average 

default rate of 5%. In the experiments we generate samples with sample size 𝑛 = 700. 

Table 4: The value of the regressors parameters used in generating scores from artificial data, after which the score is 
transformed into a PD via a logit transformation. With this PD a default is binomially generated. 

𝛽0 = 0 𝛽1 = 5 𝛽2 = 2 
𝛽3 = 0 𝛽4 = 0 𝛽5 = 5 
𝛽6 = 0 𝛽7 = 0 𝛽8 = 1 

 

4.1.1 Strategies Simulated 
A strategy is a combination of a model selection algorithm and a method of using the data (e.g. data 

splitting or data carving). In all cases, each strategy is performed a thousand times by means of 

generating a data sample (𝑛 = 700) using the known model, and subsequently executing the 

strategy on the generated sample.  

4.1.1.1 Model Selection Algorithms 

Three stepwise model selection algorithms are currently in use at Rabobank: forward, backward, and 

bidirectional stepwise. These stepwise algorithms are configured by means of parameters, given and 

explained in the table below (Table 5). 

Table 5: Stepwise Model Selection Algorithm Parameters and their Values. 

Parameter Explanation Value in Stepwise Experiments 

Endog The endogenous data vector 𝑦. The 𝑦 vector. 

Exog The exogenous data matrix 𝑋. The regressor matrix or data frame. 

Criterion Model performance evaluation criterion. AIC. 

Report_Card A Boolean that must be set to true if a 
printable report card must be generated. 

False. 

Forced A set of regressors that is unconditionally 
added to the solution. 

Empty. 

Max_var The maximum number of variables 
present in a model. 

The total number of regressors 
present in the data set, which is 9. 

Max_vif A constraint that tries to find a solution 
with a variance inflation factor below a 
certain threshold, if this is impossible 
ignore the constraint. 

2 
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Family The type of Generalized Linear Model 
(GLM). See statsmodels6. 

sm.families.Binomial(). 

Positive_beta A Boolean that is set to true if regressor 
parameters can only take positive values. 

False. 

Second_layer_ 
criterions.FTest 

An additional constraint on whether to 
accept a new model as statistically better 
based on 𝑝-values of an 𝐹-test. 

P_value_enter = 0.05. 
P_value_leave = 0.2. 

 

Additionally, we use Lasso as a model selection algorithm by accepting and subsequently fitting 

regressors that, after a solution to the Lasso optimization function is found, are not equal to zero. 

Recall (section 2.3.3) that the Lasso optimization objective contains a constant 𝜆 which is a 

multiplication constant for the sum of the absolute values of regressor parameters in a model, which 

is added to the negative log likelihood −ℒ. In our Lasso experiments we make use of the One 

Standard Error (1SE) heuristic, discussed by e.g. Chen & Yang (2021), to find a 𝜆 that prefers a more 

sparse model if the error, in our method this is the absolute value of the reported log likelihood, of 

that model is within 1𝑆𝐸 of the global minimum observed. In the experiments this means that we 

generate data, find a 𝜆 using all data, and then perform model selection using specifically that 𝜆. 

4.1.1.2 Data Strategies 

Using our data in particular ways may impact the severity of the post model selection biased 

inference. We found that data splitting may give us valid inference at the cost of increased widths of 

confidence intervals. Furthermore we found that data carving and adding noise may be well 

performing substitutes for data splitting that may be preferred in terms of the performance of a final 

model being better with these strategies compared to data splitting. An overview of these data 

strategies is given below (Figure 10). 

 
6 Statsmodels GLM: https://www.statsmodels.org/stable/glm.html. 

https://www.statsmodels.org/stable/glm.html
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Figure 10: An overview of the simulated data strategies. After Tibshirani (2018). 

In all cases data samples are randomly generated using a known model. In the case of data splitting, 

the drawn sample is randomly split in equal sizes. In the case of data carving, the model selection 

sample 𝑛𝑀𝑆 is randomly sampled from the drawn data sample where 𝑛𝑀𝑆 = 0.5𝑛. In the case of 

adding noise, the noise added to the regressor data sample is generated from a multivariate normal 

distribution with mean zero and variance 1, multiplied by a constant 0.05. 
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4.1.2 General Results 
We now present the results (Figure 11) of the inference experiments in tabular form according to 

the framework discussed in Figure 8. These results are analysed in the next chapter, after aspects of 

well performing strategies are defined. 

 

 
Figure 11: Results of the inference experiments, in tabular form. 
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4.1.3 Stepwise and Data Splitting 
It can be seen from Figure 11 that data splitting increases the standard deviation of 𝛽 estimates 

compared to using the same generated sample for both model selection and fitting on average. 

However, data splitting reduces the probability of accepting irrelevant regressors in a model 

significantly. The 𝑡-value sample distributions for Forward stepwise and data splitting (Figure 12) are 

not bimodal, whereas the same distributions as a result of not using a data strategy are (Figure 13). 

 

Figure 12: 𝑡-value sample distributions as a result of Splitting the generated sample. The one half is used for Forward 
stepwise model selection, the other half for fitting the selected model. Observe how regressors 𝑥2 and 𝑥1 are selected and 
accepted less frequently compared to the other relevant regressors 𝑥1 and 𝑥8, which may be a result of their true betas 
being smaller. 
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Figure 13: 𝑡-value sample distributions as a result of using the generated data sample for both Forward stepwise model 
selection and subsequent fitting of the selected model. Observe how the 𝑡-value sample distributions of irrelevant 
regressors are strongly bimodal. Furthermore, their acceptance rate may be seen as problematic as well. That is, a modeller 
can observe with a high probability that a noise regressor is significant in predicting credit risk after model selection. 
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4.1.4 Lasso 1SE Rule 
It is interesting to see (Figure 11) that lasso selects most regressors in a model most of the trials, but, 

when not using a data strategy, these regressors do not get accepted in a subsequent fit. Using any 

other data strategy turns this around: irrelevant regressors get selected less often, but accepted 

after fitting the selected model more often.  

4.2 Biased Model Performance 
In this section we define the hyperparameters of the experiments necessary to run in order to 

understand what, empirically, drives biased performance of logistic regression models (4.2.1). 

Thereafter we discuss and present the general results (section 4.2.2) of these experiments, and 

elaborate on well performing strategies in terms of having a low risk of artificially inflating 

performance (section 4.2.3). Lastly, we discuss the Lasso results (section 4.2.4). 

The data used for these experiments is randomly generated data using a multivariate normal model 

with a mean vector of zero, and a covariance matrix that is an identity matrix times ten. Defaults are 

randomly generated with 𝑃𝐷 = 0.15 via a binomial model. The covariance matrix, with number of 

rows and number of columns equal to the number of regressors in the generated data, is defined as 

follows: 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 = 10 ⋅ 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑀𝑎𝑡𝑟𝑖𝑥 = 10 ⋅ [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

] = [
10 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 10

]. 

Several parameters during model selection and model fitting may impact the final model 

performance that is reported. Amongst others, the sample size 𝑛𝑠𝑎𝑚𝑝𝑙𝑒 and the number of 

regressors in the dataset 𝑛𝑢𝑚𝑣𝑎𝑟 were identified in the literature study of Chapter 2. For every 

model selection algorithm combined with a data strategy, 𝑛𝑠𝑎𝑚𝑝𝑙𝑒 is evaluated for 

[500, 1000, 2000] and 𝑛𝑢𝑚𝑣𝑎𝑟 is evaluated for [5, 10, 15] a number of times 𝑛𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠 = 1000. 

The test AUC, which is needed to evaluate the performance of 𝑘-fold CV with a separate test set, is 

computed based on 𝑋𝑡𝑒𝑠𝑡 and 𝑦𝑡𝑒𝑠𝑡 both of size 𝑛𝑡𝑒𝑠𝑡 = 0.25𝑛𝑠𝑎𝑚𝑝𝑙𝑒 generated via the same 

multivariate normal and binomial distribution as the training sets on which 𝑘-fold CV is applied. 

4.2.1 Strategies Simulated 
Every stepwise model selection algorithm (forward, backward, bidirectional) discussed in section 

3.1.1.4 as well as Lasso with a fixed 𝜆 = 0.1 are simulated, all in combination with the data 

strategies None, Splitting, and Carving visualized in Figure 10. The data strategy of Adding Noise is 

not evaluated because it would be nonsensical to add noise to noise. Not using a data strategy, i.e. 

using the drawn sample for both model selection and model fitting, is evaluated to have a baseline 

to which data carving and data splitting can be compared. For each experiment the average AUC 

across 5 folds in 𝑘-fold CV is stored, as well as the maximum AUC from each 5 folds. The maximum 

AUC is the result of a fitted model, and this fitted model is tested on 𝑋𝑡𝑒𝑠𝑡 and 𝑦𝑡𝑒𝑠𝑡 from which a 

‘test AUC’ is computed. 

4.2.2 General Results 
The results of the simulations to quantify optimization bias are given in Figure 14. Its structure is 

along the model discussed in section 3.1.2, where the output is the fraction of times out of the total 

times the experiments converged (𝑛𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠 = 1000) the reported AUC was above a certain 

threshold 𝐴𝑈𝐶𝑇 = [0.60, 0.61, … ,0.70]. For each data strategy, results are shown for each model 

selection algorithm in terms of the test AUC, the average AUC across 5 folds, and the maximum AUC 

present in 5 folds. 
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Figure 14: The prediction results for the data strategies None, Splitting, and 
Carving. For each of these data strategies results are given for the model 
selection algorithms Forward, Backward, and Bidirectional stepwise as well as 
Lasso with 𝜆 = 0.1. Red cells indicate a fraction, given an 𝐴𝑈𝐶𝑇, greater than 
1%.  
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4.2.3 Data Carving 
The inference results presented in section 4.1.2 indicated that data carving appears not to yield 

more valid inference than the other strategies and the prediction results presented in Figure 14 in 

section 4.2.2 visibly have fewer red cells than the other data strategies. This means that, on average, 

data carving seems to yield more valid performance estimations judging based on the average AUC 

across 5 folds.  A more elaborate analysis is part of the next chapter. 

4.2.4 Lasso Fixed Lambda 
In terms of preventing an inflated AUC, lasso appears not to be significantly better or worse than 

other model selection strategies. We note that Lasso did only result in a solution, i.e. a fitted 

selected model with measurable performance, at most 763 times out of 1000 trials for 𝑛𝑠𝑎𝑚𝑝𝑙𝑒 =

1000 and 475 times out of 1000 trials for 𝑛𝑠𝑎𝑚𝑝𝑙𝑒 = 500 when no data strategy is utilized. This can 

make comparisons to results of other model algorithms problematic, which is discussed in chapter 5. 

4.3 Concluding Chapter 4 
We defined experiments such that we can formulate an answer to the research question of this 

chapter: Based on the conceptual model of chapter three, how are regressor parameters and model 

performance of credit risk models biased as a result of Rabobank model selection algorithms and 

how are these model statistics biased as a result of the hypothesized solutions? 

The conceptual model (Figure 9) presented in chapter 3 was put into practice. That is, we performed 

the experiments such that biased inference and biased model performance can be quantified. 

Different model selection algorithms in combination with different data strategies were simulated, 

using data and hyperparameters resembling practice at Rabobank. 

The model selection algorithms currently in use at Rabobank show symptoms of biased regressor 

parameters, mainly in terms of consistently selecting irrelevant regressors in a model. Data splitting 

and data carving, from the results given in Figure 11, can help in improving the stepwise model 

selection algorithms. However, it appears that it comes at the cost of more volatile model selection. 

Irrelevant regressors are added to a model more often, but they are not accepted after a subsequent 

fit more often. This trade-off is further elaborated on in the next chapter. 

Using Lasso as a model selection algorithm by accepting regressors in a model when their 

corresponding parameter does not equal zero is a difficult to evaluate case. From the results in 

Figure 11 it can be seen that, regarding biased inference, the typical problem of the stepwise 

algorithms without a data strategy are solved: irrelevant regressors are accepted in a model less 

frequently after fitting the selected model. However, all regressors get selected most of the time, 

which is not what model selection is trying to achieve. This may have to do with the 1𝑆𝐸 method of 

selecting an optimal 𝜆 value, which is discussed in the next chapter. 

Lastly, from the results presented in Figure 14, upwards biased model performance appears mainly 

to be a problem based on the performance evaluation method used. That is, having a separate test 

set to evaluate the best fit out of 𝑘-folds of a selected model performs significantly worse than 

evaluating the performance of averaging model performance over these 𝑘-folds. The obvious 

drawback is that this is the average performance of 𝑘 different fitted models, which introduces the 

problem of selecting the best model. This is further elaborated on in chapter 5. 
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5. Analysis of Results 
In this chapter we analyse the results presented in chapter 4, and finally, based on this analysis, 

formulate an answer to the main research question: In what way, if at all, are the regressor-

parameters and model performance of credit risk models at Rabobank biased, and how can 

Rabobank adjust for this bias both statistically and managerially? 

We first recall and summarize aspect of good performing strategies for unbiased model statistics 

post model selection (section 5.1). Thereafter, we analyse the results of chapter 4 specifically on 

these aspects (sections 5.2, 5.3, and 5.4). The inference results are mostly presented in terms of 

histograms: each bar representing the fraction of times a regressor was given a 𝛽 estimate in that 

interval, with a red vertical line representing its true value. Lastly we conclude this chapter (section 

5.5). 

5.1 Aspects of a Well Performing Strategy 
In chapter 1 and chapter 2 we discussed what constitutes bias. One type of bias are skewed, 

bimodal, or worse regressor parameter 𝛽 sample distributions resulting in unclarity on what the true 

value of a regressor parameter should be, after model selection. This bias can also occur for 𝑡-value 

sample distributions, potentially resulting in false power of a regressor after it is accepted in a 

model. Finally, the performance of a model may be inflated by unknowingly accepting noise 

regressors in a model. This can be problematic for Rabobank when, e.g., a true model with 𝑝 

regressors and a performance of, e.g., 𝐴𝑈𝐶1, whereas the selected model with 𝑝 + 2 regressors, the 

two additional being noise, has an expected performance  of 𝐴𝑈𝐶2 that is much greater than 𝐴𝑈𝐶1.  

From the above we can define three concrete aspects of good performance: (i.) accurate mean and 

standard deviation of 𝛽 compared to the true values thereof, (ii.) accurate rates of accepting 

regressors as significant based on 𝑡-values compared to the true significance of regressors, and (iii.) a 

relatively low risk of inflated performance statistics after model selection and 𝑘-fold CV. We analyse 

the results from chapter 4 based on these three aspects of good performance in the next sections. 

5.2 Beta Accuracy 
Accurate regressor parameter estimations after model selection are assessed on, first, the shape of 

the 𝛽 sample distributions. These sample distributions are easy to interpret and from them we can 

quickly see if the model selection algorithm, combined with a data strategy, is accurately estimating 

regressor parameters. In the next section we analyse the beta accuracy of the different data 

strategies: no data strategy (section 5.2.1), data splitting (section 5.2.2), data carving (5.2.3), and 

adding noise (section 5.2.4). 

5.2.1 No Data Strategy 
The forward (Figure 15) and backward (Figure 16) stepwise model selection algorithms without a 

data strategy show a major problem: irrelevant regressors for which 𝛽𝑡𝑟𝑢𝑒 = 0 are selected quite 

often, and their regressor parameter 𝛽 sample distributions are bimodally distributed. This can be 

problematic for modellers because they can observe one mode after regression, which, no matter 

which mode is observed, makes their estimate unaligned with the true value of these irrelevant 

regressors. Bidirectional stepwise without a data strategy shows very similar results. With Lasso, 

however, irrelevant regressors are more often selected in a model and also bimodally distributed, 

but both modes are positioned closer to the true value of zero. This reduces the standard deviations 

of the beta estimates, increasing the certainty of the modeller in choosing a 𝛽 value. 
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Figure 15: Regressor parameter 𝛽 sample distributions as a result of using a generated data sample from a known model 
for both Forward stepwise model selection and subsequent fitting. Observe how irrelevant regressors are bimodally 
distributed. This, for modellers, increases the uncertainty of the true value of 𝛽 for these regressors and, furthermore, if 
they base their regression on any mode they will always be wrong as both modes are not aligned with the true value for 
these 𝛽s (the red vertical dotted lines). 
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Figure 16: Regressor parameter 𝛽 sample distributions as a result of using a generated data sample from a known model 
for both Backward stepwise model selection and subsequent fitting. Observe how, in similar fashion to Forward stepwise 
(Figure 15) irrelevant regressors are bimodally distributed. 
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Figure 17: Regressor parameter 𝛽 sample distributions as a result of using a generated data sample from a known model 
for model selection using Lasso and subsequent fitting. Observe how, in similar fashion to Forward stepwise (Figure 15) and 
Backward stepwise (Figure 16) irrelevant regressors are bimodally distributed. It must however be noted that the bimodally 
distributed irrelevant regressors are closer to the true value of zero, and that these irrelevant regressors get selected more 
often than with stepwise model selection algorithms. This is discussed in the next section on 𝑡-value acceptance rates. 
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5.2.2 Data Splitting 
Data splitting, it seems, may be an effective cure against bimodal 𝛽 sample distributions. Observe 

from the results for Forward stepwise and data splitting (Figure 19) that the irrelevant regressors, 

compared to not using a data strategy (Figure 15), have disappeared. Similar results can be observed 

for Bidirectional stepwise. For Backward stepwise (Figure 20), irrelevant regressors do not have 

bimodal sample distributions anymore, but irrelevant regressors are selected in a model more often 

than for Forward stepwise. 

Furthermore, it can be seen from Figure 18 that for Forward and Bidirectional stepwise the standard 

deviations of 𝛽 estimates increase for relevant regressors when using data splitting, whereas they 

decrease for irrelevant regressors; both compared to the case of not using a data strategy. This is 

due to the bimodal distributions, which increase standard deviations significantly, not being present 

in our results for data splitting. For the one mode that exists for each regressors now, however, its 

dispersion has increased naturally due to using less data to obtain the 𝛽 estimates. This does not 

have to be a problem, as each mode is centred around its true 𝛽 value for both relevant and 

irrelevant regressors.  

This phenomenon is not visible in the Lasso and Backward stepwise results, however, where data 

splitting increases the standard deviations for all 𝛽 estimates despite no bimodal or multimodal 

distributions being present in the results. A logical cause can be that the decrease in standard 

deviations due to sample distributions being unimodal is less than the increase in standard 

deviations from using less data yields. 

 

Figure 18: Colour coded standard deviations of the sample distributions of regressor parameters. It can be seen that data 
splitting increases the standard deviations of the beta estimates for relevant regressors. Because data splitting removes the 
bimodal distributions, compared to no data strategy, for irrelevant regressors the standard deviations decrease for Forward 
and Bidirectional stepwise. 

  

Model Selection Algorithm: Defined None

Regressor strategy: Beta Vector Direct Fit None Splitting Carving Noise None Splitting Carving Noise None Splitting Carving Noise None Splitting Carving Noise

x0 mean beta 0

std beta 1,406 1,167 1,073 1,337 1,085 1,175 0,938 1,064 1,366 1,034 1,046 1,336 0,843 1,12 0,836 0,905

P(accept) from t-values

n

x1 mean beta 5 5,26

std beta 1,063 1,113 1,789 1,071 1,144 1,153 1,693 1,102 1,073 1,056 1,926 1,022 1,094 1,066 1,67 1,091 1,096

P(accept) from t-values 1

1000

x2 mean beta 2 2,087

std beta 0,796 0,742 1,169 0,748 0,704 0,729 1,263 0,759 0,713 0,705 1,278 0,68 0,699 0,744 1,189 0,738 0,757

P(accept) from t-values 0,82

n 1000

x3 mean beta 0

std beta 1,367 1,149 1,121 1,432 1,093 1,204 0,893 1,061 1,382 1,201 1,071 1,387 0,859 1,174 0,798 0,885

P(accept) from t-values

n

x4 mean beta 0

std beta 1,383 1,133 1,126 1,312 1,104 1,101 0,901 1,077 1,425 1,233 1,014 1,369 0,853 1,079 0,839 0,862

P(accept) from t-values

n

x5 mean beta 5 5,222

std beta 1,114 1,134 1,761 1,045 1,12 1,112 1,67 1,118 1,103 1,092 1,861 1,046 1,152 1,079 1,848 1,05 1,135

P(accept) from t-values 1

n 1000

x6 mean beta 0

std beta 1,403 1,176 1,086 1,422 1,087 1,136 0,898 1,088 1,399 1,111 1,02 1,349 0,871 1,186 0,816 0,883

P(accept) from t-values

n

x7 mean beta 0

std beta 1,387 1,178 1,07 1,348 1,083 1,113 0,928 1,075 1,478 1,036 1,113 1,33 0,866 1,216 0,846 0,913

P(accept) from t-values

n

x8 mean beta 1 1,04

std beta 0,732 0,533 1,032 0,718 0,523 0,623 1,221 0,728 0,644 0,54 1,139 0,702 0,52 0,723 1,244 0,772 0,75

P(accept) from t-values 0,3

n 1000

Forward Stepwise Backward Stepwise Bidirectional Stepwise Lasso (lambda 1SE)

Deviation from direct fit
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Figure 19: Regressor parameter 𝛽 sample distributions as a result of splitting a generated data sample from a known model 
to use one half for Forward stepwise model selection and the other half subsequent fitting. Observe how irrelevant 
regressors are not bimodally distributed. Observe furthermore that relevant regressors who’s true betas are relatively small 

(𝛽𝑥2
= 2 𝑎𝑛𝑑 𝛽𝑥8

= 1) are selected in a model less often, more accurately reflecting their relative impact on driving 𝑃𝐷s. 
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Figure 20: Regressor parameter 𝛽 sample distributions as a result of splitting a generated data sample from a known model 
to use one half for Backward stepwise model selection and the other half subsequent fitting. Observe how irrelevant 
regressors are not bimodally distributed, but are, compared to Forward stepwise, included in a model more often. 
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Figure 21: Results of splitting the data sample in combination with using Lasso as a model selection algorithm. Similar to 
Backward stepwise, but different from Forward stepwise, irrelevant regressors are selected relatively often; with the mode 
of these sample distributions centred around the true value of 0. 
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5.2.3 Data Carving 
Data carving, on average, reduces the standard deviations of 𝛽 estimates compared to both data 

splitting and not using a data strategy. Furthermore, the irrelevant regressors have bimodal 

distributions to a lesser degree for the Forward (Figure 23) and Bidirectional stepwise results. Note 

that for the Backward stepwise results (Figure 24), the bimodal structure is further reduced at the 

cost of more frequently selecting irrelevant regressors in a model. This is contrary to the essence of 

model selection, and thus 𝑡-value acceptance rates must be studied in a future section. For now, we 

take these results as improvements. Lasso combined with data carving shows comparable results to 

Backward stepwise, and thus must be further investigated on its 𝑡-value sample distributions. 

 

Figure 22: Colour coded absolute deviances of the 𝛽 estimates from the defined true 𝛽𝑠. For example, the mean of the 

sample distribution for the regressor Duration (𝛽𝑥8
= 1) when using Forward Stepwise and data carving is 𝛽𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝐹𝑤𝑑,𝐶𝑎𝑟𝑣𝑖𝑛𝑔
=

1.538. Then, the value in this figure equals |𝛽𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 −  𝛽𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
𝐹𝑤𝑑,𝐶𝑎𝑟𝑣𝑖𝑛𝑔

| = 0.538. Lower values equal better results in terms 

of the average accuracy of the fit. It can be seen that Data Carving is most accurate on average for Forward and Backward 
stepwise; whereas data splitting is on average most accurate when using Bidirectional stepwise. When using Lasso as a 
model selection algorithm, all data strategies except for adding noise decrease the accuracy of 𝛽 estimates. 

  

Model Selection Algorithm: Defined None

Regressor strategy: Beta Vector Direct Fit None Splitting Carving Noise None Splitting Carving Noise None Splitting Carving Noise None Splitting Carving Noise

x0 mean beta 0 0,033 0,014 0,047 0,058 0,185 0,003 0,059 0,001 0,064 0,002 0,083 0,073 0,127 0,01 0,18 0,077

std beta

P(accept) from t-values

n

x1 mean beta 5 5,26 0,28 0,508 0,232 0,393 0,326 0,53 0,275 0,301 0,25 0,497 0,196 0,3 0,31 0,583 0,266 0,28

std beta 1,063

P(accept) from t-values 1

1000

x2 mean beta 2 2,087 0,232 0,213 0,329 0,235 0,159 0,191 0,205 0,169 0,209 0,242 0,262 0,22 0,154 0,189 0,223 0,163

std beta 0,796

P(accept) from t-values 0,82

n 1000

x3 mean beta 0 0,051 0,027 0,011 0,203 0,025 0,002 0,064 0,056 0,062 0,072 0,082 0,033 0,063 0,098 0,176 0,074

std beta

P(accept) from t-values

n

x4 mean beta 0 0,103 0,003 0,05 0,184 0,085 0,118 0,036 0,071 0,197 0,18 0,121 0,248 0,114 0,01 0,118 0,082

std beta

P(accept) from t-values

n

x5 mean beta 5 5,222 0,351 0,466 0,255 0,259 0,328 0,567 0,252 0,303 0,291 0,553 0,197 0,316 0,369 0,69 0,13 0,333

std beta 1,114

P(accept) from t-values 1

n 1000

x6 mean beta 0 0,002 0,014 0,136 0,139 0,049 0,02 0,047 0,031 0,11 0,013 0,118 0,188 0,046 0,02 0,134 0,113

std beta

P(accept) from t-values

n

x7 mean beta 0 0,026 0,014 0,001 0,242 0,04 0,051 0,071 0,066 0,052 0,067 0,155 0,03 0,042 0,02 0,143 0,042

std beta

P(accept) from t-values

n

x8 mean beta 1 1,04 0,642 0,822 0,538 0,612 0,348 0,175 0,299 0,409 0,593 0,026 0,512 0,613 0,233 0,138 0,265 0,288

std beta 0,732

P(accept) from t-values 0,3

n 1000

Forward Stepwise Backward Stepwise Bidirectional Stepwise Lasso (lambda 1SE)

Deviation from defined model
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Figure 23: Regressor parameter 𝛽 sample distributions as a result of carving a generated data sample from a known model 
to use one half for Forward stepwise model selection and the complete sample for subsequent fitting. Observe how 
irrelevant regressors are still bimodally distributed, but to a lesser degree. Observe furthermore that relevant regressors 

who’s true betas are relatively small (𝛽𝑥2
= 2 𝑎𝑛𝑑 𝛽𝑥8

= 1) are selected in a model less often, more accurately reflecting 

their relative impact on driving 𝑃𝐷s. 
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Figure 24: Regressor parameter 𝛽 sample distributions as a result of carving a generated data sample from a known model 
to use one half for Backward stepwise model selection and the complete sample for subsequent fitting. Observe how, 
similar to Forward stepwise, irrelevant regressors are still bimodally distributed, but to a significantly lesser degree. 
Furthermore, it must be noted that irrelevant regressors get selected in a model more often, which may increase the 
probability of accepting them in a final model. 
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Figure 25: Results of carving the data sample in combination with using Lasso as a model selection algorithm. Similar to 
Backward stepwise, but different from Forward stepwise, irrelevant regressors are selected relatively often; with the mode 
of these sample distributions centred around the true value of 0. 

5.2.4 Adding Noise 
Literature analysed in chapter 2 showed us that adding noise is expected to have comparable results 

to data carving in terms of a final (fitted) model being able to distinguish between true and false 

instances. Our inference results (histograms), however, show that when adding approximately 8% of 

noise to the generated data during the model selection stage all stepwise results are highly 

comparable to the stepwise results of using no data strategy. So, the irrelevant regressors still have 

bimodal 𝑡-value sample distributions and a relatively high risk of getting accepted after fitting the 

selected model. 
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5.3 𝑡-Value Acceptance Rate 
Figure 26 shows how the results of different model selection algorithms and data strategies deviate 

from directly fitting the known model to data. It can be seen that, for stepwise algorithms, data 

splitting most accurately, on average, estimates the power of regressors based on empirical 𝑝-value 

acceptance rates followed by data carving. This comes at the cost of these strategies selecting 

relevant regressors in a model less often. This trade-off, for modellers, means that the probability of 

selecting the correct model is linked to less sparse model selection results.  

So, a modeller that uses data splitting or data carving has a lower probability of selecting the 

complete correct model, but the selected regressors have accurate 𝑡-values. Or, a modeller that 

does not use data splitting has a higher probability of selecting the correct model, but has a greater 

probability of adding irrelevant noise-regressors to the model. 

To better illustrate this phenomenon, observe the 𝑡-value sample distributions as a result of 

Bidirectional stepwise without a data strategy (Figure 27) and combined with data splitting (Figure 

28). When we split the data, irrelevant regressors are included in a model 13.8% more often on 

average, but they are accepted based on their 𝑝-values −87.1% less often on average. Relevant 

regressors, on the contrary, are included in a model −11.1% less often on average when splitting 

the data, and their average acceptance rate decreased with −22.5%. Similar results can be achieved 

with Forward stepwise, where the only notable difference is that irrelevant regressors are slightly 

less frequently included in a model when data splitting compared to no data strategy.  

Decreasing the probability of selecting and accepting relevant regressors is not per se problematic, 

as long as the true power of regressors is accurately reflected in the results, e.g. without model 

selection the relevant regressor 𝑥8 is only accepted after a fit 30% of the time. Data carving 

combined with any model selection algorithm selects, similar to data splitting, relevant regressors 

less often in a model but accepts these after a subsequent fit more often. This may be due to data 

carving using the complete sample during fitting. 

Regarding Lasso, it seems to perform better without a data strategy in terms of both accurate betas 

and acceptance rates. That may be due to Lasso being a penalty in itself, resulting in too much 

restrictive use of the data when combined with any data strategy. Lasso in itself, however, results in 

relatively un-sparse model selection, which may be due to how the value of 𝜆 is determined, which is 

discussed in the next chapter. 
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Figure 26: Colour-coded absolute deviances of the number of times a regressor is present in a model and the acceptance 
rate compared to the sample distribution of a direct fit of the known model. For example, fitting the known model on 1000 
samples of size 700 resulted in the regressor 𝑥8 with 𝑝𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ≤ 0.05 a fraction 0.3 of the time. When using Forward 
Stepwise with Data Splitting, this fraction was 0.18 after fitting. The value in the table hence equals |0.3 − 0.18| = 0.12. 

  

Model Selection Algorithm: Defined None

Regressor strategy: Beta Vector Direct Fit None Splitting Carving Noise None Splitting Carving Noise None Splitting Carving Noise None Splitting Carving Noise

x0 mean beta 0

std beta

P(accept) from t-values 0,35 0,06 0,19 0,3 0,13 0,05 0,11 0,1 0,3 0,03 0,18 0,28 0,05 0,04 0,09 0,09

n 161 167 181 169 421 436 425 390 154 190 149 170 705 492 485 574

x1 mean beta 5 5,26

std beta 1,063

P(accept) from t-values 1 0 0,01 0 0 0 0,01 0 0 0 0,01 0 0 0 0 0 0

n 1000 0 1 3 0 0 27 22 8 0 3 1 0 0 2 0 0

x2 mean beta 2 2,087

std beta 0,796

P(accept) from t-values 0,82 0,06 0,28 0,08 0,08 0,03 0,32 0,05 0,04 0,07 0,28 0,09 0,07 0,03 0,32 0,08 0,01

n 1000 76 258 263 77 12 126 130 34 69 275 291 65 17 193 202 21

x3 mean beta 0

std beta

P(accept) from t-values 0,26 0,08 0,18 0,38 0,16 0,04 0,11 0,12 0,3 0,07 0,18 0,37 0,07 0,05 0,08 0,07

n 153 173 182 168 416 436 427 412 165 181 184 161 707 485 490 606

x4 mean beta 0

std beta

P(accept) from t-values 0,33 0,07 0,24 0,27 0,14 0,05 0,11 0,15 0,4 0,04 0,19 0,31 0,06 0,04 0,08 0,07

n 181 149 178 155 403 411 422 383 172 180 174 156 684 512 482 592

x5 mean beta 5 5,222

std beta 1,114

P(accept) from t-values 1 0 0,01 0 0 0 0,01 0 0 0 0 0 0 0 0,01 0 0

n 1000 0 1 4 0 0 27 13 8 0 2 1 0 0 3 6 0

x6 mean beta 0

std beta

P(accept) from t-values 0,32 0,07 0,19 0,36 0,14 0,04 0,11 0,12 0,32 0,05 0,15 0,32 0,08 0,05 0,09 0,08

n 170 161 191 156 411 408 401 400 165 198 178 160 703 480 509 582

x7 mean beta 0

std beta

P(accept) from t-values 0,31 0,05 0,18 0,35 0,13 0,05 0,1 0,11 0,38 0,03 0,22 0,31 0,07 0,05 0,09 0,08

n 175 157 174 155 419 419 411 399 178 200 177 170 684 498 482 616

x8 mean beta 1 1,04

std beta 0,732

P(accept) from t-values 0,3 0,33 0,12 0,33 0,33 0,09 0,12 0,13 0,16 0,24 0,17 0,27 0,33 0,07 0,13 0,15 0,11

n 1000 448 618 619 490 252 394 394 277 476 648 631 482 148 463 465 232

Forward Stepwise Backward Stepwise Bidirectional Stepwise Lasso (lambda 1SE)

Deviation from direct fit
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Figure 27: 𝑡-Value sample distributions as a result of using a generated data sample for both Bidirectional stepwise model 
selection and subsequent fitting. Observe how irrelevant regressors (𝑥0, 𝑥3, 𝑥4, 𝑥6, 𝑥7) get selected in a model, and 
subsequently accepted relatively often. 

   



55 
 

 

Figure 28: 𝑡-Value sample distributions as a result of splitting a generated data sample and use one half for Bidirectional 
stepwise model selection and the other for subsequent fitting. Observe how irrelevant regressors (𝑥0, 𝑥3, 𝑥4, 𝑥6, 𝑥7) get 
selected in a model more often than without a data strategy, but get accepted after the secondary fit −87.06% less 
frequently. 
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5.4 Valid Performance 
We performed experiments where random data 𝑋 was generated with number of rows 𝑁 ∈

[500, 1000, 2000] and the number of regressors 𝑘 ∈ [5,10,15]. Forward, bidirectional, and 

backward stepwise as well as lasso with fixed 𝜆 (𝜆 = 0.1) model selection algorithms were 

performed in combination with no data strategy, data splitting, and data carving. During the fitting 

stage each fitted model is tested on a left out fold, and this test AUC is stored 5 times, as we perform 

5-fold CV, and the average is stored. The highest AUC is the result of one particular fit, this maximum 

AUC is stored as well and the corresponding fit is tested on new data with size 0.25𝑁. This test AUC 

is also stored. Results were presented in the previous chapter, which we now analyse.  

We use the fraction of computed AUC values greater than a set threshold as a metric for bias. For 

example, random data 𝑁 = 1000 with 𝑘 = 10 is generated one thousand times, and the same 

number of times model selection and model fitting according to some algorithm and data strategy 

are performed. Average AUC over 5 folds is hence computed a thousand times, and the metric for 

bias is the number of times this average 𝐴𝑈𝐶 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 divided by one thousand. 

5.4.1 Test AUC versus Average AUC 
The results (Figure 14) indicate that using a separate test set to compute the test AUC of the best fit 

that occurred during model fitting is generally a riskier method of assessing true performance of a 

model compared to drawing conclusions based on the average AUC over the folds during model 

fitting. However, Rabobank must settle on a final model with fixed regressor parameters when a 

model is to be deployed, and, clearly, the average performance of five different fits is not consistent 

with one model whereas selecting and testing the best fit is. 

Therefore a case can be made for using average AUC over the cross validation folds to get an idea of 

how well the data, in general, can be used to distinguish between good and bad borrowers. Data 

carving has the lowest risk, and any stepwise algorithm can be used to assess this as differences in 

inflated performance across stepwise algorithms are negligible. Then, when it is concluded that the 

data is suitable for predictive modelling, a final model may be selected using data splitting combined 

with a stepwise model selection algorithm, because the inference results show that data splitting 

yields the most valid model. 

5.4.2 Data Size and Number of Regressors 
The size of the data set and the number of regressors present in the data set increase the risk of 

inflated performance. From Figure 14 it can be seen from the red cells, red cells indicate a risk value 

of greater than or equal to 1%, that, no matter the type of AUC metric, the risk of inflated model 

performance decreases as the size of the data set increases. As for the number of regressors in 𝑋, 

the average of all output for 5 regressors equals 0.054, for 10 regressors it equals 0.058 which is an 

increase of 6.86%, and for 15 regressors the average output equals 0.060 which is a 3.57% and 

10.67% increase compared to 10 and 5 regressor respectively. Concluding, increasing the number of 

regressors in a data set increases the probability of inflated model performance on average. 

5.4.3 Lasso 
The most notable results from using lasso as a model selection algorithm on data that is just noise, is 

that for data carving and not using a data strategy the lasso solver did not find a solution. That is, a 

solution to the objective min
𝜷

−ℒ(𝜷) + 𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1  was not found. Most likely this is due to the data 

being noise: no patterns could be recognized. In terms of reducing the risk of adding noise to a 

model to inflate its performance, the lasso test AUC is consistently higher than the stepwise 
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algorithms for each data strategy. It is up for discussion on whether lasso and stepwise are 

comparable due to the fewer solutions lasso resulted in. 

5.4.4 Data Splitting 
Data splitting, contrary to data carving, has the highest inflated average AUC for each data strategy 

modelled. Therefore it can be argued that data splitting should not be used when modellers want to 

gain understanding in how well the data may be used for predictive modelling. The test AUC results 

(Figure 14), however, do not appear to significantly deviate from using no data strategy or data 

carving: meaning that any data strategy does not magically increases a model’s performance on new 

data. Taking into consideration the inference results, where both data splitting and data carving 

performed well, it is unclear which strategy to use when assessing performance; and further 

research is performed in the next chapter (Chapter 6) to optimize hyperparameters on which 

fraction of the data to use for model selection when either splitting or carving the data. 

5.5 Concluding Chapter 5 
In this chapter we analysed the result of the experiments that were conducted to quantify bias. 

Different combinations of model selection algorithms and data strategies were simulated and 

analysed with the goal of identifying and quantifying biased PD model statistics. 

We identified that, as literature indicated, biased inference can occur as a result of using the same 

data sample for both model selection and model fitting. The way this bias manifests in the results is 

via bimodal sample distributions of both regressor parameters 𝛽 and 𝑡-values, resulting in irrelevant 

regressors that do not contribute to 𝑃𝐷 getting selected and accepted in a model. Data splitting can 

be, combined with any stepwise model selection algorithm, a good solution in reducing the 

probability of accepting irrelevant regressors in a model. 

Data splitting, however, decreases the prevalence of relevant regressors in selected models, and 

reduces their acceptance rates after fitting. This does not have to be a problem, as, naturally, 

regressors can have less power and should in that case be accepted less frequently. When the goal is 

to most accurately select the correct model one may opt for using data carving, as acceptance ratios 

of relevant regressors are not significantly decreasing compared to not using a data strategy. This 

can be a result of data carving using all data during model fitting, which increases the probability of 

relevant regressors being identified. All taken together, further analysis is required in the next 

chapter where we compare data splitting with data carving for different configurations regarding 

hyperparameters. 

From the results of the prediction experiments (Figure 14), inflated model performance can be a 

problem depending on the size of the data and on the number of regressors present in the data. It is 

therefore advised to gain insight into the usefulness of the data for predictive modelling by analysing 

the data by building and fitting models using either data splitting or data carving and 5-fold CV. 

Thereafter a final fitted model may be selected but, considering the inference results (Figure 11), it is 

unclear by which methods: either data splitting or data carving. To conclude on this matter requires 

further analysis in the next chapter. For now, if modellers deem the probability of inflated 

performance, listed in Figure 14, too high then modellers may retrieve more data or reduce the 

number of regressors in the data.  

Concluding, it is advised to make use of data carving or data splitting when evaluating the quality of 

the data for predictive modelling. Actions against inflated performance are unnecessary when 

sufficient data is available, exact thresholds may be retrieved from Figure 14. Regarding inference, in 
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the next chapter both carving and splitting will be tuned on hyperparameters and compared on 

performance to see which one is best.  
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6. Validating and Tuning the Solutions 
In this chapter we discuss well performing strategies that were identified in the analysis of chapter 5, 

to subsequently fine tune and stress test a final one. First, we recall the well performing strategies 

(section 6.1), then we see if these strategies are performing a certain way because of the data 

(section 6.2). Thereafter, we try to conclude on what fraction of a data sample to use for model 

selection (section 6.3), and if changing the way the penalty constant 𝜆 is determined yields better 

results regarding inference when using Lasso as a model selection algorithm (section 6.4). We 

thereafter use the German credit risk dataset where a known model is applied to its normalized data 

to see if with using real data distributions we still observe improvements when using well 

performing strategies; also, the natural risk of the German credit risk data set is used to see if the 

proposed solution yields a different model on average (section 6.5). Finally, we conclude this chapter 

by summarizing it (section 6.6). 

6.1 Well Performing Strategies 
In chapter 5 we have seen that the probability of accepting irrelevant noise-regressors in a model 

can be significantly reduced by using data splitting. For example, Forward stepwise combined with 

data splitting selects irrelevant regressors in a model 3.93% less often and accepts these in a model 

after a subsequent fit on new data 78.98% less often, compared to not using a data strategy. The 

general trend appears to be that data splitting has a similar probability of selecting irrelevant 

regressors in a model, but, because bimodal 𝑡-value sample distributions do not occur, accepts these 

after fitting the selected model much less frequently. 

Data carving can, when using stepwise model selection algorithms, also decrease the probability of 

accepting irrelevant regressors in a model, but not as significantly as data splitting. This may be a 

result of carving using a fraction of the same data used for model selection in model fitting, in similar 

fashion to not using a data strategy. When using Lasso, data carving yields worse results both in 

terms of accurate 𝛽s and acceptance rates. 

Backward stepwise selects irrelevant regressors in a model more frequently than Forward and 

Bidirectional stepwise. Combined with data splitting or data carving the probability of accepting 

these irrelevant regressors decreases. So, when sparse model selection is preferred, Backward 

stepwise should not be preferred, just as Lasso, compared to Forward or Bidirectional stepwise. 

Concluding, the well-performing strategies of combining Forward or Bidirectional stepwise with 

either data splitting or data carving should be further investigated in the next section (section 6.2) 

on how to optimally split the data into a model selection (MS) fraction and a fitting fraction. 

6.2 Optimal Splitting 
We evaluated Forward and Bidirectional stepwise combined with the data strategies data splitting 

and data carving, where the model selection part was set to 25%, 50%, and 75%. From the results 

of these experiments it visually became clear that reducing the model selection fraction, i.e. from 

50% to 25% yields better results than increasing the fraction. Hence, we study data splitting and 

data carving for both Forward and Bidirectional stepwise in more detail.  
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Figure 29: Numerical results of tuning the fraction of a data sample that should ideally be used for model selection. It can be 
seen that Forward stepwise combined with data splitting 25%𝑀𝑆 is optimal in terms of average 𝛽 accuracy and accurately, 
on average, assessing the true power of regressors after fitting the selected model. Standard deviations of 𝛽 estimates can 
be slightly reduced when using Bidirectional stepwise and data carving, but at the cost of accepting irrelevant regressors in 
a model significantly more often. 

Figure 29 shows the results for Forward and Bidirectional stepwise combined with data splitting and 

data carving. The best results in terms of accurate average 𝛽 estimates and accurate assessment of a 

regressor’s true power are achieved when using Forward stepwise combined with data splitting 

where 25% of a data sample is used for model selection, and 75% for fitting the selected model. 

From Figure 30, sample distributions of 𝑡-values for each regressor, we can confirm these results: 

irrelevant regressors get selected and accepted in a model significantly less often compared to not 

using a data strategy. Furthermore, the natural power of relevant regressors is accurately described 

by the 𝑡-value histograms: we observe different results across relevant regressors depending on the 

value used for the true 𝛽s. 

In terms of absolute improvements compared to the baseline strategy of using a data sample for 

both Forward stepwise model selection and model fitting, Forward stepwise combined with data 

splitting (25% 𝑀𝑆) selects irrelevant regressors 15% less often in a model and subsequently 

accepts these 86% less often after fitting the selected model. This comes at the cost of relevant 

regressors getting selected 34% less often and accepting these 17% less often; it must, however, be 

taken into consideration that this cost is not necessarily bad, but rather the result of a more accurate 

power estimate as not every regressor contributes to model performance equally. 

  

Model Selection Algorithm: Defined None Forward Bidirectional

Regressor strategy: Beta Vector Direct Fit None Splitting 25MS Carving 25MS None Splitting 25MS Carving 25MS

x0 mean beta 0 0,033 0,044 0,064 0,064 0,126 -0,053

std beta 1,406 0,836 0,863 1,366 0,855 0,697

P(accept) from t-values 0,35 0,05 0,1 0,3 0,04 0,05

n 161 154 156 154 136 146

x1 mean beta 5 5,26 5,28 5,141 5,153 5,25 5,182 5,044

std beta 1,063 1,113 1,172 1,014 1,056 1,211 0,953

P(accept) from t-values 1 1 1 1 1 1 1

n 1000 1000 817 813 1000 814 815

x2 mean beta 2 2,087 2,232 2,02 2,336 2,209 2,092 2,303

std beta 0,796 0,742 0,926 0,718 0,705 0,873 0,736

P(accept) from t-values 0,82 0,88 0,67 0,91 0,89 0,7 0,92

n 1000 924 437 420 931 431 436

x3 mean beta 0 -0,051 0,029 0,003 -0,062 0,037 -0,046

std beta 1,367 0,822 0,913 1,382 0,816 0,849

P(accept) from t-values 0,26 0,04 0,1 0,3 0,05 0,1

n 153 155 152 165 169 129

x4 mean beta 0 0,103 0,072 0,045 -0,197 0,009 -0,16

std beta 1,383 0,882 0,902 1,425 0,891 0,851

P(accept) from t-values 0,33 0,08 0,11 0,4 0,06 0,12

n 181 129 152 172 156 149

x5 mean beta 5 5,222 5,351 5,104 5,083 5,291 5,177 5,061

std beta 1,114 1,134 1,165 1,012 1,092 1,238 0,995

P(accept) from t-values 1 1 1 1 1 1 1

n 1000 1000 811 814 1000 812 808

x6 mean beta 0 0,002 0,041 0,154 0,11 -0,02 -0,03

std beta 1,403 0,851 0,875 1,399 0,813 0,822

P(accept) from t-values 0,32 0,05 0,1 0,32 0,02 0,06

n 170 145 168 165 150 160

x7 mean beta 0 0,026 -0,017 0,076 -0,052 0,036 0,069

std beta 1,387 0,749 0,908 1,478 0,753 0,819

P(accept) from t-values 0,31 0,03 0,13 0,38 0,05 0,1

n 175 135 142 178 152 155

x8 mean beta 1 1,04 1,642 1,015 1,387 1,593 0,889 1,368

std beta 0,732 0,533 0,961 0,687 0,54 0,926 0,739

P(accept) from t-values 0,3 0,63 0,26 0,53 0,54 0,19 0,5

n 1000 552 227 225 524 209 223



61 
 

 

Figure 30: 𝑡-value sample distributions as a result of using Forward stepwise as a model selection algorithm where 
generated data samples are split into a model selection (MS) fraction with a size of 25% of the generated data sample, and 
the remainder used for fitting the selected model. Compared to not using a data strategy, all irrelevant regressors (grey-
blue) are selected in a model 15% less often and accepted after fitting the selected model 86% less often. The relevant 
regressors (blue) are selected in a model 34% less often and accepted after fitting 17% less often; this is not per se a bad 
result, as the natural power of regressors in a known model logically depends on the value of their corresponding 𝛽. I.e., 
relevant regressors with relatively smaller true 𝛽s should get selected and accepted in a model less often. 
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6.3 The Data 
To see if the proposed solution of using Forward stepwise combined with data splitting 25%𝑀𝑆 not 

only performs well on average on different samples, but also on a random sample generated from a 

known true model, we generate a sample from the known model and bootstrap from it. The results 

can also be used to see how well the proposed solution can recognize a true model using 

bootstrapping. On the bootstrapped sample model selection and fitting using the promising solution 

of Forward stepwise combined with 25%𝑀𝑆 data splitting is used.  

Figure 31 shows 𝑡-value sample distributions of the proposed solution, and Figure 32 of the baseline 

of using the same sample for both Forward stepwise model selection and subsequent fitting. It can 

be seen that the proposed solution of Forward stepwise and data splitting 25%𝑀𝑆 has a 

significantly lower risk of selecting and accepting irrelevant regressors in a model. This, however, 

does happen at the cost of less often selecting and accepting relevant regressors in a model. This 

cost, as discussed, is not necessarily problematic as the prevalence and acceptance rates of 

regressors should describe the true power of regressors, which may vary between relevant 

regressors depending on relative 𝛽 sizes.  

Concluding, the improvements as a result of using the proposed solution of Forward stepwise 

25%𝑀𝑆 are likely to not be on average, but are expected to be prevalent across samples. 

Furthermore, bootstrapping combined with the proposed solution can more accurately identify the 

correct model responsible for generating the data sample, compared to the baseline of using the 

same data for model selection and fitting. 
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Figure 31: 𝑡-value sample distributions as a result of using the proposed solution (Forward stepwise combined with data 
splitting 25%𝑀𝑆). Observe how the risk of selecting and accepting irrelevant regressors is still relatively low. Relevant 
regressor 𝑥8 with a true parameter of 𝛽𝑥8

= 1, however, is significantly less often accepted after fitting. Compared to the 

baseline of using identical samples for both Forward stepwise model selection and subsequent fitting (Figure 31), splitting 
yields significant improvements. 
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Figure 32: Baseline results of using the same bootstrapped sample for Forward stepwise model selection and subsequent 
fitting to compare with the proposed solution in Figure 31. Observe how there is significant risk of selecting and accepting 
several irrelevant regressors in a model.  

  



65 
 

6.4 Optimal Lambda using AUC 
The Lasso inference results presented in chapter 4 and chapter 5 are not sparse enough. That is, 

irrelevant regressors get selected in a model rather often. It is expected that increasing the penalty 

constant 𝜆 will yield more sparse results. Initially, we used the log likelihood function value in a cross 

validation experiment to determine the optimal penalty constant 𝜆 on every generated data sample. 

Now, we will find the optimal 𝜆 value using out-of-sample AUC performance. 

The experiment is set up as follows: 

- A data sample is generated from the known model; 

- Using this data sample, an optimal penalty constant 𝜆1𝑆𝐸
∗  is computed in the range 

[2, 2.1, … ,4] using the 1 Standard Error Heuristic (1SE) (Figure 33); 

- Using  𝜆1𝑆𝐸
∗ , a Lasso regularized logit fit is performed as a model selection algorithm; 

- All regressors for which their regressor parameter 𝛽 is not equal to zero are selected in the 

model, which is subsequently fit. 

The 1SE heuristic works by first splitting the generated data sample in 5 equally sized folds. 

Secondly, given a 𝜆, a model is fitted on 4 folds and tested on the left-out fold in terms of AUC 

performance. This can be done five times, as there are five folds that can be left out. The average 

performance is stored, as well as the standard deviations between the five performances. Then, 𝜆 is 

increased and the process is repeated. If the average performance corresponding to a greater 𝜆 is 

better than that of a smaller 𝜆, the greater 𝜆 is accepted as a (temporary) global optimum. At some 

point it is expected that the out-of-sample average performance is worse than the global optimum, 

but a greater lambda is nonetheless accepted if its performance is within one standard error (1SE) of 

the global optimum. An example of how 𝜆1𝑆𝐸
∗  can be seen in Figure 33. For a discussion on this 

heuristic, see e.g. Chen & Yang (2021). 

 

Figure 33: An example of using the 1SE heuristic to find an optimal penalty constant 𝜆1𝑆𝐸
∗ . Notice how the out-of-sample 

average AUC over five folds is greatest for 𝜆 = 2, but the, following the 1SE heuristic rules, we allow for increasing 𝜆 to 3 as 
its corresponding performance is within 1𝑆𝐸 of the optimum at 𝜆 = 2. 
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Compared to the original results (Figure 26), the new results of searching for an optimal 𝜆 where 

greater values are allowed indeed indicate more sparse model selection (Figure 34). Irrelevant 

regressors, however, have a relatively high acceptance rate after fitting the selected model in which 

they may be present. Compared to the current proposed solution of using Forward stepwise 

combined with 25% 𝑀𝑆 data splitting, the 1𝑆𝐸 Lasso results are significantly worse. From these 

results we must conclude that using Lasso as a model selection algorithm is either not preferred for 

𝑃𝐷 model selection, or requires more research on 𝜆-tuning before put into practice. 

 

Figure 34: 𝑡-value sample distributions of using Lasso as a model selection algorithm. Irrelevant regressors, plotted in the 
darker shade of blue, are accepted after being selected in a model often and hence Lasso should not be preferred as a 
model selection algorithm over Forward stepwise. 
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6.5 German Credit Risk  
In this section we compare results of using Forward stepwise without a data strategy to the thus-far 

proposed solution of using Forward stepwise combined with data splitting 25%𝑀𝑆 (section 6.5.1). 

Thereafter we discuss if the characteristics of these results are due to correlations within the data 

(section 6.5.2), value inflation factor values (section 6.5.3), or relative beta sizes of the known model 

(section 6.5.4). Lastly, we bootstrap from the real German credit risk data, i.e. the real defaults in 

this data, to see if, on average, the proposed solution selects a different model than the baseline of 

not using a data strategy. 

6.5.1 Known Model 
In the real world, we cannot choose the distribution of our data. That is, a regressors can be 

distributed following some empirical shape, this shape is beyond our control. To see if data splitting 

is as robust as to show improved results on natural data, we normalize the publicly available German 

credit risk7 containing 1000 observations and apply a known model (Table 4) to this data to 

generate, in this case, 150 defaults. From this known-model German credit risk data we draw 

1000 samples (𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒 = 700) on which Forward stepwise without a data strategy as well as 

combined with data splitting is performed. 

From the baseline results (Figure 35) it can be seen that irrelevant regressors are selected to a model 

infrequently, except for 𝐶ℎ𝑒𝑐𝑘𝑖𝑛𝑔𝐴𝑐𝑐𝑜𝑢𝑛𝑡. Furthermore, irrelevant regressor 𝐶ℎ𝑒𝑐𝑘𝑖𝑛𝑔𝐴𝑐𝑐𝑜𝑢𝑛𝑡 is 

accepted 22% of the selected cases after the subsequent fit. The proposed solution (Figure 36) 

more accurately describes the true power of irrelevant regressors. That is, there is significantly less 

risk, on average, of including irrelevant regressors in a model when using Forward stepwise 

combined with data splitting 25% 𝑀𝑆. Concluding, Forward stepwise combined with data splitting 

25% 𝑀𝑆 appears to yield better performance than not using a data strategy. 

There are several factors that could affect the outcomes when using the natural distribution of 

regressors as input data to model selection, a few of which are: correlations within the data, the 

value inflation factor of regressors, and, in the case of using a known model, the size of the true 𝛽s 

used in that known model. These will be discussed in the next sections.  

 
7 https://www.kaggle.com/datasets/uciml/german-credit  

https://www.kaggle.com/datasets/uciml/german-credit
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Figure 35: 𝑡-value sample distributions as a result of using the same data sample, bootstrapped from normalized known-
model German credit risk data, for Forward stepwise model selection and subsequent fitting.  
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Figure 36: 𝑡-value as a result of splitting a bootstrapped data sample in a model selection (MS) part (25%) and a model 
fitting part (75%) which are used for Forward stepwise model selection and subsequent fitting respectively. Observe how, 
compared to not using a data strategy (), regressors get selected more often but accepted significantly less often. 
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6.5.2 Correlation 
One reason for relevant regressors not getting selected in a model is that they may be heavily 

correlated to one or more irrelevant regressors. Then, instead of selecting the regressor that is 

responsible for generating defaults, regressors that are correlated to that relevant regressor may get 

selected. An example is given on correlated data (Figure 37). When a column containing relevant 

regressor data, in a particular order, is strongly correlated to a column containing data from an 

irrelevant regressor, the absence of the relevant regressor is less problematic when the strongly 

correlated irrelevant regressor has taken its place. 

  
Figure 37: An example of correlated data. On the left two series of uncorrelated data. On the right the generated data 
series are strongly positively correlated. 

The correlation matrix of the German credit risk data is given in Figure 38. It can be seen that the 

largest correlation is the correlation (𝜌 = 0.63) between Duration, a relevant regressor, and Credit 

Amount, an irrelevant regressor. When we look at the 𝑡-value inference results of Forward stepwise 

(Figure 36) combined with data splitting we can observe that 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 is selection 346 times and 

𝐶𝑟𝑒𝑑𝑖𝑡𝐴𝑚𝑜𝑢𝑛𝑡 is selected 1000 times. The other correlations are negligible, and their 

corresponding regressors are selected infrequently. This leads us to conclude that correlation 

structure of the data used is most likely not problematic, i.e. it does not invalidate the inference 

Figure 38: The correlation matrix of the normalized German credit risk data. 
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results. 

6.5.3 Variance Inflation Factor 
The variance inflation factor (VIF) of a regressor is another metric of how correlated a regressor is to 

all other regressors in the data set; when a VIF equals one the regressor is uncorrelated to the other 

regressors, as one observes greater VIF values the more correlated the regressor is to the other 

regressors, and for values greater than 4 it may be wise to investigate the data (The Pennsylvania 

State University, n.d). When a regressor has a low VIF, it is not easily substituted for by one or more 

other regressors when performing model selection. 

We calculated the VIF of each regressor in the normalized German credit data set, and obtained the 

results given in F. The new model with which defaults are generated is given in T, the true intercept 

𝛽0 is adjusted from −1.5𝑒2 to −1.1𝑒2 such that a comparable number of defaults (145) is present 

in the new data. 

 

Table 6: The value of the regressors parameters used in generating scores from normalized German credit risk data, after 
which the score is transformed into a PD via a logit transformation. With this PD a default is binomially generated. Note 
that the four regressors corresponding to the lowest four VIFs have regressor parameters not equal to zero. 

𝛽𝐺𝑒𝑛𝑑𝑒𝑟 = 1 𝛽𝐽𝑜𝑏 = 0 𝛽𝐻𝑜𝑢𝑠𝑖𝑛𝑔 = 0 

𝛽𝑆𝑎𝑣𝑖𝑛𝑔𝑠𝐴𝑐𝑐𝑜𝑢𝑛𝑡 = 5 𝛽𝐶ℎ𝑒𝑐𝑘𝑖𝑛𝑔𝐴𝑐𝑐𝑜𝑢𝑛𝑡 = 2 𝛽𝑃𝑢𝑟𝑝𝑜𝑠𝑒 = 0 

𝛽𝐴𝑔𝑒 = 5 𝛽𝐶𝑟𝑒𝑑𝑖𝑡𝐴𝑚𝑜𝑢𝑛𝑡 = 0 𝛽𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0 

 

The problem of selecting and accepting irrelevant regressors that was visible in e.g. using Forward 

stepwise without a data strategy on the original data, is still visible in the ‘low-VIF data’ results when 

not making use of a data strategy (Figure 40). The proposed solution of using Forward stepwise 

combined with data splitting 25%𝑀𝑆 (Figure 41) significantly reduced the acceptance rates of 

irrelevant regressors. This means that the solution is not model and data dependent in even when 

using the best possible model in terms of regressors being relatively un-substitutable. 

  

Figure 39: : Regressors and their VIFs. 
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Figure 40: : 𝑡-Value sample distributions as a result of using a low VIF data sample for both Forward model selection and 
subsequent fitting of the selected model. In the lighter blue, the relevant regressors. Observe that irrelevant regressor 
𝐶𝑟𝑒𝑑𝑖𝑡𝐴𝑚𝑜𝑢𝑛𝑡 gets selected and accepted often. 
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Figure 41: 𝑡-Value sample distributions as a result of splitting the low VIF data, using 25% for Forward stepwise model 
selection and the other 75% for subsequent fitting. Irrelevant regressors get selected in a model a reasonable number of 
times, but do not pass the subsequent fit. 
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6.5.4 Relative Beta Sizes 
From the analysis of results in chapter 5 it can be seen that relevant regressors with the greatest 

true parameters are selected significantly more often than the relevant regressors that have lower 

true parameters. Needless to say, the larger the parameter the greater that regressor can drive 

probability of default. We study what happens when all relevant regressors are given a true 

regressor parameter 𝛽 that equals 5. The intercept 𝛽0 is adjusted to  such that the number of 

defaults in the generated data is comparable to the number of defaults in the original experiment 

(156). 

When using Forward stepwise without a data strategy, the results (Figure 42) show that there is 

significant risk of adding irrelevant regressors to a model. It must be noted that now all relevant 

regressors have equally sized regressor parameters, they do get selected and accepted an equal 

number of times. This suggests that the relative size of the true regressor parameters affects model 

selection output. The results of the proposed solution (Figure 43) show that the risk of adding 

irrelevant regressors to a model is significantly decreased compared to the baseline. Furthermore, 

when using the solution, relevant regressors are selected and accepted according to their true 

power; so no trade-off is visible.  

Concluding, the true value of the relative regressor parameter 𝛽 sizes do not reduce the probability 

of selecting irrelevant regressors to a model when not using the proposed data strategy. Making use 

of Forward stepwise combined with data splitting 25% 𝑀𝑆 is still preferred over the using the same 

sample for both model selection and model fitting, because the true power of both relevant and 

irrelevant regressors are accurately assessed. 
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Figure 42: 𝑡-value sample distributions as a result of using an ‘equal-beta data sample’ for both Forward stepwise model 
selection and subsequent fitting. Observe how irrelevant regressors (e.g. 𝑆𝑎𝑣𝑖𝑛𝑔𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠 and 𝐴𝑔𝑒) are selected and 
accepted rather often. This means that even when relevant regressors are easily recognizable, there is still a high risk of 
selecting and accepting irrelevant regressors in a model. 
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Figure 43: 𝑡-value sample distributions as a result of splitting an ‘equal-beta data sample’ where 25% is used for Forward 
stepwise model selection and the other 75% for subsequent fitting. Observe how the relevant regressors in the lighter 
shade of blue are recognized according to their true power. That is, prevalence in selected models and acceptance rates 
after fitting are equal across all the relevant regressors. This means that, when using the proposed solution, the true power 
of both irrelevant and relevant regressors are accurately assessed. 
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6.5.5 Real Data 
Data splitting is inherent to model selection uncertainty because the selected model is dependent on 

the data used. That is, one random split yields a model but another random split yields a different 

model. So, to make the proposed solution of Forward stepwise and data splitting 25% 𝑀𝑆 useful for 

Rabobank, a method should be engineered that removes the uncertainty in which model to select 

when using data splitting. This method can be based on bootstrapping as follows: 

- A sample is drawn from an available data set at Rabobank; 

- This sample is split into a model selection part (25%) and a model fitting part (75%); 

- Forward stepwise is used to select a model; 

- The selected model is fitted and the regressor parameters 𝛽 as well as the reported 𝑡-values 

and 𝑝-values are stored; 

- The above four steps are repeated a number of times; 

- Based on the reported 𝑝-values, a human decides on which regressors to add in a model. 

The average 𝛽s reported for these selected regressors can be used as final regressors 

parameter values. 

The above procedure is performed using Forward stepwise without data splitting first (Figure 44), 

and thereafter with data splitting (the proposed solution) (Figure 45). It can be seen that the 𝑡-value 

sample distributions when using the proposed solutions are highly different than from using the 

baseline of no data strategy. From the perspective of the author, the regressors that should at least 

be selected based on the results of not using a data strategy are 𝐺𝑒𝑛𝑑𝑒𝑟, 𝐻𝑜𝑢𝑠𝑖𝑛𝑔, 

𝑆𝑎𝑣𝑖𝑛𝑔𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠, 𝐶ℎ𝑒𝑐𝑘𝑖𝑛𝑔𝐴𝑐𝑐𝑜𝑢𝑛𝑡, 𝑃𝑢𝑟𝑝𝑜𝑠𝑒, and 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛. 

When using the proposed solution of Forward stepwise combined with data splitting 25% 𝑀𝑆, the 

regressors that should at least be selected to a model are 𝑆𝑎𝑣𝑖𝑛𝑔𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠, 𝐶ℎ𝑒𝑐𝑘𝑖𝑛𝑔𝐴𝑐𝑐𝑜𝑢𝑛𝑡, 

and 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛. From a comparison of fitting these models to all of the data, it can be seen that 

performance in terms of 𝐿𝑜𝑔 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑, 𝐴𝐼𝐶, and 𝐵𝐼𝐶 are relatively comparable (Table 7). It is 

notable that, even though the proposed solution yields a model with only 3 regressors, the 𝐵𝐼𝐶 is 

slightly lower than the baseline-model. This is a good result, because it means that the model that is 

selected using the proposed solution explains the data better than a baseline model with twice as 

many regressors in it. 

Table 7: A comparison of the selected models using the ‘old way’ and the improved new way. 

Method: Forward Stepwise – No Data 
Strategy 

Forward Stepwise – Data 
Splitting 𝟐𝟓% MS 

Selected Model 𝐺𝑒𝑛𝑑𝑒𝑟, 𝐻𝑜𝑢𝑠𝑖𝑛𝑔, 
𝑆𝑎𝑣𝑖𝑛𝑔𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠, 
𝐶ℎ𝑒𝑐𝑘𝑖𝑛𝑔𝐴𝑐𝑐𝑜𝑢𝑛𝑡, 𝑃𝑢𝑟𝑝𝑜𝑠𝑒, 
and 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

𝑆𝑎𝑣𝑖𝑛𝑔𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠, 
𝐶ℎ𝑒𝑐𝑘𝑖𝑛𝑔𝐴𝑐𝑐𝑜𝑢𝑛𝑡, and 
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛. 

𝐿𝐿𝐹   −510  −519  
𝐴𝐼𝐶  1034  1046  
𝐵𝐼𝐶  1069  1066  
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Figure 44: 𝑡-value sample distributions as a result of using a data sample, drawn from the original German credit risk, for 
both Forward stepwise model selection and subsequent fitting. From the judgement of the author, based on these results, a 
modeller may select the regressors 𝐺𝑒𝑛𝑑𝑒𝑟, 𝐻𝑜𝑢𝑠𝑖𝑛𝑔, 𝑆𝑎𝑣𝑖𝑛𝑔𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠, 𝐶ℎ𝑒𝑐𝑘𝑖𝑛𝑔𝐴𝑐𝑐𝑜𝑢𝑛𝑡, 𝑃𝑢𝑟𝑝𝑜𝑠𝑒, and 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 in 
a model because these have high prevalence in selected model and high acceptance rates after fitting. 
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Figure 45: 𝑡-value sample distributions as a result of splitting a data sample, drawn from the original German credit risk, in 
a Forward stepwise model selection part (25%) and fitting part (75%). From the judgement of the author, based on these 
results, a modeller may select the regressors 𝑆𝑎𝑣𝑖𝑛𝑔𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠, 𝐶ℎ𝑒𝑐𝑘𝑖𝑛𝑔𝐴𝑐𝑐𝑜𝑢𝑛𝑡, and 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 in a model because 
these have high prevalence in selected model and high acceptance rates after fitting. 
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6.6 Concluding Chapter 6 
In this chapter we decided on which model selection algorithm in combination with which data 

strategy to use: forward stepwise combined with data splitting. Then, we determined the optimal 

splitting strategy: to use 25% of a data sample for model selection, and 75% for model fitting the 

selected model. Because the selected model is dependent on the data sample given to the model 

selection algorithm, we studied if via this proposed solution we can recognize the model responsible 

for generating defaults accurately. We recognize the known true model by bootstrapping, where we 

draw samples from a generated data sample. The probability of selecting and accepting irrelevant 

regressors is significantly lower compared to not using a data strategy when bootstrapping. 

The solution of using forward stepwise combined with data splitting is then tested on real data, 

because in the real world we cannot determine how regressors are distributed. First, we use German 

credit risk data from Kaggle by applying a known model to it. This known model generates defaults, 

and from this generated data we bootstrap. Our solution performs better than the baseline in terms 

of not selecting irrelevant regressors to a model. Furthermore, these results are stress tested, so to 

speak, by studying correlation in the data set, having a different model generate defaults with 

regressors that are statistically difficult to substitute for others, and let another model generate 

defaults where all relevant regressors have equal 𝛽 sizes. In all these scenarios, the solution (forward 

stepwise and data splitting 25%𝑀𝑆) performs better than the baseline of forward stepwise and not 

using a data strategy, and correlation within the data is found to not be problematic. 

After this stress test, we use our proposed solution on real data to see if it will result in selecting a 

different model, compared to using only forward stepwise without a data strategy. We use the 

original German credit risk. We bootstrap samples from this data, select a model and fit this model 

using the proposed solution one thousand times. The results are 𝑡-value sample distributions 

(histograms), which we can use to decide on which model to select by looking at the number of 

times a regressor is selected and the acceptance rate of regressors after fitting. While this is 

subjective, by selecting regressors with relatively strong prevalence in selected models and high 

acceptance rates after fitting, we are able to reduce the number of regressors in a selected model 

from 6 to 3 while the performance in terms of 𝐴𝐼𝐶, 𝐵𝐼𝐶 and 𝐿𝐿𝐹 is very comparable and even 

slightly better for 𝐵𝐼𝐶. This means that with our solution, modellers can achieve better performance 

with simpler models. 

Lastly, to obtain more sparse results with Lasso model selection, we used a different performance 

metric to determine an optimal penalty constant 𝜆1𝑆𝐸
∗  via the one standard error (1𝑆𝐸) rule. 

Previously we determined 𝜆1𝑆𝐸
∗  via the in-sample log-likelihood value with 5-fold CV, now we base it 

on the out of sample (OOS) 𝐴𝑈𝐶. An optimal penalty constant 𝜆1𝑆𝐸
∗  is computed in the range 

[2, 2.1, … ,4], and the model selection results are indeed more sparse. Irrelevant regressors are 

selected in a model a comparative number of times to Forward stepwise and data splitting. 

However, with Lasso these irrelevant regressors are accepted after fitting the selected model 

significantly more often. This makes Lasso unpreferred compared to the proposed solution of using 

forward stepwise and data splitting (25% 𝑀𝑆), and hence it is not advised to use Lasso as a model 

selection algorithm. 
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7. Conclusions and Recommendations 
In this chapter we answer the main research question, and based on this formulate 

recommendations for Rabobank. These recommendations are such that the current 𝑃𝐷 modelling 

methodology can, without much effort, be adjusted. First, recall the mean research question: In 

what way, if at all, are the regressor-parameters and model performance of credit risk models at 

Rabobank biased, and how can Rabobank adjust for this bias both statistically and managerially? 

After a summary of the business case (section 7.1), we conclude this research by first concluding on 

how the current model selection algorithms at Rabobank can yield biased model statistics (section 

7.2), then we discuss solutions (section 7.3), and formulate concrete recommendations on how to 

modify the model selection methodology (section 7.4). Finally, we discuss ideas for future research 

(section 7.5). 

7.1 The Business Case of Biased 𝑃𝐷 Model Statistics 
In the banking industry, probability of default (𝑃𝐷) models are used in estimating the probability of 

a client not paying back a loan. Needless to say, accurate 𝑃𝐷 estimates are crucial to responsible and 

sustainable banking. Building 𝑃𝐷 models, however, is complex and when an algorithm is used to 

build these models, there is a risk of biased model statistics. Literature (Berk, Brown & Zhao, 2010) 

on this bias indicates that regressor parameter 𝛽 and 𝑡-value estimates can not only be inaccurate, 

but these estimates are conditional on the model selection algorithm used, other regressors present 

in a model, and the standard error of the regressor parameter given the data. Furthermore, model 

performance can be inflated as a result of 𝑘-fold cross validation (Moshontz, Fronk, Sant'Ana & 

Curtin, 2020) and possibly model selection algorithms. This research, therefore, aims at quantifying 

bias in 𝑃𝐷 model statistics to improve the 𝑃𝐷 model development methodology at Rabobank. 

7.2 Identified Current Problems 
This research was conducted to investigate if the stepwise model selection algorithms resulted in 

biased 𝑃𝐷 model statistics: 𝑃𝐷 model performance, regressor 𝑡-values, and regressor parameters 𝛽. 

Biased 𝑃𝐷 model statistics can be problematic when model performance is inflated, or when the 

model contains regressors that actually do not contribute to the 𝑃𝐷 of a customer. We identified, 

from literature, how to identify this bias and how to potentially correct for it as well. We used known 

models to artificially generate defaults. That is, the regressors weights 𝜷 with which defaults are 

generated are known. 

To identify biased inference, we generate samples from a known model and we use that generated 

sample for model selection and subsequent model fitting. We simulated the stepwise model 

selection algorithms currently available at Rabobank, as well as Lasso. These model selection 

algorithms can be combined with data splitting, data carving, adding noise, or doing nothing. 

Furthermore, we determined that aspects of well performing strategies yield accurate 𝛽 estimates 

with low standard deviations and ideally select and accept only the regressors for which their true 𝛽 

is not equal to zero. We found that the main problem of the current 𝑃𝐷 model selection 

methodology in use at Rabobank is the risk of adding irrelevant regressors to a model. This risk is 

greatest when using the same data sample for both model selection and fitting the selected model. 

We furthermore studied inflated model performance as a result of model selection algorithms and 

𝑘-fold CV. We generated random data, and randomly assigned defaults to this data such that it can 

be argued the true area under the receiver operating characteristic curve (𝐴𝑈𝐶) of a model that is 

selected based on this data must equal 0.5. We found that increasing the number of regressors and 

decreasing the size of the data set increases the risk of the average 𝐴𝑈𝐶 over 5 folds, in 5-fold CV, 
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being inflated: i.e. being significantly above 0.5. It would be wise for modellers to at least be aware 

of this risk and use the tables generated in this research to determine if, given the importance of a 

model, the risk of inflated performance is too high. 

7.3 Promising Solutions 
From the experiments described in section 7.2, it can be concluded that the risk of selecting and 

subsequently accepting irrelevant regressors to a model is lowest with Forward stepwise in 

combination with data splitting. From analysing different configurations, data splitting should be 

such that 25% of the data sample is used for model selection, and the other 75% for fitting the 

selected model. 

This solution performs well in terms of both accurate regressor parameters, as well as acceptance 

rates of both irrelevant and relevant regressors. Compared to the baseline of using the same data 

sample for Forward stepwise model selection and subsequent fitting, the proposed solution reduced 

the risk of selecting irrelevant regressors in a model by 15% on average. After fitting the selected 

model, the risk of accepting irrelevant regressors in a model is reduced by 86%. 

To reduce the volatility of the model selection algorithm when using data splitting, Rabobank may 

make use of bootstrapping (Figure 46). With bootstrapping, samples are drawn from a data set (a 

population) and this drawn sample is split in a model selection part (25%) and a model fitting part 

(75%). The regressor statistics, in terms of parameters 𝛽, 𝑡-values and 𝑝-values, are stored for 

every fit. Finally, after all bootstrapping iterations are completed, sample distributions can be 

assessed to, via human expert-based intuition, select regressors. Here, it must be considered, 

Rabobank should be in favour of adding those regressors to a final model that are often present in 

selected models, and have high acceptance rates after fitting the selected model. 

7.4 Recommendations for Improving the Model Selection Methodology 
To answer the main research question: statistics, 𝑡-values as well as 𝛽s, of regressors post model 

selection can be biased such that they inaccurately reflect their true value. As a result, significant risk 

of irrelevant regressors being added to a final model is present when using the same data sample for 

both stepwise model selection and subsequent fitting. Model performance can be inflated as a result 

of model selection, but with enough data this problem is insignificant. From the experiments and the 

analysis of the data may be formulated the following recommendations on improving the 𝑃𝐷 model 

selection methodology of Rabobank: 

- To, first and foremost, be aware of biased inference with 𝑃𝐷 model selection and; 
- To, when developing models, use Forward stepwise in combination with data splitting, 

where 25% of a data sample is used for model selection and the remaining 75% for model 

fitting and; 
- To make use of bootstrapping in practice, as from the results of Forward stepwise combined 

with data splitting we are able to recognize the true model responsible for generating 

defaults when bootstrapping via reported 𝑡-values after model fitting and; 
- To, given enough data, use Forward stepwise combined with data splitting and 5-fold cross 

validation to obtain an estimate of how well the data at hand can be used for predictive 

modelling; a modeller can judge the risk of inflated model performance using the tables in 

this research. 
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Figure 46: An overview of the old method of model selection, where a data sample is used for both model selection and 
model fitting. The new method, data splitting, is visualized as well. Bootstrapping to counter-act the variability in model 
selection when data splitting is visualized in the second block. Here, the idea is to sample ‘sub-samples’ from a data set 
(bootstrapping), which are used for model selection and model fitting. The 𝛽 and 𝑡-value statistics should be stored for each 
sub-sample, which can then be aggregated and analysed as we have done in this research. 

7.5 Future Research 
The fact that irrelevant regressors can be added to a model and subsequently accepted with a high 

probability when using a data sample for both model selection and model fitting brings with it, even 

after this research, questions regarding hyperparameter tuning and selective use of data. That is, 

model selection pipelines can have several hyperparameters that influence the outcome, i.e. the 

model, significantly. Here, an example of a model selection pipeline can be selecting and 

subsequently fitting a model using some strategy. There is reason for future research to investigate 

which parameters of the model selection pipeline to tune, and whether or not to use unique data to 

do this tuning because we have seen that using the same data for both model selection and model 

fitting can result in bias. Examples of hyperparameters to tune are: 
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- The fraction of data to use for model selection and the fraction of data to use for model 

fitting, given a data set and; 

- The number of samples to draw when using bootstrapping as a means to counter-act the 

volatility of the model selection algorithm when data splitting, to be time-efficient as 

bootstrapping many samples may take a significant amount of time. 

- The penalty constant 𝜆 when researching Lasso as a model selection algorithm; 

- Whether or not to use unique data to tune this 𝜆 constant; 

A logical place to start is to make use of a known model that is responsible for generating defaults, 

because with such an experimental setup one is not limited to a dataset, minimizing the risk of 

results being inherent to that particular data set. Furthermore, this research, based on our results, 

being in favour of data splitting is contrary to modern literature on the topic of inference post model 

selection. Hence, future research may focus on hyperparameter tuning the type and amount of 

noise to add during the model selection stage or the specifics of data carving, when making use of 

the adding-noise strategy or the data carving strategy respectively.  

Finally, even though our solution of combining forward stepwise model selection with data splitting 

is (stress-) tested using German credit risk data from Kaggle, an important comment to make is that 

we can only generalize the results of this research to a certain degree because we made use of only 

one particular known model. Therefore, future research may focus on performing different 

experiments using different known models depending on the context, or adopt a more formal 

mathematical approach with the goal of proving minimal bias occurs with some combination of a 

model selection algorithm and a data strategy.  
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