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Failures in concurrent systems, particularly software defined net-

working (SDN) systems can be very difficult to detect for the human

brain. In order to deal with such failures computationally, we in-

troduce a system to explain and debug safety failures in SDNs

expressible in DyNetKAT. The latter is a framework to represent

the control and data plane of SDNs, based on a well-researched

network programming language, NetKAT (Network Kleene Algebra

with Tests ). We provide and implement an algorithm to convert

DyNetKAT into a Labelled Transition System (LTS), based on the

Maude Rewriting Logic and the NetKAT tool. We exploit the counter-

factual causal reasoning theory on the generated LTS to understand

which transitions led to the safety failure. We show that the safety

failures of the running examples can be identified and explained

using our prototype tool.

Additional Key Words and Phrases: Software Defined Networks,

Causality, Formal Specification

1 Introduction

The main objective of an engineer is to build systems which
follow a predefined behaviour. Explaining when a system
fails to follow through that behaviour has thereby gained a
lot of attention as engineering rose to prominence. In order
to understand and debug such failures, Fault Tree Analysis
(FTA) [17] and Failure mode and effects analysis (FMEA) [8]
have been proposed and widely used.

Starting with Hume’s work [13], there has been a lot of re-
search on causal reasoning, which can ultimately be utilized
in explaining system failures. The work by David Lewis pro-
posed the alternative worlds idea. Briefly, Lewis proposes
in order for a cause to have a causal relationship with an
effect, worlds where a sufficiency and necessity condition
are satisfied has to exist. To satisfy the former, defined as
the sufficiency condition, whenever the cause happens, the
effect also has to happen, and to satisfy the latter, defined as
the necessity condition, whenever the cause does not hap-
pen, the effect should not happen as well [19]. Nevertheless,
this has been considered as too simple when faced with the
logical complexities that arise with system failures [4]. The
definition of causality adopted by computer scientists [20] is
the definition given by Halpern and Pearl in their landmark
studies [11] [10] .
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Amongst others, this definition on top of the sufficiency
and necessity conditions previously mentioned, adds mini-
mality requirement and captures aspects like preemption.
Minimality requirement assures that only the proper group
of causal occurrences are recognized, where the proper
group can be defined as a group solely consisting of rele-
vant causal events. Preemption involves a group of events
which all have ability to enable to effect, where temporal
differences decide which one of them actually does enable
the effect [10].

In this paper, we focus on understanding and debugging
system failures in software defined networks (SDNs) using
causality. Software defined networking has gained a lot of
traction as it has simplified network management and of-
fered network programmability by decoupling the control
plane from the data plane and adding an application pro-
gramming plane in between the control plane and the data
plane [14]. Following this, programming languages such
as OpenFlow [21] and Frenetic [9] have been designed for
SDNs. Over the recent years, formal languages for SDNs
have become more acclaimed as they allow for reasoning
about correctness properties such as safety.

We chose DyNetKAT [5] as it offers an analysable frame-
work to specify the data and the control plane of SDNs.
DyNetKAT uses NetKAT [2] as a model, and has some ex-
tensions such as synchronization, guarded recursion and
multi-packet semantics, as seen in the syntax from Figure 4.
NetKAT is a formal framework to specify and reason about
networks [2]. NetKAT is a minimalist language with a deno-
tational semantics based on Kleene Algebra with Tests (KAT)
[16] succesfully used to model network packet flows. On the
other hand, NetKAT does not fully depict some failures that
can happen with SDNs. For example, one of the common
uses of a SDN is to make a stateful firewall, however a state-
ful firewall cannot easily be programmed using NetKAT as it
does not support dynamic changes.

While DyNetKAT can model a SDN with dynamic updates
and can be used to prove correctness properties of a SDN,
it cannot be used to explain and reason about the causes of
safety violations and cannot be used to automatically sug-
gest ways to avoid such safety violations. Correspondingly,
this paper is about exploiting the operational semantics
of DyNetKAT in order to reason about safety violations by
means of causal reasoning.

Related Work. Multiple definitions on causality has been
put out over the years, most of which made to be specific
for the system it studies and the accompanying safety prop-
erties. This paper primarily relates to the works in [18] [11]
[10] [20]. Our prototype makes use of the trace-based causal
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reasoning for automata models proposed in [20], with the
definition of causality accordingly with Halpern and Pearl.
In order to conduct causal reasoning for SDNs, the frame-
work specified in [5] has been adopted. These, along with
the encoding with causality for labelled transition systems
(LTS) proposed in [6], allowed us to compute causes in SDNs.
Other works such as the NetKAT evaluation module of [24]
used for LTS generation are referenced throughout the pa-
per whenever applicable.

Our contributions. The following is a summary of the con-
tributions of this paper:

• we provide, implement and reason about an algorithm
to convert DyNetKAT into a Labelled Transition System
(LTS) ( Section 4.1) ; and
• we exploit the counterfactual causal reasoning theory

on the generated DyNetKAT LTS to identify and explain
designated safety failures ( Sections 4.2 ,5 ).

Structure of the paper. In Section 2 we describe the two
examples that will be focused on for LTS generating and
causal reasoning purposes. In Section 3 we give a concise
overview of NetKAT and DyNetKAT, explaining the syntax
rules that were pivotal for this paper. We introduce and
reason about a DyNetKAT formalism to LTS generation al-
gorithm in Section 4.1. Following the LTS generation, we
reason about how counterfactual reasoning theory can be
exploited to compute causes in Section 4.2. We implement
our cause computing method on the running examples as
well as benchmarking the LTS generation on larger exam-
ples in Section 5 and report on its scalability. In Section
6, we wrap up the paper and suggest some directions for
further research.

2 Running Examples

For the duration of this paper, we concentrate on modelling
and cause computing for two realistic SDN instances that
consists of a dynamically updated network configuration.
The first example, Virtual Connection on Demand (VCoD)
[12] application, a controller begins the update by setting
up a virtual circuit between two hosts on the data plane. For
the second one, a stateful firewall, a trusted host changes
the state of the data plane by allowing a forbidden path in
the network.

Example 1: A virtual circuit is created for the delivery
of a bit stream between a source host and a destination
host [22]. However, when necessary, another host should
be able to send packages to the destination host provided
that the destination host is not currently receiving a bit
stream. An instance could be a user wanting to connect to
an other host than the source host, and in that case if the
virtual connection is not being utilized, the packages from
the other host should reach the destination host.

Looking at the network topology depicted in Figure 1
, one could see that controllers C1 and C2 controls the
network consisting of switches S1 and S2. The virtual circuit
exists between H1 and H3, with the connection itself getting
forwarded through the port 1 and port 2 of S1. When a
virtual connection needs to initiated, C2 is expected to notify
C1. The connection between H2 and H3 is along port 3 and
port 4 from S2. When H2 wants to send something to H3,
S2 checks whether there is a virtual circuit between H1 and
H3 by querying C1.

Fig. 1. Virtual Circuit

Example 2: This example is a modified version of the first
running example of [5], used for testing and continuity pur-
poses. It is about a stateful firewall designed to dynamically
control the access to the intranet of an organization from the
rest of the internet. When someone from the organization
requests to receive packages from the rest of the internet,
then the state of the firewall changes to permit packages by
updating the flow tables. Correspondingly, a member of the
organization can also revert the firewall to its initial state
so to prevent the rest of the internet from accessing the
organizations intranet.

Figure 2 depicts a condensed form of stateful firewall
with the dotted line separating between the intranet of the
organization and the internet. In the beginning, the switch
S1 forbids the transfer of packages from the internet to the
intranet (port 2 to 1 ), while allowing packages from the
intranet to the internet (port 1 to 2 ). The connection from
the internet to the intranet (port 1 to 2 ) established when a
request is sent from the Host H1 to the Switch S1.

Fig. 2. Stateful Firewall
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3 A brief overview of NetKAT and DyNetKAT

Here, we give a quick overview of the syntax and seman-
tics of the DyNetKAT framework and the NetKAT language.
As the DyNetKAT framework uses NetKAT as a base, it is
necessary to have an understanding of NetKAT previous to
learning about DyNetKAT. As a result of spacing concerns,
the summary will only explain a chosen few from the syn-
tax semantics, leaving the reader the option of referring to
works in [5] and [2] if deemed necessary.

3.1 NetKAT overview

Definition 1 (Network Packet). A packet is a function map-
ping field 𝑓𝑛 from a set of fields with 𝑓𝑛 ∈ 𝑓1, ...., 𝑓𝑘 that map
to a integer 𝑖 from a set of integers 𝑖 ∈ 1, ....., 𝑘 with a fixed
integer 𝑘. We correspond 𝑓𝑖 (𝜎) with the value 𝑣𝑖 in field 𝑓𝑖

inside a packet 𝜎. Using such a value 𝑣𝑖 of valid type, we
can either conduct a test or update the value of a function.
For a test, we write 𝑓𝑖 (𝜎) = 𝑣𝑖 which checks if the value of
𝑓𝑖 from a packet 𝜎 is equal to 𝑣𝑖 . In order to update a value
in 𝑓𝑖 from a packet 𝜎 we write 𝑓𝑖 (𝜎) := 𝑣 𝑗 which updates the
value of 𝑓𝑖 from a packet 𝜎 to 𝑣 𝑗 .

An empty list of such packets is denoted by ⟨⟩, correspond-
ingly we represent a list 𝑙 containing one packet 𝜎 with 𝜎 :: ⟨⟩.
Prepending packet 𝜎 ′ to 𝑙 would be denoted with 𝜎 ′ :: 𝑙 , mak-
ing position 0 of 𝑙 the packet 𝜎 ′ and position 1 the packet
𝜎.

The sequential composition operator (𝑝.𝑞) seen in NetKAT
syntax and semantics [2] in Figure 3 makes use of the Kleisli
composition shown as (𝑝 •𝑞). By way of explanation, it maps
the inputted package using function specified by the left
operand, and then maps the result using the function speci-
fied by the right operand.

NetKAT Syntax:
Pr ::= 0 | 1 | 𝑓 = 𝑛 | Pr + Pr | Pr · Pr | ¬Pr
𝑁 ::= Pr | 𝑓 ← 𝑛 | 𝑁 + 𝑁 | 𝑁 · 𝑁 | 𝑁 ∗ | dup

NetKAT Semantics:

⟦1⟧(ℎ) ≜ {ℎ}
⟦0⟧(ℎ) ≜ {}

⟦𝑓 = 𝑛⟧ (𝜎 ::ℎ) ≜
{
{𝜎 ::ℎ} if 𝜎 (𝑓 ) = 𝑛

{} otherwise

⟦¬𝑎⟧ (ℎ) ≜ {ℎ} \ ⟦𝑎⟧ (ℎ)
⟦𝑓 ← 𝑛⟧ (𝜎 ::ℎ) ≜ {𝜎 [𝑓 := 𝑛]::ℎ}
⟦𝑝 + 𝑞⟧ (ℎ) ≜ ⟦𝑝⟧ (ℎ) ∪ ⟦𝑞⟧ (ℎ)
⟦𝑝 · 𝑞⟧ (ℎ) ≜ (⟦𝑝⟧ • ⟦𝑞⟧) (ℎ)
⟦𝑝∗⟧ (ℎ) ≜

⋃
𝑖∈𝑁 𝐹 𝑖 (ℎ)

𝐹 0 (ℎ) ≜ {ℎ}
𝐹 𝑖+1 (ℎ) ≜ (⟦𝑝⟧ • 𝐹 𝑖 ) (ℎ)
(𝑓 • 𝑔) (𝑥) ≜

⋃{𝑔 (𝑦) | 𝑦 ∈ 𝑓 (𝑥) }
⟦dup⟧ (𝜎 ::ℎ) ≜ {𝜎 ::(𝜎 ::ℎ) }

Fig. 3. NetKAT: Syntax and Semantics [2]

3.2 DyNetKAT overview

DyNetKAT fundamentally extends NetKAT in three ways, syn-
chronization, guarded recursion and multi-packet semantics.
Synchronization allows for a basic handshake synchroniza-
tion process and the ability to send a flow table in addition
to the handshake. Guarded recursion is used for modelling
state changes, however a policy has to be applied before a
state change (guarding) to keep the formalism decidable.
Multi-packet semantics are designed to treat a list of packets.
We will summarize synchronization and guarded recursion
in the following paragraphs.

The syntax of DyNetKAT [5] can be seen in Figure 4. Com-
munication for synchronization in DyNetKAT is done with
two phases. In the first phase, by using the operators 𝑥 !𝑁 ;𝐷
or 𝑥?𝑁 ;𝐷, policies of type 𝑁 are sent or received through
channel 𝑥 . Secondly, when the sending or receiving is suc-
cessfully conducted, a new packet is fetched and processed
in accordance with 𝐷.

N ::= NetKAT−dup

D ::= ⊥ | N ;D | 𝑥?N ;𝐷 | 𝑥 !N ;𝐷 | D | | D | 𝐷 ⊕ 𝐷 | 𝑋
𝑋 ≜ 𝐷

(1)

Fig. 4. DyNetKAT Syntax [5]

Using these communication policies as a foundation, the
operational semantics for synchronization can be seen in Fig-
ure 5. As visible, when both sending and receiving "agree"
on a policy 𝑁 and channel 𝑥 , a reconfiguration based on
policy 𝑁 and channel 𝑥 (rcfg(x,N)) can be observed.

(cpol!?)
(𝑞, 𝐻,𝐻 ′)

𝑥 !𝑝
−−−→ (𝑞′, 𝐻, 𝐻 ′) (𝑠, 𝐻, 𝐻 ′)

𝑥?𝑝
−−−→ (𝑠 ′, 𝐻, 𝐻 ′)

(𝑞 | |𝑠, 𝐻, 𝐻 ′)
rcfg(x,p)
−−−−−−−→ (𝑞′ | |𝑠 ′, 𝐻, 𝐻 ′)

(cpol?!)
(𝑞, 𝐻,𝐻 ′)

𝑥?𝑝
−−−→ (𝑞′, 𝐻, 𝐻 ′) (𝑠, 𝐻, 𝐻 ′)

𝑥 !𝑝
−−−→ (𝑠 ′, 𝐻, 𝐻 ′)

(𝑞 | |𝑠, 𝐻, 𝐻 ′)
rcfg(x,p)
−−−−−−−→ (𝑞′ | |𝑠 ′, 𝐻, 𝐻 ′)

Fig. 5. : Operational Semantics

While DyNetKAT allows for defining unguarded specifica-
tions, the authors in [5] build their frameworks on top of
guarded specifications, where the occurrence of free vari-
ables are not allowed, as guardedness is assumed by default.
To define recursive variable 𝑋 acting in accordance to policy
𝑃 , the defining equation 𝑋 ≜ 𝑃 is used.
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In Equation 2, we provide a DyNetKAT formalism for the
first running example, the VCoD application.

𝐶1 ≜ 𝑁𝑜𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑖𝑟𝑐𝑢𝑖𝑡 !1;𝐶1⊕
𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑅𝑒𝑞?1;𝐶1′

𝐶1′ ≜ 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝐸𝑛𝑑?1;𝐶1

𝐶2 ≜ 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑅𝑒𝑞!1;𝐶2′

𝐶2′ ≜ 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝐸𝑛𝑑!1;𝐶2

𝑆1 ≜ 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑅𝑒𝑞?1; 𝑆1′

𝑆1′ ≜ ((𝑝𝑜𝑟𝑡 = 1) .(𝑝𝑜𝑟𝑡 ← 2)); 𝑆1′⊕
𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝐸𝑛𝑑?1; 𝑆1

𝑆2 ≜ 𝑁𝑜𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑖𝑟𝑐𝑢𝑖𝑡?1; 𝑆2′

𝑆2′ ≜ ((𝑝𝑜𝑟𝑡 = 3) .(𝑝𝑜𝑟𝑡 ← 4)); 𝑆2

𝐼𝑛𝑖𝑡 ≜ 𝐶1| |𝑆1| |𝑆2| |𝐶2

(2)

As visible, when the formalization is initialized in 𝐼𝑛𝑖𝑡 , no
virtual connection exists as 𝑆1 has no instructions about
forwarding packages from port 1 in its flow table. However,
through sending𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑅𝑒𝑞 it can change its state into
𝑆1′, where instructions about forwarding packages from port
1 exist. Similarly, 𝑆2 checks whether a virtual connection
exists or not before forwarding packages from port 3, as it
waits until receiving 𝑁𝑜𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑖𝑟𝑐𝑢𝑖𝑡 to change its state to
𝑆2′, where it has forwarding instructions.

4 Methodologies

At the heart of this paper lies causality. In order to obtain
the causes of violations, it is required to have the labelled
transition system of the program that has the violation . A
LTS is a transition system used to encode behaviour of pro-
grams, especially ones which work concurrently. To obtain
the causes from the LTS, we will use an algorithm specified
from the work in [20].

Definition 2 (Labelled Transition System). A labelled tran-
sition system (LTS) is 4-tuple (𝑆, 𝑠𝑖 , 𝐴,→) in which 𝑆 is a
infinite set of states, 𝑠𝑖 ∈ 𝑆) the initial state, 𝐴 is an infinite
set of actions and→⊆ 𝑆 ×𝐴 × 𝑆 is the transition relation.

4.1 LTS Setup, Parsing and Generation

The LTS generation is comprised of three stages, the setup
stage for setting up the necessary environment and the
structure of the DyNetKAT program, and the parsing stage
for parsing the given DyNetKAT program, and the generat-
ing stage for generating an LTS from the given DyNetKAT
program.

For the setup stage, the prototype tool implementation
1 behind the work in [5] was chosen as a base implemen-
tation. The implementation for this paper can be found at
https://github.com/canolmezoglu/DyNetiKAT. Similarly to

1https://github.com/hcantunc/DyNetiKAT

the prototype tool in [5], the LTS generator for this pa-
per also uses a JSON type file [23] to define the inputted
DyNetKAT expressions.

The JSON file used by the setup consists of five name/value
pairs, recursive_variables, channels, program, file_-
name and module_name. Even though the protoype only need-
ing a DyNetKAT formalism as input would have made it more
intuitive to use, having an extra name/value pair defining the
recursive variables i.e. recursive_variables prevents infi-
nite rewriting of DyNetKAT’s recursive variables. In addition,
defining channels decreases ambiguity and potential syntax
errors while parsing sending and receiving constructs. The
definition of the program with program allows to define the
starting point and the inputted packages in an intuitive way
which is canonical with the introducing works from [5]. In
order to define and generate error messages and Maude
modules, file_name and module_name are used. A JSON file
for a stateful firewall can be seen in Listing 1. Using the
Maude parsing sub-module of the prototype from [5], the
DyNetKAT JSON file is partly converted into a Maude Sys-
tem module for preventing issues such as infinite rewriting
of DyNetKAT’s recursive variables. An example of such mod-
ule for the stateful firewall example can be seen in Listing
2.

Listing 1. JSON file depicting a DyNetKAT stateful firewal

{
"module_name" : STATEFUL−FIREWALL,
"file_name" : STATEFUL−FIREWALL.maude,
" recursive_variables " :
{
"Switch" : ( pt = 1 . pt <− 2) ; Switch o+ (pt =2

. zero ) ; Switch o+ (secConReq ? one) ;
SwitchPrime ,

"SwitchPrime" : (pt = 1 . pt <− 2) ; SwitchPrime
o+ (pt = 2 . pt <− 1) ; SwitchPrime o+ (
secConEnd ? one) ; Switch ,

"Host" : (secConReq ! one) ; Host o+ (secConEnd !
one) ; Host

}
"channels" : [ 'secConReq' , 'secConEnd' ] ,
"program" : @Recursive(Switch) | | @Recursive(Host) ,

pt=01 : : pt=10 : :{} ,{} ,
}

Listing 2. Maude module to facilitiate parsing

load / src /maude/ l t s .maude

fmod STATEFUL−FIREWALL is
protecting DNA .
ops Switch SwitchPrime Host : −> Recursive .
ops secConReq secConEnd : −> Channel .

endfm

4
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During the parsing stage, we use the Maude System [7], a
framework designed for equational and rewriting logic spec-
ification. The inputted DyNetKAT program is then rewritten
into an identifier stating the type of the DyNetKAT expres-
sions using the equational rewriting functions of Maude.
The commutativity or associativity of DyNetKAT-specific con-
structs were represented using the [〈OperatorAttributes〉]
components of Maude operator declarations. In order to
make the parsing more performant by decreasing the state
space for the Maude System, each program in recursive_-
variables is parsed separately. After parsing, the JSON file
is updated by replacing of the programs in recursive_-
variables with the parsed programs. An example for the
stateful firewall can be seen in Listing 3.

Listing 3. JSON file depicting a parsed DyNetKAT stateful firewall

{
"module_name" : STATEFUL−FIREWALL,
"file_name" : STATEFUL−FIREWALL.maude,
" recursive_variables " :
{

"Switch" : '@NetKAT( ( pt = 1 . pt <− 2) ) ;
@Recursive(Switch) o+ @NetKAT( (pt = 2 .
zero ) ) ; @Recursive(Switch) o+ @Receive(
@Channel(secConReq) >> one) ; @Recursive(
SwitchPrime) ' ,

"SwitchPrime" : '@NetKAT( ( pt = 1 . pt <− 2) ) ;
@Recursive(SwitchPrime) o+ @NetKAT( ( pt = 2 .

pt <− 1) ) ; @Recursive(SwitchPrime) o+
@Receive(@Channel( secConEnd) >> one) ;
@Recursive(Switch) ' ,

"Host" : '@Send(@Channel(secConReq) >> one) ;
@Recursive(Host) o+ @Send( @Channel(
secConEnd) >> one) ; @Recursive(Host) '

}
"channels" : [ 'secConReq' , 'secConEnd' ] ,
"program" : @Recursive(Switch) | | @Recursive(Host) ,

pt=01 : : pt=10 : :{} ,{} ,
}

As seen from 𝐼𝑛𝑖𝑡 in Equation 2, a DyNetKAT construct can
consist of synchronized single recursive variables. Corre-
spondingly, a program variable can contain single recursive
constructs which can then contain more synchronized sin-
gle recursive constructs inside, as visible in Figure 4. This
presented a problem for the generation as the variables
ahead of the variable being currently parsed would not be
known. For instance, in a situation where the construct be-
ing parsed is of type sending, and there is a single recursive
variable ahead which unfolds into receiving, a RCFG(x,p)
would be missed unless every recursive variable is unfolded
at each iteration making the generation a computationally
intensive process. In order to avoid this problem, all of the
single recursion inside a program is unfolded until it defines

a policy that is not a single recursive variable by Algorithm
2 before the program gets evaluated by Algorithm 1 .

Throughout the generation stage, different methods of
generation were used for the differing types of DyNetKAT
constructs, as obtained from the parsing stage. The differ-
ent methods were added in order to check the satisfaction
of different conditions for the rules in the operational se-
mantics in [5]. For a RCFG(x,p) transition, concisely defined
as a synchronizing message passing through channel x, a
linear search of receive messages of the same channel is
conducted. NetKAT expressions are parsed according to the
evaluation module in [24]. As the evaluation module is only
accessible through an interactive shell of a spawned pro-
cess, the querying for evaluation of NetKAT policies were
automated by the Pexpect [25] package. The output pack-
ages might be differing with respect to cardinality, thereby
we used arrays to represent them as states in the itera-
tions of the generation method. With accounting for such
differences, the final generation algorithm can be seen in
Algorithm 1.

Algorithm 1 Algorithm for the generation phase

Input: A DyNetKAT formalism such as Equation 2
Output: A LTS 𝐺 corresponding to the inputted formalism

initialize a list 𝐿;
append the 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 from the JSON into 𝐿;
initialize a LTS 𝐺 ;
while |𝐿 | ≥ 0 do

𝑐𝑢𝑟𝑟 ← 𝐿.𝑝𝑜𝑝 () ;
initialize lists 𝑃 ,𝐻 and 𝐻𝑃𝑟𝑖𝑚𝑒;
𝑃 ← synchronized policies in 𝑐𝑢𝑟𝑟 after being unfolded by Algorithm 2;
𝐻 ← list of the packages to process in 𝑐𝑢𝑟𝑟 ;
𝐻𝑃𝑟𝑖𝑚𝑒 ← list of processed packages in 𝑐𝑢𝑟𝑟 ;
for each policy 𝑝𝑜𝑙 in 𝑃 do

if 𝑝𝑜𝑙 has the non-deterministic choice operator then
separate the non-deterministic policies in 𝑝𝑜𝑙 and run this algorithm on each

one
end if
if 𝑝𝑜𝑙 is of type 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 or 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 then

𝑛𝑒𝑤_𝑃 ← 𝑃 with 𝑝𝑜𝑙 modified as the next state;
𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒 ← 𝑐𝑢𝑟𝑟 with 𝑛𝑒𝑤_𝑃 as the policies;
if 𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒 ∉ 𝐺 then

append 𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒 to 𝐿;
end if
add the appropriate transition between 𝑐𝑢𝑟𝑟 and 𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒 in 𝐺 ;
if (𝑃 \ 𝑝𝑜𝑙) has at least one policy of type 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 and 𝑝𝑜𝑙 is of type 𝑠𝑒𝑛𝑑𝑖𝑛𝑔

then
𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑃 ← the next states of the policies of type 𝑟𝑒𝑐𝑒𝑖𝑣𝑒;
𝑛𝑒𝑤_𝑃 ← 𝑃 modified with 𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑃 and next state of 𝑝𝑜𝑙 ;
𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒 ← 𝑐𝑢𝑟𝑟 with 𝑛𝑒𝑤_𝑃 as the policies;
if 𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒 ∉ 𝐺 then

append 𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒 to 𝐿;
end if
add a RCFG transition between 𝑐𝑢𝑟𝑟 and 𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒 in 𝐺 ;

end if
else

𝑛𝑒𝑤_𝐻 ← deep copy of 𝐻
𝑁 ← 𝑛𝑒𝑤_𝐻.𝑝𝑜𝑝 () ;
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑁 ← 𝑁 processed with the NetKAT evaluator
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑁 ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑁 merged with 𝐻𝑃𝑟𝑖𝑚𝑒

𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒 ← 𝑐𝑢𝑟𝑟 with 𝑛𝑒𝑤_𝐻 as packages to process and 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑁 as
the processed packages;

if 𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒 ∉ 𝐺 then
append 𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒 to 𝐿;

end if
add a NetKAT transition between 𝑐𝑢𝑟𝑟 and 𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒 in 𝐺 ;

end if
end for

end while
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Algorithm 2 Algorithm to parse synchronized recursive policies

Input: Synchronized programs with recursive names which can unfold into more synchro-
nized programs

Output: Synchronized programs that begin with communication or NetKAT constructs
initialize a list 𝐿;
for each synchronized program 𝑃 do

if 𝑃 begins with type 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 then
initialize a list 𝑢𝑛𝑓 𝑜𝑙𝑑𝑒𝑑
𝑢𝑛𝑓 𝑜𝑙𝑑𝑒𝑑 ← the unfolded policies from 𝑃

if 𝑢𝑛𝑓 𝑜𝑙𝑑𝑒𝑑 has synchronized programs then
while a recursive program exists in 𝑢𝑛𝑓 𝑜𝑙𝑑𝑒𝑑 do

unfold the recursion and add to 𝑢𝑛𝑓 𝑜𝑙𝑑𝑒𝑑

end while
end if
merge 𝑢𝑛𝑓 𝑜𝑙𝑑𝑒𝑑 with 𝐿

end if
append 𝑃 to 𝐿

end for
return 𝐿

In Figure 6 we portray the generated LTS for the second
running example, stateful firewall with one external packet
to process, using methodology specified in Section 4.1. A
succesful evaluation of a NetKAT policy 𝑁 on packet 𝜎 with
header 𝑝𝑡 (𝜎) = 1 leading to a transition labelled (𝜎, 𝜎 ′) with
𝑝𝑡 (𝜎 ′) = 2 is depicted in the LTS as the expression seen
below.

(𝑁, 𝜎 :: {}, {}) (𝜎, 𝜎 ′)
−−−−−→

(, {}, 𝜎 ′ :: {})

4.2 Causal Computation from LTS

The causality checking of DyNetKAT programs is based on
the work in [20]. In [5], the authors consider LTSs as the
natural semantic models of DyNetKAT. However, in [20],
reasoning is done on Finite Automata (FA).

The difference between the definitions of a FA and a LTS
explains how a LTS in our case can be converted into a FA.

Definition 3 (Finite Automaton). A finite automaton is 5-
tuple (𝑆, 𝑠𝑖 , 𝐴,→, 𝐹 ) in which 𝑆 is a finite set of states, 𝑠𝑖 ∈ 𝑆)
the initial state, 𝐴 is a finite set of actions,→⊆ 𝑆 × 𝐴 × 𝑆 is
the transition relation, and 𝐹 is the set of accepting states.

As visible from Definition 2 and 3, there is one difference
that would matter in defining hazards and computing causes,
FA’s have accepting states while LTS’s does not. As the states
in a generated LTS all represent states that DyNetKAT can
reach, and a DyNetKAT formalism can terminate at any given
time, all of the states in the LTS are added to accepting
states 𝐹 when creating a FA. Aside from converting the
generated LTS into a FA, the hazard also has to be encoded
as a regular expression to be a valid input for [20].

In technical terms, the FA object is represented with a
dot type file [15]. We chose to not use any specific libraries
when the dot file was generated as we were unable to find a
library that let the user add multiple edges with the same
source and destination but with a different label. Corre-
spondingly, we designed a basic generator that added the
nodes,edges and labels from the generated LTS to a text
file later converted into a dot file. This generated file in

Listing 4. Causal computation output of Running Example 1 (Excerpt)

graph search computed, len causes : 1404
minimal causes computed, len minimal causes : 2
cause : "RCFG( VirtualCircuitReq )"
cause : "VirtualCircuitReq !"

addition to an regular expression made from the LTS actions
were inputted to the work in [20] to find the causes for the
inputted effects.

5 Evaluation

In this section, we provide the results of inputting the first
running example to the process described in Section 4 and
evaluate the performance of the algorithms described in
Section 4.1 on various DyNetKAT formalisms.

A hazardous situation in the first running example can
happen when S1 is inside a virtual connection and S2 also
forwards a packet, leading H3 to have a processing error.
This hazard could be encoded in a regular expression, as
seen with effect 𝑒 in Equation 3.

𝑒 = ( ( (𝑝𝑜𝑟𝑡 = 1) .(𝑝𝑜𝑟𝑡 := 2)) ; (¬𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝐸𝑛𝑑!)∗;
( (𝑝𝑜𝑟𝑡 = 3) .(𝑝𝑜𝑟𝑡 := 4)))

(3)

As visible, when S1 is inside a virtual connection, it will
forward the packages with 𝑝𝑜𝑟𝑡 = 1 to 𝑝𝑜𝑟𝑡2, thereby guar-
anteeing that in the beginning of Equation 3, S1 is a virtual
circuit. Following that, (¬𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝐸𝑛𝑑!)∗ states that the
action can be anything but 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝐸𝑛𝑑!, repeated over
any number of times. Consequently, before the last element
of effect 𝑒 , the virtual connection will not be terminated.
The last element, 𝑝𝑜𝑟𝑡 = 3 to 𝑝𝑜𝑟𝑡4, is the forwarding action
S2 does. If this action is done while a virtual connection
still exists, as explained before it will lead H3 to have a
processing error.

The result of converting the LTS for running example one
into a FA and putting that FA with Equation 3 into the causal
reasoning tool from [20] can be seen in Listing 4.

It is straightforward from Listing 4 to see that 51 causes
have been computed, i.e these 51 different sequences of ac-
tions, if activated, can produce the hazard described in Equa-
tion 3. We can deduce that the causes specified in the last
two lines, ”𝑅𝐶𝐹𝐺 (𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑅𝑒𝑞)” and ”𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑅𝑒𝑞!”
do a better job at describing a potential sequence of actions
as they are the minimal sequence. Consequently, we have
seen that the hazard state can happen if C2 sends a virtual
connection request (”𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑅𝑒𝑞!”). Upon seeing this,
it is clear that the error stems from a race condition between
S1 and S2 caused by S1 ’s request being received after S2’s
request.

To evaluate the performance of the LTS generation algo-
rithm, we used a modified version of the FatTree [1] topology
evaluation experiments conducted in [5] in conjunction with
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Fig. 6. Stateful Firewall LTS

some of the examples from the same paper. A FatTree con-
sists of 3 levels, the core, the aggregate, and the top of the
rack (ToR) with links between each switch and the switches
in the level adjacent to them, as seen in Figure 7. We tested
the generator on 3 FatTrees increasing in cardinality, with
the largest one having 375 switches and 10 pods.

Fig. 7. A FatTree Topology [5]

The generated FatTree formalism for the experiment con-
sists of two switches in different pods, which send packages
between them through a firewall in an aggregation layer
which then changes state. We put one package that will not
be accepted through the firewall, generating a LTS simulat-
ing the alternative states and actions that happen.

The other formalisms consisted of the two running ex-
amples with two packages to process and the distributed
independent controllers from [5] with one package that
transferred between two switches. The computer used for
the experiments had a 3.4Ghz Intel 6700 processor and

16 GB RAM, with Ubuntu 18.04 LTS as the operating sys-
tem. The time shown in Figure 8 are time spent on the LTS
generation, averaged over 3 runs.
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Fig. 8. Benchmarking Results

STF and VCOD are abbreviations for the two running
examples respectively, while FT 𝑥 is an abbreviation for a
FatTree with 𝑥 representing the number of pods, lastly IND
is for distributed independent controllers example. These
results indicate that the generating time is correlated with
the amount of nodes or the number of states a DyNetKAT
program can generate, and not the number of Pexpect calls
made to evaluate NetKAT expressions. All of the FatTrees
and the distributed independent controllers example have
the same number of recursive variables at 16, nonetheless
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the distributed independent controllers takes the most time
in a margin as it has the highest number of states.

Further research into this benchmark confirms the corre-
lation between the cardinality of the edges and nodes of the
LTS with the time taken to generate it. As seen from Figure
9, the time increases with the number of states and edges
of the LTS. However, despite the time doubling between
generating the LTS for a FatTree with 8 pods and 10 pods,
the edge number states the same. A closer investigation
reveals that as the names of the states expand, as 10 pods
require more complex flow tables and larger state names,
the time increases after a certain threshold with regards to
the amount of nodes are reached. The implementation uses
a lot of hash table structures for understanding where some
reconfiguration states happen, which leads to the checking
whether certain states are already parsed or not taking a lot
longer time. Thereby, the speed of the algorithm is mainly
constrained by two factors, the amount of nodes and edges
of the LTS and the length of the state names.
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Fig. 9. The edge and node counts for the benchmarked examples 2

6 Conclusions

We introduced a system for finding the causes of a haz-
ard in a SDN. Our system builds upon the SDN framework
DyNetKAT[5] and the causal reasoning algorithm specified
in [20] and is consistent with the description of causation
from [11] [10] in that hazards are only perceived when they
are caused.

We only worked with hazards that could be defined us-
ing regular expressions composed of the action alphabet,
thereby leaving room for potential improvements to check
for hazards that occur after a certain state is reached or
checking for the violation of liveness properties.

In order to adopt a trace-based system of causation ac-
cording to the works of Halpern and Pearl [11] [10] and fit
for the algorithm in [20], we created an LTS and converted

it into a FA. During this implementation, we have made sys-
tem to conduct basic lexical analysis on DyNetKAT using
Maude, as well as doing some semantic analysis with Python
to generate an LTS. Therefore, with some work being done,
a DyNetKAT compiler with the target language set to be a
SDN domain specific language such as P4 [3].
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Domagoj Vrgoč. 2016. Foundations of JSON schema. In Proceedings of
the 25th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 263–273.

[24] Steffen Smolka, Spiridon Eliopoulos, Nate Foster, and Arjun Guha. 2015.
A fast compiler for NetKAT. In Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming. 328–341.

[25] Noah Spurrier. 2022. Pexpect version 4.8. https://pexpect.readthedocs.
io/en/stable/. Accessed: 2022-05-29.

9

https://doi.org/10.1109/TR.1985.5222114
https://doi.org/10.1109/TR.1985.5222114
https://doi.org/10.2307/2025310
https://pexpect.readthedocs.io/en/stable/
https://pexpect.readthedocs.io/en/stable/

	Abstract
	1 Introduction
	2 Running Examples
	3 A brief overview of NetKAT and DyNetKAT 
	3.1 NetKAT overview
	3.2 DyNetKAT overview

	4 Methodologies
	4.1 LTS Setup, Parsing and Generation
	4.2 Causal Computation from LTS

	5 Evaluation
	6 Conclusions
	7 Acknowledgements
	References

