
BSc Thesis Technical Computer Science

Submodular functions
and M-convex sets

Alex van Tilburg

Supervisor: Georg Loho and Pieter-Tjerk de Boer

September, 2022

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Preface

This paper is written as Bachelor’s Assignment for my Applied Mathematics and Technical
Computer Science bachelor. This is also the first time I have heard of submodular functions.
This paper is aimed to show some beauty of submodular functions to people who also did
not have heard of submodular functions before. Furthermore, it includes the somewhat
less known M-convex sets, since there are beautiful alternative interpretations from them,
which we will investigate.

Submodular functions
and M-convex sets in Graphs

Alex van Tilburg∗

September, 2022

Abstract
This paper covers a few simple examples of submodular functions with the proof

of their submodularity. All examples relate to graphs, and we will examine the sim-
ilarities between the different submodular functions. Furthermore, the paper covers
M-convex sets. It shows for some submodular functions that the lattice points can be
interpreted differently. The paper gives proofs and algorithms to obtain the alterna-
tive definition, of the lattice points from the M-convex sets of the cut and coverage
functions.

Keywords: Submodular function, Graph, M-convex set

1 Introduction

This paper is about submodular functions and their corresponding M-convex sets. The
goal is to list a few examples and show similarities between different classes of submodular
functions. Moreover, the alternative definition of a few M-convex sets will be proven. In
Section 2, I will define submodular functions, and Section 3 is about different classes of
submodular functions. Finally, proof of the alternative definition of the lattice points of
the M-convex sets will be presented in Section 4. These M-convex sets are derived from
the submodular functions in Section 3.

1.1 Submodular functions

In the first part, we will look at different classes of submodular functions. These are set
functions that satisfy a particular system of inequalities. These inequalities are defined in
Section 2. This property is general and applicable in many fields. In this paper, we will
look at a few of those applications.

1.1.1 Applications

The concept of submodular functions was proposed in 1970 when Edmonds generalized
the properties of matroid polyhedra. The submodular functions apply to many areas, such
as theoretical computer science. The submodular functions pop up in research concerning
different applications such as selecting camera points [13], epidemics such as COVID-19
[2], game theory [10], and machine learning [1]. In this paper, we will look at a number of
basic examples from the book Connections in Combinatorial Optimization [5], the influence
function from social networks [7, 11], and the minimum cost connect function, as well as
their proof of submodularity.

∗Email: alexvantilburg@outlook.com

1

1.1.2 Optimization

Submodular functions are easy to optimize. At first, Cunningham developed an algorithm
that only worked for a special case of submodular functions. [3] This algorithm was later
extended to find the minimum value of a general submodular function in polynomial time.
Later, better algorithms were developed that were strongly polynomial, [4] making it easy
to minimize any submodular function.

1.2 M-convex sets

M-convex sets are a notion introduced by Kazuo Murota [9]. An M-convex set is a set with
lattice points that satisfy a system of inequalities. These sets are applicable in the same
areas as submodular functions, such as game theory [10]. Their importance lies in their
relation to submodular functions. Moreover, the corresponding submodular function can
be constructed from any M-convex set. We will talk about those sets in the second half
of the paper. We will mainly investigate the alternative definition of the lattice points for
some M-convex sets.

1.2.1 Interpretations

The main goal of this paper is to find another way of defining the lattice points, in particular
M-convex sets, rather than the geometric way. First, the geometric way of defining the
lattice points of all M-convex sets will be investigated. Then, the lattice points will be
defined differently for the cut, coverage, and largest degree functions. This new way of
defining the lattice points makes finding all lattice points more intuitive. The lattice points
of the cut function can be defined with orientations, and the lattice points of the coverage
function can be defined with distributions. This paper will prove that these ways of defining
the lattice points are the same as the geometric definition. An algorithm will be obtained
to construct a distribution corresponding to a given lattice point for the coverage function.

2 Submodular function

In this section, we will look at the definition of submodular functions. These are set
functions with a special property formulated in Definition 2.1.

Definition 2.1 (submodular functions). For a finite set E let f : 2E → R then f is a
submodular function if and only if the following holds for every X,Y ⊆ E

f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y) (1)

[8]
A submodular function is a function with domain 2E , where E is the finite set, on

which the submodular function is defined, for example, {0, 1, 2}. Then 2E is an alternative
notation for the power set of E. In this example, 2E would be
{∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}. An example of a submodular function on
2E would be the cardinality function. So this means that f(A) = |A| for any A ⊆ E. For
example, take X = {1, 2} and Y = {3}. Then (1) holds.

f({1, 2}) + f({3}) ≥ f({1, 2} ∪ {3}) + f({1, 2} ∩ {3})
|{1, 2}|+ |{3}| ≥ |{1, 2, 3}|+ |∅|

2 + 1 ≥ 3 + 0

3 ≥ 3

2

This is not a proof, since it does not show whether works for every X,Y ⊆ E. Since the
inequality is always equal, this function is modular. In this paper we will only look at
submodular functions.

In the next section we will go over the different submodular functions with their proofs,
such as the cut-function (Example 1.3 in [8]), coverage function (Example 1.4 in [8]) and in-
fluence function [7, 11]. Before that, we will show that the following definition is equivalent
to Definition 2.1.

Corollary 2.2 (alternative definition submodular functions). Let E be a finite set and let
f : 2E → R then f is submodular if and only if for every A ⊆ B ⊆ E the following holds
for all x /∈ B.

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B) (2)

Proof. First, assume f : 2E → R is submodular and let A,B ∈ 2E such that A ⊆ B. Now
we can use (1) by substituting X with A ∪ {x} and Y with B. We obtain the following.

f(A ∪ {x}) + f(B) ≥ f(A ∪ {x} ∪B) + f((A ∪ {x}) ∩B) (3)

Since A ⊆ B, A ∪ {x} ∪ B = B ∪ {x}. Furthermore, because A ⊆ B and x /∈ B,
(A ∪ {x}) ∩B) = A is true. We obtain the following if we substitute this in (3).

f(A ∪ {x}) + f(B) ≥ f(B ∪ {x}) + f(A)

Then we reorder the terms to get (2).
Now assume (2) for all A,B ∈ 2E and A ⊆ B ⊆ E. We will use telescoping to prove that
(1) holds. Let X,Y ∈ 2E be two arbitrary subsets. Since X is finite, therefore is X \ Y .
Therefore, we can have an ordered sequence {p1, . . . , pn} = X \ Y . Let us construct the
following sequences of subsets.

Pk =

{
X ∩ Y k = 0

Pk−1 ∪ {pk} k > 0

We will do the same for the finite set Y .

Qk =

{
Y k = 0

Qk−1 ∪ {pk} k > 0

It can be easily shown by induction that Pn = X and Qn = X ∪ Y , since it adds all
elements of X \ Y . Furthermore, Pk ⊆ Qk for all 0 ≤ k ≤ n. So from (2) we know
f(Pi) − f(Pi+1) ≤ f(Qi) − f(Qi+1) for all i ∈ 0, 1, . . . , n− 1. So the following holds
term-wise.

n−1∑
i=0

f(Pi)− f(Pi+1) ≤
n−1∑
i=0

f(Qi)− f(Qi+1)

By telescoping, we have the following,

f(P0)− f(Pn) ≤ f(Q0)− f(Qn)

By definition, the sets are equal to the following.

f(X)− f(X ∪ Y) ≤ f(X ∩ Y)− f(Y)

We can reorder the terms to get (1).

In this paper, we will use both Definition 2.1 and Collary 2.2 to prove certain functions
are submodular.

3

3 Classes of submodular functions

First, we will go through different examples of submodular functions. For each function,
we will look at the proof of their submodularity. For each class, we will also construct an
example from which we will see if it holds for certain values to understand the behavior
better. At the end of each subsection, we will show a few interesting practical applications
of the corresponding class of submodular functions.

3.1 Cut function

In this section, we will look at a function inspired by dz from chapter 1.2 of the book
Connections in Combinatorial Optimization [5]. We will examine a simpler version, called
the cut function. This function is known and used in many areas, such as the Max-Flow
Min-Cut Theorem, which tells that in a digraph with capacities, the maximal flow can be
calculated by finding the minimal cut [6]. In this section, we will look at an example of
the cut function, then prove that the cut function is submodular in an intuitive sense. We
will use this cut function to find the corresponding M-convex set later in the paper.

This function is a function defined on a graph. A graph consists of vertices and edges
connecting those vertices. Figure 1 is an example of a graph. We will denote a graph

1

2

3

4

5

6

Figure 1: example graph

as follows: G = (V,E). This means that the graph has a set of vertices V and a set of
undirected edges E. An edge is a tuple of vertices connected by this edge and denoted as
(v1, v2). Now we can define the cut function.

Definition 3.1 (cut function). Given a graph G = (V,E) and f : 2V → N then f is a cut
function if and only if the following is true.

f(A) = |{e ∈ E|(v1, v2) = e, v1 ∈ A ∧ v2 ∈ A}|

This is the cut function. We can interpret this by the number of edges that connect A
with its complement. We have to cut this number of edges to disconnect the subset from
the rest of the graph.

Example 3.2. Take a graph G = (V,E) as in Figure 2. If you take the following input
{1, 2, 4}, which means the vertices 1, 2 and 4. As you can see in Figure 2, all the edges
that connect vertices of {1, 2, 4} with vertices of {3, 5, 6} are (1, 3), (2, 3), (3, 4), (4, 5) and
(4, 6). Therefore, f({1, 2, 4}) will equal 5.

The proof that the cut function is submodular can be found in the same book [5] as
Proposition 1.2.2. We will also look into a visual proof.

4

1

2

3

4

5

6

Figure 2: example graph with a cut (bold lines)

Example 3.3. Take the graph G = (V,E) as in Figure 1. Then we can take any arbitrary
X,Y ⊆ V . For this example, we will take X = {2, 4} and Y = {3, 4}. We could draw a
Venn diagram as in Figure 3. In this Venn diagram, we have four different sets, namely

1

2

3

4

5

6

X

Y

Figure 3: example diagram with Venn diagram

X \ Y , Y \ X, X ∩ Y and X ∪ Y . We can characterize edges as one of the following
categories.

1. X \ Y ↔ Y \X

2. X \ Y ↔ X ∩ Y

3. X \ Y ↔ X ∪ Y

4. Y \X ↔ X ∩ Y

5. Y \X ↔ X ∪ Y

6. X ∩ Y ↔ X ∪ Y

All those edges are depicted in Figure 4 with the corresponding number. Now we can look

1

2

3

4

5

6

2

1

45

6
3

5

6

X

Y

1

23

4
5

6

Figure 4: example diagram with Venn diagram and type edge

at what type of edges the following function is counting. For example, f(X) will count the

5

edges of type 1, 3, 4 and 6. f(Y) will count the edges of type 1, 2, 5 and 6. So for this
example f(X) = f({2, 4}) = 5 and f(Y) = f({3, 4}) = 6. Note that 1 and 6 are counted
at both terms, whereas all the other types are counted once. We can do the same with
f(X ∪ Y) and f(X ∩ Y). The first term will count the edges of types 3, 5, and 6. The
second will count the edges of types 2, 4, and 6. Note that in both terms all edges are
counted once, except for edges of type 6, which are counted twice, and one, which are not
counted at all. So we have f(X ∪ Y) = 5 and f(X ∩ Y) = 4. If you evaluate f(X) + f(Y)
and f(X ∪ Y) + f(X ∩ Y), the values are 11 and 9 respectively. The difference is caused
by not counting the edges of type 1 in the second term while counting them twice in the
first. This is why the first one is always larger than or equal to the second; therefore, it is
submodular. It is equal when no edges of type 1 exist.

From this example, we can see why the cut function is always submodular. The sub-
modularity is useful since, according to [8] submodular functions are easy to minimize, and
the minimum cut-function is related to the maximum flow of a graph.1

3.2 Coverage function

Now we will look at the coverage function as a submodular function. This function is
inspired by γm from proposition 1.2.7 in the book by András Frank [5]. This function is
used in many applications such as [13] and there is a lot of known about the coverage
functions. In this sections, we will start with defining the coverage function. After that,
we will look at an example of the coverage function. Finally we will look at the proof of
why the coverage function is submodular.

For this purpose, we will take a bipartite graph G = (V0, V1, E). Then we will define
the neighborhood function.

Definition 3.4 (neighborhood function). Given a graph, G = (V,E) the neighborhood
function N : 2V → 2V is defined as follows:

N(A) = {v ∈ A|∃(v0, v1) ∈ E[v0 = v ∧ v1 ∈ A]}

So the neighborhood function returns the vertices, that have an edge that connects
them with a vertex from the given set. Furthermore, this definition can be extended to a
bipartite graph, where V = V0 ∪V1. Next, we will use the neighborhood function to define
the coverage function.

Definition 3.5 (coverage function). Given a bipartite graph G = (V0, V1, E), the coverage
function f : 2V0 → Z is defined as follows:

f(A) = N

(⋃
a∈A

a

)

We will look at the proof from the same book [5] of why the coverage function is
submodular.

Theorem 3.6. Given a bipartite graph G = (V0, V1, E), the coverage function f is sub-
modular.

Proof. Since N(X)∩N(Y) ⊇ N(X∩Y) and N(X)∪N(Y) = N(X∪Y), the non-negativity
of the cardinality function implies at once the submodular inequality.

1If you are interested in this, consult [6]

6

Now, we will look at an example, as in Section 3.1.

Example 3.7. Take the bipartite graph G = (V0, V1, E) as in Figure 5, where V0 =
{A,B,C} and V1 = {1, 2, 3, 4, 5, 6, 7}. Then let f be the coverage function. In V1, we have

A B C

1
2

3
4

5
6

7

Figure 5: example bipartite graph

seven possible types.

1. A ∩B ∩ C

2. A ∩B ∩ C

3. A ∩B ∩ C

4. A ∩B ∩ C

5. A ∩B ∩ C

6. A ∩B ∩ C

7. A ∩B ∩ C

In Figure 5 we do not have vertices of the types 1 and 3. We will consider those when
looking at the proof of why the coverage function is submodular. Let X = {A,B} and
Y = {B,C}. If we take N(X), it includes vertices of the types 1, 2, 3, 5, 6, and 7.
Essentially all types include A or B. The same can be observed for N(Y). Then we would
get the types 1, 2, 3, 4, 5, and 6. Then, if we take the union of both, we will get all
types. Which is also the same as N(X) ∪ N(Y). Therefore, the following must be true:
N(X) ∪N(Y) = N(X ∪ Y). If we look at N(X) ∩N(Y), we will get the types 1, 2, 3, 4,
and 5, which are significantly less than taking the union. However, it must at least include
the types of edges that are in X ∩ Y and which has a neighbor to an element in X and
Y . So N(X) ∩N(Y) can be larger than N(X ∩ Y). All elements in the second term are
included in the first. Therefore, the following is true N(X) ⊇ N(X ∩Y). This means that
because of cardinality, the following two statements are true:

|N(X) ∪N(Y)| = |N(X ∪ Y)| = f(X ∪ Y) (4)
|N(X) ∩N(Y)| ≥ |N(X ∩ Y)| = f(X ∩ Y) (5)

Since |N(X)|+ |N(Y)| counts all elements of N(X) and N(Y) and counts the elements of
the intersection twice, the following is true:

f(X)+f(Y) = |N(X)|+|N(Y)| = |N(X)∪N(Y)|+|N(X)∩N(Y)| ≥ f(X∪Y)+f(X∩Y)

Therefore, the coverage function is submodular.

There are many applications of optimization problems with submodular functions. One
such example would be effectively placing a camera that covers as much area as possible.
[13]

3.3 Largest degree function

In this section, we will look at the largest value function. This is a special case of the
maximum function. However, it is interesting to look at this function since it shows how
a function can be converted to a coverage problem. We will use this to show how the

7

S f(S)

∅ 0
{5} 1
{1, 2, 3} 3
{1, 5, 6} 2

S f(S)

{4} 4
{3} 3
{3, 4} 4
V 4

Table 1: Sample values of the maximum degree function of the graph in Figure 1

interpretation of the M-convex set of the largest degree function can be found if we know
how to convert it to the coverage function. First, we will define the largest degree function.
After, we will look at how for each largest degree function, a graph exists on which the
coverage function gives the same values. Let us define the degree first.

Definition 3.8 (degree function). Given a graph G = (V,E). The degree function d :
V → Z is defined as follows:

d(v) = |N({v})|

Now we do not have a set function. To obtain one, we need the following definition.

Definition 3.9 (the largest degree function). Given a graph G = (V,E) and the degree
function d as defined in Definition 3.8. Then the largest degree function f : 2V → Z is
defined as follows:

f(S) = max
v∈S

d(v)

Furthermore define f(∅) = 0

Now we can take an example and look at it.

Example 3.10. Take the graph G = (V,E) as in Figure 1 and let f be the largest
degree function. If we look at a few values, we obtain Table 1. We will not prove this is
submodular directly. Instead, we will show that this graph with the largest degree function
can be converted to a bipartite graph with a coverage function that gives the same values.
We will do it with this example. We construct the bipartite graph as in Figure 6. This
figure is clustered with edges. However, we can see that A is connected to every vertex in
{1, . . . , 6}. Moreover, D is only connected to 4. Furthermore, 4 is connected to all vertices
in {A,B,C,D}. This means that it will output 4 vertices, equal to the degree of 4 if we
have the neighbors function on a set that includes 4. This works for any combination of
vertices in {1,. . . ,6}.

1 2 3 4 5 6

A B C D

Figure 6: example bipartite graph for largest degree function

8

We will prove that for every graph, there exists a bipartite graph where the coverage
function will output the same. For this, we will first prove a lemma.

Lemma 3.11. Given the graph G = (V0, V1, E) as defined in (7), x, y ∈ V0 and d(x) ≤
d(y). The following holds:

N({x}) ⊆ N({y}) (6)

Where N : 2V0 → 2V1 is defined as in Definition 3.4.

Proof. Let G = (V0, V1, E) be a bipartite graph. Fix x, y ∈ V0 with d(x) ≤ d(y). Take
n ∈ N+ such that dn ∈ N(x). Then we know the following:

(x, dn) ∈ E (By of N)
d(x) ≥ n (By definition of G and therefore E.)
d(y) ≥ n (Since d(x) ≤ d(y))
(y, dn) ∈ E (By definition of E)
dn ∈ N({y}) (By of N)

Therefore, (6) is true.

We will use the lemma in the following theorem.

Theorem 3.12. For every largest degree function f : V → Z as defined in Definition
3.9. Then there exists a bipartite graph G = (V0, V1, E) such that the neighbor function as
defined in Definition 3.4 is equal to f . Furthermore, G can be defined as follows:

V0 = V (These are vertices are from the domain of f)
V1 = {d1, . . . , df(V)} (Those vertices are added to construct G)

E = {(v0, dn)|v0 ∈ V0, n ∈ N+, n ≤ d(v0)}
(7)

Proof. Let G = (V0, V1, E) be a bipartite graph defined as in (7). Then we have to prove
that f(S) = |N(S)| for all S ⊆ V . Take S ⊆ V . Then we have the following from the
definition of the largest degree function.

f(S) = max
v∈S

d(v)

Take s ∈ S such that f(S) = d(s). Then we obtain.

max
v∈S

d(v) = d(s)

Now we want to prove that d(s) = |N(S)| First, we take an arbitrary v ∈ S. Since
d(v) ≤ d(s), by Lemma 3.11 the following is true:

N({v}) ⊆ N({s})
Since this is true for all v ∈ S and by definition of d and N , we know the following is true:

d(s) = |N({s})| = |N(S)|
So now we have proven that f(S) = |N(S)|

For every largest degree function, a bipartite graph exists such that the neighborhood
function gives the same output. Moreover, we know that the neighborhood function on a
bipartite graph is the same as a coverage function, so the largest degree function must be
submodular.

9

This function can be generalized to f : 2E → N where, for any arbitrary mapping
g : E → N, f is defined as follows:

f(A) = max
a∈A

g(a)

This is not necessarily the most interesting example of a submodular function because it is
a special case of the maximum function which is submodular. Nevertheless, it shows that
the coverage function pops up in other submodular functions.

3.4 Influence function

In this section, we will cover the influence function. This model is inspired by real-life
applications such as studying social networks [7, 11]. In this section, this paper will be
referenced. First, we will describe the independent cascade model from a paper by David
Kempe and Jon Kleinberg, and Éva Tardos [7]. Then, we will look at an example of this
model. Finally, we will examine the proof of submodularity of the influence function.

Let us define the influence function. We will take the independent cascade model from
the work of David Kempe and Jon Kleinberg, and Éva Tardos [7]. For this, we will need
a graph G = (V,E) with directed edges. Each vertex is either active or inactive and can
become active if a neighbor activates it. In each discrete time step, when a vertex becomes
active or is active in the initialization, it will try to activate each member with a probability
of p ∈ [0, 1]E . If the activation is successful, that neighbor vertex will be active in the next
step. Thus we will have a sequence of sets An, where in each time step i, Ai represents
the active vertices at that moment. A0 represents the set of vertices that are active at the
initialization. The independent cascade model will run until a particular time t.

Definition 3.13 (influence function). Given a graph G = (V,E) and the independent
cascade model. Then the influence function σ : 2V → Z is defined as follows:

σ(A) = |At|
Where Ai is the set of all activated vertices at time step i where A0 := A.

To illustrate this function, we will look at an example.

Example 3.14. In Figure 7 we can see the graph. Let us call it G and let the vertices be
V and edges E.

P Q

R

0.5

0.5 0.25

Figure 7: example graph for relation function

In Figure 7 we can see the probabilities on the edges. Let us denote them as pe. Now,
we will look at the value of σ. Take σ({R}), in the first step. There will be a chance

10

of activating Q with probability 1. Since nothing happens after, we can calculate the
expectation after step 1. That would be the following:

σ({R}) = 1 · P (|A1| = 1) + 2 · P (|A1| = 2) = 1 · 0.75 + 2 · 0.25 = 1.25

It would be the same for σ({Q}). The interesting term would be σ({P}). In this case, it
will try to activate both Q and R in the first step. If it succeeds, then one of the neighbors
will try to activate the other vertex. If both succeed, then no activation happens after time
step 1. In this way we obtain the following equation:

σ({P}) = 1 · P (|A2| = 1) + 2 · P (|A2| = 2) + 3 · P (|A2| = 3)

= 1 · 0.25 + 2 · 0.5 · 0.75 + 3 · (0.25 + 0.5 · 0.25)
= 2.125

Now, we can also calculate σ({P,Q,R}). However, this term is trivial since they all are
activated, so it will be σ({P,Q,R}) = 3. The same line of reasoning works for σ({Q,R}) =
2, since P can never be activated. Next, by symmetry σ({P,Q}) = σ({P,R}), we will
calculate its value.

σ({P,R}) = 2 ·P (|A1| = 2)+3 ·P (|A1| = 3) = 2 · 0.5 · 0.75+3 · (1− 0.5 · 0.75) = 2.625

The paper by David Kempe, Jon Kleinberg, and Éva Tardos [7] shows that the max-
imum coverage function is a special case of the influence maximization problem. This
means that the coverage function is connected to the influence function. However, this
proves that the influence maximization problem is NP-hard like the maximum coverage
problem. To be more specific, approximating to at least a factor of 1− e is easy. However,
if a better approximation is required, the problem becomes NP-hard. In the paper, the
triggering model is used to prove the influence function’s submodularity, defined as follows:

Definition 3.15 (triggering model). Each node v independently chooses a random "trig-
gering set" Tv according to some distribution over subsets of its incoming neighbors. Ini-
tially, a set A is activated. Subsequently, an inactive node v becomes active in step t if it
has a neighbor in its chosen triggering set Tv that is active in step t− 1. [7]

It is easy to prove that the influence function in this model is submodular. By using
(2), we can show that the effect of adding a vertex to a smaller subset is larger or equal
to adding it to a larger set, with a fixed triggering set T . From this, we can show that the
independent cascade model can be converted to a special case of the triggering model. We
will do it with the previous example.

Example 3.16. Take model from Example 3.14. We must determine the probability
distribution X of possible triggering sets T . We can construct the triggering set as follows:
for all directed edges (v1, v2) ∈ E we add v1 with the probability p(v1,v2) to Tv2 . So for
example we obtain T = (∅, {P}, {P,Q}) of the form (TP , TQ, TR) with a probability of
0.5 · 0.5 · 0.75 · 0.25 = 0.046875.

We have shown in Example 3.16 that this case of the independent cascade model can
be transformed into a triggering model. Since it is easy to prove that the influence function
in the triggering model is submodular, the influence function in the independent cascade
model must also be submodular. The triggering model shows that the influence function
in the independent cascade model contains multiple coverage functions in disguise since if
the triggering set is fixed, it becomes a deterministic coverage function. Fixed triggering
set is about what vertices are reachable from the initial active set in the digraph.

11

3.5 Minimum cost connection function

In this subsection, we will briefly go over another submodular function. Like the previous
one, it is hard to calculate its value. The function is called the minimum cost connection
function. Given a graph G = (E, V) and a weight, w : E → Z we have a fixed subset of
vertices S ⊂ E. Then the minimum cost function is the minimal sum of the weight of the
edges that connect the vertices in A.

Definition 3.17. P is a path from vertex a ∈ V to b ∈ V if and only if P corresponds to
a sequence of hops between vertices that starts in a and ends in b. Moreover, no vertex is
used twice. [12]

Now we will define connectivity. This concept is also defined in chapter 6.2 of the same
book [12] as follows:

Definition 3.18. A graph G is connected if there is a path between each pair of nodes.

Now we can define the minimum cost connection function.

Definition 3.19 (minimum cost connection function). given a graph G = (V,E) that is
connected and a weight function w : E → Z. f : 2V → Z is a minimum cost connection
function if and only if the following is true for any subset A ⊆ V .

Let G(A) denote the subset of all subgraphs that contain A and are connected, and E′

is the edges of a graph G′

f(A) = min
G′∈G(A)

∑
e∈E′

w(e)

We will not be proving that this function is submodular. Instead, we will look at an
example and then see why it is hard to the actual value of the function and it must be
submodular.

Example 3.20. Given the graph G = (V,E) with the weight w : E → Z as in Figure 8.
Now we can calculate some values of the minimum cost connection function f . You can
find a few of them on the table. For example, f({A,D}) is just a simple shortest path
problem. So we can find f({A,D}) = 3. f({A,B,C,D,E}) is a minimum spanning tree
problem. Since you need to include all nodes, you should be able to connect all nodes with
N − 1 edges, where N is the number of vertices. So in the case of f({A,B,C,D,E}) = 5,
we can see that the evaluation of the function will be easy if we put in all vertices. However,
it will be harder if you don’t have only two vertices or all vertices. This problem is known
as the Steiner tree problem, described in chapter 6.5 of a book by Piet Mieghem [12].
This problem is NP-hard. So like the influence function, we should use an approximation
function.

With this example we will reason why it should be submodular using (2). Here you
will have to take a set P and a proper subset Q ⊂ P , then adding that element to the
subset Q will let the function increase less than adding to the entire set P . So let us take
P = {A,B,C} and Q = {A,B}, and let’s add the vertex E. Then the difference of P
and P ∪ {E} is 1 and for Q and Q ∪ {E} is 3, thus it is higher for the subset. This will
always be the case, which makes intuitive sense since the smallest subgraph that connects
P has all edges in the smallest subgraph that connects Q. That means adding edges to
find a subgraph that connects with E as well. The subgraph will add edges that may be
already in the smallest subgraph of P and never less because if it would, then the smallest
subgraph of P is not the smallest possible anymore. This way of choosing the subgraph

12

A

B

C

D

E

1

2

1

2 3

1

2

Figure 8: example of a graph with weights on the edges

works for every graph, so the function must be submodular. However, writing down the
proof is not within scope since we will not use this finding later.

In the example, we have looked at a concrete case where the submodular function is
hard to evaluate, like the influence function. This is however a fascinating function since,
if you want to know for example how to connect a computer network effectively, then you
are interested in how you can connect as many computers as possible at the lowest cost.

4 M-convex sets

Now we have seen examples of submodular functions. We will focus on the corresponding
M-convex sets. The aim of this paper to find an alternative interpretation of the lattice
points of M-convex sets. For this, we will solely focus on integer-valued submodular func-
tions. We will first examine the geometric definition of all M-convex sets. Afterwards, we
will investigate the alternative definition of M-convex sets of the cut, coverage, and largest
degree function. Let us define the M-convex set.

Definition 4.1. Given a submodular function f : 2E → Z. The M-convex set of f is
defined as follows:

M =

{
x ∈ ZE

∣∣∣∣∀A ∈ 2E

[∑
a∈A

xa ≤ f(A)

]
,
∑
e∈E

xe = f(E)

}
(8)

It is not easy to interpret the M-convex set from the definition alone, so we will explain
this using an example.

Example 4.2. For this example, we will use the cut function of the following graph.

A

B

C

Figure 9: example graph

13

S f(S)

{} 0
{A} 1
{B} 2
{C} 1

S f(S)

{A,B} 1
{A,C} 2
{B,C} 1
{A,B,C} 0

Table 2: Values of the cut function of the graph in Figure 9

From this, we can construct the M-convex set. For this purpose, it helps to calculate
all values of the cut function. In Table 2 you can see the values of all possible sets.

We have a system of equations for which the points in the M-convex sets must satisfy,
which can be found below.

xA ≤ 1 = f({A})

xB ≤ 2 = f({B})

xC ≤ 1 = f({C})

xA + xB ≤ 1
= f({A,B})

xA + xC ≤ 2
= f({A,C})

xB + xC ≤ 1
= f({B,C})

xA + xB + xC = 0
= f({A,B,C})

Some may recognize this as a linear system of equations. One way to interpret this is
as a convex set enclosed by hyperplanes. To illustrate this we will fix, xC = 0 then we
obtain Figure 10.

A+B=0 A+B=1

B=2

B=1

A=1 A=2

Figure 10: visualization of the M-convex inequalities

In Figure 10 we can see that the lines of the other inequalities enclose the line of the
equality xA + xB + xC = 0. Since xC = 0, we can draw it on a two-dimensional plane. If
we want to do this at all, xC we need to draw it in a three-dimensional plane. However,
the idea stays the same. The M-convex sets contain all lattice points on the line A+B = 0
and are below or left of the other lines. Since then, the point only has integer coordinates
and satisfies the associated inequalities. That includes the points (−1, 1, 0), (0, 0, 0) and
(1,−1, 0) where they are of the form (xA, xB, xC). As you can see in Table 3, these are
indeed all the points where xC = 0.

Table 3 can be constructed, by trying all possibilities. However, this section will look
at different ways to interpret this set. We will call the interpretation as in Figure 10 the

14

xA xB xC
1 0 −1
1 −1 0
1 −2 1
0 1 −1
0 0 0

xA xB xC
0 −1 1
−1 2 −1
−1 1 0
−1 0 1

Table 3: All lattice points in M-convex set

geometric interpretation. We will go over the different submodular functions from the
previous section to see in which different ways the lattice points in the M-convex set can
be interpreted.

4.1 Cut function

For the cut function, we will take the graph in Figure 9. From this, we can construct the
M-convex set. It will be as in Table 3. First, we will look at the alternative way to interpret
the M-convex set. Then we will see why it works. For this, we need to understand the
different ways to orient the graph. By this, we ask the question: In what ways can we
direct the edges? In Figure 11 we see an example of this.

A

B

C

Figure 11: example graph with orientation

Now that all the edges have a direction, we can calculate the in-degree and out-degree
of each vertex v, denoted as δv and µv respectively. If we subtract the out-degree from
the in-degree, we obtain 1,−2, and −1 for A, B, and C, respectively. This result also
corresponds with a lattice point in the M-convex set. For every orientation, we get a
lattice point in the M-convex set. These orientations also include the orientation where
some edges are still undirected. The undirected edges mean that the in and out degree
does not change. Furthermore, the converse is also true. For every lattice point in the
M-convex set, an orientation exists such that the in-degree minus the out-degree is equal
to the value of the integer that belongs to the corresponding vector index. In this paper,
we will prove this statement. The converse is also true but harder to prove.

For this, we will need to look at the two rules of the M-convex set. The first is the
following equation:

xA + xB + xC = 0

We will prove in a lemma that this property holds

15

Lemma 4.3. Given a graph G = (V,E) with an orientation. Then construct a lattice
point as follows: For all v ∈ V ,

xv := δv − µv

Then the following holds:∑
v∈V

xv = 0

Proof. Let x be given such that xv = δv − µv for all v ∈ V . Then we can rewrite the
following:∑

v∈V
xv =

∑
v∈V

(δv − µv) =
∑
v∈V

δv −
∑
v∈V

µv

Since we know that in any orientation, the sum of the out-degree must be equal to the sum
of the in degree, RHS is equal to zero. So

∑
v∈V xv = 0 holds.

We will now prove the following lemma. This proof is a little more complicated, and
we will prove it by contradiction.

Lemma 4.4. Given a graph G = (V,E) with an orientation and a cut function f . Then
construct a lattice point as follows: For all v ∈ V ,

xv := δv − µv

Then the following holds for all S ⊂ V :∑
v∈S

xv ≤ f(S) (9)

Proof. Let an orientation, cut function f of an arbitrary set S ⊂ V be given. Since we
know that xv = δv − µv holds for all v ∈ V , we have the following.∑

v∈S
xv =

∑
v∈S

(δv + µv)

Since all directed edges between vertices in S cancel each other in
∑

v∈S(δv +µv), we only
have the edges that go in and out S. Therefore the following equation holds.∑

v∈S
(δv + µv) = δS − µS

Where δS and µS are the amount of edges that go in or out S, respectively. We know
that the sum of all edges is f(S), so the sum of the in and out edges cannot be larger.
Therefore, the following is true:

δS + µS ≤ f(S)

We can rewrite the following since µS is non-negative,

δS − µS = δS + µS − 2µS ≤ f(S)− 2µS ≤ f(S)

So we obtained (9).

Now we have proven that for each orientation, a lattice point exists that satisfies the
linear inequalities.

Theorem 4.5. Given an orientation and a cut function f . A lattice point exists in the
M-convex set of f such that the following holds for all v ∈ V :

xv = δv − µv (10)

16

Proof. Let x be given by (10) then we need to prove that it satisfies the two properties of
M-convex sets. Which is done by Lemma 4.3 and Lemma 4.4.

Now that we have proven that for every orientation, we can construct a lattice point
that is part of the M-convex set of the cut function. This is insightful since we now can
easily construct all lattice points by hand intuitively.

4.2 Coverage function

For the interpretation of the M-convex set of a coverage function, we will first look at
an example. Then we will prove that there is a corresponding lattice point for every
distribution. Finally, we will prove that we can construct a distribution for every lattice
point. We will do this by using an algorithm and proving its correctness.

Example 4.6. We will examine the coverage function, thus we have a graph G = (V0, V1, E)
as in Figure 12, where V0 = {A,B,C} and V1 = {P,Q,R, S}.

A B C

P Q R S

Figure 12: example bipartite graph for coverage function

If we take E = {A,B,C}, we can calculate all lattice points that satisfy the following
equations.

xA ≤ 2 = f({A})
xB ≤ 2 = f({B})
xC ≤ 3 = f({C})

xA + xB ≤ 4 = f({A,B})
xA + xC ≤ 4 = f({A,C})
xB + xC ≤ 3 = f({B,C})

xA + xB + xC = 4 = f({A,B,C})

All lattice points can be found in Table 4. These points can be found by the geometric
interpretation. However, if we look at the equations they have to satisfy, we might notice
that we distribute the vertices P , Q, R, and S to a neighbor vertex and then count how
many vertices each vertex has. For example, if we pair P with A, Q and R with C and S
with B then we have xA = |{P}| = 1, xB = |{S}| = 1 and xC = |{Q,R}| = 2, which is
indeed a lattice point. Let us formulate it more precisely.

Definition 4.7 (distribution of vertices). Given a bipartite graph G = (V0, V1, E). A
distribution D of V1 over V0 satisfies the following conditions.

1. D ∈ (2V1)V0 (D is a vector with sets of vertices as values)

17

xA xB xC
2 2 0
2 1 1
2 0 2

xA xB xC
1 2 1
1 1 2
1 0 3

Table 4: Values of the cut function of the graph in Figure 9

2. ∀x, y ∈ V0[x ̸= y =⇒ Dx ∩Dy = ∅] (All subsets are disjoint)

3.
⋃

v∈V0
Dv = V1 (All subsets cover everything)

4. ∀v ∈ V0 ∀n ∈ Dv[(v, n) ∈ E] (Vertices are assigned to neighbors)

Note that this is not exactly a partition since it might contain empty sets.

Before we formulate the theorem, we will prove a lemma.

Lemma 4.8. Given a bipartite graph G = (V0, V1, E) and a coverage function f : 2V0 → Z
as defined in Definition 3.5. Let D be a distribution of V1 over V0 and let N : 2V0 → 2V1

be a function that maps a subset of V0 to a set of vertices that are neighbors of at least one
of the vertices in V0. Then the following holds:

∀V ⊆ V0

[∣∣∣∣∣⋃
v∈V

Dv

∣∣∣∣∣ ≤ |N(V)|

]
(11)

Proof. Take V ⊆ V0. Then let x ∈
⋃

v∈V Dv. There exists a v ∈ V such that x ∈ Dv.
Since V ⊆ V0 so is v ∈ V0. Because of the fourth condition of distribution D, (v, x) ∈ E is
true. So that means x neighbors at least one vertex, namely v ∈ V0. Since x ∈ N(V) the
following is true:

⋃
v∈V

Dv ⊆ N(V)

From the definition of cardinality, (11) is proven.

Now let us formulate the theorem and prove it.

Theorem 4.9. Given a bipartite graph G = (V0, V1, E) and a coverage function f : 2V0 →
Z as defined in Definition 3.5 and let S be an M-convex set as defined in Definition 4.1.
Then for every distribution D of V1 over V0, there is a x ∈ S such that the following is
true:

∀v ∈ V0[|Dv| = xv] (12)

Proof. Let D be a distribution that satisfy the conditions in Definition 4.7.
Define x such that (12) holds.
Now we have to prove that x ∈ S. First, proof that

∑
v∈V0

xv = f(V0). From the
definition, we know the following:

∑
v∈V0

xv =
∑
v∈V0

|Dv|

18

Since D is a distribution, all sets Di are disjoint and cover V1.∑
v∈V0

|Dv| = |V1|

Since all vertices in V1 have a neighbor in V0, the following statement holds:

|V1| = f(V0)

Therefore, the first condition of an M-convex set is proven. Now we have to prove the
following:

∀V ⊂ V0

[∑
v∈V

xv ≤ f(V)

]
Take V ⊂ V0. We obtain the following from the definition:∑

v∈V
xv =

∑
v∈V
|Dv|

Since Di is disjoint for i ∈ V ⊂ V0. We have the following:

∑
v∈V
|Dv| =

∣∣∣∣∣ ⋃
v∈V

Dv

∣∣∣∣∣
By Lemma 4.8 we know the following is true:∣∣∣∣∣ ⋃

v∈V
Dv

∣∣∣∣∣ ≤ |N(V)|

Where N is the neighborhood function from Definition 3.4. By definition, the following
holds:

|N(V)| = f(V)

We have proven the second condition. Therefore there exists a x ∈ S such that (12)
holds.

We have proven that given a distribution, we have a lattice point in the M-convex set
corresponding to the coverage function. The converse is also true, but it is harder to prove.
It helps to look first at why it makes sense that it would be true.

Example 4.10. If we take G = (V0, V1, E) such as in Figure 12 then we can choose a
lattice point. For example x = (2, 1, 1) of the form (xA, xB, xC). Then we can make a
distribution D such that (12) holds. First, note that P must belong to A since it cannot be
assigned to another vertex from V0. Furthermore, since xA = 2 and A has two neighbors,
we also have to assign R to A. So we have DA = {P,R}. We are left with B, C, Q and
S. We can see that P and S are part of this subgraph, and it does not matter how we
will assign those to B and C. Thus we found there are two possible distributions. Namely,
({P,R}, {S}, {Q}) and ({P,R}, {Q}, {S}) of the form (DA, DB, DC).

It is harder to prove that, for every x ∈ S a distribution exists D such that it satisfies
(12). We can prove this by proving the Algorithm 1 gives a distribution given a lattice
point.

19

Algorithm 1 An algorithm for constructing a distribution given a lattice point
Require: x is the given lattice point of the M-convex set

G is the given bipartite graph
V0 and V1 are the bisets of G

D ← ({}, {}, . . . , {}) (This is a tuple of empty sets paired with the vertices in V0)
while

∑
v∈V0

xv > 0 do
if ∃v ∈ V0, xv = |N({v})| then

take an v ∈ V0 such that xv = |N({v})|
for all n ∈ N({v}) do

Dv ← Dv ∪ {n}
remove n and the incident edges from G.

end for
xv ← 0
remove v and the incident edges from G.

else
take an arbitrary v ∈ V0

take an arbitrary n ∈ N({v})
Dv ← Dv ∪ {n}
xv ← xv − 1
remove n and the incident edges from G.
if xv = 0 then

remove v and the incident edges from G.
end if

end if
end while
return D

20

Before proving the correctness of the algorithm we will examine an example of how the
algorithm works.

(a) first iteration (b) second iteration (c) third iteration

Figure 13: example execution of Algorithm 1

Example 4.11. Take a bipartite graph G = (V0, V1, E) as in Figure 13a. Where V0 =
{A,B,C} and V1 = {P,Q,R, S}. Take x = (2, 1, 1) of the form (xA, xB, xC). First, we
initialize D = (∅, ∅, ∅) of the form (DA, DB, DC). In the first iteration of the for loop the if
statement is true since |N(A)| = xA. So take v = A. Then according to the nested for loop
we iterate through all neighbors. We add the neighbors to the empty D and remove them
from the graph. After the nested for loop we set xA = 0 and remove A from the graph. We
then have D = ({P,R}, ∅, ∅), x = (0, 1, 1), and G is as in Figure 13b. In the next iteration
the if statement is false and therefore we move to the else part. We take v = B arbitrarily.
Then we take one arbitrary neighbor n = S. We add S to DB, decrease xB by one, and
remove both B and S from G. We then have D = ({P,R}, {S}, ∅), x = (0, 0, 1), and G is
as in Figure 13c. In the final iteration the if statement is true therefore, all neighbors of
C are removed, xC is set to 0, and both C and Q are removed from the graph. Now we
have D = ({P,R}, {S}, {Q}), x = (0, 0, 0), and Q is empty. Since xA + xB + xC = 0 the
algorithm has finished and a distribution corresponding to the vertex is ({P,R}, {S}, {Q})

To prove total correctness of Algorithm 1 for each graph, we need to prove partial
correctness and termination. We will first prove the termination since this is easier than
its correctness.

Lemma 4.12. Algorithm 1 always terminate.

Proof. Take a bipartite graph G = (V0, V1, E). Since the sum
∑

v∈V0
xv = |V1| and each

iteration, the sum decreases by at least one, so the sum must hit 0.

Now we need to prove the partial correctness. We will achieve this with two lemmas.
Both lemmas will use loop invariants.

Lemma 4.13. Algorithm 1 will return a distribution.

Proof. First, we prove property 1. This proof is trivial since D starts as a tuple, and only
vertices from V1 are added to D.

To prove properties 2 and 4, we will use two invariants. The first invariant is that D
always upholds properties 2 and 4 from the distribution definition. The second invariant is
that all vertices in D are not in V1. In both cases, neighboring vertices from V1 are added
to D. Therefore the first invariant holds. Afterwards, the vertices are removed from V1.
Now it holds the second invariant as well. Since both invariants hold properties, 2 and 4
are proven.

21

Now we only need to prove property 3. This property holds since every time the sum∑
v∈V0

xv decreases by some amount n and since it will hit precisely zero (xn cannot become
negative), there will be n different vertices added to D. So it must cover V1. Therefore,
property 3 is actual.

Now we have proven all four properties.

Lemma 4.14. Algorithm 1 will return a distribution that satisfies (12)

Proof. Since by Lemma 4.13 it will return a distribution. To prove it satisfies (12), we
will use a graph G′, which is the induced subgraph containing the vertices removed in the
algorithm. Furthermore, we have x′, which contains the values subtracted from x in the
algorithm. We will use the following invariant:

The following equation is true for all V ′ ⊆ V ′
0 :∑

v′∈V ′

x′v′ ≤ |N(V ′)| (13)

First, the invariant holds before the loop since G′ is empty. Now assume the invariant
is true at the start of an iteration. In each case, a vertex from V0 is removed and added
to V ′

0 . Call the vertex v0. In the same iteration, a subset of n vertex is removed from V1

and then added to V ′
1 . Let n be the number of vertices removed this way. Now prove the

invariant will hold after the iteration. Assume to the contrary that a V ′ ⊆ V ′
0 exists that

contains v0 such that (13) is not true after the iteration. Then f(V ′) > |N(V ′)| is true
after the iteration, so the following is true.

f(V ′)− n > |N(V ′)| − n

Which is equal to f(V ′) > |N(V ′)| before the iteration, because n neighbors were removed
from G and added to G′. This statement is a contradiction since it violates the invariant
before the iteration. So the invariant must hold.

The invariant holds after the loop. Therefore, G′ must contain the original graph G
since all vertices are removed and added to G′, and x′ is equal to the original x. This
means that (12) is satisfied.

Theorem 4.15. The converse of Theorem 4.9 is also true.

Proof. Since Algorithm 1 returns a distribution that satisfies (12) by Lemma 4.14 for every
lattice point. Therefore, for every lattice point in the M-convex set of the coverage function,
a distribution exists such that (12) holds.

Now we have a proof that every lattice point has a different interpretation, namely the
distribution interpretation, rather than the geometric interpretation. As shown before, it
is helpful to see that the largest degree function is a coverage problem in disguise. We
will show that the alternative interpretation of an M-convex of a largest degree function is
similar to the coverage function.

4.3 Largest degree function

In this section, we will look how knowing the largest degree function can be converted to
the coverage function, helps us with finding an alternative definition for the lattice points
of the M-convex set. We will look at an example how this can be achieved.

Example 4.16. Take graph G = (V,E) as in Figure 14. We can convert this graph into
a bipartite graph G′ = (V ′

0 , V
′
1 , E

′). In Figure 15 you can see G′.

22

A

B

C

D

E

F

Figure 14: example graph

A B C

D E
F

1 2 3 4

Figure 15: bipartite graph from Fig-
ure 14

As proven, the alternative interpretation of the m-convex set of a coverage func-
tion means that this has the same alternative interpretation of an m-convex set. This
means that given a lattice point in the m-convex set, there is a distribution in G′. So
take for example the following distribution D = ({}, {}, {2, 4}, {3}, {}, {1}) in the form
(DA, DB, DC , DE , DF). Then we have the lattice point x = (0, 0, 2, 1, 0, 1) of the form,
(xA, xB, xC , xD, xE , xF) which is indeed part of the M-convex set.

This example shows that knowing the coverage function is in the largest degree function
helps us with finding the alternative definition of the lattice points. This can help us with
finding the alternative definition for functions such as the influence function since they
have the coverage problem packed in the function.

5 Conclusions

This paper aimed to get examples of submodular functions and investigate the similarities.
Moreover, this paper gave alternative interpretations of the M-convex sets corresponding
to the cut and coverage function, and it also proved that the alternative interpretation was
equivalent to the geometric interpretation.

5.1 submodular function

We have seen many examples of submodular functions. If we look at the proofs of submod-
ularity, we see that coverage is a problem hidden in many of those functions. For example,
the maximum function can be converted to a coverage problem. Moreover, for the proof of
the influence function, the triggering model is used, and this model is a probability model
between different coverage function instances. We also saw the same reachability concept
for the minimum cost connection function as in the triggering model.

Moreover, we have seen there are countless applications for submodular functions, such
as in economic models, computer science, and mathematical branches, such as machine
learning [1], game theory [10], et cetera.

5.2 M-convex sets

In this paper, we have shown the proof that each orientation and distribution can be
associated with a lattice point of the M-convex set of the cut function and coverage function,
respectively. For the coverage function, we have proven the converse as well. With the

23

algorithm, we can construct a distribution for every lattice point, and the correctness of
this algorithm is proven. This means there are alternative definitions for the lattice points
of the M-convex sets rather than the geometric definition. These alternative definitions
help with understanding the meaning of the lattice points. Moreover, since it can be done
for the coverage function, similar methods can be used for different functions, such as the
maximum function.

6 Recommendations

This paper covers many exciting ideas. However, some subjects deserve further elaboration,
which is listed in this section.

6.1 Submodular functions

In this paper, we saw how different functions are similar to the coverage and cut functions.
For example, the influence function contains the coverage problem, but it would be inter-
esting to investigate how this coverage problem relates to the coverage function and how it
relates to the different models of social networks described in the book by David Kempe,
Jon Kleinberg, and Éva Tardos [7].

6.2 M-convex set

We have investigated that orientation and distribution are different definitions of the lat-
tice points of the M-convex sets of the cut and coverage function, respectively. Different
submodular functions, such as the influence function, might have a different definition for
the lattice points. Moreover, there might be a way to obtain this corresponding interpre-
tation of the lattice point. We have not obtained one for the cut function. However, there
might be an algorithm to obtain the lattice points.

References

[1] Jeff Bilmes. Submodularity In Machine Learning and Artificial Intelligence. jan 2022.

[2] Chunsheng Cui, · Baiqiu Li, and · Liu Wang. The selection of COVID-19 epidemic
prevention and control programs based on group decision-making. Complex Intelligent
Systems 2021 8:2, 8(2):1653–1662, jan 2022.

[3] William H Cunningham. Testing membership in matroid polyhedra. Journal of Com-
binatorial Theory, Series B, 36(2):161–188, 1984.

[4] William H Cunningham. On submodular function minimization. Combinatorica,
5(3):185–192, 1985.

[5] András Frank. Connections in Combinatorial Optimization. Oxford university press,
2011.

[6] Ralph P. Grimaldi. Discrete and combinatorial mathematics, chapter 13.3. Pearson
Education, 2003.

[7] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. Theory of Computing, 11:105–147, 2015.

24

[8] L. Lovász. Submodular functions and convexity. Mathematical programming: the state
of the art: Bonn 1982, pages 235–257, 1983.

[9] K. Murota. Discrete convex analysis. MATHEMATICAL PROGRAMMING, 83:313–
372, 1998.

[10] Kazuo Murota et al. Discrete convex analysis: A tool for economics and game theory.
Journal of Mechanism and Institution Design, 1(1):151–273, 2016.

[11] Guoyao Rao, Yongcai Wang, Wenping Chen, Deying Li, and Weili Wu. Maximize
the probability of union-influenced in social networks. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 13135 LNCS:288–301, 2021.

[12] Piet van Mieghem. Data Communications Networking. Techne Press, Amsterdam,
The Netherlands, 206.

[13] Pei Yao, Longkun Guo, Shuangjuan Li, and Huihong Peng. Target coverage with min-
imum number of camera sensors. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
13135 LNCS:12–24, 2021.

25

	Introduction
	Submodular functions
	Applications
	Optimization

	M-convex sets
	Interpretations

	Submodular function
	Classes of submodular functions
	Cut function
	Coverage function
	Largest degree function
	Influence function
	Minimum cost connection function

	M-convex sets
	Cut function
	Coverage function
	Largest degree function

	Conclusions
	submodular function
	M-convex sets

	Recommendations
	Submodular functions
	M-convex set

