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ABSTRACT

The rapid advancement of technology over the past decades have made it increasingly possible to help
people through the use of advanced devices. One example of this are the microprocessor controlled
knees, that allow people that have undergone a transfemoral amputation to regain the use of their leg.
This prosthesis is driven by surface EMG (sEMG) signals that originate from the remainder of the limb
after amputation. Unfortunately, sSEMG signals are easily distorted by a number of sources, most of which
are located inside the body. Numerous prior works have focused on improving the accuracy of these pros-
theses by applying various filtering pre-processing steps, but no consensus has been reached on what
combination of steps performs best. Furthermore, the performance in terms of accuracy is also depend-
ent on the signal-to-noise ratio in the signals that are used to train the machine learning models that the
prosthesis uses to control the knee. As it stands now, the performance deteriorates so quickly that the
knee requires constant retraining, with the data acquisition process that comes along with, making it im-
practical for widespread adoption. This thesis focuses on combining signal pre-processing techniques that
are commonly found in scientific literature, and aims to find the best combination thereof with regards to
multi-day model performance. The wavelet transform, empirical mode decomposition, and independent
component analysis are compared, as well as the effect of differentiation of the signal, and two altern-
ative ways to modify the signal by calculating the RMS in sub-windows and smoothing the envelope of
the signals. Additionally, an LSTM-based autoencoder is proposed with the aim of reducing the dimen-
sionality of the input signals, whilst simultaneously reducing the noise present in the signals. Through a
process of gradual elimination, a number of best practices in terms of SEMG signal pre-processing were
isolated, and subject for further research are proposed.



INTRODUCTION

Most people are fortunate enough to be able to use both their legs, which is something many might take
for granted as they go about their days, not paying much attention to their own mobility. Yet there are
many reasons why anyone could lose a part of one or both of their legs. Vascular disease, cancerous tu-
mours, infection, or severe trauma to the leg among many other things can create the medical necessity
to have the leg amputated. Most leg amputations are performed below-knee, called a transtibial (Lat.
through the shin bone) amputation, meaning the patient will keep their knees intact. In a smaller number
of cases, this is not possible, requiring an above-knee amputation, also called transfemoral (Lat: through
the thigh bone) amputation, leaving only a part of the patients’ upper leg intact. For transfemoral am-
putees, rehabilitation is even more difficult than for transtibial amputees, as the former have to regain
control of not only their lower leg, ankle, and foot, but also an artificial knee.

To aid in this rehabilitation process, a number of types of prostheses has been developed to allow the user
to adapt their new limb to the day-to-day requirements, flexibility and cost as required. These types can
range from making use of manual or weight-activated locking systems, to constant or variable friction
joints, and even pneumatic or hydraulic fluid control systems [1]. The latest development are the micro-
processor controlled knees (MPK), which use on-board sensors to detect movement and adjust the knee
joint accordingly. These computerised knee prostheses have already been around since the late 1990s
[2]. They may use different sensors of various types, allowing the user to control the angle of the knee
with physiological signals. In combination with machine learning techniques, it is possible to conduct
sEMG measurements on the remaining part of the leg, and process these signals to estimate the knee
joint angle, angular velocity, or torque.

An example of MPKs is the MyLeg [3], an osseointegrated (integrated with bone) transfemoral pros-
thesis developed by a collaboration of universities and research organisation such as Roessingh Research
and Development, who are collectively trying to improve the reliability and robustness of the MyLeg
prosthesis. The prosthesis is controlled by an array of surface electromyography (sEMG) sensors, that
measure the electrical muscle activity under the skin. The electrodes are marked in red in Figure 1. Un-
fortunately, due to the noisy nature of SEMG signals and their measurements, the accuracy of the knee
joint in the prosthesis wanes in a matter of days [4]. This thesis will hopefully aid the MyLeg research
project investigating which combination of commonly pre-processing techniques has the best effect on
the multi-day stability of the accuracy of the prostheses. The goal is to reduce the frequency with which
the prosthesis has to be retrained in order to maintain acceptable levels of error in knee’s final angle as
predicted by the underlying machine learning model.

1.1 MOTIVATION

Roessingh Research and Development is a research group that focuses on people and their needs, working
in the field of rehabilitation technology and e-health [5]. One of the research topics involves computer-
ised knees and is in need of a way to preprocess the raw sEMG data for the MyLeg research project [3],
and suspects that there is much to be gained when a robust data pre-processing pipeline and a reliable
dimensionality reduction technique are applied to the sEMG measurements, hopefully decreasing the
complexity of the high dimensional signal and improving the robustness and stability of the machine
learning models that drive the movement of the knee joint.

The goal of the MyLeg project is to "let transfemoral amputees better accept the prosthesis, improving
their quality of life, and allowing them to reach a higher degree of self-reliance [...]" [5]. Additionally,
the project aims to reduce the support needed by formal and informal caregivers, reducing the burden on
these groups and society as a whole. This is an ambitious goal, but an important one, as a lot of people
can be helped with the improvement of robustness in computerised knees, now and in the future.



Figure 1: Photo of a healthy user wearing a 16x4 array of SEMG electrodes on the thigh, marked in red.

1.2 PROBLEM STATEMENT

Raw sEMG signals are filled with noise and contamination. Sub-optimal contact of the electrodes with the
skin’s surface, movement of the electrodes, power line interference, cross-talk between muscles and mul-
tiple electrodes, and numerous other reasons can cause the intended signal - that of the muscle groups
underneath the skin - to be obfuscated. As such, if this data is used in a machine learning model, tuning
this model will likely require a great amount of effort with no guarantee of successful training. Even
if the training is completed with an acceptable accuracy, its performance may be short-term, degrading
quickly over time [4]. The details of this performance decay is further explored in chapter 3.

The signal acquisition currently consists of long measurements at a high sample rate of 1000 Hz of 64
electrodes, during which a user performs simple activities, such as walking, sitting, and standing. This
yields 64 long signals for each trial. After removing as many unwanted contaminations as possible, the
data can be used in a number of pre-processing and/or dimensionality reduction techniques to com-
press the signals into more information-rich signals. Then, from these signals, a regression model can
be trained in order to estimate the angle of the knee joint, so that when used, the sEMG signals can be
used to control the knee. Currently, it is difficult to state a definitive best combination of pre-processing
techniques with regards to long-term stability of the model accuracy. As such, in the scientific literature
on this topic, a wide range of techniques is used without consensus on a best practice.

1.3 SCOPE

Within the MyLeg research project there are many facets already in place in order to make the MPK
work. This spans from from the physiological measurements to the final prediction and control of the
joint. This, then, creates a large scope in which the topic of this thesis could be placed. As a consequence,
it is important to delineate the boundaries of this research. The goal is not to research ways to generally
improve the accuracy of the knee joint, but specifically to investigate the effects of dimensionality reduc-
tion and commonly used signal filtering techniques on the predictive instability over multiple days which
currently poses a problem in the use of computerised knees. Furthermore, throughout the research, the
input data used will have been prerecorded, which means that the data acquisition is not considered.
Raw sEMG signals are provided by Roessingh Research & Development at the start of the development



of the models in this research. Since the focus lies on SEMG here, no other sensor data such as inertial
measurement unit (IMU) will be taken into account. Finally, although of great significance in real-life
use of filtering techniques, the speed and computational requirements required for the pre-processing
techniques in this research are not taken into account when comparing the performance and results of
each approach.

1.4 RESEARCH QUESTION
Combining the problem at hand with the intended outcome yields the following main research question:

What combination of commonly used signal filtering and dimensionality reduction techniques can best in-
crease the multi-day performance stability of an sSEMG-based computerised knee joint?

In order to work towards answering the main research question, two sub-questions can be posed. Al-
though the second question is similar to the main research question, it is important to explicitly state the
first question, as the result are not necessarily be the same.

1. What combination of surface electromyography filtering techniques found commonly in literature
yield the highest accuracy when the training and evaluation occurs on the same day?

2. What impact do these selected techniques have on the multi-day accuracy of predicted angle of the
knee joint compared to the same-day accuracy?



BACKGROUND

This chapter will lay a theoretical foundation on the workings of muscles and SEMG measurements. An
overview of the most effective ways of filtering and reducing the sEMG signals is created by comparing
various techniques found in scientific literature.

2.1 ANATOMY OF THE KNEE

The knee is the largest and most complex joint in the human body [6], creating a hinge joint between the
femur (thigh bone) with the tibia (shin bone) and the fibula (calf bone). Technically, the tibia and fibula
have a joint that is separate from the the main joint between the femur and tibia, but this second joint
has very limited movement and is generally not considered part of the main knee joint [7]. Together
with the patella (knee cap), these four bones make up the knee joint. For the knee to work maintain
its effectivity and longevity, a lot of additional tissues assist the rotational movement. Articular cartilage
covers the areas of the femur, tibia, and patella that move along each other, Synovial fluid in between
the bones helps to lubricate the movement, two C-shaped menisci spread the force over a larger area to
reduce damage to the cartilage, and the tendons and ligaments limit the knee’s range of motion.
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Figure 2: The muscles of the upper leg. The left-hand image is the anterior view showing the quadriceps (rectus
femoris, vastus lateralis, vastus medialis, vastus intermedius), and the right-hand image is the posterior
view, showing the hamstrings (semimembranosus, semitendinosus, biceps femoris). Image source unknown.

There are many muscles involved in moving the knee joint. The two main muscles groups are called
the quadriceps and the hamstrings [6]. The quadriceps femoris, or simply quadriceps, are located in the
front of the upper leg. Flexion of this muscle group causes the knee to extend and the leg to straighten.
The quadriceps consist of four muscle heads: the rectus femoris (RF) muscle occupying the middle of the
thigh, the vastus lateralis (VL) muscle on the outer side of thigh, the vastus medialis (VM) muscle on the
inner side of the thigh, and the vastus intermedius (VI) muscle [8] between the VL and VM muscle, deeper
inside the thigh. The hamstrings are located at the back of the thigh and consists of three muscle heads:
the semimembranosus (SM), semiteninosus (ST), and the biceps femoris (BF). Flexion of the hamstrings
bend the knee joint. All the mentioned muscles are shown in Figure 2, except the VI, as it is located
underneath the RF.



2.2 SEMG SIGNALS AND DISTURBANCES

As the amount of unwanted noise is usually too large for the sEMG measurements to be used directly,
there has been a lot of research in the area of SEMG filtering to allow the obtained signals to be reliable
and useful in various applications, from analysis to prediction. On top of the many sources of noise, EMG
signals are also highly complex, non-linear, and non-stationary, which means that the frequencies that
make up the signal are not constant over time [9]. In order to utilise the obtained signals, a high quality
pre-processing step is generally considered especially important.

2.2.1 Obtaining measurements

EMG signals can be obtained in two ways, using either surface electrodes or intramuscular electrodes.
The former uses electrodes on the skin with a conductive gel in order to minimise the electrical imped-
ance between the skin and the electrode, whereas the latter uses needle-like electrodes, called monopolar
needle electrodes, that are placed in between the muscles. This makes intramuscular EMG acquisition
much more invasive than surface EMG measurements. The most important reason for using intramuscu-
lar measurements is that it allows you to reach deeper muscles with much more precision, as there is no
skin and fat to distort the signal and the electrode is much closer to the source of the electrical activity.
For the use in prostheses, these benefits would be very convenient to have, but the insertion of needles is
simply not feasible for various reasons, such as causing pain, the danger of having to insert and remove
the needles yourself, and the need to repeat this procedure many times during the use of prosthesis, to
name a few. This leaves surface EMG (SEMG) signals. These have been used for prosthetic control since
at least the 1980’s [10]. Using conductive gel for better electrical contact, electrodes are placed along
the muscles to pick up their electrical activity when flexed.

2.2.2  Sources of noise

In order to understand how sEMG signals can best be filtered and used for the training of models, it
is crucial to understand the things that contaminate the desired signals. SEMG signals are very noisy
signals, and by consequence it is not possible to directly find the muscle activations through raw sEMG
measurements. In Figure 3, the most prominent of these sources of noise are shown schematically.
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Figure 3: Motor unit action potentials have to move through the body tissue, where they add up before being
picked up by the electrode. There are various sources of noise that come into play. (1) Electrode noise,
like movement artefacts, and possible imperfect contact with the skin. (2) Cross-talk from untargeted
muscle groups. (3) Electromagnetic interference from other devices nearby at PLI frequency, and other

noise. (4) Power line interference.

The electrode itself can be a source of several types of disturbances. Improper contact with the skin can
cause differences in impedance and change the measured voltage (1). Movement of the electrode on



the skin, or of the subcutaneous tissue when the underlying muscles move, can cause the same kind of
artefacts. The frequency range of those artefacts lie in the low frequency range of 1-10Hz with a voltage
amplitude comparable to that of the targeted signal [11]. In that range there is also the disturbance of
the firing rate of the motor units that carry the electrical signal to and throughout the muscles, namely
0-20 Hz. This means that filtering around the 20 Hz mark is a good idea. This was confirmed by [12],
which state that for most purposes, 20 Hz is a good value to filter at, balancing information loss and
removing noise.

On top of that, the electrode does not only pick up electrical signals directly underneath it. This effect,
called cross-talk (2), occurs when an EMG signal from a non-monitored muscle group is detected, caus-
ing an incorrect interpretation of the signal information [13]. There are ways to reduce cross-talk by use
of different types of electrodes [14], but post-hoc, there appears to be little that can be done. [15] states
that the cross-correlation of the captured signals is neither a quantitative nor a qualitative measure of
the level of cross-talk [11].

Perhaps the simplest type of noise to recognise and remove is power line interference (3) and electromag-
netic radiation interference (4). In most parts of the world, the power grid runs at either 50 or 60 Hz.
Devices connected to the grid will usually give off a faint magnetic field at that frequency, and since we
are surrounded by such devices, this field will - in Europe - cause 50 Hz interference on the metal leads
and internal parts of the EMG device. Luckily, this is easy to remove using a notch filter. A commonly
used type of filter is a Butterworth notch filter, also called a band-pass filter (BPF). With this filter there is
an accompanying quality factor Q, which is unfortunately usually not reported in other research. A value
that was reported by [16] was Q = 3. This choice for this value is not supported, though, and appears
rather arbitrarily chosen. A low value of Q means the notch filter is not very specific and attenuates
surrounding frequencies more, whereas a higher value means the filter is more precise. This is visualised
in Figure 4. It is readily apparent that the light green part of the signal, with Q = 20 filter out much
less of the frequencies between 40 Hz and 60 Hz, thus distorting the underlying data much less than
the dark green/blue part of the signal. Thus it appears that a value higher than 3 is more appropriate.
Most studies disregard the filtering of its harmonics, i.e. frequencies of integer multiples of the power
line frequency (100 Hz, 150 Hz, 200 Hz, et cetera).
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Figure 4: Frequency response of two 50 Hz notch filters with different quality factors Q. The black dashed line
indicates the -3dB point, the intersection with which indicates the start and end of the respective
bandwidth, highlighted by the shaded areas.



2.2.3 Non-stationarity

A large part of the reason why sSEMG models are unstable over time is because of non-stationarity. Form-
ally, a signal is considered stationary if it meets three criteria: the signal should have a constant mean
over time, as well as a constant variance over time. Together, these criteria imply the third criterion,
namely that the distribution of any two equally sized windows taken from the signal must be identically
distributed.

2.3 ADVANCED FILTERING TECHNIQUES

After the filtering steps are done and the signal is free from easy to remove noise, a number of methods
can be used to further clean up the signal. Two very popular approaches found in the literature are
the wavelet transform (WT) and empirical mode decomposition (EMD). Both approaches attempt to
decompose the signal into sub-signals, after which according to some criterion some sub-signals can be
kept and others discarded. The remaining sub-signals are used to reconstruct the signal, having removed
unwanted temporal features in the process.

2.3.1 Wavelet Transform

The wavelet transform can be thought of as an extension of the Fourier transform. In order to best un-
derstand the wavelet transform, a comparison can be made with the Fourier transform. The goal of the
Fourier transform is to decompose a time signal into oscillating basis functions, namely sines and cosines.
This allows you to find the amplitudes of the frequencies of oscillating signals that are present in the
signal. If there is only one frequency, the plot of the transform would give a single peak at that one
frequency value. In this case, this frequency persists over a long time. It is also possible for a signal to be
localised in time, i.e. the signal is not infinite. In this case, the Fourier transform still finds the frequency,
but with less precision in the frequency domain. Even more localisation in time gives less frequency resol-
ution still. This is precisely why the Fourier transform is poorly suited for analysing SEMG measurements:
the abrupt changes in signal cannot be described by a sum of sinusoidal waves [17].

A significant step forward was the use of the Short Time Fourier transform (STFT), which divides the
signal into time windows, and take the Fourier transform of each window, thus giving you a group of
frequencies for every interval. There is a trade-off to be made there. The longer the windows, the more
resolution you get in frequency space, but less in temporal space. Using shorter windows will give you a
better idea of which frequencies occur when, but the exact value of this frequency is less well known.
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Figure 5: Various types of wavelets. (a) Haar, (b) Daubechies, Coiflet (d) Symlet (e) Meyer (f) Morlet (g) Mexican
Hat. Source: [18].

This is then improved upon by the wavelet decomposition. It does not use sines and cosines as its basis
functions, but wavelets, examples of which are shown in Figure 5. They are specific signals of finite length



- that is, a specific value within a given range, and zero everywhere else - that can be scaled in time, and
shifted along the time axis, as shown in Figure 6. In doing so, the wavelet transform can calculate the
similarity of the signal at given time steps at varying resolutions. It can pass over the same signal multiple
times with the same wavelet, but scaled, so that you get multiple resolutions. The rationale behind this
is that low frequency parts of the signal tend to sustain longer, allowing to analyse low frequencies with
lower temporal resolution in favour of frequency accuracy, and high frequency signals tend to be shorter
lived, requiring a high temporal resolution, at the cost of knowing the precise values of these frequencies.
This is visualised in Figure 7. In a time series signal, you have no resolution in frequency, but a lot in time.
In the Fourier transform of the signal, you have no resolution in time, but a lot in frequency. The STFT
gives a general compromise between time and frequency, and WT gives a more structured compromise.

(a) Shifting (b) Scaling

Figure 6: A Daubechies 2 (db2) wavelet, shifted over time (left) and scaled along time (right).

Where the output of a Fourier transform gives you a set of coefficients corresponding to different fre-
quencies, the output of a wavelet transform yields a two-dimensional set of coefficients corresponding
to different scales of the wavelet at different positions along the signal. From these coefficients, a three-
dimensional plot can be created in order to visualise the amplitudes at each scale and at each point in
time.

As there are a large number of wavelet families, each with different levels for more or less detail, it is im-
portant that an appropriate wavelet is chosen. The shape of each wavelets can drastically alter its efficacy
for a given applications. In this case, working with highly variable and stochastic data, a wavelet should
be chosen that reflects these characteristics. Phinyomark et al. [20] compared 53 wavelets from the
Daubechies (db), Symlet (sym), Coiflet (coif), BiorSpline (bior), ReverseBior (rbio) and discrete Meyer
(dmey) wavelet families. After rigorous testing, the authors recommend to use a db2, db7, sym2, bior5.5,
or rbio2.2 wavelet.

In order to use the transform as a denoising technique, the resulting coefficients have to be altered, so
that the noisy components are not reconstructed. This threshold can be selected based on a number of
criteria. Donoho and Johnstone [21] proposed a thresholding technique, called the universal fixed form
threshold, in 1994. If any given coefficient has a smaller value than that threshold value, it should be
reduced to O before the signal is reconstructed. The universal threshold value is calculated as follows:

THR,;; = 04/2l0g(N)

Here, N is the number of samples in the signal, and ¢ is the standard deviation of the noise. ¢ can be
approximated by ¢ = median(|cD;|)/0.6745, where cD; is the detail wavelet coefficients at scale level
j and 0.6475 is a numerical normalisation factor. Phinyomark et al. [20] compared adaptations of this
universal threshold. They found that the Log Scale Modified Universal Rule (LSMU) yielded the lowest
MSE compared to other threshold rules. LSMU is described by the following equation:
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The same authors also investigated adaptations of threshold functions to see what works best in the
context of SEMG signals. It was found that a rule called the adaptive denoising function (ADP) yields the
lowest mean square error, and thus maintaining the signals characteristics the best while removing the
most noise. ADP updates the found coefficients as follows:

ZTHRLSMU,]'

cD; =cD; — THR i
] j LSMU,j + 1+ ¢21eD;/THR spu

Here, THR; is the threshold value for that scale level as given by the selected threshold rule. Although
quite a large expression, the main benefit is that, as opposed to other threshold rules, the right-hand
side of the expression is a continuous function, rather than a hard threshold. As such, there is no sharp
drop-off when the a given coefficient falls just underneath the threshold value THR;.

In summary, the update rule that is found to work best for sEMG data, yielding the lowest mean square

error values, is described as follows:

ZTHRLSMU,]'
1 + 62'1CD]'/THRLSMU,]'

CD] = CD] - THRLSMU,]' =+

After the coefficients have been updated, they are multiplied with their respective wavelets to reconstruct
a filtered version of the original signal.

2.3.2 Empirical Mode Decomposition

The EMD follows a different approach, visualised in Figure 8. The decomposition process starts by identi-
fying the local minima and maxima, collectively called the extrema, of the signal, shown in (a). The
minima and maxima are each interpolated by a cubic spline to create a continuous signal for each (b).
The average of these two signals is computed (c). Finally, this average of the envelope is subtracted from
the original signal (d). The remaining signal is called a residual. The goal of EMD is to identify intrinsic
mode factors, or IMFs.

The residual is considered an IMF if it meets two criteria. Firstly, the number of extrema can only differ
from the amount of zero-crossings by at most one. This implies that there can be no two consecutive ex-
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Figure 8: (a) Original signal with multiple frequencies. (b) Creating an envelope by interpolation of the extrema.
(c) Subtracting the mean of the envelopes yields an IMF. (d) If the remaining signal meets the criteria, all
IMFs and the residual have been found. Source: [22].

trema before crossing the x-axis again. Secondly, the signal must have a local mean of zero everywhere.
This implies that the mean of the two envelopes created by the extrema must be (negligibly close to)
zero. The residual meets these criteria, as shown in Figure 8 (d) (one extremum per zero-crossing) and
(e) (the mean of the envelopes is zero), so the residual is an IMF. This process repeats until no IMF can
be extracted. The resulting set of IMFs will have decomposed the original signal into a finite number
components, which in turn form a nearly orthogonal basis for the original signal. This means that a lin-
ear combination of these signals can reconstruct the original signal, and removal of unwanted IMFs can
filter the signal before reconstruction.

Similar to the wavelet transform, the IMFs can be altered based on a threshold value. However, they
are not removed or scaled as a whole. Rather, depending on the type of thresholding, the smaller IMFs
are squashed towards zero only at the parts of the IMF that are small enough. This type of thresholding
is referred to as Smoothly Clipped Absolute Deviation, or SCAD. This has recently become the more
popular threshold rule, over the other two often-used threshold, soft and hard thresholding. The scaling
factors are visualised in Figure 9. Because SCAD is has a smoother transition between the different
piece-wise functions, a more continuous scaling transition occurs when applying the threshold to a given
IMF. It’s non-linear region of influence is determined by a coefficient «, which, according to Kopsinis
and McLaughlin [23] is optimal at 3.7. The width of the non-linear part in all three methods is also
determined by the threshold value T, which is calculated in the same way as the wavelet transform’s
universal threshold value [24]. This value determine how small parts of an IMF must be to be subjected
to change. As can be seen in the figure, the SCAD thresholding rule has increasing steepness when moving
away from 0, and becomes linear afterwards. These piece-wise functions allow a signal to be "stretched"
towards 0, while allowing sufficiently large values to remain unchanged. As such, noise signals, which
tend to be relatively small in amplitude, can be squashed while preserving the signal as much as possible.

2.3.3 Independent Component Analysis

Another commonly used technique to separate the signals into its components in independent compon-
ent analysis (ICA), which is a technique that separates multivariate signals into additive components, by
assuming that the components are potentially non-Gaussian signals and that they are statistically inde-
pendent from each other. ICA is known as a blind source separation technique. Its goal is to separate
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Figure 9: Three common threshold methods for EMD: Soft, hard, and SCAD (« = 3.7) with T = 1. The x-axis shows
the input coefficient cD;, and the y-axis shows the coefficient value after applying the respective
thresholding technique.

the original sources into a linear mixture of the original sources, see Figure 10. A common illustration
for this is a person trying to filter out a single person’s voice in a crowded room, which requires the
independent signal (the other person’s voice) to be isolated from the other sources (other people talking
or noise). ICA is generally applied post-hoc, allowing larger temporal structures to be revealed. This may
pose a problem when using it on windowed or live data.

I_______________________________IObserved Estimated
i Source Mixing i Signals Sources
i Signals Matrix i JL g
| Q1 I N
1 e | X1 A
, A - §
e @ v ap)s) a ICA :,
1 . i . . 1 2
1 H * H . . .
1 . [ H
\ ) / Ani * Ay Sp % —» S,
1 Sp |
1
1

Figure 10: Schematic overview of the purpose of ICA. Source: [25]

To use ICA, multiple recordings from different spatial locations have to be available, which is the case
for multi-channel SEMG measurements. One parameter that has to be picked manually, is the number of
source signals N that ICA will try to find. Given that there may be multiple sources of noise and multiple
muscles - targeted or untargeted - that are producing cross-talk artefacts, an estimate of N is required.
Generally, ICA implementations assume that N = M, where M is the number of recordings. This allows
ICA to simplify the estimation of the square mixing and unmixing matrix, since square matrices are
invertible. Naik and Kumar [26] developed an estimate for undercomplete mixtures, that is, when the
number of components N is less than the number of source signals M, as is likely the case given the
64 sEMG channels available for this research. The proposed measure to identify the appropriate number
of independent component is calculated in two steps. First, ICA is performed on all M measurements,
using N expected ICs. This generates a global matrix G = AW, which are the mixing and unmixing
matrices, respectively. The determinant of G is an indication of the effectiveness of the unmixing, and
the Frobenius norm of G can be used to obtain a new estimate for the number of ICs, K. This value is
substituted in place of N. This can be repeated until K doesn’t change, at which point a good estimate
for the number of sources should have been found.
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2.4 MACHINE LEARNING APPROACHES

Neural networks are computational models that can take numerical data as an input and reshape this
input to match a desired target value. It does this by adapting the weights that connect the nodes of
network. The nodes are arranged in layers, organised from start (the input layer) to end (the output
layer). The data is said to flow through the network one layer at a time, until it reaches the end. Here
the output is compared to the target output. In this case, the input data is a set of SEMG signals, and
the target output is the correct knee angle at the same moment the sEMG signals were measured. The
similarity between the output value and target value can be measured according to any criterion that
suits the application. This criterion is called a loss function and calculates the accuracy of the model for
that prediction. For predicting one or more scalar numbers, a process called regression, the mean square
error (MSE), the square root thereof (RMSE), or the absolute difference are commonly used.

Throughout the literature, there are several types of neural network architectures that have been used
for the estimation of position, velocity, acceleration, and torque in upper and lower limbs. However, the
majority of the literature encountered has focused on the shoulders [27, 28], elbows [28, 29, 30], or
hands [31, 32], and less on the knee or ankles. This is likely because regression on the muscles of the
legs is more challenging, as the muscles are located farther away from the skin [33]. Furthermore, the
focus generally lies in pattern recognition, whereby actions are grouped into categories, making it a
classification problem, whereas the intended outcome of this thesis is to create a pre-processing pipeline
for a regression model in order to estimate a continuous numerical value. To illustrate the difference,
a multi-branch neural network by Wang et al. [33] uses time domain and frequency domain features,
as well as the cleaned sEMG signals to estimate the gait phase, which is categorical prediction, as well
as the knee joint angle, which is a continuous prediction. What this means, is that SEMG data can aid
in both classification and regression models, despite the majority of the research focusing on classifiers.
Unfortunately this specific study made use of additional sensors other than sEMG measurements, which
is a common occurrence: many approaches to joint angle estimation are based on so-called synergy
or fusion methods, often making use of inertial measurement unit (IMU) data to directly measure the
acceleration [34].

2.4.1 Autoencoders

Autoencoders are a family of neural network architectures with the aim of compressing the input data
into a more compact form, called the latent space, after which it tries to restore the input from that
compressed latent space. The goal of doing this can be different according to the application; saving
memory by only storing the data in the latent space, removing noise by forcing the model to only retain
crucial information, or reduce the dimensionality of the input data. Generally, an autoencoder consists
of several hidden layers, gradually reducing in size, until it reaches the bottleneck of the architecture.
This allows the model to gradually learn an encoding for the input data, and is thus called the encoder.
The shape of the decoder is usually the exact mirror architecture of the encoder, so that the data in the
latent space can be decoded into an approximation of the input signals. An example of an autoencoder is
shown in Figure 11. If successfully trained, an autoencoder combines the tasks of dimensionality reduc-
tion and denoising simultaneously, as in order to successfully bring the loss function to acceptable levels,
the noise will also have been consistently and significantly reduced.

Similar to other neural network architectures, this architecture can only use cross-sectional data. In
other words, they cannot effectively work with time series data, as each input vector represents only one
instant in time. If time series data was given as an input, this would require the time series to be split up
so that each instance in time is a separate training example. The downside of this is that any temporal
correlation is lost in the process. The changes in the input, and the rate at which those changes occur,
cannot be taken into account with a simple autoencoder.
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Figure 11: A very simple autoencoder, compressing eight input channels to a two-dimensional latent space.

2.4.2 Recurrent Neural Networks

To overcome the loss of temporal structure in the data, a more advanced family of architectures, called
recurrent neural networks (RNN), were developed. These models don’t take cross-sectional data as an
input, but rather entire time series. Each time step is then put through the network sequentially, whereby
the output of a node can be fed back into itself, thus allowing to retain information for the next step. This
means that the output of a node can be based on its old output and new input. There are four general
shapes of RNNs, shown in Figure 12. The applications of RNNs range from music generation (one-to-
many), which takes one input, often called a seed, and generates a long sequence of outputs, in this
case music notes that have some temporal structure, to sentence translation (many-to-many), to voice
recognition (many-to-one). Note that a one-to-one RNN is really just a feed-forward neural network.

one to one

one to many

many to one

many to many

Figure 12: The four general shapes of RNN models when unrolled in time. Each colour represents one layer (model
depth), and each sideways step represents a step in time. Source: [35]

To use RNNs for regression, taking SEMG signals as input in order to predict a single value, a many-to-
one architecture could be used directly. However, this means that the model will have to learn from all
measurements simultaneously, requiring a very large model with many hidden layers, only to parse large
amounts of redundant information. Instead, RNNs and autoencoders could be combined to compress
the time series into a lower dimension. If this recurrent autoencoder is successfully trained, it could be
possible to train a recurrent regression model on this smaller amount of output signals. The downside of
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RNNs is that the backpropagation (BP), the algorithm that adapt the weights of the connections between
each node in the model in order to try to reduce the loss value, is that the gradients of the error values
used to calculate the change in each weight, can either vanish or explode due to the large number of
times this gradient is calculated. Making very deep RNNs may very well create weights that approach to
infinity, or reduce to near-zero values, causing them to destroy any value that is multiplied by them.

2.4.3 Long short-term memory

One step further, the long short-term memory (LSTM) architecture was designed in 1997 by Sepp Ho-
chreiter and Jiirgen Schmidhuber [36] in order to prevent the exploding and vanishing gradient problem.
The idea behind an LSTM gate is that it can remember long-term dependencies in the input data, and
to retain or forget its own internal state. Additionally, a chain of LSTM gates can form a sort of highway
for the backpropagating gradient. Note that LSTM gates do not loop back on themselves. This allows the
time series data to be input sequentially while still allowing the model to learn the temporal dependen-
cies that are required for effective training with sEMG signals.

A long short-term memory autoencoder (LSTM-AE) can thus allow for time series compression, creating
the lower-dimensional input for a recurrent regression model. LSTM-AEs are a relatively new type of
architecture. The first use of such a model is often attributed to a study by Srivastava [37] from 2015,
where it was used to predict the next frames of a video sequence. In this case, the video frames are
sequentially compressed into the latent space representation, and two decoders were used: one to decode
the image and reconstruct it to match the input image, and one to predict what the next frame would
look like. Today, the most ubiquitous applications of LSTM-AEs are short-term forecasting of sequences
like stocks prices, and anomaly detection, whereby an outlier of a complex sequence can be automatically
detected. Given its capabilities, this thesis will look into using it as a compression model for time series
data.

2.4.4 Model performance

Many studies report the regression accuracies of their models in term of the average root mean square
error (RMSE) of the predicted angle and the actual angle. The RMSE is calculated as follows:

RMSE =

S|

n ~

(0; — 0;)?
i=1
Here, 1 is the number of data points in a signal, 6; is the ith data point in that signal, and 6; is the
predicted value for that data point. In words, the RMSE takes the difference of the true value and the
predicted value and squares the difference, so that all difference values become positive. These values
are than averaged in order to remove the effect of the length of the sequence. This produces a single
number, of which the square root is taken to undo the squaring. The final number gives an alternative
kind of "average" in terms of how many degrees the model is off. All the RMSE values for each exercise
or sequence can be averaged over to give the average RMSE.
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RELATED WORK AND STATE OF THE ART

The research into limb control using SEMG has been a field of interest in the scientific community since at
least the 1960s [38]. Unfortunately, a large part of this research has gone into other joints than the knees.
However, since sEMG signals have similar characteristics regardless of the joint that is being researched,
one can assume that inspiration and knowledge can be transferred, at least to some extent, to apply on
analysis and control of the knee joint.

Ma et al. [39] have used a custom combination of autoencoders and an LSTM in order to estimate the
angle of the shoulders, leveraging the autoencoder part of the model to extract common mode inform-
ation, similar to the EMD and ICA techniques, and the LSTM part in order to decode the autoencoder’s
latent space. What appears to be crucial to the functioning of this model is the custom signal envelope
they created. Unfortunately, the creation of the signal envelope is poorly explained and can therefore not
be reproduced. The study also applies the raw and processed data to multi-layer perceptrons and convo-
lutional neural networks, but both perform worse than their LSTM-AE architecture counterpart. Rather
than presenting an RMSE value, the authors reported the accuracy in terms of the correlation with the
ground truth, yielding a correlation of 0.90 for the MLP, 0.91 for the CNN, and 0.97 for the LSTM-AE.
Aung and Al-Jimaily [40] used a simple neural network with only four inputs, one for each measured
muscle and its resulting SEMG signal, and one hidden layer with 20 hidden nodes to predict the shoulder
angle. As their sampling rate was 2048 Hz, it allowed them to calculate the RMS value of the signal over
time, and use those values as inputs to their models. Unfortunately no RMSE value or other performance
metrics were reported.

Cheron et al. [41] used a dynamic RNN model with one hidden layer to predict the hip, knee, and ankle
angles. The data was preprocessed using a full wave rectification and a third-order averaging filter with
a time constant of 20 ms. This was presumably also done to remove the high frequency components of
the envelope. Liu et al. [42] tried to improve upon the existing CNN approaches for knee angle estima-
tion by using time-domain features as inputs, rather than the original SEMG signals. These features are
the mean absolute value, RMS, waveform length, and energy percentage. They used six muscles, the
RF, VL, VM, BF, ST, and the medial gastrocnemius (MG), which is the inner calf muscle, which is not
present anymore in transfemoral amputees. Together, the six muscles and four features create 24 time-
domain input features. The raw signals were only treated with a 20-460 Hz band-pass filter, a 50 Hz
notch filter, and full wave rectification. Finally, the amplitude of each signal was normalised, so that the
maximum absolute value in each signal becomes 1. The final RMSE that was achieved was 5.88°+ 0.22°.

Zhang et al. [43] looked at the continuous joint angle estimation of the legs with healthy users and
users with spinal cord injury. They report average RMSE values for leg extension exercises and treadmill
exercises of 9°and 6°, respectively. The study used a backpropagation neural network, without the use
of recurrent elements, in order to predict the angles of the hip, knee, and ankle. After filtering their
seven sEMG signals with a band-pass filter between 20-500 Hz and a 50 Hz notch filter, they rectified
the wave, making all parts of signal positive, followed by sub-sampling in order make the sample rate
of sEMG match their angle sensors. Finally, they apply a first order low-pass filter of 5 Hz to gradually
and increasingly reduce the high frequency components. This smoothens the envelope of the final signal.
Instead of using temporal structure, they use 20 consecutive data points of this filtered signal as an input.
Using more than 20 data points only increased their RMSE. They also found that rapid limb movement
yielded better accuracy than slow movement.

Finally, Truong et al. [44] created a model to estimate the knee angle and torque using an LSTM-based
architecture. After applying a second-order Butterworth band-pass filter (20-500 Hz), they calculated
the derivative (i.e. the difference for each data point with respect to the previous data point) of the
sEMG signals in order to reduce the non-stationarity [45]. Then, feature extraction was performed by
finding the coefficients of a 6th-order autoregressive model, while also calculating the RMS values over
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a time window. Together, the autoregressive coefficients, which remain constant, and the RMS values,
which constantly change, over a 100 ms time window with 50 ms overlap form the input features. With
this, their best model achieved an RMSE of roughly 10°.

The amount of publications investigating or reporting on the long-term stability of SEMG-based models
is not very high. Kaufmann et al. [46] looked into the drifting of classification accuracy in hand gesture
recognition for various model architectures. They gathered 21 days’ worth of test trials and compared
three scenarios. The first scenario allows the model to be constantly retrained on all preceding trials up
to that time, thus having access to all labelled SEMG data gathered so far. The second scenario restricts
the amount of training data to only the five most recent trials, discarding the older sEMG signals. The
final scenario allowed the models to only train on the first five trials, creating a larger gap in time as
more data is gathered. They found that for the last scenario the accuracy almost always drifted, from the
80-90% accuracy range, to the 60-70% range or worse. Four out of five models could not keep up the
accuracy, often seeing significant deterioration in accuracy in only 20 trials, which corresponds to about
half a week. This means that every three days, the model has to be retrained in order to keep functioning
optimally.

Similarly, Amsiiss et al. [47] investigated hand gesture classifier stability over five days by gathering the
sEMG data each day, splitting it up into five train sets and five test sets, and combining them to create
25 sets of train and test data. As they expected, they saw the highest accuracies when the train and test
data sets originated from the same day, with accuracy generally decreasing monotonically as the time
between the train set and test set increased. On average, a 4.2% decrease in accuracy was found over the
range of only five days. They argued that this is the consequence of many stochastic processes involving a
time component, like the muscle displacing underneath the skin. Although 4.2% may not seem much, the
span of five days is very short compared to the long-term use of the prosthesis that the classifier would
be used for, considering it would be used for multiple years. This is further supported by the work of
He et al. [48], which tracked hand gesture recognition over 12 days, seeing an increase in classification
error rates from 7-16% to 35-42%, and a reduced intra-class distance for experiments that were further
spaced apart, meaning that the classes tend to overlap more in their sSEMG characteristics as time goes on.

From these related works, a number of best practices can be derived that can be implemented into the
method of this research. Regardless of the model architecture or advanced filtering technique, a universal
preprocessing step should be applied to all EMG signals available. In terms of frequency domain filters,
each signal window will be filtered by a 20 Hz high-pass filter, a 450 Hz low-pass filter, and a 50 Hz notch
filter with a high precision to remove powerline interference. Furthermore, LSTM-based architectures
have been employed before, which has generally kept the overall architecture quite simple, as opposed
to the commonly used deep learning models in other application fields of machine learning. This means
any model used in this research should not have to be very deep or complex. It is important to note that
little of the related works employed advanced filtering techniques like wavelet transforms, EMD, or ICA.
This implies a significant contribution can be made by comparing these techniques in the preprocessing
phase. In terms of model performance evaluation, the RMSE of the knee angle is most commonly used
to reflect the deviation of the predicted knee angle with respect to the ground truth angle, and will also
be used as the performance metric here.
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METHODS AND TECHNIQUES

In this section, the method of research is discussed, explaining what techniques and approaches are used
in order to answer the research questions. As there exists a wide variety of techniques to process SEMG
signals and create regression models, multiple data sets will be created from the original, each with their
own pre-processing steps. This allows the model proposed in this section to be trained on these data
sets in order to look more closely into the effect the pre-processing has on the long-term stability of the
accuracy of each model.

The given data exists of 160 trials, each with 64 channels originating from the sensor’s 16 by 4 grid,
placed as shown in Figure 1. The 160 trials are the total of four days of 40 trials each, those days being
the first, second, third, and seventh day of the experiment. The model described below will be trained
on the first day only, so that the effect of the delay between training and evaluation on the accuracy can
be evaluated.

4.1 PRE-PROCESSING

In order to ensure that the applied frequency domain filters and subsequent decompositions have the
same effect during training time as during the inference time, each signal is first segmented into 256 ms
windows with a moving window of 32 ms, thus creating 224 ms overlap between subsequent windows.
They full set of windows will still be referred to as a single signal or channel, collectively. Each of the 64
channels is then individually band-pass filtered from 20-450 Hz to limit the high frequency noise, and
reduce low frequency artefacts. A 50 Hz notch filter with a high quality factor of Q = 20 is applied to
remove powerline interference. All filters are fourth-order Butterworth filters. In the figure below, both
the individual frequency response of the filters as well as the total compounded frequency response are
shown in Figure 13. Additionally, this preprocessing step is shown schematically in Figure 14.
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Figure 13: Frequency response for each filter (left) and all filters combined (right). The values shown indicate the
factor by which the frequency will be attenuated after filtering.

4.2 SEGMENTATION AND DECOMPOSITION TECHNIQUES

In order to investigate the effect of differentiation, a copy of the windows is made and differentiated. This
is done for all data points by taking its current value and subtracting the value of the data point before
it: y4 = y+ — y;—1. For each technique discussed earlier - Wavelet transform, EMD, and ICA - a copy of the
original signal, referred to as Base, and its derivative, referred to as Diff, is made, so that the techniques
can be applied separately. The first copy of Base and Diff will have the wavelet transform applied. Based
on the best thresholding criteria and update rule reported by Phinyomark [20], each coefficient will be
adjusted by calculating the Log Scale Modified Universal threshold value and updating it according to
the Adaptive Denoising Function (see 2.3.1). Using the adapted coefficients, the signals will be recon-
structed. The second technique, EMD, is applied in a similar fashion to the wavelet transform. EMD is
applied to every window separately and the SCAD threshold is used to minimise noise. The signals are
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Figure 14: The first step of preprocessing the data consists of segmentation and frequency domain filters on each
window.
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Figure 15: The second step of preprocessing consists of creating three more copies: one for the wavelet transform,
one for empirical mode decomposition, and one for independent component analysis.

then reconstructed.

To be able to use ICA, a small grid search will be performed in order to establish the number of sources.
The estimate for the number of ICs by Naik and Kumar (see 2.3.3) will be run in parallel to see if the
found value matches. Based on this number, the ICA will be run on all trials. This value will also help to
inform the size of the latent space in the LSTM-AE model, given that, if the method works, this method
should yield the true amount of sources present, which is also the goal of the LSTM-AE. As ICA acts as
a dimensionality reduction technique on its own, there will be no need for the autoencoder. Therefore,
the ICs will be passed directly into the regression model, where the number of nodes per layer corres-
ponds to the number of ICs N. These steps, referred to as technique specific decomposition, are shown
schematically in Figure 15. For each of the four datasets, another copy is made in which the signals are
differentiated in order to reduce the effect of the non-stationarity.

4.3 ENVELOPE SMOOTHING TECHNIQUES
In a final adaptation step, the root mean square value is calculated over time by taking sub-windows of

8 ms, which is close to the often used 10 ms [49]. This allows all root mean square values to be calculated
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based on the same number of samples, yielding 256/8 = 32 values per window. The goal of combining
multiple measurements in a single prediction is to smoothen out any leftover disturbances and increase
the overall stability by reducing the direct effect of the sEMG signal amplitude. These RMS windows will
each form a set of inputs, that can be fed into the regression model simultaneously. This means that there
will be a predicted value once every eight milliseconds, rather than every single millisecond. If successful,
the number of predictions per second should still be high enough to not interfere with the joint’s update
rate. An alternative to using the RMS approach is to use a first-order low-pass filter at 5Hz, as done by
Zhang et al. [43]. This will gradually and increasingly attenuate higher frequencies, which should also
smoothen the envelope of the sEMG signal. In summary, there exists three separate steps that can be
combined with each of its options, as illustrated in Figure 16.

ICA
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Base

RMS8

Figure 16: At this stage, there exists a three-dimensional space of possible pre-processing steps, allowing 24 total
possible datasets. The three axes are characterised as differentiation (blue), envelope smoothing
techniques (red), and decomposition methods (green).
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Figure 17: Proposed LSTM-AE architecture with the regression model.
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The proposed model consists of two parts, namely the LSTM-AE and a regression model, as shown in
Figure 17. Two classes of models will be trained and compared, namely on with and one without the
LSTM-AE. The LSTM-AE consists of an encoder and decoder, each with three hidden layers, halving or
increasing in size every next layer to gradually reduce or restore the dimensionality of the input signals.
The initial sizes of the encoder, and thus also the decoder but in reverse, will be 64:32:16:8. This number
of hidden layers is based on the four layers (3 + 1 for the latent space) by Ma et al. [39]. The size of
the latent space is based on the expected number of major muscle groups that contribute to the bulk of
the sEMG signals. The definitive size of the latent space is to be determined by repeated training and
searching for the best performing model. After the autoencoder is trained, the decoder is decoupled, and
the encoder is used as an online dimensionality reduction step before the input to the regression model.
This part of the model is based on the architecture found in [44]. This should finally result in a single
number, the knee joint angle, for every window in the signal. The angle is chosen over the velocity and
torque as it is more easily comparable to the results of other works.

4.5 MODEL TRAINING

For all data sets except the ICA sets, two variants of the regression model can be trained. One variant use
the LSTM-AE to compress its input space, reducing the dimensionality, and the other variant keeps the
original 64 channels. This means that the regression model has two different versions, where only the
number of nodes per layer changes. This is not needed for ICA, as it has no need for the LSTM-AE; the
number of channels is already reduced. As such, the ICA dataset will not make use of the LSTM-AE and
go straight into a regression model. For that dataset, the number of nodes per layer in that model will be
the number of independent components N found by the earlier grid search.

The regression models will be trained on a subset of the complete dataset due to time constraints and
the large volume of models that require training. The models are trained on a random 10% subset of the
first day data, which amounts to four complete trials, or roughly 10.000 windows. For reference, com-
pensating for the added data points created by the overlap in the windows, this equals about 38 minutes
of continuous sEMG measurements.

In the interest of time, not all 24 datasets can be created and used to train two models each (or one if ICA
is applied). This search space is too large for the timespan in which this research sits. As such, the differ-
entiation option (blue axis) and envelope transformations (red axis) will be searched through first. The
best performing model in terms of same-day performance will be used to look into the decomposition
options (green axis). This turns 42 (18x2 + 6 ICA) possible models into 14 (6 + 4x2) possible models,
which are shaded red in Figure 16. This reduces the workload by two-thirds.
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Figure 18: The third step of preprocessing consists of training two variants for the base, wavelet transformed, and
EMD datasets, one with and one without the LSTM-AE as a compression layer. The ICA dataset will only
be trained using a regression model, without the LSTM-AE. Note that in the diagram, the differentiated

versions are omitted for clarity.
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In order to select which models performed best out of the first six, the same-day performance will be
compared. This is represented as the test loss value that is generated during the training of the models.
The model with the lowest loss value, provided it is sufficiently consistent during training time, will
be selected as the starting point for evaluating the decomposition methods. Based on these findings,
one or more models and their accompanying datasets will be selected, and their multi-day performance
compared. A randomised but constant testset will be used to calculate the distribution of RMSE values
for each day, for each model. These daily model distributions and their means can be compared between
models. There are two criteria which should ideally both be met by the same model: the distributions
should be closely packed around the mean and have small tails on the right-hand side, the daily means
should be as low as possible and increase as little as possible between subsequent days. Based on these
criteria, the effects of each set of applied pre-processing steps should be comparable.
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RESULTS AND DISCUSSION

In this chapter, the results of the experiments as described in the previous section are presented and
interpreted.

5.1 PRELIMINARY GRID SEARCH

The first set of models consist of the envelope smoothing techniques, with and without differentiation.
This created six datasets and accompanying models in total. Note that when referring to any model by
its name, this in fact refers to the same model architecture trained on the dataset of that same name. The
target values are obtained directly from the right-hand side IMU, which provides the knee angle. These
values were only altered for the two RMS models, where the window of 256 samples was subdivided
into 32 sub-windows of eight milliseconds each, of which the average is taken to be the new target value.
There is an additional left-hand IMU on the same knee, which was disregarded.

Test loss during model training

Diff RMS (33.1)
Base RMS (21.0)
Diff Envelope (20.0)
Base Envelope (19.7)
—— Base (12.6)
Diff (10.6)
—— Raw (8.7)
— Raw Diff (8.1)

Phase 1 Phase 2 Phase 3

Loss (RMSE)

Epoch

Figure 19: The test losses from the training of the initial six models. Lower is better.

In Figure 19 the test loss plots are graphed, showing how the performance of the models change with
more training iterations. A general pattern emerges that divides the graph into three phases. The first
phase spans from the first epoch until epoch 20. Although it is not certain why the curves follow one
another so closely, one possibility is that this is where the initial model weights are gradually adjusted
to allow the predicted value to converge to a roughly equal value for all models. This value can be inter-
preted as a minimum performance threshold, which any model should evidently be able to obtain. In the
second phase, five out of six models start their second convergence. This sudden drop-off after multiple
epochs of plateau is likely due to the highly non-convex nature of the loss landscape. At the start of the
second convergence, the combination of model weights has reached a point where the gradient of the
loss function suddenly sharply decreases, pointing towards a new local minimum. As the model architec-
ture stays constant, the difference in the moment of second convergence is caused by the difference in
the input data. As such, this moment can be compared between models and provide an indication of the
how well the input features are related to the target values. It is important to note that all hyperparamet-
ers, such the learning rate and optimisers are maintained constant between different datasets. Finally,
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the third phase sees most models reducing their loss values until another plateau is hit.

It is clear that the RMS and envelope smoothing techniques, in both differentiated and undifferentiated
forms, are outperformed by the simpler models, Base and Diff. The RMS models struggle to find a point in
the loss landscape that allows them to converge further. In fact, after the initial drop from the randomised
weights in the first ten epochs, the differentiated RMS model stops converging altogether. As the target
value for the RMS models is not much more complex than the standard values, this indicates that the
RMS of the eight millisecond sub-windows is not a good predictor of the knee angle. Although the Base
RMS model may appear to be decreasing quite steeply, the approximately 65 epochs of plateau make this
model an unlikely candidate to perform better when combined with the decomposition techniques.

The Envelope datasets do obtain their second convergence relatively quickly, even faster than the Diff
model, but fail to get much farther than the 20.0 mark. The conclusion here is the same as for the RMS
models, although there is a big difference in the loss landscape, which is much less flat and more easily
traversed by the optimiser in this case. Further fine-tuning of the way the envelope of the signals are
smoothed may provide a lower loss value still.

Finally, the Base and Diff models perform almost equally well, with the former converging earlier, and the
latter obtaining a better final result of 10.6. This is an acceptable margin of error, falling approximately
in line with the errors found in literature. The reason for the better performance may be attributed to
the effects the differentiation has on the non-stationary nature of raw sEMG signals.

It is not clear from this experiment which method will perform better with respect to the multi-day per-
formance. At this stage two additional models were added that used completely raw data, Raw and Raw
Diff, without pre-processing it with the frequency domain filters described in section 4.1. This adds a
meaningful baseline which aids in the comparison between the models. In Figure 20, the new model
Raw and its differentiated version are compared against Base and Diff. Note that there are no versions
that include the RMS and envelope smoothing techniques, as they are already disregarded at this point.

Test loss during model training

—— Base (12.6)
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Figure 20: The test losses from the training of the raw data model, differentiated and unaltered, compared to the
original Base and Diff models. Lower is better.

The most striking conclusion from this graph is that the raw data performs even better than the pre-
processed data, which puts the frequency domain filtering in question. This difference may indicate that
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the filters overlap and remove a salient part of the frequency spectrum of the SEMG signals. Furthermore,
the difference between the differentiated version and standard version of the Raw models has become
even smaller. Raw Diff starts its second convergence before the plateau in the second phase has started,
but requiring almost 80 epochs to get mostly settled. It may even converge slightly further based on the
average slope of the loss curve in the last 20 epochs. Raw converges more steeply and starts to plateau
around epoch 50 already, indicating a better relationship between the input features and target values
than the other three models. Based on these combined findings, the Raw and Raw Diff datasets were
both selected out of the now eight datasets to be used in combination with the decomposition techniques
described in section 2.3. It is important to note that since the original Base and Diff models show that
they can be trained properly, albeit with a larger margin of error, the results of the other four models in
Figure 19 and the conclusions based thereon are still considered valid.

In short, differentiated datasets seem to generally outperform non-differentiated counterparts, and the
models that run on data that has not been pre-processed by frequency domain filters generally outper-
form those who do include that step. Combining these two facts then also yields the best performing
model with respect to same-day performance: Raw Diff. Making use of RMS of sub-windows only in-
creases the loss, and smoothing the envelope of the signal yields no benefits either. Based on the loss
graphs, the datasets Raw and Raw Diff were chosen to be combined with the decomposition techniques.

5.1.1 LSTM-AE and ICA

At the same time, the two datasets were used to determine the viability and configuration of the LSTM-
AE. Both datasets were used in the autoencoder as depicted in Figure 17. Unfortunately, the loss value
did not converge to any value much lower than the model when it uses its the randomly initialised start-
ing weights. Alternative architectures with fewer layers were used, where the latent space was two and
four times as large, creating models with layers of sizes 64:32:16 and 64:32 nodes, respectively. This was
done to investigate the effect of the depth of the model on the training. This yielded no improvement, as
the loss function stayed nearly constant for 100 epochs. This means that the proposed LSTMAE model
is not suitable to compress SEMG data into fewer dimensions. As such, the focus was put solely on the
regression models.

In the case of ICA, the iterative estimation approach by [26] was used to estimate the required number
of ICs, but this failed to converge to any non-zero value. The method was applied to numerous win-
dows from various trials from the Raw and Raw Diff datasets, as well as complete trials. Unfortunately,
it occurred only rarely that ICA managed to converge on any given number of desired independent com-
ponents between 1 and 63. This is indicated by the determinant of the global matrix G = AW, where A is
the mixing matrix and W is the unmixing matrix. The determinant is almost always zero for any number
of ICs, meaning the unmixing of the original signal was not successful. The mathematical reasoning is
beyond the scope of this research.

As ICA and LSTM-AE have the same goal, it stands to reason that their lack of convergence is caused by
a shared root cause. A likely contender for this is the small area over which the 64 signals are recorded.
Related works generally make use of a smaller number of electrodes which are spaced farther apart. This
should make it easier to perform blind source separation by means of ICA or autoencoders. This in turn
explains why related articles obtain better results when employing these techniques. It is important to
emphasise that the LSTM(-AE) and ICA should not be disregarded as a viable technique for SEMG signals
in general, as it has been demonstrated to work quite well [Naik2011AProcessing]. Regardless, for the
purpose of this research, the LSTM-AE and ICA are disregarded as viable approaches for reducing the
dimensionality or denoising the signals.

5.2 SAME-DAY PERFORMANCE
Next, the wavelet transform and EMD were applied to both datasets, as shown in Figure 21. A clear hier-

archy emerges, at least in terms of final loss values. Raw EMD performs slightly worse than Raw Wavelet,
which in turn performs slightly worse than Raw, and the same order is true for their differentiated coun-
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terparts. The point of second convergence is approximately the same for all models, with all of them
converging earlier than Base and Diff. As the difference between the two extreme loss values, ignoring
Base for now, is only 3.6, it may be too early to disregard any of the models already, as this performance
makes no promises on the long-term performance.

Test loss during model training

—— Base (12.6)

—— Raw EMD (11.7)

Diff (10.6)

Raw Wawvelet (10.0)
Raw Diff EMD (8.9)
Raw (8.7)

Raw Diff Wavelet (8.5)
Raw Diff (8.1)

Loss (RMSE)

T
0 20 40 60 80 100
Epoch

Figure 21: Test losses of the Raw and Raw Diff models, combined with the wavelet transform and EMD. Base and
Diff are shown for comparison.

5.3 MULTI-DAY PERFORMANCE

With the grid search complete, the resulting six models were given data obtained from one, two, and six
days later than the data that was used to train them. Ten percent of the total available data for each day
was used to evaluate them. The distribution of RMSE values are as shown in Figure 22. The mean RMSE
of each distribution is indicated with a dashed line in each plot, and is also shown in Figure 23.

One apparent inconsistency is that the second day means appear to be higher than expected, being higher
than the third day means in all but one case. As it is expected that the performance decreases monoton-
ically, this may point to a type of noise introduced during only the second day of the experiment, which
could disproportionately affect the accuracy.

Despite this, there is a clear distinction visible between the three Raw non-differentiated models, indic-
ated with dashed lines, compared to the three Raw Diff models, indicated with solid lines in Figure 23.
The non-differentiated group performs structurally worse on all days than their differentiated counter-
parts, which in turn perform approximately the same as the Base and Diff models, which are also shown
for comparison. These two models show a much better Day 1 performance, which contradicts the find-
ings from the preliminary grid search. Since the conclusions drawn based on those performances are not
based on the absolute value of the test loss, but rather on the relative differences between those values,
this should have no significant effect the validity of the resulting conclusion.

One could argue that the models have been trained on too small a trainset, causing gaps in the model’s
ability to make good predictions. This could then be the cause for the inconsistent loss values between
the same-day performance and the first day of the multi-day performance. To test effect that the volume
of training data has on how well the model can , i.e. can maintain a consistent accuracy on the test data,
the best performing model according to Figure 23, namely Diff, was retrained using increments of 10%
more data, from 20% up to 100%. The mean RMSE values resulting from these models are shown in
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Figure 22: Multi-day performance of each model. The dashed lines indicate the mean RMSE of the respective
model. Note that the x-axis is logarithmic to compensate for the right skew.
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Multi-day performance
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Figure 23: Multi-day mean RMSE of each model.

Figure 24. The first day performance should be ignored, as for this day the trainsets and testsets overlap,
thereby influencing the prediction accuracy. Despite that, based on these findings, no amount of increase
in training data allows the model to consistently outperform the models trained on less data. This is
emphasised in Figure 25, where the ranking of these models is plotted for each day, where one is the
best performing model on that day and ten is the worst performing model. As indicated by the many line
crossings and lack of a clear trend, none of these models is consistently better than others. At first glance,
it appears than 20% and 30% perform much better than 10%, but then the overall performance declines
going up to 40%, 50% and 60%, rises again for 70% and 80% and finally drops severely for 90% and
100%.
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Figure 25: Multi-day ranking of each Diff model trained on increments of 10% of the total available training data.
The number in each model name indicates the percentage of available data used for training. The rest is
used for evaluating the model.
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CONCLUSION

This research aimed to compare some of the most commonly used sEMG filtering techniques, specifically
those obtained in order to control computerised knees, and see how the models trained on the data
filtered with the various techniques perform in a multi-day setting. In order to do so, the following re-
search question, and its two accompanying sub-questions, were posed:

What combination of commonly used signal filtering and dimensionality reduction techniques can best
increase the multi-day performance stability of an SEMG-based computerised knee joint?

1. What combination of surface electromyography filtering techniques found commonly in literature
yield the highest accuracy when the training and evaluation occurs on the same day?

2. What impact do these selected techniques have on the multi-day accuracy of predicted angle of the
knee joint compared to the same-day accuracy?

To sum up, as there is a vast range of combinations of pre-processing steps, a methodology was created
to make it possible to compare the effect of three decomposition techniques - the wavelet transform,
empirical mode decomposition, and independent component analysis -, as well as the effect of differen-
tiation, and the effect of envelope smoothing and using the root mean square of sub-windows, on top of
applying frequency domain filters. Finally, an attempt was made to employ an LSTM autoencoder in a
similar fashion to regular autoencoders with the aim to reduce the dimensionality and reduce the noise
from the 64-channel sEMG measurements simultaneously.

As for the dimensionality reduction approaches, namely ICA and the LSTM-AE, neither approach suc-
ceeded to converge. The most likely cause for this is the small physical area of the leg over which the
sEMG signals have been recorded, providing insufficient spatial separation between the signals to per-
form the unmixing. The methodology from this work could be applied to different datasets that are based
on measurements that are farther apart spatially, like done in [39, 44], so that these techniques can be
included in the final comparison.

Despite the inconsistencies found in the loss values during the training phases of the models, there are
several key points that can be concluded from this experiment. Firstly, the two approaches of trying to
smoothen the envelope of the input signal by taking the root mean square (previously referred to as
"RMS") and low-pass filtering the signal to smoothen the envelope (referred to as "envelope") yield no
beneficial results and are not suited to gain model performance in general. In the same vein, frequency
domain filters may do more harm than good, as it may remove salient parts of the frequency spectrum,
in turn losing valuable information. This is hinted at by the fact that applying the filters yields one of the
best performing models in the multi-day performance comparison, but one of the worst in the same-day
performance comparison. It has been shown that using no frequency domain filters may actually be a
better option. A more in-depth look into what exact combinations of frequency domain filters provide
the best signal-to-noise ratio, both in the general field of SEMG signal acquisition and for knee angle
estimation specifically, would be a valuable addition to scientific literature.

Furthermore, differentiation helps to stabilise the signal and will generally provide better performance,
both short-term and long-term, than the original signal. In all but two cases, namely using RMS and
Envelope datasets, did the differentiated version perform better than its non-differentiated counterpart,
regardless of the decomposition techniques used or whether or not the frequency domain filters were
applied. Combining these findings, using the raw signal and taking its first derivative yields the best
same-day performance. Based on the inconsistencies in the findings of the same-day performance and
the first day of the multi-day performance, it may be wise for any further research to include a frequency-
filtered dataset and taking its derivative and compare the results, as was also done in this work.
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With regards to the decomposition techniques, no evidence was found that applying the wavelet trans-
form or empirical mode decomposition yields any consistent performance gains in same-day or multi-day
performance. Neither technique has changed the multi-day RMSE by a large enough amount to be con-
sidered effective. The means of day 2, 3, and 7 remain close together, indicating the decomposition
techniques do not contribute to the mitigation of the cause of the increase in mean after the first day.
The difference in in spread of the multi-day mean performances between every trained model and its
differentiated counterpart is also negligible; differentiation does not contribute to this mitigation either,
despite its positive effects on the same-day performance.

These findings go against the common idea that more advanced techniques are always better. In a pursuit
to always improve the way humans and machines interact, one may find it encouraging to see that simple
can outperform complex. More concretely, this has interesting consequences for real-life applications, as
the need for fewer advanced and computationally heavy techniques would allow for less expensive and
hopefully more widely available prostheses, as well as allowing others to more easily contribute to the
research of this still growing scientific field.
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